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ABSTRACT

With the advancement in deep learning research, neural networks have become one of the 

most powerful tools for artificial intelligence t asks. More specifically, recurrent neural networks 

(RNNs) have achieved state-of-the-art in tasks such as hand-writing recognition and speech recog-

nition. Despite the success of recurrent neural networks, how and why do neural nets work is still 

not sufficiently investigated. My work on the dynamical analysis of recurrent neural networks can 

help understand how the input features are extracted in the recurrent layer, how the RNNs make 

decisions, and how the chaotic dynamics of RNNs affects its behaviors. Firstly, I investigated 

the dynamics of recurrent neural networks as autonomous dynamical system in the experiment of 

a two-joint limb controlling task and compared the empirical result and the theoretical analysis. 

Secondly, I investigated the dynamics of non-autonomous recurrent neural networks on two bench-

mark tasks: sequential MNIST recognition task and DNA splice junction classification t ask. How 

the hidden states of long-short term memory (LSTM) and gated recurrent unit (GRU) cells learn 

new features and how the input sequence is extracted are demonstrated with experiments. Finally, 

based on the understanding of the external and internal dynamics of recurrent units, I proposed sev-

eral algorithms for recurrent neural network compression. The algorithms demonstrate reasonable 

performance in compression ratio and are able to sustain the performance of the original models.
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1. INTRODUCTION AND LITERATURE REVIEW

This dissertation consists of five chapters. Literature review is the first chapter that summa-

rizes the existing knowledge of artificial neural networks and the related research challenges. The

second chapter is dedicated to my work on the dynamical analysis of autonomous recurrent neural

networks, and the third chapter is dedicated to my work on the analysis of non-autonomous recur-

rent neural networks. Chapter 4 demonstrates an application of the dynamical analysis study —

compression of recurrent neural networks. Chapter 5 concludes with the contribution of my work.

1.1 A Brief History of Artificial Neural Networks

The early study of artificial neural networks could date back to 1940s. Inspired by the bio-

logical neural networks, McCulloch et al. [5] implemented a network of threshold logic units as

a novel computational model. In 1949, the Hebbian learning throey was proposed by Hebb [6],

based on the observation neuroplasticity. Hebbian learning theory later became the neuronal basis

of unsupervised learning. The Hopfield network [7] and Boltzmann machine [8] were developed

based on the Hebbian learning theory. In 1974, Werbos introduced back-propagation to the train-

ing of neural networks [9]. Back-propagation has become a popular training algorithm of neural

networks. Due to its rigorous mathematical characteristics, the back-propagation algorithm is effi-

cient in optimizing the loss function of small neural networks. In 2006, Hinton et al. established

the "deep learning" era of artificial neural networks by demonstrating how a deep belief network

[10][11] can be trained. Since then, deep neural networks have shown great capability on various

applications in artificial intelligence.

1.2 Recent Trends on Artificial Neural Networks Research

There are numerous open questions in the field of artificial neural network research. On the

theory side, new architectures and new optimization algorithms still will be the main direction of

research [12][13]. Besides, the model’s interpretability [14] has also been considered important.

On the application side, machine comprehension is a challenging topic for computer vision [15]
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and natural language processing [16]. Multi-task learning also draws broad attention from re-

searchers [17][18]. In terms of the machine learning engineering aspect, the emerging demand for

more efficient development and computation has led to research on model compression [19][20]

and neural architecture search [21][22].

1.3 Recurrent Neural Networks

Artificial neural networks can be classified into feed-forward neural networks and recurrent

neural networks (RNN) based on the network topology. Feed-forward neural networks only allow

signal to travel one way, and directly associate the present input to the output. The RNNs allow

signal to propagate in loop(s). Because of the loop(s), the RNNs generate output as fusion of the

present input and hidden states that encode the past input.

Similar to feed-forward neural networks, a recurrent neural network (RNN) usually has three

component layers: an input layer, hidden layer(s) and an output layer. The difference lies in the

existence of recurrent connections in the hidden layer(s).

Figure 1.1: Schematic of feed-forward neural network

Figure 1.2: Schematic of recurrent neural network
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As shown in Figure 1.2, the output ot is calculated based on the following equations:

~ot = σo(V ~ht) (1.1)

~zt = W ~ht−1 + U ~xt + b (1.2)

~ht = σh(~zt) (1.3)

where U, V,W are connection weight matrices and σo, σh are non-linear activation functions. Since

~ht depends on the prior hidden state ~ht−1, the RNN exhibits internal memory to time sequence

input.

1.3.1 Training of Recurrent Neural Networks

The training process of recurrent neural network is similar with the training process of feed-

forward neural network. There are gradient-based algorithms and gradient-free algorithms.

1.3.1.1 Back-propagation Through Time

One commonly used gradient-based algorithm is back-propagation through time (BPTT) [23],

which applies back-propagation on an unrolled recurrent neural network. The dynamics of hidden

layer is determined by how the hidden neurons are wired as well as how the weights are tuned.

However, training RNN with gradient can be difficult since the long propagation of signals in

hidden layer(s) usually results in gradient exploding/vanishing problem.

To illustrate the gradient exploding/vanishing problem, suppose the loss function is L:

∂L

∂h1
=

∂L

∂hT

∂hT
∂h1

=
∂L

∂hT

T−1∏
k=1

∂hk+1

∂hk
=

∂L

∂hT

T−1∏
k=1

(σ′h(zk)W ) (1.4)

When ||σ′h(zk)W || 6= 1 and T is large enough, the norm of the product can either become very

large or close to zero.

There are several ways to resolve the gradient exploding/vanishing problem. A popular ap-

proach is gradient clipping, which is widely used in encapsulated recurrent cells, such as long-short

3



term memory(LSTM) [24] and gated recurrent unit (GRU) [25]. Some other approaches attempt

to stabilize the gradient with ||σ′h(zk)W || ≈ 1, including ReLU with identity RNN (IRNN) [26]

and unitary RNN (URNN) [27].

Besides these gradient-based methods, Gradient-free optimization such as evolutionary algo-

rithm (e.g.neuro-evolution with augmenting topology [28]) has been proven to be effective in train-

ing RNNs.

1.3.1.2 Neuro-evolution

Neuro-evolution [29] is a representative gradient-free method for training recurrent neural net-

works. It applies evolutionary algorithm to the RNN parameters by encoding the parameters into

genotypes and defining a fitness function. An improved version of neuro-evolution NEAT[28] can

evolve the topology of the neural network while training, which has been proved to be effective in

solving reinforcement learning tasks [30].

Compared with gradient-based methods, neuro-evolution is less likely to get stuck to local

optima, but requires stronger computational power to handle the large search space for the evo-

lutionary algorithm. Recent advancements in hardware have made deep neuro-evolution [31][32]

possible to achieve competitive results compared to gradient-based methods for large-scale neural

networks.

1.3.2 Vanilla Recurrent Neural Networks

Vanilla recurrent neural networks refer to the RNNs that do not have regular topological sub-

structures. These recurrent neural networks often exhibit complicated dynamics and are difficult

to train. The identity RNN (IRNN) [26] and unitary RNN (URNN) [27] initialize the weights to

be orthogonal or unitary to restrict the internal dynamics in a small sub-state space and add extra

computational cost to maintain such restrictions.

Alternatively, some vanilla models (e.g.liquid state machines [33] and echo state networks [34])

utilize the idea of reservoir computing [35] and contain randomized fixed recurrent structures and

only the linear output layer is trained. Although the reservoir computing algorithm has appeared to
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be successful in several machine learning tasks [36] and shown its advantage in hardware imple-

mentation [37], it encapsulates the recurrent layer as a complete black box and creates difficulties

in understanding how and why the model works.

1.3.3 Long-shot Term Memory (LSTM) and Gated Recurrent Units (GRU)

The Vanilla RNNs do not perform well on remembering long sequences. Long-short term

memory (LSTM) [24] was designed to memorize information over long time periods with its in-

sensitivity to temporal gaps between information. The central idea behind the LSTM architecture

is a memory cell which can maintain its state over time, and non-linear gating units which regulate

the information flow into and out of the cell [38].

Figure 1.3: Schematic of LSTM cell. Reprinted from Understanding LSTM Networks by Christo-
pher Olah.[1]
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The update rules of LSTM cells can be represented as:

forget gate: ~ft = σg(Wf ~xt + Uf ~ht−1 + ~bf )

input gate: ~it = σg(Wi ~xt + Ui ~ht−1 + ~bi)

output gate: ~ot = σg(Wo ~xt + Uo ~ht−1 + ~bo)

cell state: ~ct = ~ft ◦ ~ct−1 + ~it ◦ σc(Wc ~xt + Uc ~ht−1 + ~bc)

hidden state: ~ht = ~ot ◦ σh(~ct)

(1.5)

Another popular variant of gated units is the gated recurrent unit (GRU) [25]. Compared with

LSTM cell, the GRU cell does not contain an output gate, so that the hidden states are exposed

without hidden memory unit. The GRU has less parameters and is computational efficient.

Figure 1.4: Schematic of GRU cell. Reprinted from What is a Recurrent Neural Networks (RNNS)
and Gated Recurrent Unit (GRUS). [2]
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The update rules of GRU cells can be represented as:

update gate: ~zt = σg(Wz ~xt + Uz ~ht−1 + ~bz)

reset gate: ~rt = σg(Wr ~xt + Ur ~ht−1 + ~br)

hidden state: ~ht = (1− ~zt) ◦ ~ht−1 + ~zt ◦ σh(Wh~xt + Uh(~rt ◦ ~ht−1) + ~bh)

(1.6)

LSTM and GRU are both popular used in modern deep learning since the model is highly

scalable and convenient for GPU acceleration.

1.4 Recurrent Neural Networks as Dynamical Systems

A recurrent neural network computes iteratively:

ht = f(f(f(...f(h0, x1)..., xt−2), xt−1), xt) (1.7)

Simple functions can become complicated when applied with iterations. For example, Mandelbrot

set M , zn+1 = z2n + c for c ∈M and the logistic map xn+1 = rxn(1− xn).

A dynamical system describes the rule of time evolution of vector(s) in a vector space. RNNs

are discrete-time dynamical systems. The state space of RNNs can be represented as the activation

status of neurons.

A time-discrete dynamical system can be either autonomous or non-autonomous. The update

rule of an autonomous dynamical system is

xt+1 = f(xt) ∀t ∈ N (1.8)

the next state only depends on the current state. Therefore, the sequence of {xt} only depends on

x0. The update rule of a non-autonomous dynamical system is

xt+1 = f(xt, t) ∀t ∈ N (1.9)
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the next state depends on both the current state and tetime.

For RNNs, if the input is fully observable by the network, for instance, controlling a robot arm

in a static environment, or there’s no input/zero input, then the RNNs turn out to have autonomous

dynamic property. If the input is partially observable, for instance, to forecast stock prices, the

RNNs are non-autonomous.

1.5 Summary

Starting from the imitation of biological neural networks, artificial neural networks were de-

signed to mimic the learning and reasoning of intelligent beings through computation. Nowadays,

with efficient training algorithms and development frameworks [39][40][41], highly scalable con-

nection topology and the fast rising computational power of hardwares, the cost of deploying

large-scale artificial neural network models is becoming lower and lower.

As one kind of the artificial neural networks, the recurrent neural networks are able to learn

sequential data with its internal memory. Due to the recurrence in the connection topology, the

recurrent neural networks exhibit complicated dynamics. The black box property of recurrent

neural networks has made training and model analysis to be challenging. Despite more powerful

gated units such as long-short term memory (LSTM) and gated recurrent unit (GRU) retrain such

difficulty, our understanding of the feature extraction process and the learning mechanism in re-

current neural networks is still very limited. Decoding the black box can possibly help improve

the machine learning model design and get us a step closer to artificial general intelligence (AGI).

Since the recurrent neural networks are dynamical systems, analyzing recurrent neural net-

works as dynamical systems provides some mathematical insights for the quantification of stability

and instability, which can help understand the dynamics and the learning procedure of recurrent

neural networks.
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2. ANALYSIS OF AUTONOMOUS RECURRENT NEURAL NETWORKS ∗

Unlike feedforward neural networks, a recurrent neural network (RNN) allows neurons to send

feedback signals which create an internal memory state of the network. As the topological com-

plexity grows, the diversity of the temporal behaviors of the network increases dramatically. This

diversity makes RNN applicable to time series problems in many different categories such as robot

control [42] and speech recognition [43].

A recurrent neural network can usually be modeled as a non-linear dynamical system. Beer

pioneered dynamical approaches to cognitive science. In 1995, he introduced the use of the lan-

guage of dynamical system theory as a general theoretical framework for the synthesis and analysis

of autonomous agents controlled by neural networks [44][45]. However, even though non-linear

dynamical systems have been studied for more than 100 years, there are still many parts that are

not well understood. For example, Hilbert’s 16th problem which is about the determination of the

upper bound for the number of limit cycles and their relative locations, remains unsolved [46].

The simplest type of dynamical system is autonomous dynamical system. The dynamics of

autonomous dynamical systems take place on smooth manifolds. Although it is difficult to mathe-

matically formalize the RNN models into ordinary differential equations as some classic dynamical

systems, we can still attempt to analyze and visualize the local dynamics, in order to reveal how

do RNNs work, when do they succeed and when do they fail.

Controllers for tool-use may require RNNs. The use of tools has been extensively studied and

is still an attractive topic for scientists from both neuroscience and robotics. The use of tools in

animals indicates high levels of cognitive capability, and, aside from humans, is observed only

in a small number of higher mammals and avian species [47, 48, 49, 50]. Chung and Choe [51]

showed that simple neural circuits can in fact be evolved to use the simplest form of tool, i.e., a

"bread-crumb" dropped in the environment to serve as external memory. But it is yet unknown

∗ c© 2016 IEEE. Reprinted, with permission, from Han Wang, et al. Dynamical analysis of recurrent neural circuits
in articulated limb controllers for tool use.
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how such a capability could have emerged from simple organisms. Li et al. [52] evolved RNN

controllers using NEAT for target reaching tasks with a tool. The NeuroEvolution of Augmenting

Topologies (NEAT) algorithm by Stanley and Miikkulainen [28] is an evolutionary algorithm for

evolving RNNs of arbitrary topology. My empirical study of autonomous RNNs are based on the

RNN controller used in the two-joint arm controlling task. Part of this Chapter was previously

published as [3] and is used here with permission from IEEE.

2.1 Approach

2.1.1 Overview

The neural circuit works as a controller for a two degree-of-freedom articulated limb and the

task is to reach a target which is out of the range of the arm alone but reachable if the arm grabs

a tool (Fig. 2.1 and 2.2). The NEAT algorithm creates generalized RNNs which have arbitrary

topology. The RNNs can evolve in all aspects: number of neurons, connectivity and weights

of connection. The activation function in the hidden and output neurons is a sigmoid function,

making the network exhibit rich non-linear dynamics. Since the scale and complexity of the RNNs

increases as they evolve, we limited the number of generations to keep the complexity of the RNNs

under control.

Firstly, we evaluated the performance of the RNN controller. The correlation of success rate

and many parameters such as the starting angles of the arm, and different locations of the tool and

the target. Given all the initial values of the input vector, the results are deterministic, however, the

results show irregular distributions dependent on some parameters.

Next we examined the neural activity in different parametric trials. We find that the behavior

of the arm is encoded in the activities of the neurons. As a non-autonomous dynamical system, in

successful trials (target reached), the set of hidden neurons activities approach a stable state when

the arm reaches the target. In the failed trials, the hidden neurons fall into many kinds of limit

cycles so the arm either oscillates or gets stuck before reaching the target.
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2.1.2 Evolving the Neural Circuits Using NEAT

2.1.2.1 Setup of the Task

The task is to control a two-limbed articulated arm in an object reaching task. The degree of

freedom of the arm is 2, and the arm moves on a 2-D plane. The environment was equipped with a

tool (a stick) that can be picked up and used to reach objects beyond the range of the limb (Fig. 2.1).

2.1.2.2 Input and Output

It is important to define the proper sensory inputs to represent the environment properly, es-

pecially for artificial agents learning through action and feedback loops [47]. In [53], the authors

compared two forms of representations: world-centered sensory representation (WC) and agent-

centered sensory representation (AC). AC can use polar coordinates while WC can use Cartesian

coordinates. The author further proposed the relative agent-centered sensory representation (RAC)

which is the relative difference between two ACs. In our experiment, we use RAC as the sensory

inputs to the limb controller neural circuit. The details of AC and RAC are as follows:

ACend_eff = (φ1, d1)

ACtarget = (φ2, d2)

ACtool = (φ3, d3)

RACend_eff&target = (φ2 − φ1, d2 − d1)

RACend_eff&tool = (φ3 − φ1, d3 − d1)

(2.1)

The input layer includes both perceptual and proprioceptive neurons [54]. 6 input neurons are

needed: two joint angles θ1 and θ2, relative distance and angle to the target φ2 − φ1 and d2 − d1,

relative distance and angle to the tool φ3−φ1, d3−d1. (Fig. 2.2a) The output layer serves as motor
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(a) Example Task Condition

(b) Controller-environment Interaction

Figure 2.1: The task and the environment. (a) The environment consists of a two degree-of-
freedom articulated limb, a target object, and a tool, all on a 2D plane. Note that the tool’s initial
locations are variable. The two half-circles indicate the original reach (inner) and the reach with
tool use (outer). (b) The interaction cycle between the neural circuit controller and the environment.
When the end-effector reaches the tool handle, the tool is automatically attached to the limb and
the tip of the tool becomes the end effector. Note: the controller is not explicitly notified of the
limb extension due to the tool pickup. Reprinted with permission from [3].
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(a) Sensory Representation (b) Kinematics

Figure 2.2: Agent-centered sensory representation (AC) and kinematics of the joint arm. (a) AC
uses a polar coordinate system. φ1, φ2 and φ3 represent the angles for the end effector, the target
and the tool, respectively. d1, d2 and d3 indicate the distances to the end effector, the target, and
the tool, respectively. (b) The limb consists of two joints θ1 and θ2, and the arm segments L1 and
L2 (with the length ratio of L1 : L2 = 1 : 1.25). The two joint angles θ1 and θ2 are controlled by
the neural circuit output. Reprinted with permission from [3].

neurons to control the change of two joint angles ∆θ1 and ∆θ2 with maximum step size of 1.5◦

(Fig. 2.2b).

We also use joint limit detectors as two additional input neurons:

v{θ1,θ2} =


1 if{θ1, θ2} ≥ 150◦

−1 if{θ1, θ2} < 150◦

0 otherwise

(2.2)

Overall, 8 input neurons and 2 output neurons are used in the neural circuit, and these are the

only neurons in the initial network (i.e., no hidden neurons).
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2.1.2.3 Fitness Criteria

We tested three basic fitness criteria and their different combinations to evolve the neural circuit

controller. For each controller, by the end of 100 trials, the following quantities were calculated:

(1) D: distance between the end effector and the target;

(2) S: steps taken to reach the target; and

(3) T : tool pick-up frequency.

D = 1−
∑

k ‖~ok − ~ek‖
K ×Dmax

(2.3)

S = 1−
∑

k Sk
K × Smax

(2.4)

T = 1−
∑

k tk
K

, tk =


1 if tool is picked up

0 otherwise
(2.5)

where ~ok and ~ek are the coordinates of the target object and the end effector of the limb, re-

spectively. The Euclidean distance (L2 norm) ‖ ◦ ‖ is normalized by the maximum radius of the

environment Dmax. K indicates the total number of the trials (K = 100 in the experiment) and k

indicates kth trial. sk indicates the number of steps taken before reaching the target, and Smax is

the maximum movement steps for each trial (Smax = 500 in the experiment). tk = 1 when the tool

is picked up during the trial and 0 otherwise. Different combinations of the fitness criteria elements

are tested: D,S,DS,DT, ST, S2T and DST . Multiplication ("×") is used when combining the

fitness criteria elements (e.g., DS means D × S)
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Figure 2.3: An example of the neural circuit controller. This is the connectivity graph of one the
best controllers (success rate = 80.68%) in the evolution with NEAT algorithm. This controller
emerged after 116 out of 120 generations. 8 input neurons (rectangles) and 2 output neurons
(circles) are adapted from the original architecture of the neural circuit (before evolution) and 6
hidden neurons (hexagons) are the evolved ones. Dashed lines indicate connections with negative
weights. The neuron level analysis is mainly based on this circuit because this controller has
relatively simple topology compared with the other best controllers. Reprinted with permission
from [3].

2.2 Experiments and Results

2.2.1 Behavior Analysis

2.2.1.1 Fitness Criteria and Success Rate

When measuring the performance of the different fitness criteria, comparing the raw directly is

unfair because different fitness criteria produces different scale of fitness scores. So we simply used

the success rate (the percentage of successful target reach events during a fixed number of trials) to
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compare the performance across different criteria. The results (mean success rate) were as follows:

D(17.78%), S(31.66%), DS(28.65%) for the fitness conditions lacking T (group D,S,DS); and

DT (93.70%), ST (90.47%), SDT (94.07%) for the condition with T (group DT, ST,DST ). The

success rates appeared similar within each group (t-test, n = 4, p > 0.1 for all cases) but signif-

icantly different across the two groups (t-test, n = 4, p < 0.01 for all case). The term T (tool

pick-up frequency) turns out to be the most important feature.

Figure 2.4: Results of evaluation with different initial trial conditions[3]. Rows 1,3,5: the start-
ing angles of the joints. Rows 2,4,6: the corresponding random sampling of different legal tool
locations (all within the reach of the arm). Each dot indicates a tool location in a trial. Dark dots
indicate successful trials, and red dots indicate failed trials, respectively. The distribution changes
gradually in each row as the starting angles of the arm joints change. Reprinted with permission
from [3]
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Figure 2.5: Success/fail distribution with different tool locations. Each dot indicates a tool location
in a trial. Dark and red dots indicate successful and failed trials, respectively. Left: Magnified
figure of the 4th row, 1st figure in Fig. 2.4. There are mixed color (mixed outcome) areas, for
example, x = [350; 450]; y = [250; 300] (marked with the rectangle). Right: Enumeration of
different tool locations with integer coordinates in the marked region x = [350; 450]; y = [250;
300] of the above figure. The two colors are not separable, which indicates the chaotic behavior of
the arm. Reprinted with permission from [3].

2.2.1.2 Success Rate and Initial Trial Configurations

Given the initial configuration of the trial (location of the tool, target and the starting angles

of the arm), the result of the trial is deterministic. We evaluated the neural circuit controller

shown in Figure2.3 with different initial configurations. To investigate the correlation between

the success rate and each variable, we controlled the number of variables. As shown in Fig-

ure 2.4, the correlation between success/fail distribution and starting θ1, θ2 of the arm joints is

significant. The upper limb is represented in blue color and the lower limb is represented in

red color. The initial condition is chosen from the combination of θ1 ∈ {−60◦, 90◦, 240◦} and

(θ2 − θ1) ∈ {−120◦,−60◦, 0◦, 60◦, 120◦}. Particularly, the success rate is the highest when

θ2 − θ1 = 0◦.

We also noticed that in Figure 2.4, there are many regions with mixed outcomes. We further

investigated these regions (Figure 2.5). The arm shows some interesting behavior: very similar

initial trial configurations (same target location, same starting angles of arm joints, adjacent tool

locations) can lead to totally different results. The observation is that there is an approximated
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boundary between two regions, but the behavior of RNN controller becomes unpredictable when

the target location is near the approximated boundary (see Figure 2.4). The window is generated

by enumerating all possible target locations. Since there is no randomness in the RNN model

itself, and the enumeration process, this result is deterministic and reproducible. In this experi-

ment, the result is very sensitive to initial conditions. This sensitivity implies that there is possibly

chaotic dynamics in the RNN model. Since the results are deterministic, the assumption here is the

recurrent neural network controller has chaotic behavior.

Additional experiments on meta-configurations were done in order to verify the assumption.

The meta-configurations include the angle boundary of the joint arm, the data type of the co-

ordinates (integer vs. double precision decimals). As shown in Figure 2.6 (a)-(c), even though

changing the meta-configuration can affect the results, the chaotic behavior is still preserved.

Further experiment is performed on changing the topology of the RNN controller. As shown

in Figure 2.6 (d)-(f), different hidden neuron(s) are removed and then compare the test result with

the original controller. The neuron(s) are selected based on the degree of connections. The least

connected neuron is removed first. Though the removal of neuron can affect the result, the chaotic

boundary still exists in the region.

2.2.2 Strategy Analysis

The strategy of the neural circuit controller can be evaluated from the activities of the input

neurons since they contain relative agent-centered sensory representations of the environment that

are changed as a result of the controller’s action. We recorded the activities of 4 input neurons:

relative distance and angle to the target, relative distance and angle to the tool (Figure 2.7). The

convergence speed of these 4 variables can reveal the strategy of the controller.

The relative angle to the tool converge to 0 first, then the relative distance to the tool converges

to 0, finally the relative angle and distance to the target converge to 0. So the strategy can be

summarized as:

1. Minimize the relative angle to the tool,
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(a) Original chaotic region (b) No angle limit

(c) Double precision (d) Remove hid5

(e) Remove hid6 (f) Remove hid5 and hid6

Figure 2.6: (a) The original selected region. Blue dots represent successful trials and red dots
represent failed trials. (b) Remove the limitation that −60◦ ≤ θ1 ≤ 240◦. (c) Change the data type
of 2-D coordinates from integer to double. (d)-(f) Change the topology of the RNN controller in
Figure 2.3. In (b)-(f), blue dots represent the difference compared with the original selected region.
Reprinted with permission from [3].
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2. Minimize the relative distance to the tool and reach the tool,

3. Reach the target.

This strategy is also used in failed trials (Figure 2.7(b)) which indicates this strategy does not

always work well. So we have to further investigate the internal state of the controller not only

when the arm reaches the target, but also when the arm gets stuck and fails to reach the target.

Table 2.1 shows the distribution of limit cycles in failed trials. The Other category may not

be limit cycles since it is possible for the RNN neurons to exhibit non-periodic activity values.

As shown in Figure 2.9, the neuronal activity demonstrates non-periodic behavior in some trials.

97.59% of the failed trials can be categorized as periodic orbits with period ≤ 16. The period-2

orbits (88.55%) are the dominating type of limit cycles. The trials in "other" category are either

chaotic or periodic orbits with long (>16) periods (Figure 2.9). However, we cannot prove if the

periodic orbits are attractors because there is still not a good method to estimate the number of the

periodic orbits and their topological properties.

2.2.3 Neuronal Activity Analysis

The activity of all the neurons in each trial were recorded (Figure 2.8), and we aim to find

internal evidence why the arm shows such complex behavior. Since the activation function of the

hidden neurons is a sigmoid function σ(x) = 1
1+eγx

which is non-linear, the recurrent neural circuit

can be interpreted as a non-linear dynamical system. We investigated the local stability of this

dynamical system in the next section.

2.2.4 Theoretical Analysis

Even for a very low dimensional state space, the upper bound on the number of limit cy-

cles cannot be decided. The Poincaré-Bendixson impossible theorem stressed the difficulty of the

computation[55].
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(a) Temporal activity of 4 input neurons in successful trials

(b) Temporal activity of 4 input neurons in failed trials

Figure 2.7: Analysis of task strategy. From top to bottom: relative distance and angle to the target,
relative distance and angle to the tool. The values are normalized (divided by initial value when
t = 0). Each plot shows multiple curves from multiple trials. (a) The 4 variables have different
convergence speed: relative distance to the tool is the fastest (row 3), then the relative angle to
the tool (row 4), finally the relative distance to the target (row 1) and the relative angle to the
target (row 2). (b) All the failed trials fail to minimize the relative angle to the tool which means
they get stuck before reaching the tool, then the activities turn out to be low amplitude oscillation.
Reprinted with permission from [3].
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0 50 100 150 200 250 300

(a) Example neuronal activity of a successful trial

0 100 200 300 400 500

(b) Example neuronal activity of a failed trial

Figure 2.8: Analysis of neuronal activity. From top to bottom in each graph: 8 input neurons, 2
output neurons, and 6 hidden neurons (see Figure 2.3). (a) The trial succeeded in about 280 time
steps. The sudden switch of values at about 100 time step indicates the pick-up of the tool. (b) In
this failed trial, the hidden neurons started oscillation after about 120 time steps. Reprinted with
permission from [3].
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Type Number of Trials Percentage
Period-2 orbit 1693 88.55%
Period-4 orbit 102 5.33%
Period-6 orbit 23 1.20%
Period-8 orbit 11 0.58%

Period-12 orbit 23 1.20%
Period-16 orbit 14 0.73%

Other 46 2.41%
Total 1912 100.00%

Table 2.1: Distribution of limited cycles in all failed trials. Reprinted with permission from [3].

There is still no universal solution to determine the global stability of RNNs, as the Hilbert’s

sixteenth problem[46] remains unsolved:

Find a maximum natural number H(n) of the number of limit cycles and relative po-

sition of limit cycles of a vector field.

Theorem 1 (Poincaré-Bendixson Impossible Theorem). The problem of finding a point on a limit

cycle of ẋ = f(x) in [0, 1]2 , or the problem of determining if a given point is at most δ > 0

away from a limit cycle, with black box access to a Lipschitz and continuously differentiable f , has

arbitrarily high complexity.

2.2.4.1 Solve the Fixed Points

Continuing with the analysis of autonomous RNNs, I am interested in two questions:

1. Does a fixed point exist in the state space?

2. If a fixed point exists, how is it related with the internal activities of the RNN models?

To test if there is a fixed point of the hidden neurons’ activity state when the arm reaches the

target, we need to know the values of the input and the output neurons. Since the location of

the target is given as initial configuration, the angles of the arm joints when the arm reaches the

target can be algebraically solved, therefore all the values of input neurons are known. The output
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Figure 2.9: An example of chaotic hidden neuron activity in a failed trial. The activity of the
last 100 time steps of 6 hidden neurons were recorded. They do not show any periodic behavior.
Reprinted with permission from [3].

neurons at steady state should satisfy ∆θ1 = 0, ∆θ2 = 0 and can also be solved directly. Therefore,

all the values of input and output neurons are known.

A fixed point holds the following condition:

∃t∗ ∈ N, ∀t ≥ t∗ x(t) = x(t∗) (2.6)

Let T be a trajectory in state space. In order to solve the fixed points, we only need to solve the

equation:

∆T (t) = 0 (2.7)

Given the activation function σ(x) = 1
1+e−γx

, let Ti be the i-th dimension of T , then

Ti(t) =
1

1 + e−
∑
j γwjiTj(t−1)

(2.8)

∆T (t) =
1

1 + e−
∑
j γwjiTj(t−1)

− Ti(t− 1) (2.9)
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The function is differentiable, and wji and γ are constant values, thus the function is numerically

solvable. The solutions are the fixed points.

This algorithm also works for activation functions other than sigmoid function. With the inter-

nal activation data of the articulated limb controller, I found that the successful trials are asymp-

totically close to the theoretical fixed points (see Figure 2.10).

Figure 2.10: The Euclidean distances from the state vector of the hidden neurons (each curve
represents a successful trial) to the theoretical fixed point. The data is captured from the last 50
time steps of successful trials in our experiment. The distance is relatively large (≥ 1.9) before the
last 10 time steps, and after a short period of oscillation, the distances in all the trials decrease to
very small values (≤ 0.18), indicating the end state is close to the theoretical fixed point. Reprinted
with permission from [3].

2.2.4.2 Local Stability of Autonomous RNNs

Because the RNN model is bounded and differentiable, the local stability can be solved with the

indirect approach of Lyapunov stability, based on the fact that the RNN can be locally linearized.

The Jacobian matrix at fixed point T (t) is
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J =

[
jij

]
=

[
∂Ti(t)

∂Tj(t−1)

]
=

[
wjiTi(t)(1− Ti(t))

]
(2.10)

The eigenvalues of J are the indicators of local stability at T (t). The Jacobian matrix is sparse

since the network is not fully connected. In the successful trials of our experiment, all the eigen-

values of the Jacobian matrix with the solution of Equation 2.2.4.2 turn out to be real and negative,

which indicates that the fixed points are stable. The fixed point is also an attractor for all the

successful trials (Figure 2.10).

Theorem 2 (Lyapunov Stability Theorem). The fixed point T (t) is asymptotically stable if and

only if all eigenvalues have negative real parts.The fixed point T (t) is unstable if one or more of

the eigenvalues has positive real part.

Theorem 2 [56] can be used to judge the local stability, though it does not tell anything about

region of attraction. The fixed point in Figure 2.10 is proved to be asymptotically stable by this

theorem.

An example of the Jacobian matrix is (using the fixed point p in Figure 2.10):

p =



1.0000

0.0000

0.0043

0.8199

0.9995

0.0098


(2.11)
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J =



−1. 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0.0007 0 0

0 0 0 −1 −0.5516 0

0 0 0 0 −1 0

−0.0022 0 0 0 0 −1


(2.12)

The eigenvalues are [−1,−1,−1,−1,−1,−1].

2.3 Contribution and Discussion

In this chapter, we analyzed the behavior and the neuronal activation of the autonomous recur-

rent neural network which was used in the task of controlling an articulated limb for tool use, and

showed the correlation between the behavior of the limb and the internal dynamics of the RNN.

We also investigated the local stability of the end states in both successful (goal state reached)

and failed trials in our experiment. The existence of fixed points and limit cycles could explain

the cause of success and failure. We expect our results to help better understand RNNs and their

dynamics.

At present, not only in our previous experiment, but also in many complex control problems

using neuroevolution [28], fitness criteria and success rate estimation are mainly done by sim-

ple random sampling of initial task conditions. However, simple random sampling often ignores

the variation in behaviors and internal dynamics across different sub-populations. Stratified sam-

pling we used in this paper can be more helpful in finding the difference of behavior among sub-

populations across trials (Figure 2.5). The overall task performance can be evaluated from the

performance of many sub-tasks, but not vice versa.

Though global stability analysis is not practical for a high-dimensional non-linear dynamical

system [28] like the one in our experiment, to some extent, local dynamical analysis can still

explain why and how a trial can succeed or fail. The target in the tool-use task puts an attractor

27



in the state space of hidden neurons. However, some trials may step into limit cycles so that the

arm fails to reach the target. We hope our study can provide new performance criteria (e.g. the

comparison of performance among sub-populations with different configurations, the stability of

the goal state, etc.) in the evaluation of evolved RNNs.

The limitations of the study in this paper are as follows: most world properties were heavily

encoded in the inputs themselves, e.g., target location, tool location, etc; our method still cannot

predict when will the state of hidden neurons get trapped in limit cycles. To improve the neural cir-

cuit controller, object recognition and grounding [57][58], and efficient codes for motor encoding

[59] can be incorporated into our system for increased realism. We can also integrate our behav-

ior analysis with novelty search [60]. Since the behavior analysis is independent of the fitness

function, it is possible to systematically build up the behavior space based on behavior analysis.

More extensive lesion study [61] on the internal dynamics of the RNNs can also be used. This will

help understand thoroughly the functionality of each component in the network and to improve the

robustness of the RNNs.
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3. ANALYSIS OF NON-AUTONOMOUS RECURRENT NEURAL NETWORKS

The hidden states of non-autonomous recurrent neural networks depend on both the previous

hidden state and the current input: ht = f(ht−1, xt). When xt and ht−1 are independent with

each other, the recurrent neural network is non-autonomous. Non-autonomous recurrent neural

networks refer to the category of recurrent neural networks which take partially observable data as

input to the neural network. The non-stationary time series analysis [62] tasks require the models to

be non-autonomous, such as weather forecast [63][64], speech recognition [43][65], hand-writing

recognition [66][67] and machine translation [25][68][17].

The non-autonomous recurrent neural networks can be represented as non-autonomous dy-

namical systems. The dynamics of non-autonomous dynamical systems take place on smooth fiber

bundles[69] [70]. The state space of a non-autonomous dynamical systems evolves over time and

a fiber bundle contains continuous surjective map between state spaces at different time steps. As

shown in Figure 3.1, A point in the fiber q = (x, g) ∈ Q = M × G projects down to the point

x ∈ M under the projection map π : Q 7→ M defining the principal fiber bundle [71]. Unlike

autonomous systems, the non-autonomous systems are difficult to analyze mathematically. The

local stability usually does not sustain with external inputs.

Figure 3.1: Schematic of a fiber bundle. Illustration adapted from [4].
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Despite the conventional methods for time series analysis such as regression and hidden Markov

models are highly interpretable [72], these methods are usually based on some strong assumptions.

For example, regression models assumes that the data to follow some particular distribution (uni-

form, Gaussian, etc.), and the observations are independent with each other[73]. Hidden Markov

models assume that the input to have Markovian property [74]. These assumptions create difficul-

ties for the models in achieving state-of-the-art performance on complicated tasks.

Recurrent neural networks do not rely on such assumptions, and have been a powerful tool for

various time series analysis tasks. However, the dynamics of recurrent neural networks is hardly

known. To understand the internal dynamics is of vital importance for analyzing the robustness

and reliability of RNNs. This chapter includes my work on analyzing the internal dynamics of

LSTM models with different tasks.

3.1 Task Description

The goal of this study is to investigate the dynamics of RNN models that take external inputs.

As shown in Figure 3.2, the RNN classifiers are built with LSTM cells [24] and GRU cells [25]

since they are good models for memorizing long term dependency in the input sequence. The

output vector from LSTM cells are fed into a dense layer and the final output vector is softmaxed.

A softmax vector has normalized property, so that it can be used in categorical representation.

Figure 3.2: The configuration of RNN model with LSTM cells. Various number of LSTM cells
are tested.
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3.1.1 Sequential MNIST Classification Task

MNIST is a well-known handwritten digits database. Each image in the database has 28×28 =

784 pixels and there are 10 classes for each digit from 0 to 9. The data set contains 60,000 training

samples and 10,000 testing samples.

Sequential MNIST classification is to reshape the image into a sequence of pixels or a sequence

of pixel vectors as input, and to classify the sequential input. In my experiment, the 784 pixels are

converted to 28 vectors with 28 pixels in each vector. In other words, the RNN classifier scans the

image row by row, as shown in Figure 3.3.

To recognize the digits, the RNN classifier has to keep an internal memory of the past input,

since a single row does not provide sufficient information for the digit identification.

Figure 3.3: Illustration of the sequential MNIST task

3.1.2 DNA Sequence Classification Task

Splice junctions [75] are points on a DNA sequence at which "superfluous" DNA is removed

during the process of protein creation in higher organisms. The data set was acquired from the

UCI machine learning repository [76]. The problem posed in this data set is to recognize, given

a sequence of DNA, the boundaries between exons (the parts of the DNA sequence retained after
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splicing) and introns (the parts of the DNA sequence that are spliced out). This problem consists

of two sub-tasks: recognizing exon-intron boundaries (referred to as EI sites), and recognizing

intronexon boundaries (IE sites). (In the biological community, IE borders are referred to a “ac-

ceptors” while EI borders are referred to as "donors".) The DNA sequence data set contains 3,000

samples, and is randomly shuffled into training and validation data set with a 4:1 ratio. A DNA

sequence example looks like

CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG

As shown in Figure 3.4, each DNA sequence has 60 base pairs, and 4 base types: A,T,G and

C. The RNN model is trained with input of 4 dimensions× 60 time steps. Similar to the sequential

MNIST classification task, recurrent (LSTM/GRU) cells are used in the RNN classifier.

Figure 3.4: Illustration of the DNA classification task.
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3.2 Experiments and Results

3.2.1 Training

Implemented with PyTorch, the RNN models were trained and tested on Intel i7-6700K CPU

and a single NVidia GTX1070 GPU. The first step is to evaluate the performance of RNN classi-

fiers. Models with different numbers of cells were tested, and since dropout [77] directly affects

the number of cells used in the training phase, the results of using dropout and without dropout are

also compared (see Table 3.1, Table 3.2 and Figure 3.6). 30 models were trained with the same

training data set for each number of cells per task, and the accuracy is averaged among all models

with the same configurations. The LSTM and GRU models are trained with two configurations

with dropout=0.5, and dropout=0 as baselines. The effect of dropout on robustness will be dis-

cussed in the follow-on parts. The RNN models were optimized with standard stochastic gradient

descent (SGD) [78] algorithm on mini-batches. The negative log likelihood (NLL) loss function

[79] curves can be found in Figure 3.5. The NLL loss is equivalant to cross entropy as the cross

entropy loss can be represented in

loss(x, class) = − log
exp(x[class])∑

j exp(x[j])
= −x[class] + log

∑
j

exp(x[j]) (3.1)

The training part is straightforward and after training, the RNN models can eventually reach

certain performance, which can be used for further experiments.
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(a) Loss curves of LSTM models with
dropout=0.

(b) Loss curves of LSTM models with
dropout=0.5.

Figure 3.5: Loss function curves for different LSTM models. Use of mini-batches leads to the
sudden peaks in the curves.

# of Cells LSTM(dropout 0.5) LSTM GRU(dropout 0.5) GRU

4 63.82% 48.64% 48.32% 48.32%

6 66.56% 76.19% 48.90% 48.90%

8 81.51% 76.21% 61.36% 50.46%

10 89.11% 76.46% 64.62% 61.36%

12 91.55% 84.40% 84.64% 77.86%

16 94.71% 85.71% 86.84% 82.15%

32 97.31% 89.12% 91.13% 85.25%

64 98.25% 96.63% 97.55% 97.04%

128 98.92% 98.87% 99.02% 99.00%

256 99.01% 99.06% 99.06% 99.03%

Table 3.1: Sequential MNIST Classification accuracy of different models.
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# of Cells LSTM(dropout 0.5) LSTM GRU(dropout 0.5) GRU

4 51.57% 51.57% 51.57% 51.57%

6 52.04% 55.49% 65.20% 51.57%

8 58.93% 63.32% 66.61% 51.88%

10 82.60% 79.15% 68.18% 61.60%

12 86.36% 80.41% 76.33% 76.68%

16 87.77% 83.23% 79.47% 76.80%

32 91.38% 89.97% 89.66% 90.60%

64 92.79% 91.38% 91.85% 92.63%

128 94.20% 91.85% 92.32% 92.79%

256 94.98% 92.95% 92.48% 95.30%

Table 3.2: DNA Classification accuracy of different models.

(a) Curves of accuracy in sequenctial MNIST
task.

(b) Curves of accuracy in DNA classification
task.

Figure 3.6: Accuracy vs. number of cells for different LSTM models.
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3.2.2 Experiment on Recurrent Cell Dynamics

Figure 3.7: The hidden activation ht of a 256-cell LSTM neural network on an MNIST test sample.
X-axis represents the time step. The colors represent the values of ht.

Figure 3.7 shows the hidden state ht histogram of a LSTM cell for sequential MNIST task. Dif-

ferent cells exhibit different dynamics on the same input. As shown in Figure 3.8 (b), statistically,

a well-trained LSTM cell is able to learn the differences across different classes. We observed

that similar distributions between digit 3,6,8 and between digit 1 and 7. And we also observed

significant deviation in the digit 7 histogram in Figure 3.8(b). This result can be explained with

the spatial features from the digit images, which are typically learned in convolutional neural net-

works. However, the LSTM also demonstrates such characteristic in the experiment based on this

result.

This result intuitively makes sense because the handwritten digits 3, 6 and 8 usually share

common parts, and so are 1 and 7. However, the way of writing digit 7 varies as some people put

a stroke across the digit, as shown in Figure 3.9.

In Figure 3.8(c), the divergence of histograms across different classes is also significant. For
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any of the class pairs, the divergence can be quantified with Kullback-Leibler divergence (KL-

divergence) [80], which is also called relative entropy. Suppose P and Q are two discrete proba-

bility distribution, the KL-divergence can be represented as:

DKL(P ||Q) =
∑
x∈χ

P (x) log
P (x)

Q(x)
(3.2)

The increase in the relative entropy implies information gained through training.

(a) ht of an LSTM cell before
training for sequential MNIST
task.

(b) ht of an LSTM cell after
training for sequential MNIST
task.

(c) ht of an LSTM cell after
training for DNA classification
task.

Figure 3.8: Example hidden state ht histograms for untrained and trained LSTM cells with all
training samples. X-axis represents the digit labels from 0 to 9 in (a)(b), and EI, IE, N in (c).

Figure 3.9: Examples of handwritten digit 7 in MNIST data set. The stroke in the middle causes
larger variance in pixels than the other digits.

In the DNA experiment we also want to investigate the trajectories of the sequences in the state

space (see Figure 3.10). The linear layer that connects the hidden states of recurrent cells and

the output vectors is a surjection so that we can first investigate the trajectories in the output state
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space. The DNA has 60 components and 3 classes so that there is no need to apply dimension

reduction embedding for visualization. Since the convergence for an non-autonomous dynamical

system can not be derived directly, we extend the input sequence with zero padding to simulate the

resting state of the RNN model, as from T=60 to T=200 in Figure 3.10. With idle input, the RNN

model eventually works as an autonomous dynamical system.

Figure 3.10: Example of trajectories of output vectors in DNA classification task, from t = 10 to
t = 200. In this case, all trajectories converge to one point by the end.

Interestingly, the RNN models do not always converge with zero input which implies the RNN

model is not always input-to-state stable [81] (see Figure 3.11). Another hypothesis is that the

larger the number of LSTM cells is, the more likely the state space becomes unstable.

3.2.3 Latent Feature Space Exploration

This experiment aims to investigate the latent feature space via the hidden states of the recur-

rent units from the sequential MNIST task. As shown in Figure 3.7, the hidden states demonstrate

various dynamics. Intuitively, we want to know more about the trajectories of the hidden activ-

ities in the latent space. In order to analyze the high-dimensional latent space, we applied some
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Figure 3.11: Trajectories of test samples from different RNN models in latent space. a) both attrac-
tor and limited cycle exist in state space, b) limit cycle exists in state space, c) chaotic trajectories,
d) more than 1 attractors exist in state space, e) more than 1 limited cycles exist in state space, f)
periodic but strange trajectories.

dimension reduction methods such as t-SNE [82], Principal Component Analysis (PCA) [83] and

auto-encoder [84][12]. In this experiment, the auto-encoder is a fully connected neural network

that encodes a hidden state vector into an encoded 2-D vector and decodes the 2-D vector to the

hidden state vector itself, and the encoded vectors are used in 2-D visualization. As shown in

Figure 3.13, the feature representations have good convergence on the image data. The PCA and

auto-encoder embeddings demonstrate similar characteristics (see the supplemental plots in Ap-

pendix).

As can be seen in Figure 3.12, when projected to a 2-D plane with t-SNE, the hand-written

image samples do not show clear boundaries between classes. In contrast, as shown in Figure 3.13,

the ending points of the trajectories demonstrate loose boundaries between classes. The trajectories

depict the relative distance between different samples on each time step. The samples start with

blank pixels, so that the trajectories start near the same neighbourhood. The divergence happens
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Figure 3.12: 2-D t-SNE of a subset of MNIST input images.

Figure 3.13: 2-D t-SNE of the hidden states in a 256-cell LSTM classifier, with different subset of
MNIST images. Full-size image can be found in the Appendix.

when the input vectors start to have variations. Although variations between two consecutive time

steps within the same class is also non-trivial, the trajectories of the same class do not converge as

much as different classes.

3.2.4 Experiment on Sequential Representation

The recurrent neural networks have response on each step of the sequential input. Although

in the accuracy table 3.1 we only measure the result from the last step, we are also curious about

40



the intermediate responses along each step of the sequence, and how the model complexity affects

feature extraction.

Figure 3.14 demonstrates the temporal change of the sequential representation at the softmax

layer. The predicted label can be calculated as:

L(x) = argmax
p∈P

ep(x)∑
p∈P e

p(x)
(3.3)

in which p ∈ P denotes the linear combination of ht in recurrent layer. In Figure 3.14, if

we compare different models, we find that larger RNN models provide higher confidence level in

terms of the softmax output than smaller RNN models. Recall the result from previous experiment

(see Figure 3.8), the trained recurrent cells gain higher relative entropy in training. As a result, at

similar level of cross-entropy convergence, the linear combinations of ht in larger models are more

diverged, so that the softmax outputs have much higher bias than smaller RNN models.

Another observation is that a sub-sequence from the whole input can be sufficient for mak-

ing correct predictions. This is an effect caused by backpropagation through time (BPTT) in the

LSTM/GRU training. With the given sub-sequence of input, the RNN models are able to forecast

the upcoming sequence.

We also observe that the softmax vectors do not change smoothly with time. Consider the

surjection from ht to the softmax vectors, this phenomenon reflects the bifurcations of trajectories

in the hidden state space, as shown in Figure 3.13.

To further confirm the above analysis on the empirical result, we tested the RNN models with

mutated input (see Figure 3.15). The small RNN models are very sensitive to mutations however

the large RNN models are not. The partially erased sub-sequence still works well in this experi-

ment, and the non-smoothness also increase with the complexity of the RNN models.

3.2.5 Experiment on Neural Network Lesion Study

Another experiment aims to investigate the robustness of the trained RNNs. The lesion is

applied by randomly removing the connections between recurrent cells and the softmax layer.
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Figure 3.14: Examples of the input images and the corresponding sequential representations. Start-
ing from step 0 to step 27, the colored stacked histograms demonstrate the changes in softmaxed
prediction vectors. From left to right, each column corresponds to the trained model with 8, 16,
32, 64, 128, 256 LSTM cells, respectively. The x-axis in the histogram represent the values in the
softmax output vector. Additional examples can be found in Figure A.4.
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We gradually increase the percentage of the number of disconnected cells, from 0 to 90% and

the result is shown in figure 3.16. The experiment is repeated 10 times to achieve better estimation

of the decay in accuracy. The result indicates that with lesion applied, the accuracy decreases close

to the accuracy from a trained model with equivalent number of cells, which can be fitted with the

same curve.

We also observe that dropout while training improves the robustness of the RNNs against lesion

due to its enhancement to the functionality of a sub-network during training.

3.3 Contribution and Discussion

The trajectory study reveals that even for simple recurrent structure, given external output,

the internal dynamics can be quite complicated, and a model that achieves good performance can

still be unstable. This experiment can be further extended in many aspects. e.g., how the chaotic

behaviors affect the whole model’s performance needs to be investigated, and how perturbed input

affects the stability of the model, and finally, how to translate the trajectories into classification

strategies.

The sequence representation study shows how the intermediate output is related with the input

sub-sequence. It is worth noticing that partial data may be sufficient for inference, and this may

provide some insight for compressed sensing [85]. The comparison across models with different

complexity provides new methodology for understanding the model generalization [86] in machine

learning tasks.

The lesion study demonstrates that LSTM/GRU networks are robust against connection re-

moval from fully-connected layers. Although the performance decays with lesion, it is still compa-

rable with trained models that has equivalent number of cells. Based on these results, the recurrent

neural networks can be further optimized to appropriate number of cells.

Nevertheless, some additional work can be done on the RNN models with partial input. Inves-

tigation on the trajectories in the latent space would help us understand how RNN models make

decisions.

The effectiveness of the dropout in the training phase can also be integrated with information
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theory. My hypothesis is that dropout will add bias to the information gain across RNN cells, and

as a result, the redundancy of the RNN is enhanced by dropout.
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Figure 3.15: Examples of the mutated input images and the corresponding sequential representa-
tions. Starting from step 0 to step 27, the colored stacked histograms demonstrate the changes in
softmax-ed prediction vectors. From left to right, each column corresponds to the trained model
with 8, 16, 32, 64, 128, 256 LSTM cells, respectively. From top to bottom, each row corresponds to
(1) original input, (2) with stroke in the middle, (3) with first 10 steps erased, (4) with last 10 steps
erased, (5) Gaussian noise with PSNR=10dB (6) Gaussian noise with PSNR=5dB, respectively.
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Figure 3.16: Lesion test on Sequential MNIST task. Top-left: LSTM, top-right: LSTM with
dropout=0.5, bottom-left: GRU, bottom-right: GRU with dropout=0.5. Each curve represents a
model and x-axis represents the number of remaining cells.
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4. RECURRENT NEURAL NETWORK COMPRESSION

4.1 Motivation and Task Description

Based on the redundancy and robustness observation from section 3, it is highly possible to

compress LSTM networks by reducing the number of parameters without much loss in perfor-

mance [87]. The idea of neural network compression could date back to 1990 [88]. However,

the demand for neural network compression had not been significant until deep learning [11] be-

came popular. The neural networks compression does not only accelerates the computation, but

also increases the hardware consumption efficiency. Many works have been done on the convolu-

tional neural network (CNN) compression [20][89][90][91]. However, it is yet unknown whether

these methods are applicable to recurrent neural network compression. Unlike feed-forward neu-

ral networks in which the number of parameters are generally linearly proportional to the number

of hidden units, an RNN has hidden-to-hidden transition matrix in which the number of parame-

ters is quadratic to the number of hidden units. As the hidden structure grows, the computational

complexity significantly increases. Therefore, complexity reduction methods are needed to enable

larger models running on less powerful devices such as cell phones and smart watches.

One way to reduce the computational complexity is to decrease the floating point precision in

neural network parameters [92]. Another way is to utilize knowledge transfer to train a smaller

model to mimic larger model [93]. Some other methods utilize the trick of sharing weight sharing

[94][20]. However, the majority of CNN compression tasks are performed via pruning. In the

pruning algorithms, the convolutional kernels and fully-connected nodes are measured by some

importance criteria, and the least important convolutional kernels are removed from the network.

Usually a re-train process is need after pruning, and this pipeline can be applied iteratively [90].

The task in this chapter is to propose and verify an efficient algorithm for RNN compression.

The experiments were on top of Section 3 for comparison with the baseline results and imple-

mented in PyTorch.
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4.2 Proposed Method and Results

Since RNNs demonstrate robustness in the lesion test, and the LSTM cells on the same layer

are independent with each other in terms of cell output, pruning is a feasible approach to achieve

the goal of reduction in number of parameters without significant performance drop. The LSTM

network can be pruned at the level of LSTM cells.

Inspired by the pruning algorithms for CNN [89][20], I propose an algorithm to prune the

LSTM cells by removing the connections between the cells and the adjacent fully-connected lay-

ers. The LSTM cells are ranked by the sum of the absolute weights Σ|Fi,j|, i.e. its l1-norm ‖Fi,j‖1.

Based on the assumption that better cells/neurons have larger absolute weights, the l1-norm rep-

resents the expected capacity of the LSTM cell to contribute to the output feature map. Although

this assumption can be observed empirically (see Figure 4.1), since training neural networks is a

non-convex optimization problem, mathematical proof seems still infeasible. Compared with other

known pruning algorithms [90][92], l1-norm calculation does not rely on data, and has very low

computational complexity. Some other criteria such as Wasserstein distance [95] and Hellinger

distance [96] were also examined, but they are much less efficient and did not provide better per-

formance on general tasks.

Here I propose two algorithms: one-shot and iterative RNN pruning (see Algorithm 1 and 2). In

one-shot pruning algorithm, only the desired number of cells n′ needs to be decided. Based on the

importance of cells, only the most important n′ cells are kept. In iterative pruning algorithm, every

iteration eliminates k least important cells before retraining the model until the network reduces to

the desired number of cells n′.

Figure 4.2 shows the RNN pruning result. 256-cell LSTM has only 0.39% accuracy loss with

224(87.5%) cells being pruned. 256-cell LSTM with dropout has 0.66% accuracy loss with 87.5%

cells being pruned. LSTM without dropout shows higher compression capability than LSTM with

dropout (see Figure 4.4). Figure 4.3 shows the result of algorithm 2. The two algorithms reach

similar compression results.

Figure 4.4 and Table 4.1 demonstrate the performance of pruning algorithm on sequential
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Algorithm 1 One-Shot RNN Pruning
1: W ← trained dense layer weight matrix
2: n′ ← desired number of cells
3: n← current number of cells
4: ~F = Σj|Fi,j|
5: L = argsort(~F )
6: for i = 1...n− n′ do
7: ~Wi = 0

8: re-train the neural network

Algorithm 2 Iterative RNN Pruning
1: W ← trained dense layer weight matrix
2: n′ ← desired number of cells
3: n← current number of cells
4: while n > n′ do
5: ~F = Σj|Fi,j|
6: L = argsort(~F )
7: for i = 1...k do
8: ~Wi = 0
9: n← current number of cells

10: if n == n′ then
11: break
12: re-train the neural network

MNIST task in terms of number of parameters, which is the main criteria for model compression.

The result indicates that LSTM models are compressible with simple pruning algorithms. Nev-

ertheless, we also find the difference in accuracy performance between dropout and no-dropout

models after compression. The difference is potentially due to the information imbalance that

is decreased with dropout algorithm during training, so that the neural network is less robust to

pruning.

4.3 Contribution and Discussion

This is one of the first attempts on RNN compression. The proposed algorithms demonstrate

the capability of pruning recurrent units. The result could help us understand the memory capacity
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# of cells 256 128 64 32 16
# of params 293k 81k 24k 7884 2860

No dropout accuracy 99.06% 98.89% 98.86% 98.55% 95.66%
Dropout accuracy 99.01% 98.97% 98.93% 98.47% 93.94%

Table 4.1: LSTM compression result

of recurrent units, and dynamic change in hidden states during training. The experiments also

imply that the effect of dropout is two-fold. Reduction in redundancy by dropout may weaken

the compression capability of the neural network model. Algorithm 2 can be extended with the

grow-and-prune paradigm [97] for efficient RNN training.

This work can be extended in many aspects. Firstly, the pruning algorithms can be verified on

more tasks and more criteria in the future. Secondly, by finding the extremes of compression, we

can further investigate how the information/memory is organized across recurrent layers. Finally,

there are many assumptions that need to be mathematically analyzed, and this would be a long-term

research topic towards interpretable machine learning.
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(a) The hidden state histograms of trained LSTM cells with the smallest
l1-norm.

(b) The hidden state histograms of trained LSTM cells with the largest l1-
norm.

Figure 4.1: The hidden state histograms of trained LSTM cells with smallest and largest l1-norm
on all training data of sequential MNIST task.
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(a) RNN pruning with algorithm 1, compared with other baseline results

(b) A close look within the range between 256 and 32 cells

Figure 4.2: Accuracy diagram. Models are pruned from the 256-cell LSTM models for sequential
MNIST task.
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Figure 4.3: Accuracy diagram. Models are pruned from the 256-cell LSTM models for DNA
classification task.

Figure 4.4: Accuracy vs. number of model parameters from LSTM on sequential MNIST task,
with x-axis in log scale
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5. CONCLUSIONS

With the recent advancement in deep neural network research, the bottlenecks of deep learning

also become more significant and urgent. Recurrent neural networks (RNNs) is one kind of pow-

erful machine learning tool for sequence modeling [98], but the lack of interpretability has become

one of the main limitations for their broader application. Despite effective methods [99][100] on

interpreting the feed-forward neural networks, the complicated hidden dynamics inside recurrent

neural networks [101] makes the interpretation of the RNNs extremely difficult.

In this dissertation, I proposed two approaches for understanding the correspondence between

the hidden states and the behaviors of recurrent neural networks. The first approach is to represent

the recurrent neural network as equivalent dynamical system. By the mathematical analysis on the

dynamical system, correspondence can be found between the recurrent model’s external behavior

and the internal hidden states, such as convergence, periodic orbits, bifurcations, and chaos. This

approach can provide deterministic analytical solutions on hidden state stability of RNNs with arbi-

trary topology. However, the analytical solution from a non-autonomous dynamical system might

be difficult to acquire since the dynamical analysis on fiber bundles is computationally expensive.

Another approach is to statistically measure the distributions in both hidden state space and the

output space. The learning procedure can be interpreted as the change of distributional representa-

tion in the hidden state space. A well-trained network can project the input sequence into different

clusters that are significantly separated in the hidden state space. The trajectories in hidden state

space also reveal that the recurrent neural networks are robust to partial input as well as lesion to

the network topology. The statistical study on LSTM/GRU cells indicate that a single recurrent

unit is capable of learning complicated time-dependent patterns. For example, in the sequential

MNIST task, the distributional representation of hand-written digits in hidden state space demon-

strates similarity with human perception, that similar digits are closer while very different digits

can have far distance in the single cell hidden state space.

Based on the above findings, as well as inspired by the convolutional neural network (CNN)
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compression [20][102], I proposed algorithms for recurrent neural network pruning. The baseline

pruning algorithm demonstrates high efficiency and negligible performance loss. This is one of the

earliest attempts on RNN compression [87][103]. The compressed RNN models are easier to be

deployed on low-resource devices such as mobile phones [104], and smart home controllers [105].

In summary, the dynamical analysis of recurrent neural networks explores the RNN black-

box model, and demonstrates how the external behavior is related with the hidden states of the

models, and how the learning procedure takes place in the recurrent layer. These findings can help

improve the understanding of the recurrent neural network models, and move us one step closer to

interpretable machine learning [72].
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APPENDIX A

SUPPLEMENTAL PLOTS

Figure A.1: 2-D t-SNE of the hidden states in a 256-cell LSTM classifier
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Figure A.2: 2-D t-SNE of the hidden states in a 256-cell LSTM classifier, using another subset of
MNIST input.

Figure A.3: 2-D t-SNE of the hidden states in a 256-cell LSTM classifier, using another subset of
input.
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Figure A.4: Examples of the input images and the corresponding sequential representations. Start-
ing from step 0 to step 27, the colored stacked histograms demonstrate the changes in softmax
prediction vectors. From left to right, each column corresponds to the trained model with 8, 16,
32, 64, 128, 256 LSTM cells.
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