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ABSTRACT

Information Centric Networks (ICN) is an infrastructure that focuses on information retrieval

rather than end to end connections. ICN uses 2 features - name based routing and in-network

caching in order to attain better performance. Named Data Networks (NDN) is an architecture for

Information Centric Networks (ICN). In this thesis, we implement a version selection cum content

placement policy (CaVe-CoP) that takes advantage of both features. We focus on multi-resolution

video streaming and implement a scheme where only an optimal set of resolutions of videos need

to be cached in order to obtain higher network utility. This distinction between multiple resolutions

of the same video is possible today because of the varied devices available for video streaming that

have different resolution constraints. We first formulate and solve an optimization problem for

version selection and content placement in a generic network that supports multi-resolution video

streaming and has in-network caches. Next, we implement the solution in an NDN-compliant

framework (ndnSIM) as a distributed algorithm. We compare our policy against 2 other policies -

1) where all resolutions of a content are cached, and 2) where the user opts for a greedy version

selection. Our simulations on general network topologies show a fast convergence rate, higher

utility and a lower stall time in comparison to both these policies.
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1. INTRODUCTION

Video streaming has become the dominant application for modern network traffic. In order to

alleviate the burden of backbone network and to reduce latency, content delivery networks (CDNs)

have been deployed to store popular videos at content servers close to the users. Simultaneously,

as users are accessing videos from a variety of devices, ranging from smart phones to 4K televi-

sions, multi-resolution video streaming, which encodes the same video into versions with different

resolutions, has been used to deliver the most appropriate version to each user based on its service

requirement and network congestion. For example, YouTube currently encodes each video into

five different versions.

In this thesis, we study the interplay between three important components in multi-resolution

video streaming: cache selection, where each user determines which content server to retrieve

videos from, version selection, which determines the version that each user watches, and content

placement, which entails the caching strategy of each content server. We formulate CaVe-CoP: a

Cache-Version selection and Content Placement problem that jointly optimizes these three com-

ponents by taking into account the preferred resolutions of users, the communication capacities of

links, and the storage capacities of content servers. Our goal is to develop a new network algorithm

for CaVe-CoP that is not only provably optimal, but also practical and implementable.

Our proposed solution is based on the observation that there is a practical timescale separation

between cache-version selection (CaVe) and content placement (CoP), as the former can be updated

much more frequently. Hence, we first solve the CaVe problem by fixing the solution to the CoP

problem. We then solve the CoP problem by considering its influence to solutions for the CaVe

problem. For both problems, we propose simple algorithms and prove that they converge to the

optimal solutions.

We further study the implementation of our algorithms on Named Data Networking (NDN),

one of the most popular architectures of information-centric networking (ICN). We demonstrate

that our algorithms can be implemented in a fully distributed and fully NDN-compliant fashion.
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In particular, while NDN does not allow users to explicitly specify its selected content server,

our implementation contains a distributed routing protocol that ensures users always obtain their

selected video versions from the optimal content server. Moreover, we show that the overhead of

our algorithms is minimal since the update of many parameters can be directly inferred by the local

information at each node under the NDN architecture.

We also implement and evaluate our algorithms in ndnSIM, the standard network simulator

for NDN. To demonstrate the utility of our algorithms, we evaluate two other policies. One policy

uses our optimal solution for CaVe and a standard policy for CoP. The other policy users a standard

policy for CaVe and our optimal solution for CoP. Simulation results show that our algorithms

significantly outperform these two policies.

The rest of the thesis is organized as follows. Section 3 introduces our system model and

the formulation of CaVe-CoP. Solutions to the two problems CaVe and CoP are introduced in

Section 4 and 5, respectively. In Section 6, we discuss the implementation of our algorithms in

NDN. Section 7 demonstrates the simulation results. Section 2 reviews some related literature.

Finally, Section 8 concludes the paper.
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2. RELATED WORK

Information-centric network (ICN) has been a hot research topic in recent years since it is ex-

pected to better match the usage for Internet nowadays and in the foreseeable future, i.e. delivering

information or content users want. Several architectures for ICN have been proposed, including

named-data networking (NDN) [1, 2] and MobilityFirst [3]. A comprehensive survey on ICN has

been conducted by Xylomenos et al. [4].

Content caching is a crucial part of ICN and is fundamentally coupled with packet forwarding

and routing, which naturally calls for a joint optimization approach. Yeh et al. [5] proposed a

framework for joint forwarding and caching in named data networks (NDN), where algorithms are

designed on a virtual control plane and then mapped to the actual interest and data packet plane

in NDN. The framework has been extended to deal with interest suppression in NDN in Lai et

al. [6]. They focused on throughput-optimal analysis rather than utility maximization. Wang et

al. [7] employed stochastic network utility maximization and developed a distributed forwarding

and caching algorithm. Ioannidis and Yeh [8] studied the routing cost minimization problem of

joint routing and caching, where the cost is incurred per link. In contrast, we consider utility per

user per content version, which leads to a distinct problem formulation. Besides, the above studies

did not consider the content version selection problem.

Regarding content version selection, there has been rich literature on adaptive video stream-

ing in various networks. An early work identified a cross layer framework for adaptive video

streaming in IP networks [9]. Jurca et al. [10] presented media delivery architectures over P2P

networks for adaptive video streaming. More recently, experiment-based investigations have been

conducted on content delivery networks (CDN) run by Akamai [11] and Netflix [12] respectively.

Lederer et al. [13] presented implementation study on adaptive multimedia streaming in ICN.

However, to the best of our knowledge, no existing studies have explored the interaction between

content placement, cache selection, and content version selection in ICN.

Our work formulates the CaVe-CoP (joint cache version selection and cache placement) prob-
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lem as a network utility maximization (NUM) problem, and uses the well-known primal dual

approach and dual decomposition [14, 15]. However, there are notable differences between our

work and traditional NUM research. Existing studies have explored various scenarios including

time varying channel with delay constraints [16], spatiotemporally coupled constraints [17], mul-

tiple flow classes [18], multiple gateways [19], multiple protocols [20] and so on, while assuming

a static source-destination pair per user (flow). In contrast, in our work a user could obtain its

desired content from in-network caches as well as the content producer. The content version selec-

tion problem is intrinsically intertwined with the content placement and cache selection problem.

The joint optimization problem is naturally an integer programming problem, instead of a convex

programming problem.

4



3. SYSTEM MODEL

We consider an information-centric network (ICN) where a group of network caches and

routers jointly host a set of videos and serve a set of video streaming users. We use C to denote

the set of network caches, S to denote the set of users, and L to denote the set of communication

links that connect the network caches, routers, and users. Fig. 3.1 illustrates an example of such a

network. There is a route between each user s and each network cache c, and we define H l
s,c as the

indicator function that link l is on the route between s and c.

Figure 3.1: General ICN Layout

We consider multi-resolution video streaming where each video is encoded into multiple dif-

ferent versions, with different versions corresponding to different resolutions of the same video

content. We use V to denote the set of all versions of all videos. For each video version v ∈ V,

we use Xv to denote the bit rate of v and Yv to denote the file size of v, which can be computed

as the product of Xv and the duration of the video. Obviously, low-resolution versions have small
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Xv and Yv, and high-resolution versions have large Xv and Yv. For the ease of theoretical analysis,

we also assume that there exists a null version v0 with Xv0 = 0 and Yv0 = 0. If a user decides not

to watch any video, then we say that the user watches the null version v0. With the introduction of

the null version, we can assume that each user always watches a video version.

Each network cache c ∈ C has a storage of size Bc to store some video versions. Specifically,

let pc,v be the indicator function that v is present in the storage of c, then we have
∑

v Yvpc,v ≤ Bc,

for all c. Each network cache c determines which video versions to store, and thereby determines

the values of pc,v, subject to its storage constraint. We also assume that there exists at least a

network cache c with infinite storage, Bc =∞, and stores all video versions. Such an assumption

is to ensure that at least one copy of each video version exists in the ICN. We refer to the problem

of determining pc,v as the content placement (CoP) problem.

On the other hand, each user s is interested in watching a video. Let Is be the set of video

versions that correspond to the interested video of user s. Each user s needs to determine which

video version to watch, as well as which network cache to obtain the video version from. Let zs,c,v

be the indicator function that user s decides to watch video version v, and to obtain it from net-

work cache c. We refer to the problem of determining zs,c,v as the cache-version selection (CaVe)

problem. Since user s needs to obtain exactly one video version, we require that
∑

c,v∈Is zs,c,v = 1,

for all s. Moreover, user s can only obtain video version v from network cache c if c indeed stores

v, that is, pc,v = 1. Hence, we also need zs,c,v ≤ pc,v, for all s, c, v.

Recall that the bit rate of video version v is Xv and H l
s,c = 1 if link l is on the route be-

tween s and c. When user s obtains v from c, it incurs an amount of Xv traffic on each link

along the route between s and c. The total amount of traffic on link l can then be expressed as∑
s,c,vXvH

l
s,czs,c,v. We consider that each link l has a finite capacity of Rl, and hence we require

that
∑

s,c,vXvH
l
s,czs,c,v ≤ Rl, for all l ∈ L.

Finally, each user obtains some utility based on its perceived video quality. Specifically, we

consider that each user s has a utility function Us(·) and it obtains a utility of Us(Xv) when it is

watching a video version with bit rate Xv. We assume that Us(·) is a non-decreasing and concave
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function. Different users may have different utility functions since they may be watching videos

on different types of devices. For example, users watching videos on smartphones are much less

sensitive to low resolutions than those watching videos on televisions.

We aim to maximize the total utility in the ICN by choosing the optimal ~p := [pc,v] and

~z := [zs,c,v], subject to all aforementioned constraints. Specifically, we aim to solve the following

optimization problem:

CaVe-CoP:

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (3.1)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (3.2)

∑
c,v∈Is

zs,c,v = 1,∀s ∈ S, (3.3)

zs,c,v ≤ pc,v, ∀s ∈ S, c ∈ C, v ∈ V, (3.4)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl, ∀l ∈ L, (3.5)

pc,v ∈ {0, 1}, zs,c,v ∈ {0, 1},∀s ∈ S, c ∈ C, v ∈ V. (3.6)

While the the utility maximization problem studied in this thesis may look similar to many

existing studies on network utility maximization (NUM), we note that there are two major chal-

lenges that distinguish our problem from other NUM problems: First, most existing studies on

NUM problems assume that the source and destination of each flow is fixed and given. In contrast,

multiple network caches may store the same video version in ICN depending on the solution to the

content placement problem. Hence, not only does a user have multiple choices of network caches

to obtain the video version from, but the problem of selecting cache is fundamentally intertwined

with the problem of content placement. Second, although the problem of version selection may

seem to be a special case of the rate control problem, we note that the problem of version selection

is fundamentally intertwined with the problem of selecting cache since each cache may only store a
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subset of versions for a given video. The possibility of placing different versions of the same video

at different caches also distinguishes this work from some recent studies on throughput-optimal

algorithms with caches. To the best of our knowledge, there are no existing studies that explore the

interaction between content placement, cache selection, and version selection.

The decision variable in (3.1) – (3.6) are ~p and ~z. We note that there is a practical timescale

separation between the update for ~p and that for ~z. When a user changes its values for ~z, it simply

establishes a connection to a different network cache and adjusts its own playback resolution.

Hence, ~z can be updated as frequent as, for example, once every 100 milliseconds. On the other

hand, when a network cache changes its values for pc,v, it needs to obtain all video versions with

pc,v = 1. Hence, ~p can only be updated infrequently.

Our proposed solution for CaVe-CoP is based on the observation of the timescale separation

between the update for ~p and that for ~z. In Section 4, we will first consider the CaVe problem by

finding the optimal ~z for given ~p. Next, in Section (5), we will consider the CoP problem. In order

to find the optimal ~p, we will introduce pseudo-variables ~z′ := [z′s,c,v] that are updated at the same

frequency as ~p to address the issue with timescale separation.

Finally, we note that (3.1) – (3.6) is an integer programming problem since pc,v and zs,c,v are

integers. To obtain tractable results, we will relax (3.6) and allow pc,v and zs,c,v to be any real

number between 0 and 1. As we will demonstrate in Section 4, our solution to the CaVe problem

will always yield integer values for zs,c,v. We will also discuss how to obtain integer solutions for

pc,v in Section 5.
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4. THE CACHE-VERSION SELECTION PROBLEM (CAVE)

In this section, we study the CaVe problem. We consider that the contents that each network

cache store are given and fixed, and aims to determine both the video version to watch and the

network cache to obtain contents from for each user. In terms of the optimization problem (3.1)

– (3.6), we focus on finding the optimal ~z := [zs,c,v] to maximize total utility in the ICN when

~p := [pc,v] is given and fixed.

4.1 Overview of the Solution

We begin by rewriting the optimization problem (3.1) – (3.6) for the CaVe problem. Since

~p is given and fixed, constraint (3.2) no longer applies. Further, we relax the constraint (3.6) by

allowing zs,c,v to be any real number between 0 and 1. The resulting optimization problem, which

we call CaVe-Primal, can then be described as follows:

CaVe-Primal:

max
∑

s,c,v∈Is

Us(Xv)zs,c,v (4.1)

s.t.
∑
c,v∈Is

zs,c,v = 1,∀s ∈ S, (4.2)

zs,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (4.3)∑
s,c,v

XvH
l
s,czs,c,v ≤ Rl,∀l ∈ L, (4.4)

0 ≤ zs,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (4.5)

We will consider a dual problem to CaVe-Primal. We associate a Lagrange multiplier, λl,

for each link capacity constraint (4.4), for all l ∈ L. Let ~λ := [λl] be the vector of Lagrange
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multipliers. The Lagrangian is obtained as follows:

L(~z, ~λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl(
∑
s,c,v

zs,c,vH
l
s,cXv −Rl) (4.6)

The dual objective function, which we call CaVe-Lagrangian, is to maximize the Lagrangian

with the constraints (4.2),(4.3) and (4.5). The CaVe-Lagrangian can thus be written as follows:

CaVe-Lagrangian:

max L(~z, ~λ) (4.7)

s.t.
∑
c,v

zs,c,v = 1 ∀s ∈ S, (4.8)

zs,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (4.9)

0 ≤ zs,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (4.10)

Remark 1. We note that, in defining the CaVe-Lagrangian problem, we only relax the constraint

(4.4) by associating Lagrange multipliers for it, and we keep other constraints (4.2), (4.3) and

(4.5) intact. This is because constraint (4.4) specifies the constraint of link capacity. It can be

temporarily violated as packets that cannot be served immediately will simply wait in the queue

for service. On the other hand, constraint (4.2) states that each user needs to obtain exactly one

video version, and constraint (4.3) states that each user can only obtain a video version from a

network cache that stores it. These two constraints need to be satisfied at all time in practical

systems, and hence we do not relax them. 2

Let D(~λ) be the maximum value of L(~z, ~λ) under the constraints (4.8) – (4.10). The dual

problem is to minimize D(~λ) while ensuring that all Lagrange multipliers λl are non-negative. We

call this the CaVe-Dual and mathematically write it as:

10



CaVe-Dual:

min D(~λ) (4.11)

s.t.λl ≥ 0,∀λl ∈ L. (4.12)

We first show that strong duality holds for CaVe-Primal and CaVe-Dual.

Theorem 1. CaVe-Primal and CaVe-Dual have the same optimal value.

Proof. The objective function of CaVe-Primal is a linear function, and hence is convex. It is

straightforward to verify that the set of ~z that satisfies the three constraints that are not relaxed

in the formulation of CaVe-Lagrangian, namely, (4.2), (4.3), and (4.5), is convex. Furthermore,

the relaxed constraint (4.4) is a linear one, and strict inequality holds for the constraint if all users

decide to watch the null version v0 with Xv0 = 0, which is equivalent to setting zs,c,v = 0 if

Xv > 0. Hence, this theorem holds following Theorem 6.2, Chapter 6 in [21].

Based on Theorem 1, we aim to solve the cache-version selection problem by solving CaVe-

Dual. Solving CaVe-Dual involves two steps: First, for a given vector ~λ, we need to find D(~λ)

by solving CaVe-Lagrangian. Second, we need to find the optimal ~λ to solve CaVe-Dual. We

introduce our solutions to these two steps below.

4.2 The Solution to CaVe-Lagrangian

We rewrite (4.6) as:

L(~z, ~λ)

=
∑

s,c,v∈Is

Us(Xv)zs,c,v −
∑
l

λl(
∑
s,c,v

zs,c,vH
l
s,cXv −Rl)

=
∑
s

∑
c,v∈Is

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl]

+
∑
l

λlRl (4.13)

We note that the above expression provides a natural user-by-user decomposition. Specifically,

11



by defining ~zs as the vector containing all [zs,c,v], for a given s, and

Ls(~zs, ~λ) :=
∑
c,v∈Is

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl], (4.14)

then we have

L(~z, ~λ) =
∑
s

Ls(~zs, ~λ) +
∑
l

λlRl. (4.15)

As ~λ is given in CaVe-Lagrangian, the last term
∑

l λlRl is a constant. Hence, L(~z, ~λ) is

maximized if one can maximize Ls(~zs, ~λ) for each user s. Moreover, recall that pc,v is the indicator

function that network cache c stores video version v. Therefore, the constraint (4.9) is equivalent

to saying that zs,c,v needs to be 0 if pc,v = 0. We can now define CaVe-Users as follows:

CaVe-Users:

max
∑

c,v:v∈Is,pc,v=1

zs,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λl] (4.16)

s.t.
∑

c,v:v∈Is,pc,v=1

zs,c,v = 1, (4.17)

0 ≤ zs,c,v ≤ 1,∀c ∈ C, v ∈ V. (4.18)

It is clear that the optimal vector ~z that solves CaVe-Users, for all s, is also the optimal vector

that solves CaVe-Lagrangian.

Also, note that the only control variable in CaVe-Users is the vector ~zs, and all other variables,

including Us(Xv), Xv, and λl are fixed. Hence, the following algorithm solves CaVe-Users: First,

find (c∗, v∗) that has the maximum value of Us(Xv)−Xv

∑
l:Hl

s,c=1 λl among all (c, v) with v ∈ Is

and pc,v = 1. Ties can be broken arbitrarily. Second, set zs,c∗,v∗ = 1, and zs,c,v = 0 for all other

(c, v). Alg. 1 describes the algorithm. We note that, even though we have relaxed the constraint

and allowed zs,c,v to be any real number between 0 and 1, Alg. 1 shows that the optimal solution

to CaVe-Lagrangian is always an integer solution.
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Algorithm 1 CaVe-Users Algorithm

1: Obtain ~p and ~λ
2: zs,c,v ← 0, ∀c, v
3: (c∗, v∗)← arg maxc,v∈Is:pc,v≥0(Us(Xv)−Xv

∑
l:Hl

s,c=1 λl)
4: zs,c∗,v∗ ← 1.

Algorithm 2 CaVe-Linkl Algorithm
1: t← 0
2: λl ← 0
3: while true do
4: Obtain ~z from Alg. 1

5: λl ←
(
λl + ht[

∑
s,c,vXvH

l
s,czs,c,v −Rl]

)+
6: t← t+ 1
7: end while

4.3 The Solution to CaVe-Dual

Our solution to CaVe-Dual is shown in Alg. 2, where each link l updates its own λl. We have

the following lemma and theorem. The proofs of both of them are virtually identical to Lemma 2

and Theorem 2 in [16], and are hence omitted.

Lemma 1. Given ~λ, let ~z∗ be the vector that solves CaVe-Users, then [
∑

s,c,vXvH
l
s,czs,c,v − Rl] is

a subgradient of D(~λ).

Theorem 2. Let {ht} be a sequence of non-negative numbers with
∑∞

t=1 ht =∞ and limt→∞ ht =

0, then Alg. 2 solves CaVe-Dual.

13



5. THE CONTENT PLACEMENT PROBLEM (COP)

We now discuss the content placement (CoP) problem, which entails deciding pc,v, the indicator

function that network cache c stores video version v, for all c and v. As discussed in Section 3, a

major challenge to our optimization problem (3.1) – (3.6) is that the vector ~p needs to be updated

much less frequently than the vector ~z. To address this challenge, we introduce a pseudo-variable

~z′ := [z′s,c,v], which can be updated as frequent as ~p, to replace ~z. Also, we relax (3.6) by allowing

pc,v and z′s,c,v to be any real number between 0 and 1. We can now rewrite (3.1) – (3.6) as:

CoP-Primal

max
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v (5.1)

s.t.
∑
v

Yvpc,v ≤ Bc, ∀c ∈ C, (5.2)

∑
c,v∈Is

z′s,c,v = 1,∀s ∈ S, (5.3)

z′s,c,v ≤ pc,v,∀s ∈ S, c ∈ C, v ∈ V, (5.4)∑
s,c,v

XvH
l
s,cz
′
s,c,v ≤ Rl,∀l ∈ L, (5.5)

0 ≤ pc,v ≤ 1, 0 ≤ z′s,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (5.6)

5.1 Overview of the Solution

Similar to our solution to the CaVe problem, we will also consider a dual problem to the CoP-

Primal problem. Let ~µ′ := [µ′s,c,v], and ~λ′ := [λ′l] be the vectors of Lagrange multipliers associated
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with each constraint in (5.4), and (5.5), respectively. The Lagrangian is then

L′(~p, ~z′, ~λ′, ~µ′)

:=
∑

s,c,v∈Is

Us(Xv)z
′
s,c,v −

∑
l

λ′l(
∑
s,c,v

XvH
l
s,cz
′
s,c,v −Rl)

−
∑
s,c,v

µ′s,c,v(z
′
s,c,v − pc,v). (5.7)

The dual objective function, which we call CoP-Lagrangian, is to maximize L′(~p, ~z′, ~λ′, ~µ′)

subject to constraints (5.2), (5.3) and (5.6), for given vectors ~λ′ and ~µ′:

CoP-Lagrangian

maxL′(~p, ~z′, ~λ′, ~µ′) (5.8)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (5.9)

∑
c,v∈Is

z′s,c,v = 1,∀s ∈ S, (5.10)

0 ≤ pc,v ≤ 1, 0 ≤ z′s,c,v ≤ 1,∀s ∈ S, c ∈ C, v ∈ V. (5.11)

Remark 2. We note that an important difference between Cop-Lagrangian and Cave-Lagrangian

is that Cop-Lagrangian relaxes the constraint (5.4) as well. Since CP-Primal uses the pseudo-

variable z′s,c,v that has no direct physical meaning to replace zs,c,v, this constraint can now be

temporarily violated. 2

Let D′(~λ′, ~µ′) be the maximum value of L′(~p, ~z′, ~λ′, ~µ′) subject to constraints (5.9), (5.10) and

(5.11). The dual problem, which we call CoP-Dual, is to find the Lagrange multipliers that mini-

mize D′(~λ′, ~µ′):
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CoP-Dual

minD′(~λ′, ~µ′) (5.12)

s.t. λ′l ≥ 0,∀l ∈ L., (5.13)

µ′s,c,v ≥ 0,∀s ∈ S, c ∈ C, v ∈ V. (5.14)

Similar to Theorem 1, it is straightforward to show the following theorem:

Theorem 3. CoP-Primal and CoP-Dual have the same optimal value.

We will solve CoP-Primal by solving CoP-Dual. We discuss our solutions to CoP-Lagrangian

and CoP-Dual below.

5.2 The Solution to CoP-Lagrangian

We first rewrite L′(~p, ~z′, ~λ′, ~µ′) as:

L′(~p, ~z′, ~λ′, ~µ′)

=
∑
s

∑
c,v

z′s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v]


+
∑
c

[
∑
v

pc,v(
∑
s

µ′s,c,v)] +
∑
l

λ′lRl. (5.15)

Let ~z′s be the vector containing all [z′s,c,v] for a given s and ~pc be the vector containing all [pc,v]

for a given c. Also, let L̄s(~z′s, ~λ′, ~µ′) :=
∑

c,v z
′
s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l−µ′s,c,v], L̂c(~pc, ~µ′) :=∑

v pc,v(
∑

s µ
′
s,c,v), and B(~λ′) :=

∑
l λlRl. Then, we have

L′(~p, ~z′, ~λ′, ~µ′)

=
∑
s

L̄s(~z′s,
~λ′, ~µ′) +

∑
c

L̂c(~pc, ~µ′) +B(~λ′), (5.16)

which gives rise to a natural decomposition among all users and network caches. Specifically,

consider the two subproblems, namely, CoP-Users and CoP-Cachec, below. For fixed vectors ~λ′
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and ~µ′, CoP-Lagrangian can be solved by solving CoP-Users for each s and CoP-Cachec for each

c.

CoP-Users

max
∑
c,v

z′s,c,v[Us(Xv)−Xv

∑
l:Hl

s,c=1

λ′l − µ′s,c,v] (5.17)

s.t.
∑
c,v∈Is

z′s,c,v = 1, ∀s ∈ S, (5.18)

0 ≤ z′s,c,v ≤ 1,∀c ∈ C, v ∈ V. (5.19)

CoP-Cachec

max
∑
v

pc,v(
∑
s

µ′s,c,v) (5.20)

s.t.
∑
v

Yvpc,v ≤ Bc,∀c ∈ C, (5.21)

0 ≤ pc,v ≤ 1,∀v ∈ V. (5.22)

CoP-Users can be solved by the following algorithm: First, find (c∗, v∗) that has the maximum

value of Us(Xv) − Xv

∑
l:Hl

s,c=1 λ
′
l − µ′s,c,v among all (c, v) with v ∈ Is. Ties can be broken

arbitrarily. Second, set z′s,c∗,v∗ = 1, and z′s,c,v = 0 for all other (c, v). Alg. 3 shows the algorithm.

On the other hand, CoP-Cachec can be solved by the following greedy algorithm: First, sort

all video versions v in decreasing order of
∑

s µ
′
s,c,v

Yv
so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥ . . . . Second,

starting from v = 1, set pc,v to be the largest possible value without violating any constraints.

Specifically, set pc,v = min{1, (Bc −
∑

v′<v Yv′pc,v′)/Yv}. It is straightforward to verify that this

greedy algorithm achieves the optimal solution for CoP-Cachec.

Remark 3. Recall that pc,v is the indicator function that c stores v, which needs to be an integer.

The optimal solution to CoP-Cachec may not be integer. However, from the description of our

greedy algorithm, it is obvious that, for each c, there is at most one v with non-integer pc,v. In
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Algorithm 3 CoP-Users Algorithm

1: Obtain ~p, ~µ′ and ~λ′
2: z′s,c,v ← 0, ∀c, v
3: (c∗, v∗)← arg maxc,v∈Iv :ps,c,v≥0 Us(Xv)−Xv

∑
l:Hl

s,c=1 λ
′
l − µ′s,c,v

4: z′s,c∗,v∗ ← 1.

Algorithm 4 Cop-Link Algorithm
1: t← 0
2: λ′l ← 0
3: while true do
4: Obtain ~z′ from Alg. 3

5: λ′l ←
(
λ′l + ht[

∑
s,c,vXvH

l
s,cz
′
s,c,v −Rl]

)+
6: t← t+ 1
7: end while

practice, we make each network cache c store only video versions with pc,v = 1. Since all but one

versions have integer pc,v, this approach is close to the optimal solution. 2

5.3 The Solution to CoP-Dual

The CoP-Dual problem involves two Lagrange multipliers, ~λ′ and ~µ′. They are updated as in

Alg. 4 and 5. The following lemma and theorem, whose proofs are omitted due to space constraint,

show that these algorithms solve CoP-Dual.

Lemma 2. Given ~λ′ and ~µ′, let ~z′∗ and ~p∗ be the vectors that solve CoP-Users and CoP-Cachec,

then the vector containing [
∑

s,c,vXvH
l
s,cz
′
s,c,v − Rl] for all l and [z′s,c,v − pc,v] for all c and v is a

subgradient of D′(~λ′, ~µ′).

Theorem 4. Let {ht} be a sequence of non-negative numbers with
∑∞

t=1 ht =∞ and limt→∞ ht =

0, then Alg. 4 and 5 together solve CoP-Dual.
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Algorithm 5 CoP-Cachec Algorithm
1: t← 0
2: µ′s,c,v ← 0
3: while true do
4: Obtain ~z′ from Alg. 3
5: µ′s,c,v ←

(
µ′s,c,v + ht[z

′
s,c,v − pc,v]

)+ ∀s, v
6: Sort all versions so that

∑
s µ
′
s,c,1

Y1
≥

∑
s µ
′
s,c,2

Y2
≥ . . .

7: B′ ← Bc

8: for v = 1→ |V| do
9: pc,v ← min{1, B′

Yv
}

10: B′ ← B′ − Yvpc,v
11: end for
12: t← t+ 1
13: end while
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6. IMPLEMENTATION ON NAMED DATA NETWORKING

In this section, we discuss our implementations under Named Data Networking (NDN). NDN

is one of the most popular standards for information centric network (ICN), which focuses on

retrieving information rather than establishing end-to-end connections. In NDN, every piece of

information, such as a packet of video content is associated with a name, and is hence called a

piece of named data. When a user wants to obtain a piece of named data, it sends out an interest

packet, which contains the address of the user and the name of the data. Note that the interest

packet does not specify the destination address. Routing decisions are solely based on the names

in interest packets, and routers aim to forward each interest packet to the closest network cache

that stores the data. When a network cache receives an interest packet for a piece of data that it

stores, the network cache replies with the data. The data packet follows the reverse route of the

interest packet to the user.

In this section, we demonstrate that our solution to CaVe-CoP can be directly implemented un-

der NDN without any changes to the standard. Moreover, we show that the updates of all Lagrange

multipliers can be done by simply counting the number of interest packets that the corresponding

entities receive without the need of additional messages exchange.

6.1 Placement of Data

In our implementation, there are three types of data: packets of video contents, decision vari-

ables (zs,c,v, z′s,c,v, and pc,v), and Lagrange multipliers (λl, λ′l, and µ′s,c,v). Each of these pieces of

data is associated with a unique name. Obviously, packets of video contents are stored at network

caches that store the corresponding video versions. Decision variables zs,c,v and z′s,c,v are stored

and updated at the corresponding user s. Decision variable pc,v and Lagrange multiplier µ′s,c,v are

stored and updated at the corresponding network cache c. Finally, Lagrange multipliers λl and λ′l

are stored and updated at the sender of link l. Hence, the names of decision variables and Lagrange

multipliers indicate the entities that store them. In addition, each network cache also maintains a
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pseudo-data with name p′c,v, for each v.

6.2 Implementation of User Algorithms

From Alg. 1 and 3, we can see that each user s needs to know the values of pc,v, λl, λ′l, and

µ′s,c,v. It periodically sends out interest packets for these named data. Since the names of these

data indicate the entities that store them, routers can easily route the interest packets to the correct

destinations. Further, as data packets traverse in the reverse route of their corresponding interest

packets, each router can store all values of pc,v and λl that pass through it.

After deciding zs,c,v, user s sends out interest packets for video version v at a rate indicated

by Xv. Note that this interest packet only contains information about the video version v, and the

user cannot specify the destination v under NDN. When a router receives an interest packet for

video version v, it finds the network cache c∗ that has the smallest distance, where the distance is

defined as the sum of λl over all links on the path, among those that store v, i.e., pc,v = 1, and then

forwards the interest packet to the next router on the path toward c∗. Since routers store all values

of pc,v and λl that pass through it, routers can easily find c∗.

After deciding z′s,c,v, user s sends out an interest packet for the pseudo-data p′c,v. Since the name

indicates the corresponding c, routers can forward the interest packet to c. On the other hand, when

a network cache c receives an interest for p′c,v, it does not reply with a data packet, since p′c,v is a

pseudo-data.

6.3 Implementations for Routers and Caches

We now discuss the implementations of Alg. 2, 4, and 5. We note that interest packets are

typically much smaller than their corresponding data packets. Therefore, interest packets alone

cannot cause severe network congestion and packet delays/losses. Based on this observation, we

assume that all interest packets reach their destinations immediately. As we shall see in the next

section, our implementation based on this assumption offers the optimal performance.

In Alg. 2, each router only needs to know
∑

s,c,vXvH
l
c,vzs,c,v to update λl for its links. We note

that
∑

s,c,vXvH
l
c,vzs,c,v can be estimated by (the rate of interest packets going through l) × ( the
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size of a data packet). As the router obviously knows the rate of interest packets going through l, it

can update λl directly without the need for requesting further information. Likewise, Alg. 4, and 5

can be carried out if one knows z′s,c,v. As user s sends out an interest packet for the pseudo-data p′c,v

when z′s,c,v = 1, the network cache c and all routers between c and s can infer z′s,c,v by observing

the presence of interest packets for p′c,v.
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7. SIMULATION

We present our simulation results in this section. All simulations are conducted on ndnSIM

[22], the standard NDN simulator that is running on top of NS-3.

7.1 Simulation Set-up

We consider systems with 20 different videos. The popularity of these videos follow the Zipf

distribution with parameter 1. Each video has 5 available versions with data rates of 1Mbps,

2.5Mbps, 5Mbps, 8Mbps and 16Mbps, which are the standard data rates for streaming videos of

resolutions 360p, 480p,720p, 1080p and 1440p, respectively. Each video is one-hour long, and

the file sizes of video versions are calculated accordingly. The size of each of network cache is

43875MB.

We consider that users can be of three types: smart phones, laptops, or televisions. The reso-

lution of a smart phone screen is 720p. Even if a smart phone user receives a video version with

resolution higher than 720p, it still only experiences 720p quality due to the limitation of its screen.

Hence, we set the utility function of a smart phone user to be 20 ln(min(Xv, 5)). The resolution of

a laptop is 1080p, and its utility function is 40 ln(min(Xv, 8)). Finally, the resolution of a television

is 1440p and its utility function is 60 lnXv.

We consider two topologies as shown in Figure 7.1 and Figure 7.2. Each topology consists of

a root node that stores all video versions and three network caches, each of which is connected to

different group of users. The number of smart phones, laptops, and televisions in each group is

marked in the figures.

We simulate and compare the following four policies:

• Optimal: This is the optimal solution to the CaVe-CoP problem by directly solving it as a

linear programming problem.

• CaVe-CoP: This is our proposed solution to the CaVe-CoP problem.
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Figure 7.1: Simulation Topology 1

Figure 7.2: Simulation Topology 2

• Cache All Versions: In this policy, if a network cache stores a video version, it needs to

store all versions of the same video. As a result, each network cache simply stores the most

popular videos, subject to its storage constraint. This is the standard approach of CDN. Each
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user employs our solution for cache-version selection. In other words, this is a policy that

employs the optimal solution to CaVe and a standard but suboptimal solution to CoP.

• Greedy Version: In this policy, each user chooses the version that matches its screen reso-

lution. Network caches employs our solution for content placement. In other words, this is

a policy that employs the optimal solution to CoP and a standard but suboptimal solution to

CaVe.

For each simulation, we use the video contents that each user actually receives to calculate

two performance metrics: the utility that each user obtains and the amount of time that each user

suffers from video stall in each second.

Fig. 7.3 - 7.6 shows the simulation results for the two topologies. It can be easily observed

that our solution significantly outperforms Cache All Versions and Greedy Version. Moreover,

our solution converges in less than 15 seconds, which suggests our solution is adaptive to network

dynamics when users may change the videos they are watching.

The Cache All Versions policy performs poorly because it makes content placement decisions

solely based on the popularities of videos, but has no considerations about the various versions of

the same video. As users are accessing videos with a variety of devices, it becomes increasing

important to treat different versions differently. For example, a network cache whose users are

mostly using smart phones should not waste its storage by storing 1440p video versions.

The Greedy Version policy always chooses the version that matches users’ screen resolutions.

It is not adaptive to network congestion. As a result, not only does it have low utility, it also suffers

from high video stall times.
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Figure 7.3: Utility vs Time Graph for Topology 1
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Figure 7.5: Utility vs Time Graph for Topology 2
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8. CONCLUSION

In this thesis we introduced the CaVe-CoP policy. Our policy addresses the cache version se-

lection and content placement problem together. We modeled an ICN to form our optimization

problem. Our solution focused on a timescale separation between the version selection variable

and the content placement variable. We discussed the solution in 2 steps - first solving the cache

version selection problem by keeping the contents at fixed locations. Next, we solved the con-

tent placement problem by introducing a pseudo-variable for version selection. We implemented

our policy as a distributed algorithm in Named Data Networks. This implementation lets us ex-

ploit in-network caching along with a name based routing scheme. Our simulations show a better

performance as compared to policies where all-version caching is done based on popularity and

versions are selected greedily. Considering the perpetually rising demand for video streaming over

the internet, the CaVe-CoP policy would be very useful in providing a better user experience and

increasing the overall utility received from the network.
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