
POWER AND PERFORMANCE OPTIMIZATION IN GPGPU

A Dissertation

by

AHMAD MAHMOUD MESLEH RADAIDEH

Submitted to the O�ce of Graduate and Professional Studies of
Texas A&M University

in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Paul Gratz
Committee Members, Jiang Hu

Ulisses Braga Neto
Eun Kim

Head of Department, Miroslav Begovic

May 2020

Major Subject: Computer Engineering

Copyright 2020 Ahmad Mahmoud Mesleh Radaideh

ABSTRACT

Thread parallel hardware, as the Graphics Processing Units (GPUs), greatly outperform

CPUs in providing high compute throughput and memory bandwidth which make them

ideal for accelerating various data-parallel applications. These hardware designs provide high

performance computing by supporting a massive thread level parallelism (TLP) processing

model. Our work focuses on making the thread parallel hardware more power and energy

e�cient and higher performance. It also focuses on making the simulation of this type of

hardware more accurate. Our work is divided into three main parts: (1) We introduce a

coalescing-aware register �le organization that takes advantage of frequent narrow-width

data present in general-purpose applications in order to increase performance and reduce

energy consumption in GPU. We present a new design that is capable of combining read

and write accesses originated from same or di�erent warps into fewer accesses. Our design

reduces the number of register �le accesses by 30.5%, achieves IPC speedup of 16.5%, and

reduces overall GPU energy by 32.2% on average. (2) We present a low-cost power saving

scheme in GPU that dynamically exploits frequent zero data within and across registers

in order to gate o� register �le reads and writes and execution units to reduce dynamic

power without impacting performance. Our scheme reduces register �le reads and writes on

average by 50% and 54%, respectively. The register �le and execution unit dynamic power

are reduced on average by 27% and 19%, respectively. The reduction in total GPU dynamic

power achieved is about 8% on average. (3) For multi-threaded applications, the results

taken from full system architecture simulation can often be inconsistent, primarily because

of a combination of small input sets and the behavior of the Linux thread scheduler. We

propose a simple solution wherein the scheduler is modi�ed to enforce mapping of software

threads into available distinct processors that provides consistent runtimes for short-run,

multi-thread benchmarks, leading to expected, consistent experimental results.

ii

DEDICATION

To all my family with love.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Paul Gratz for his invaluable guidance and feedback

that made this work successful. I would also like to thank my committee members, Dr. Eun

Kim, Dr. Jiang Hu, and Dr. Ulisses Braga Neto, for their time and e�ort reviewing this

work. Finally, I would like to thank all my family, my father, brothers, sisters, and my wife

and daughter, for their endless love, encouragement, and support.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of my advisor Dr. Paul

Gratz, Dr. Jiang Hu, and Dr. Ulisses Braga Neto of the Department of Electrical and

Computer Engineering and Dr. Eun Kim of the Department of Computer Science and

Engineering.

All work conducted for the dissertation was completed by the student, Ahmad Radaideh,

independently.

Funding Sources

Graduate study was supported in part by a tuition assistance program from Qualcomm

Technologies, Inc.

v

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION.. iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xv

1. INTRODUCTION .. 1

1.1 Register File Access Coalescing in GPU .. 2
1.2 Exploiting Zero Data to Reduce Power Consumption in GPU 4
1.3 Architecture Simulation and the Impact of Linux Thread Scheduler 5
1.4 Dissertation Statement . 8
1.5 Dissertation Outline . 9

2. BACKGROUND.. 10

2.1 Modern GPU Architecture Model . 10
2.1.1 CUDA Overview . 10
2.1.2 GPU Chip Layout . 11
2.1.3 Warp Scheduler . 14
2.1.4 Register File . 15
2.1.5 Execution Units. 17

2.2 Full System Simulation . 18

3. REGISTER FILE ACCESS COALESCING IN GPU .. 22

3.1 Introduction . 22
3.2 Performance Impact of Limited Access Ports . 22
3.3 Motivation. 25

3.3.1 Register Operands Width . 25
3.3.2 Register File Bandwidth . 27
3.3.3 Warp Instruction Operands . 28

vi

3.4 Promoting Coalescing Opportunities . 29
3.5 Related Work . 32

3.5.1 Non-coalescing Techniques . 32
3.5.2 Register Coalescing Techniques . 34

3.6 Register File Access Coalescing Design . 39
3.6.1 Design Overview . 40
3.6.2 Coalescing-aware Register File Organization . 43

3.6.2.1 Registers Layout (Register to Bank Mapping) 43
3.6.2.2 Register File Bank . 44
3.6.2.3 Register Alignment . 46
3.6.2.4 Dual-access Banks . 49
3.6.2.5 Register File Bank Arbiter . 52
3.6.2.6 Register File Interconnect . 55
3.6.2.7 Operand Collector Write . 58
3.6.2.8 Register Width Detection . 59
3.6.2.9 Design Overhead . 61

3.7 Evaluation . 62
3.7.1 Methodology . 62
3.7.2 Register File Access Reduction . 65
3.7.3 Register File Bandwidth Increase . 67
3.7.4 Register File Coalesced Access . 70
3.7.5 IPC Performance Speedup . 72
3.7.6 Dynamic Energy Reduction. 73
3.7.7 Result Summary . 75

3.8 Conclusion. 75

4. EXPLOITING ZERO DATA TO REDUCE REGISTER FILE AND EXECUTION
UNIT DYNAMIC POWER CONSUMPTION IN GPU .. 77

4.1 Introduction . 77
4.2 Motivation. 77
4.3 Reducing Register File Dynamic Power . 80

4.3.1 Using the Thread Active Mask . 81
4.3.2 Using the In-lane Zero Mask. 82
4.3.3 Using the Cross-lane Zero Mask . 84
4.3.4 Dynamic Zero Mask Selection . 85

4.4 Reducing Execution Unit Dynamic Power . 86
4.4.1 Using the Active Thread Mask . 86
4.4.2 Using the Operand Zero Masks . 88

4.5 Evaluation . 89
4.5.1 Register File Power . 90
4.5.2 Execution Units Power . 92
4.5.3 GPGPU total Power . 94

4.6 Related Work . 95
4.7 Conclusion. 97

vii

5. MULTI-PROCESSOR FULL SYSTEM SIMULATION AND THE IMPACT OF
LINUX THREAD SCHEDULER .. 98

5.1 Introduction . 98
5.2 Behavior of Thread Scheduler in Full System Simulation. 98

5.2.1 Thread Scheduling and Load Imbalance . 98
5.2.2 Periodic Load balancing. 100
5.2.3 Immediate Load balancing . 101

5.3 Proposed Solution . 102
5.4 Evaluation . 104
5.5 Conclusion. 109

6. CONCLUSION .. 110

REFERENCES . 112

viii

LIST OF FIGURES

FIGURE Page

1.1 Actual run-time of 12-thread Canneal benchmark with di�erent input sets on
12-core hardware machine. 6

1.2 Performance speedup for Canneal benchmark using small input set, with 8,
12, 15, and 16 threads under memory speeds of 200MHz and 800MHz in
full system simulation with original Linux scheduler. Results are normalized
against an 8-thread 800MHz case. 7

2.1 C++ code example for vector addition (a) Serial code that typically runs on
CPU. (b) CUDA thread-parallel version of the code that runs on GPU. 11

2.2 CUDA hierarchy of threads that maps to a hierarchy of processing elements
on the GPU. 12

2.3 Modern GPU chip layout with 16 Streaming Multiprocessors (SMs), each of
which has its own register �le, instruction and data caches, and execution
units. Reprinted from [1]. 13

2.4 Dual-warp scheduler used in Fermi GPU. Reprinted from [1]. 14

2.5 GPU main register �le and execution pipeline. 15

2.6 A 128B warp register entry in one register �le bank occupying four 32B sub-
bank entries that have the same index. Each 32B sub-bank entry holds data
for 8 threads within the warp. 16

2.7 Register-to-bank mapping (layout) with warp registers interleaved across reg-
ister �le banks. 16

2.8 Execution units in a GPU Streaming Multiprocessor (SM) core with 32 Stream-
ing Processing Units (SPUs), 4 Special Functional Units (SFUs), and 16 mem-
ory Load/Store Units (LDSTs). Reprinted from [1]. 18

2.9 Full system simulation environment for a Core Multi-Processor (CMP) chip
with 16 cores managed by a real Operating System (OS) running a thread
scheduler. The full simulation system runs multi-threaded user applications
similar to a real multi-core system with an OS. 19

3.1 A limit study on the potential IPC performance speedup of reducing register
�le banks port con�icts. 23

ix

3.2 Examples of port con�ict on register �le bank and operand collector accesses
(a) Bank con�ict between two write requests. (b) Bank con�ict between a
read and a write request. (c) Bank con�ict between two read requests. (d)
Port con�ict on two writes to an operand collector unit. 24

3.3 Width distribution of GPU register �le warp accesses classi�ed into two groups:
accesses that require 4-byte per thread (full width) and accesses that require
less than 4-byte per thread (narrow width) (a) source operands width distri-
bution (b) destination operands width distribution. 26

3.4 Unused register �le bandwidth on (a) register �le banks access (b) collector
units write access. 27

3.5 Percentage of the number of source register operands in warp instructions. A
given warp instruction can have one, two, or three source register operands. . . . 28

3.6 Examples of register coalescing on register �le bank and operand collector
accesses (a) Access coalescing of two write requests. (b) Access coalescing of
a read and a write request. (c) Access coalescing of two read requests. (d)
Access coalescing of two writes to an operand collector unit. 30

3.7 CORF design overview (a) limited CORF with read coalescing support within
the same physical register entry (b) enhanced CORF++ with read coalescing
support across two register entries within a bank. Reprinted from [2]. 35

3.8 GPU register �le design used in CORF. Reprinted from [2]. 36

3.9 Our coalescing-aware GPU register �le design. 40

3.10 Registers to banks mapping (register layouts): (a) all registers belonging to
the same warp are mapped into one register �le bank and (b) warp registers
are interleaved across register �le banks. 43

3.11 Data format of a 128B warp register within an RF bank entry: (a) Byte-
interleaved format: each 32B sub-bank entry holds data for 8 threads in the
warp and (b) Thread-interleaved format (supports register coalescing): each
32B sub-bank entry holds 1-byte (same byte number) for every thread in the
warp.. 45

3.12 Register data representation within the register �le and operand collectors
and outside. Switching data from one format to the other is done through
wiring bytes into di�erent byte-position (no logic cost). 45

3.13 Warp register data alignment: (a) Default right-alignment with byte 0 for
all 32 threads map to sub-bank 0 and (b) Left alignment using intra-thread
byte-swap MUX with byte 0 for all 32 threads map to sub-bank 3. 47

x

3.14 Data alignment of warp registers within a register �le bank based on even/odd
register entry number. Even registers are right aligned with byte 0 of all
threads map to sub-bank 0. Odd registers are left aligned (byte swapped)
with byte 0 of all threads map to sub-bank 3. 48

3.15 Comparison between basline register �le bank and our coalescing-aware bank:
(a) Baseline bank with single-access support (b) Our dual-access bank with
left and right requests that can access two register entries with di�erent data
alignments in non-overlapping sub-banks. 50

3.16 Register �le request matrix: (a) Request matrix for baseline arbiter. Up to
four requests can be granted access at the same time (b) Request matrix for
our coalescing-aware arbiter. Each bank can have left or right requests with
each request having a 4-bit mask to indicate the sub-banks it needs to access.
Up to eight requests (four coalesced requests) can be granted access at the
same time. 53

3.17 A wrapped wavefront arbitration scheme (WWFA) used in GPU register �le
matrix arbiter. Four priority diagonals are used P0�P3 with a priority wave
initially starting at P0 and propagating from one diagonal to the next every
cycle. 54

3.18 Register �le interconnect: (a) Baseline 4 × 4 crossbar with 128B ports that
connects register �le banks to the operand collector units. (b) New crossbar
structure used in our design, which supports register coalescing at no extra
cost, with four 4×4 crossbars each of which has narrow 32B ports and connects
a particular sub-bank (from all four banks) to the operand collector units. 56

3.19 Coalescing-aware operand collector unit with 32B write ports. Coalesced read
data is naturally unpacked into the destined source operands bu�ering space. . 58

3.20 Width detection and sub-mask generation logic for a warp result in WB stage.
The 4-bit sub-bank mask is saved in a bu�er in a 2-bit encoded form along
with the sign-bit. 60

3.21 Percentage of register �le access reduction with a wid_layout register �le and
using di�erent register alignment schemes: �xed alignment based on register
number (reg_alignment), write interleaved alignment (wr_alignement), and
an ideal alignment (ideal_alignment). 66

3.22 Percentage of operand collectors write reduction with a wid_layout register
�le and using di�erent register alignment schemes: �xed alignment based
on register entry number (reg_alignment), register interleaved alignment on
writes (wr_alignement), and an ideal alignment (ideal_alignment). 66

xi

3.23 Percentage of register �le access reduction comparison between two di�erent
register �le layouts: wid_layout and wshift_layout using two register align-
ment schemes: �xed alignment based on register number (reg_*) and write
interleaved alignment (wr_*). 67

3.24 Percentage of register �le bandwidth increase with a wid_layout register �le
and using di�erent register alignment schemes: �xed alignment based on reg-
ister number (reg_alignment), write interleaved alignment (wr_alignement),
and an ideal alignment (ideal_alignment). 68

3.25 Percentage of operand collectors bandwidth increase with a wid_layout regis-
ter �le and using di�erent register alignment schemes: �xed alignment based
on register entry number (reg_alignment), register interleaved alignment on
writes (wr_alignement), and an ideal alignment (ideal_alignment). 68

3.26 Percentage of used register �le bandwidth showing the bandwidth increase
from register coalescing using a �xed register alignment (reg_bw_inc) and an
ideal register alignment (ideal_bw_inc) over the baseline bandwidth (base-
line_bw). 69

3.27 Percentage of used operand collector bandwidth showing the bandwidth in-
crease from register coalescing using a �xed register alignment (reg_bw_inc)
and an ideal register alignment (ideal_bw_inc) over the baseline bandwidth
(baseline_bw). 69

3.28 Percentage of register �le bandwidth increase comparison between two dif-
ferent register �le layouts: wid_layout and wshift_layout using two register
alignment schemes: �xed alignment based on register number (reg_*) and
write interleaved alignment (wr_*). 70

3.29 Breakdown of register �le coalesced accesses with a wid_layout register �le:
Read-Read coalesced accesses (rd-rd), Write-Write coalesced accesses (wr-wr),
and Read-Write coalesced accesses (rd-wr). 71

3.30 Breakdown of register �le coalesced accesses with a wshift_layout register �le:
Read-Read coalesced accesses (rd-rd), Write-Write coalesced accesses (wr-wr),
and Read-Write coalesced accesses (rd-wr). 71

3.31 Percentage of overall IPC speedup in GPU with a wid_layout register �le
and using di�erent register alignment schemes: �xed alignment based on reg-
ister number (reg_alignment), write interleaved alignment (wr_alignement),
and an ideal alignment (ideal_alignment) compared to the upper bound (up-
per_bound). 72

xii

3.32 Percentage of overall IPC speedup comparison between two di�erent regis-
ter �le layouts: wid_layout and wshift_layout using two register alignment
schemes: �xed alignment based on register number (reg_*) and write inter-
leaved alignment (wr_*). 73

3.33 Percentage of overall dynamic energy reduction in GPU with a wid_layout
register �le and using di�erent register alignment schemes: �xed alignment
based on register entry number (reg_alignment), register interleaved align-
ment on writes (wr_alignement), and an ideal alignment (ideal_alignment)
compared to the upper bound (upper_bound). 74

3.34 Percentage of overall dynamic energy reduction comparison between two dif-
ferent register �le layouts: wid_layout and wshift_layout using two register
alignment schemes: �xed alignment based on register number (reg_*) and
write interleaved alignment (wr_*). 74

4.1 GPGPU application warp thread statistics: (a) Percentage of warp threads in
an inactive state, active and writing to register �le, and active but not writing
to register �le. (b) Percentage of warp thread results with zero and non-zero
values that can be represented with 8, 16, 24, and 32 bits. 78

4.2 GPGPU main register �le and execution pipeline with added components for
power reduction highlighted. 80

4.3 Usign the thread active mask and operand zero mask to gate o� register �le
read access to the �rst four threads in a warp register. 81

4.4 Generating the zero mask from data result produced by four execution lanes. . 83

4.5 Data re-ordered in byte-position form to take advantage of low dynamic range
values for power reduction.. 85

4.6 Power reduction for one execution lane using thread active mask bit and
operands zero mask bits. 87

4.7 Register �le access reduction for read requests using power savings tech-
niques: access reduction using threads active mask (inactive_gating), in-lane
operands zero masks (zero_gating(in-lane)), and operands zero masks with
data re-ordering(zero_gating (cross-lane)). 90

4.8 Register �le access reduction for write requests using power savings tech-
niques: access reduction using threads active mask (inactive_gating), in-lane
operands zero masks (zero_gating(in-lane)), and operands zero masks with
data re-ordering(zero_gating (cross-lane)). 91

xiii

4.9 Dynamic power reduction in GPGPU register �le contributed by power reduc-
tion techniques using threads active mask (inactive_gating), in-lane operands
zero masks (zero_gating (in-lane)), and operands zero masks with data re-
ordering (zero_gating (cross-lane)). 92

4.10 Dynamic power reduction in GPGPU execution units contributed by power
reduction techniques using threads active mask (inactive_gating) and trivial
operations handling using operands zero masks (zero_gating). 93

4.11 Dynamic power reduction in total GPGPU chip power contributed by power
reduction techniques applied to the register �le (RF gating) and the techniques
applied to the execution units (EX gating). 94

5.1 Behavior of Linux scheduler for a multi-thread benchmark running on archi-
tecture simulator. 99

5.2 Periodic load balancing done by Linux scheduler for a multi-thread benchmark
running on architecture simulator. 100

5.3 Behavior of Linux scheduler with immediate load balancing for a multi-thread
benchmark running on architecture simulator. 101

5.4 Mapping of new thread and core status update with the patched scheduler. . . . 104

5.5 Behavior of patched Linux scheduler for a multi-thread benchmark running
on architecture simulator. 105

5.6 Percentage of workload per core for 12-thread Canneal benchmark with dif-
ferent input sets run on 12-core hardware machine. 107

5.7 Performance speedup for Canneal benchmark using small input set, with 8,
12, 15, and 16 threads under memory speeds of 200MHz and 800MHz in full
system simulation with the patched Linux scheduler. Results are normalized
against an 8-thread 800MHz case. 107

5.8 Normalized performance speedup for PARSEC benchmarks runs with two
memory speed settings using current and patched Linux schedulers in full
system simulation. 108

xiv

LIST OF TABLES

TABLE Page

3.1 Design overhead of CORF compared with our low-cost design. 37

3.2 Register coalescing support in CORF compared with our design. 39

3.3 Comparison between CORF dual-address banks and our new dual-access banks.
. 51

3.4 Design overhead cost for our coalescing-aware design compared with CORF
design. 62

3.5 Con�guration parameters for our GPU design with register coalescing support. 63

3.6 GPGPU application benchmarks from Rodinia general-purpose suite. 63

3.7 Summary of results achieved by our design compared with CORF design. 75

4.1 GPU con�guration parameters. 89

5.1 Con�gurations of the hardware machine used. 105

5.2 Con�gurations of the multi-core simulator used. 106

xv

1. INTRODUCTION

In the single-core era, increasing performance primarily was obtained through transistor

and clock frequency scaling while a constant power envelop was maintained due to Dennard

scaling [3]. Dennard scaling law states that voltage and current of a digital integrated

circuit scale with transistor dimensions, and therefore, power consumption is proportional

to the circuit area. With the recent breakdown of Dennard scaling, the subsequent power

consumption and heat dissipation constraints [4, 5], and the consequent inability to increase

clock frequency signi�cantly have forced the computer industry to rely upon core-count (and

particularly thread level parallelism) scaling as the way forward to improve performance with

increasing transistor density.

Thread parallel hardware signi�cantly outperform single-core CPUs in both compu-

tational and memory bandwidth capabilities and became an ideal accelerator for multi-

threaded and data-parallel applications. Graphics processing units (GPUs) are thread paral-

lel processors that concurrently run thousands of hardware threads for graphics applications.

General-purpose GPUs (GPGPUs) achieve high compute throughput and remarkable perfor-

mance speedups leveraging GPUs to run more general compute applications. The increasing

computational complexity of general purpose applications demands for higher compute ca-

pabilities which have been primarily accomplished by integrating more compute resources

and promoting higher number of parallel threads in the GPU.

To support massive thread level parallelism (TLP) and fast context switching between

active threads, GPUs provide a large register �le to hold execution state (context) of each

thread and a large number of execution units to execute threads in parallel. The size of the

register �le in the GPU has been almost doubling for every new generation of the Nvidia

GPUs, recently reaching 20MB in Tesla VG100 [6]. The number of execution units have

been also increasing as the number of units in Tesla VG100 is eleven times the number found

in Fermi GTX480 [1]. Prior power analysis showed that the register �le and the execution

1

units are the largest dynamic power consumers in the GPU and both contribute to about

40% of the total chip dynamic power consumption [7].

To avoid the high cost of multi-ported register �le design, GPUs deploy a multi-banked

structure with physical banks built using 6T SRAM arrays having a single read/write access

port. The 6T arrays have a signi�cant area bene�t over 8T arrays at the cost of reducing

the number of access ports from two to one. In addition, GPUs use single-ported operand

collector units to capture the read data out of the register �le banks. The register �le banks

operate in parallel to support high access demand and provide high bandwidth. However,

due to access port limitation on the banks as well as the collector units, multiple access

requests that target the same shared resource at the same time experience port con�icts and

their access is serialized. As a result, register �le access latency increases and negatively

impacts overall GPU performance and energy e�ciency.

1.1 Register File Access Coalescing in GPU

As mentioned earlier, port serialization on the GPU register �le banks and operand collec-

tor units increase the register �le access latency and negatively impact overall all performance

and energy e�ciency. In this work, we present a new register �le design that supports read

and write access coalescing in order to improve performance and reduce overall energy in

GPGPU. Access coalescing has been used in memory system to combine multiple access

requests to contiguous memory space into a single request in order to reduce memory tra�c

and improve bandwidth utilization. We applied the concept of access coalescing on GPU

register �le to combine multiple bank accesses that target di�erent registers within the bank

into fewer accesses. In addition, we also supported coalescing registers reads from di�erent

register �le banks that target the same operand collector unit. Coalescing opportunities arise

from the frequent narrow-width data found in general purpose compute applications that are

read from and written into the register �le. Read and write requests of narrow-width data

that target register �le banks can be combined to reduce the number of bank accesses, yield

higher bandwidth utilization for register �le banks and operand collectors, reduce register

2

�le and operand collectors ports contention, and as a result, improve overall performance

and energy e�ciency in GPU.

Our design seeks to support all possible coalescing opportunities between access requests

that contend on the limited access ports available on the register �le banks and the operand

collectors. The register �le bank is physically built with multiple sub-banks each of which

holds a slice of every physical register entry. In our design, a narrow-width read or write

request into a register �le bank is arranged in a way that only a subset of the sub-banks

within the bank is accessed. This allows for read or write requests to di�erent register entries

that access non-overlapping sub-banks in a given bank to be coalesced into a single access. To

help reduce contention on the collector unit write port, our design also supports coalescing

read requests from the same warp instruction across di�erent banks given that the read

requests access non-overlapping sub-banks (across the banks) to allow their read data to be

packed into a single operand collector write. With these access coalescing capabilities, our

design supports coalescing the following register �le requests into a single physical access:

two read requests from same or di�erent warps accessing the same bank, two write requests

into the same bank, a read and write requests accessing the same bank, two read requests

from the same warp accessing di�erent banks.

In this work, we made the following main contributions:

• We present a new register �le organization that supports coalescing across di�erent

register entries within register �le banks for read and write requests and combine them

into a single bank access. It also supports coalescing read accesses across di�erent

banks that target the same operand collector by combining their read data into a

single operand collector write.

• We provide a hardware-only solution to support register �le access coalescing with low

overhead and complexity. Our design requires minimal addition of micro-architectural

states and small combinational logic that do not require extra pipelining.

3

• We support a coalescing-aware register �le that place no restrictions on how physical

registers are arranged among the register �le banks. And we also do not require

accessed registers to be packed in the same physical register entry for their access to

be coalesced as we freely support coalescing across physical register entries within a

bank.

1.2 Exploiting Zero Data to Reduce Power Consumption in GPU

As mentioned earlier, the main register �le and execution units are the largest dynamic

power consumers in the GPU. In this work, we focus on reducing dynamic power for these

two power-hungry components without impacting performance for GPGPU applications by

proposing gating techniques that support the following power savings opportunities:

• Inactive threads: A warp represents the unit of execution in GPGPU and it consists

of 32 threads executing in a lock-step in a single instruction multiple data (SIMD)

execution pipeline. Divergent �ow presented in general-purpose compute applications

are causing warps to be under-utilized. In other words, some of the threads in a warp

are inactive due to control divergence and need not be executed. We take advantage of

this program attribute to reduce dynamic power of the main register �le and execution

units by gating o� inactive threads during warp execution.

• In-lane zero data: Each thread in a warp executes in one 32-bit execution lane. Data

operands or results that are speci�c to a given thread, which we refer to as an in-lane

data, can have a zero value sometimes. The presence of zero value gives an opportunity

to reduce threads dynamic power consumption by having the zero information for every

architectural register saved in a separate state. This allows for unnecessary access to the

power-hungry register �le to read or write zero values to be avoided. It also allows for

avoiding unnecessary execution of certain instructions that perform trivial operations

when one or more of their source operands having a zero value.

• Small dynamic range data (cross-lane zero data): As the execution lane in

4

GPGPU is 32-bits wide, a thread in a given lane reads or writes 32-bit data values

from the register �le. The register �le is typically comprised of 32 × 32-bit vector

registers that supply operands to 32 threads within a warp. Per-thread data values

used in compute applications varies in size and some values can be represented by only

8, 16, or 24 bits with the upper most-signi�cant bits being zeros but these values are

still being treated as 32-bit values when read and written into the register �le. To take

advantage of such small dynamic range of program values, in-lane data produced by

adjacent execution lanes can be ordered (cross lanes) in a way to group the upper zero

bytes together and potentially forming 32-bit zero values that can be captured in a

separate zero state. This way the register �le access for these 32-bit zero values can be

gated to further reduce the register �le dynamic power.

In this work, we propose a power reduction scheme that has low area and power overheads

and has no performance impact. The proposed scheme takes advantage of the high percentage

of zero data that exist in general purpose GPU applications to reduce dynamic power for

the following power-hungry GPU components:

• Register �le: avoid reading and writing zero data (in-lane or cross-lane) from the

register �le by capturing the zero information in a separate low area state.

• Execution unit: use the captured zero information to detect trivial operations which

have one or more zero operands and avoid their execution by generating their trivial

results directly.

1.3 Architecture Simulation and the Impact of Linux Thread Scheduler

As we have mentioned, the computer industry as well as architecture research have moved

to multi-core systems with the end of Dennard scaling. Exploring new microarchitectures

often requires simulation to do quantitative analyses of the performance and other metrics

of these new designs, since implementing them in hardware is often prohibitively expensive.

5

0 20 40 60 80 100 120 140 160 180

Native

Large

Medium

Small

In
p

u
t

S
e

ts

Native Large Medium Small

ROI Time (sec) 172.67 2.26 0.92 0.24

ROI Time (sec)

Figure 1.1: Actual run-time of 12-thread Canneal benchmark with di�erent input sets on
12-core hardware machine.

Unfortunately, simulating an architecture incurs huge overheads in terms of simulated cycles

per second versus the machine being simulated [8, 9, 10]. Typically, the slowdown of sim-

ulation versus real hardware is on the order of 10,000-100,000:1. As a result, architecture

simulation experiments usually run scaled down versions of real applications where input data

set and run iterations are chosen such that the runtime is reasonably short, while the per-

formance characteristics of the full/native run of the benchmark are maintained. Fig. 1.1,

which illustrates this point, shows the execution time of a 12-thread Canneal benchmark

(from PARSEC suite [11]) with di�erent input data sets when run on a real machine. In the

�gure, the Small, Medium, and Large represent the runtimes of input sets designed for archi-

tecture research, as compared to the Native input set which would be a typical production

input for the application. As we see, the architecture research input sets are between 70-700x

smaller than the native set. We note, that this same small input set for this benchmark takes

approximately 6 hours from start to end, in full system simulation on the gem5 simulation

toolkit [12].

Unlike the single threaded benchmarks of the previous era, wherein simulators could

6

simply emulate the operating system, architecture research on multi-threaded applications

requires �full system� simulation. In full system simulation, the simulated system boots a real

operating system then launches the multi-threaded application under test. Achieving scaling

performance with core count in multi-threaded applications, according to Amdahl's Law [13],

critically requires that the OS balance the workload across cores e�ectively. Architecture

researchers rely on the fact that the OS is providing maximum utilization of the core resources

and system software has no impact on their experimental results relative to a real system

running the same program. Unfortunately, we have found that, for the short input sets

typically used in architectural research, the behavior of the OS thread scheduler is often not

as expected.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fast Memory Bus (800MHz) Slow Memory Bus (200MHz)

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

T8 T12 T15 T16

Figure 1.2: Performance speedup for Canneal benchmark using small input set, with 8, 12,
15, and 16 threads under memory speeds of 200MHz and 800MHz in full system simulation
with original Linux scheduler. Results are normalized against an 8-thread 800MHz case.

Fig. 1.2 illustrates how the short runtimes used in architecture research, together with the

thread-scheduling/balancing of typical OSes interact to produce inconsistent and incorrect

results from simulation. The Figure shows normalized speedups of Canneal benchmark with

the small input set and with di�erent number of software threads under two memory-bus

7

speed settings. The benchmark was run under full system simulation of a (gem5 [12]) 16-

core system with Linux OS. Looking at the results we see several inconsistencies. First,

we see that increasing thread-count with the 200MHz memory bus has a seemingly random

e�ect on runtime, sometimes lowering it, sometimes raising it. Second, we see that the

8-thread, 200MHz bus counter-intuitively produces better performance than the 8-thread

and 12-thread version with an 800MHz bus. As we will show the main source of these

inconsistencies is due to the behavior of the current OS thread scheduler when it is used for

short-lived simulation experiments.

This work focuses on the impact of system software on the behavior and correctness

of simulation experiments performed in full system simulation with real OSes. We show

that, for the short runtimes used in architecture research, the scheduler does not behave as

expected to provide global load balance and fully utilize the simulated multi-core system.

We characterize why and how this e�ect occurs. Finally, we propose a simple patch for the

OS scheduler, for use in architecture research, to improve the consistency and correctness of

multi-threaded applications when used for architecture research.

1.4 Dissertation Statement

As thread parallel computing became essential for accelerating a variety of general pur-

pose applications in use today, our goal is to make the thread parallel hardware more power

and energy e�cient, higher performance, and its simulation to be more accurate. To this

end, our work covers the following topics: (1) We signi�cantly improved overall performance

and dynamic energy e�ciency on the GPU by introducing a new register �le organization

that supports access coalescing of narrow-width registers frequently found in general pur-

pose applications. (2) We improved dynamic power consumption of the main register �le

and execution units in the GPU by introducing power saving techniques that take advantage

of programs attributes, inactive threads and zero data, frequently found in general purpose

applications. (3) We also addressed inaccuracies in full system simulation environment with

a real operating system (Linux kernel) that is primarily used in architecture research on

8

multi-threaded applications.

1.5 Dissertation Outline

Chapter 2 provides a background on modern GPU architectures and full system simula-

tion environment. In Chapter 3, we present our new coalescing-aware register �le organiza-

tion to improve performance and energy e�ciency in GPGPU. We start the chapter with a

brief introduction in Section 3.1 followed by performance limitations in GPU register �le that

we aim to overcome in Section 3.2. Our motivations for register �le coalescing is presented in

Section 3.3. Section 3.4 presents illustrative examples of register access coalescing supported

by our design. In Section 3.5, we present related work on GPU power optimization as well

as prior work done on register �le coalescing. The new coalescing-aware register �le design

is presented in Section 3.6 and is evaluated in Section 3.7. Then, we conclude this chapter

in Section 3.8.

In Chapter 4, we propose power optimization techniques in GPU by exploiting zero data

that exist in general-purpose applications. Section 4.1 gives a brief introduction followed

by statistical measurements that show our motivations in Section 4.2. The design of the

proposed techniques are presented in Section 4.3 and in Section 4.4 for register �le and

execution units, respectively. The power saving techniques are evaluated in Section 4.5.

Section 4.6 covers related work on GPU power optimization and we then conclude this

chapter in Section 4.7.

In Chapter 5, we present the negative impact of system software behavior on multi-

threaded applications running on full system architecture simulation when small input sets

are used with a brief introduction given in Section 5.1. Section 5.2 demonstrates the behavior

of Linux thread scheduler when running multi-threaded application with small input set and

show the negative impact on the correctness of simulation results. We propose a solution to

the unexpected behavior of the Linux scheduler in full system simulation in Section 5.3 and

evaluate our solution in Section 5.4. We conclude this chapter in Section 5.5. Finally, an

overall summary of our research work is given in Chapter 6.

9

2. BACKGROUND

2.1 Modern GPU Architecture Model

2.1.1 CUDA Overview

Compute Uni�ed Device Architecture (CUDA) is the software platform that enables

Nvidia GPUs to execute programs written in C, C++, or other languages [14]. A serial

C++ program that performs a vector addition as in Fig. 2.1a can be accelerated to run

on the GPU by creating a CUDA equivalent version of the program as in Fig. 2.1b. Each

function de�ned on the device, as the add function, is called a program kernel. A CUDA

program can have one or more kernels which are called and executed in parallel. The add

kernel executes in parallel across a set of parallel threads. The program speci�es the number

of threads needed to execute the kernel and organizes the threads into thread blocks and

grids of thread blocks. Each thread within a thread block executes an instance of the kernel

and has its own thread identi�er. CUDA thread hierarchy maps to a hardware hierarchy of

multi-processors in the GPU.

The CUDA program for the vector add example requires 1024 threads where each thread

performs the addition operation on a single instance (element) of the input vectors. Threads

are organized into a grid of two thread blocks with each block has 512 of the threads as shown

in Fig. 2.2. A grid is an array of thread blocks that perform the same kernel and execute

in parallel on di�erent GPU Streaming Multiprocessors (SMs) or cores. A thread block, of

512 threads in this example, is assigned into an SM core and has concurrently executing

threads that execute in groups of 32 threads called warps (also known as wavefronts). A

warp of 32 threads is the the amount of work an SM core can initiate in a cycle. The warp

scheduler within each SM picks an active warp every cycle and threads within the warp

execute the same instruction on di�erent data elements concurrently in a lock-step in the

10

//C++ serial version

void add (int N, int* A, int* B, int* C) {

for (int i = 0; i < N; i++) {

C[i] = A[i] + B[i];

}

}

//invoke add function

int N = 1024;

add(N, A, B, C);

5

(a)

//Compute Unified Device Architecture (CUDA) version

__device__

void add (int N, int* A, int* B, int* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N) C[i] = A[i] + B[i];

}

//invoke add function

__host__

int N = 1024;

add<<<2,512>>>(N, A, B, C);

6

(b)

Figure 2.1: C++ code example for vector addition (a) Serial code that typically runs on
CPU. (b) CUDA thread-parallel version of the code that runs on GPU.

Single Instruction Multiple Data (SIMD) execution pipeline.

2.1.2 GPU Chip Layout

Fig. 2.3 shows a modern GPU chip of the Nvidia Fermi family [1]. The GPU consists

of 16 Streaming Multiprocessor units (SMs) with an on-chip shared level-two (L2) cache.

11

//Compute Unified Device Architecture (CUDA) version

__device__

void add (int N, int* A, int* B, int* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < N) C[i] = A[i] + B[i];

}

//invoke add function

__host__

int N = 1024;

add<<<2,512>>>(N, A, B, C);

A[1023:512] A[511:0]

B[1023:512] B[511:0]

+ +

A[511:480] … A[63:32] A[31:0]

+ + + +

A[31] … A[1] A[0]

+ + + +

B[31] … B[1] B[0]

B[511:480] … B[63:32] B[31:0]

Core 0Core 1

W15 W0W1

T0T31

Thread
Blocks

Warps
within a
block

Threads
within a
warp

T1

Figure 2.2: CUDA hierarchy of threads that maps to a hierarchy of processing elements on
the GPU.

The SMs access the L2 cache and the external Dynamic Random Access Memory (DRAM)

using an interconnection network which is usually referred to as Network On Chip (NOC).

Each SM has a single execution core that consists of level-one (L1) instruction and data

caches, warp schedulers, main register �le, multiple execution units, and a shared memory.

Threads within the thread block executing on the SM core communicate through the local

shared memory and each thread in the thread block has its own private register �le entries

to save its architectural state (context). The register �le in each SM has a total size of

128KB and is organized into multiple banks. The SM execution units are of three types:

(1) Streaming Processing Units (SPUs) to execute integer and �oating-point arithmetic and

logical instructions. (2) Special Functional Units (SFUs) for executing special functions like

sin and cosine. (3) Load and Store units (LDSTs) to perform memory accesses. The SM has

12

L2$
Mem Ctrl

L2$
Mem Ctrl

L2$
Mem Ctrl

L2$
Mem Ctrl

Interconnection Network

SM SM SM SM

SM SM SM SM

SM SM SM SM

SM SM SM SM

L2$
Mem Ctrl

L2$
Mem Ctrl

Shared MemoryL1 cache

Instruction cache

Warp Scheduler

Register File

SPUs LDSTsSFUs

Instruction Buffer

Figure 2.3: Modern GPU chip layout with 16 Streaming Multiprocessors (SMs), each of
which has its own register �le, instruction and data caches, and execution units. Reprinted
from [1].

a con�gurable partitioning of L1 data cache and shared memory space with a total size of

64KB which can be con�gured as 48KB shared memory and 16KB cache or as 16KB shared

memory and 48KB cache.

A program kernel, as the vector add example mentioned earlier and shown in Fig. 2.1, is

divided up into thread blocks (also known as Concurrent Thread Arrays (CTAs)) and each

block gets allocated into one of the SMs to be worked on. Threads within the thread block

are divide up into groups of 32-thread warps (or wavefronts) that get issued by the warp

scheduler once every cycle. Each issued warp requires an Operand Collector Unit (OCU)

to read all needed source operands from the register �le before it gets dispatched into the

execution pipeline. Threads in a warp execute in a SIMD fashion in a lock-step where each

13

thread executes the same instruction on a 32-bit slice of the operands data. The 32-bit wide

execution pipeline for a single thread is referred to as an execution unit or (lane).

2.1.3 Warp Scheduler

Warp Scheduler Warp Scheduler

Warp 1 Instruction 2

Warp 3 Instruction 5

Warp 5 Instruction 3

Warp 1 Instruction 3

Warp 3 Instruction 6

Warp 5 Instruction 4

o
o
o

Warp 2 Instruction 1

Warp 4 Instruction 6

Warp 6 Instruction 2

Warp 2 Instruction 2

Warp 4 Instruction 7

Warp 6 Instruction 3

o
o
o

ti
m

e

Figure 2.4: Dual-warp scheduler used in Fermi GPU. Reprinted from [1].

The GPU relies on the warp scheduler to maintain high utilization of the compute re-

sources available. Warps within a thread block, as shown in Fig. 2.2, are organized by the

warp scheduler, as in the two-level scheduler [15], into two groups: (1) pending warps that

are waiting on long-latency memory access and (2) warps that are active. The active warps

are also organized into two groups:(1) warps that have dependency on older executing warps

that is either a Read-After-Write (RAW) or a Write-After-Write (WAW) dependency and

(2) warps that have no data dependencies and are ready to be issued. The warp sched-

uler selects one of the ready warps to issue every cycle using an arbitration policy, such as

14

Round-robin (RR) or Least Recently Used (LRU), to provide fair arbitration among avail-

able warps. Fig. 2.4 shows the dual-warp scheduler used in the Fermi GPU. An issued warp

is assigned an available operand collector unit to read its needed source register operands

from the register �le before it gets dispatched into the execution units pipeline.

2.1.4 Register File

Bank 0

Bank 1

Bank 3

Collector 0

Collector 1

Collector 3

4x
4

cr
os

sb
ar

Warp
Scheduler

Ba
nk

 A
rb

ite
r

SI
M

D
 e

xe
cu

ti
on

 u
ni

ts

Warp ID Op-code

Src1 Valid Reg Idx Ready Value (128B)

Src2 Valid Reg Idx Ready Value (128B)

Src3 Valid Reg Idx Ready Value (128B)

Issue

Bank 2 Collector 2

Sub-bank 0

Sub-bank 1

Sub-bank 2

Sub-bank 3

32B 32B

32B

32B

32B

32B

32B

32B

Figure 2.5: GPU main register �le and execution pipeline.

Fig. 2.5 shows the register �le organization similar to the Fermi family of Nvidia GPUs

[1]. To avoid the area cost of multi-ported design, GPUs adopt for a multi-banked register

�le organization built with single read-write port SRAM banks to provide large access band-

width. Register �le banks operate in parallel to serve read and write requests where each

of these requests can target only one bank. Multiple requests that target the same bank

experience a bank con�ict and their access is serialized due to access port limitation.

15

[T31:T24][B3:B0] [T23:T16][B3:B0] [T15:T8][B3:B0] [T7:T0][B3:B0]

RF bank (128B)

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

T7
B3

T7
B2

T7
B1

T7
B0

. . . T1
B3

T1
B2

T1
B1

T1
B0

T0
B3

T0
B2

T0
B1

T0
B0

Figure 2.6: A 128B warp register entry in one register �le bank occupying four 32B sub-bank
entries that have the same index. Each 32B sub-bank entry holds data for 8 threads within
the warp.

w0:r0

w1:r3

w2:r2

w3:r1

…

w0:r1

w1:r0

w2:r3

w3:r2

…

w0:r2

w1:r1

w2:r0

w3:r3

…

w0:r3

w1:r2

w2:r1

w3:r0

…

Bank 0 Bank 1 Bank 2 Bank 3

Figure 2.7: Register-to-bank mapping (layout) with warp registers interleaved across register
�le banks.

A register �le bank is built using multiple narrower sub-banks each of which holds a 32B

slice of all register entries in the bank. A read or write request to a given bank accesses all

its sub-banks with the same index at the same time. Every warp in the GPU has a dedicated

set of 128B registers that are indexed using the warp number. As shown in Fig. 2.6, the 32

thread-registers within a warp form a single bank entry which is split across the sub-banks

and are accessed with the same warp register index. Data in the warp register entry is

represented in a byte-interleaved format where the four bytes (byte 0, 1, 2, and 3) of thread

0 is presented in the least signi�cant position, followed by the four bytes of thread 1, and so

16

on.

There is a one-to-one mapping between logical registers and physical registers. Warp

registers are mapped to the register �le banks based on the layout chosen with one possible

layout is to map all registers for a given warp into the same bank. Another layout, used to

reduce bank con�icts between warps, has registers belonging to the same warp interleaved

across the banks as shown in Fig. 2.7.

Operand collector units are used to bu�er warps operands data as they are read from

the register �le, over multiple cycles, with one collector unit used per warp instruction.

The number of register operands to read for a given warp varies by instruction type with

a maximum of three operands needed for a fused-multiply-add (FMA) instruction. The

number of write ports on an operand collector is limited to only one 128B wide port that

can accept read data from one of the register �le banks at a time. Multiple bank reads

that target the same operand collector experience a port con�ict and are serialized due to

the single-port limitation on the collector unit. Routing read data from the banks into the

operand collector units is done using a crossbar interconnection network.

2.1.5 Execution Units

Each SM has three di�erent types of SIMD execution pipelines as shown in Fig. 2.8.

An arithmetic/logic Streaming Processing Unit pipeline (SPU) is used to execute integers

and �oating-point instructions, a Special Functions Unit (SFU) pipeline is used to execute

special functions such as sin/cosine and square root operations, and a Load/Store Unit

(LDST) pipeline used to perform memory loads and stores.

A 32-thread warp instruction is issued into an execution pipeline when all its operands

are marked ready in the operand collector and is also found the oldest among other ready

warps. Each thread within a warp requires a single 32-bit lane (pipeline unit) to execute

the warp instruction. 32-thread warp instructions are dispatched every cycle into the SPUs,

every 8 cycles into the SFUs, and every 2 cycles into the LDST units. With a dual-warp

scheduler, two warp instructions can be dispatched into the the SPUs at the same time were

17

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

SPU SPU SPU SPU

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

SFU

SFU

SFU

SFU

ALU

src1 src2

rslt

Figure 2.8: Execution units in a GPU Streaming Multiprocessor (SM) core with 32 Streaming
Processing Units (SPUs), 4 Special Functional Units (SFUs), and 16 memory Load/Store
Units (LDSTs). Reprinted from [1].

each warp uses half the number of the SPUs and dispatched over two cycles. Once a warp is

dispatched, the operand collector assigned to the warp is freed and can be immediately used

by one of the younger warps. The three pipelines can operate on di�erent warp instructions

in parallel and each may write up to one result back into the register �le.

2.2 Full System Simulation

As previously discussed, architecture simulators are used by the research community

to validate their new ideas and proposed solutions. Some simulators, such as gem5 [12],

can run the full Linux kernel1 within the simulation environment in full system simulation

experiments. Fig. 2.9 shows a full system simulation environment with 16 single-threaded

cores managed by an operating system kernel running a thread scheduler. Just as in a real

1We focus on Linux here, as it is the OS typically used in architecture research.

18

core core core core

core core core core

core core core core

core core core core

ALU

src1 src2

Memory
Access

Register file

Instr. cache

Decode

result

Operating System
Thread Scheduler

Multi-thread Application

Network On Chip (NOC)

L2 cache and DDR controllers

Figure 2.9: Full system simulation environment for a Core Multi-Processor (CMP) chip with
16 cores managed by a real Operating System (OS) running a thread scheduler. The full
simulation system runs multi-threaded user applications similar to a real multi-core system
with an OS.

system, the kernel is booted on one of the cores in the simulated system before user-level

code can be executed. Once the kernel is up and running on the simulator, multi-threaded

application benchmarks (e.g. the PARSEC benchmarks [11]) can be run on the system.

These benchmarks use the pthread run-time libraries to fork software threads and manage

communication/synchronization between those threads. Ultimately the pthreads library is a

wrapper around OS calls to complete these tasks. Similarly, the OS handles the scheduling

of threads; it is expected to be performed in a way that provides high performance and fair

execution among running threads. Further, thread-to-core mapping is another important

19

job of the kernel and is expected to be performed in a way to fully utilize the multi-core

system and achieve good global load balance.

Linux scheduler has evolved over time to support di�erent platforms such as desktops and

servers. Early versions of the Linux scheduler only supported simple, uniprocessor systems

with no multi-threading or multi-processing. Starting with version 1.2, the scheduler used

a circular bu�er, enforcing a round-robin policy to provide fairness among software threads

regardless of their type or class. Later in version 2.2, scheduling classes were added to

provide di�erent polices for real-time and none-real-time tasks. This version also had the

�rst support for symmetric multi-processing (SMP). With the introduction of SMP, the

scheduler's job became more complicated as it needs to provide fair scheduling among running

tasks and also provides global load balancing over the available cores in the multi-core system.

The scheduler has been an active research topic and been evolving to improve fairness and

reduce run-time complexity. The current scheduler in use today is the �completely fair

scheduler� (CFS) [16] which followed O(1) scheduler [17] in version 2.6.23. This scheduler's

goal is provide better fairness among running threads and enhance applications performance

compared to previous schedulers.

While it is important to achieve fairness among threads running on a given core, achieving

global fairness is highly important for multi-thread applications running on a multi-core

system. CFS made some improvements for global load balancing in version 2.6.24 among

them the introduction of scheduling domains [18, 19]. Each scheduling domain spans a

number of cores in the system and domains are built in a hierarchical fashion. Cores within

a scheduling domain are organized into groups where the union of the groups is the span of

the domain and the intersection between any two groups is an empty set. Load balancing

within a scheduling domain happens between groups. Each group is considered an entity

with a load equal to the sum of loads of all cores in the group. Tasks are moved from one

group to another when imbalance condition is detected. In SMP mode, all cores in the multi-

core system belong to one parent scheduling domain where each group within the domain

20

has only one core.

A multi-thread application running on a multi-core system relies on the global load

balance provided by the scheduler in order to achieve scaling performance with core count.

When a new software thread is forked, the scheduler performs a minimum search among the

available cores in the system to �nd a candidate core to run the thread. The scheduler relies

on current core status information to select the �rst idle or otherwise least busy core found

during the search to run the thread. Critically, this search starts from the same core ID each

time, taking into no account whether that core has already had a given application's thread

mapped to it in the recent past, only whether or not that core is currently idle.

Lacking an application-level view can lead the scheduler to map more threads to some

cores over others in the event that those threads are currently idling, causing load imbal-

ance in the multi-core system. To address the adapting load per core, the OS periodically

(approximately once every 30 milliseconds) performs a load balancing operation on all cores

to incrementally reduce the degree of load imbalance and enhance applications performance.

In this operation, a single core searches for the busiest other core in the system, and per-

forms a thread migration when a high load imbalance is detected between the two cores.

The heavy-weight system-wide search is initiated by one core at a time in a sequential order

to reduce contention and avoid ordering complexity among cores performing the rebalance.

Thus, one full iteration of the core balancing requires 30 × N milliseconds, where N is the

number of cores in the system. Over the long haul this system will generally �nd an optimal

thread-core mapping balance, however it can often take many iterations of this search to do

so. For example ten full iterations of core rebalancing on a 16-core system could take as

long as 5 seconds to �nd an optimal balance of threads, much longer than the runtime of

the benchmarks used in architecture research (see Fig. 1.1).

21

3. REGISTER FILE ACCESS COALESCING IN GPU

3.1 Introduction

As we mentioned in Chapter 1, a multi-banked register �le structure with limited access

ports has been used in GPUs to mainly reduce its area cost. With limited number of ports,

register �le accesses are serialized when accessing individual banks which impacts access la-

tency and overall IPC performance for the GPUs. In this chapter, we focus on improving IPC

performance and energy utilization for the GPU by proposing a new register �le organization

that support register �le access coalescing. Access coalescing provides combining di�erent

narrow-width read and write requests that contend on available bank ports to form a single

physical request which in turn reduce the overall number of bank accesses and register �le

pressure, improve bandwidth utilization, reduce access latency which improves overall IPC

performance and energy e�ciency in GPU.

3.2 Performance Impact of Limited Access Ports

As we mentioned in Section 2.1, the warp scheduler in each SM core maintains a pool of

ready warp instructions and selects one of these warp instructions to issue in a cycle. The

issued warp instruction is assigned an available operand collector unit (OCU) to read its

source operands before it starts executing. Each operand collector may fetch up to three

source register operands from the register �le by sending read requests to the banks where the

registers are located. Write requests targeting the banks can be generated from an arithmetic

instruction or a memory load instruction when their results are ready. As illustrated in

Fig. 3.2, with limited number of access ports, read or write requests can experience one of

the following types of port con�icts and their access is serialized:

1. Write-Write Con�ict: As shown in Fig. 3.2a, a memory write request is blocked by

a write request from the execution pipeline which has a higher priority accessing the

same bank.

22

25.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

P
e
rc
e
n
ta
ge

upper_bound

Figure 3.1: A limit study on the potential IPC performance speedup of reducing register �le
banks port con�icts.

2. Read-Write Con�ict: As shown in Fig. 3.2b, a read request is blocked by a higher

priority write request accessing the same bank.

3. Read-Read Con�ict: As shown in Fig. 3.2c, a read request is blocked by another read

request that won the bank arbitration and granted access to the bank.

4. OC Write Con�ict: As shown in Fig. 3.2d, a read request is blocked by another read

request accessing a di�erent bank that targets the same operand collector unit and

won the arbitration and granted access to the bank as well as the collector unit.

These con�icts are due to the limited access ports on register �le banks and operand

collectors as the area cost of adding a port is very high given the large width of warp registers.

The bank arbiter is responsible for prioritizing the read requests that are con�icting on either

accessing the same bank or accessing the same operand collector. The port serialization on

register �le banks and operand collector units directly impacts overall GPU performance as

it may lead to one of the following situations:

23

w0:r0

…

w3:r5

…

Bank 0

Wr
w3:r5

Wr
w0:r0

Arbiter

Arithmetic
Pipeline

LD/ST
Pipeline

High PriorityBlocked

(a) Wr-Wr con�ict

w0:r0

…

w3:r5

…

Bank 0

Rd
w3:r5

Wr
w0:r0

Arbiter

Arithmetic
Pipeline

High Priority

w3:r5

OC 1

crossbar

Blocked

(b) Rd-Wr con�ict

w0:r0

…

w3:r5

…

Bank 0

Rd
w3:r5

Rd
w0:r0

Arbiter

w3:r5

OC 1

crossbar

w0:r0

OC 0

Blocked

(c) Rd-Rd con�ict

w0:r1

…
Bank 1

Arbiter

w0:r0

w0:r1

OC 0

Rd
w0:r1

Bank 0
w0:r0

…

Rd
w0:r0

crossbar

Blocked

(d) OC write con�ict

Figure 3.2: Examples of port con�ict on register �le bank and operand collector accesses
(a) Bank con�ict between two write requests. (b) Bank con�ict between a read and a write
request. (c) Bank con�ict between two read requests. (d) Port con�ict on two writes to an
operand collector unit.

24

• Delay the execution of a warp instruction.

• Cause a dependent instruction to wait longer before it can get issued.

• Delay freeing up an operand collector unit which prevents new warps from getting

issued.

Fig. 3.1 shows the potential bene�t of reducing register �le bank con�icts which can

provide an IPC performance speedup of up to 25% on average. In this work, we present

a new register �le organization that can combine con�icting narrow-width requests, reads

or writes, into a single coalesced request for register �le banks as well as operand collector

units. With access coalescing, the number of register �le requests and the access latency are

reduced which lead to improving overall performance and energy utilization in GPU.

3.3 Motivation

In this section, we present results from compute-intensive (GPGPU) benchmarks in order

to show our motivation behind the coalescing-aware register �le design we are proposing in

this work that enables access coalescing on register �le banks and operand collectors. For the

experiments we show in this section, we examined GPGPU benchmarks from the general-

purpose Rodinia benchmark suite [20] v3.1 and obtained the experimental results by running

those benchmarks on the GPGPU-sim v3.2 simulator [21] modeling a Fermi GPU with design

parameters shown in Section 3.7.

3.3.1 Register Operands Width

Register �le coalescing opportunities arise from the presence of narrow-width register

operands in general-purpose compute applications. Fig. 3.3 shows the frequent narrow-

width source operands (Fig. 3.3a) and narrow-width destination operands (Fig. 3.3b) found

in the GPU benchmark suite we used. We classi�ed the operands into either full-width that

require 4-Bytes per warp thread or narrow-width operands that e�ectively require 3-Bytes

or less per thread to correctly represent their data without any loss of information (the rest

25

72.7%

27.3%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pe
rc

en
ta

ge

3-bytes or less 4-bytes

(a)

70.8%

29.2%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pe
rc

en
ta

ge

3-bytes or less 4-bytes

(b)

Figure 3.3: Width distribution of GPU register �le warp accesses classi�ed into two groups:
accesses that require 4-byte per thread (full width) and accesses that require less than 4-byte
per thread (narrow width) (a) source operands width distribution (b) destination operands
width distribution.

of the bytes having either all zeros or all ones). Across the benchmarks we used, only 27.3%

of the source operands and 29.2% of the destination operands in executing warp instructions

require a full register width on average.

This shows that there exists a signi�cant amount of narrow-width source and destination

operands that are subject to register �le access coalescing. Our proposed design enables

two requests targeting the same register �le bank or operand collector unit to be coalesced

into a single request if the combined size of the two requests is no more than a full register

26

51.3%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Pe
rc
en

ta
ge

(a)

54.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Pe
rc
en

ta
ge

(b)

Figure 3.4: Unused register �le bandwidth on (a) register �le banks access (b) collector units
write access.

width. The result also motivates access coalescing support not only among narrow-width

read requests but also among write requests, or a mix of read and write requests as both

reads and writes have a signi�cant number of narrow-width requests that may be serialized

due to limited access ports on register �le banks and operand collector units.

3.3.2 Register File Bandwidth

Narrow-width read and write accesses do not fully utilize the register �le bandwidth as

they carry unneeded bits in their value. Fig. 3.4 shows the wasted bandwidth for register

27

46.9%

48.5%

4.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

1-operand 2-operands 3-operands

Figure 3.5: Percentage of the number of source register operands in warp instructions. A
given warp instruction can have one, two, or three source register operands.

�le banks (Fig. 3.4a) and operand collectors (Fig. 3.4b) due to narrow-width accesses. In

addition, the unneeded bits in the narrow-width values waste dynamic energy on every read

and write to the register �le and when they propagate down into the operand collector units.

Our proposed design aims at utilizing the register �le bandwidth more e�ciently by coa-

lescing multiple narrow-width accesses targeting a register �le bank or an operand collector

unit into a single physical access that would improve bandwidth utilization and reduce the

register �le pressure. Our design is not restricted to only support coalescing read accesses

from the same wrap instruction as we take advantage of all coalescing opportunities on

read and write requests initiated from same or di�erent warp instructions to achieve high

bandwidth e�ciency.

3.3.3 Warp Instruction Operands

Warp instructions collect their needed operands from the register �le over multiple cycles

before they can be dispatched into the Single Instruction Multiple Data (SIMD) execution

pipeline. A warp instruction may require one, two, or three source operands to read from the

register �le depending on its type or class. Fig. 3.5 shows the percentage of warp instructions

28

with di�erent number of source operands. The result shows a signi�cant percentage of warp

instructions that require a single register source operand. Examples of such instructions

are memory stores, data copy or permutation, and arithmetic or logical operations with

immediate values.

Register coalescing that is restricted to only coalesce read accesses from the same warp in-

struction overlooks a signi�cant percentage of register accesses initiated from single-operand

warp instructions that can be coalescable targets. The high percentage of single-operand

warp instructions motivates register coalescing among di�erent warp instructions targeting

the same register �le bank to further reduce the number of bank accesses and register �le

pressure which results in performance and energy e�ciency improvements. Our design sup-

ports register access coalescing for read as well as write requests originated from the same

or di�erent warp instructions with no restrictions.

3.4 Promoting Coalescing Opportunities

Our design takes advantage of the presence of frequent narrow-width data in general-

purpose compute applications and provides coalescing support in order to reduce the number

of register �le accesses, improve performance, and energy e�ciency in the GPU. A narrow-

width operand requires fewer bytes per 4-byte thread to be fully represented without any

loss of information with one or more of the upper bytes carrying only the sign information

(most signi�cant bits are all zeros or all ones). We call a narrow-width operand for a given

warp as an N -byte operand if every thread within the warp requires no more than N -byte

to be represented. Access coalescing arise when two narrow-width requests having a size

of N -byte and M -byte, for instance, target the same shared resource and their total size

N +M <= 4. That is, their combined size is no more than a full-sized operand of 128B or,

in consistent term, a 4-byte operand.

Coalescing these narrow-width requests targeting the same bank can be made possible

only if two requests can target di�erent sub-banks within the bank and also having each sub-

bank to be controlled separately. In this case, the N -byte request would target N number

29

B A

…

D C

…

Bank 0

Wr
w3:r5
1100

Wr
w0:r0
0011

Arbiter

Arithmetic
Pipeline

LD/ST
Pipeline

D C B A

w0:r0

w3:r5

High Priority

(a) Wr-Wr coalescing

Rd
w3:r5
1100

Wr
w0:r0
0011

Arbiter

Arithmetic
Pipeline

High Priority

w3:r5

OC 1

B A

…

D C

…

Bank 0

w0:r0

w3:r5

B A

crossbar

D C

(b) Rd-Wr coalescing

Rd
w3:r5
1100

Rd
w0:r0
0011

Arbiter

w3:r5

OC 1

B A

…

D C

…

Bank 0

w0:r0

w3:r5

B A

crossbar

D C

w0:r0

OC 0

(c) Rd-Rd coalescing

D C

…Bank 1

Arbiter

w0:r0

w0:r1

OC 0

Rd
w0:r1
1100

Bank 0

B A

…

Rd
w0:r0
0011

crossbar

D C B A

w0:r0w0:r1

(d) OC write coalescing

Figure 3.6: Examples of register coalescing on register �le bank and operand collector accesses
(a) Access coalescing of two write requests. (b) Access coalescing of a read and a write
request. (c) Access coalescing of two read requests. (d) Access coalescing of two writes to
an operand collector unit.

30

of the sub-banks in one register entry and the M -byte request would target M of the sub-

banks in another register entry. And the two, N and M , subsets of sub-banks across the

two entries are mutually exclusive. In other words, both requests target non-overlapping

sub-banks within a bank across di�erent entries. This implies that the needed narrow-width

data for read requests is available in a subset of sub-banks in the targeted register entry. It

also implies that register entries in a given bank are aligned di�erently to have one entry, for

example, occupies the lowerN sub-banks and another entry occupies the upperM sub-banks.

Coalescing two read requests from one operand collector that target two di�erent banks

can also be made possible, with low design cost, if the two requests target non-overlapping

sub-banks across the two banks. For instance, if an N -byte request targets bank 0 and an

M -byte request targets bank 1 at the same time, the read data from each bank can be simply

combined, with no permutations and needing extra MUXing, and guaranteed to �t into a

single 4-byte output data that can be written into the operand collector in the same cycle.

This can be made possible by having separate control for every 1-byte of input data to the

collector unit instead of controlling the 4-byte input data the same way such that each 1-byte

can be selected from any of the 4 banks.

Recall that multiple requests targeting a register �le bank at the same time experience

port con�ict and their access is serialized as shown in Fig. 3.2. In Fig. 3.6, we illustrate access

coalescing examples supported by our design for narrow-width read and write requests that

can access a register �le bank or an operand collector unit at the same time and eliminate

port con�icts and access serialization between those requests. Fig. 3.6a shows two narrow-

width write requests access a bank at the same time each of which writes to di�erent register

entry within the bank. Fig. 3.6b shows narrow-width read and write requests accessing a

bank at the same time and Fig. 3.6c shows two narrow-width read requests from di�erent

warp instructions accessing a bank at the same time. In Fig. 3.6d, two narrow-width read

requests targeting di�erent banks were able to write their data into an operand collector unit

at the same time.

31

Such access coalescing improves performance and energy e�ciency in the GPU in di�erent

ways including:

1. Improve memory writebank bandwidth.

2. Enable dispatching ready instructions into execution pipeline sooner.

3. Help freeing up operand collector units sooner and increasing warp instruction issue

rate.

4. Reduce data dependency stalls and allows new warp instructions to issue faster.

5. Reduce register �le pressure and improves access latency.

3.5 Related Work

Signi�cant prior work exists on improving performance or energy e�ciency for GPU

register �le. In this section, we �rst highlight di�erent techniques proposed to improve

performance or reduce power consumption for GPU register �le and then present related

work on register �le coalescing in GPU.

3.5.1 Non-coalescing Techniques

Gebhart et al. proposed a small register �le cache (RFC) to capture short-lived registers

which would reduce read and write accesses to the main register �le and reduce its dynamic

power consumption with a small impact on performance [15]. Sadrosadati et al. proposed

using an RFC with software managed register prefetching to tolerate access latency of a

larger register �le and improve overall performance at the cost of using higher power register

�le [22].

A compile-time managed hierarchical register �le is proposed by Gebhart et al. with the

aim of reducing dynamic power consumption [23]. In this work, the register �le is partitioned

into multiple levels and the compiler is used to leverage its knowledge of registers usage to

determine where to allocate values across the register �le hierarchy. Similar work that used

32

both a register �le cache and a hierarchical register �le is proposed by Bailey et al. [24]. A

uni�ed local memory structure with partitioning of capacity among register �le, data cache,

and scratchpad memory is proposed by Gebhart et al [25].

A partitioned register �le is proposed by Abdel-Majeed et al. where less frequent accessed

registers are placed in a slow register �le that operates in a lower voltage and frequently

accessed registers are placed in a small and fast register �le [26]. The technique targeted both

dynamic and leakage power reduction and both compile-time and run-time pro�ling had to be

used to collect register access statistics needed. Abdel-Majeed et al. also aimed at reducing

leakage power by operating the register �le in di�erent power modes [27]. They proposed

using an active mask gating on the register �le to reduce dynamic power consumption which

is done on 128B entries using Divided Word Line (DWL) approach previously proposed by

Yoshimoto et al. [28].

Jeon et al. proposed register �le virtualization to reduce the number of physical register

�le entries used and gate o� unused entries to reduce power consumption [29]. Kloosterman

et al. proposed replacing the main register �le with a smaller size operand staging unit to

reduce power consumption while providing similar performance[30]. Operands are allocated

space in the staging unit using compiler annotations that determine future registers usage.

Registers are all kept in memory and fetched into the staging unit when needed.

Data compression has been proposed by Lee et al. for GPU register �les to reduce dy-

namic power by gating o� unused sub-banks [31]. This work used the Delta-Base-Immediate

(DBI) compression technique that Pekhimenko et al. proposed for data caches [32]. Apply-

ing the DBI mechanism on the GPU register �le incurs high area and power overheads as it

requires adding a vector-wide adder-subtractor units to compress and de-compress operands

data. Another form of data compression is proposed by Liu et al. to handle scalar execution

in GPGPU where duplicate values in thread registers are captured in a separate scalar bu�er

to save access power [33] at the cost of small performance loss.

Register �le packing technique for GPUs has been proposed by Wang et al. [34] and

33

Ergin et al. [35] to take advantage of narrow-width data to reduce the number of physical

register entries used and gate o� unused entries. In this technique, two narrow-width regis-

ters can be combined and placed in a single physical register entry which requires register

renaming. Although it reduces the physical size of the register �le, the proposed register

packing techniques do not coalesce register accesses. Each register, packed or non-packed,

still requires a separate read access which does not provide any performance bene�t.

Data-path slicing is proposed by Gilani et al. to take advantage of low dynamic range

values that can be represented by 16 bits [36]. The 32-bit thread registers are also split

into low and high halves and controlled separately to reduce the dynamic access power.

The main objective of this work was to increase the warp issue rate by issuing two warps

with 16-bit data in same cycle which required modifying the warp scheduler and register

�le banking scheme. Khorasani et al. proposed time-sharing a subset of physical registers

between executing warps to improve performance [37]. Oh et al. proposed increasing the

number of concurrent thread blocks to provide performance improvement. The register �le

is partitioned into two regions, one for active thread blocks to use and another region for

pending thread blocks.

All of these proposed power reduction and performance improvement techniques are

orthogonal and potentially complementary to register coalescing technique we propose in

this work which takes advantage of the frequent narrow-width data to provide performance

and energy e�ciency improvements in GPUs.

3.5.2 Register Coalescing Techniques

Similar to the concept of memory coalescing where multiple memory requests targeting

contiguous memory locations can be combined into a single request, Esfeden et al. [2] have

recently introduced a Coalescing Operand Register File (CORF) for GPUs to combine read

requests from the same warp instruction into a single bank request. This work is the �rst

and the only one available in literature, as of today, on GPU register �le coalescing. We

will present this prior work in more details and highlight the many design limitations and

34

overheads it has.

----- w0:r1

w0:r2 w0:r4

w0:r3

w0 (r1,r3)

w0 (r1,r2)

w0 (r2,r4)

w0 (r1,r4)

Profile
Register
Pairings

Common Pairs CORF register file

Kernel
Binary

Compile-time Run-time(a)

w0:r1 -----

w0:r4 w0:r2

w0:r3

Left Right

r1 r2

r4 r3

NP-hard graph
coloring
heuristic

Alignment
Identification

CORF++ register file

Kernel
Binary

Compile-time Run-time(b)

Figure 3.7: CORF design overview (a) limited CORF with read coalescing support within
the same physical register entry (b) enhanced CORF++ with read coalescing support across
two register entries within a bank. Reprinted from [2].

The prior work introduced two register coalescing design �avors, a limited CORF and an

enhanced CORF++ design, illustrated in Fig. 3.7, in order to improve overall performance

and energy e�ciency in GPUs. CORF designs have the following speci�cations:

• Register coalescing is built on top of register packing [34, 35] which allows two narrow-

width registers to coexists in a single physical register entry.

• Use compiler assistance to guide register allocation decisions to help promote coalescing

opportunities. Common register pairs used for a given warp instructions are identi�ed

through register pro�ling and passed to the hardware to guide allocating each common

pair within the same physical entry (CORF). An NP-hard graph coloring heuristic is

35

used to hint register alignment (left or right alignment) within the physical register

entry to help guide register allocation to promote read coalescing across two physical

entries.

• Support coalescing of two read requests from the same warp instruction that target the

same bank and are located in the same physical entry (CORF) or cross two physical

entries in non-overlapping sub-banks (CORF++).

• Register �le virtualization (renaming) is necessary to support register read coalescing.

Bank 0

Bank 1

Bank 3

Collector 0

Collector 1

Collector 3

4
x4

 c
ro

ss
b

ar

Warp
Scheduler

B
an

k
A

rb
it

er

SI
M

D
 e

xe
cu

ti
o

n
 u

n
it

s

Issue

Bank 2 Collector 2

Si
gn

 E
xt

en
si

o
n

W
id

th
 D

et
ec

ti
o

n

A
rr

ay
 o

f
p

ac
ke

rs

unpackers

unpackers

unpackers

unpackers

Rename Table (RT)
+ Allocation Mask

Free Register Map Compile-time Hints

Figure 3.8: GPU register �le design used in CORF. Reprinted from [2].

Fig. 3.8 shows the GPU register �le design used in CORF. In Table 3.1, we summarize the

design overheads for CORF in comparison to our low-cost design. We propose a hardware-

only design that support register access coalescing without the need for the complexity of

compile-time hints used in CORF design for the following reasons:

36

Design Overhead CORF/CORF++ Our Design

Require register packing Yes No

Require register renaming Yes No

Require compile-time assistance Yes No

Require byte-level vector-wide shifters Yes No

Require speci�c register �le layout Yes No

Table 3.1: Design overhead of CORF compared with our low-cost design.

1. The compile-time approach is lacking information about registers widths, and therefore,

the hints provided may or may not be useful.

2. Estimating the dynamic frequency of occurrence for each warp instruction is a di�cult

problem at compile time due to loops that may not be resolvable, and therefore, the

hints are approximated based on heuristics.

3. Finding the common register pairs or proper register alignment are graph coloring

problems that are di�cult to solve and only heuristics can be given.

4. Registers width is subject to change during the course of kernal execution and the

initial register allocation may have to change.

5. Our design supports cross warps access coalescing for reads as well as write requests

and providing compile-time hints for these cases is impractical due to dynamic behavior

of warps at run-time.

Our proposed design also avoids the complexity and overhead of register packing and

virtualization (renaming) needed in CORF design for the following reasons:

1. It does not restrict register coalescing to be within a physical register entry. It supports

coalescing across any two register entries.

2. It does not restrict register coalescing to only accesses from the same warp instruction.

37

It supports coalescing across any two register entries whether they belong to the same

warp or di�erent warps.

3. It does not restrict coalescing to only read requests. It supports coalescing a mix of

read and write requests targeting any two register entries.

4. It does not restrict read coalescing to be within a register �le bank. It supports

coalescing reads from di�erent banks for the same warp targeting the same operand

collector unit.

In addition, our design avoids using variable 128B-wide shifters for register alignments

used in CORF design, which are needed on the read and write sides of the register �le, as they

have high cost and require additional pipeline stages to be added due to their timing impact.

Instead, we use a much cheaper thread-local one-level multiplexers to align warp registers.

CORF design also requires a speci�c register �le layout with all warp registers located in

the same bank, as shown if Fig. 3.10a, in order to support read coalescing. In general, this

layout causes more bank con�icts and negatively impacts overall IPC performance compared

to another layout shown in Fig. 3.10b. Our proposed design addresses this limitation and

provides register coalescing capabilities with no restriction on the register �le layout used.

Despite the fact that it has high design overhead, CORF is very limited and only capable

of coalescing read requests for the same warp instruction that target the same register �le

bank. Coalescing was only limited within the same physical register entry in the limited

edition of CORF and then extended to cover coalescing across two physical register entries

in CORF++. Table 3.2 compares coalescing capabilities between CORF and our proposed

design. Our design is capable of supporting many register coalescing opportunities with low-

cost that CORF can not support. In Section 3.7 we will compare the overhead cost of CORF

compared to our design as well as compare the performance and energy results achieved.

38

Coalescing Support Bank Warp Instr. CORF/CORF++ Our Design

2 reads Same Same Yes Yes

2 reads Same Di�erent No Yes

2 writes Same � No Yes

1 read and 1 write Same � No Yes

2 reads di�erent Same No Yes

Table 3.2: Register coalescing support in CORF compared with our design.

3.6 Register File Access Coalescing Design

In this section, we present the coalescing-aware register �le design that we propose to

improve overall performance and energy e�ciency in GPUs. GPUs deploy a large register

�le to support massive thread-level parallelism (TLP) execution model by holding state of

thousands of threads contexts and allowing fast context switching between threads. Given

the large size of the register �le and the width of warp registers, a multi-ported register �le

design is not viable due to the high area and power overheads. To this end, GPUs adapt

for multi-banked single-ported register �le built with 6T SRAM arrays and combined with

single-ported operand collector units to provide high access bandwidth. However, due to

access port limitations, multiple accesses targeting the same register �le bank or operand

collector unit are forced to be serialized due to port con�icts which may negatively impact

performance. On the other hand, our access coalescing design is providing the ability to

combine two requests targeting a limited shared resource (register �le bank port or operand

collector port) into a single request and eliminate the access serialization penalty that they

would have had due to shared resource con�icts.

Inspired by the CORF design [2], our proposed design is the �rst to provide register

coalescing capabilities for multiple access scenarios including read and write requests, from

same or di�erent warp instructions, accessing the same bank as well as read requests to

di�erent banks targeting the same operand collector unit. Access coalescing enables perfor-

mance improvements by reducing the number of read and write operations, reducing overall

39

register �le pressure, reducing access serialization penalties due to port con�icts on register

�le banks and operand collector units. In addition, access coalescing also reduces register

�le dynamic power consumption as it reduces the number of read and write operations to

the register �le and reduces writes to the operand collector units and also improves their

bandwidth utilization. As a result to the performance and dynamic power enhancements,

overall GPU energy e�ciency is improved.

3.6.1 Design Overview

Bank 0

Bank 1

Bank 3

Collector 0

Collector 1

Collector 3

4
x4

 c
ro

ss
b

a
r

(p
e

r
su

b
-b

a
n

k)

Warp
Scheduler

B
a

n
k

A
rb

it
e

r

SI
M

D
 e

xe
cu

ti
o

n
 u

n
it

s

Warp ID Op-code

Src1 Valid Reg Idx Ready Value (128 Bytes)

Src2 Valid Reg Idx Ready Value (128 Bytes)

Src3 Valid Reg Idx Ready Value (128 Bytes)

Issue

Bank 2 Collector 2

Sub-bank 0

Sub-bank 1

Sub-bank 2

Sub-bank 3

32B 32B

32B

32B

32B

32B

32B

32B

Si
gn

 E
xt

e
n

si
o

n

B
yt

e
-s

w
a

p
 M

U
X

W
id

th
 D

e
te

ct
io

n

B
yt

e
-s

w
a

p
 M

U
X

Su
b

-b
a

n
k

M
a

sk
 B

u
ff

e
r

Figure 3.9: Our coalescing-aware GPU register �le design.

The baseline register �le for the Fermi GPUs has a total size of 128KB per SM and is

divided equally into four banks. Each bank has 256 entries and each entry is 128B wide

to hold a warp register of this size. Physically, the bank is constructed using four narrow

sub-banks where each sub-bank holds a 32B slice of every bank entry. To read out a full 128B

40

warp register from a given bank, the same entry is indexed in the four physical sub-banks

to retrieve the 128B register. Each bank o�ers a single access port to either read or write

a full register in a cycle and has the four sub-banks controlled the same way to either all

read or write the same indexed entry. Operand collector units are need in this multi-banked

organization as a warp source operands may take multiple cycles to be read out from the

register �le banks due to port con�icts. Each operand collector o�ers a single write port that

can be used by one bank at a time. The register �le banks are connected to the operand

collectors using a 4×4 crossbar network with 128B links. A register �le arbiter is responsible

for prioritizing banks and operand collectors accesses, which may experience con�icts due to

limited access ports, in a way that only one bank access is allowed in a cycle and only one

collector unit write is allowed in a cycle.

Fig. 3.9 highlights the micro-architectural enhancements for our coalescing-aware regis-

ter �le design. The following is a summary of the enhancements made to support access

coalescing:

• Enabled the four sub-banks within a bank to be controlled separately.

• Provided a bank with dual-access controls to target di�erent sub-banks.

• Enabled crossbar controls per 32B of output data.

• Enabled operand collectors to have separate write controls per 32B of input data.

• Extended the register �le arbiter to support access coalescing for register banks and

collector units.

• Added a register width detection logic and storage.

• Added thread-local multiplexers for register alignment.

• Allowed banks and operand collectors to operate on coalescing-friendly data format.

41

Recall that our design avoids compile-time hints to (left or right) align narrow-width

registers and register packing and renaming as used in CORF design due to the many reasons

mentioned previously in Section 3.5.2. Instead, our design supports a low-cost hardware-only

solution for register alignment that avoided any need for register packing and renaming and

their high design overhead. In our design, warp registers entries have �xed alignment based

on their even/odd number where even numbered entries are right aligned and odd numbered

entries are left aligned. As we will show in Section 3.7.5, our low-cost �xed alignment scheme

is within a 2.2% of performance speedup to an unrealistic ideal alignment bound and provides

higher performance speedup compared to CORF design as it supports far more coalescing

capabilities.

As we mentioned, our coalescing-aware register �le design addresses the limitations and

avoids the complexity and overhead of the prior CORF design. Our low-cost design provides

access coalescing capabilities not only to read requests from same warp instruction targeting

the same bank, which is the only scenario CORF is capable of, but also to a variety of access

scenarios including:

• Read requests from same warp instruction targeting the same bank.

• Read requests from di�erent warp instructions targeting the same bank.

• Write requests targeting the same bank.

• A mix of read and write requests targeting the same bank.

• Read requests from same warp instruction (same operand collector) targeting di�erent

banks.

In the following subsections, we present implementation details of our proposed register

coalescing design.

42

3.6.2 Coalescing-aware Register File Organization

3.6.2.1 Registers Layout (Register to Bank Mapping)

w0:r0

w0:r1

w0:r2

w0:r3

…

w1:r0

w1:r1

w1:r2

w1:r3

…

w2:r0

w2:r1

w2:r2

w2:r3

…

w3:r0

w3:r1

w3:r2

w3:r3

…

Bank 0 Bank 1 Bank 2 Bank 3

(a)

w0:r0

w1:r3

w2:r2

w3:r1

…

w0:r1

w1:r0

w2:r3

w3:r2

…

w0:r2

w1:r1

w2:r0

w3:r3

…

w0:r3

w1:r2

w2:r1

w3:r0

…

Bank 0 Bank 1 Bank 2 Bank 3

(b)

Figure 3.10: Registers to banks mapping (register layouts): (a) all registers belonging to
the same warp are mapped into one register �le bank and (b) warp registers are interleaved
across register �le banks.

Fig. 3.10 shows two possible layouts of mapping warp registers into register �le banks.

In Fig. 3.10a, all registers for a given warp are mapping into the same bank with a mapping

function bank = warp_id and we refer to this layout as wid_layout. The other layout

in Fig. 3.10b shows registers for a given warp interleaved across the banks using a mapping

function bank = warp_id+reg_id and we call this layout wshift_layout. The wshift_layout

43

has been used in GPUs as it minimizes bank con�icts cross warps.

One limitation of CORF design is the requirement of having all registers for a warp map

into the same register �le bank as in Fig. 3.10a. This limitation is due to the fact that CORF

can only support register coalescing for read requests if they belong to the same warp and

target the same bank. Therefore, in order for CORF to increase the coalescing opportunities

for its limited design, it had to move to a less e�cient register �le layout.

In our design, we addressed this limitation and supported register coalescing that can

work on any register �le layout. Our design is capable of coalescing requests from same or

di�erent warp instructions targeting the same bank and it also capable of coalescing read

requests for the same warp instruction (from the same operand collector) targeting two

di�erent banks. Even with the register layout used in CORF, the wid_layout, our design

provides more coalescing capabilities that CORF can not support.

3.6.2.2 Register File Bank

Recall that the register �le is divided up into multiple banks, four banks in the Fermi

GPUs, with each one of these banks having 256 entries each of which holds a warp register

of size 128B. Each bank is physically divided into four narrow-width sub-banks with each

sub-bank having 256 entries of size 32B. A warp register entry is spread cross the four sub-

banks and indexed with the same entry number in every sub-bank. A warp register carries

data for all 32 threads within the warp where each thread has a 4B slice of the data. In

baseline GPU, warp register data is represented in a byte-interleaved format. As shown in

Fig. 3.11a, warp register data starts with the four bytes of thread 0 (T0.B0, T0.B1, T0.B2,

T0.B3), then the four bytes of thread 1 (T1.B0, T1.B1, T1.B2, T1.B3), and so on. Each of

the sub-banks holds 32B of the warp register data with sub-bank 0 holds data for the �rst

8 threads within the warp, sub-bank 1 holds data for the second 8 threads, and so on.

With this data format, a narrow-width register that uses, for instance, only B0 of every

warp-thread would require accessing all four sub-banks to read or write the warp register

as B0 for the 32 threads are spread across the entire register entry. This implies that, for

44

[T31:T24][B3:B0] [T23:T16][B3:B0] [T15:T8][B3:B0] [T7:T0][B3:B0]

RF bank (128B)

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

T7
B3

T7
B2

T7
B1

T7
B0

. . . T1
B3

T1
B2

T1
B1

T1
B0

T0
B3

T0
B2

T0
B1

T0
B0

(a)

RF bank (128B)

[T31:T0][B3] [T31:T0][B2] [T31:T0][B1] [T31:T0][B0]

T31
B0

T30
B0

T29
B0

T28
B0

. . . T7
B0

T6
B0

T5
B0

T4
B0

T3
B0

T2
B0

T1
B0

T0
B0

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

(b)

Figure 3.11: Data format of a 128B warp register within an RF bank entry: (a) Byte-
interleaved format: each 32B sub-bank entry holds data for 8 threads in the warp and (b)
Thread-interleaved format (supports register coalescing): each 32B sub-bank entry holds
1-byte (same byte number) for every thread in the warp.

Figure 3.12: Register data representation within the register �le and operand collectors and
outside. Switching data from one format to the other is done through wiring bytes into
di�erent byte-position (no logic cost).

narrow-width data, all four sub-banks resources are fully consumed, however, they are poorly

utilized as each sub-bank provides only a portion of its e�ective bandwidth. Fundamental to

45

register coalescing, is the ability for two narrow-width requests to be able to access di�erent

sub-banks at the same time to reduce the number of requests made to the register �le,

increase bank bandwidth utilization, and ultimately improve overall performance and energy

e�ciency in the GPU. Therefore, we changed the data format within warp registers to follow

a thread-interleaved format instead. With this format, as showin in Fig. 3.11b, warp register

data starts with B0 for all the 32 threads in the warp, then B1 for all 32 threads, and so

on. Each sub-bank holds 32B of the warp register data with sub-bank 0 holds B0 for all

32 threads, sub-bank 1 holds B1 for all 32 threads, and so on. This allows for narrow-

width request of 1-byte per thread, for instance, to consume and fully utilize only one of the

four sub-banks which set the other three sub-banks free that we can utilize through register

coalescing.

Moving from one data format to the other is done at no cost as it only requires data

bytes to be wired into di�erent byte-positions. Fig. 3.12 shows that the register �le and

operand collectors use thread_interleaved format whereas data outside those components

are represented in its original form using byte_interleaved format. That is, data result will

change to thread_interleaved format as it is written into the register �le and source operands

data will change to byte_interleaved format once issued out from an operand collector unit.

3.6.2.3 Register Alignment

With the thread_interleaved data format we used in the register �le bank, a narrow-

width register has its data spans only a subset of the four sub-banks. For instance, an

N -byte register holds its data in only N of the sub-banks. With separate sub-bank control,

the remaining sub-banks can be either (1) gated o� when reading and writing the warp

register to reduce register �le access power as we will present in Chapter 4 or (2) utilized

by another (coalesced) request to the bank that access another narrow-width register that

is fully located in these remaining sub-banks. This implies that, in order to coalesce two

requests, the targeted register entries would need to be occupying non-overlapping sub-banks

with one entry, lets say, occupies sub-bank 0 and sub-bank 1, and the other entry occupies

46

[T31:T0][B3] [T31:T0][B2] [T31:T0][B1] [T31:T0][B0]

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

T31
B3

T31
B2

T31
B1

T31
B0

. . . T1
B3

T1
B2

T1
B1

T1
B0

T0
B3

T0
B2

T0
B1

T0
B0

Byte-interleaved

Thread-interleaved

(a)

[T31:T0][B0] [T31:T0][B1] [T31:T0][B2] [T31:T0][B3]

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

T31
B3

T31
B2

T31
B1

T31
B0

. . . T1
B3

T1
B2

T1
B1

T1
B0

T0
B3

T0
B2

T0
B1

T0
B0

T31
B0

T31
B1

T31
B2

T31
B3

. . . T1
B0

T1
B1

T1
B2

T1
B3

T0
B0

T0
B1

T0
B2

T0
B3

. . .

Byte-interleaved

Thread-interleaved

Intra-thread
byte-swap MUX

Byte-swapped

(b)

Figure 3.13: Warp register data alignment: (a) Default right-alignment with byte 0 for all
32 threads map to sub-bank 0 and (b) Left alignment using intra-thread byte-swap MUX
with byte 0 for all 32 threads map to sub-bank 3.

sub-bank 2 and sub-bank 3.

Representing the narrow-width register data in thread_interleaved format would makes

the data to be, by default, right-aligned to use only the lower sub-banks within the register

entry. For instance, a 1-byte operand will map to sub-bank 0 to be read or written into the

register �le by default. To support register coalescing, however, other narrow-width registers

would need to be left-aligned or map to the upper sub-banks such that the two coalesced

requests would access non-overlapping sub-banks across two register entries.

47

RF bank (128B)

[T31:T0][B3] [T31:T0][B2] [T31:T0][B1] [T31:T0][B0]

Sub-bank 3 (32B) Sub-bank 2 (32B) Sub-bank 1 (32B) Sub-bank 0 (32B)

[T31:T0][B0] [T31:T0][B1] [T31:T0][B2] [T31:T0][B3]

Even entries:
Right aligned

Odd entries:
Left aligned

Figure 3.14: Data alignment of warp registers within a register �le bank based on even/odd
register entry number. Even registers are right aligned with byte 0 of all threads map to
sub-bank 0. Odd registers are left aligned (byte swapped) with byte 0 of all threads map to
sub-bank 3.

The requirement for data-alignment was addressed in CORF design by shifting up a

narrow-width data when writing into the register �le to left-align it and re-align the data

when it is read out of an operand collector unit by shifting its bytes down. On the write side

of the register �le, two byte-level shifters were needed to left-align the write data and, on the

read side, two byte-level shifters were used to re-align the data for each operand collector

unit for a total of ten 128B data shifters used in CORF design. Our design addresses this

requirement but in a much cheaper way based on the fact that register �le data does not

have to be represented in a speci�c order (ie. Little-endian order). Therefore, instead of

shifting the data across the warp to, left or right, align it, our design just byte-swaps the

narrow-width data such that byte 0 of every thread maps to sub-bank 3, byte 1 of every

thread maps to sub-bank 2, and so on.

Fig. 3.13 shows a right and left aligned register entries in our design. The warp data is

right-aligned by default when represented in thread_interleaved format. To left align the

data, we used a single-stage MUX that is local to every thread to swap the bytes within

the thread to be in the opposite order with byte 0 in the most signi�cant byte-position and

byte 3 in the least signi�cant position. With this intra-thread byte swapping, the warp data

48

will be left-aligned when represented in thread_interleaved format. Compared to the costly

byte-level shifters used in CORF which require a deep MUXing tree and shifting across the

entire warp, our approach is much cheaper and only requires a single-stage MUXing local to

each thread in the warp with no data movement across the warp threads. We also reduced

the cost of data-alignment even further by using fewer byte-swap MUXing on the read side by

moving them out of the operand collector units into the �rst stage of the execution datapath

as the timing impact of inserting a single-stage MUX (2 logic-levels) is very minimal. Our

design uses a total of �ve byte-swap MUXes compared to ten byte-level shifters used in

CORF design.

As mentioned earlier, CORF design adopted compile-time hints to guide data alignment

for every warp register. Besides the complexity and weaknesses of this approach as we men-

tioned, it would not provide meaningful hints in our design as we support register coalescing

capabilities across di�erent warps as well as for di�erent read and write accesses that are

dynamically detected and handled by hardware. Therefore, our design adopted a hardware-

only solution to guide data alignment of warp registers based on their register numbers with

even registers being right aligned and odd registers being left aligned (byte swapped) as

shown in Fig. 3.14. The main advantage of our approach is its very low cost as it only

requires a single-stage byte-swap MUX to left align the data for odd registers and avoids all

the cost and overhead associated with dynamic allocation and register renaming logic used

in CORF design. As we will see in the following Section, our low-cost design provided higher

bene�ts by supporting many register coalescing scenarios whereas CORF had to adapt a high

overhead design to improve coalescing opportunities for the very limited register coalescing

scenario it supports.

3.6.2.4 Dual-access Banks

With the support of data alignment and formatting, narrow-width registers in a given

bank occupy only a subset of the sub-banks with even registers occupying the lower sub-banks

and odd registers occupying the higher sub-banks. This made possible for two registers, an

49

sb3 sb2 sb1 sb0

r0

r1

r2

r3

r4

r5

…

Rd 3

Rd 2

Rd 1 Wr

(a)

sb3 sb2 sb1 sb0

r0

r1

r2

r3

r4

r5

…

Rd 3

Rd 2

Rd 1 Wr

Rd 3

Rd 2

Rd 1Wr

Right Requests (RR)Left Requests (LR)

(b)

Figure 3.15: Comparison between basline register �le bank and our coalescing-aware bank:
(a) Baseline bank with single-access support (b) Our dual-access bank with left and right
requests that can access two register entries with di�erent data alignments in non-overlapping
sub-banks.

50

Dual-address banks used in
CORF

Dual-access banks used in
our design

Coalesced requests should be of
the same type. Only two read re-
quests are supported

Coalesced requests can be of same
or di�erent types. Any combina-
tion of two read or write requests
are supported

Coalesced requests should belong
to same warp instruction

Coalesced requests can be from
same or di�erent warp instruc-
tions

Table 3.3: Comparison between CORF dual-address banks and our new dual-access banks.

even and odd registers, to be accessed at the same time given that their data reside in non-

overlapping sub-banks. For example, a read from R2 which is a 1-byte register occupying

sub-bank 0 and a write to R3 with 3-byte result that would access sub-banks 1, 2, and 3 can

be coalesced and done in the same cycle.

In order to support register coalescing, we provided a dual-access support for register

�le banks with a right and left accesses that can target di�erent sub-banks within a bank

as shown in Fig. 3.15b. To improve coalescing opportunities, we made access requests that

target even warp registers be steered as right requests (RR) and requests accessing odd

registers be steered as left requests (LR) as targeting two even (or odd) registers at the same

time would always result in a sub-bank con�ict.

A left or right request can be either a read or a write access from any warp instruction

that would specify the register entry number being accessed and also the width of the register

data to determine which of the four sub-banks to be accessed. The register width information

is supplied as a four-bit mask that indicates the sub-banks begin targeted by the request.

Two bank requests, a left and a right requests, can be coalesced if the ANDing of their

masks is zero which means they do not con�ict on any sub-bank access. For example, a

right request with mask = 0111 and a left request with a mask value mask = 1100 can not

be coalesced as they con�ict on sub-bank 2. Right and left requests are MUXed into every

51

sub-bank based on the value of their mask bits. Each bank relies on the register �le arbiter

to resolve con�icts between access requests such that con�icts are not seen on coalesced,

right and left, accesses.

Table 3.3 lists the main di�erences between the dual-address register �le bank used in

CORF design and our dual-access bank design.

3.6.2.5 Register File Bank Arbiter

With limited access ports on register �le banks and operand collector units, multiple read

or write requests that target the same shared resource would be con�icting and a priority

scheme would need to be applied to resolve such con�icts. In baseline GPU, a matrix arbiter

is used to manage con�icting request cases, as shown in Fig. 3.16a, with the shared resources

being the register �le banks and operand collector units as each of which can only serve a

single request. The arbiter manages two types of con�icts that might exist between register

�le requests: (1) a bank con�ict between multiple requests targeting the same bank. (2) an

OC con�ict between multiple requests targeting the same operand collector unit.

In the GPU, the following priority order is applied for accessing register �le shared re-

sources:

• Writes from execution units pipeline have higher priority over writes from memory

units. Memory unit requests are blocked and wait to get access. This includes writes

back from data caches or shared memory.

• Write requests, from any source, have higher priority accessing a shared resource over

read requests. Blocked read requests have to wait in a queue destined for the shared

resource to get access.

• Read requests that are not blocked by writes arbitrate for banks and operand collectors

access using the priority scheme used in the matrix arbiter.

The matrix arbiter used in GPUs is similar to the Wrapped WaveFront Arbiter (WWFA)

used in network switching nodes [38]. Priority in this arbiter is given to one wrapped diagonal

52

OC 0 OC 1 OC 2 OC 3

Bank 0 1 1

Bank 1 1 1

Bank 2 1 1

Bank 3 1 1

Bank conflict

Operand collector
conflict

(a)

OC 0 OC 1 OC 2 OC 3

Bank 0
L 1100

R 0011

Bank 1
L 1100

R 0001

Bank 2
L 1110

R 0001

Bank 3
L 1000

R 0011

Coalescable requests

Coalescable requests

(b)

Figure 3.16: Register �le request matrix: (a) Request matrix for baseline arbiter. Up to four
requests can be granted access at the same time (b) Request matrix for our coalescing-aware
arbiter. Each bank can have left or right requests with each request having a 4-bit mask to
indicate the sub-banks it needs to access. Up to eight requests (four coalesced requests) can
be granted access at the same time.

in the request matrix in a given cycle and then the priority wave propagates to the next

wrapped diagonal for the next cycle. With four register �le banks and four operand collectors,

there are a total of four wrapped diagonals in the matrix which are marked with priorities

P0�P3 with P0 as the initial priority diagonal as shown in Fig. 3.17.

53

OC 0 OC 1 OC 2 OC 3

Bank 0 1

Bank 1 1

Bank 2 1

Bank 3 1

P0

P1

P2

P3

Figure 3.17: A wrapped wavefront arbitration scheme (WWFA) used in GPU register �le
matrix arbiter. Four priority diagonals are used P0�P3 with a priority wave initially starting
at P0 and propagating from one diagonal to the next every cycle.

With the wavefront arbitration scheme, it would take three cycles for the baseline arbiter

to serve the eight read requests shown in the request matrix in Fig. 3.16a. Assuming priority

starts with the P0 diagonal, in the �rst cycle three requests (Bank1, OC3), (Bank2, OC2),

and (Bank3, OC1) are granted access. In the second cycle, priority moves to P1 diagonal

and another three requests (Bank0, OC1), (Bank1, OC0), and (Bank3, OC3) are granted

access. Priority then moves to P2 diagonal in the third cycle and the remaining two requests

(Bank0, OC2) and (Bank2, OC0) are granted access.

The coalescing-aware register �le design, we are proposing in this work, addresses the

high register �le pressure and long access latency issues that negatively impact performance

by providing capabilities to coalesce register �le accesses into fewer physical accesses that

would reduce pressure and access latency and also improve bandwidth utilization for the

register �le which would ultimately improves overall performance and power utilization in

54

GPU. To enable for such coalescing capabilities, we expanded the matrix arbiter to account

for the following: (1) each bank having a left and right accesses. (2) each request having a

4-bit mask that indicates which of the four sub-banks (and the four 32B slices for an operand

collector access) are targeted within a bank. In our design, the de�nition of a shared resource

applies to a �ner-grained level where, instead of a bank being a shared resource, each sub-

bank within a bank is considered a shared resource. Similarly, a 128B operand collector

write port is viewed as four 32B shared resources instead of being a single resource.

At this lower-level of resource arbitration, register �le requests arbitrate to get access to

the available shared resources following the same priority orders and arbitration scheme used

in the matrix arbiter. Fig. 3.16b shows the request matrix in our coalescing-aware design

with the same eight requests used in the baseline arbiter case earlier but with the additional

dual-access banks and sub-bank masks information. In this example, every bank has a left

and a right accesses that are coalescable since they target non-overlapping sub-banks within

the bank (the ANDing of the two sub-bank masks is zero) and every operand collector has

two targeting requests that are also coalescable across the serving banks (the ANDing of the

two sub-bank masks across the banks is zero). Therefore, all of the eight requests can be

granted access and proceed in the same cycle.

3.6.2.6 Register File Interconnect

When a warp instruction is issued by the warp scheduler, it uses an operand collector

unit to read its source operands from the register �le banks. A warp instruction may require

up to three operands to read which may take multiple cycles due to bank con�icts and

operand collector con�icts. The operand collector holding a warp instruction initiates the

read requests to the targeted banks. These requests may target same or di�erent banks. Our

design provides coalescing capabilities between read requests from di�erent warps targeting

the same bank and also support coalescing read requests from the same warp instruction

(same operand collector (OC)) targeting di�erent banks.

To support such register coalescing cases, we updated the baseline register �le crossbar

55

Bank 0

Bank 1

Bank 3

Collector Unit 0

1
2

8
B

 4
x4

 c
ro

ss
b

ar

Bank 2

128B 128B

128B 128B

Collector Unit 1

Collector Unit 2

Collector Unit 3

128B 128B

128B 128B

(a)

3
2

B
 4

x4
 c

ro
ss

b
ar

 (
su

b
-b

an
k

3
)

Sub-bank 0

Sub-bank 1

Sub-bank 2

Sub-bank 3

Bank 1

Bank 2

Bank 3

3
2

B
 4

x4
 c

ro
ss

b
ar

 (
su

b
-b

an
k

1
)

3
2

B
 4

x4
 c

ro
ss

b
ar

 (
su

b
-b

an
k

2
)

3
2

B
 4

x4
 c

ro
ss

b
ar

 (
su

b
-b

an
k

0
)

Collector Unit 0

Collector Unit 1

Collector Unit 2

Collector Unit 3

32B 32B

(b)

Figure 3.18: Register �le interconnect: (a) Baseline 4 × 4 crossbar with 128B ports that
connects register �le banks to the operand collector units. (b) New crossbar structure used
in our design, which supports register coalescing at no extra cost, with four 4× 4 crossbars
each of which has narrow 32B ports and connects a particular sub-bank (from all four banks)
to the operand collector units.

56

that connects the banks to the operand collectors, shown in Fig. 3.18a, to have separate

control for every 32B of the switched data. To do so, instead of operating on a 128B data,

we split the crossbar to four crossbars each of which operates on a one-fourth of the data

(32B) at no extra cost. With this con�guration, there is a narrow crossbar corresponding

to every sub-bank across the four banks in the register �le with its own separate control

as shown in Fig. 3.18b. The 32B 4 × 4 crossbar for sub-bank 0, takes the output of every

sub-bank 0 across the four banks and interconnect them into the lower 32B of every operand

collector unit.

The new crossbar structure supports coalescing read requests from di�erent warps (dif-

ferent operand collectors) targeting the same register bank. To illustrate how this works,

consider a read request from OC0 with a mask = 0001 and another request from OC1 with

mask = 1100 that are coalesced at bank 0. The �rst request reads out from sub-bank 0 and

the other request reads out from sub-bank 2 and sub-bank 3 at the same time. The read out

data would need to be steered into the two operand collectors correspond to these requests.

The output data from each sub-bank within the targeted bank maps directly to a 32B slice

of an operand collector write bus with the output of sub-bank 0 maps to the lower 32B data

slice and the output of sub-bank 1 maps to the next 32B slice, and so on. In this example,

based on the mask values of the two coalesced requests, sub-bank 0 data is steered into OC0

on the lower 32B slice of its write bus and data from sub-bank 2 and sub-bank 3 is into OC1

on the upper 64B of its write bus.

Another important coalescing scenario that is supported with the new crossbar structure

is allowing two read requests from the same warp instruction (same operand collector) to

access di�erent banks at the same time. For example, OC0 issues two read requests to bank

0 and bank 1 with mask values mask1 = 0011 and mask2 = 1100, respectively. Since these

two requests do not con�ict on the operand collector write port (ANDing of the two masks

is zero), the register �le arbiter may grant these two requests access in the same cycle. Read

data from bank 0 will be steered into OC0 on the lower 64B of its write bus and read data

57

from bank 1 will be steered into OC0 on the upper 64B of the write bus and the packed data

is written into the operand collector in a single cycle.

3.6.2.7 Operand Collector Write

32B 32B 32B 32B

MUXMUXMUXMUX

Bank 0,1,2,3
Sub-bank 0

Bank-selBank-selBank-selBank-sel

Src 1

Src 2

Src 3

Operand Collector (OC)

Bank 0,1,2,3
Sub-bank 1

Bank 0,1,2,3
Sub-bank 2

Bank 0,1,2,3
Sub-bank 3

P0P1P2P3

. . .

Registers
read data

Byte-interleaved
format

Figure 3.19: Coalescing-aware operand collector unit with 32B write ports. Coalesced read
data is naturally unpacked into the destined source operands bu�ering space.

With separate per sub-bank crossbars, our design is capable of coalescing read requests

from di�erent banks targeting the same operand collector. Read data on the collector unit

input port can be from a single warp register read or from two coalesced warp registers reads.

We made slight modi�cation to the operand collector unit to be able to capture a coalesced

data and write it into the corresponding operand registers.

Instead of capturing the coalesced read data in a single register entry inside the operand

collector and unpack it as it is read out from the collector unit which costs additional data

58

MUXing (not considering data alignment yet) as done in CORF design, our design unpack

the coalesced data as it is written into the operand collector, in a low-cost way, by having

separate write controls for every 32B of the operand collector data bu�ers. The unpacking

approach we use falls naturally in our design as the single 128B write port on the collector

unit behaves as four 32B write ports where each narrow port writes to a 32B slice of the

bu�er entries inside the operand collector.

Fig. 3.19 highlights the slight update made to the operand collector to handle data for

coalesced reads. To illustrate with an example, consider OC0 with two warp registers, R0

and R1 to read from the register �le. Requests for reading the two registers are sent to

bank0 and bank1, respectively. The two registers have narrow-width data with R0 having

a sub-bank mask of value 0001 and R1 having a mask of value 1100. The two register are

read at the same time and their data is steered into OC0 with R0 data appears on the lower

32B and R1 data on the upper 64B of the collector unit input port. Considering that the

operand collector now has four separately controlled 32B input ports, each 32B port writes

its data into a 32B slice of the destined source operand. In this example, the lower 32B port,

named as P0, writes its data into R0 data bu�er and ports P2 and P3 each write its data

into the corresponding 32B slice of R1 bu�er. With this approach, the coalesced read data

is naturally upacked into its destined registers which would look the same as stored in the

register �le banks.

When an operand collector is issued into the execution pipeline, every source operand

gets represented in byte-interleaved format, by wiring the bytes in di�erent byte-positions,

and passes through a byte-swap MUX for its thread-bytes to be re-aligned if necessary and

sign-extended.

3.6.2.8 Register Width Detection

Fig. 3.20 shows the width detection logic at the end of the execution pipeline (in writeback

stage) that generates a 4-bit sub-bank enables (mask) and captures the sign bit for the result.

We detect positive narrow-width values, with most signi�cant bytes being zeros, by ORing

59

Result in WB stage (thread-interleaved format)

OR

NAND

OR

NAND

OR

NAND

S 1

[T31:T0][B3] [T31:T0][B2] [T31:T0][B1] [T31:T0][B0]

4-bit
sub-bank mask

1-bit
sign

…

3 bits

Sub-bank Mask
Buffer

Sign

Encoder

S0001 → S11
S0011 → S10
S0111 → S01
S1111 → S00

Encoder Map

Figure 3.20: Width detection and sub-mask generation logic for a warp result in WB stage.
The 4-bit sub-bank mask is saved in a bu�er in a 2-bit encoded form along with the sign-bit.

all the bits with same byte-position together. This is applied on bytes 1, 2, and 3 and

produces a 3-bit result for the 128B warp data. We also detect if the narrow-width data is

negative, with most signi�cant bytes being all ones, by using a reduction NAND gate on all

bits with same bye-position, applied on byte 1, 2, and 3, which produces another 3-bit result.

The sign bit (the MSB bit) for the warp data is then used to select between the positive and

negative 3-bit results to produce the �nal mask bits that are used to enable/disable register

�le sub-banks with sub-bank 0 mask-bit is set to 1.

The generated sub-bank mask is saved in a bu�er (in an 2-bit encoded form) for the

destination warp register being written. We used a simple encoding that maps the 4-bit

sub-bank mask into a 2-bit encoded value using the mapping listed in Fig. 3.20. Consecutive

reads from the warp register use the saved mask (in a 4-bit decoded form) to access the sub-

banks that holds the register data. As we mentioned earlier, the 4-bit sub-bank mask for each

register �le request is used for arbitrating on �ne-grained shared resources (sub-banks access

and operand collector 32B ports) and enables register coalescing for read and write requests

60

targeting the same bank or read requests targeting the same operand collector. Along with

the sub-bank mask, we also captured the sign bit of the warp result in the bu�er. This bit is

then used to recover the full register width of every source operand when a warp instruction

is issued into the execution pipeline out of an operand collector unit. Basically, the sign bit

would be written to all bits that were striped out of the narrow-width warp register when it

was written into the register �le.

Our mask generation approach enables the use of fewer register �le sub-banks to capture

the narrow-width result as compared to the CORF design. In CORF, a 4-bit mask, in its

decode form, is captured in a bu�er without capturing the sign-bit of the register value.

This requires the sign-bit to be present in the narrow-width data, written to the register �le,

in its MSB bit which e�ectively reduces the range of the narrow-width value by a factor of

two or, equivalently, requires more bytes to be written into the register �le to capture the

register sign bit. For example, a narrow width value with the two most signi�cant bytes,

byte 2 and byte 3, are zeros would require only two sub-banks to capture the register value

in our design. Whereas, in CORF design, it may require three of the sub-banks to hold the

register value in the case that the MSB of byte 1, which is used as the sign-bit in this case, is

found to be di�erent than the leading bits in byte 2 and 3. With a simple encoding scheme,

our design is able to capture the sub-bank mask and also the destination register sign-bit in

a compact form that only requires 3 bits.

3.6.2.9 Design Overhead

Table 3.4 summaries the cost of the design overhead involved in CORF compared to our

low-cost design. Our design avoided, with no loss of coalescing bene�ts, most of the complex-

ity and cost in CORF design including the compile-time register alignment hints, register

renaming and allocation logic, and the costly data shifters used to align warp registers. Our

design adopted a low-cost �xed register alignment scheme and requires a small bu�er to cap-

ture the sign-bit and the sub-bank mask for every warp register in an encoded form. It also

requires cheaper intra-thread MUXes to perform warp data alignment. Both designs require

61

Design Overhead CORF Our Design

Rename table 3.7KB 0

Free register map 512B 0

Allocation table (Mask bu�er) 1.47KB 384B

Code size increase 1.3% average 0

Data alignment 10 byte-level shifters 5 intra-thread MUXes

Table 3.4: Design overhead cost for our coalescing-aware design compared with CORF design.

a tiny logic in WB stage to detect the size of destination registers, support dual access into

register �le banks, and perform sign extension when recovering narrow-width registers into

their full width.

3.7 Evaluation

3.7.1 Methodology

To evaluate our proposed coalescing-aware register �le design, we used GPGPU-Sim

version 3.2 simulator [21] and measured dynamic power consumption using GPU-Wattch tool

[7]. We used a GPGPU model similar to Nvidia Fermi [1] with con�guration parameters

listed in table 3.5 and used the Rodinia benchmark suite [20] which consists of general

purpose benchmarks covering a wide range of scienti�c domains that target GPU platforms.

We used the standard input set that ships with the benchmark suite. Table 3.6 lists the

applications and their applied domains for the Rodinia suite.

Register coalescing opportunities that exist in general-purpose applications are indepen-

dent of the GPU architecture being use. We conducted simulation experiments and collected

data measurements to show the bene�ts of our proposed coalescing-aware register �le design

using the following metrics:

• Register �le access reduction: we measured the percentage of access reduction we attain

from coalescing read and write requests on register �le banks and also the reduction

percentage we attain from coalescing operand collector writes.

62

Parameter Name Value

Number of SMs 16
Number of Warps 48 per SM
SIMD lanes width 32
Register �le size 128KB per SM
Register �le banks 4 per SM
Register �le width 128B
Operand collectors (OCs) 4 per SM
Warp scheduler 2-level, 2 per SM
Streaming Processing Units (SPU) 32 per SM
Special Functional Units (SFU) 4 per SM
Load/Store Units (LDST) 16 per SM
L1 cache size 16KB per SM
Shared memory size 48KB per SM
L2 cache size 768KB
Thread blocks (CTAs) 8 per SM
Load/Store address width 64-bit
Added sub-bank mask bu�er 384B per SM

Table 3.5: Con�guration parameters for our GPU design with register coalescing support.

Short-name Application Domain

backprop Back Propagation Pattern Recognition
bfs Breadth-First Search Graph Algorithms
b+tree B+ Tree Search
cfd CFD Solver Fluid Dynamics
dwt2d GPU DWT Image/Video Compression
gaussian Gaussian Elimination Linear Algebra
heartwall Heart Wall Medical Imaging
hotspot Hot Spot Physics Simulation
kmeans Kmeans Data Mining
lud LU Decomposition Linear Algebra
nw Needleman-Wunsch Bioinformatics
path�nder Path Finder Grid Traversal
srad SRAD Image Processing

Table 3.6: GPGPU application benchmarks from Rodinia general-purpose suite.

63

• Register �le Bandwidth increase: we measured the increase in register �le access band-

width as well as operand collector write bandwidth resulted from supporting register

coalescing.

• Register �le coalesced requests: we present a breakdown of register �le coalesced re-

quests by their type and show their percentage to the overall coalesced requests.

• IPC performance speedup: we measured the overall performance gain we achieved

with our coalescing-aware register �le design. We measured Instruction Per Cycle

(IPC) speedup compared to the baseline design.

• Dynamic energy reduction: we measured the percentage reduction of the overall GPU

dynamic energy that we were able to achieve with our register coalescing design com-

pared to the baseline GPU.

We have conducted multiple sets of experiments with di�erent micro-architectural set-

tings to show their impact on register coalescing bene�ts. We used the following design

settings:

• We ran a set of experiments using a register �le layout with all warp registers are

mapped into the same bank as show in Fig. 3.10a. We refer to this layout as wid_layout.

In this experiments set, we have simulated our design with the following register align-

ment schemes:

1. Fixed alignment (reg_alignment): this is primary setting in our design where

warp registers have �xed alignment based on their numbers with even registers

are right aligned and odd registers are left aligned. All other alignment schemes

are simulated to show how they compare with this design setting.

2. Write interleaved (wr_alignment): in this setting, register alignment switches

between right and left alignment on every write made by the warp with the goal

64

of distributing registers for each warp into left and right aligned inside the register

�le banks.

3. Ideal alignment (ideal_alignment): we mimic ideal register alignment by consid-

ering that register �le requests do not con�ict due to their left/right alignment

but still considered that their combined size should be no more than a full register

width. This setting would show coalescing limitations due to requests size only.

4. Upper bound (upper_bound): to show the micro-architectural limit of our de-

sign, we simulated the design assuming register �le requests are all coalescable

regardless of their alignment within the banks and the size of their requests.

• We ran another set of experiments to evaluate and compare results with the other

register �le layout, shown in Fig. 3.10b, where warp registers are distributed across

the banks. This layout, which we refer to as wshift_layout is known to reduce the

number of bank con�icts and provides a performance improvement over wid_layout.

We collected experimental results for the metrics we mentioned earlier on both register

layouts to show how they compare in our coalescing-aware register �le organization.

3.7.2 Register File Access Reduction

Our coalescing-aware register �le design reduces the number of accesses made into reg-

ister �le banks as well as the number of writes on the operand collector units by combining

narrow-width registers accesses into fewer physical accesses. Fig. 3.21 and Fig. 3.22 show the

percentage of register �le banks access reduction and the percentage reduction of operand

collectors writes compared the baseline design, respectively. These experiments were con-

ducted with a register �le layout (registers to banks mapping) as shown in Fig. 3.10a which

we refer to as wid_layout. The �gures show access reduction using the �xed register align-

ment scheme we used in our design (reg_alignment) compared to an interchanged dynamic

alignment (wr_alignement) and an unrealistic ideal alignment (ideal_alignment) schemes.

With the low-cost �xed alignment scheme, our design reduced register �le banks accesses

65

31.8%

31.8%

33.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment

Figure 3.21: Percentage of register �le access reduction with a wid_layout register �le
and using di�erent register alignment schemes: �xed alignment based on register num-
ber (reg_alignment), write interleaved alignment (wr_alignement), and an ideal alignment
(ideal_alignment).

35.9%

35.7%

38.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment

Figure 3.22: Percentage of operand collectors write reduction with a wid_layout register
�le and using di�erent register alignment schemes: �xed alignment based on register entry
number (reg_alignment), register interleaved alignment on writes (wr_alignement), and an
ideal alignment (ideal_alignment).

by 31.8% on average which is about the same reduction achieved using wr_alignement and

within 2% of what an ideal alignment may have achieved. On the operand collectors, our

66

31.8%
30.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

P
e
rc
e
n
ta
ge

reg_wid_layout wr_wid_layout reg_wshift_layout wr_wshift_layout

Figure 3.23: Percentage of register �le access reduction comparison between two di�erent
register �le layouts: wid_layout and wshift_layout using two register alignment schemes:
�xed alignment based on register number (reg_*) and write interleaved alignment (wr_*).

design was able to reduced write accesses by 35.9% on average compared to 35.7% achieved

using (wr_alignement) and it is within 3% from an ideal register alignment.

Our design is not limited on using a speci�c register �le layout for register coalescing to

be supported. In fact, our design can support any register �le layout as it supports register

coalescing within a register �le bank and also across two di�erent banks. In Fig. 3.23 we

compare the percentage reduction achieved on register �le bank accesses for the two layouts

shown Fig. 3.10, wid_layout and wshift_layout. The �gure shows that the two layouts are

within 1.5% of each other with the access reduction achieved with wshift_layout is about

30.5% on average.

3.7.3 Register File Bandwidth Increase

As our design is capable of combining narrow-width access requests to fewer physical

requests, register �le and operand collectors bandwidth is consequently improved. Fig. 3.24

and Fig. 3.25 show the percentage of bandwidth improvement on register �le banks and

operand collectors compared to the baseline, respectively.

With �xed register alignment, our design is able increase the register �le bandwidth by

67

49.5%

49.4%

53.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment

Figure 3.24: Percentage of register �le bandwidth increase with a wid_layout register �le
and using di�erent register alignment schemes: �xed alignment based on register num-
ber (reg_alignment), write interleaved alignment (wr_alignement), and an ideal alignment
(ideal_alignment).

58.3%

57.7%

64.1%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment

Figure 3.25: Percentage of operand collectors bandwidth increase with a wid_layout register
�le and using di�erent register alignment schemes: �xed alignment based on register entry
number (reg_alignment), register interleaved alignment on writes (wr_alignement), and an
ideal alignment (ideal_alignment).

49.5% and the operand collector bandwidth by 58.3% on average. The �gures show that the

percentage of bandwidth increase we are able to achieve with low-cost design falls within 4%

68

and 6% of an ideal register alignment for register �le and operand collectors, respectively.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

baseline_bw reg_bw_inc ideal_bw_inc

Figure 3.26: Percentage of used register �le bandwidth showing the bandwidth increase
from register coalescing using a �xed register alignment (reg_bw_inc) and an ideal register
alignment (ideal_bw_inc) over the baseline bandwidth (baseline_bw).

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

baseline_bw reg_bw_inc ideal_bw_inc

Figure 3.27: Percentage of used operand collector bandwidth showing the bandwidth increase
from register coalescing using a �xed register alignment (reg_bw_inc) and an ideal register
alignment (ideal_bw_inc) over the baseline bandwidth (baseline_bw).

69

We provide another view of the bandwidth improvement our design is able to achieve in

Fig. 3.26 and Fig. 3.27. The �gures show the percentage of used bandwidth for register �le

banks and operand collectors in the baseline design (baseline_bw), the average incremental

bandwidth our design is able to achieve (reg_bw_inc), and the further improvement we may

achieve with near-ideal register alignment mechanism (ideal_bw_inc) which is within 4% to

6% as we just mentioned.

49.4%
47.3%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

reg_wid_layout wr_wid_layout reg_wshift_layout wr_wshift_layout

Figure 3.28: Percentage of register �le bandwidth increase comparison between two di�erent
register �le layouts: wid_layout and wshift_layout using two register alignment schemes:
�xed alignment based on register number (reg_*) and write interleaved alignment (wr_*).

Fig. 3.28 compares the bandwidth improvement achieved by our coalescing-aware design

for the two register �le layouts: wid_layout and wshift_layout. The two layouts are within

2% with bandwidth improvement achieved using wshift_layout averaging about 47.3% com-

pared to the baseline.

3.7.4 Register File Coalesced Access

Our design supports register coalescing for read requests from same or di�erent warp

instructions, write requests, and also read and write requests contending on register �le

70

63.7%

9.7%

26.5%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

rd-rd wr-wr rd-wr

Figure 3.29: Breakdown of register �le coalesced accesses with a wid_layout register �le:
Read-Read coalesced accesses (rd-rd), Write-Write coalesced accesses (wr-wr), and Read-
Write coalesced accesses (rd-wr).

48.3%
63.7%

13.5%

9.7%

38.2%
26.5%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
ge

rd-rd wr-wr rd-wr

Figure 3.30: Breakdown of register �le coalesced accesses with a wshift_layout register �le:
Read-Read coalesced accesses (rd-rd), Write-Write coalesced accesses (wr-wr), and Read-
Write coalesced accesses (rd-wr).

banks. Fig. 3.29 shows the breakdown of register coalesced requests served by register �le

banks. The majority of coalesced accesses are of read type which represents 63.7% of all

coalesced accesses. Coalesced writes represents 9.7% and the mixed reads and writes coa-

71

lescing represents 26.5%. In Fig. 3.30, the same breakdown of coalesced requests is shown

for a wshift_layout register �le. The �gure shows, with this layout, more write requests are

getting coalesced compared to wid_layout. The percentage of write-write coalesced requests

is increased to 13.5% and the percentage of read-write coalesced requests signi�cantly in-

creased to 38.2%. As we will show, reducing the number of write requests has higher e�ect

on performance than reducing read requests since it allows for data-dependence requests to

be ready and issue faster into the execution pipeline than before.

3.7.5 IPC Performance Speedup

15.3%

15.2%

17.5%

25.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment upper_bound

Figure 3.31: Percentage of overall IPC speedup in GPU with a wid_layout register �le
and using di�erent register alignment schemes: �xed alignment based on register num-
ber (reg_alignment), write interleaved alignment (wr_alignement), and an ideal alignment
(ideal_alignment) compared to the upper bound (upper_bound).

One of the primary objectives of our new register �le design is to achieve IPC perfor-

mance speedup for general purpose applications on the GPU. Our design enables register

coalescing that reduces the number of register �le read and write accesses, reduces register

�le pressure and port con�icts, and improve access bandwidth which all lead to an overall

IPC performance enhancement.

72

15.2%

16.5%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

P
e
rc
e
n
ta
ge

reg_wid_layout wr_wid_layout reg_wshift_layout wr_wshift_layout

Figure 3.32: Percentage of overall IPC speedup comparison between two di�erent register
�le layouts: wid_layout and wshift_layout using two register alignment schemes: �xed
alignment based on register number (reg_*) and write interleaved alignment (wr_*).

Fig. 3.31 shows that the IPC speedup our coalescing-aware register �le design is able to

achieved using a wid_layout and a �xed register alignment (reg_alignment) is about 15.3%

compared to the baseline. The low-cost alignment scheme used in our design gives a decent

speedup compared to an ideal alignment which gives only 2.2% additional speedup. The

upper_bound value of 25% IPC speedup represents the micro-architectural limit our design

can reach given that register �le requests are all coalescable and no coalescing opportunity

is lost due to registers size or alignment.

Fig. 3.32 shows the IPC seedup our design is able to achieve with a wshift_layout com-

pared to wshift_layout register �le. The �gure shows that our design with a wshift_layout

register �le outpaces the other layout and achieves the highest IPC speedup of 16.5% on

average. The maximum speedup seen is about 27% on KMEANS and the minimum is about

4% on NW.

3.7.6 Dynamic Energy Reduction

Improving energy e�ciency in the GPU is one of the primary objectives of our new

coalescing-aware register �le design. With the signi�cant IPC speedups achieved, general-

73

31.1%

31.1%

31.8%

34.3%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

P
e
rc
e
n
ta
ge

reg_alignment wr_alignment ideal_alignment upper-bound

Figure 3.33: Percentage of overall dynamic energy reduction in GPU with a wid_layout
register �le and using di�erent register alignment schemes: �xed alignment based on register
entry number (reg_alignment), register interleaved alignment on writes (wr_alignement),
and an ideal alignment (ideal_alignment) compared to the upper bound (upper_bound).

31.1%

32.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

P
e
rc
e
n
ta
ge

reg_wid_layout wr_wid_layout reg_wshift_layout wr_wshift_layout

Figure 3.34: Percentage of overall dynamic energy reduction comparison between two di�er-
ent register �le layouts: wid_layout and wshift_layout using two register alignment schemes:
�xed alignment based on register number (reg_*) and write interleaved alignment (wr_*).

purpose applications have faster runtime making the GPU more energy e�cient. Fig. 3.33

shows the percentage reduction of overall dynamic energy in the GPU using our coalescing-

aware register �le. With a wid_layout register �le and a �xed register alignment scheme

74

based on register entry number (reg_alignment), our design is able to reduce the GPU dy-

namic energy by 31.1% on average. The achieved energy reduction with the low-cost register

alignment scheme is roughly the same compared to wr_alignement and the ideal_alignment

results with an upper limit of 34.3% of energy reduction on average.

Fig. 3.34 shows that our design provides more energy e�ciency when the wshift_layout

register �le is used. The �gure shows an average of 1.1% additional energy reduction is

achieved over the wid_layout register �le which brings the highest reduction achieved to

32.2% on average. The same energy reduction is achieved using the two register alignment

schemes: reg_alignment and wr_alignement.

3.7.7 Result Summary

Metric CORF CORF++ Our Design
Layout-1

Our Design
Layout-2

IPC speedup 4% 9% 15.3% 16.5%

Dynamic energy reduction 8.5% 17% 31.1% 32.2%

RF access reduction 10% 23% 31.8% 30.5%

Table 3.7: Summary of results achieved by our design compared with CORF design.

Table 3.7 summaries the IPC speedups and energy e�ciency our design is able to achieve

compared to the high cost CORF design. These results along with the overhead comparisons

listed in Table 3.4 clearly show that our coalescing-aware design is far superior to CORF

design in all aspects including design cost and complexity, register �le access reduction, IPC

performance speedups, and dynamic energy e�ciency.

3.8 Conclusion

In this work, we introduced a new coalescing-aware register �le design to improve IPC

performance and energy e�ciency in GPGPU. Our design supports register coalescing for

75

narrow-width read and write requests targeting di�erent registers within a register �le bank.

It also supports coalescing read requests from the same warp instruction accessing di�erent

banks. Compared to CORF design, our design provides higher register coalescing capabilities

at a much lower cost and complexity. On general-purpose benchmarks from Rodinia suite,

our design reduced register �le and operand collector accesses on average by 31.8% and

35.9%, respectively. It improved register �le and operand collector bandwidth on average

by 49.5% and 58.3%, respectively. And provided a 16.5% IPC performance speedup and a

32.2% dynamic energy reduction on average.

76

4. EXPLOITING ZERO DATA TO REDUCE REGISTER FILE AND EXECUTION

UNIT DYNAMIC POWER CONSUMPTION IN GPU

4.1 Introduction

As we mentioned in Chapter 1, earlier power analysis showed that the register �le and

the execution units are the most power consuming components in GPUs. In this chapter, we

focus on reducing dynamic power consumption for these two components without impacting

GPGPU applications performance by proposing gating techniques that take advantage of

under-utilized warps and the high percentage of zero data that exist in general-purpose

applications running on the GPU.

4.2 Motivation

In this section, we present results from compute-intensive (GPGPU) benchmarks in order

to show potential dynamic power savings in register �le and execution units in GPGPUs.

For these experiments we examine GPGPU benchmarks from the Rodinia benchmark suite

[20] and obtained the experimental results by running those benchmarks on the GPGPU-sim

v3.2 simulator [21].

Inactive threads: In GPUs a warp is considered the smallest amount of work which

may be dispatched into the execution pipeline in a given cycle. Warps consists of 32 threads

executing in a SIMD pipeline in a lock-step fashion. A warp could either be fully utilized by

having all 32 threads executing the same instruction or it may have some inactive threads

that do not execute or produce results.

One reason to have warps with inactive threads is the presence of divergent �ows in

general-purpose workloads. A branch instruction may cause some of the threads in a warp

to diverge into the taken path and while the rest of the threads execute the non-taken path.

GPUs use predicated execution of threads in a warp on both taken and non-taken paths.

Another cause of inactive threads is that general-purpose workloads may always evenly split

77

23%

68%

9%

inactive rf-write no-rf-write

(a)

20%

21%

15%

14%

30%

0 8-bit 16-bit 24-bit 32-bit

(b)

Figure 4.1: GPGPU application warp thread statistics: (a) Percentage of warp threads in an
inactive state, active and writing to register �le, and active but not writing to register �le.
(b) Percentage of warp thread results with zero and non-zero values that can be represented
with 8, 16, 24, and 32 bits.

into a multiple of 32 threads to fully utilize the SIMD execution pipeline. This limitation

would result of having under-utilized warps being dispatched during program execution.

Fig. 4.1a shows statistical measurements on threads during program execution averaged

across all benchmarks we used. We found that the percentage of inactive threads in warps

that were dispatched for execution is about 23% on average. Note that, each warp still

accesses the register �le to read operands for all 32 threads and also enables all 32 lanes for

threads execution regardless of having some threads in an inactive state.

In-lane zero data: The register �le is one of the largest components of the GPU

and consumes more than 15% of the total dynamic power. We examined the data values

produced in our experimental simulation runs to look for power savings opportunities in the

register �le. We speci�cally measured how many times warp threads produced 32-bit results

with a zero value. The zero values can be the result of executing arithmetic instructions or

performing memory load instructions.

Fig. 4.1b shows that warp threads executed using one or more operands of 32-bit zero

data 20% of the time on average across the benchmarks used. This high percentage of zero

78

data is still written and read from the register �le and therefore adds to the register �le

dynamic power. This high amount of zero data represents an opportunity for energy savings

as a 32-bit zero can be represented by a single meta data bit, allowing register �le accesses

to read and write those 32-bit zero values to be avoided.

The presence of zero data in a program gives another opportunity to save dynamic power

in execution units. When a thread executes an arithmetic instruction with one of its operands

having a value of zero, simple arithmetic operations such as multiply and add become triv-

ial. By detecting such trivial operations dynamically during program execution, instruction

execution for threads having zero operands can be avoided to further save dynamic power.

Low dynamic range: In our experimental study, we also measured the dynamic range

of data values produced in each benchmark. The dynamic range gives an indication of how

many bits can be used to correctly represent each data value without any loss of information.

Fig. 4.1b shows that only 30% of inlane data values produced by warp threads require the

full 32-bit range to be represented. The rest of non-zero data values can be e�ectively

represented by fewer bits with upper bits being zero. We used the term low dynamic range

in this context to refer to those data values that have zeros in their upper or most signi�cant

bits1.

In our study of the data values often used in GPGPU applications, we found that often

when a given execution lane's operands have a low dynamic range, this low range extends to

the operands in other, adjacent lanes. The presence of such low dynamic range data values

raises an opportunity to further reduce register �le access power. As the data result in each

4-byte lane has one or more of its upper bytes as zeros, data from adjacent lanes can be

arranged in a way that the zero bytes from each lane are grouped together to form groups

of 4-byte zero values.

As we will show, those 4-byte zero values that present after data arrangement can be

annotated via a couple bits of metadata, eliding the need to write into the register �le,

1Note, there may be further gains to be had for low dynamic range data where the lower bits are also not

fully utilized, we leave this for future work.

79

Bank 0

Bank 1

Bank 15

Collector 0

Collector 1

Collector 15

Mask
Buffer

RR

Mask
Generation

2
x2

 s
w

it
ch

e
s

2
x2

 s
w

it
ch

es

1
6

x1
6

 c
ro

ss
b

ar

Warp
Scheduler

B
an

k
A

rb
it

er

o
o

o

o
o

o

Mask
Gating

Mask
Gating

Mask
Gating

Mask
Gating

SIMD EXE
32 Lanes

Warp ID Op-code Threads Active Mask (32-bit)

Src1 Valid Reg Idx Ready Zero Mask + R bits (40-bit) Value (128 Bytes)

Src2 Valid Reg Idx Ready Zero Mask + R bits (40-bit) Value (128 Bytes)

Src3 Valid Reg Idx Ready Zero Mask + R bits (40-bit) Value (128 Bytes)

Figure 4.2: GPGPU main register �le and execution pipeline with added components for
power reduction highlighted.

similar to our approach for the in-lane zero data. Care must be taken, however, as must be

reverted back into the original form when it is read by younger instructions.

4.3 Reducing Register File Dynamic Power

As mentioned in previous sections, the register �le and its associated logic consume more

than 15% of the total dynamic power. The baseline register �le, shown in Fig. 4.2, is divided

into 16 banks and has arbiter logic to steer read and write requests into the appropriate banks

and to resolve bank con�icts among those requests. Each operand collector that holds an

issued warp instruction can have up to three operands to read from the register �le. The

read requests are sent to the arbiter and each of which selects one bank to access. The

arbiter prioritizes the read requests such that each bank can serve one read request at a time

and each operand collector can capture one operand data at a time. The read data from the

16 banks are sent to the operand collectors using a 16 × 16 cross bar connecting network.

80

B[15:12] B[11:8] B[7:4] B[3:0]

R 0 1 1 0

1 1 0 14-bit Active Mask

4-bit zero Mask
With Re-order bit

0 B[11:8] 0 0

DisableDisableEnableDisable

Selected
Register entry

Read data

Figure 4.3: Usign the thread active mask and operand zero mask to gate o� register �le read
access to the �rst four threads in a warp register.

The arbiter is also used to steer write requests from the execution units into the appropriate

banks and resolve any con�icts that may occur among those requests.

In the remainder of this section we present the following mechanisms to reduce register �le

dynamic power without incurring any performance loss in GPUs for GPGPU applications.

4.3.1 Using the Thread Active Mask

When a new warp is issued by the warp scheduler, it is assigned an operand collector

unit to collect all valid operands from the register �le that the warp instruction requires

before it starts to execute on those operands. Depending on the instruction type, the warp

instruction may request to read up to three operands from the register �le and each operand

is 32×4-byte long to feed the 32 threads in the warp where each thread gets a 4-byte slice of

the operand data. In general purpose compute applications, control divergence causes warps

to be under-utilized with some of their threads in an inactive state. The inactive threads are

considered do-not care as their results are not captured in the register �le, however, they are

still consuming dynamic power when accessing the register �le to read their source operands.

To reduce register �le dynamic power, we used the built-in thread active mask associated

81

with every warp to control its access to the register �le. The active mask has one bit per

thread to indicate whether the thread is active, and therefore, needs to execute or it is turned

o� due to control divergence and would be discarded. The thread active mask is captured

in the operand collector along with other decoded information about the warp instruction

such as operation type and valid operands to read from the register �le as seen in Fig. 4.2.

On every read access to the register �le, the thread active mask is used to gate o� accesses

made by inactive threads. In our register �le organization, the 128-byte warp register consists

of 32 thread registers and each thread register is controlled separately using one bit from the

thread active mask associated with that thread. A thread register read is performed when

the active bit for a given thread is non-zero. Otherwise, the output bus will have a zero

value by default. Fig. 4.3 shows how the active mask is used on threads 0 to 3 to control

their read access. All thread registers within a warp register represents a single entry in one

of the register �le banks and they are all accessed at the same clock cycle. The read output

is then routed into the requesting operand collector through a cross bar switch and the valid

operand is marked ready in the operand collector.

4.3.2 Using the In-lane Zero Mask

As mentioned in previous sections, there is a high percentage of zero data produced

by warp threads in the general purpose computer applications we studied. In our baseline

model, every thread in a committing warp writes its result back into the main register �le

in the write-back stage without any consideration of whether the value being written is zero

or not. The 32-bit zero values produced during program execution add to the register �le

dynamic power on every write or read made by warp threads.

We took advantage of the inlane zero values found in general purpose applications to

reduce register �le dynamic power by capturing the zeros produced by warp threads in a

separate bu�er structure and avoid writing them into the register �le. The 32-bit zero value

can be represented via a single bit of metadata without any loss of information, and therefore,

the bu�er to capture those zero values would be small in size. For a committing warp with

82

B15 B14 B13 B12

B11 B10 B9 B8

B7 B6 B5 B4

B3 B2 B1 B0 0

1

1

1

0 0 1 1

Mask1

Mask2

R 0 0 1 1

New Mask

Result Data (Lanes 0-3)

Reg R Value

0 0 1 1 1 1

1 1 0 0 0 0

… … … … … …

N-1 0 1 1 1 1

Mask Buffer

ZDZDZDZD

In-lane zero detection

C
ro

ss
-l

an
e

 z
er

o
 d

et
ec

ti
o

n

ZD

ZD

ZD

ZD

Select Mask
Generate R bit

Re-order bit

Figure 4.4: Generating the zero mask from data result produced by four execution lanes.

32 threads, each thread will have a single bit to indicate whether the thread's result is zero

or not. Those bits from the 32 warp threads form a 32-bit zero mask that is captured in a

separate bu�er we called the Mask Bu�er.

Fig. 4.4 shows the zero mask generation using in-lane data produced by four execution

lanes. In write-back stage, we added a zero detection logic (ZD) to generate a mask bit for

every 32-bit result produced by warp threads. When writing the warp result into the main

register �le, the generated 32-bit zero mask is used to gate o� threads from writing their

zero data into the register �le. As the zero data is now captured in a compact form in the

zero mask, the mask needs to be saved as it carries architectural states. Therefor, the zero

mask is written into a per-warp bu�er indexed by the warp destination register number.

When a new warp is issued into a collector unit, the mask bu�er is accessed for every

source operand to retrieve the zero mask value for that operand. As shown in 4.2, the zero

mask is captured in the operand collector along with the operand index. When the register

�le read is performed for a given warp, the zero mask is used to gate o� reads from thread

83

registers within the accessed warp register that would otherwise have a zero value written to

them as shown in 4.3. We made our design such that the gated thread register reads would

return zero by default. The read value for all threads within the warp including the gated

ones is written into the operand collector and the source operand is then marked as ready.

Using the zero mask can be considered a form of data compression where a 32-bit zero

data is captured by only 1-bit. Capturing this compressed information in a separate low-

power structure allowed us to reduce the register �le access power that is consumed to read

and write zero data.

4.3.3 Using the Cross-lane Zero Mask

The execution pipeline for every warp thread in a GPU is 32-bits wide and is referred to

as an execution lane. In each lane, a thread operates on a number of 32-bit wide operands

and produces a 32-bit result. In general purpose applications, data values produced by warp

threads sometimes have a small dynamic range which means that those data values can be

represented by fewer than 32 bits with no loss of information. A 4-byte thread result may

have one or more of the most signi�cant bytes as zeros. In the case that the resulted 4-byte

data for a given thread are all zeros, the result will not be written into the register �le

but instead the zero information is captured by the zero mask as presented in the previous

section. For other non-zero result cases, despite having some of the upper bytes in a thread

result as zeros, the whole 4-byte thread result from one execution lane is still written into

the register �le.

The same zero masking mechanism we applied on the register �le earlier to reduce its

dynamic power consumption is leveraged for the case of small dynamic range results. To

do so, we arranged data bytes within groups of four execution lanes such that bytes that

have the same byte-position in each group result are placed together. Using this technique,

the presence of small dynamic range values in the original result may produce a re-ordered

result having four zero-bytes that can be captured only by using the zero mask which would

avoid writing those zeros into the register �le. With this data re-ordering technique, we

84

B
15

B
14

B
13

B
12

2x2 switches (6 per 4 lanes)

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

B
12

B
8

B
4

B
0

B
13

B
9

B
5

B
1

B
14

B
10

B
6

B
2

B
15

B
11

B
7

B
3

Re-order
Valid (R bit) = 1

Figure 4.5: Data re-ordered in byte-position form to take advantage of low dynamic range
values for power reduction.

have covered more data values produced in general purpose applications to help reduce the

register �le dynamic power even further. The zero mask generation using cross-lane data is

presented in Fig. 4.4.

We clustered execution lanes into multiple groups with each group having 4 lanes. In each

group, data bytes are ordered such that each four bytes that have the same byte-position

are grouped together. That is, the least signi�cant byte (byte number 0) in each and every

lane will form the �rst 4-byte of the ordered result, bytes number 1, when grouped together,

form the second 4-byte of the result and so forth. Notice that this allows the most signi�cant

bytes, which are zeros in small dynamic range results, to be grouped together to form 4-byte

of zero values which are used to gate o� register �le access and help reduce its dynamic

power.

4.3.4 Dynamic Zero Mask Selection

To support both in-lane and cross-lane zero mask generation, we integrated the two

techniques, as shown in Fig. 4.4, such that the resulted zero mask is selected dynamically

from one of the two techniques based on which of their generated zero masks has a higher

number of zeros, and therefore, provides more power savings on register �le access. To do

this, we used a zero detection logic on both in-lane and cross-lane data and added a counter

85

to count how many zeros each mask has.

A zero mask is dynamically selected based on the counters result. Each group of four

lanes makes this selection process independently. If the cross-lane zero mask is selected, the

result data would need to be arranged based on byte-position order as explained in the prior

section. We added six 2× 2 switches that are controlled by a bit we called the Reorder Bit

or the R-bit. This bit is set if the cross-lane mask is selected and the result data needs to

be re-ordered. Otherwise, the result data stays in same order as in its original form. Fig.

4.5 shows how data is re-ordered when the R-bit is set. The R-bit is saved in the mask

bu�er along with the zero mask for the destination register being written. The result data,

after passing through the re-ordering switch, is written into the register �le. We used the

same zero masking technique to gate o� register �le accesses that supports both in-lane zero

masks in which we detect 4-byte zero result within execution lanes and the cross-lane masks

in which we detect zero bytes in data result across a group of adjacent lanes.

4.4 Reducing Execution Unit Dynamic Power

As mentioned earlier, one of the largest components of GPU dynamic power comes from

the SIMD execution units. To help reduce dynamic power consumption, we used a mask

gating technique similar to that which we incorporated into the register �le, which has no

performance impact. As the divergent �ow present in general purpose (GPGPU) programs

forms under-utilized warps, the thread active mask can be used to gate o� execution lanes

for inactive threads found in a warp. The presence of zero data in source operands for a

given thread gives an opportunity to gate o� the thread execution for cases which result in

Trivial Operations. Fig. 4.6 shows the mechanism used in gating the execution units.

4.4.1 Using the Active Thread Mask

The control divergence statements in an application program such as if-else statements

cause under-utilized warps to be formed. On either path of the control divergence (taken

or not-taken paths), only threads that pass the divergence condition will execute and the

86

Thread execution
pipeline

Src2Src1Op-code

Src1 zero bit
Src2 zero bit
Src3 zero bit

Active bit

Trivial Op?
Inactive?

Res Mux

Select
trivial result

Gate off
execution

32-bit result

Operands Collector

Src3

Figure 4.6: Power reduction for one execution lane using thread active mask bit and operands
zero mask bits.

remaining threads will be treated as do-not care and their results will be discarded. For every

warp, we captured its thread active mask in the collector unit along with source operands

used and instruction decoded signals. When all operands are read from their register �le

and marked ready in the collector unit, the warp arbitrates with other ready warps to be

issued into the SIMD execution pipeline. In our baseline design, an arbiter is used to select

the oldest ready warp to issue next into the execution pipeline.

When a warp is issued into the execution pipeline, we used the thread active mask to gate

o� execution lanes for inactive threads in the warp. This involves gating o� pipeline staging

for all operands and results except for control signals such as the threads active mask. When

the warp reaches the write-back stage, the zero mask will be generated by performing the

zero detection on the warp result generated by all 32 execution lanes. However, for inactive

87

threads, the zero mask bits corresponding to those threads will not be updated since those

threads will not modify the data that already exist in their destination registers. Active

threads, on the other hand, will have their zero mask bits updated based on their result

which control their write into the main register �le.

4.4.2 Using the Operand Zero Masks

Some operations done by warp threads are trivial, particularly when performing arith-

metic or logical operations on zero operand values. In this work, we categorize an operation

as trivial if at least one of its operands is zero and its �nal result is either zero or equal

to one of its source operands. As an example, multiplying or adding a zero operand with

a non-zero operand, the result would be zero for the multiply operation and equals to the

non-zero operand for the addition. The presence of such trivial operations in general pur-

pose compute applications can be geared toward reducing execution unit dynamic power by

avoiding their execution.

To detect if a thread has a zero operand, we used the zero mask bit corresponding to

that thread which is captured in the operands collector unit. When a warp is selected to be

issued into the execution pipeline, we used the zero mask bits for each thread operand and

the instruction type (or class) to determine whether a trivial operation is to be performed

by that thread or not. We also generate a result selection signal for every thread in the warp

to select the �nal result of the trivial operation which would equal to either a zero value or

one of the thread instruction operands.

When a trivial operation is detected for a given thread, the execution pipeline will be

gated o� except for the control signals used for that thread. This is similar to the inactive

thread gating mechanism mentioned earlier except that in this case a result is still need to

be generated by the thread that is turned o�. In the last stage of the execution pipeline,

the generated result selection signal is used to select the �nal result of that thread operation

from either a zero or one of the source operands. The �nal result muxing in the last pipeline

stage is expanded to support such trivial operations.

88

4.5 Evaluation

To evaluate our proposed techniques for register �le and execution units dynamic power

savings, we used GPGPU-Sim version 3.2 [21] and measured dynamic power consumption

using GPU-Wattch [7]. We used a GPGPU model similar to Nvidia Maxwell GTX980 [39]

with con�guration parameters listed in table 4.1 and used the Rodinia benchmark suite [20]

which consists of general purpose benchmarks that target GPU platforms.

Parameter Name Value

Number of SMs 16
Number of partitions (cores) 4 per SM
Number of Warps 64 per SM
SIMD lanes width 32
Register �le size 256 KB per SM
Register �le banks 16
Register �le width 128 B
Operand collectors (OCs) 16 per SM core
Warp scheduler 2-level, 1 per SM core
Streaming Processing Units (SPU) 32 per SM core
Special Functional Units (SFU) 8 per SM core
Load/Store Units (LDST) 8 per SM core
L1 cache size 16 KB per SM
Shared memory size 96 KB per SM

Added mask bu�er size 2.25 KB per SM core
Added mask �elds in OC 152 bits per OC

Table 4.1: GPU con�guration parameters.

The proposed power reduction techniques have low area and power overhead. For zero

mask generation, we added a zero detection logic which produces a bit mask for every 32-bit

execution lane. The size of the mask bu�er, which is used to save the generated 32-bit zero

masks, is about 1/32 of the size of the register �le. We added new �elds in each operand

collector to capture the threads active mask and the operands zero masks. We also added

89

2× 2 switches for data ordering to support cross-lane zero gating. We estimated the power

overhead of the proposed techniques to cost about 3% of the register �le dynamic power and

about 1% of the total GPGPU power.

4.5.1 Register File Power

0%

20%

40%

60%

80%

A
cc

e
ss

 R
e

d
u

ct
io

n

inactive_gating zero_gating (in-lane) zero_gating (cross-lane)

Figure 4.7: Register �le access reduction for read requests using power savings techniques:
access reduction using threads active mask (inactive_gating), in-lane operands zero masks
(zero_gating(in-lane)), and operands zero masks with data re-ordering(zero_gating (cross-
lane)).

In this section we present the dynamic power reduction in the GPGPU register �le that

we were able to achieve using the power reduction techniques presented earlier in Section

4.3. In the �rst technique, we applied the threads active mask to gate o� reads and writes

for inactive threads in a warp. The second technique involves using the generated zero mask

to a void reading and writing zero data from the register �le which instead is captured in

the zero mask bu�er. In the last technique, we expanded the use of the zero mask gating to

cover low dynamic range data by re-ordering the data bytes in a warp result to group bytes

with same byte-position together to potentially form a number of 4-byte zeros that can be

suppressed from writing into the register �le.

90

0%

20%

40%

60%

80%

A
cc

e
ss

 R
e

d
u

ct
io

n

inactive_gating zero_gating (in-lane) zero_gating (cross-lane)

Figure 4.8: Register �le access reduction for write requests using power savings techniques:
access reduction using threads active mask (inactive_gating), in-lane operands zero masks
(zero_gating(in-lane)), and operands zero masks with data re-ordering(zero_gating (cross-
lane)).

Fig. 4.7 and Fig. 4.8 show the reduction in register �le read and write accesses when

applying the power saving techniques we just mentioned, respectively. Using only threads

active mask to gate o� register �le accesses, the number of reads and writes made into the

register �le were reduced by an average of 15% and 14% of the baseline values, respectively.

For the zero mask gating techniques, we show the access reductions from in-lane and cross-

lane zero mask gating separately. The in-lane zero gating technique reduced the register �le

access further by 15% for reads and 19% for writes, on average. The cross-lane zero mask

gating which involves data reordering provides more reductions on register �le accesses.

Using the techniques combined, the overall reduction in register �le accesses achieved were

50% for reads and 54% for writes of the baseline values. The highest access reductions were

seen on GAUSSIAN and KMEANS benchmarks due to high control divergence in the former and

high percentage of zeros in the latter.

Fig. 4.9 shows the dynamic power savings in the register �le when applying the afore-

mentioned power saving techniques. The overall register �le power reduced to about 73%

of the baseline on average. From the 27% dynamic power reduction, the active mask gating

91

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rc
e

n
ta

ge

inactive_gating zero_gating (in-lane) zero_gating (cross-lane)

Figure 4.9: Dynamic power reduction in GPGPU register �le contributed by power reduc-
tion techniques using threads active mask (inactive_gating), in-lane operands zero masks
(zero_gating (in-lane)), and operands zero masks with data re-ordering (zero_gating (cross-
lane)).

contributed to about 8%, the in-lane zero mask gating achieved an additional 9%, and �nally

the cross-lane zero gating added 10% more power savings. Note that these power reduction

techniques were applied on the register �le macros which consumes about 70-75% of the total

register �le power. Other components in the register �le such as the cross bar network and

the operand collector units did not bene�t from such power gating techniques.

The power reduction from gating inactive threads varies between benchmarks with the

highest reductions found in GAUSSIAN and NW benchmarks due to high thread divergence

available in these benchmarks. In turn, this makes the contributions of zero gating in these

high divergent benchmarks, which only applies to active threads, much less compared to

low divergent benchmarks as in KMEANS and PATHFINDER which bene�ted most by the zero

gating techniques.

4.5.2 Execution Units Power

As mentioned earlier, the execution units are considered one of the largest components in

GPGPU and consumes about 20% of the total dynamic power. To help reduce their dynamic

92

0%

5%

10%

15%

20%

25%

30%

35%

P
e
rc
e
n
ta
ge

inactive_gating zero_gating

Figure 4.10: Dynamic power reduction in GPGPU execution units contributed by power
reduction techniques using threads active mask (inactive_gating) and trivial operations han-
dling using operands zero masks (zero_gating).

power consumption, we proposed two power saving techniques. The �rst technique uses the

threads active mask to gate o� execution pipelines for inactive threads found in a warp. And

the second technique uses the operands zero masks to identify trivial operations and directly

supply their �nal results without executing them to save dynamic power. We limited the

scope of the trivial operations to the ones that have zero operands as we re-used the zero

masks that are available in the operand collector. Also the generation of the �nal result of

such trivial operations is simpli�ed to only a multiplexer logic that is easily integrated in

the execution data path. We accounted for the power of the added gating logic and data

multiplexing in our results.

In Fig. 4.10, we show the dynamic power reduction in execution units using the power

saving techniques we proposed. Gating o� execution pipelines for inactive threads found in

warps reduced dynamic power consumption by about 6% compared to our baseline which has

no power gating techniques enabled. Disabling trivial operations through the use of operand

zero masks achieved an additional 13% power reduction. Overall, by enabling both power

saving techniques we proposed, the dynamic power for the execution units were reduced to

93

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

P
e

rc
e

n
ta

ge

RF gating EX gating

Figure 4.11: Dynamic power reduction in total GPGPU chip power contributed by power
reduction techniques applied to the register �le (RF gating) and the techniques applied to
the execution units (EX gating).

about 81% of the baseline measured values on average across all benchmarks used.

As we applied our gating techniques on arithmetic execution units, the power reduction

bene�ts may vary in benchmarks as the percentage of arithmetic type instructions available

in these benchmarks varies. The highest power reduction in execution units seen is 68% for

the GAUSSIAN benchmark which bene�ted most from the inactive threads gating. Avoiding

execution of trivial operations gave signi�cant power reductions in SRAD, CFD, and KMEANS

benchmarks.

4.5.3 GPGPU total Power

In this work, we focused on two large components in GPGPU which consume over one-

third of the total chip dynamic power. We proposed practical power reduction techniques

that have no performance impact to help reduce their dynamic power consumption. As

shown earlier, we were able to reduce the register �le power by about 27% and the execution

units power by about 19%. In Fig. 4.11 we show the contribution of power savings made

on each component on the overall GPGPU dynamic power. The register �le power savings

techniques were able to achieve a 4% average reduction of the total chip dynamic power. The

94

techniques we used in execution units contributed to about the same amount of power savings

to bring the total power reduction in the whole GPGPU chip to about 8% on average.

4.6 Related Work

Signi�cant prior work exists in register �le power reduction for GPUs. Gebhart et al

proposed a small register �le cache (RFC) to capture short-lived registers which would reduce

read and write accesses to the main register �le [15]. Similar work that used an RFC with

software managed register prefetching is proposed by Sadrosadati et al [22]. A compile-time

managed register �le is proposed by Gebhart et al [23] which aims at reducing dynamic

power consumption. In this work, the register �le is partitioned into multiple levels and the

compiler is used to leverage its knowledge of registers usage to determine where to allocate

values across the register �le hierarchy. Similar work that used both a register �le cache and a

hierarchical register �le is proposed by Bailey et al [24]. A partitioned register �le is proposed

by Abdel-Majeed et al where less frequent accessed registers are placed in a slow register �le

that operates in a lower voltage and frequently accessed registers are placed in a small and

fast register �le [26]. The technique targeted both dynamic and leakage power reduction and

both compile-time and run-time pro�ling had to be made to collect register access statistics

needed. A uni�ed local memory structure with partitioning of capacity among register �le,

data cache, and scratchpad memory is proposed by Gebhart et al [25]. Kloosterman et

al proposed replacing the main register �le with a lower power operand staging unit [30].

Operands are allocated space in the staging unit using compiler annotations that determine

future registers usage. Registers are all kept in memory and fetched into the staging unit

when needed. Register renaming is done by Jeon et al to reduce the physical register �le

size and its power consumption [29]. All of these proposed power reduction techniques are

orthogonal and potentially complimentary to the zero gating techniques we proposed in this

work which rely on data values produced during programs execution as well as the status of

executing warps.

Data compression has been proposed by Lee et al for GPU register �les to reduce dynamic

95

power [31]. This work used the Delta-Base-Immediate (DBI) compression technique that

Pekhimenko et al proposed for data caches [32]. The DBI mechanism requires adding a

vector-wide adder-subtractor unit to compress data before writing to the register �le and

another adder-subtractor to de-compress the read data out of the register �le which has a

high area and power overhead. Another form of data compression is proposed by Liu et al to

handle scalar execution in GPGPU where duplicate values in thread registers are captured

in a separate scalar bu�er to save access power [33]. In this technique, data bytes in a result

are compared against a selected base value and bytes that are equal to the base are not

written into the register �le. This compression technique requires a large bu�er to save the

base values with a size of over 1/4 of the register �le and it also has a performance penalty of

about 2%. In contrast, the proposed techniques in this work have no performance overhead

and the size of the mask bu�er used is only 1/32 of the size of the register �le. Dusser et al

proposed a form of zero value compression for CPU data caches which added a Zero-Content

Augmented cache (ZCA) to capture null blocks presented in application programs to save

on storage resources available [40]. Abdel-Majeed et al aimed at reducing leakage power by

operating the register �le in di�erent power modes [27]. They also proposed using an active

mask gating on the register �le to reduce dynamic power consumption which is done on

128B entries using Divided Word Line (DWL) approach previously proposed by Yoshimoto

et al [28]. This is similar to the active mask gating technique we used on the register �le.

However, our proposed technique does not require any structural changes inside the register

�le macros. Also our masking technique is applied on both register �le and execution units.

Data-path slicing is proposed by Gilani et al to take advantage of low dynamic range values

that can be represented by 16 bits [36]. The 32-bit thread registers are also split into low

and high halves to be controlled separately which would reduce the dynamic access power.

The main objective of this work was to increase the warp issue rate by issuing two warps

with 16-bit data in same cycle which required modifying the warp scheduler and register �le

banking scheme. In our proposed techniques, we took advantage of 8, 16, and 24-bit values

96

to reduce register �le power without any updates made to the warp scheduler or how the

register banks are statically arranged.

4.7 Conclusion

In this work, we proposed power reduction techniques to help reduce register �le and

execution units dynamic power consumption in the GPU. Our work takes advantage of the

frequent zero data, narrow-width data, and under-utilized warps found in general-purpose

compute applications. Two types of gating masks are applied to the register �le and execution

units: the active-thread bit mask and the zero-operand bit masks. The proposed techniques

achieved a 27% reduction in register �le power and a 19% reduction in execution units

power. The overall power reduction in GPU was ∼8% for GPGPU workloads from Rodinia

benchmark suite. Our proposed techniques have low design overhead and required minor

micro-architectural changes to the GPU that have no performance impact.

97

5. MULTI-PROCESSOR FULL SYSTEM SIMULATION AND THE IMPACT OF

LINUX THREAD SCHEDULER

5.1 Introduction

As we mentioned in Section 1.3, this work focuses on the impact of system software (the

Linux kernel) on the behavior and correctness of simulation experiments performed on full

system simulation running multi-threaded applications. We show that, for the short runtimes

used in architecture research, the operating system thread scheduler does not behave as we

expected to provide load balance and fully utilize the simulated multi-core system. The

load imbalance in the simulated system leads to unpredictable and inconsistent simulation

results. We provide an update to the scheduler, for the use in architecture research, to

improve the consistency and correctness of multi-threaded applications that run on the full

system simulation environment.

5.2 Behavior of Thread Scheduler in Full System Simulation

As previously discussed, due to the extreme di�erential between simulation runtime and

real system runtime, typically small input sets are used in architecture research. We now

focus our attention on the behavior of the current Linux1 scheduler (the �Completely Fair

Scheduler� (CFS) [16] used in version 4.x) during these short-lived simulation experiments

and demonstrate how system software can in fact impact performance and correctness of

these experiments. To do so, we depict the behavior of the scheduler when running a multi-

threaded Canneal benchmark with a small input set on the gem5 full system simulator.

5.2.1 Thread Scheduling and Load Imbalance

Fig. 5.1 demonstrates the behavior of Linux scheduler when the Canneal benchmark

runs on the gem5 simulator. In this benchmark, a parent thread forks a number of child

1We focus on Linux here, as it is the OS typically used in architecture research. We note that similar

behavior can be found in other OSes.

98

Parent

T1

T3

T4

T7

Barrier

T1 T5

T2 T6

T3

T4

T7

Time

T1 T5

T2 T6

T3

T4

T7

T1 T5

T2 T6

T3

T4

T7

T2 T6

CPU

7

6

5

4

3

2

1

0

T5

Figure 5.1: Behavior of Linux scheduler for a multi-thread benchmark running on architec-
ture simulator.

threads while running on core 0 from the start of simulation. When all threads are forked,

the parent thread goes into the idle state until threads complete their work and all join at

the last barrier. Then the parent thread gets re-activated, reports the simulation result,

and �nally exits. The �gure shows a time-line running from left to right, with each row

representing a di�erent core within an 8-core system. Running threads are represented by

the green or red bars within a row. Since the number of software threads is no more than

the number of cores, one would expect each thread to be mapped into a distinct core. We

see in this example, however, that core 1 and core 2 have two threads each and the result of

this causes the simulation to run twice as long as it should.

There are two scheduling issues in this particular case which cause this load imbalance.

First, the scheduler overloads some of the cores with tasks while others are idle. Second, the

scheduler does not correct the imbalance in the system after it has happened. After a new

thread is initiated, the scheduler sequentially searches, with minimum e�ort, for an idle or

otherwise a light-weight loaded core in the system to map the new thread. Critically, this

search starts from the same core ID each time, taking into no account whether that core

has already had a given thread mapped to it in the recent past, only whether or not that

99

core is currently idle. We note that a core with threads in wait mode, perhaps due to a long

latency page fault or waiting on a barrier, will be viewed as �idle�. In this case, the scheduler

would map the new thread into this found-to-be idle core, thereby creating an unintentional

load imbalance in the system. In the �gure, we see that, because the parent thread is slowly

spooling out forked threads, by the time it is ready to fork o� thread 5, core 1 has become

idle because it hit a page fault. Thus instead of placing thread 5 on core 5, it is placed on

core 1. Similarly, thread 6 is placed on core 2.

5.2.2 Periodic Load balancing

Parent

T1

T3

T4

T7

Barrier

T1 T5

T2 T6

T3

T4

T7

Time

T1

T5

T2 T6

T3

T4

T7

T1

T5

T2 T6

T3

T4

T7

T2 T6

CPU

7

6

5

4

3

2

1

0

T5

Figure 5.2: Periodic load balancing done by Linux scheduler for a multi-thread benchmark
running on architecture simulator.

To address the adapting load per core, the OS periodically (approximately once every

30 ms) performs a load balancing operation on all cores to incrementally reduce the degree

of load imbalance and enhance applications performance. The heavy-weight system-wide

search is initiated by one core at a time in a sequential order to reduce contention and avoid

ordering complexity. Thus, one full iteration of the core balancing requires 30∗N ms, where

N is the number of cores. Unfortunately, because the system is not balanced it will often

100

end up migrating a thread from an over-committed core to one that has one thread but is

not currently busy because that thread is waiting on a barrier as shown in Fig. 5.2. In the

�gure, we see that, the scheduler tried to rebalance the load in the system by moving thread

5 from the over-committed core 1 into core 4 since it was found idle during the rebalance

attempt. However, core 4 already had thread 4 which was waiting on a barrier and therefore

the rebalance attempt done in this case has no value.

Over the long haul, this migration will eventually settle on a balanced con�guration of

threads to cores, however it can often take many iterations to do so. Since the life-time

of typical architecture simulations is very short though, this balance point is typically not

found prior to the end of simulation. In fact, ten full iterations of core rebalancing on a

16-core system could take as long as 5 seconds to �nd an optimal balance, much longer than

the runtime of the benchmarks used in architecture research (see Fig. 1.1).

5.2.3 Immediate Load balancing

Parent

T1

T2

T3

T4

T5

T6

T7

Barrier

T1 T6

T2 T7

T3

T4

T5

Time

T1

T6

T2 T7

T3

T4

T5

T1

T6

T2 T7

T3

T4

T5

CPU

7

6

5

4

3

2

1

0

Figure 5.3: Behavior of Linux scheduler with immediate load balancing for a multi-thread
benchmark running on architecture simulator.

Linux scheduler can optionally perform an immediate load balancing when new threads

101

become runnable [41]. This option, relax_domain_level, is supposed to ensure that as many

cores as possible are usefully employed running tasks. Fig. 5.3 shows thread-core mapping

for the same experiment with immediate load balancing enabled. The scheduler behavior is a

little di�erent than previously shown in terms of thread mapping and we can see threads 1 to

5 get mapped as expected. However, threads 6 and 7 are still mapped to already subscribed

cores. The reason this happens is due to core 1, for instance, being idle at the time the

scheduler performs the search for a candidate core to map the newly forked thread. The

thread that was running before on core 1 �nished its �rst loop iteration and was in sleep mode

waiting for other threads to �nish their iteration and all join at the barrier. This situation

happens primarily in architecture simulation, where benchmarks are run with small input

sets and thus they typically complete in less time than it takes for the scheduler to optimally

balance all threads across the available cores in the system. The scheduler only uses current

core status information with no knowledge of application-level behavior and therefore such

load imbalance is likely to happen. Both immediate and periodic load balancing processes

were not able to correct the initial mapping of the scheduler and load imbalance remained

until the end of simulation.

5.3 Proposed Solution

To avoid the issues mentioned above in the current Linux scheduler speci�cally in ar-

chitecture simulation, we propose a patch to the scheduler to enforce mapping of threads

into unsubscribed cores in the CMP system in a round robin fashion. The proposed patch

does not only avoid the complexity and overhead associated with load balancing in current

scheduler but also guarantees correct experimental results when running multi-thread bench-

marks in architecture simulation environment. Note that, we chose not to use a�nity masks

to map threads to cores in user software since using such masks is not a general solution to

the problem; it would require knowledge of exactly how many threads a given benchmark will

spawn and how many cores there are in the system under test (several benchmarks spawn

extra, helper threads which are short running and do not impact performance).

102

The current thread scheduler views the core resources as in either active or idle states.

Active cores are the ones having threads running on them whereas idle cores are either having

no threads mapped to them or the mapped threads are waiting on an exception to return or

a barrier to be reached. Thread mapping is performed by the function sched_balance_self()

in ./linux/kernel/sched.c [19, 42]. The scheduler searches among the group of available cores

to �nd an idle core to serve a newly forked thread. The search is done sequentially starting

at core 0 every time. As we mentioned, a core might be found idle and get selected as a

candidate to run the new thread even though it has threads in wait or sleep mode which

would create an imbalance situation that cannot be resolved in architecture simulation.

Under certain circumstances, the scheduler may decide not to migrate threads o� a busy

core in the presence of load imbalance in the system due to its impact on performance or

power. As an example, a thread that is found to be a cache-hot will not be considered as

target for migration due to the high cost of throwing away its private cache data. Another

example is when the scheduler is con�gured in a low power mode it tries to keep threads

running on active cores and would rather not to wake up idle cores to balance the load in the

system. Therefore, making correct mapping decisions from the start of simulation greatly

in�uence performance and reduce scheduling overhead in architecture simulations.

To avoid the load imbalance issue, we classi�ed the idle cores into two di�erent states;

idle cores that have no threads mapped to them (idle-no-thrd) and idle cores with mapped

threads in wait or sleep mode (idle-thrd). Fig. 5.4 shows thread to core mapping with the

proposed update. For a new forked thread, the scheduler is forced to �rst search among the

group of cores in idle-no-thrd state to map the thread in a round-robin fashion. If no core

is found, it searches among the idle-thrd cores group and then the active group to �nd a

candidate core. Only when the number of software threads exceeds the number of available

cores that the idle-thrd and the active core groups are searched in the same way that the

original scheduler search is done. Forcing the scheduler to �rst look for a candidate core

among the idle-no-thrd group guarantees a 1-to-1 mapping of threads to cores when the

103

New forked thread

Select core from

idle-no-thrd group

Search

idle-thrd and

active groups

Core

found?

Lunch thread and

update core to

active state

Update core to

idle-no-thrd state

Update core to

idle-thrd state

Yes

No

Idle WakeupDone

Figure 5.4: Mapping of new thread and core status update with the patched scheduler.

number of threads is no more than the number of available cores in the system and avoids

the load imbalance issue from the start of simulation.

Fig. 5.1 in section 5.2 shows the load imbalance issue in a multi-core simulation when

the original Linux scheduler is used. We repeated the same experiment with the patched

scheduler to examine its behavior. Fig. 5.5 shows the result of running an 8-thread Canneal

benchmark on an 8-core simulation system with the proposed scheduler updates. In the

�gure, we see that every software thread in the benchmark gets mapped to a distinct core

in the system and that the load imbalance issue is prevented from the start of simulation.

5.4 Evaluation

In order to see the impact of load imbalance on multi-thread benchmarks with di�erent

input sets, we ran the Canneal benchmark from the PARSEC benchmark suite [11] on a

hardware machine with native, large, medium, and small input sets. The hardware machine

104

CPU

7

6

5

4

3

2

1

0

Barrier

Time

Parent

T2

T3

T5

T6

T7

T4

T1 T1

T2

T3

T4

T5

T6

T7

T1

T2

T3

T4

T5

T6

T7

T1

T2

T3

T4

T5

T6

T7

Figure 5.5: Behavior of patched Linux scheduler for a multi-thread benchmark running on
architecture simulator.

has 12 cores and each core is single threaded. A list of the machine's con�guration obtained

using Linux command lscpu is shown in Table 5.1.

Parameter Con�guration

Architecture x86_64
Core op-mode(s) 32-bit, 64-bit
Core(s) 12
Core frequency 1900 MHz
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 15360K

Table 5.1: Con�gurations of the hardware machine used.

Our simulation experiments were performed using the gem5 full system simulation envi-

ronment [12] in order to show the impact of system software on the validity and correctness of

simulation results. Latest Linux with CFS scheduler was used as the baseline OS for the full

system simulation environment. We simulated a multi-core CMP system with 16 homoge-

105

neous cores connected by a network-on-chip (NOC) and with L1 private cache and an L2 split

cache. Each core has a single threaded CPU with an out-of-order execution pipeline which

ran at 2.66 GHz clock frequency. Table 5.2 lists the system con�gurations used to perform

the simulation experiments. We ran multi-thread benchmarks from PARSEC benchmark

suite on the simulated CMP system with memory bus speeds of 200 MHz and 800 MHz.

The simulation experiments were repeated on a simulated CMP system with the patched

version of Linux to compare against the baseline version and validate our proposed solution.

Parameter Con�guration

Cores 16
Threads per core 1
Pipeline Out of Order
Core frequency 2.66 GHz
Architecture x86_64
L1 cache 32 KB
L2 cache 256 KB per Core
Network topology 4x4 2D Mesh
Network routing X-Y DOR
Directories 4
Coherency MESI protocol

Table 5.2: Con�gurations of the multi-core simulator used.

To see the impact of short simulation run times on workload balance on a real machine

running a modern, Linux operating system, we ran the Canneal benchmark with 12 software

threads for each input set on the system described above. The per-core load results from

this experiment are shown in Fig. 5.6. In this �gure, we see the load is well balanced among

the cores when the native input set is used. This indicates that the load imbalance when

threads are �rst mapped to the cores is resolved by the Linux scheduler and has negligible

e�ect on the overall performance for real applications. For input sizes that are appropriate

for simulation runs, we see the degree of load imbalance increases as we go with smaller input

106

8.3%

6.6%

3.3%

0.0%

8.3% 10.0%

13.2%

16.5%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

Native Large Medium Small

P
e

rc
e

n
ta

ge
 o

f
W

o
rk

lo
ad

 p
e

r
C

o
re

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8 Core 9 Core 10 Core 11

Figure 5.6: Percentage of workload per core for 12-thread Canneal benchmark with di�erent
input sets run on 12-core hardware machine.

sets. With small input set, we see that core 1 has about twice the load of the other cores

while core 0 remains idle. The proposed patch to the scheduler should avoid load imbalance

for small input size in particular and any other input sizes as well as for any arbitrary number

of software threads used.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Fast Memory Bus (800MHz) Slow Memory Bus (200MHz)

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

T8 T12 T15 T16

Figure 5.7: Performance speedup for Canneal benchmark using small input set, with 8, 12,
15, and 16 threads under memory speeds of 200MHz and 800MHz in full system simulation
with the patched Linux scheduler. Results are normalized against an 8-thread 800MHz case.

107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bodytrack Canneal Fluidanimate Freqmine Swaptions Vips X264 Blackscholes Dedup Streamcluster

N
o

rm
al

iz
e

d
 S

p
e

e
d

u
p

200MHz_orig 800MHz_orig 200MHz_fixed 800MHz_fixed

Figure 5.8: Normalized performance speedup for PARSEC benchmarks runs with two mem-
ory speed settings using current and patched Linux schedulers in full system simulation.

Fig. 1.2 in Section 1.3, shows the impact of load imbalance caused by the current Linux

scheduler in architecture simulation. In that experiment, we ran Canneal with di�erent

software thread counts and two memory bus frequencies (200 and 800 MHz). There we

found that the thread load imbalance on short runtime loads leads to incorrect results, such

as that a faster bus speed yields a slower system performance and that more threads/cores can

produce worse runtimes. These discrepancies and incorrect results in simulation experiments

are the main reason for having the scheduler patch we propose here. We implemented the

Linux kernel changes described in Section 5.3 and reran the same experiment. Fig. 5.7

shows the results of simulation runs using the patched thread scheduler on the same Canneal

benchmark with a small input set. In the �gure we see a near linear performance scaling with

core count from 8 to 16 threads for both 200 MHz and 800 MHz bus frequencies. Further

we see the expected (if small) performance improvement going from a 200 MHz to an 800

MHz bus.

Fig. 5.8 shows the e�ects of the baseline and patched schedulers across all the PARSEC

benchmarks for a 200 MHz and an 800 MHz memory bus. In this experiment all bench-

marks are run with 16 threads on 16 cores simulated system. Results are normalized to the

108

baseline scheduler. In the �gure we see that the baseline scheduler always produces runtimes

signi�cantly longer than the patched scheduler for the 800 MHz runs. Further we see that,

while in some cases the 800 MHz bus produces longer runtimes than the 200 MHz bus for the

original scheduler (Canneal, Fluidanimate, Vips, X264, and Streamcluster); the faster bus

always produces a shorter runtime with the patched scheduler. These results indicate that

the patched scheduler produces much more consistent and correct results for multiprocessor

benchmarks.

5.5 Conclusion

In this work, we addressed the behavior of Linux thread scheduler on full system architec-

ture simulation when small input sets are used in multi-threaded applications. We focused

on how threads are mapped into the available cores in the simulated system and showed

that the current scheduler behavior, with small input sets, cased a load imbalance that led

to a slower and non-representative performance causing incorrect experimental results. We

provided a simple update to the scheduler to �x the undesired behavior in architecture sim-

ulations by forcing a round-robin mapping of software threads into available cores in the

system and avoid the load imbalance issue from the very beginning. We evaluated our pro-

posed solution using a gem5 full system simulator with a Linux OS and ran multi-threaded

benchmarks from PARSEC suite.

109

6. CONCLUSION

With the increasing importance of thread parallel computations, our work focuses on

improving performance and energy e�ciency of thread parallel hardware and making its

simulation more accurate. We achieved our objectives through the following three parts:

In the �rst part of our work, we targeted the access port limitation on register �le and

operand collector units that were causing access serialization and increasing access latency

which negatively impact overall IPC performance and energy e�ciency in the GPU. We

focused on making the GPUmore energy e�cient and higher performance for general-purpose

applications with frequent narrow-width data. Similar to the concept of access coalescing

used in memory system, we introduced a new register �le organization that supports register

access coalescing in the GPU. Our design addresses the many limitations found in CORF

design and provides far more register coalescing capabilities with far less design overhead

and complexity. Our design is capable of coalescing a combination of narrow-width read and

write requests targeting a register �le bank. It is also capable of coalescing read requests from

the same warp instruction targeting di�erent banks. In addition, our design does not restrict

register coalescing to only registers that are packed in the same physical entry or registers

that belong to the same warp within a bank. It also does not restrict warp registers to be

mapped into the register �le banks in a speci�c order. Besides being superior in terms of

performance and energy e�ciency to CORF design, our new register �le design has low cost

and complexity as it does not require register packing, virtualization, nor allocation based

on compile-time hints. On general-purpose benchmarks from Rodinia suite, our coalescing-

aware design achieved a signi�cant reduction on register �le and operand collector accesses

that led to a 16.5% IPC performance speedup and a 32.2% dynamic energy reduction in

GPU on average.

As power constraints are challenging the compute scaling of future GPGPUs within a

110

limited power budget. In the second part, we focused on reducing dynamic power consump-

tion for the two most power consuming components in the GPU, the main register �le and

the execution units. We proposed power saving techniques that collectively take advantage

of the presence of under-utilized warps in general purpose compute applications as well as

the high percentage of zero data produced in these applications to reduce both register �le

and the execution units dynamic power. Using the proposed techniques, we were able to

achieve a 27% reduction in register �le power and a reduction of about 19% in execution

units power. The overall power reduction for the GPU chip was ∼8% for GPGPU workloads.

The proposed techniques required only minor micro-architectural changes to the GPU de-

sign and have low area and power overhead. The techniques were integrated into the SIMD

data-path without introducing any performance penalty.

In the last part of our work, we addressed inaccuracies in full system simulations that

use a Linux kernel to run multi-threaded applications, with small input sets, on multi-

core system. We demonstrated the behavior of current Linux scheduler when multi-thread

benchmarks are simulated on a multi-core system using gem5 full system simulator. We

focused in particular on how the current scheduler maps software threads onto the available

cores in the system. We showed that the load imbalance caused by the current scheduler

has a signi�cant impact in architecture simulations as they run for a very short duration

and the scheduler does not have the time needed to e�ectively load balance the simulated

system. We showed how the imbalance leads to a slower, non-representative performance

and causes undesired behavior in simulation experiments, leading to incorrect experimental

results versus a real system using a native input. We provided a patch to the scheduler to

�x the mapping primarily for architecture simulation by forcing the scheduler to perform a

round robin mapping of software threads into available cores in the system to avoid the load

imbalance issue and its side e�ects from the start of simulation.

111

REFERENCES

[1] Nvidia, �Whitepaper: Nvidia's next generation cuda compute architecture: Fermi,�

2009.

[2] H. Asghari Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-Ghazaleh, �Corf:

Coalescing operand register �le for gpus,� in Proceedings of the Twenty-Fourth Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 701�714, 2019.

[3] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, �Design

of ion-implanted mosfet's with very small physical dimensions,� IEEE Journal of Solid-

State Circuits, vol. 9, pp. 256�268, Oct 1974.

[4] C. Martin, �Multicore processors: Challenges, opportunities, emerging trends,� in Pro-

ceedings Embedded World Conference 2014, Nuremberg, Germany, Design & Elektronik,

February, 2014.

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burgur, �Dark

silicon and the end of multicore scaling,� in Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA '11, (New York, NY, USA), pp. 365�376,

ACM, 2011.

[6] Nvidia, �Whitepaper: Nvidia tesla v100 gpu architecture,� 2017.

[7] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and

V. J. Reddi, �Gpuwattch: enabling energy optimizations in gpgpus,� in ACM SIGARCH

Computer Architecture News, vol. 41, pp. 487�498, ACM, 2013.

[8] A. Patel, F. Afram, S. Chen, and K. Ghose, �Marss: A full system simulator for multicore

x86 cpus,� in Proceedings of the 48th Design Automation Conference, DAC '11, (New

York, NY, USA), pp. 1050�1055, ACM, 2011.

112

[9] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev, �Mptlsim: A cycle-accurate, full-

system simulator for x86-64 multicore architectures with coherent caches,� SIGARCH

Comput. Archit. News, vol. 37, pp. 2�9, July 2009.

[10] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg, J. Högberg,

F. Larsson, A. Moestedt, and B. Werner, �Simics: A full system simulation platform,�

Computer, vol. 35, pp. 50�58, Feb. 2002.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, �The parsec benchmark suite: Character-

ization and architectural implications,� in Proceedings of the 17th International Con-

ference on Parallel Architectures and Compilation Techniques, PACT '08, (New York,

NY, USA), pp. 72�81, ACM, 2008.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood, �The gem5 simulator,� SIGARCH Comput. Archit. News, vol. 39,

pp. 1�7, Aug. 2011.

[13] G. M. Amdahl, �Validity of the single processor approach to achieving large scale com-

puting capabilities,� in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, AFIPS '67 (Spring), (New York, NY, USA), pp. 483�485, ACM, 1967.

[14] Nvidia, �Nvidia cuda c programming guide,� Compare A Journal Of Comparative Edu-

cation, 01 2010.

[15] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and

K. Skadron, �Energy-e�cient mechanisms for managing thread context in throughput

processors,� in 2011 38th Annual International Symposium on Computer Architecture

(ISCA), pp. 235�246, IEEE, 2011.

[16] M. T. Jones, �Inside the linux 2.6 completely fair scheduler,� in IBM DeveloperWorks,

December 2009.

113

[17] J. Aas, �Understanding the linux 2.6.8.1 cpu scheduler,� SGI, 2005. http: //

josh. trancesoftware. com/ linux/ linux_ cpu_ scheduler. pdf , accessed on Au-

gust, vol. 22, p. 05, 2005.

[18] �Linux kernel documentation.� https://www.kernel.org/doc/Documentation/

scheduler/sched-domains.txt.

[19] D. Bovet and M. Cesati, Understanding the Linux kernel. OReilly, 2006.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S.-H. Lee, and K. Skadron,

�Rodinia: A benchmark suite for heterogeneous computing,� in 2009 IEEE international

symposium on workload characterization (IISWC), pp. 44�54, IEEE, 2009.

[21] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, �Analyzing cuda

workloads using a detailed gpu simulator,� in 2009 IEEE International Symposium on

Performance Analysis of Systems and Software, pp. 163�174, IEEE, 2009.

[22] M. Sadrosadati, A. Mirhosseini, S. B. Ehsani, H. Sarbazi-Azad, M. Drumond, B. Falsa�,

R. Ausavarungnirun, and O. Mutlu, �Ltrf: Enabling high-capacity register �les for gpus

via hardware/software cooperative register prefetching,� in ACM SIGPLAN Notices,

vol. 53, pp. 489�502, ACM, 2018.

[23] M. Gebhart, S. W. Keckler, and W. J. Dally, �A compile-time managed multi-level

register �le hierarchy,� in 2011 44th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 465�476, IEEE, 2011.

[24] J. Bailey, J. Kloosterman, and S. Mahlke, �Scratch that (but cache this): A hybrid

register cache/scratchpad for gpus,� IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 37, no. 11, pp. 2779�2789, 2018.

[25] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally, �Unifying

primary cache, scratch, and register �le memories in a throughput processor,� in 2012

45th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 96�106,

IEEE, 2012.

114

http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-domains.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-domains.txt

[26] M. Abdel-Majeed, A. Shafaei, H. Jeon, M. Pedram, and M. Annavaram, �Pilot register

�le: Energy e�cient partitioned register �le for gpus,� in 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pp. 589�600, IEEE,

2017.

[27] M. Abdel-Majeed and M. Annavaram, �Warped register �le: A power e�cient register

�le for gpgpus,� in 2013 IEEE 19th International Symposium on High Performance

Computer Architecture (HPCA), pp. 412�423, IEEE, 2013.

[28] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S. Kayano,

and T. Nakano, �A divided word-line structure in the static ram and its application to

a 64k full cmos ram,� IEEE Journal of Solid-State Circuits, vol. 18, no. 5, pp. 479�485,

1983.

[29] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, �Gpu register �le virtualization,�

in Proceedings of the 48th International Symposium on Microarchitecture, pp. 420�432,

ACM, 2015.

[30] J. Kloosterman, J. Beaumont, D. A. Jamshidi, J. Bailey, T. Mudge, and S. Mahlke,

�Regless: Just-in-time operand staging for gpus,� in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 151�164, ACM, 2017.

[31] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, �Warped-compression:

enabling power e�cient gpus through register compression,� in ACM SIGARCH Com-

puter Architecture News, vol. 43, pp. 502�514, ACM, 2015.

[32] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry,

�Base-delta-immediate compression: practical data compression for on-chip caches,� in

Proceedings of the 21st international conference on Parallel architectures and compila-

tion techniques, pp. 377�388, ACM, 2012.

[33] Z. Liu, S. Gilani, M. Annavaram, and N. S. Kim, �G-scalar: Cost-e�ective general-

ized scalar execution architecture for power-e�cient gpus,� in 2017 IEEE International

115

Symposium on High Performance Computer Architecture (HPCA), pp. 601�612, IEEE,

2017.

[34] X. Wang and W. Zhang, �Gpu register packing: Dynamically exploiting narrow-

width operands to improve performance,� in 2017 IEEE Trustcom/BigDataSE/ICESS,

pp. 745�752, IEEE, 2017.

[35] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, �Register packing: Exploiting

narrow-width operands for reducing register �le pressure,� in 37th International Sym-

posium on Microarchitecture (MICRO-37'04), pp. 304�315, IEEE, 2004.

[36] S. Z. Gilani, N. S. Kim, and M. J. Schulte, �Power-e�cient computing for compute-

intensive gpgpu applications,� in 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), pp. 330�341, IEEE, 2013.

[37] F. Khorasani, H. A. Esfeden, A. Farmahini-Farahani, N. Jayasena, and V. Sarkar, �Reg-

mutex: Inter-warp gpu register time-sharing,� in 2018 ACM/IEEE 45th Annual Inter-

national Symposium on Computer Architecture (ISCA), pp. 816�828, IEEE, 2018.

[38] Y. Tamir and H.-C. Chi, �Symmetric crossbar arbiters for vlsi communication switches,�

IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1, pp. 13�27, 1993.

[39] Nvidia, �Whitepaper: Nvidia geforce gtx 980,� 2014.

[40] J. Dusser, T. Piquet, and A. Seznec, �Zero-content augmented caches,� in Proceedings

of the 23rd international conference on Supercomputing, pp. 46�55, ACM, 2009.

[41] �Linux man pages.� http://man7.org/linux/man-pages/man7/cpuset.7.html.

[42] R. Love, Linux kernel development. Pearson India, 2nd ed., 2010.

116

http://man7.org/linux/man-pages/man7/cpuset.7.html

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Register File Access Coalescing in GPU
	Exploiting Zero Data to Reduce Power Consumption in GPU
	Architecture Simulation and the Impact of Linux Thread Scheduler
	Dissertation Statement
	Dissertation Outline

	BACKGROUND
	Modern GPU Architecture Model
	CUDA Overview
	GPU Chip Layout
	Warp Scheduler
	Register File
	Execution Units

	Full System Simulation

	REGISTER FILE ACCESS COALESCING IN GPU
	Introduction
	Performance Impact of Limited Access Ports
	Motivation
	Register Operands Width
	Register File Bandwidth
	Warp Instruction Operands

	Promoting Coalescing Opportunities
	Related Work
	Non-coalescing Techniques
	Register Coalescing Techniques

	Register File Access Coalescing Design
	Design Overview
	Coalescing-aware Register File Organization
	Registers Layout (Register to Bank Mapping)
	Register File Bank
	Register Alignment
	Dual-access Banks
	Register File Bank Arbiter
	Register File Interconnect
	Operand Collector Write
	Register Width Detection
	Design Overhead

	Evaluation
	Methodology
	Register File Access Reduction
	Register File Bandwidth Increase
	Register File Coalesced Access
	IPC Performance Speedup
	Dynamic Energy Reduction
	Result Summary

	Conclusion

	EXPLOITING ZERO DATA TO REDUCE REGISTER FILE AND EXECUTION UNIT DYNAMIC POWER CONSUMPTION IN GPU
	Introduction
	Motivation
	Reducing Register File Dynamic Power
	Using the Thread Active Mask
	Using the In-lane Zero Mask
	Using the Cross-lane Zero Mask
	Dynamic Zero Mask Selection

	Reducing Execution Unit Dynamic Power
	Using the Active Thread Mask
	Using the Operand Zero Masks

	Evaluation
	Register File Power
	Execution Units Power
	GPGPU total Power

	Related Work
	Conclusion

	MULTI-PROCESSOR FULL SYSTEM SIMULATION AND THE IMPACT OF LINUX THREAD SCHEDULER
	Introduction
	Behavior of Thread Scheduler in Full System Simulation
	Thread Scheduling and Load Imbalance
	Periodic Load balancing
	Immediate Load balancing

	Proposed Solution
	Evaluation
	Conclusion

	CONCLUSION
	REFERENCES

