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ABSTRACT

The onset of big data and deep learning applications, mixed with conventional general-purpose

programs, have driven computer architecture to embrace heterogeneity with specialization. With

the ever-increasing interconnected chip components, future architectures are required to operate

under a stricter power budget and process emerging big data applications efficiently. Intercon-

nection network as the communication backbone thus is facing the grand challenges of limited

power envelope, data movement and performance scaling. This dissertation provides intercon-

nect solutions that are specialized to application requirements towards power-/energy-efficient and

high-performance computing for heterogeneous architectures.

This dissertation examines the challenges of network-on-chip router power-gating techniques

for general-purpose workloads to save static power. A voting approach is proposed as an adaptive

power-gating policy that considers both local and global traffic status through router voting. In

addition, low-latency routing algorithms are designed to guarantee performance in irregular power-

gating networks. This holistic solution not only saves power but also avoids performance overhead.

This research also introduces emerging computation paradigms to interconnects for big data

applications to mitigate the pressure of data movement. Approximate network-on-chip is proposed

to achieve high-throughput communication by means of lossy compression. Then, near-data pro-

cessing is combined with in-network computing to further improve performance while reducing

data movement. The two schemes are general to play as plug-ins for different network topologies

and routing algorithms.

To tackle the challenging computational requirements of deep learning workloads, this disserta-

tion investigates the compelling opportunities of communication algorithm-architecture co-design

to accelerate distributed deep learning. MultiTree allreduce algorithm is proposed to bond with

message scheduling with network topology to achieve faster and contention-free communication.

In addition, the interconnect hardware and flow control are also specialized to exploit deep learn-

ing communication characteristics and fulfill the algorithm needs, thereby effectively improving
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the performance and scalability.

By considering application and algorithm characteristics, this research shows that intercon-

nection networks can be tailored accordingly to improve the power-/energy-efficiency and perfor-

mance to satisfy heterogeneous computation and communication requirements.
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1. INTRODUCTION

The physics limitations of semiconductor technology and grand computational requirements

of emerging applications have inspired computer architecture to evolve to heterogeneous systems

as shown in Figure 1.1, embracing general-purpose CPUs, specialized accelerators and disruptive

computation paradigms such as approximation and near-data processing (NDP). On the one hand,

such a system needs to operate under a stricter power budget due to the end of Dennard Scaling [4]

and diminution of Moore’s Law [5]. On the other hand, the onset of big data and deep learning ap-

plications urge future architectures to process humongous data efficiently. With the ever-increasing

interconnected chip components, interconnection networks as the communication backbone is fac-

ing the enormous challenges of limited power envelope, data movement and performance scaling

issues. Thus, it is demanding to design efficient interconnect solutions to tackle these multifaceted

challenges for future heterogeneous architectures.

1.1 The Problem: Heterogeneous Communication Requirements

The mixture of general-purpose workloads and emerging big data applications running on het-

erogeneous architectures show distinct characteristics. General-purpose programs exploit data lo-

cality and deep cache hierarchy with very low average communication rate, overusing power for

light traffics. In contrast, big data applications, such as graph processing and machine learning,

have large memory footprint with low data reuse rate and requires tremendous communication

M
emory/NDP Plane

Processing Plane

Figure 1.1: A heterogeneous system architecture example.
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bandwidth to fulfill the substantial data movement demands. Furthermore, the immense advances

in distributed deep learning show long-lasting communication data streams, which is very dis-

similar to random short messages in conventional workloads. These diverse characteristics show

heterogeneous communication requirements and reveal different inefficiency in terms of power

utilization, data movement, and performance scaling on the current interconnect solutions.

1.1.1 Low-Power Interconnect in Dark Silicon

Scalable networks-on-chip (NoCs) have become the de fecto interconnection mechanism in

large-scale chip multiprocessors (CMPs). Not only are NoCs devouring a large fraction of the

on-chip power budget, but static NoC power consumption is becoming the dominant component

as technology scales down. General-purpose programs running on CMPs typically have low com-

munication traffics [6], making the standby leakage a waste of the power envelop. Therefore, it

is essential to reduce static NoC power consumption for power-efficiency in dark silicon. Power-

Gating as an effective static power saving technique can be used to power off inactive routers.

However, packet deliveries in irregular power-gated networks suffer from detour or waiting time

overhead to either route around or wake up power-gated routers. Previous research has proposed to

power-gate routers attached to inactive cores in a centralized manner [7], leading to high overhead

for network reconfiguration. Other research has introduced a bypass ring network to route packets

even in disconnected power-gated networks [8]. However, it can introduce long latency with too

many detours. In addition, they either make power-gating decision depending on the local traffic

or the average global traffic, thereby either losing the big picture of the whole network or missing

details of independent routers. As a consequence, they introduce performance overhead and has

limited power saving. Thus, it is essential to provide a solution that captures both global and local

status for power-gating decision, meanwhile achieving more power saving and low-latency packet

deliveries.
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1.1.2 High-Throughput Communication for Big Data Applications

The explosion of data availability and the demand for faster data analysis have led to the emer-

gence of applications exhibiting large memory footprint and low data reuse rate. These work-

loads, ranging from graph processing to neural networks [9, 10], require significant data movement

throughout the memory hierarchy, posing heavy stress on the communication fabrics. Furthermore,

due to the gap between dense CPU computation power and deficient data supply, computer sys-

tems fail to achieve their peak computational capability. Therefore, architectural innovations are

imperative to reduce data movement for substantial improvements in terms of system performance

as well as energy efficiency. Prior research has adopted compression in network-on-chip to in-

crease the throughput for communication [11, 12, 13]. However, these compression techniques are

not adequate to provide the demanding throughput for big data. Other work has proposed vari-

ous techniques to reduce data movement with near-data processing by moving computation near

data-resident locations. In-place computation in cache uses bit-line SRAM circuit technology to

transform existing cache elements to active very large vector computational units, avoiding mov-

ing data between different levels in the cache hierarchy [14, 15, 16, 17]. Processing-in-memory

(PIM) has also enabled computation in the memory for data processing [18, 19, 20, 21, 22]. Al-

though effectively reducing data movement, these approaches miss the opportunity of in-network

optimization for further improvement. Thus, network level optimizations are needed to reduce data

movement during communication.

1.1.3 Performance Scaling of Communication for Distributed Deep Learning

With the movement of artificial intelligence, deep learning has been transforming the land-

scape of computing from applications to hardware. The onset of big data era and rapid advances

of accelerator architectures have enabled deep neural networks (DNNs) to achieve superhuman

accuracy on complex real-world problems [10, 23, 24, 25, 26]. State-of-the-art DNN models have

tens to hundreds of millions of parameters, requiring billions of compute operations and hundreds

of megabytes of storage and bandwidth. Recent work projects that orders of magnitude growth
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of dataset and model size are required to exceed human-level accuracy, which will take weeks to

train a single epoch for language modeling [27]. As data keep exploding and DNNs evolve to

be larger and deeper, it is crucial to provide scalable solutions to fulfill the trend in grand com-

puting requirements. To this end, accelerator pod with hundreds to thousands of processors have

been deployed to train these giant DNNs in a parallel and distributed manner [28, 29, 30]. Dur-

ing the iterative distributed training, all-reduce communication is frequently invoked for gradients

synchronization, dominating the communication time and stalling the computations of the next

training epoch. Widely used all-reduce algorithms either suffer from contention or long latency,

resulting in resource under utilization [31, 32, 33]. Although communication algorithms are opti-

mized in theory, they lack hardware support for coordination and communication scheduling, and

thus, miss potential optimization opportunity to further improve performance. Furthermore, the

fine-grained flow control and arbitration designed for general purpose network can be inefficient

to support such large gradient exchanges, resulting in poor performance and huge energy/power

overhead. Comparing to the significant investment in computation acceleration, little attention has

been paid to communication, which can quickly become a bottleneck for large-scale distributed

training.

1.2 The Solution: Communication Specialization

Along the wave of heterogeneous computing, specialization has been broadly practiced in com-

putation acceleration tailored to various applications, such as CPU for general-purpose programs,

GPU for graphics and TPU for deep learning. In contrast, specialized communication has not been

widely investigated. With the divergent application domains and their heterogeneous communica-

tion requirements, the one-for-all interconnect solution is no longer efficient for their multifaceted

characteristics. To keep up with the improvement of computation efficiency, communication spe-

cialization is urgently needed to tackle the challenges of power-/energy-efficiency, data movement

and performance scaling accordingly. Thus, this dissertation proposes four specialized interonnect

solutions for these problems as an attempt towards efficient communication in terms of power/en-

ergy and performance.
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1.2.1 Low-Power Network-on-Chip for General-Purpose CMP

In general, since general-purpose programs have average light traffic loads, NoC static power

consumption is a large waste of the total on-chip power budget. Static power consumption for

the chip is also increasing drastically, while the feature size becomes smaller and the operating

voltage gets closer to the near-threshold level [34]. Therefore, it is highly desirable to achieve

power-efficient NoC designs for future CMPs. This dissertation proposes Fly-Over (FLOV), a vot-

ing approach for adaptive router power-gating, targeting for low-power NoCs for general-purpose

CMPs. The adaptive power-gating policy works in synergy with low-latency routing algorithms in

the irregular power-gating network. Such a holistic solution not only saves power but also avoids

performance overhead.

1.2.2 Disruptive Computing Paradigms for Big Data Movement

Data movement has posed significant pressure on the communication backbone of modern pro-

cessors due to the emergence of big data applications. Thus, it is crucial to provide communication

solutions that can move data efficiently. Many of these applications, such as machine learning,

image/video processing and pattern recognition have approximation in nature in their algorithm

designs for either faster convergence or result estimations [35, 36, 37]. These workloads also have

compute kernels that operate reduction over myriads of data. Therefore, this research exploits the

error tolerance of these applications and proposes APPROX-NOC for approximate communication

with lossy compression to improve the data content locality for higher compression rate, effectively

improving communication throughput. In addition, by leveraging near-data processing, this disser-

tation proposes Active-Routing, an in-network computing architecture that maps compute kernels

to the memory network for data-flow style processing, further reducing data movement compared

to state-of-the-art processing-in-memory approach.

1.2.3 Algorithm-Architecture Co-Design for Distributed Deep Learning

Large-scale distributed deep learning training has enabled developments of more complex deep

neural network models to learn from larger datasets for sophisticated tasks. In particular, dis-
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tributed stochastic gradient descent intensively invokes all-reduce operation for gradient update,

which dominates communication time during iterative training epochs. As computations are sig-

nificantly accelerated through specialization, communication can soon become the bottleneck in

distributed deep learning. To tackle this problem, this dissertation proposes MULTITREE All-

Reduce algorithm and co-designs the architecture to satisfy algorithmic requirements. The al-

gorithm takes topology and resource utilization into account for efficient and scalable all-reduce

scheduling. Moreover, the interconnection network is specialized with heterogeneous bandwidth

provisioning of injection/ejection and network channels in addition to flow control to cope with

the algorithm in synergy.

1.3 Thesis Statement

Specializing interconnection networks tailored to heterogeneous architectures and workloads

is an effective approach to achieve power-/energy-efficient, high-throughput and accelerated com-

munication.

1.4 Contributions

This dissertation addresses the grand challenges of power-/energy-efficiency, data movement

and performance scaling issues of communication in heterogeneous architectures using intercon-

nect specialization. The main contributions of this research are the following.

• This research increases the understanding of the key factors that affect power saving and per-

formance effects in designing router power-gating policy. The proposed routing algorithm

achieves best-effort minimal route to avoid performance degradation. The proposed FLOV

voting approach is well balance in the knowledge of local and global traffic status for adap-

tive power-gating decisions to achieve more static power saving while guaranteeing network

throughput. This voting policy can be applied to other distributed power-gating schemes for

performance-aware power optimizations.

• This research is the first study that introduce approximate computing to networks-on-chip

for high-throughput communication provisioning. The proposed APPROX-NOC exploits
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approximate data similarity in communication and translates it to high compression rate to

reduce traffic loads in NoCs. Its approximate engine implements fast approximation logic

that guarantees error tolerance within budget, making it suitable to work synergistically with

other computation and memory approximation techniques in the same system. Furthermore,

the proposed approximation module can be used in a plug-and-play fashion with any under-

lying data compression mechanisms.

• This research examines the first in-network computing idea in near-data processing to min-

imize the data movement in emerging memory networks. The proposed Active-Routing ar-

chitecture maps compute kernels to the memory network for data-flow style processing by

exploiting the pattern of aggregation over intermediate results of arithmetic operators. It

seeks to schedule computations at routers attached to memory so as to take advantage of the

massive bandwidth and parallelism in memory. Meanwhile, it dynamically builds topology-

oblivious Active-Routing trees and leverages the network concurrency to optimize reduction

operations along the routing path. This research demonstrates the promising potential for

in-network computing with data-flow processing.

• This research is among the first studies that co-designing algorithm and architecture to ac-

celerate communication for large-scale distributed deep learning. This work identifies the

inefficiency in recent all-reduce algorithms and the opportunity of communication algorithm-

architecture co-design. The proposed MULTITREE All-Reduce algorithm couples tree con-

struction and communication scheduling, with topology and global link utilization aware-

ness, to efficiently coordinate concurrent tree communications. The co-designed intercon-

nection network is specialized to satisfy the fan-in/out of trees in the algorithm. In addition,

the large size of gradients in deep learning is exploited by a simplified flow control and ar-

bitration for better effective bandwidth utilization. This research is the first work to exploit

characteristics of large-scale deep learning for communication acceleration.
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1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the fundamental

concepts in interconnection network and network-on-chip (NoC) to lay down a foundation for

the discussion of this research, and survey the literature of related work. Chapter 3 presents the

voting-based adaptive NoC power-gating policy and its routing algorithm, designed for general-

purpose CMPs. To minimize data movements for big data applications, Chapters 4 and 5 present

two specialized interconnect solutions, approximate communication and in-network computing,

respectively. Chapter 6 co-designs communication algorithm-architecture to accelerate communi-

cation for large-scale distributed deep learning. Finally, Chapter 7 concludes this dissertation with

a discussion of the future research directions.
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2. BACKGROUND AND LITERATURE SURVEY

This chapter presents the fundamental concepts of interconnection networks to facilitate the

discussions of this dissertation with a literature review of the related work in the areas of low-

power networks-on-chip, approximate computing, near-data processing, distributed deep learning

and all-reduce collective communication, respectively.

2.1 Interconnection Network Basics

An interconnection network consists of router nodes and link channels as a communication fab-

ric for interconnecting multi nodes in a system or multicores in in chip multiprocessors (CMPs).

The construction of an interconnection network includes its network topology, routing algorithm,

flow control protocol and router microarchitecture implementation. The important performance

metrics for interconnection network evaluation is latency and throughput. Latency, or average

packet latency defines the average time for sending a packet from one node to another while

throughput defines the maximum traffic load the network can sustain for a traffic pattern before

indefinite queuing or congestion happens at the end node.

(a) Ring topology (b) Mesh topology (c) Torus topology

Figure 2.1: Three topology examples: ring (a), mesh (b), and torus (c).
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2.1.1 Topology

Network topology defines the connections between the router nodes and provides the possible

paths between the nodes. Topology also determines how well the contention can be handled on

various traffic patterns. Figure 2.1 shows three widely used topologies. The ring network shown

in Figure 2.1a has minimum path diversity and hence has limited network throughput and high

latency for most of the traffic patterns. Figure 2.1b shows a mesh network topology that has more

choices at each node compared to ring, thereby improving performance. In Figure 2.1c, a torus

network is showed to have lower network diameter and more path diversity than both ring and

mesh. So it can deal with contention better to achieve lower latency and higher throughput.

2.1.2 Routing Algorithm

Given a network topology, an important factor that affects the performance is the routing al-

gorithm that determines the packet traversal path(s) between two nodes. In general, there are two

classes of routing algorithms, deterministic and adaptive routing. Deterministic routing algorithms

are simpler to implement in hardware while limiting to a single choice for routing between two

nodes. In contrast, adaptive routing has more path diversity for routing packets, thereby tending to

have higher network throughput. One of the important issues needs to be handled in routing design

is deadlock, where packets in the network are holding resources and waiting for resources held by

others in a circular way indefinitely. Two classic mechanisms for deadlock handling are deadlock

recovery [38] and deadlock avoidance [39]. In deadlock recovery, routing deadlocks are identified

by detection techniques, then escape resources are provided to the deadlocked packet, therefore,

circular dependence is mitigated to break the deadlock. A common deadlock detection technique

is timeout mechanism to detect possible deadlock in the network. In deadlock avoidance mecha-

nism, deadlock can be avoided by always providing choice from the a deadlock-free escape routing

subfunction. So a packet can always go to the deadlock-free escape path when it is blocked.
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(b) Virtual cut-through example

Figure 2.2: Flow control examples at low load without contention: store-and-forward flow con-
trol (a) and virtual cut-through flow control (b). Figures are redrawn and adapted from examples
in [40], where H indicates head flit, B and T stand for body and tail flits, respectively.

2.1.3 Flow Control

Flow control manages how the resources, including buffers and links, are used by the packets

along the route. The smallest unit that recognized by flow control methods is flit control digit (flit).

So, a packet usually consists of one or more flits. Since buffered routers are considered in this

dissertation, we focus on buffer-based flow control. In packet-switching networks, a router needs to

make sure downstream buffer availability before sending the packet. The reserved buffer lane can

only be used by the reserving packet before it receives the last flit of the packet, which releases the

reservation. Well-known packet-buffer flow control methods are store-and-forward and virtual cut-

through. In store-and-forward, as the name suggests, the whole packet is received and stored before

being forwarded to the next hop. And before sending packets, buffer space for the whole packet

should be reserved in next hop. However, even when the buffers in the next hop are available, flits

have been received are holding unnecessarily the buffers while waiting for the remaining flits for

the same packet, as shown in Figure 2.2a. In virtual cut-through switching, received flits can start

transmission as long as the buffer for the whole packet has been reserved in the next hop [41].

Figure 2.2b shows the timeline diagram for packet transmission using virtual cut-through flow

control at low traffic load. Virtual cut-through make it possible to send flit earlier and recycles flit

buffers faster, thus improving network latency and throughput. Wormhole flow control, a flit-buffer

based method, relaxes the restriction on buffer reservation, where flits can be transmitted as long as

there is a free flit buffer in the reserved lane [42]. Therefore, wormhole flow control can reduce the
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Figure 2.3: Virtual-channel router microarchitecture.

buffer requirements even with buffer size smaller than packet size. Virtual-Channel flow control,

a more advanced flit-buffer based technique, associates multiple virtual channels (flit buffer lanes)

with the same physical channel. Therefore, it remove the head-of-line blocking issue and increases

the physical channel bandwidth utilization, thereafter improving network throughput.

2.1.4 Router Microarchitecture

Router microarchitecture is the implementation of a router switch. Figure 2.3 shows a typical

virtual-channel router microarchitecture. The datapath includes the input virtual channels (VCs)

and a switch crossbar switch connecting the input VC to the output ports. The incoming flits

are stored in the input VC, and the routing computation unit computes the route and assigns the

output port in packet basis. Then the VC allocator assigns the packet an output VC, which is

associated with the downstream input VC. When the buffer resources are allocated, the switch

allocator assigns the switch time in flit basis by configuring the connection of the crossbar to setup

the datapath. In general, router traversals are pipelined to increase the clock frequency. Figure 2.4

shows a traditional router with five pipeline stages followed by link traversal, including buffer
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Figure 2.4: Traditional 5-stage router pipeline followed by link traversal.

write (BW), routing computation (RC), VC allocation (VC), switch allocation (VA), and switch

traversal (ST). Only the head flit experiences all the stages while remaining flits skip the RC and

VA stages because output port and VC have been determined in packet basis. Lookahead routing

and speculation of VA and SA can be performed to reduce the executed pipeline stages [43]. If

misspeculation happens, the flit falls back to the normal pipeline.

2.1.5 Network-on-Chip (NoC)

Network-on-Chip (NoCs) are on-chip interconnection networks in silicon that interconnect

execution cores, slices of cache, memory and IO controllers. The design specifications of NoCs

are more constrained in terms of power and area compared to its off-chip counterpart. Therefore,

flit-buffer flow control is used so that buffer depth can be less than a packet size to reduce both

area and power consumption. In terms of performance, link latency is the dominant component in

off-chip network while router latency becomes the major portion for NoCs due to the on-chip fast

wire signaling. In consequence, router latency is critical to the performance in NoCs. Therefore,

speculation and pipeline are mostly applied to router datapath to reduce the latency.

2.2 NoC Power Problem and Router Power-Gating in Dark Silicon

Scalable Networks-on-chip (NoCs) such as 2D meshes, are de facto communication fabrics in

these large CMPs. Studies show that NoCs consume a significant portion, ranging from 10% to

36%, of the total on-chip power [44, 45, 46]. Therefore, it is highly desirable to achieve power-

efficient NoC designs for future CMPs. Static power consumption for the chip is also increasing

drastically, while the feature size becomes smaller and the operating voltage gets closer to the

near-threshold level. Previous studies show that the percentage of static power in the total NoC
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power consumption increases from 17.9% at 65nm, to 35.4% at 45nm, to 47.7% at 32nm and to

74% at 22nm [47, 48]. Based on this trend, as we reach towards sub-10nm feature sizes, static

power can become the major portion in NoC power consumption. Power-gating is an effective

circuit technique to mitigate the worsening impact of on-chip static power consumption by cutting

off supply current to idle chip components. Prior research has applied power-gating to NoCs for

static power saving. In the rest of this subsection, we review the previous research related to power

and performance issues of NoC power-gating.

Fine-grained Interconnect Power-Gating. Significant research has applied power-gating

techniques in NoCs [49, 50]. Several fine-grained interconnect component power-gating tech-

niques were proposed [51, 52, 53, 54]. Kim et al. introduced a dynamic link shutdown (DLS)

technique together with dynamic voltage scaling to save link energy [55]. Soteriou et al. presented

a power-aware network that reduces static power consumption by monitoring the link utilization

and power-gating the underutilized links [51]. Matsutani et al. applied the power-gating tech-

nique to control the power supply of different components individually in an ultra fine-grained

way [52]. Kim et al. proposed a buffer organization to adaptively adjust active buffer size by

power-gating [53]. Parikh et al. introduced power-aware routing and topology reconfiguration to

minimize detours while selected components in routers are power-gated [54]. These approaches

work well to reduce the static power consumption, however, they only power-gate certain compo-

nents (e.g. input buffer) of a router and requires additional circuits.

Coarse-grained NoC Router Power-Gating. Coarse-grained router power-gating has been

broadly studied as well. In [56], lookahead routing is utilized to wake up sleeping routers two

hops in advance to hide the wakeup latency. However, as clock frequency increases, wake up la-

tency cannot be totally hidden. Chen et al. introduced Power Punch, a non-blocking power-gating

scheme that wakes up powered-off routers along the path of a packet in advance, thereby prevent-

ing the packet from suffering router wakeup latency [57]. Zhan et al. presented a mechanism

that can activate powered down cores for performance gains while considering thermal aware floor

planning, and they also explored topological/routing support [58]. Catnap power-gates physical
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sub-networks based on the priority and predicted traffic load [59]. Recently, Samih et al. intro-

duced Router Parking (RP) to power-gate routers when their attached cores are sleeping while some

of the routers are kept on to ensure network connectivity [60]. RP dynamically reconfigures the

network among aggressive, conservative and no power-gating modes to trade-off power saving and

performance. Upon reconfiguration, it estimates the power saving and decides the power-gating

mode by collecting stats from all routers and distributing the recomputed routing tables. This

scheme requires centralized control and typically takes a long time to reconfigure the network that

may suspend new injections into the network during this phase. Chen et al. proposed node-router

decoupling (NoRD) approach to leverage the independence of power-gating a core and its attached

router, which provides a decoupling route through network interface to bypass the power-gated

router [47]. The decoupling bypass links ensure network connectivity by using an escape bypass

ring network. However, a bypass ring is not scalable to large network sizes. Another issue with

NoRD is that a bypass can be constructed in a (k × k) mesh, if and only if k is even.

Bypassing Mechanisms. Some studies have suggested bypassing for different purposes in

NoCs [61, 62, 63, 64, 65]. Kumar et al. proposed express virtual channels that virtually bypass

intermediate routers for packet transmission to achieve high performance [61]. In [62], dual func-

tional physical channel buffers are used to bypass a router and to keep packets in the links along

the path. Long-range link [63, 64] and skip-link [65] were proposed to bypass routers for faster

packet delivery. These studies has been designed purely for performance without power consid-

eration. EZ-Pass has latches in all the directions and borrows the NoRD idea to bypass the router

by going through the network interface, but it avoids the ring network [66]. EZ-Pass adds an extra

routing computation unit in network interface for data bypassing, and unnecessarily going through

network interface even when the packet has no need to make a turn. Furthermore, the unified

VC state table increases the hardware complexity in order to support concurrent reads/writes for

different ports and accessibility from both network interface and router. Muffin also incorporates

similar ideas whereas it handles bypassing inside the router with extra control and arbitration [67].

In concurrent with this research, another similar bypassing mechanism is TooT, which waits for
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the power-gated router to be powered on for turning purposes [68]. Later, Sponge presents a pivot

router column for making turns [69]. Sponge also makes a coarser-grained power-gating decision

for the whole column.

Routing Algorithms for Power-Gating NoC. In most of NoC power-gating proposals, regu-

lar network routing is used by waking up the power-gated routers [52, 57, 68]. In contrast, Router

Parking recomputes routing tables at every reconfiguration and NoRD introduces a bypass ring

network to solve the routing problem in irregular networks. Other research has proposed math-

ematical models or tools for routing in reconfigurable networks [70, 71]. However, they require

more hardware complexity that increases power consumption, or their algorithm is too complex

to perform in hardware to reflect rapid topology changes in the network. These tools are more

suitable for application-specific multi-processor systems-on-chip (MPSoC). They can also be used

to help analyze the routing design. Although fault tolerance is not the scope of this work, related

routing algorithms are applicable in most cases [72]. But they are not easily extended to the cases

where power-gated nodes may disconnect the network in the assumption of fault tolerance design,

even the links are actually maintaining the connectivity in our setting.

2.3 Approximate Computing

In this section we discuss the related work in hardware approximation techniques and NoC data

compression.

Approximation. Significant research has been done regarding approximated computation and

data storage in hardware for applications that allow inaccurate outputs. Sampson et al. [73, 74, 75]

have proposed code annotations and compiler framework for the programmers to define the data/-

computations in the application that can be approximated. They have also proposed hardware

mechanisms like voltage scaling, reducing DRAM refresh rate and SRAM supply voltage, width

reduction in floating point computations for energy savings. Esmaeilzadeh et al. [76] have pro-

posed dual voltage operation where precise computations use high voltage mode and approximate

operations use the low voltage mode. Previous research has also proposed energy efficient acceler-

ators based on neural networks and analog circuits [77, 78, 79, 80]. Liu et al. [81] has proposed to
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reduce the refresh rate of DRAM memories which store data that can be inaccurate, using applica-

tion level input. Miguel et al. [82] has designed Doppelganger, a cache mechanism that eliminates

the storage of cache blocks with data that is similar (need not be an exact match). They keep the

tags for all the cache blocks, but if two cache blocks are similar then only one is stored and both

the tags point to this block.

NoC Data Compression. Previous research has explored data compression in NoCs. Das et

al. [83] explored compression in caches and the NI of the routers while proposing techniques to

amortize the decompression latency with communication latency. They observe that across a wide

range of workloads data compression leads to significant network power savings and performance

benefits. Zhou et al. [84] proposed a data compression mechanism in packet-based NoC architec-

tures by tracking frequently repeated values in the on-chip data traffic. Zhan et al. [85] introduced

a base-delta compression technique in NoCs to exploit the small intra-variance in data communi-

cation. Jin et al. [86] proposed a data compression mechanism that learns frequent data patterns

using a table-based mechanism and adaptively turns the compression on/off based on the efficacy

of compression on the network performance.

2.4 Near-Data Processing and In-Network Computing

Die-Stacked Memory. Advancements in memory technology have facilitated the integration

of logic and memory dies using 3D stacking [87]. In die-stacked memory, DRAM layers are

stacked on top of a logic layer. The DRAM layers are connected with the logic layer using high
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bandwidth, and low-latency Through-Silicon Vias (TSV). Hybrid Memory Cube (HMC) [88] and

High Bandwidth Memory [89] are two popular examples of die-stacked memory. Figure 2.5 shows

the organization of HMC, which is partitioned vertically into several vaults consisting of multiple

TSV connections to the logic layer. Each vault is controlled by a vault controller implemented

on the logic die. The vault controllers are sparsely placed and that leave ample amount of unused

silicon area to deploy more complex functional logic. It has been used to implement computation

capability ranging from limited functionality [90, 91, 92] to full-fledged processors [93, 94]. HMC

communicates with the processor or other memory cubes through four ports. Inside the cube’s

logic die, an intra-cube network is used to route the packets between the vaults and ports. HMC

also enables larger memory size per package and provides abundant internal and external band-

width with TSVs and high-speed link protocol. These advantages are leveraged in many existing

processing-in-memory studies [93, 94].

Memory Network Conventional systems with DDR memory have capacity limits and band-

width bottlenecks due to the limited number of pins per processor chip. Therefore, it requires more

processor sockets in such systems to scale their memory capacity. However, the overweight data

movement with respect to light computation in emerging data-centric applications can lead CPU to

be under-utilized. In contrast, HMCs can be chained together to form a cost-effective memory net-

work using packet switching and provide large memory capacity. In addition, commonly adopted

processor-centric design optimizes processor-to-processor communication but overlooks the over-

all system bandwidth utilization. A recent study [95] has shown that memory-centric designs can

achieve better bandwidth utilization as compared to processor-centric designs.

Near-Data Processing. Recently, a significant amount of research efforts to reduce data move-

ment across the memory hierarchy to improve the system efficiency. Near-data processing (NDP),

as a promising compute paradigm, has driven new architectures to move computations near data-

resident locations, such as cache and memory. Aga et al. proposed compute cache [96] that uses

bit-line circuit technology to perform simple computation in the cache to enable in-place comput-

ing. Processing-in-memory (PIM) [93, 97, 92, 91, 98, 99, 94, 100, 101] is an alternative NDP
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design that introduces compute elements in memory for data processing. Recent studies [90, 102]

have proposed to integrate PIM architectures within modern systems in a seamless fashion. They

extended the instruction set to offload computations to data-resident memory modules. These

mechanisms achieve better efficiency compared to conventional computing due to reduced data

movements. They are most effective in the case of irregular memory accesses and atomic write

operations. However, they are suboptimal when performing simple tasks over a large size of raw

data, such as dot product, since they need to fetch part of the data across the memory network

for further processing when data are not located in the same module that incurs communication

and energy overhead. Ahn et al. proposed Tesseract [93], a programmable PIM accelerator for

large-scale graph processing. Nair et al. [103, 97] proposed Active Memory Cube (AMC) by

leveraging HMC to place vector processing units in the logic layer. AMC suffers from delays due

to instruction pre-loading as well as delay and energy overhead of its complex interconnection

network. Most recently Fujiki et al. [104] propose a programmable in-memory processor architec-

ture, and data-parallel programming framework using non-volatile memory. Mondrian [94] takes

an algorithm-hardware co-design approach to sequence irregular accesses for better locality. Re-

cent study [105] analyzed Google workloads and discovered the data movement as the bottleneck

for performance and energy efficiency, which is also the problem this research tries to solve.

In-Network Computing. Prior research [106, 107, 108] has advocated to provide computation

power as well as routing functionalities in communication fabrics. Active Message [106] embeds

the function pointer and arguments across the network to perform tasks in remote compute nodes.

Pfister et al. [107] and Ma [109] proposed mechanisms to combine messages so as to reduce net-

work traffic. Recently, IncBricks [108] implements an in-network caching middlebox for key-value

acceleration in router switches. Several studies [110, 111, 112] proposed mechanisms to optimize

shared value update or reduction in the network. The NYU Ultracomputer [110] introduced adders

in routers to combine fetch-and-update requests for the same shared variable. Panda [111] and

Chen et al. [112] proposed similar hardware to optimize reduction in the network interface for

MPI collective communications. These mechanisms only support pure reduction operations and
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cannot accelerate operations like dot product, thus requiring significant data movements across

the memory hierarchy to first compute the intermediate results. Recently, Kwon et al. proposed

MAERI [113] to improve efficiency for data-flow computations in deep neural network accelera-

tors, which does not target general applications. The multiply operations require data to be brought

to local SRAM and are calculated only at leaf nodes in the tree-based network topology. These

in-network compute solutions have limited adaptivity since the reduction tree/ring is statically tied

to the network topology.

2.5 Distributed Deep Learning and All-Reduce Collective Communication

2.5.1 Data-Parallel DNN Training

The training of a DNN model is usually done using stochastic gradient descent where each

training sample goes through forward propagation, gradient calculation followed by backward

propagation. Backward propagation uses the gradient to update weights of the DNN model in or-

der to minimize loss function. To make training faster, minibatch is used where there is one pass

of weight update for each minibatch of training samples. It is a daunting task to train large DNN

models with a huge amount of training data. Therefore, training is often performed in a distributed

environment of multiple compute nodes. Each compute node may be equipped with multiple GPUs

and DNN accelerators. This creates a number of challenges regarding resource usage, communica-

tion bandwidth provisioning, and trade-off between computation and storage [114, 115]. Different

models of parallelism have been utilized to make the training scalable and efficient in a distributed

and parallel environment.

The most common model of parallelism in DNN training is data parallelism where a non-

overlapping set of training samples are distributed to different compute nodes. Each node calcu-

lates gradients based on its own training set. Gradients are then aggregated to update weights.

There are mainly two approaches to achieve this - centralized and decentralized approaches. The

centralized approach relies on a parameter server where each node periodically reports its com-

puted parameters or parameter updates to a (set of) parameter server(s) [116]. A common approach
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is to use sharding of the model parameters and distribute the shards on multiple parameter servers

which can be updated in parallel. However, parameter servers are not efficient in terms of band-

width and latency for larger models. An alternative is the decentralized approach where compute

nodes exchange parameter updates via an all-reduce operation. In this case, the network topology

of compute nodes plays an important role. A common alternative is to employ a ring topology

referred to as Ring All-Reduce [31, 117]. Ring-based approach only requires a tree topology to

become bandwidth optimal. However, it is not latency optimal.
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Figure 2.6: Reducde-scatter and all-gather in Ring All-Reduce.

2.5.2 All-Reduce Operation

Baidu popularized Ring All-Reduce using a sequence of reduce-scatter followed by allgather

operations [117, 118]. Reduce-scatter and allgather operations are further optimized to exploit the

hierarchical nature of communication bandwidths of heterogeneous network architecture [119].

Figure 2.6 shows an example. Let us assume that each row represents one segment of tensors

with segment 0 being the top row and segment 3 being the bottom one. Each node forms a ring

with the next node. Reduce-scatter is done on segment 0 starting from Node 1. In the first iteration,

segment 0 is sent from Node 1 to Node 2 where the tensors are aggregated. Thus, two out of four

sets of tensors are aggregated in the first iteration. In the second iteration, segment 0 is sent from

Node 2 to Node 3 and in the third iteration, segment 0 is sent from Node 3 to Node 1. Thus, after

3 iterations, all tensors of segment 0 are aggregated to Node 0. Similarly, segment 1 starts from

Node 2 and after 3 iterations, gets reduced to Node 1. Segments 2 and 3 end up getting reduced to
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Nodes 2 and 3, respectively. Thus, it takes 3 iterations for reduce-scatter.

After the sequence of reduce-scatter operations, allgather operations are done in the reverse

direction. In the first iteration, segment 0 is sent from Node 0 to Node 3. Now, Node 3 has two out

of four segments (namely segments 0 and 3). Similarly, at the end of the first iteration, other nodes

end up having 2 segments. In the second iteration, segment 0 is sent from Node 3 to Node 2 and

subsequently from Node 2 to Node 1 in the third iteration. Thus, after 3 iterations, all nodes will

end up having all 4 aggregated segments.

2.5.3 All-Reduce Algorithms

Several communication algorithms have been proposed to accelerate all-reduce [116, 117, 120,

33]. Widely used Ring All-Reduce is proved to be bandwidth optimal [31], which makes it suit-

able for larger gradient exchanges [117, 121, 122]. However, it faces link under-utilization and

suffers from long latency as the number of accelerators scales up. Several attempts are proposed to

improve utilization and reduce all-reduce latency by exploiting trees [123, 32, 120, 33]. Double-

binary tree algorithm builds two logical binary trees in order to reduce latency for small to medium

size messages [123, 32]. But it experiences congestion for giant models in larger networks due

topology unconsciousness. Recent research also considers topology information with tree struc-

tures to improve all-reduce [120]. However, the linear programming complexity does not scale

well to larger networks in practice. Another implementation applies partitioning optimization al-

gorithm to build trees from leaves, which only supports a specific network topology [33]. Its

backtracking operation using exhaustive search can take days to find a single solution even with

a small network. Therefore, this solution is not practical and portable to various network config-

urations. In addition, its tree construction phase is decoupled from scheduling, leading to many

conflicts during communication. Furthermore, modern interconnects designed for general purpose

also lack hardware features necessary for these algorithms. More recently, Luo et al. has proposed

a library for cloud to probe the physical network and schedule a two-level hierarchical aggregation

plan for efficient gradient update [124]. Another recent attempt, Blink, uses approximate pack-

ing algorithms to find spanning trees for all-reduce in heterogeneous networks [125]. Recently,
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Dong et al. propose a fully connected BiGraph topology for contention-free halving-doubling all-

reduce [126]. However, it is nontrivial to scale out due to the fully connected complexity and not

portable to other scalable topology. Additionally, the general purpose fine-grained flow control

in modern interconnection networks generates many small packets for large gradients, incurring

extra bandwidth and arbitration overhead. To tackle these problems, this research investigates al-

gorithm and architecture codesign to support efficient and scalable all-reduce operation dedicated

for large-scale distributed deep learning.
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3. PERFORMANCE-AWARE NOC POWER-GATING 1

Scalable Networks-on-Chip (NoCs) have become the standard interconnection mechanisms in

large-scale multicore architectures. These NoCs consume a large fraction of the on-chip power

budget, where the static portion is becoming dominant as technology scales down to sub-10nm

node. Therefore, it is essential to reduce static power so as to achieve power-efficient comput-

ing. Power-Gating as an effective static power saving technique can be used to power off inactive

routers for static power saving. However, packet deliveries in irregular power-gated networks suf-

fer from detour or waiting time overhead to either route around or wake up power-gated routers.

In this chapter, we present Fly-Over (FLOV), a voting approach for dynamic router power-gating

in a light-weight and distributed manner, which includes FLOV router microarchitecture, adaptive

power-gating policy, and low-latency dynamic routing algorithms.

3.1 FLOV Router Microarchitecture

Figure 3.1 shows the FLOV router microarchitecture, which has multiplexers (muxes) and de-

multiplexers (demuxes) added to input/output links as well as a latch in each direction. When

the power of the FLOV router is on, it works as a baseline 3-stage virtual-channel router, where

muxes/demuxes are controlled to select the normal data path (path R), and the latches are power-

gated. If the router is power-gated, all components of the baseline router are power-gated and the

muxes/demuxes are set as 1 to activate the FLOV links. For the routers at the edge of a 2D mesh,

if they are power-gated, the FLOV links are activated only in the dimension X or Y where there

are neighbors in both directions. A handshake controller (HSC) block is introduced to connect

all neighboring routers for handshaking purposes. Power state registers (PSRs) are added to keep

track of the power states of the physically adjacent neighbors and the logical neighbors, which are

the nearest powered-on routers in each direction. We modified the Credit Control Logic (CCL) to

1Part of the data reported in this chapter is reprinted with permission from “Fly-Over: A Light-Weight Distributed
Power-Gating Mechanism for Energy-Efficient Networks-on-Chip" by Rahul Boyapati, Jiayi Huang, Ningyuan Wang,
Kyung Hoon Kim, Ki Hwan Yum, and Eun Jung Kim, 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 708-717, doi: 10.1109/IPDPS.2017.77, Copyright c⃝ 2017 IEEE.
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Figure 3.1: A block diagram of the FLOV router microarchitecture.

interact with HSC in order to always hold the buffer availability (credit) information of the logical

neighbor routers.

3.2 Adaptive FLOV Power-Gating Policy

Using the FLOV router microarchitecture in Section 3.1, we introduce two power-gating modes,

restricted FLOV (R-FLOV) and generalized FLOV (G-FLOV), in addition to the baseline no power-

gating mode (NO-FLOV). R-FLOV achieves better performance with limited power saving, while

G-FLOV trades throughput for better power. Figures 3.2a and 3.2b show the routing examples

of R-FLOV and G-FLOV, respectively. In Figure 3.2a, two routers at the right and left edges in

the second row can exchange packets passing through the smallest number of the routers instead

of detouring, although there is a power-gated router on the path. This path is possible owing to

the FLOV link. In Figure 3.2b, there are consecutive power-gated routers that are right next to

each other. This placement is not allowed in R-FLOV but it is allowed in G-FLOV. In order to
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adapt to traffic loads for performance guarantee, we propose an adaptive power-gating policy to

adjust router’s power-gating modes through router voting, where each router periodically decides

its power-gating mode depending on the collected votes from routers in the same dimensions.

The details of R-FLOV, G-FLOV and adaptive power-gating policy are described in the following

subsections.

gated

gated

gated

(a) R-FLOV mode

gated gated

gated

gated gated

(b) G-FLOV mode

Figure 3.2: Examples of R-FLOV (a) and (b) G-FLOV with power-gated routers. The gray ‘gated’
circle indicates a power-gated router.

3.2.1 Restricted FLOV (R-FLOV)

Figure 3.3 depicts the power state transition diagram of a router. If the core is powered-gated,

the attached router sends a control signal to its neighbors using out-of-band control lines to indicate

that it is in the Draining state. During this draining state, its neighbors cannot initiate any new

packet transmissions to this router, while it is allowed to finish current packet deliveries.

In R-FLOV, a router is not allowed to power down if any of its neighboring routers is or to be

power-gated. If a router in the Draining state receives the same signal from its neighboring router,

only one of them with a smaller router ID is allowed to proceed, and the other router reverts back

to normal Active state.
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Figure 3.3: A state transition diagram for the power status of a router.

A router in Draining checks for any residing flits in its input buffers, and continues to for-

ward them to downstream routers as normal. Once emptying all its input buffers and receiving

drain_done signals from all its neighbors, the router is power-gated by shutting down the base-

line router portion and enters Sleep state. At the same time, all the muxes/demuxes are controlled

to select the forward data path (path F), and the router sends all its neighbors a signal to initiate

new packet transmissions, and to update their immediate neighbor PSRs.

If a router is power-gated, a flit coming into the router is stored in the FLOV output latch without

any routing/arbitration. Then, it is delivered to a designated virtual channel (VC) in the downstream

router since the VC was already determined by the upstream router. From the downstream router,

the packet delivery becomes normal. When a router is in the Sleep state, the credit counts of its

downstream router are copied to the upstream router so that the upstream router can obtain the

correct credit information of the downstream router.

A power-gated router in R-FLOV mode wakes up again when its core becomes active or it is
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voted towards NO-FLOV mode for better performance. When a sleeping FLOV router wakes up due

to the aforementioned conditions, it sends signals to its neighbors to stop new packet transmission

and enters Wakeup state. When it completes current packet transmissions and emptying its output

latches, the router powers on the baseline router portion and switches to select the normal data

path R. During Wakeup process, the FLOV router may still relay credit signals from its downstream

router to its upstream router. Once it becomes Active, it only processes credit information from

downstream routers for its own, and its upstream router sets the corresponding credit to fully

available.

Figure 3.4 shows a set of snapshots of a working example to demonstrate R-FLOV mode in

time sequence. For simplicity, draining of the packets and credit control are shown only for one

direction, but a router has to perform these actions for all its neighbors before state transitions.

(a) In Figure 3.4a, three routers are Active. Router A holds the body (B1) and tail (T1) flits

of packet 1 as well as the head flit (H2) of packet 2. Router B holds the head flit (H1) of

packet 1 and Router C is empty. The PSR entries of the routers show the power states of the

immediate neighbors in the East (Routers A and B) or West (Router C). The current credit

status of VC1 of the downstream routers is also shown. The shaded portion indicates the

power-gated components that are the output latches.

(b) In Figure 3.4b, both Routers B and C send Drain signals to their neighbors to indicate their

willingness to go into the Draining state. Since Router B has the lower router ID, it wins the

arbitration and Router C has to revert to Active state. The PSR entries in Routers A and C

are updated to Drain due to Router B. Router A transfers flit B1 to Router B and B transfers

flit H1 to Router C. The corresponding credit counters are also updated.

(c) In Figure 3.4c, Router A sends the drain_done signal to Router B as it finishes transmitting

packet 1 to B. Similarly, Router C sends the drain_done signal to B. But since Router B

has not finished draining its buffers yet, it has to wait before going into the Sleep state.

(d) Figure 3.4d depicts the scenario after Router B finishes draining packet 1 to Router C and
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Figure 3.4: An example of R-FLOV with snapshots in timeline from (a) to (f).
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goes into Sleep state. The shaded VC buffer indicates that the baseline router has been

power-gated and the FLOV links (output latches) have been activated. Router B sends the

Sleep signal to its neighbors so that they can update their corresponding PSR entries, and

the credit counters are initialized as shown in Router A. Note that although Router A has a

flit (H2) to send Router B, it still has to wait until B finishes its power state transition.

(e) Figure 3.4e shows the credit control and maintenance between Routers A and C while Router

B is power-gated. After Router B goes into the Sleep state, Router A initialize its credit

counter entry and the credit information is copied from Router B to A (Credit #4). This

is because Router C is the logical neighbor of Router A, so A has to keep track of the

buffer availability (credits) in C. Credit #5 carries the newly available credit in Router C

to Router B.

(f) In Figure 3.4f, Credit #5 is relayed by the power-gated Router B to Router A. Then, it

updates its credit counters. This relaying scheme maintains the correct flow control between

Router A and Router C.

The wake-up procedure is similar to the draining procedure, the Wakeup router sends the

wake-up signals to its neighbors and starts to drain packets from its output latches. The router

also waits for all its neighbors to finish any intermittent transmissions and sends drain_done

signals. The router then receives the credit information from the downstream router and sends a

signal to notify the upstream router to make its corresponding credit counter fully available. Once

it happens, the router controls muxes/demuxes to resume baseline operations.

3.2.2 Generalized FLOV (G-FLOV)

R-FLOV tends to achieve better throughput but limits power saving because none of a sleeping

router’s neighbors is allowed to sleep regardless of the power states of their attached cores. In this

section, we introduce generalized FLOV (G-FLOV), where a router can be power-gated even if any

of its neighbors is power-gated, thereby two or more consecutive routers in a row/column can be

power-gated simultaneously. During handshaking, the power-gated routers in the middle should
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relay the handshake signals, in addition to update the corresponding logical and physical neighbor

routers’ power states in the PSRs. The flow control in G-FLOV is similar to R-FLOV, except that

credit relaying may across several sleeping routers.

When a router is in R-FLOV mode, its neighbors are all Active if it is power-gated. In contrast,

a power-gated router in G-FLOV mode may have neighbors in a chain that are also power-gated.

Therefore, we introduce a few handshaking protocol modifications and additional functionalities

to avoid protocol deadlock and to aid routing decision, described as follows:

Firstly, after a router enters Sleep state, it sends the corresponding power state and router ID

of its logical neighbors in each direction to its upstream router, in addition to its new power state.

Then, the logical neighbor of the power-gated router becomes the logical downstream router for

its upstream router. Thus, the logical PSRs of all the routers can be kept up-to-date. Moreover,

the logical neighbor ID information helps design a better routing algorithm that is presented in

Section 3.3.

Secondly, in wormhole switching, no two logical neighbor routers in the same row/column are

allowed to stay in Draining-Draining, Draining-Wakeup, or Wakeup-Wakeup state combinations

at the same time in order to avoid protocol deadlock or starvation. If one of the handshaking

routers is trying to wake up and the other trying to drain, Draining has lower priority due to the

fact that Wakeup is more crucial for performance. For the simplicity of handshaking, if a power-

gated router has a downstream router in the Draining state, it cannot wake up until the draining

router changes its state. When two handshaking routers are trying to drain or wake up at the

same time, only the one with a smaller router ID can proceed. If virtual cut-through switching

is applied, the above condition can be relaxed for the Wakeup-Wakeup case. Unlike the Draining-

Draining combination, two waking up routers have no dependence on each other since they always

bypass the flits. In addition, the buffer resource in a powered-on router between two Wakeup

routers is sufficient to store a whole packet to finish intermittent transmissions for cut-through. In

addition, Wakeup routers that are involving handshaking should relay the drain_done signal to

the neighbor Wakeup router on the same direction if there is any.
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3.2.3 Adaptive FLOV through Router Voting

(a) Row voting buses (b) Column voting buses

Figure 3.5: Two-bit voting buses for rows (a) and columns (b) of adaptive FLOV power-gating
policy.

Router power-gating is attractive in low network load since packets can be delivered with low

latency. However, in medium to high loads, the network may become congested that can incur

high latency overhead and sacrifice throughput. Therefore, it is important to dynamically adapt the

trade-off of power saving and performance. Therefore, we propose adaptive FLOV (FLOV) policy

to dynamically change each router’s FLOV power-gating mode among NO-FLOV, R-FLOV, and

G-FLOV progressively through router voting. In a power-gating network, large packet latency is

mostly due to either detours from the shortest path or long credit round-trip latency. Therefore,

we adopt a voting approach that each router periodically votes for its row and column for more

power saving or better performance. Then each router collects the votes of its row and column

to decide its FLOV policy independently. We introduce a high and a low latency watermark hw

and lw to compare with the average latency of received packets. If the average latency is lower

than the low watermark, the router votes for more aggressive power-gating mode. If the average

latency is higher than the high watermark, the router votes for more conservative power-gating
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mode towards performance consideration. Otherwise, it votes for no change. Given an empirical

zero-load latency latencyzero−load, we define the watermarks as:

lw = 1.2× latencyzero−load (3.1)

hw = 1.5× latencyzero−load (3.2)

Figure 3.5 shows two-bit voting buses for rows and columns in the mesh network. These buses are

time multiplexed for voting by each router in the corresponding row and column. Upon the voting

time of a router, it compares the average latency of the packets received since last voting time to the

watermarks. It votes −1 if the average latency is higher than hw and votes 1 if the average latency

is lower than lw. Otherwise, it votes 0. All the routers snoop the buses and collect the votes. If the

accumulative vote is greater than zero, the router change itself to a more aggressive power-gating

mode, from NO-FLOV to R-FLOV or from R-FLOV to G-FLOV; if the accumulative vote is less

than zero, it regresses to a more conservative power-gating mode, from G-FLOV to R-FLOV or

from R-FLOV to NO-FLOV. Otherwise, it remains unchanged. As a result, FLOV policy decides a

router’s power-gating mode jointly by the routers in the same row and column through voting.

3.3 Dynamic Routing Algorithms

The FLOV NoC baseline architecture is a two dimensional mesh topology with one column or

row of routers (on the edge) powered on all the time. In this paper, we assume the routers at last

column are always on (AON routers) so as to ensure the network connectivity across the topology

with the facility of FLOV links, forming an escape sub-network as shown in Figure 3.6a. One VC

of each powered-on router is reserved for deadlock-free routing subfunction, called an escape VC.

The routing algorithms include routing for packets in the regular VCs and routing for packets in

the escape sub-network. Previously, we proposed a FLOV routing algorithm that adopts a deadlock

recovery mechanism, where a suspected deadlocked packet in a regular VC is sent to an escape

VC to recover from deadlock [127]. In this paper, we propose a new algorithm, FLOV+, by intro-

ducing more adaptation to achieve better throughput. Instead of deadlock recovery, FLOV+ adopts
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Duato’s Protocol to avoid deadlocks [39]. Note that routing computation is performed in powered-

on routers, while power-gated routers only forward packets without changing the direction. In the

following sub-sections, we describe the details of the FLOV and FLOV+ routing algorithms.

(a) Escape sub-network (worst case)

⤫

⤫

⤫

⤫

(b) Turn model

Figure 3.6: Worst case of escape sub-network is shown in (a), which uses always-on routers at the
last column; and turn model is shown in (b).

3.3.1 FLOV Routing Algorithm

Algorithm 1 describes the FLOV routing algorithm, which is based on dynamic YX/XY rout-

ing, in addition to the consideration of power states of neighbor routers and deadlock-free escape

routing subfunction.

For packets whose destinations are in the same dimension (X or Y) as the current router, the

router sends them directly to the directions towards their destinations. Even in the case of power-

gated downstream routers, the FLOV links ensure their delivery to the destinations. For packets

whose destinations are at different dimensions (X and Y) from the current router, the paths incur

turns towards their destination. If the Y neighboring router on the minimal route is powered-on,

the packet is sent to the downstream router using YX routing. If it is power-gated, the power state

of the X neighboring router on minimal route is checked, and if it is powered-on, the packet is

forwarded to it.
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When both the neighboring routers on the minimal path are power-gated, a viable path to the

destination cannot be guaranteed since the current router may not be aware of the power states of

the downstream routers in the further path. In this case, the packet is forwarded to the East neighbor

towards AON routers and confined to the escape path and escape VCs. If the East router happens

to be power-gated, the FLOV link is used for bypassing. The packet is not sent to the router in

the Y direction because, in the worst scenario, if all the downstream routers in the Y direction are

powered-gated, the packet is not able to make a turn and hence cannot be routed to the destination.

However, if the packet is directed to the East direction, we can guarantee that the packet is able to

make a turn toward the destination using the AON router of the corresponding row. Note that no

u-turn is allowed so as to avoid livelock situations, where a packet keeps bouncing between two

neighbors.

Since the algorithm has both YX and XY decisions, it is not necessarily deadlock-free. We

adopt a timeout mechanism for suspected deadlock recovery [38]. If a packet has been waiting in

a buffer for an extended time, it may exceed a certain threshold and be directed to the escape VC

in the downstream routers to reach the destination using the deadlock-free escape sub-network.

In the escape subfunction, as described in line 16–21 in Algorithm 1, a packet with destination

in the same dimension (X or Y) of the current router is directly sent to their destinations and use

FLOV links if needed. If the above condition is not satisfied, it is forwarded to East to the AON

router and make a turn towards another AON router that is located at the row as the destination.

Then the packet is sent to the West to its destination. Once a packet enters the escape path, it is

confined to escape routing and escape VC. Based on the turn model [128], the escape subfunction

is deadlock-free since it only allows four turns as shown in Figure 3.6b.

Figure 3.7 shows three FLOV routing examples. In Figure 3.7a, the destination is in the same

dimension as the source router. Even though the router in between is power-gated, the packet can

be forwarded to the East using FLOV link. In Figure 3.7b, the destination is in different dimensions

from the source router. First, the routing algorithm checks the status of Router 9. Since Router 9

is power-gated, the packet can be sent to Router 6 that is powered-on. Then the packet makes a
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4 Src gated Dst

8 9 10 11

12 13 14 15

0 1 2 3

(a) Example 1

4 Src 6 7

8 gated Dst 11

12 13 14 15

0 1 2 3

(b) Example 2

4 gated gated 7

gated Src 10 11

12 13 14 15

Dst gated 2 3

(c) Example 3

Figure 3.7: FLOV routing algorithm examples 1 (a), 2 (b), and 3 (c). The gray ‘gated’ circles
indicate power-gated routers. ‘Src’ and ‘Dst’ represent source and destination.

turn and reaches its destination. In Figure 3.7c, both neighbor Routers 5 and 8 on the minimal path

are power-gated, therefore, the packet is sent to Router 10 and confined to escape sub-network so

that it can at least make a turn at the AON column. Router 10 computes the escape route to East

towards Router 11 since the destination is not in the same dimension. Router 11 then routers the

packet to Router 3 where it makes another turn toward the destination.

3.3.2 FLOV+ Routing Algorithm

The FLOV routing algorithm works well when only low to medium fraction of routers are

power-gated. When the power-gated routers continue to increase, more packets are directed to

the escape sub-network which can cause low regular VC utilization and high congestion in the

escape sub-network, especially in the AON column. It also incurs detours and is not able to route

packets through the shortest path in some cases. In addition, only one routing option is available

for selection, which lacks adaptation and may block the packet for a long time when the only

output port and VC set are busy.

Figures 3.8a and 3.8b show the sub-optimal and optimal routing examples, respectively. In

Figure 3.8a , a packet is sent from Router 9 to Router 0 using the FLOV routing algorithm. Since

both physical neighbors of the source router are power-gated, the packet is directed to East to use

the escape network towards the AON column and makes turns to reach its destination, resulting in

7 hops in total. Note that there exists a shortest path from Router 9 to Router 0 by going through
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Algorithm 1: FLOV routing algorithm.
Input: cur, dest, in_port, in_vc, inqueue_time
Output: out_port, vc_set

1 bool escape = false;
2 (xy_port, yx_port) = GetMinimalPorts(cur, dest);

3 if IsEscape(in_vc) || inqueue_time > threshold then
4 escape = true;

5 else
// Use YX or XY if either neighbor

// router is not power-gated

6 if neighbor[yx_port] is power_gated then
7 if neighbor[xy_port] is power_gated then
8 escape = true;

9 else
10 out_port = xy_port;

11 else
12 out_port = yx_port;

13 if IsUTurn(in_port, out_port) then
14 escape = true;

// Escape subfunction

15 if escape == true then
16 if yx_port == xy_port || at AON column then
17 out_port = yx_port;

18 else
19 out_port = East;

20 vc_set = escape_vc;

21 else
22 vc_set = regular_vcs;

23 return (out_port, vc_set);

37



Algorithm 2: FLOV+ routing algorithm.
Input: cur, dest, in_port, in_vc
Output: routes

1 bool escape = false;
2 if IsEscape(in_vc) then
3 escape = true;

4 (yx_port, xy_port) = GetMinimalPorts(cur, dest);
5 (yx_credits, xy_credits) = GetFreeCredits(cur, dest);

// Add escape option with lowest priority

6 if yx_port == xy_port || at AON column then
7 escape_port = yx_port;

8 else
9 escape_port = East;

10 routes.Add(escape_port, escape_vc, lowest);

// Add regular routing options

11 if escape == false then
// Prioritize routing options

12 if yx_credits >= xy_credits then
13 yx_pri = highest;
14 xy_pri = high;

15 else
16 yx_pri = high;
17 xy_pri = highest;

// Determine route availability

18 if logical_neighbor[yx_port] on minimal path && NotUTurn(in_port, yx_port) then
19 route_yx = true;

20 if logical_neighbor[xy_port] on minimal path && NotUTurn(in_port, xy_port) then
21 route_xy = true;

// Add routing options

22 if route_yx == true then
23 routes.Add(yx_port, regular_vcs, yx_pri);

24 if route_xy == true then
25 routes.Add(xy_port, regular_vcs, xy_pri);

26 if route_yx == false && route_xy == false && NotUTurn(in_port, escape_port)
then

27 routes.Add(escape_port, regular_vcs, low);

28 return routes;
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4 gated 6 7

gated Src 10 11

12 13 14 15

Dst 1 gated 3

(a) Example 1

4 gated 6 7

gated Src 10 11

12 13 14 15

Dst 1 gated 3

(b) Example 2

4 gated gated 7

gated Src 10 11

12 13 14 15

Dst gated 2 3

(c) Example 3

Figure 3.8: Routing algorithm examples: example 4 (a) uses FLOV Routing while example 5 (b)
and 6 (c) use FLOV+.

power-gated Router 5 to reach Router 1 to turn to the destination, traveling only 3 hops as shown

in Figure 3.8b. This path is not considered by FLOV routing because it ignores the relative position

between downstream Active router and destination.

To tackle the aforementioned problem, we have improved the routing algorithm by leveraging

the information of destination’s position relative to downstream router’s position. Note that dur-

ing handshaking, the router switching to Sleep state sends its corresponding logical downstream

neighbor’s power state and ID in each direction to its upstream router. Therefore, the downstream

routers’ relative positions to the destination can be calculated to make better routing decisions.

Furthermore, more options are provided for routing selection to exploit the path diversity and

adaptation. In this new algorithm, instead of deadlock recovery, we use deadlock avoidance by ap-

plying Duato’s Protocol where the escape route option is always provided for selection with lowest

priority [39].

The new routing algorithm is described in Algorithm 2, called FLOV+ routing algorithm. With

these optimizations, we can relax the burden of the escape network, especially the AON column.

For the FLOV escape routing subfunction, a packet is forwarded to the AON column to make turns

as shown in Figure 3.7c, which can lead to congestion. In contrast, when using FLOV+ routing,

as shown in Figure 3.8c, the routing option in line 27 of Algorithm 2 makes a detour by sending

the packet from Router 9 to 10. Thus, the packet can make a turn at Router 10, then flies over
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Router 6 to reach Router 2, and finally turns to West towards the destination. This routing path

mitigates the pressure of AON column and is the minimal path in the irregular power-gated network.

Since a packet is always sending closer to the destination row and u-turn packets are directed to

escape routing afterwards, the algorithm is also livelock-free. The adaptive routing options also

provide higher throughput than FLOV in power-gated networks, translating to more power-gating

opportunities, thereby more power savings.

3.4 Experimental Evaluation

Table 3.1: FLOV System Configuration

Parameter Configuration

Network Topology 4×4, 6×6, 8×8 (default) and 10×10 Mesh
Input Buffer Depth 5 flits

Router 3-stage (3 cycles) router

Virtual Channel
3 regular VCs and 1 escape VC per virtual network

1 vnet for synthetic and 3 vnets for full system

Packet Size
5 flits/packet for synthetic workload

1-flit control and 5-filt data packet for full system

Memory Hierarchy
32 KB L1 I/D Cache, 8 MB L2 Cache

MESI, 4 MCs at 4 corners
Technology 32 nm

Clock Frequency 2 GHz
Link 1 mm, 1 cycle, 16 B width

Power-Gating Power-Gating overhead = 17.7 pJ
Parameters wakeup latency = 10 cycles

Baseline Routing Minimal Adaptive Routing

3.4.1 Experimental Methodology

We use BookSim [129] for synthetic workload experiments, and integrate it with gem5 [130]

for full system simulations. In addition, we use DSENT [48] to estimate power consumption of
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(d) 10×10 mesh

Figure 3.9: Load-latency curves (left) and power consumption (right) under uniform random traffic
with 50% cores power-gated for 4×4 (a), 6×6 (b), 8×8 (c), and 10×10 (d) mesh networks.
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the interconnect components with 0.5 switching activity in 32-nm technology. We assume a 2-

GHz clock frequency for the routers and links. Table 3.1 summarizes the simulation configuration

parameters. Both synthetic and real workloads are evaluated for performance and power-saving

comparisons of FLOV and FLOV+ against the baseline interconnects with no power-gating (Base-

line), Router Parking (RP) and Node-Router Decoupling (NoRD). We compare both the original

FLOV routing algorithm [127] and the proposed FLOV+ routing algorithm in adaptive power-gating

setting. Otherwise stated, we assume 50% of the cores are power-gated that have no injections,

where the power-gated cores are randomly decided. Uniform Random and Tornado traffic patterns

(among powered-on cores) for synthetic workloads as well as eight benchmarks from PARSEC

benchmark suite [131] are used for evaluation. For synthetic workloads, simulations are warmed

up with the first 10,000 cycles and run for 100,000 cycles in total. For PARSEC benchmarks, the

ROI is evaluated with small input data size.

3.4.2 Throughput and Power Consumption

Figure 3.9 shows the load-latency curves and power consumption under Uniform Random

traffic with 50% cores power-gated, where Figures 3.9a, 3.9b, 3.9c and 3.9d show for 4×4, 6×6,

8×8 and 10×10 mesh networks, respectively. Since static power is dominant in the evaluated

technology, RP may stick to aggressive mode most of the time during medium to high traffic load

and lead to high performance overhead. Therefore, we run aggressive, conservative and no power-

gating modes, and switch to a more conservative mode towards performance when the average

latency increases more than 25%, unless it is already in no power-gating mode.

As shown in Figure 3.9, NoRD tends to have higher latency compared to other techniques in

low traffic load. While in low to medium load, both FLOV and NoRD have higher latency than

the others. This is due to the limitation of FLOV routing that directs a packet to escape whenever

its neighbor routers on the shortest path are power-gated, making the escape network congested.

NoRD may not wake up the power-gated routers early enough and suffers latency penalty, since

power-gated routers are not woken up by its attached off core but by the packets that go through the

ring network. In terms of throughput, the original FLOV saturates earliest due to lack of adaptation
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and heavy reliance on the escape network. RP is better than FLOV and worse than NoRD since

RP’s deterministic routing is not as flexible as NoRD’s adaptive routing. And FLOV+ outperforms

these three and is the closest to Baseline. Since NoRD uses two VCs for escape and FLOV+ only

has one escape VC, FLOV+ have more adaptive VC resources for better throughput. In addition,

the escape routing subfunction of FLOV+ also reduces the hop counts compared to NoRD. While

comparing to Baseline, FLOV+ escape subfunction is worse than XY deterministic the escape

subfunction of Baseline, leading to an offset in throughput. All three network scales have similar

trend in latency and throughput, showing FLOV+ scales well to different network sizes, improving

throughput over state-of-the-art by 40% – 70%.

Figure 3.9 also shows the power consumption of the corresponding injection rates. The low

load region is zoomed in for analysis, as shown in the lower right corner in the bottom flov. When

traffic load is between 0 to 0.05 flits/cycle/core (except for 10×10 network), NoRD saves static

power since the network is mostly idle and it can power-gate more routers. However, as traffic

load increases, NoRD starts to consume a bit more power than Baseline, mainly due to the long

detour of the escape ring network. This is similar to the discovery in the literature [47]. This

overhead tends to be higher for larger network size. Other techniques save more power when load

is low and save less as load increases. Among them, FLOV+ saves the most static power under the

same load and RP saves the least static power. When the load increases to the high region, FLOV+

and Baseline consume similar amounts of power.

3.4.3 Power-Gating Case Studies

In this subsection, we discuss cases of power-gating under different traffic patterns in low

injection rates by varying the portion of power-gated cores. Figures 3.10 and 3.11 summarize

the results in low load using Uniform Random traffic under different core power-gating scenarios.

Similarly, Figures 3.12 and 3.13 show the results for Tornado traffic. The subplots 3.10a, 3.11a,

3.12a and 3.13a show average packet latency with breakdowns into router latency (number of hops

× router pipeline latency), link latency (total link traversals), serialization latency (number of flits

per packet) contention latency, and FLOV latency (number of FLOV routers/links traversed), while
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Figure 3.10: Average latency breakdown (a) and power comparison breakdown (b) for injection
rates of 0.02 flits/node/cycle with Uniform Random traffic pattern.

the subplots 3.10b, 3.11b, 3.12b and 3.13b show power consumption with breakdown into dynamic

and static components. As NoRD incurs high latency overhead in low load, we only compare to

Baseline and RP to reveal details in this subsection. For RP, we have run both aggressive and

conservative modes and selected the mode that consumes less power.
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Figure 3.11: Average latency breakdown (a) and power comparison breakdown (b) for injection
rates of 0.08 flits/node/cycle with Uniform Random traffic pattern.

3.4.3.1 Performance

Average latency comparison of FLOV, FLOV+ with RP and Baseline under Uniform Random

and Tornado traffic patterns are shown in Figures 3.10a, 3.11a, 3.12a and 3.13a, respectively. FLOV

and FLOV+ outperform RP across different traffic patterns and injection rates except that FLOV is

worse than RP in cases of 20% and 30% of power-gated cores under Uniform Random traffic in
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Figure 3.12: Average latency breakdown (a) and power comparison breakdown (b) for injection
rates of 0.02 flits/node/cycle with Tornado traffic pattern.

higher injection rate as shown in Figure 3.11a. In RP, a packet always routes through powered-

on routers, which may be non-minimal, thereby increasing the path length. In contrast, FLOV

and FLOV+ take advantage of all the links and route a packet through a minimal path in the best

effort using FLOV links. Even when minimal routing is impossible for some cases in the escape

sub-network, the average packet latency can be reduced since the FLOV links do not incur the 3-

cycle baseline router per-hop latency, as the flit is only temporarily held in the FLOV latch for one
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Figure 3.13: Average latency breakdown (a) and power comparison breakdown (b) for injection
rates of 0.08 flits/node/cycle with Tornado traffic pattern.

cycle. This can be observed clearly that the router latency for RP is larger than that of FLOV and

FLOV+ due to detours. Under Uniform Random traffic, the FLOV latency increases as more cores

are power-gated for the FLOV and FLOV+, which show increased FLOV link utilization. Under

Tornado traffic, the communication occurs between two power-on nodes in the same row/column,

and the routers in the rightmost column are always active. Therefore, less number of FLOV links

are used, which leads to reduced FLOV latency. In Figure 3.11a, when 20% and 30% of cores
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are power-gated, RP is slightly better than FLOV since it transits to conservative mode as dynamic

power penalty is higher than static power saving, which also improves performance. This can also

be observed in the configuration with 30% power-gated cores, where static power consumption for

this injection rate (Figure 3.11b) is higher than 0.02 flits/cycle/core injection rate (Figure 3.10b).

When 20% of cores are power-gated under Tornado, RP has lower latency in higher injection rate

(Figure 3.13a) compared to in lower injection rate (Figure 3.12a). This is because it switches to

conservative mode that improves latency. In the above cases, RP trades off static power savings

for latency benefits. However, FLOV and FLOV+ achieve both power saving and performance

guarantee in these cases.

Another observation is that as the injection rate increases from 0.02 to 0.08, the performance

impact on RP is higher than on FLOV+. Figures 3.10–3.13 show higher contention latency for

RP than FLOV+ when injection rate increases from 0.02 to 0.08. This is because certain routers,

connecting different network partitions to ensure network connectivity, become network hotspots

in RP. In contrast, The proposed FLOV+ routing algorithm avoids such network hotspots.

In Figures 3.12a and 3.13a, both FLOV and FLOV+ outperform Baseline with Tornado traffic.

This is because in Tornado, the traffic injected to each router is destined to a router in the same

row/column. Thus, FLOV and FLOV+ can use FLOV links with minimal paths and avoid the 3-cycle

router latency. FLOV+ also shows better performance than Baseline even in Uniform Random

traffic as shown in Figures 3.10a and 3.11a. This is due to the fast FLOV link and the proposed

routing algorithm, which considers logical neighbor positions to provide best-effort shortest path.

In Figures 3.10–3.13, both FLOV and FLOV+ have relatively higher contention latency at higher

injection rate. One reason is that packets have higher probabilities of being routed to the AON

router column for guaranteed paths to the destinations, which may create congestion in the AON

router column. Also, when packets are routed through consecutive FLOV links in a row/column,

packet transmission may be delayed due to the longer credit round-trip latency across consecutive

gated routers. However, the higher utilization of FLOV links compensates for the contention la-

tency, which can be explained by the router and FLOV latency. Note that RP also tends to have
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higher contention latency compared to the FLOV and FLOV+ because of the high probability of

hotspot creation.

As the number of power-gated cores increases, FLOV, FLOV+ and RP all power gate more

routers. However, only FLOV+ has stable latency while RP is the worst. From our study, we have

observed that NoRD can be even worse in such low loads, since the attached core of the power-

gated router is also off, thereby it may take longer detour in order to wake up routers when more

cores are power-gated.

3.4.3.2 FLOV Routing versus FLOV+ Routing

FLOV+ routing algorithm has similar trend with FLOV routing algorithm as compared to RP.

In Figures 3.10a and 3.11a, FLOV+ can achieve lower latency than FLOV. This is mainly due

to the fact that FLOV+ has a higher chance to route packets through the shortest path instead of

sending to the AON column to make turns, reducing the number of hops traversed with respect to

FLOV routing. Such benefit is confirmed by the lower router latency in FLOV+ than that in FLOV.

Interestingly, FLOV+ routing achieves better latency performance than Baseline. This is owing to

the fast FLOV links. Since FLOV+ can take advantage of the one-cycle FLOV links on the minimal

path, it can avoid the router pipeline stages as in Baseline for faster packet delivery.

3.4.3.3 Power Consumption

Figures 3.10b, 3.11b, 3.12b and 3.13b show the power consumption breakdowns into dynamic

and static power. The static power is also depicted as secondary results. For both injection rates, the

dynamic power consumption of FLOV and FLOV+ are lower than RP, since in RP every hop in the

rerouted packet traversal requires the full router pipeline execution, whereas in FLOV and FLOV+

the intermediate power-gated routers use FLOV links that consume significantly lower power. RP

also consumes more dynamic power than Baseline due to its non-minimal path rerouting of packets

as the number of power-gated cores increases. At higher fractions of power-gated cores, FLOV and

FLOV+ consume less dynamic power than Baseline by avoiding router pipelines.

For static power consumption, under Uniform Random traffic, FLOV and FLOV+ saves more
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Figure 3.15: Full system simulation results: application runtim speedup (a), and normalized NoC
power consumption (b) over Baseline.
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than RP by power-gating more routers, which are required to be powered-on in RP to maintain

network connectivity. FLOV+ consumes even less static power than FLOV, since FLOV needs to

keep more routers in R-FLOV mode to guarantee performance due to routing limitations. While

under Tornado traffic pattern, the only different trend compared to Uniform Random is that both

FLOV and FLOV+ save the same amounts of power. This is because the communications only

happen in the same row/column, which are handled in the same way in both routing algorithms.

3.4.4 Reconfiguration Overhead Analysis

We analyzed the impact of the network reconfiguration on packet latency by the comparison

of RP and FLOV. Figure 3.14 shows average packet latency of FLOV and RP across the timeline

of execution under Uniform Random traffic with 0.02 flits/cycle/node injection rate when 10%

of the cores are power-gated. In RP, whenever the configuration of power-gated cores changes

(at 50,000 and 60,000 cycles), the network has to be reconfigured by the Fabric Manager who

recomputes and distributes the routing tables to the routers that are active in the next epoch (Phase

I of reconfiguration protocol in RP). During reconfiguration, the network has to stall and no new

injections are allowed except reconfiguration packets, which incurs additional queuing delays in

packet latency. Our evaluations show that the reconfiguration time in RP Phase I is more than 700

cycles. We observe that the newly injected packets during this time experience significant queuing

delays in RP. In FLOV, there is negligible handshaking overhead since the routers are power-gated

in a distributed manner. So new packet transmissions can be initiated while some routers either

power-gate or wake up independently.

3.4.5 Real Workload Evaluation

We also ran PARSEC 2.1 using gem5 [130] with BookSim integrated for full system evaluation.

For RP, we ran both aggressive and conservative mode, only the one with lower energy-delay

product is selected for better efficiency. The system parameters are described in Table 3.1.

Figure 3.15a shows the runtime speedup of RP, NoRD, FLOV and FLOV+ over Baseline. It

shows that FLOV+ has the least negative impact on performance, and even has a small improvement
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(3.9%) compared to Baseline. FLOV and RP have negligible difference compared to Baseline while

NoRD degrades performance by around 10%. Note that PARSEC applications have low network

traffic loads, making them beneficial for power-gating. Since FLOV+ has a better routing algorithm

compared to FLOV, and the one-cycle FLOV link compensates for the detour and round-trip credit

loop latency, FLOV+ helps reduce network latency and improve performance. On the other hand,

NoRD incurs high detour at low traffic load, leading to high latency. This phenomenon is more

severe in larger network scales such as the evaluated 8×8 mesh network. Since the network traffic

is low, RP has little negative effect on latency, thereby has similar performance as Baseline.

Figure 3.15b shows the dynamic and static NoC power breakdown normalized to Baseline. It

shows that RP, NoRD, FLOV, FLOV+ reduces the total power consumption by 25%, 15%, 25%, and

31%, respectively. For static power consumption, RP, NoRD, FLOV, and FLOV+ achieve power

reductions of 34%, 32%, 34% and 41%, respectively. Although NoRD saves the second most static

power, the detour incurred by the ring introduces extra dynamic power consumption, offsetting the

benefit and ending up saving the least total power. RP and FLOV have similar savings for both

dynamic and static power, while FLOV+ saves the most power for both components. FLOV+

reduces power consumption by 8% and 20% compared to RP and NoRD, respectively. Note that in

this work, routers in FLOV and FLOV+ adaptively change their power-gating modes independently

through router voting. If every router is configured to G-FLOV mode, it can save much more power

than RP but may not adapt to applications that have higher traffic as the adaptive one in this paper.

3.4.6 Area Overhead Analysis

In the proposed router microarchitecture, the modifications include 4 muxes and 4 demuxes

in addition to the four output latches. The mux and demux selection signals are only toggled

when the router wakes up or is power-gated, so the logic needed for the select signals is minimal.

Every router has two sets of PSRs, where each entry incurs a 2 bit overhead (for power state).

Hence the total overhead for the PSRs accounts to 16 bits (2 sets of 4-entry registers). The credit

control logic is modified to be connected to the HSC so that the credit counters can be reset or

zeroed based on the signals from the HSC. The additional overhead incurred due to this change
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is mainly the connecting wires and minor modifications to the CCL logic for decoding the two

HSC signals. The HSC requires 6-bit wires to connect the adjacent neighboring routers (4 bits for

current and logical neighbor router power state change notifications, 1 bit for draining notification

and 1 bit for physical neighbor assertion). In addition, the voting mechanism needs a 2-bit bus for

voting snoop. This is approximately 0.1% of the baseline router area according to DSENT [48].

The HSC also includes the power state transition FSM implementation (4 states), which incurs

minimal area overhead. The overall area overhead for the above components for a single router in

32-nm technology is estimated about 2.8×10−3 mm2 which is 3% of the baseline router area. The

power consumption of the HSC is also minimal due to the handshaking occurring only after long

intervals of time (reconfiguration times) as shown in Section 3.4. None of the modifications incur

any significant critical path delay and do not affect the frequency of the NoC operations.

3.5 Summary

In this chapter, FLOV is designed with a voting approach and adaptive routing algorithms to en-

able efficient and adaptive NoC power-gating using Fly-Over links. By router voting, each router

collects votes from both dimensions of the network and adapts the power-gating mode among G-

FLOV, R-FLOV and NO-FLOV with performance awareness, making it flexible for all different

traffic loads. In addition, the proposed FLOV+ routing algorithm introduces more adaptability as

well as logical neighbor information for routing decisions, achieving the best-effort minimal route.

As a result, FLOV improves the throughput by more than 40% compared to the state-of-the-art,

similar to the Baseline, while saving more power. Additionally, it scales well for different network

sizes and outperforms other approaches. Our full system evaluation shows even performance im-

provement over Baseline by 3.9%, and power reduction by 31% and 20% compared to Baseline

and state-of-the-art, respectively. In summary, FLOV not only reduces power consumption but also

adapts to maintain performance, improving both power- and energy-efficiency.
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4. APPROXIMATE COMMUNICATION FOR HIGH-THROUGHPUT NOC 1

With the onset of the big data era, NoC as the communication backbone is under significant

pressure due to the large data movement in data-intensive applications. Therefore, mechanisms

that can reduce the communication traffic load in state-of-the-art NoCs become critical to cater to

emerging data-intensive applications. Previous research [11, 12] has proposed to compress data

in NoCs to reduce latency even at saturation load by exploiting the frequently repetitive patterns

in applications. In addition, recent studies of approximate cache [132] also shows that there is

high similarity among the data accessed by the workloads. Based on these two observations, this

chapter develops an approximate communication framework, APPROX-NOC, that approximates

similar data for compression-friendly patterns to achieve better compression ratio, thus reducing

data movement and improving the effective network throughput.

4.1 Challenges in NoC Approximate Communication

Value approximation and compression are not cheap. Value approximation and data com-

pression operations are on the critical path of the data packet preparation. The underlying compres-

sion techniques can incur considerable area and latency overheads. Dynamic compression requires

storage for pattern tracking and data lookup while static compression incurs significant encoding

and decoding logic. Furthermore, the approximation operation adds extra latency overhead on to

the compression latency. Value range and error computation using complex multiplication is ex-

pensive and hence can offset the benefits from flit reduction achieved through approximation and

compression. Thus, light-weight approximation design is required. Although the approximation

engine can be treated as a plugin module, it is economical to tightly couple approximation and

compression for lower-overhead implementation in terms of area, latency and energy.

1Reprinted with permission from “APPROX-NoC: A Data Approximation Framework for Network-On-Chip Ar-
chitectures" by Rahul Boyapati, Jiayi Huang, Pritam Majumder, Ki Hwan Yum and Eun Jung Kim, 2017. The 44th

Annual International Symposium on Computer Architecture (ISCA), pp. 666-677, doi: 10.1145/3079856.3080241,
Copyright c⃝ 2017 Association for Computing Machinery.
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Figure 4.1: APPROX-NOC architectural overview.

Quality control is important. Approximable applications still require some Quality of Service

(QoS) guarantees for output results. As mentioned in Rumba [133], it is also critical to differentiate

overall quality control versus controlling errors in individual elements. Therefore, the approxima-

tion mechanism should be able to control data error rate individually in each cache block similar to

Doppelganger [82] and also across the whole program execution. We assume that the programmer

can annotate the QoS requirements, which is translated by compilers into error thresholds that are

embedded in extended instructions.

4.2 APPROX-NOC Framework

In this section, we first describe the baseline multicore architecture and then detail the APPROX-

NOC framework. The baseline architecture includes a collection of tiles connected via an NoC.

Each tile may consist of core/accelerator, FPGA/ASICs, private caches, a slice of the last level

cache and/or on-chip memory controllers (MCs). These tiles are connected to routers of the NoC,

in either a one-to-one or many-to-one (concentrated) fashion depending on the NoC design. Each

router connects to different components of a tile via Network Interfaces (NIs). The NI is respon-

sible for message packetization and de-packetization, as well as flit fragmentation/assembly for
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Figure 4.2: APPROX-NOC operation flowchart.

flow control. The NoC traffic consists of control packets for message passing/coherence and data

request/reply packets. The size of the packet varies depending on whether it is an address/control

packet or a data packet.

4.2.1 Architectural Overview

Figure 4.1 depicts the architectural overview of APPROX-NOC framework. Conventionally,

data transmitted through NI from the tile is packetized and fragmented into flits in preparation for

transmission. The packet is then injected into the router via the NI flit by flit. When the packet

reaches its destination, the flits are assembled to restore the packet. APPROX-NOC consists of a

value approximate module, namely VAXX, and an encoder/decoder pair for data compression in

the NI. The encoder, of the underlying compression technique, tries to compress each word in the

cache block to be transmitted and sends a small encoded index with metadata instead of the full

value, thereby reducing the size of the packet. Before compression, the VAXX module facilitates

value approximation to further improve the compression rate.

Figure 4.2 shows the flow of value approximation. For a cache block waiting to be transmitted,
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Figure 4.3: Compression and decompression of a 6-word cache block.

metadata containing the approximable flag and data type are firstly checked. If the cache block is

not approximable, it bypasses the VAXX engine and starts compression. Otherwise, the data type

is checked and the block is directly sent to the approximation logic if it is an integer. For floating-

point data, we approximate only the mantissa fields and the approximation logic for integer values

is reused to minimize the area and power overheads. The error range compute unit is also included

in the approximation logic and the VAXX technique guarantees that the approximated data differs

from the precise word within the preset error threshold. The approximated data blocks are then

sent to the encoder for compression operation.

Figure 4.3 shows an APPROX-NOC working example, where a cache block (24 bytes with

6×4-byte words) is compressed at the source and decompressed at the destination. In this exam-

ple, the encoder has two recorded patterns 0xB and 0xE, which can be encoded. The words 0xC

and 0xF in the cache block are determined to be approximately similar to 0xE and 0xB by VAXX

module, respectively. When the cache block is ready to be packetized, the encoder compresses

the approximated block to an intermediate network representation (NR) by replacing the candidate

data patterns with encoded code. The cache block, now in the NR form, is fragmented into flits
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Figure 4.4: Approximate value compute logic.

and injected into the attached router. Note that the patterns 0xC and 0xF are compressed approx-

imately only if the compiler annotates the data to be approximable. When the packet reaches its

destination, the decoder at the destination uses the encoded code to recover the cache block from

the NR. The decoded block now is an approximated version of the original cache block, with words

0xC and 0xF replaced by similar words 0xE and 0xB, respectively.

4.2.2 Approximation Logic Design

We propose the VAXX value approximate technique to compute an approximate value for a

given data block within a predefined error threshold. In this work, we consider integer and floating-

point value approximation. We approximate the cache block that are to be transmitted only if all the

words in the block are approximable and this information is assumed to be carried with its access

request. The core of VAXX is implemented in the Approximate Value Compute Logic (AVCL),

which consists of floating-point mantissa extraction, error range compute and approximate logic.

For a given value, VAXX computes the variance by which the approximate value can deviate

58



from the precise value. For example, for a data pattern 0b1001 (value 9) and an error threshold

of 25%, the range of values 8 (0b1000), 9 (0b1001), 10 (0b1010, 11 (0b1011)) can be po-

tential matches. In this example, the 2 least significant bits can be don’t cares (0b10xx) for the

approximate matching pattern. This computation can be performed using multiplication/division

operations, but such a design is too expensive.

To calculate the error range, we first compute the number of bits to represent the largest error a

value can tolerate given the predetermined threshold. We simplify the logic by precomputing the

number of shift bits ⌈100
e
⌉, where e is the error threshold (e%). Then the value is shifted right to

compute the error range:

error_range = given_value× e
100

= given_value÷ 100
e

≈ given_value ≫ ⌈100
e
⌉

For example, for an error threshold of 25%, the number of shift bits is 4 (⌈100
25
⌉). Hence, when the

given value is 128, the error_range can be easily calculated to be 32.

Floating-point value approximation is more complicated than integer due to the representation.

A floating-point value is represented as: (−1)sign × (1+ .mantissa)× 2(exponent−bias). We propose

to approximate only the mantissa field of floating-point values. The mantissa part is extracted

and transformed to scale to the size of an integer value, by padding the most significant bits with

zeros. To transform and scale the value of a floating-point value, we extract the 23-bit mantissa

part and concatenate it with a higher bit 1 to form the significant, where the exponent part is scaled

out. In this manner, both integer and transformed floating-point variables can share the same

approximate logic to maintain low overhead. Figure 4.4 shows the AVCL design in detail, where

the datapaths taken by the integer and floating-point variables are represented separately for ease of

understanding. The float exponent detection logic determines whether to bypass the approximation

unit, for floating-point variables, whenever the exponent is 0 or all 1’s, which represent special

numbers such as zero, denormalized numbers, infinity and NaN. For variables that are annotated

to be non-approximable, the AVCL logic is bypassed.

The proposed APPROX-NOC framework can use the VAXX on top of any data compression

mechanisms. However, trivially adding VAXX module on top of NoC data compression can be
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Index Pattern encoded Data Size

000 Zero run 3 bits

001 4-bit sign-extended 4 bits

010 One byte sign-extended 8 bits

011 Halfword sign-extended 16 bits

100 Halfword padded with a zero halfword 16 bits

101 Two halfwords, each a byte sign extended 16 bits

111 Uncompressed Word 32 bits

Figure 4.5: Frequent pattern compression [134].

expensive and unscalable due to the computation as well as latency overhead. Therefore it is critical

to design microarchitectures that optimize the functionality of approximation and compression

as a whole in terms of area/latency/power. To this extent, we showcase two microarchitectural

implementations of APPROX-NOC with two state-of-the-art NoC data compression mechanisms

in the next section.

4.3 APPROX-NOC Implementation

In this section, we first present the VAXX implementation for an underlying static frequent-

pattern compression, namely FP-VAXX. Next we describe the implementation for a dynamic

dictionary-based compression, namely DI-VAXX. Then we discuss the latency overhead due to

approximation.

4.3.1 Frequent-Pattern Mechanism

First, we briefly describe the Frequent-Pattern Compression (FP-COMP) technique and then

propose microarchitectural implementation for FP-VAXX. Previous research [134] has proposed

an FP-COMP mechanism for data compression and [83] has extended it for NoCs with low-

overhead decompression, which we adopt in this work. It compresses a static set of frequent

patterns as shown in Figure 4.5. FP-COMP detects a match on one of the patterns and sends ad-

junct data along with the encoded index. Therefore, FP-COMP incurs additional decompression

complexity due to variable length compression.
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EI
Frequent Pattern (4B)

Byte 3 Byte 2 Byte 1 Byte 0

000 0 0 0 0

001
0 0 0 0 0 0 0 0xxx

1 1 1 1 1 1 1 1xxx

010
0 0 0 X0
1 1 1 X1

011
0 0 X0 X

1 1 X1 X

100 X X 0 0

101
0 X0 0 X0
1 X1 1 X1

Given pattern

EI: Encoded Index
X0: 0xxxxxxx    X1: 1xxxxxxx
X: xxxxxxxx 0: all 0’s   1: all 1’s

Approximate pattern
compute logic

Error threshold

Approximate
pattern

xx   x .. x

Figure 4.6: FP-VAXX microarchitecture.

4.3.1.1 FP-VAXX Implementation

Figure 4.6 shows the microarchitectural overview of the VAXX implementation for FP-COMP.

For each data word, we first compute the approximate pattern using the AVCL. Once the don’t care

bits of the word are determined, the rest of the data word (shaded portion in the figure) is matched

with the corresponding portion of the frequent patterns in the pattern matching table (PMT) to

find a match and compress on a frequent pattern hit. We propose to utilize a content addressable

memory based (CAM) structure to implement the PMT structure for fast matching. By doing

this only the bits that can be approximated, according to the value error threshold, are candidates

for approximation and the rest of the pattern must be a complete match to a frequent pattern for

compression. For data that is not annotated to be approximable, the AVCL is bypassed to enable

lossless compression for given data words.

4.3.2 Dictionary-Based Mechanism

Dictionary-based Compression (DI-COMP) keeps track of recurring data patterns dynamically

and maintains an encoded-index consistency between senders and receivers. To track recurrent

data patterns and maintain the dictionary, we propose to use a table-based mechanism similar to
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the one proposed in [86].

Figures 4.7a and 4.7b show the microarchitecture of an example encoder and decoder pattern

matching tables (PMTs) with size of 4 entries, respectively, in a (3×3) NoC. In the encoder PMT

each entry contains a data pattern, frequency counter and a vector of encoded indices, each cor-

responding to one destination router (decoder), i.e. in an N-node NoC, each entry has a vector

of (N-1) encoded indices. For a data pattern in the encoder PMT, the vector of indices indicates

whether it can be compressed for a particular destination in the network. In addition, the encoder

PMT can have different encoded index values for different destinations, for the same data pattern,

since each decoder works independently. The decoder PMT entries consist of the data pattern, fre-

quency counter, encoded index and a vector of (N-1) valid bits, one for each of the N-1 encoders.

The decoders detect recurrent data patterns and place them in decoder PMTs while sending an

update notification to the encoder, with the new encoded index. The vector of valid bits indicates

all the encoders that have this data pattern in their PMTs and is used when replacements happen to

invalidate the pattern at all encoders. In the example shown in Figures 4.7a and 4.7b, the encoder

PMT at node 3 stores the indices for patterns 0b0000 and 0b1111 for destination 6 while the

decoder PMT at node 6 has valid bits set for the respective patterns for node 3.

4.3.2.1 DI-VAXX Implementation

In order to optimize the microarchitectural cost of VAXX implementation with DI-COMP

mechanism, we modify the operational flow of the approximation with a tight integration, instead

of passing a given data block through the AVCL before compression. We propose to compute

the approximate pattern for every reference pattern, at the time of the pattern being recorded, in

the DI-COMP scheme and save the approximate versions of the reference patterns. Therefore, any

given pattern can be compared to a set of approximate patterns for fast matching, thereby removing

AVCL from the critical path of the packetization.

We propose to use a Ternary Content Addressable Memory (TCAM) structure to optimize the

approximation and compression latency. TCAMs function similar to a CAM. In addition to 0 or

1, a third state of “x” (don’t care) is allowed, i.e., in a TCAM we can actually store 0b10xx
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Figure 4.7: The encoder PMT at Node 3 and the decoder PMT at Node 6.
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Figure 4.8: DI-VAXX microarchitecture.
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for a pattern 0b1001 and the table entry results in a match for the patterns 0b1000, 0b1001,

0b1010 and 0b1011. The decoders utilize a regular CAM structure to recover the original

pattern 0b1001 based on the index. The microarchitecture of the TCAM-based encoder PMT is

shown in Figure 4.8 and the operation is explained as follows.

• The receivers (decoders) detect frequent data patterns and send an update to the encoders to

reflect in the PMT.

• When the encoder receives an update, instead of just storing the original pattern, it computes

the approximate pattern with don’t care bits (e.g. 0b1001 to 0b10xx) based on the error

threshold using APCL. Then the encoder records the approximate pattern in the TCAM and

stores the index for the corresponding receiver. If there is a matching TCAM entry, the

encoder just updates the index.

• When a data pattern arrives at the encoder, the TCAM is accessed. In case of a hit, the

encoded index is used for compression. Thus, we can reduce the latency overhead on the

critical path of compression.

For data packets that are not annotated for approximation, this TCAM-based mechanism is

insufficient to provide exact compression, because a match has no guarantee that the recovered

pattern at the receiver is the same pattern the sender intended to transmit (e.g. 8 can match in

TCAM and be recovered as 9). To facilitate exact matching along with approximate matching, we

propose to add storage capability in the encoders for the original patterns in addition to the TCAM

entry (approximate pattern). Figure 4.8 shows the encoder PMTs with the original pattern storage.

Each TCAM entry can have multiple original patterns because different receivers (decoders) could

have detected different patterns in the range of values. We propose to store multiple original

patterns for each entry. When a data pattern that cannot be approximated arrives at the encoder,

first the TCAM entry is matched and then an exact match on the corresponding original pattern

(based on receiver) is checked before compressing it. The storage overhead can be optimized by

storing only the bits of the original pattern that were made don’t cares in the approximate pattern.
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4.3.3 Latency Overhead

We assume a three-cycle compression latency (two cycles matching and one cycle encoding)

and two-cycle decompression latency overhead for each cache block as mentioned in [83]. To

ensure that the DI-VAXX and FP-VAXX matching can happen within the provisioned compression

latency, we propose parallel hardware matching units based on the latency overhead evaluations.

In case of DI-VAXX and FP-VAXX, we have 8 parallel TCAM matching units since two matches

per cycle in each unit is possible based on the model from [135]. Additionally, FP-VAXX requires

8 APCL units.

We also propose to use two latency hiding optimizations to reduce the compression overhead.

First, we propose to perform the virtual channel arbitration of the packet, using the header flit

which is not compressed, in parallel with the compression. We amortize the compression overhead

with the NI queuing time, i.e, if there are previous packets waiting in the queue, the compression

overhead would not add to the critical path of packet latency.

4.4 Evaluation

In this section, we present the experimental setup followed by the evaluation of the APPROX-

NOC framework.

4.4.1 Methodology

Experimental Setup. We evaluate APPROX-NOC using a cycle-accurate, in house NoC sim-

ulator and the gem5 full system simulator [130]. We implement the DI-VAXX and FP-VAXX

mechanisms in addition to the DI-COMP and FP-COMP mechanisms [86, 83] in both the simula-

tors. For detailed network impact evaluations, we use the NoC simulator where the default error

threshold is set to 10% and the percentage of approximable data packets is set to 75%. We also per-

form sensitivity studies to show the impact of varying these parameters. To evaluate the impact of

APPROX-NOC on the overall application output error, we extend a Pin-based [136] coherent multi-

processor cache simulator [137] for instrumentation. We hand-annotate the benchmarks mentioned

below, similar to Doppelganger [82], to identify the data regions which can be approximated. The

65



Table 4.1: APPROX-NOC System Configuration

Parameter Configuration

Processor

32 Out-of-Order Cores @ 2GHz
32KB L1I cache and 64KB L1D cache, 2-way

2MB L2 cache and 16 directories
MOESI hammer cache coherence protocol

NoC

4×4 2D concentrated-mesh
2GHz three-stage router

4 virtual channels with 4-flit buffer, 64-bit flit
wormhole switching and XY routing

Error threshold 5%, 10% (default), 20%
Approximable

25%, 50%, 75% (default)
data packet ratio
Dictionary-based

8-entry pattern matching table
mechanisms

VAXX mechanism uses the knowledge of the data type (floating point or integer) of variables

in each benchmark to determine the approximation operation. An important consideration while

hand-annotating approximable data regions of benchmarks is the data type of the variables being

determined to be approximable. We assume that the data type of the cache block being compressed

is known to APPROX-NOC and conservatively only compress cache blocks in which all the words

have the same data type. This is because knowledge of the data type of each word would require

significant metadata overhead. We use gem5 to evaluate the performance effect of our approxima-

tion mechanism on the overall system. The APPROX-NOC configuration and the NoC parameters

used for our evaluation are listed in Table 4.1.

Workloads. We evaluate the PARSEC [138] benchmark suite with simlarge input data set,

which have been previously used for evaluating approximation mechanisms [139]. In addition, we

explore the approximation opportunities in big data analytics by modifying SSCA2 [140], a data-

intensive graph benchmark, to evaluate betweenness centrality (BC) in real-world graphs [141].

BC is a popular graph analysis technique to identify important entities in large-scale networks.
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Figure 4.9: Average packet latency breakdown and overall approximation quality.

We approximate the floating-point pair-wise dependencies that are used for centrality calculation.

Such applications in big data analytics can leverage approximation in data segments (e.g. weights

in graphs) within a tolerable error margin since most algorithms approximate the result by only

evaluating on a subset of the data with sampling. We run the benchmarks using gem5 [130] to

evaluate the impact of our mechanisms on the system performance and to collect the communica-

tion traces for the region of interest, which are then fed into our NoC simulation environment and

simulated for 100 million cycles for detailed NoC evaluations. To evaluate the throughput impact,

we use synthetic workloads. We collect the data injected at each node from the gem5 benchmark

traces and utilize the data traces to create data packets in the synthetic workloads. In this way,

the synthetic workloads can be used to vary the traffic pattern/injection rate but the data being

communicated can be kept constant and correlated with data locality in the benchmarks.

4.4.2 Results and Analyses

In this section, we present the NoC performance evaluation of APPROX-NOC using bench-

marks from different application suites and synthetic workloads. We first analyze the performance

impact of APPROX-NOC on the average packet latency, compression ratio, then use synthetic

workloads to evaluate the impact on network throughput.
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4.4.2.1 Performance Analysis

Average Packet Latency. The average packet latency comparison, in a 4×4 2D concentrated-

mesh NoC, for the two implementations of APPROX-NOC is shown in Figure 4.9. Across the

benchmarks, DI-VAXX reduces the average packet latency by 11% with respect to DI-COMP and

40.7% compared to Baseline. FP-VAXX achieves up to 21.4% and 46.5% latency reduction com-

pared to FP-COMP and Baseline, respectively. This is mainly due to the fact that approximation

allows for more reduction in the number of injected flits leading to performance benefits, especially

when the network is congested during the bursty phases. The large packet latency reduction in

SSCA2 graph benchmark is owing to the data intensive nature of the application. With a large data

set, the limited cache size cannot hold the whole working set of the benchmark, and hence its irreg-

ular data accesses incur large volume of data movement. We expect that data-intensive applications

that have a high ratio of data movement to computation traffic will benefit from APPROX-NOC.

Note that the queuing delay decreases significantly by introducing approximation, which re-

duces the blocking delays of single-flit control packets caused by the long data packets. The

decoding latency of the average packet latency is negligible because it is amortized over the large

number of control packets, and also compensated by the reduced queuing latency. In addition, it

is interesting that the VAXX techniques have a larger impact on packet latency with the FP-VAXX

mechanism compared to the DI-VAXX. This is because the DI-VAXX mechanism needs to learn

the data locality at the beginning of each new communication phase by tracking and updating its

locality tables, thereby losing approximation opportunities. In contrast, the FP-VAXX can use

the static patterns across the whole program execution. For bodytrack, canneal and fluidanimate,

VAXX only achieves moderate improvement. This is because packets in these benchmarks have

low queuing and network latency and the flit reduction translating to lower serialization latency is

offset by the approximation/compression/decompression overheads. In addition, the percentage of

data packets injected is very minimal compared to control packets, and hence the reduction in data

flits does not show a significant impact on overall packet latency. The low queuing latency also

supports the argument of low data to control packet ratio.
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Figure 4.10: Fraction of encoded words breakdown to exact compression and approximation (a)
and compression ratio improvement of VAXX (b).
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Figure 4.11: Reduction in number of injected flits.
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Approximation Effectiveness. Figure 4.11 shows the reduction in traffic load by plotting the

number of data flits injected under each APPROX-NOC mechanism. DI-VAXX reduces the num-

ber of injected data flits by 3% and 38% compared to the DI-COMP and Baseline, respectively.

Similarly, FP-VAXX reduces data flit volumes by 19% and 45% with respect to FP-COMP and

Baseline, respectively. The moderate traffic reduction in streamcluster and swaptions benchmarks

when juxtaposed with the large latency improvement seems to be counter intuitive. This can be ex-

plained by two reasons. Firstly, the value approximation enables injection acceleration for critical

data, thereby translating to reduced queuing latency for the many short packets that are blocked.

Therefore, even though the reduction in injected flits is small, the effective resulting latency re-

duction can be amplified. In addition, in dynamic compression, approximation may change the

learning of DI-COMP, which might affect the compression chance of data that is required to be

precise. Hence, the overall flit reduction might be smaller due to changes in the operation of the

DI-COMP learning. But overall we observe that the network traffic reduction translates to average

packet latency improvement.

This is further supported by Figure 4.10a, which shows the breakdown of the fraction of en-

coded words to exact compression and approximated compression. We observe that VAXX in-

creases the encoded word fraction by up to 18% for DI-VAXX compared to DI-COMP and up

to 37% for FP-VAXX over FP-COMP. Figure 4.10b shows compression ratio of compression and

approximation. DI-VAXX and FP-VAXX enhance the compression ratio by up to 21% and 41%

compared to the corresponding compression schemes, respectively. On average, the two VAXX

implementations increase compression ratio by 10% and 30%. Figures 4.10 and 4.11 show that

the reduction in number of injected flits does not scale proportionally to increase in compression

ratio due to approximation. This is because of internal fragmentation in the 8B flits where a large

portion of the tail flit can be empty, since the compressed data might not be a multiple of 8B.

Data Value Quality. Figure 4.9 also depicts the data value quality for each benchmark. Even

though the error threshold is checked for approximating each word, the incurred error differs from

word to word. So we compute the actual overall data error incurred across the benchmark execution
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Figure 4.12: Throughput analysis with different benchmark data traces under uniform random and
transpose traffic patterns.

and show the overall data value quality. Across the benchmarks, though we allow for a 10% error

rate, the effective data value quality is higher than 97%, which is due to a portion of the words

being compressed without error and most of them matching with close proximity. Note that this is

the quality of the integer and floating-point data values. We analyze how this variance translates to

overall application output error later.

4.4.2.2 Throughput Analysis

We use synthetic workloads to analyze the impact of APPROX-NOC on the network throughput.

Figure 4.12 plots the throughput of APPROX-NOC compared against the Baseline, DI-COMP and

FP-COMP. We select data traces from blackscholes and streamcluster benchmarks for both uniform

random and transpose traffic patterns. The simulations are run for 1 million cycles and we assume

a 25:75 data to control packet ratio to emphasize the significance of APPROX-NOC when a large

amount of data is communicated. When compared to the compression schemes, VAXX improves
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Figure 4.13: Error threshold sensitivity analysis.

the throughput by up to 40% for uniform random and 69% for transpose traffic patterns. This gain

is achieved by reducing the effective injection load due to approximating data. The huge increase

in throughput compared to the latency benefits observed from benchmarks can be attributed to

the larger ratio of data packets being injected. Another interesting observation is that DI-VAXX

performs better than FP-VAXX. This is because of higher data value and temporal locality in the

synthetic workloads at higher injection rates with larger data packet ratio. From our observations,

the dynamic dictionary-based scheme tends to work well for applications with high data locality

and intensive data movement due to its learning capability, while the static frequent pattern scheme

tends to work well for applications with many frequent patterns and short communication phases

without learning.

4.4.3 Sensitivity Studies

In this section, we show the sensitivity of APPROX-NOC to the error threshold and the percent-

age of approximable data packets.
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Figure 4.14: Approximable packets ratio sensitivity analysis.

4.4.3.1 Error Threshold

Figure 4.13 shows the average packet latency across the APPROX-NOC mechanisms for all

the benchmarks by varying the error threshold. As the error threshold increases from 5% to 10%

(default) to 20%, the impact of APPROX-NOC on packet latency amplifies due to the better chance

of approximate matching. One interesting observation is that the FP-VAXX mechanism does not

seem to have a significant impact on the packet latency even though with a higher error thresh-

old. This is because our approximation technique can translate the approximate value into a higher

compression ratio even with a small error threshold. It is well matched with the static frequent pat-

tern compression. Despite the moderate latency improvement, FP-VAXX also incurs more overall

error compared to DI-VAXX. This is because FP-VAXX always tries to match with the highest

priority frequent pattern in the pattern matching table even though an exact match is available at

lower priority. Therefore, some of the exact matches, when error threshold is lower, might be con-

verted into approximate matches as the error threshold is increased. These scenarios can lead to

additional error without latency benefits.
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Figure 4.15: Dynamic power consumption normalized to Baseline.

4.4.3.2 Approximable Packets Ratio

Figure 4.14 shows the average packet latency for APPROX-NOC across benchmarks as the

percentage of approximable packets varies. The packet latency benefits improve as the percentage

of approximable packets increases due to the enhanced chances of approximate matching. This

can be observed significantly in SSCA2, swaptions, streamcluster with both DI-VAXX and FP-

VAXX, while the other benchmarks do not show compelling latency reduction as the percent of

approximable packets is increased. This is due to the low queuing latency and small data-to-control

packet ratio for these benchmarks, leading to minimum impact of data flit reduction on the overall

network latency.

4.4.4 Full System Impact Analysis

In this section, we use Pin-based [136] functional model and gem5 [130] performance model

to evaluate the impact of APPROX-NOC on the overall system. We present the overall application

output errors followed by the overall runtime impact due to approximation on different bench-

marks.

Overall Application Output Error. We analyze the impact of our mechanism on the overall

application output quality in addition to the data quality using the Pin-based [136] instrumentation

74



0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
0

20

40

60

80

100

120
A

pp
lic

at
io

n 
Er

ro
rs

 (%
)

blackscholes bodytrack canneal fluidanimate streamcluster swaptions x264 SSCA2

error budget performance speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rf

or
m

an
ce

 S
pe

ed
up

Figure 4.16: Application output accuracy and normalized performance.

framework. We implement our approximate functionalities on top of a coherent cache simula-

tor [137]. We model a system with 16 cores and each core has a 64 KB two-way L1 private

data cache of cache line size of 64 Bytes. We emulate packet response from another cache slice

whenever a miss happens.

To evaluate the applications output quality, we extend application-specific accuracy metrics

based on prior approximate computing research [142, 139, 82, 75]. In addition, we exploit value

approximation opportunities in the big data domain by studying a graph processing benchmark

SSCA2. SSCA2 calculates the betweenness centrality scores of the nodes in a small world network

to identify the key entities. So we evaluate the pair-wise betweenness centrality difference between

the approximate output and its precise counterpart for error calculation.

Figure 4.16 shows the applications output accuracy for all benchmarks. With the predefined

10% data error budget, all the benchmarks are well controlled within the error bound except for

streamcluster. This is because that by approximating the coordinates, the cost between points and

centers might deviate from the precise one and lead to mismatch of centers between the approx-

imate version and precise version. As mentioned in previous work, through approximate space

exploration or training during compilation, we can improve the accuracy while maintaining the

performance benefit [142, 75].

In Figures 4.17, we show the application output of the approximated and precise pair for body-

track. The two figures are very similar and the difference is hardly captured through human vision.
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(a) Precise output (b) Approximate output

Figure 4.17: Approximate versus precise output of bodytrack.

In this experiment, we allow for a 10% error threshold in the data and observe that the overall

output vectors differ by 2.4%.

Figure 4.16 also shows the output accuracy with different error thresholds. Even with 20%

error budget, the applications output errors are close to 5% except for streamcluster and swaptions.

With the bounded data error control, APPROX-NOC can achieve high throughput and low latency

by exploiting approximate communications while maintaining acceptable output quality.

Overall Application Performance. We also evaluate the impact of APPROX-NOC on the

overall system performance. We configure a 64-core CMP connected by an 8x8 mesh network,

and run the benchmarks for 100 million instructions with simmedium input data size. Figure 4.16

also shows the normalized performance of APPROX-NOC over exact compression for different

benchmarks with various error thresholds. We observe that the performance is improved by up to

10% and 14% in swaptions and SSCA2, respectively. While we see moderate improvements on

the rest of the benchmarks. This is because swaptions and SSCA2 have higher degree of sharing in

the approximable region of interest in the application code compared to other benchmarks. Higher

degree of sharing leads to a significant amount of similar approximable data being transferred

across the NoC during the execution of these benchmarks, thereby improving the efficacy of our

mechanism on the overall performance.
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4.4.5 Power Consumption and Area Overhead

In this section, we evaluate the effect of APPROX-NOC on the network power consumption

and area overhead, while taking into consideration the overhead of approximate matching and

compression/decompression. The static power consumption does not vary across benchmarks and

the static power overhead of all the APPROX-NOC mechanisms is minimal compared to the large

baseline static power consumption. Therefore, we show the dynamic power consumption between

APPROX-NOC mechanisms and benchmarks in Figure 4.15. The best performing FP-VAXX mech-

anism reduces the dynamic power consumption on average by 5.4% compared to Baseline and

1.3% compared to FP-COMP. Note that this can be primarily attributed to the reduction in the

number of injected flits which compensates for the power overhead of VAXX techniques.

Based on the hardware requirements, we evaluate the area overhead of the APPROX-NOC

encoders using CACTI [143] and Verilog based area analysis with 45nm technology node. DI-

VAXX incurs 0.0037 mm2 for each NI (router). Similarly, FP-VAXX requires an overhead of

0.0029 mm2. The decoder design does not change between the schemes and the overhead is as

mentioned in [83].

4.5 Summary

In this chapter, we introduce APPROX-NOC, a hardware data approximation framework for

high throughput NoCs in the memory intensive big data era. We present a value based approxi-

mate matching technique to use in a plug-and-play fashion with any underlying data compression

techniques. We also present low-cost microarchitectural implementations of VAXX with state-

of-the-art dictionary-based and frequent pattern-based NoC data compression mechanisms. Our

evaluation results show that the best APPROX-NOC mechanism reduces the average packet la-

tency up to 21.4% over state-of-the-art NoC data compression mechanism. Additionally, the best

APPROX-NOC mechanism improves throughput up to 60% compared to state-of-the-art compres-

sion mechanisms with synthetic workloads. We observe that FP-VAXX achieves higher approxi-

mation rate and more performance benefits across the benchmarks while DI-VAXX works better
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when there is significant data repetition. On average, the data quality is always above 99% across

the benchmarks even with a 10% error threshold since a large portion of the words are within

close proximity. The results show promising potentials of approximate communication for High-

Throughput data movement.
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5. REDUCING DATA MOVEMENT VIA IN-NETWORK COMPUTING 1

The explosion of data availability and the demand for faster data analysis have led to the emer-

gence of data-intensive applications.These workloads, ranging from neural networks to graph pro-

cessing, expose compute kernels that operate over myriads of data, exhibiting large memory foot-

print and low data reuse rate. Significant data movement requirements of these kernels impose

heavy stress on modern memory subsystems and communication fabrics. To mitigate the worsen-

ing gap between high CPU computation density and deficient memory bandwidth, solutions like

memory networks and near-data processing designs are being architected to improve system per-

formance substantially. In this chapter, we examine the idea of mapping compute kernels to the

memory network so as to leverage in-network computing in data-flow style, by means of near-data

processing. An in-network compute architecture, Active-Routing, is proposed to enable computa-

tion on the way for near-data processing by exploiting patterns of aggregation over intermediate

results of arithmetic operators.

5.1 Active-Routing Architecture

In this section, we first illustrate Active-Routing by walking through an example. Then we

describe its three-phase packet processing procedure. Lastly, we categorize the memory access

patterns of the data to be processed and propose enhancements to reduce offloading overhead by

leveraging their characteristics.

5.1.1 Architectural Overview

Figure 5.1 presents the system configuration, where host processors are connected to a memory

network formed by chaining hybrid memory cubes (HMCs). In this system, we show an example of

Active-Routing in the memory network that computes sum += A[i]×B[i] over a large loop with

1Reprinted with permission from “Active-Routing: Compute on the Way for Near-Data Processing", by Jiayi
Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun Kim, Rahul Boyapati, Ki Hwan Yum and Eun Jung
Kim, 2019. 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 674-686,
doi: 10.1109/HPCA.2019.00018, Copyright c⃝ 2019 IEEE.
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Figure 5.1: System configuration with (a) a host CPU connected to (b) a Memory network with an
Active-Routing example.

loop index i. Each computation of A[i]×B[i] is offloaded from the host CPU to the memory

network as an Update packet. Update packets are scheduled for computation at the memory cubes

near to the operand locations to compute the partial sum through near-data processing (NDP).

Following Update offloading, Gather packets are sent to collect the partial results from each cube,

and reduce them in the network routers on the way back to the host.

The three phases of Active-Routing as it progresses in the timeline for this example is shown in

Figure 5.2, namely ARTree Construction, Update and Gather Phase.

• While offloading Update packets, an Active-Routing Tree (ARTree) is being constructed

along the packets’ paths to the scheduled compute memory cubes. For instance, in Fig-

ure 5.1b, an Update packet is sent from the CPU through memory cube 0 to cube 8. It

records the tree nodes and builds a tree branch along its path to cube 8. Update packets

scheduled at different cubes construct different branches. These branches altogether form an

ARTree, as abstracted in Figure 5.2a.

• The offloaded computations drive near-data processing during the Update Phase as shown
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Figure 5.2: Active-Routing consists of three phases: (a) Active-Routing Tree Construction on-
the-fly; (b) near-data processing in Update Phase; and (c) network aggregation along the Active-
Routing Tree in Gather Phase.

in Figure 5.2b. Each operation A[i]×B[i] requests its source operands A[i] and B[i] to

finish the computation and updates the partial sum in the scheduled cube. Figure 5.2b also

depicts a case where two operands reside in different cubes. In such cases, the Update packet

will be sent to the scheduled compute point that is the last common cube (cube 12) on the

minimum routes for both operands: 1 it replicates to issue two operand requests for Ak and

Bk to the resident memory cube 13 and cube 15, respectively. 2 Then, the two operand

responses are sent to cube 12 to complete the computation. All the intermediate results in

the same compute cube are reduced to a partial sum in the cube during this phase.

• Figure 5.2c shows the Gather Phase when Gather packet is issued following all the Update

packets. It is replicated from the root to each node of the ARTree. Then Gathers at leaf

nodes initiate network reduction of partial sums computed in the previous phase in a dataflow

manner to the root along the ARTree.

5.1.1.1 Three-Phase Packet Processing

In general, Active-Routing maps a compute kernel in the memory network to optimize reduction

over intermediate results of arithmetic operators. We name such a mapping as an Active-Routing

flow. A unique identification (flow ID) is assigned for each flow and its corresponding ARTree.
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Figure 5.3: Active packet processing flow chart for (a) update packet, (b) operand response packet,
(c) gather request packet and (d) gather response packet.

Each flow involves a three-phase packet processing procedure as shown in Figure 5.3.

ARTree Construction. For each flow, an ARTree is built dynamically while processing its

Update packets, as shown in Figure 5.3a. Upon receiving an Update packet, each cube registers

its flow ID. If the Update packet is not scheduled to compute at the current cube, the packet is

forwarded to its child based on its routing to the scheduled compute cube. Therefore, an ARTree is

built by recording parent and children information at each node.

Update Phase. This phase starts in concurrent with the ARTree construction phase. It involves

processing of Update packets, and operand request/response packets as shown in Figures 5.3a

and 5.3b. While processing Update packets, operand requests are sent out to the memory from

the scheduled compute node. When the operand responses arrive, the arithmetic operations are
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scheduled to compute the partial aggregation result.

Gather Phase. Figures 5.3c and 5.3d show the packet processing in Gather Phase to commit

Active-Routing flow. This phase has one forward pass to multicast the Gather requests from the

root to leaf nodes, and a backward pass to reduce the results from leaf nodes to the root node. Once

a node’s subtree finishes Update Phase, it replies to its parent and deallocates the flow record. A

parent receives Gather responses from all its children to indicate the completion of their Update

Phase. When the root node finishes its own Update Phase and receives all its children’s Gather

responses, it commits the flow.

5.1.1.2 Memory Access Patterns

Instruction offloading and operand fetching incur overhead using packet switching due to meta-

data in the packet header and packet internal fragmentation. Memory access patterns of operand

fetching can be exploited to amortize the overhead by offloading multiple operations at a time.

Active-Routing aims to optimize reduction on massive intermediate results of arithmetic operators,

such as sum =
∑n

i=1 *Ai×*Bi, where Ai and Bi store the operand addresses. Memory access

patterns of operands can be regular when vector A stores array addresses. When it stores addresses

of graph nodes or sparse matrix elements, the access pattern tends to be irregular. Therefore,

the combined memory access pattern for the two operands can be categorized into three groups:

regular-regular, regular-irregular, and irregular-irregular. Based on these three categories, we

propose three different ways to leverage data locality.

For regular-regular access pattern, we offload the computation in cache block granularity as

vector processing. While for regular-irregular access pattern, we fetch the irregular data and send

them to regular data resident location for processing similar to PEI [18]. The above two methods

maximize the locality benefit and reduce the memory accesses. For irregular-irregular memory

access pattern, we simply fetch single operand pairs to the scheduled compute node as scalar

operations. Active-Routing can cooperate with previous study [94] to further optimize irregular-

irregular access pattern, which we leave for future work.
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5.2 Implementation

In this section, we describe the programming interface and instruction set architecture (ISA)

extension. Then we introduce the hardware components that work in synergy to realize Active-

Routing, including Network Interface (NI) support and Active-Routing Engine (ARE). Lastly, we

discuss system integrity considerations and several enhancements in Active-Routing.

5.2.1 Programming Interface and ISA Extension

We provide simple programming interfaces (Update and Gather) to translate the program se-

mantics into extended instructions. The ISA extensions are used to communicate with Network

Interface to offload computations to the memory network for Active-Routing processing.

Update(void *src1, void *src2, void *target, int op);

UpdateRR(void *src1, void *src2, void *target, int op);

UpdateRI(void *src1, void *src2[], void *target, int op);

UpdateII(void *src1, void *src2, void *target, int op);

Gather(void *target, int num_threads);

The above Update and Gather APIs are defined to offload Active-Routing flows. The Update

API carries two source memory addresses of an arithmetic operation. The postfix RR, RI and II of

Update API are used for three memory access pattern categories, respectively. The op parameter is

the opcode indicating the type of arithmetic and reduction operation (e.g. floating point multiply-

and-accumulate). The target field in the APIs is the address of the reduced variable, which is

hashed to a unique identification for each flow. In the Gather API, the num_threads parameter

indicates the number of threads working on the flow. It is used for an implicit barrier at the root

of ARTree to guarantee all the Updates have been initiated. We generalize the Update API with

opcode op to support simple operations such as assignment. These APIs are translated to extended

intrinsic instructions by the compiler. During execution, instruction fields are written to a set of

dedicated registers in the Network Interface (NI). NI can assemble this information into an Update

or a Gather packet and send it to the memory network.

Figure 5.4 shows the baseline and Active-Routing implementations of the thread worker pseu-
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// baseline implementation
global diff = 0.0;
local loc_diff = 0.0;
for (v: v_start to v_end) {

loc_diff += abs(v.next_pagerank - v.pagerank);
v.pagerank = v.next_pagerank;
v.next_pagerank = 0.15 / graph.num_vertices;

}
atomic diff += loc_diff;

// active optimization
global diff = 0.0;
local temp = 0.15 / graph.num_vertices;
for (v: v_start to v_end) {

Update(&v.next_pagerank, &v.pagerank, &diff, abs);
Update(&v.next_pagerank, nil, &v.pagerank, mov);
Update(temp, nil, &v.next_pagerank, const_assign);

}
Gather(&diff, num_threads);

Figure 5.4: Pseudocode of thread worker for parallel pagerank.

docode of pagerank calculation kernel. In the baseline implementation, the atomic update for

diff needs to fetch the pagerank and next_pagerank values for each vertex in the graph. This

consumes a large amount of bandwidth due to irregular graph access patterns. It also needs to

reduce the diff value atomically for each thread, which causes high overhead and limits thread

scaling. In contrast, Active-Routing allows updates of diff near the data location to save band-

width. In addition, the Gather requests from all the threads of same flow are synchronized at the

root of ARTree as an implicit barrier. Then reduction is initiated along the ARTree. Note that the

read-write dependencies between instructions are enforced as same as normal instructions. The

read-write dependencies can be tracked and resolved by memory controllers similar to read-write

requests dependencies handling with simple extension.

5.2.2 Network Interface

Programming interfaces are used in application for Active-Routing offloading. Compiler takes

the API and translates it into extended instructions. Extended instructions are assembled to packets

85



Vault 
Controller

Intra-Cube Network

I/O I/O I/OI/O

… Vault 
Controller

Active-Routing 
Engine

Lo
gi

c L
ay

er

DRAM layer

Va
ul

t

Packet 
Processing 

Unit
Flow Table

Operand Buffers
ALU

(a) HMC logic layer for Active-Routing engine.

64-bit 6-bit 64-bit 64-bit 64-bit 2-bit 4-bit 1-bit
flowID opcode result req_counter resp_counter parent children	flags Gflag

(b) Flow table entry

64-bit 6-bit 64-bit 1-bit 64-bit 1-bit
flowID opcode operand1 op1_ready operand2 op2_ready

(c) Operand buffer entry

Figure 5.5: Active-Routing microarchitecture: (a) engine implementation in HMC logic layer with
(b) flow table entry and (c) operand buffer entry.

and offloaded to the memory network for processing. This functionality can be added to Network

Interface (NI), connecting core and on-chip network, with marginal change. In NI, we add ded-

icated registers that can be written by extended instructions to convey the opcode and operand

information. NI reads these registers to assemble an Update or a Gather packet and issue it into

the memory network.

5.2.3 Active-Routing Engine

The Active-Routing facilities are implemented in Active-Routing Engine (ARE) on the HMC

logic layer as shown in Figure 5.5a. It is integrated as an attached module to the router switch.

ARE consists of 1) a packet processing unit to process and generate packets, 2) a flow table to

keep track of Active-Routing flows, 3) a pool of operand buffers to store operands, 4) an ALU for

computation.
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5.2.3.1 Packet Processing Unit

Packet processing unit is responsible for decoding the Update and Gather packets and schedule

actions correspondingly as shown in Figure 5.3. It can generate operand request packets to fetch

the data and Gather response to commit the partial result to its parent.

5.2.3.2 Flow Table

Flow table keeps track of both the structure and states information of each flow. Figure 5.5b

shows a flow entry. Each entry in the table includes a tree node record that maintains the struc-

ture of the tree by keeping a unique flow ID, an opcode for computation, and its parent and

children. It also keeps the flow’s state, including the partial result, the req_count and

rep_count, as well as Gflag. The req_count and rep_count counters are used to keep the

number of issued requests and committed operations. A Update Phase is considered finished when

these two counter values are the same. The Gflag is set by a Gather request indicating that the

flow can start reduction once Update Phase completes.

5.2.3.3 Operand Buffers

Update packets are processed to generate request(s) to fetch operands and perform the compu-

tation with the response. Operand buffer is used as a temporary storage for the operands waiting

to be processed, therefore maintaining the pending Update operations. We make a pool of operand

buffers shared by different flows so as to improve the throughput and reduce the overhead. An

operand buffer entry is reserved before sending out operand request(s) since co-existing flows can

easily cause deadlock due to wait-and-hold condition, especially for two-operand operations. Fig-

ure 5.5c shows an operand buffer entry, which keeps the flowID and opcode, two operand

fields and two ready flags to indicate the operand’s availability. To reduce the operand buffer

access time, we use a free and a ready queue to keep IDs of free and ready operand entries, respec-

tively, for ease of direct lookup.
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5.2.3.4 ALU

A light-weight ALU is implemented in ARE to compute arithmetic operations. Active-Routing

supports various operations on different data types, including reduction operations such as sum,

xor, and, min, and max, as well as multiply-accumulate on floating point and integer data. We

plan to generalize our approach and implement more powerful logics to support complex program

accelerations.

5.2.3.5 Putting It All Together

Upon receiving an Update request packet, ARE processes it in the Packet Processing Unit. If

the corresponding flow has not yet registered in the flow table, an entry is allocated for the new

flow. The flow is registered and fields are initialized by recording the flow ID and the packet’s

previous hop as parent in the entry. If the packet is not scheduled for the current cube, it is for-

warded based on the computed route to next hop, which is recorded in the children flags.

Otherwise, the req_count is incremented and an operand buffer entry is allocated from the free

queue. Meanwhile, operand request packets embedding the operand address and buffer entry ID

are also generated. If all operand buffer entries are busy, the Packet Processing Unit is stalled until

an operand buffer entry is available. When a response for the operand arrives, the corresponding

operand buffer entry is updated. If operands are ready, the operand entry ID is pushed to the ready

queue for processing. ALU is directed by the ready queue for computation. After the computation

finishes, the resp_count is incremented and result is updated in the corresponding flow entry.

The operand buffer is deallocated for reuse by pushing back its ID to free queue. While processing

Gather request packets, the Gflag of the corresponding flow table entry is set to initiate Gather

Phase after the completion of the Update Phase of the subtree. If the cube has children cubes, the

packet is replicated and multicast to its children. Upon receiving a Gather response from a child

for partial result update, its corresponding child field is cleared. Note that every time the result

is updated by either computation in current cube or Gather packet from a child, if Gflag is set and

children flags are cleared, a Gather response is generated to send the partial result back to its
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parent and release the flow table entry.

5.2.4 Integrity Considerations

There are two important design considerations to seamlessly integrate Active-Routing into cur-

rent computer systems: virtual memory support and cache coherence.

5.2.4.1 Virtual Memory

Since Active-Routing is implemented by ISA extension, the offloaded instructions are treated

as extended active loads/stores. Therefore, they can perform the same virtual to physical address

translation as normal load/store instructions. With this design principle, we can avoid overhead for

address translation units in the directories, or memory.

5.2.4.2 Cache Coherence

To offload instructions for Active-Routing optimization, it should ensure that the offloaded flow

is using the up-to-date data in memory. A naïve way is allocating uncacheable memory for the

data that may be used in the optimization. However, it may hurt the performance in other program

execution phases which can use the deep cache hierarchy to exploit locality. To work around with

coherence, offloaded packets are first sent to the directory based on their address, and query for

back-invalidation if data is cached on-chip similar to [90]. Then it will be issued to the memory

for Active-Routing processing. For two-operand computations, if the two addresses belong to

different directories, two separate requests are created for back-invalidation, after which they are

merged at the predetermined offloading memory port. Since Update packets are issued in parallel,

the back-invalidation overhead is amortized across massive concurrent packets. We observe that

back-invalidation rarely happens in our experiments.

5.2.5 Enhancements in Active-Routing

We observe two critical points that have significant impact on the Active-Routing performance:

(1) the decision for choosing the root of a tree affects the network congestion, and (2) the overhead

of offloading computations widely varies with the change in its granularity. To improve Active-
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Figure 5.6: Runtime speedup of ART variants over HMC Baseline.

Routing performance further, we address each of these points as follows.

Since the computations are offloaded from the host CPU through the memory ports, we nat-

urally consider the cubes that are attached to the four channel ports as root node candidates. We

start with a static approach that we always assign the root node to be cube 0. In order to balance

the load better in the network, we propose two enhancement techniques that can consider all four

corner cubes as roots and are able to create multiple trees for one flow. The first one uses thread ID

to interleave the candidate cubes so as to balance the trees rooted from four corners among multi-

thread applications, named as ART-tid. Since the scheduling is oblivious to the data location, it can

create deep trees and lead to more hop traversals for Update request packets. Another enhance-

ment technique takes the operand addresses into account and sends the Update packet through the

port nearest to its destination. This creates shallow trees with respect to ART-tid, we name it as

ART-addr. Since these two schemes can create multiple ARTrees for one flow, the extended HMC

memory controllers that manage the trees are coordinated to merge the subflows at the end of

Gather Phase. On the contrary, Naïve-ART constructs only one ARTree for each flow.

To reduce offloading overhead and the number of memory accesses, we adapt the offload-

ing granularity, to exploit the data locality of different memory access patterns discussed in Sec-

tion 5.1.1.2. This optimization is applied to both ART-tid and ART-addr, whereas Naïve-ART does
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not consider granularity, which simply offloads every single operand pair without considering data

locality. This Naïve-ART may experience contention in operand buffer resources, and network

contention in addition to high offloading overhead due to static manner for tree construction and

simple offloading.

Figure 5.6 shows the improvement impacts of enhancements over Naïve-ART. We take the

log scale of speedup that is normalized to HMC conventional system baseline (not shown). It

shows that with naïve way of static tree formation and offloading, Naïve-ART is worse than HMC

baseline, especially when there is some locality in accesses. In contrast, by constructing the trees

dynamically and exploiting the memory access patterns, we can achieve better performance. In the

following sections, we only present ART-tid and ART-addr for detail analysis.

5.3 Methodology

5.3.1 System Modeling and Configuration

We use an execution-driven simulator McSimA+ [144] with detailed microarchitecture models

as the backend for cores and cache hierarchy. For HMC memory modeling, we integrated a cycle-

accurate simulator CasHMC [145] with McSimA+ to replace its memory system. We leveraged

McSimA+’s Pin [146] based front end to implement Active-Routing instruction extensions. The

microarchitectural behaviors of Active-Routing were implemented on the crossbar switch in the

HMC logic layer.

For power and latency modeling, we use CACTI [143] for on-chip cache power estimation,

assume 5pJ/bit for each hop in memory network [147], 12 pJ/bit for HMC memory access. We

implemented the ARE in verilog and synthesized it using TSMC 45 nm library. The multiplication

takes the longest time, which is 6.61 ns, and the operand buffer takes 0.59 ns access time. As we

use 1250 MHz for ARE and pipeline the arithmetic operations, it takes 9 cycles for each mult and 1

cycle for buffer access. At full load, ARE’s ALU can compute 1 FLOP/cycle. The area and power

estimation is 0.02 mm2 and 17.8 mW for ALU, 0.026 mm2 and 16.9 mW for operand buffer, 0.05

mm2 and 33.2 mW for Flow Table.
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We configured the host CPU as a CMP with network-on-chip and two level cache hierarchy

with MESI coherence protocol. The 16 off-chip HMCs were connected to form a Dragonfly topol-

ogy [95]. The system configuration evaluated in this work is shown in Figure 5.1 and described in

Table 5.1.

Table 5.1: Active-Routing System Configuration

Parameter Configuration

CPU

Core
16 OoO cores @ 2GHz

issue/commit width: 4, ROB: 128
L1I/D Cache Private, 32KB, 4 way

L2 Cache S-NUCA 16MB, 16 way, MESI
NoC 4x4 mesh, 4 MC at 4 corners

Memory

DRAM Timing
tCK = 0.8 ns, tRAS = 21.6 ns, tRCD = 10.2 ns

tCAS = 9.9 ns, tWR = 8 ns, tRP = 7.7 ns

HMC
4GB/cube, 4 layers

32 vaults, 8 banks/vault

HMC Network

16 cube DragonFly, 4 controllers
Minimal routing, virtual cut-through

16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1250 MHz

Flow Table 16 flow entries
Active-Routing Operand Buffer 128 buffer entries

Engine
Processing Element

1250 MHz clock frequency
An arithmetic logic unit

5.3.2 Workloads

Active-Routing targets applications that have abundant reduction on data processing operations

such as multiply-accumulate or pure reduction operations over a large memory footprint. We

studied five kernels from several benchmark suites. These kernels are widely used in diverse

application domains such as scientific computing, graph analytics, language modeling and deep

learning. We also developed four data-intensive microbenchmarks for case study.
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Table 5.2: Workloads

Workloads Optimization Region Input Data Size
B

en
ch

m
ar

k

backprop [149] activation calculation in feedforward pass 2097152 hidden units
lud [149] upper and lower triangular matrix decomposition 4096 matrix dimension

pagerank [150] ranking score calculation web-Google graph [141]
sgemm [151] matrix multiplication 4096x4096 matrix
spmv [151] matrix-vector multiplication loop 4096 matrix dimension (0.7 sparsity)

M
ic

ro
-

be
nc

hm
ar

k reduce sum reduction over a sequential vector 6400K dimension
rand_reduce sum reduction over random elements 6400K elements

mac multipy-and-accumulate over two sequential vectors two vectors with 6400K dimension
rand_mac multiply-and-accumulate over two random element lists two lists with 6400K elements

In order to support execution with McSimA+ frontend, all the applications were re-implemented

using the Pthread library. We chose sufficient large input data so as to stress the last level cache and

memory as well as to account for reasonable simulation time. The working set sizes varied from

80 MB to 0.5 GB. The memory requirements of these kernels used in various applications tend to

grow significantly larger as data scales [148]. The workloads and applied optimization region as

well as input data are summarized in Table 5.2.

5.4 Evaluation

In this section, we evaluate ART-tid and ART-addr with respect to PEI [90], implemented by

adding a computation unit at each vault controller supporting PEIs. It can compute a dot product

of two 4D vectors in a cycle, one of the vector operands (either regular or irregular) are brought

to cache and sent to the memory location of the other half (should be regular) for processing in

memory. We first present performance evaluation followed by power and energy analysis. Then

we show the potential of dynamic offloading through a case study.

5.4.1 Performance

5.4.1.1 Speedup

Figures 5.7a and 5.7b show the execution time speedup of benchmarks and microbenchmarks,

respectively. Both ART-tid/addr schemes create multiple trees from all memory ports for massive
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Figure 5.7: Runtime speedup over PEI.

flows in the benchmarks. The results show more than 6% performance improvement across various

applications with respect to PEI except lud. Specifically, ART-addr improves sgemm, a dense

matrix multiplication kernel up to 7× speedup. In sgemm, almost all the execution time is spent in

matrix multiplication. During the kernel execution, PEI needs to fetch one of the source matrices

and also update the target matrix, causing read and write contention on the limited cache, which

results in cache thrashing. In contrast, ART has no contention between source matrices and target

matrix since both source matrices are fetched and processed in memory, thereby outperforming

PEI significantly. In geomean, ART-tid and ART-addr improve performance by 15% and 60%

over PEI, respectively. For lud, PEI performs slightly better than both ART-tid and ART-addr. In

case of spmv, PEI outperforms ART-tid but performs worse than ART-addr. This is because the

computation distribution in these two applications is not balanced, which causes contentions in

compute/buffer resources.

Note that the PEI implementation is optimistic since we have no limit on operand buffers. For

spmv, ART-addr is better than ART-tid due to more balanced work distribution, which will be

discussed in short. In microbenchmarks, the whole execution is the region of interest for optimiza-

tion. Both ART-tid/addr alternatives work well across all microbenchmarks. Compared with PEI,

ART-tid/addr achieves 7×/10× speedup, respectively.
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Figure 5.8: SPMV compute point and operand distribution.

Figure 5.8 shows a heatmap of spmv for ART-tid and ART-addr. In the heatmap, darker colors

are used for denoting higher numbers of event occurrences. Each big square depicts the whole

memory network and each small square block represents one cube in the memory network. In

ART-addr, the work is evenly scheduled in each cube which can have better resource utilization.

While in ART-tid, computations are centered in a few cubes, leading to compute/operand resources

contention and less parallelism2.

To evaluate scalability, we also ran experiments for mac on a 64-cube dragonfly memory net-

work. With the same problem size for strong scalability, ART-tid and ART-addr achieve 4.6× and

6.3× speedup compared to PEI on the 16-cube memory network, whereas on the 64-cube memory

network, ART-tid and ART-addr outperform PEI for 4.7× and 6.4× improvements, respectively.

As we scale the problem size four times as the memory capacity scales for weak scalability, ART-

tid and ART-addr improve the performance over PEI by 4.6× and 7.1×, respectively. When com-

2The operand distribution are different due to the dynamic memory allocation.

95



paring each technique’s performance on the two different memory networks for the same problem

size, PEI incurs 2% performance degradation on the 64-cube network compared to its performance

on the 16-cube memory network. Whereas both ART-tid and ART-addr have less than 0.1% per-

formance difference, either better or worse, on the two memory networks. Since PEI has more

on/off chip data transfer than ART, it is more sensitive to the increased memory access latency due

to higher average network latency in larger scale memory networks. On the contrary, ART benefits

from both memory parallelism and network concurrency, therefore it tends to scale better for larger

memory networks.
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Figure 5.9: Update round-trip latency breakdown into request, stall and response latency.

5.4.1.2 Update Offloading Roundtrip Latency

In Figure 5.9, round-trip latency is broken into request, stall and response to understand the

contribution of different communication components for Update offloading. As expected, the total

latency is inversely proportional to the performance shown in Figure 5.7. In general, ART-tid and

ART-addr dynamically distribute the Updates across all available ports for tree construction. The

ART-tid/addr schemes can balance the load evenly and utilize the memory network resources more
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efficiently. Compared to ART-tid, ART-addr has lower round-trip latency across all benchmarks.

ART-tid constructs trees by interleaving memory ports using thread IDs. Therefore, the tree root

is not necessarily close to the directory where Update packets check for coherence. In contrast,

ART-addr distributes Updates based on addresses, which makes the tree root physically close to

the directory, thereby incurring less request latency. The stalls are mostly due to queuing in HMC

controllers.
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Figure 5.10: On/off-chip data movement normalized to PEI.

5.4.1.3 Data Movement

We evaluate data movement as the data size transferred between the host processor and mem-

ory network. The data movement breakdowns for normal data and active data transfer are shown

in Figure 5.10. For most applications, ART-tid/addr can reduce the memory requests fetching

the data, mostly source operands, compared to PEI. In pagerank, the region of interest for opti-

mization is the code segment that has reduction on large amounts of data processing tasks. In the

benchmarks, only parts of the whole parallel phase are our optimization targets. The other phases

still require data movement. Another overhead comes from massive fine-grained offloading in this
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Figure 5.11: Normalized power consumption over PEI.

benchmark due to the irregular memory access pattern. Further preprocessing on the data [94] can

solve this problem to gain performance and reduce data movement further.

In the microbenchmarks, the whole parallel phase can be optimized and hence the data move-

ment decreases significantly. In reduce, the majority of its execution time is spent on summing

up all the elements of a large array as it accesses the array elements sequentially. Similarly, mac

operates multiply-and-accumulate over two large vectors. Both of them exhibit very good spatial

locality in their memory accesses, which is exploited in cache-block grained offloading for vec-

tor processing. However in PEI, it needs to bring part of the data on chip and offload it with the

instruction, causing data movements. For rand_reduce and rand_mac, ART-tid/addr have more

data movements compared to the sequential accesses due to offloading overhead. Since PEI still

needs to bring the data for random multiplication on chip before atomic write, it incurs more data

movement.
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Figure 5.12: Normalized energy consumption over PEI.

5.4.2 Power and Energy

5.4.2.1 Power Consumption

We present the power consumption breakdowns into cache, memory and memory network in

Figure 5.11. We observed that ART-tid/addr consume similar memory power and less network

power than PEI except for pagerank. In ART-tid/addr, data is fetched from memory and commu-

nicate in the network. However in PEI, part of the operands need to be brought across the network

to on-chip cache and be sent with the offloaded instruction, leading to cache contention even cache

thrashing. For example, sgemm has cache contention between reading of large source matrix and

writing to target matrix. The cache thrashing leads to more memory accesses. As a result, PEI and

ART have similar memory access intensities. For regular memory accesses in terms of network

power, ART feeds the data in the network with the minimum route while PEI brings data all the

way to the CPU, thus PEI consumes more power. One exception is pagerank, which has irregular

memory access patterns. ART offload computation flows in single operand granularity, causing

high overhead in offloaded packets and operand packets, thus consumes more network power.

Microbenchmark mac has similar power characteristics as the benchmarks behaving regular
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memory access patterns. For reduce, ART-tid/addr can massively process the reduction near-data

in memory cubes without moving data around, which leads to more intensive memory accesses and

more offloading. For irregular memory access patterns such as rand_reduce and rand_mac, PEI

exhibits no reuse of the data and can only optimize atomic updates, leading to intensive memory

accesses which consume more power.

5.4.2.2 Energy Consumption

Figure 5.12 shows the energy consumption for cache, memory and memory network. ART-

tid/addr reduces the energy consumption across all the benchmarks with regular memory access

patterns and microbenchmarks. For applications that have irregular access patterns such as pager-

ank, the main contribution is from network energy that has high overhead due to fine-grained

offloading. For sgemm and microbenchmarks, energy consumption is reduced dramatically due to

significant running time speedup. We gain enormous benefit because most parts of these applica-

tions can be optimized by Active-Routing.

5.4.2.3 Energy-Delay Product

Figure 5.13 shows the normalized energy-delay product (EDP) over PEI in logarithmic scale

to show the energy efficiency. We observed that ART-tid/addr has lower EDP for all applications

except for spmv with ART-tid. The reductions in execution time as well as energy consumption

contribute jointly to EDP reduction, achieving significant energy efficiency improvements. In spmv

with ART-tid, the imbalanced work distribution leads to worse execution time. Since the energy

saving is offset by the performance degradation, ART-tid on spmv has lower EDP. To summarize,

ART-tid and ART-addr reduce the EDP by 80% on average compared to PEI.

5.4.3 Dynamic Offloading: A Case Study

In this section, with the help of an example we show that the performance can be further

improved using a runtime knob. The runtime knob dynamically decides whether to offload com-

putations (Updates) on the basis of memory access and communications patterns to achieve more

performance gains. Execution phases that exhibit good locality of data accesses experience per-
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Figure 5.13: Logarithmic scale of normalized energy-delay product (EDP) over PEI.

formance benefits by exploiting cache hits when scheduled on the host processor. In lud, it de-

composes a matrix into upper and lower triangular matrices. Computations for these two matrices

can be broken into two different phases. The first phase is for computations of the upper triangular

matrix and the other is for those of the lower triangular matrix and they are executed iteratively.

These two phases have different locality of data accesses. The second phase has a good data lo-

cality since its data access pattern is row-major order, whereas the data access pattern of the first

phase is in column-major order.

For such a program behavior, the best execution model is to use Active-Routing for the first

phase and process the second phase in the host processor. We analyze lud’s phase behaviors as

shown in Figure 5.14. ARTtid always offloads computations to memory regardless of data locality,

so the number of cycles for first and second phases in each iteration dramatically increases and

decreases. However, when we run ARTtid-adaptive in which computations of the first phase are

offloaded to the memory and that of the second phase is processed in the host processor, we achieve

2× speedup.
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Figure 5.14: LUD phase analysis and dynamic offloading

5.5 Summary

This chapter proposes Active-Routing, an in-network compute architecture, to accelerate reduc-

tion on data processing operations in data-intensive applications for near-data processing. Active-

Routing is implemented as a novel three-phase processing schedule, which offloads the computa-

tion near data in the memory network for execution and aggregates the results along their routing

path. We categorize memory access patterns of compute kernels of interest and offload the com-

putations in various granularities by exploiting their locality characteristics to reduce offloading

overhead. Compared to the state-of-the-art PIM architecture, Active-Routing can achieve up to

7 × speedup with a geometric mean of 60% performance improvement and reduce energy-delay

product by 80% on average, showing promising potential for in-network computing and data-flow

processing in memory network.
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6. ALGORITHM/ARCHITECTURE CO-DESIGN FOR DISTRIBUTED DEEP LEARNING

Large-scale distributed deep learning training has enabled developments of more complex deep

neural network (DNN) models to learn from larger datasets for sophisticated tasks. In particular,

distributed stochastic gradient descent intensively invokes all-reduce operation for gradient syn-

chronization to update models, which dominates communication time during iterative training

epochs. This chapter, we identify the inefficiency in recent all-reduce algorithms, and the op-

portunity of communication algorithm and architecture co-design. In addition, we propose MUL-

TITREE All-Reduce algorithm with topology and resource utilization awareness for efficient and

scalable all-reduce operation. Moreover, we specialize the interconnection network to match the

injection/ejection bandwidth to network bandwidth in addition to flow control to cope with the

algorithm in synergy.

6.1 MultiTree All-Reduce Algorithm

In this section, we first explain the rationale behind the MULTITREE approach. More specif-

ically, we will shed light on why it is necessary to have multiple trees instead of rings and why

network topology should be considered in the algorithm. Then, we describe the main algorithm

with an example.

6.1.1 MULTITREE Insights

6.1.1.1 Why All-Reduce Trees?

In reduce-scatter and all-gather phases of all-reduce, each node leads a reduction and a broad-

cast of one chunk of the data. In Ring All-Reduce, each node communicates a chunk of data in

a unidirectional ring, which takes (n − 1) steps during reduce-scatter and another (n − 1) steps

during all-gather for n nodes. If each such communication can take place in a tree structure, it

can reduce the algorithmic steps to 2 logk n with a k-ary tree for n nodes. Moreover, a ring can

be considered a generalization of a unary tree. Thus, the proposed algorithm to construct multiple

trees instead of rings not only is bandwidth optimal but also reduces latency, thereby improving
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all-reduce scalability.

6.1.1.2 Why Topology Awareness?

If trees are constructed without considering network topology and link utilization, it may lead

to even worse performance than rings. For example, when all the reduction trees start from leaf

nodes, there can be cases in which the same pair of parent and child in different trees are involved in

the same communication step at the same time if trees are not constructed carefully. Furthermore,

since tree levels closer to leaf level are denser than tree levels closer to roots, the communication in

the reduce-scatter phase will experience from dense to sparse when reducing from leaves to roots,

which may lead to high congestion near leaf nodes. Thus, MULTITREE exploits this insight to

combine message scheduling and tree constructions, with link utilization awareness to schedule

more communication near the roots to sparsify communication near leaves. Moreover, rather than

serializing the tree constructions one by one, MULTITREE builds the trees concurrently, thereby

making them balanced with global coordination.

6.1.2 MULTITREE All-Reduce Algorithm

MULTITREE aims at achieving optimal bandwidth and low latency, in addition to flexibility and

scalability by exploiting the topology information and resource usage during the scheduling and

tree construction phase. Unlike prior work that constructs trees from bottom-up [33], MULTITREE

builds the trees from roots to leaves using a top-down approach. This approach can better leverage

the network topology to build k-ary trees even with higher k values. As a result, it adds as many

nodes as possible to make the predecessor levels denser and the tree shorter. Given a network

G(V,E) with nodes V and edges E, finally |V | trees will be created, where each tree spans all the

nodes. The pseudo code is listed in Algorithm 3.

6.1.2.1 Algorithm Description

The algorithm first initializes each tree to start from each of the nodes in the network as well

as the time step t, as listed at lines 1–3. Then it starts to construct the schedule trees for the all-

gather phase (instead of reduce-scatter) since it is more natural to start from the root. This is listed
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in lines 4–14. For every new time step t, a full topology graph G′(V ′, E ′) is used, whose edges

will be removed while adding new nodes to the trees. During this time step t, trees take turns

to add one node c to connect to a node p that was added in previous time steps. Then the edge

p → c is removed from the topology graph and scheduled for communication at the current time

step t. Note that trees alternate by root ID in ascending order for simplicity, which works fine in

most cases, especially for symmetric networks like torus. For asymmetric or irregular networks,

trees with larger remaining height can be prioritized so that communication on the longest path is

scheduled earlier. At line 9, nodes are examined breadth-first in their order of adding to the tree

by previous time steps so as to make the predecessor levels denser. For selecting a neighbor of p

at line 10, it first checks the neighbors in Y dimension then in X dimension for torus and mesh

networks. Other structural information can be used for asymmetric and irregular networks, which

we leave for future study. When the topology graph runs out of edges to connect new nodes for all

the trees, it starts a new time step and repeats the algorithm until all the all-gather schedule trees

are completed. After all-gather schedule trees are constructed, they are used to construct reduce-

scatter trees and adjusted for communication time step. This procedure is listed in lines 16–18.

Since reduce-scatter goes in the opposite direction with respect to all-gather communication, the

algorithm simply reverses the communication pairs of all-gather schedule trees with adjusted time

steps. The all-gather schedules are also adjusted in time to run after reduce-scatter schedules. In

static systems, the algorithm only needs to run once and can be used for any DNN workloads. In

dynamic and shared systems, it runs every time a new set of nodes is allocated for the workloads.
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Algorithm 3: MULTITREE All-Reduce Algorithm.
Input: topology_graph G(V,E)
Output: reduce_scatter_schedule, all − gather_schedule

// Initialization

1 for each node i ∈ V of graph G(V,E) do
2 Tree Ti adds node i to tree Ti as root;

3 t = 0;

// Compute all-gather schedules

4 while not all trees completed do
// Start a new time step t with a new G

5 t = t+ 1;
6 G′(V ′, E ′) = G(V,E);

// Add new nodes to trees and schedule // communications for this

time step

7 while E ′ has free edges to add new nodes do
// Trees take turns for balancing

8 Select next tree T by root ID in ascending order;

9 for p ∈ T ’s nodes added by previous time steps do
10 if there is an edge (p → c) ∈ E ′ then
11 Add node c to T and connect to p;
12 Remove edge p → c from E ′;

// Schedule message p → c at t

13 Add (p → c, t) to T ’s all − gather_schedule;

14 break;

15 Calculate total time steps tot_t = t;

// Compute reduce-scatter schedule, which

// is the reverse of all-gather

16 for (p → c, t′) ∈ all − gather_schedule of each tree T do
17 Add (c → p, tot_t− t′ + 1) to T ’s reduce_scatter_schedule;

// Adjust all-gather schedule

18 Replace (p → c, t′) with (p → c, tot_t+ t′);
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Figure 6.1: MULTITREE construction with link allocation and scheduling for all-reduce commu-
nication of a (2×2) mesh network. Node n in tree T is denoted as T-n and label (i) of an edge
is the allocation sequence of that link while label t of an edge is the communication time step
between the two nodes: link allocation sequence of the topology graph for level 1 (time step 1)
(a); when no more links are available for the predecessor levels 0 and 1, a new link topology graph
is used for allocation for level 2 (time step 2) (b); the tree construction process indicated by edge
labels (c); the constructed reduce-scatter schedule trees (d) and all-gather schedule trees (e).
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6.1.2.2 Complexity Analysis

The most expensive part of the algorithm is the loop for all-gather schedule tree constructions,

as listed in lines 4–14. Let us assume a topology graph G(V,E). The core part of adding new

nodes to schedule trees is from lines 9–14. To add a new node, the algorithm checks whether the

already added nodes of that tree still have edges connected to a pending node. In the worst case,

it may check all the edges of the graph, which is |E|. In total, we have |V | trees and each tree has

|V | nodes. So the worst case is O(|V |2|E|).

6.1.2.3 Concentrated and Indirect Networks Support

In Algorithm 3, G(V,E) is the switch-to-switch adjacency list with the assumption that each

router switch is attached with a node. In order to support concentrated networks as well as indirect

networks, we extend the topology graph with additional node-to-switch and switch-to-node

connection lists. To find an available child c for a node p, it follows breadth-first search on these

three topology components as described in the following steps:

1. Get p’s attached switch sw0 from its node-to-switch list.

2. When multiple nodes are attached to the same switch, check whether sw0’s switch-to-node

has connections to connect with p. If there is an available connection, pick a node as c

and remove one connection (p → sw0) from p’s node-to-switch list and one connection

(sw0 → c) from sw0’s switch-to-node list, then return. If there is no available connection,

go to step 3.

3. Get sw0’s neighbor switch sw1 from its switch-to-switch list. Repeat the same process

as step 2 with sw1 until a node c is found or no connection is available. In this case,

if a node is found, besides the connections removed in step 2, connections in traversed

switch-to-switch lists should also be removed for the allocated links.
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6.1.2.4 Bandwidth and Latency Comparisons

An ideal algorithm should be optimal in both bandwidth (each router communicating the min-

imum amount of data) and latency (minimum all-reduce completion time). Theoretically, MULTI-

TREE aims at building multi k-ary trees for all-reduce, which has tree height of logk n for n nodes,

where ring and butterfly exchanges [152] are special cases whose k is 1 and 2, respectively. Hence,

MULTITREE can achieve at least the same algorithmic steps as the butterfly. When the all-reduce

data size is small and the network has sufficient bandwidth, butterfly can achieve contention-free

communication with better latency than ring. However, for large data such as giant DNN models,

serialization latency of big messages and contention play important roles in latency. Butterfly can

face huge link contentions and perform worse than ring [31]. The multi-hop communication be-

tween a pair of nodes introduced by a butterfly-unfriendly topology can even worsen the situation.

Multi-phase rings may reduce algorithmic steps, but not necessarily latency due to multi-hop com-

munications between two nodes in the logical rings. In addition, bandwidth-waste algorithm that

aggregates more data in a single reduction pass may reduce algorithmic steps by half, which works

better with small data but not for large DNNs, since serialization latency of larger communicating

data is more dominant. Building upon these, we propose topology-aware MULTITREE algorithm

to reduce distance between pairs of communicating nodes to one hop, meanwhile couple tree con-

structions and link scheduling to effectively eliminate contention. Therefore, it not only achieves

optimal bandwidth the same as ring but also reduces latency. It is worth mentioning that MULTI-

TREE is well suited for various network topologies. In the future, we plan to extend this work for

bandwidth trade-off to achieve optimal latency with more network information.

6.1.3 An Example

We demonstrate the algorithm steps by walking through an example that constructs all-reduce

schedule trees of a (2×2) mesh network, as shown in Figure 6.1. Figures 6.1a and 6.1b show the

topology graphs that are used for schedule tree construction for time steps 1 and 2, respectively.

The edge label (i) in Figures 6.1a, 6.1b and 6.1c indicates the global sequence in which a node
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is connected to its parent in a tree during construction. Figure 6.1c shows all the trees and their

construction sequence, where the trees take turns to add one node at a time. This results in a

balance among the trees. At sequence number 7, after the last edge (3 → 2) is added to connect

nodes 2 and 3 in tree 3, the topology graph runs out of edges for time step 1 to connect new

nodes to any trees, indicating in the sequence numbers in Figure 6.1a. Therefore, a new topology

graph in Figure 6.1b is used to start time step 2, which creates a new level for the trees. This

reflects lines 4–14 of the Algorithm 3. These newly constructed trees are used to build the reduce-

scatter schedule trees and finally, are adjusted to generate all-gather schedule trees, as shown in

Figures 6.1d and 6.1e, respectively. Note that the trees are well balanced and symmetric in shape,

but not necessarily structurally symmetric. Structural symmetry requires special representation of

each node with respect to the remaining network and only applies to specific symmetric networks.

Moreover, for networks like a (4×4) mesh where the longest distance from a source node varies

depending on its position, the trees are asymmetric with different heights.

Figure 6.2 shows the comparison of reduce-scatter schedule trees 1 and 5 of a (4×4) 2D Torus

network constructed using MXNETTREE [33] and MULTITREE approaches. Figure 6.2a shows

a possible communication scenario using MXNETTREE, where the reductions are initiated from

all the leaf nodes of all the trees at the same time, making the trees imbalanced and leaf levels

dense. This is because the tree construction process has not considered the scheduling, thereby

causing more link conflicts near leaf levels leading to a higher number of communication steps

(i.e., 8). In contrast, MULTITREE couples tree constructions with link scheduling and builds the

trees concurrently in a top-down manner, generating balanced trees with denser predecessor levels

and sparser leaf levels, which effectively reduces the link conflicts near leaf levels and reduces the

communication steps to 5, as shown in Figure 6.2b.

6.2 Architectural Supports

In this section, we co-design communication architecture to support MULTITREE All-Reduce.

Additionally, we specialize flow control to exploit big gradient exchanges for communication ac-

celeration.
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Figure 6.3: Conventional narrow network interface (a) and wide network interface dedicated for
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Figure 6.5: Flit formatting in a (4×4) Torus network for head and head&tail flit (a), body and tail
flit (b), packet information in head flit for normal packet (c) and sub-packet (d).

6.2.1 Wide Network Interface for MULTITREE

MULTITREE all-reduce leverages the network topology and router radix to construct trees with

higher fanout rather than the serialized rings. However, the homogeneity of injection/ejection

bandwidth and network channel bandwidth in a general purpose network is insufficient to support

the trees’ fanout requirements. Even worse, this may lead to performance degradation. There-

fore, architectural supports are required to achieve the full potential of the algorithmic benefits.

To this end, we specialize the interconnects for MULTITREE All-Reduce algorithm and propose

heterogeneous bandwidth provisioning for injection/ejection and network channels.

Figure 6.3a shows a commonly used narrow network interface (NI) configuration that provides

the same bandwidth as the network channels. This simple design is general enough to support short

and random messages that can efficiently sustain the network throughput. However, it is inefficient

to support MULTITREE algorithm. For example, during the reduce-scatter phase in Figure 6.1d,

node 0 needs to communicate with node 1 and 2 at the same time. Either blocking or multiplexing

due to the narrow NI can delay the completion time of reduce-scatter operations, thereby failing to

exploit the topology for performance improvement from the algorithm. To solve this problem, we
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propose wide NI according to the high fanout requirement of MULTITREE algorithm. A wide NI

is shown in Figure 6.3b. We design the NI connection with higher bandwidth to match the network

bandwidth. In order to achieve best algorithm performance, the NI width is decided according to

the router radix in the network. With this torus co-designed hardware feature, MULTITREE can

effectively leverage the topology knowledge and accelerate all-reduce communication.

Table 6.1: Packet and Flit Types

Type CodePacket Flit

Normal Packet

Head 0 0 0
Body 0 0 1
Tail 0 1 0

Head & Tail 0 1 1

Sub-Packet

Head 1 0 0
Body 1 0 1

Sub-Tail 1 1 0
Tail 1 1 1

6.2.2 Message-based Flow Control for Big Gradient Exchanges

Unlike general purpose applications, all-reduce communication in data-parallel DNN training

has a relatively fixed traffic pattern. With a particular all-reduce algorithm, the communication pat-

tern is known apriori for a training task. For example, MULTITREE constructs the schedule trees

before training starts. This prior knowledge can be leveraged for simpler control and arbitration

in hardware, thereby simplifying logic and improving energy efficiency. MULTITREE algorithm

aims to coordinate among the trees with a global view, where less dynamism in interconnection

networks helps maintain the communication schedules, thereby keeping concurrent communica-

tions progressing at a similar rate. In addition, the long traffic (between a communicating pair)

for all-reduce of large gradients unnecessarily incurs bandwidth overhead of massive number of

packet head flits. To optimize these aspects, we revisit the traditional flow control techniques and
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redesign them specifically for all-reduce communication.

Figure 6.4a shows a commonly used packet-based switching mechanism, where large gradients

are divided into many messages. Each message is partitioned into multiple packets. Each packet

consists of a head flit and body/tail flits. The highlighted head flits consumes bandwidth and incurs

extra control such as routing and arbitration, causing extra delay and power consumption. On the

other hand, we adapt a message-based approach to reduce such overheads, as shown in Figure 6.4b.

Instead of having fixed message size, we take the whole chunk of gradients as a message, which

can be further converted to many sub-messages starting with a head sub-message and ending with

a tail sub-message. Each sub-message is divided into sub-packets, where the first sub-packet of the

head sub-message is a head sub-packet, which behaves as the head of the large gradient message.

The last sub-packet of the tail sub-message is the tail sub-packet to end the gradient message.

Similarly, the sub-packets are partitioned into flits. Unlike conventional packet-based switching,

body and tail sub-packets start with a body flit, while head and body sub-packets end with a sub-

tail flit to indicate the completion of a sub-packet. This leads to only one head flit overhead for

a large gradient message. This way, we can achieve near perfect bandwidth efficiency and reduce

the control and arbitration overhead, thereby improving performance and energy efficiency.

The flit formats are detailed in Figures 6.5a and 6.5b for head/head&tail flit and body/tail flit,

respectively. The VC field indicates the allocated virtual channel and the Type field specifies the

packet and flit type, as listed in Table 6.1. The Packet Info field are encoded differently for nor-

mal packets and all-reduce sub-packets, as shown in Figures 6.5c and 6.5d. For normal packets, the

Packet Info is simply the Route Info, including Dest and Src that are used by distributed

routing algorithms. For all-reduce sub-packets, Packet Info includes both Route Info and

Tree Info, where the Tree Info is the Tree ID that this message belongs to. Since MULTI-

TREE only communicates between neighbors, we use source routing to include the next hop output

port Next and ejection port Eject in the head flit. In the network interface, these information are

pre-computed and stored in Route Info, which can be directly used in the routers. More specif-

ically, in the source router, the Next field is used to route to the neighbor, which will interchange
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with the Eject field after the routing computation stage. The Next field is kept towards the des-

tination in order to identify which child the message is from to clear dependencies for scheduling

purposes. To keep track of the message status, the network interface is augmented with message

records as depicted in Figure 6.6.

Packetize

Depacketize

Out Message 
Records

In Message 
Records

Ejection
Queue

Injection 
Queue

Sub-Message
Buffers

To Network

From NetworkTo Node

From Node

Figure 6.6: Augmented network interface for sub-message and sub-packet.

Since MULTITREE All-Reduce only schedules communications between two neighboring nodes, 

the flits always take one hop. Therefore, such a design does not increase the possibility or risk of 

deadlock. Note that it can still work with wormhole switching seamlessly to support other types of 

traffic, such as control and synchronization traffic. Virtual channels are used to avoid starvation of 

these short messages.

6.3 Methodology

6.3.1 System Modeling and Configuration

We extended a neural network inference simulator, SCALE-Sim [153], to support back-propagation 

for training. Both the forward and backward passes apply output stationary dataflow. Other types 

of dataflow and optimizations in computation acceleration are out of scope of this paper. We con-

figured a TPU-like accelerator consisting of 16 processing elements (PEs), where each PE had a
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Table 6.2: MULTITREE System Configuration

Parameter Configuration

PE
MAC array 32×32
Dataflow Output Stationary
Precision 32 bits

Accelerator
Number of PEs 16

Clock 1 GHz

Network

Number of Accelerators 16
Topology 4×4 2D Torus
Routing Dimension-Order w/ Dateline

Flow Control Virtual Cut-Through
Number of VCs 4

VC Buffer Depth 318 flits
Data Packet Payload 256 Bytes for Baselines

Router Clock 1 GHz
Link Latency 150 ns

Link Bandwidth 16 GB/s

(32×32) systolic array. We assumed double buffering and sufficient memory bandwidth (such as

high bandwidth memory) to maintain the peak compute throughput as much as possible.

For the interconnect of accelerators, we formed a (4×4) 2D Torus for a 16-accelerator pod that

is similar to Google Cloud TPU [154] and Microsoft Catapault [155]. We also evaluated scala-

bility by extending the network size up to 256 accelerators. A recent indirect BiGraph network

was also evaluated [126]. We use BookSim [156] for interconnect modeling where the network

interface module was augmented to support the co-designed MULTITREE All-Reduce algorithm.

Network interfaces and routers are integrated on-chip with accelerators for lower cost and better

performance. The link latency and bandwidth was chosen to reflect off-chip inter-board commu-

nication, while the buffer size was configured to cover the credit round-trip latency. We integrated

SCALE-Sim and BookSim to model both computation and communication of DNN training, but

the protocol overhead between host and accelerators was not simulated. The accelerator is also

used for aggregation during all-reduce communication. MULTITREE All-Reduce schedule was

implemented as a module in the accelerator node to regulate the gradient injection for schedul-
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ing purposes. We use DSENT power model [34] for on-chip router and links, and assume 30

pJ/bit for off-chip link with power-gating [157]. Unless otherwise stated, the default configuration

parameters are listed in Table 6.2.

6.3.2 Workloads

We evaluate the co-designed algorithm and architecture using state-of-the-art DNN models

provided by SCALE-Sim [153], including AlexNet [10], AlphaGoZero [158], FasterRCNN [159],

GoogLeNet [160], NCF recommendation (NCF) [161], ResNet50 [24] and Transformer [25, 162].

We ran with a minibatch size of 256 (16 samples/minibatch for each accelerator) and evaluated the

training time (forward+backward) and all-reduce communication time for one iteration. We also

estimated the optimistic computation/communication overlap with layer-wise all-reduce.

For sensitivity study, we simulate a synthetic DNN model for both strong and weak scalability.

We use a fixed per node model size of 375 KB for weak scalability and a fixed total model size of

32 MB for strong scalability. We also run strong scalability for the DNN workloads.

Table 6.3: Baselines and MultiTree Configurations.

Technique Description
RING Topology-aware Baidu Ring All-Reduce [117]

RING-γ
Topology-aware Ring All-Reduce
with message-based flow control

2BINARYTREE Double-binary tree all-reduce [32, 123]
MXNETTREE-α MXNETTREE without architectural support [33]
MXNETTREE-β MXNETTREE with wide network interface

HDRM Halving-doubling with rank mapping [126]
HDRM-γ HDRM with message-based flow control

MULTITREE-α MULTITREE without architectural support
MULTITREE-β MULTITREE with wide network interface
MULTITREE-γ MULTITREE with message-based flow control

MULTITREE-δ
MULTITREE with wide network interface
interface and message-based flow control

118



Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Normalized Runtime Breakdown

A
le

xN
et

A
lp

ha
G

oZ
er

o
Fa

st
er

R
C

N
N

G
oo

gL
eN

et
N

C
F

R
es

N
et

50

A
llr

ed
uc

e
Tr

ai
ni

ng
A

llr
ed

uc
e 

Sp
ee

du
p

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Allreduce Speedup

Fi
gu

re
6.

7:
R

un
tim

e
br

ea
kd

ow
n

of
tr

ai
ni

ng
an

d
al

l-
re

du
ce

(p
ri

m
ar

y)
an

d
al

l-
re

du
ce

sp
ee

du
p

(s
ec

on
da

ry
)

no
rm

al
iz

ed
to

R
IN

G
in

4×
4

To
ru

s
ne

tw
or

k
(α

:w
ith

ou
ta

rc
hi

te
ct

ur
al

su
pp

or
t,
β

:w
ith

w
id

e
ne

tw
or

k
in

te
rf

ac
e,
γ

:w
ith

m
es

sa
ge

-b
as

ed
flo

w
co

nt
ro

l,
δ:

w
ith

bo
th

w
id

e
ne

tw
or

k
in

te
rf

ac
e

an
d

m
es

sa
ge

-b
as

ed
flo

w
co

nt
ro

l)
.

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

Ring
Ring-γ

2BinaryTree
MXNetTree-α
MXNettree-β
MultiTree-α
MultiTree-β
MultiTree-δ

0.
0

0.
5

1.
0

1.
5

2.
0

Normalized Energy Breakdown

A
le

xN
et

A
lp

ha
G

oZ
er

o
Fa

st
er

R
C

N
N

G
oo

gL
eN

et
N

C
F

R
es

N
et

50
Tr

an
sf

or
m

er

D
yn

am
ic

St
at

ic

Fi
gu

re
6.

8:
D

yn
am

ic
an

d
st

at
ic

en
er

gy
co

ns
um

pt
io

n
no

rm
al

iz
ed

to
R

IN
G

in
4×

4
To

ru
s

ne
tw

or
k

(α
:

w
ith

ou
ta

rc
hi

te
ct

ur
al

su
pp

or
t,
β

:
w

ith
w

id
e

ne
tw

or
k

in
te

rf
ac

e,
γ

:w
ith

m
es

sa
ge

-b
as

ed
flo

w
co

nt
ro

l,
δ:

w
ith

bo
th

w
id

e
ne

tw
or

k
in

te
rf

ac
e

an
d

m
es

sa
ge

-b
as

ed
flo

w
co

nt
ro

l)
.

119



6.4 Evaluation

In this section, we evaluate performance speedup, energy consumption, and network scalability

comparisons among RING, double-binary tree (2BINARYTREE) [123, 32], MXNETTREE [33],

halving-doubling with rank mapping (HDRM) [126], and the proposed MULTITREE, as described

in Table 6.3.

6.4.1 Performance

Figure 6.7 shows the normalized runtime breakdown of training and all-reduce using RING.

Except for AlexNet, other DNN models have a considerable amount of time spent on all-reduce

communication, leaving the compute nodes in idle state. CNNs such as AlexNet, FasterRCNN,

GoogLeNet, and ResNet50 are compute-intensive and need to compute transposed convolution to

calculate the gradients in order to propagate back to the previous layer. In contrast, NCF and

Transformer models have more embedding and attention layers, which have less computation re-

quirements, making communication more dominant. In summary, communication time can vary

from 30%–88% in the baseline RING.

Figure 6.7 also shows normalized all-reduce speedup over RING. MXNETTREE-α and MUL-

TITREE-α are pure communication algorithms without architecture co-design, which show similar

performance degradation for all the benchmarks compared to RING. This is because the fanout of

the network interface does not match the degree of the tree, leading to serialization or interleaving

of concurrent communications. This type of contention due to limited hardware support leads to

worse performance than RING which is a perfect unidirectional pipeline without any congestion.

Therefore, it is essential to co-design architecture and algorithm to realize the full potential of

algorithmic optimizations.

MXNETTREE-β and MULTITREE-β are co-designed with architecture to have a wide network

interface in order to satisfy the fanout requirement of the trees. With this architectural support,

MXNETTREE-β and MULTITREE-β improve performance over RING by 40% and 90%, respec-

tively, demonstrating the effectiveness of communication algorithm and architecture co-design.
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Figure 6.9: Runtime breakdown of training and all-reduce (primary) and all-reduce speedup (sec-
odnary) normalized to HDRM in 32-node 4×8 BiGraph network (α: without architectural support,
γ: with message-based flow control).

MULTITREE-δ pushes the performance improvement further by specializing the message-based

flow control to reduce unnecessary bandwidth waste during large gradient communications due

to packet head flits. With this optimization, MULTITREE-δ improves performance by 2.5 times

compared to RING.

While the tree-based algorithms outperform RING by using architecture co-design to benefit

from tree structure, MXNETTREE and MULTITREE show performance differences due to inherent

algorithmic design. As shown in Figure 6.7, MULTITREE-α/β perform better than MXNETTREE-

α/β. It is because MXNETTREE constructs trees ignoring the underlying scheduling and resource

availability, leading to contention in links and thereby degrading performance. On the contrary,

MULTITREE leverages the concurrent communication among all the trees to combine scheduling

with tree construction, which regulates message scheduling with a global coordination, thereby

eliminating resources contention during communication. Even though the network may have dy-

namism, the interference is limited due to the large communication of big gradient messages. It is

worth mentioning here that MULTITREE builds the trees using a top-down approach, being able

to leverage all the fanout degrees of a router, unlike MXNETTREE which builds trees bottom-up

using Kernighan-Lin binary partitioning for binary trees.
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We also implemented the double-binary tree (2BINARYTREE) for comparison, which is even 

worse than RING. Since 2BINARYTREE is topology-oblivious and builds two logical trees, where 

connected nodes in the trees can cross multiple hops. Furthermore, the contention on links of 

large messages due to large models even worsen the performance. We also apply message-based 

flow control to Ring All-Reduce named as RING-γ, which shows about 5.9% improvement over 

RING owing to 6% bandwidth saving on head flits. If we double the bandwidth for RING for a 

similar hardware budget (10-port switch in RING while 8-port switch in MULTITREE), ideally it 

can reduce the time by half, which is similar to MULTITREE-β. After applying big-message flow 

control, it can further improve by 6%, which is in effect 2.1 times speedup over baseline RING, 

worse than MULTITREE-δ.

Applying MULTITREE to BiGraph Topology. Figure 6.9 shows the runtime breakdown and 

all-reduce speedup of MULTITREE-γ compared to HDRM on BiGraph topology [126], demon-

strating the applicability of MULTITREE to concentrated and indirect networks. We observe that 

MULTITREE outperforms HDRM by 6% for all-reduce. This is mainly due to the fact that HDRM 

has communication only between higher and lower switches, even for nodes that are connected to 

the same switch, while MULTITREE first communicates with nodes within the same switch and 

reduces a switch hop. Note that communication latency is mainly determined by serialization and 

contention latency for large model size. Since both MULTITREEand HDRM are contention-free 

and communicate the same amount of data, the reduced number of steps in HDRM has minimum 

impact as its average communicated data per step is higher. Moreover, HDRM is tightly coupled 

with the fully connected BiGraph topology while MULTITREE is applicable to various network 

topologies.

Computation/Communication Overlap. Computation/ communication overlap can be achieved 

by layer-wise all-reduce. For an L-layer DNN, the non-overlap computation includes the forward 

pass and the back-propagation of layer(L−1). The non-overlap communication is the layer(0) all-

reduce. Assuming perfect overlapping, the back-propagation (from layer(L−2) to layer(0)) can over-

lap with the all-reduce (from layer(L−1) to layer(1)). We found that all-reduce time can be largely
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hidden by computation in most DNNs. But for the DNNs whose communication is more dominant,

such as NCF and Transformer, MULTITREE achieves 2.1× speedup compared to RING.

6.4.2 Energy Consumption

Figure 6.8 shows the interconnect energy consumption of different schemes. One observation

is that the static energy consumption is high for all of them across all the benchmarks. It is because

of the long training computation time of the jobs which can cause standby leakage, contributing

to static energy. For CNNs that have more compute portion as shown in Figure 6.7, the static en-

ergy portion is higher. During communication, if the network resources are not efficiently utilized,

the network also tends to consume more static energy. The dynamic energy consumption mainly

comes from data movement of gradients. The variance of energy consumption among different

techniques may come from the contention that may lead to more arbitration overhead. Although

marginal, it is still observable that algorithm co-designed architecture features save some energy.

For MULTITREE-δ, the reduction in packet head flits contributes to more energy saving, where a

small portion is from dynamic energy while a large portion is from static energy due to perfor-

mance speedup. Therefore, communication algorithm/architecture co-design not only improves

performance but also gains energy efficiency.

6.4.3 Scalability

6.4.3.1 Algorithmic Scalability

Figure 6.10a shows the algorithmic scalability of MULTITREE, MXNETTREE and RING. As

they communicate the same amount of data, we only consider the communication steps derived

from the algorithms, and normalize them to RING in a 16-node network. All the three algorithms

scale linearly to the number of nodes while sustaining different linear factors, where MULTITREE

is the best and RING is the worst. Although not achieving logarithmic scalability, MULTITREE

improves the scalability over RING and MXNETTREE by factors of 4 and 2, respectively.
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6.4.3.2 Weak Scalability

Figure 6.10b shows the weak scalability experiment by fixing the average model size per node

to 375 KB, and scaling out the network size from 16 to 256 nodes. All the runtimes are normalized

to RING’s runtime with 16 nodes. All the three algorithms show linear scaling following algorith-

mic scaling with only a marginal difference. The runtime difference from algorithmic derivation

may come from two sources. First, the runtime dynamics in the network and actual scheduling may

not fully isolate the traffic flows serialized in the algorithm. For example, although the end node

sends out all the packets of the previous communication, it may not know whether the network

interface has finished the transmission, which may have small overlap with the later flow, incurring

minor interference. Second, the algorithm has no consideration of data whose serialization latency

of its data stream may offset the derived performance.

6.4.3.3 Strong Scalability

Figure 6.10c shows the strong scalability of the algorithms, where a synthetic and fixed 32 MB

model size is used to test network scale from 16 to 256 nodes with performance normalized to

RING in a 16 node network. All the three techniques have very stable runtime across different

network scales, where MULTITREE performs the best while RING performs the worst. Given

a particular model size M and network size of N nodes, the data size D that a node needs to

communicate is reciprocal to N . And the communication steps S is linear to the number of nodes

N with a ratio η as shown in Figure 6.10a. Therefore, we have:

D = M
N

and S = ηN

Without considering the overhead of packet head, we can derive an estimated runtime of these

algorithms:

Testimate ≈ D × S = ηM

This indicates the communication time is mainly determined by the model size M and η, the linear

slope of the algorithm. It implies that given any model, the communication time is similar with
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Figure 6.10: Algorithmic scalability (a), weak scalability with fixed per node 375 KB model size
(b) and strong scalabililty with fixed problem size of 32 MB model size (c) normalized to 16-node
performance of RING (β: with wide network interface, δ: with both wide network interface and
message-based flow control).
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different network scales. We also run strong scalability for the DNN workloads. Both RING and

MULTITREE-δ show all-reduce performance variations within 9% across different network scales

while MXNETTREE-β shows performance variations up to 18%.

6.5 Discussions

6.5.1 Broader Applications

Although MULTITREE is co-designed for data parallelism, it can also support hybrid-parallel

inference and training. The message-based flow control can be used to improve bandwidth ef-

ficiency in both cases. It can also be adapted for indirect networks such as networks involving

NVSwitch with minor modification in flit encoding. In addition, MULTITREE can speedup data-

parallel components in a hybrid approach. When the model of parallelism and DNN workload are

determined, MULTITREE runs for the nodes that involve all-reduce communication. The all-gather

trees can also easily support all-to-all collective in recent DNN workloads such as DLRM [163].

For networks with heterogeneous link bandwidths, the network topology graph can be represented

as a multigraph where each edge is a unit of bandwidth and MULTITREE applies properly.

6.5.2 Limitations

Although a tree structure has a logarithmic height, the current co-design cannot further improve

its scalability as shown in Figures 6.10a and 6.10b. The limitation is inherent in the network

topology. As the network scales up, the number of trees also increases linearly. Theoretically, in

a balance tree, the amount of leaf nodes participating in communication is half of the tree nodes,

which is also linear to the size of the network. In an extreme case, the total communication pairs

are exponential to the size of the network. However, with a fixed node degree, the available links

only increase linearly, which cannot satisfy the exponential need of the algorithm. In hardware,

the number of router ports is increased by 3
5

to support the degree of tree nodes. The on-chip

interconnect area increases from 0.4 mm2 to 0.66 mm2 in 45-nm node.
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6.5.3 Opportunities

MULTITREE demonstrates the effectiveness of algorithm and architecture co-design for com-

munication acceleration by exploiting network topology and big message size of all-reduce in dis-

tributed deep learning. This study also reveals more co-design opportunities with topology, such as

topology design for data-parallel training [126] or reconfigurable interconnects for more complex

hybrid-parallel deep learning and asynchronous all-reduce. In addition, reducing the number of

trees by trading bandwidth and latency as an attempt in recent work [125] can be further explored

in the algorithm design. We leave these aspects for future work.

6.6 Summary

In this chapter, we co-design communication algorithm and interconnection architecture to

support efficient and scalable all-reduce operation. We observe significant inefficiency in link uti-

lization and long latency in commonly used Ring All-Reduce. The inefficiency and long latency

motivates MULTITREE, a scalable all-reduce algorithm that is applicable to various topologies.

MULTITREE couples tree construction and message scheduling with topology and global link uti-

lization awareness from roots in a top-down approach. It leverages the insight that tree levels closer

to the roots are more sparse and tree levels closer to the leaves are denser. As a result, MULTITREE

effectively moves more communication closer to the roots to make communication closer to the

leaves sparse so that there is nearly no contention on link resources for concurrent reduction trees.

Moreover, we specialize the interconnection network according to the proposed communication

algorithm. We also simplify the flow control and arbitration to exploit the characteristics of large

gradients in all-reduce operations. The codesign contributes to 2.5× and 1.7× speedup over RING

and state-of-the-art approach, respectively.
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7. CONCLUSIONS

The primary contribution of this dissertation is the development of communication specializa-

tion for the multifaceted requirements in heterogeneous architectures. By specializing commu-

nication for diverse application domains and architectures, interconnection networks are able to 

achieve extremely power-/energy-efficient data movement and scalable performance, keeping in 

pace with computation specialization for efficient and sustainable performance improvement.

7.1 Dissertation Summary

In this dissertation, we investigate router power-gating mechanisms to design low-power network-

on-chip for general-purpose workloads and chip multiprocessors. We develop a power-gating pol-

icy (FLOV) consisting of multiple modes trading off between throughput performance and power 

saving. The FLOV policy takes a voting approach that is adaptable to the local and global traffic 

status by collecting votes from routers on the same dimensions. The accumulative votes are used to 

decide the power-gating mode either towards more aggressive power saving or better performance. 

Such a cooperative approach among routers achieves a balance that considers both local optimum 

and global desire. In addition, we augment the router microarchitecture with bypassing channels 

with co-designed routing algorithms to achieve zero overhead for latency and negligible through-

put degradation. The bypassing mechanism, called Fly-Over, avoids detouring around and waking 

up power-gated routers on the path by flying over them. This also eliminates the router pipeline 

and contributes even lower latency. This holistic interconnect solution not only saves power, but 

also achieves better performance at low traffic loads. Our full system simulation results show that 

this design saves 31% and 20% more power compared to no power-gating and state-of-the-art, 

respectively. It also improves the performance by 3.9% at low network loads.

We also propose approximate communication for emerging applications to improve the effec-

tive network throughput. APPROX-NOC, an NoC data approximation framework is developed to 

approximate similar data by exploiting data value locality to increase compression effectiveness,
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thereby reducing bandwidth requirement for data transmission. To reduce the overhead of approx-

imation on the critical path, we design an approximation engine that includes a lightweight error

computation logic unit, which approximates value using only fast shifting and concatenation oper-

ations. The datapath and control can be used for both integer and complex IEEE 754 floating point

values. And its conservative error tolerance makes it work in synergy with other approximation

layers without exceeding the error budget. Moreover, this module can be used in the fashion of

plug and play for any underlying NoC data compression mechanisms. We present two microar-

chitecture implementations by integrating APPROX-NOC with two compression techniques, one

in a tightly-coupled way and the other in a plug-and-play manner. The evaluation results show that

APPROX-NOC can improve the network throughput by up to 60% compared to precise compres-

sion, providing promising opportunities to reduce data movements in big data applications.

To further reduce data movement for big data workloads, we explore near-data processing

paradigm with in-network computing and propose Active-Routing that offloads computations to

the scalable memory network for in-network dataflow processing. Active-Routing targets program

kernels that compute pure reduction or aggregate over intermediate results of arithmetic operators

on a myriad of data, such as sum reduction or dot product. Computations are offloaded to the

memory network nodes to perform locally or closely to take advantage of the massive bandwidth

and parallelism in memory. Meanwhile, it dynamically builds topology-oblivious dataflow trees

and leverages the network concurrency to optimize reduction of data along the route. Therefore,

it reduces the data movement of source operands and eliminates the contention effect or thrash-

ing on cache caused by read and write operations on rarely reused data. Active-Routing can be

integrated seamlessly with modern processors by instruction set architecture extension with min-

imum changes of processor architecture. Furthermore, it works in synergy with virtual memory

and coherence protocol, making it attractive for near-term adoption in products. The simulated

system shows up to 7× speedup with an average of 60% performance improvement and reduces

energy-delay product by 80% on average across various benchmarks compared to the state-of-the-

art processing-in-memory architecture.
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This dissertation also seeks to accelerate communication for distributed deep learning by co-

designing all-reduce algorithm, application and the interconnect architecture. The optimizations

are based on the observations of inefficiency in link utilization in the widely used Ring All-Reduce

algorithm and the lack of hardware support for tree-based algorithms. Therefore, we design MUL-

TITREE All-Reduce algorithm that couples tree construction and message scheduling with aware-

ness of topology and link utilization. It builds trees in a top-down approach from roots by lever-

aging the insight that tree levels closer to the roots are more sparse and tree levels closer to the

leaves are denser. Consequently, MULTITREE effectively moves more communication closer to

the roots to make communication closer to the leaves sparse in order to achieve contention-free

tree all-reduce. Moreover, we specialize the interconnection network with heterogeneous band-

width provisioning of injection/ejection and network channels required by the algorithm. We also

simplify the flow control to exploit the characteristics of large gradients in deep neural networks.

Our evaluations using state-of-the-art DNN models show that MULTITREE improves scalability

by a factor of 4, and achieves 2.5× performance speedup compared to Ring All-Reduce.

7.2 Future Directions

As heterogeneous architecture evolve with more specialization for computation, there are dis-

tinct communication characteristics and requirements for different applications. With the devel-

opment of deep learning, more and more larger deep neural network models are developed and

deployed on accelerator pods. These giant models demand much more memory and higher band-

width. Data movement and communication will soon be the bottleneck to supply data for efficient

specialized computation. Therefore, data movement minimization and communication accelera-

tion is imperative for the near future. In this section, we discuss three optimization opportunities

of specialized interconnection network design for deep learning towards efficient data movement

and communication acceleration.
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7.2.1 Approximate Communication

Deep neural network fundamentally is an approximation of the function for particular classifi-

cation tasks. It trains the model to learn the relation between the statistical distribution and repre-

sentation of the input data to the desired output space. With this approximation nature in design,

data movement of input and weights can also be statistically adjusted as a projection or quantiza-

tion of the original data. Therefore, approximate data movement can be treated as such a method

towards efficient communication. The data can be approximated in a way that is within statistical

bounds, for example, dropping values with some threshold, similar to error threshold or budget

control. The approximate data can be further co-designed with compression techniques to increase

the compression rate so as to achieve bandwidth saving. Such an approximate representation and

distribution should be included in the close loop of model training to also learn the statistical rep-

resentation adjusted by approximation. It leaves as a question how much the approximation can

be learned without tempering too much the original data distribution. Including approximation in

the training loop will allow us to understand the potential of approximate communication in deep

learning and its effect on the model accuracy.

7.2.2 In-Network Computing

As distributed deep learning deployments become popular due to the demanding requirements

of computation, memory and bandwidth of large DNN models, data are moved across the network

for simple computation. The receivers need to reserve memory space to store these temporal data

for the simple computation such as reduction. Especially when multiple data streams go to the

same node simultaneously, as is the case in all-reduce, the memory requirement and end node

bandwidth is even higher. This poses a question that can these simple operations be computed

when flowing data in the network to consume them while moving them? If there is an effective

way to do so, this introduces a new endeavor to not just reduce the data movement, but also reduce

the bandwidth and memory requirement. The reduction for all-reduce is a typical application when

data streams to be reduced come to the same switch, they can be reduced at the meeting point so
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that the incoming multiple streams become a single merged stream. Other opportunities in forward

and backward passes are awaiting more exploration.

7.2.3 Topology Specialization

Most distributed deep learning algorithms have static communication and computation patterns

after scheduled for deployment. In both inference and training, both computation and communi-

cation phases last for a long time for both data-parallelism and model-parallelism. For a particular

distributed placement of a DNN on accelerator grids, it will be static until it finishes the job. We

may be able to exploit this simplicity to extract benefits for communication acceleration. After the

placement of a DNN model, the communications between different nodes are determined based on

the neural network architecture. With this prior knowledge, it is possible to derive the favorable

topology to match the compute graph topology of the deployed model. Also, dedicated resources

and connections can be also configured to accelerate the communication between these nodes. It

remains as a question how flexible it could be to support diverse placement and deployment strate-

gies. It is worth a study to understand how the reconfiguration of the topology and interaction of

DNN placement could help communication acceleration of various DNNs.
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