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ABSTRACT 

 

Deep Learning based approaches have shown promising results for the task of image 

inpainting. These methods have been successful in generating semantically correct and 

plausible inpainted images. In case of object removal, these methods require the input 

image to be masked roughly around the object region. The process of masking the input 

image causes loss of useful information as background pixels are also masked out by the 

rough mask. This loss of useful information makes the inpainting networks highly 

dependent on the mask shapes and size. The quality of the inpainted image deteriorates as 

the mask size increases. In our work, we propose a segmentation guided inpainting 

network which is not dependent on the mask shape and size for object removal. It learns 

to classify the foreground and background spatial locations in the mask region and uses 

them accordingly for the image reconstruction. This network takes the complete image as 

input along with the mask as a separate channel and outputs the inpainted image with the 

object removed. We also generate a paired dataset of image with the object and without 

the object which is required to train this fully supervised network.  

 

 

 

 

 

  



  

 iii  

 

DEDICATION 

 

To my parents, Anil Sakhi and Savita Sakhi, this work would never have been possible 

without you. Thanks a lot for making me the person I am today. 



  

 iv  

 

ACKNOWLEDGEMENTS 

 

Firstly, I would like to thank my committee chair, Dr. Nima Kalantari for his constant 

support and guidance throughout the course of this research. I would like to thank my 

committee members, Dr. Zhangyang Wang, and Dr. Xiaoning Qian, for their suggestions 

and evaluable feedback of this work. Thanks also go to my lab mates, friends and the 

department faculty and staff for making my time at Texas A&M University a great 

experience. Finally, thanks to my mother, father, sister and grandmother for their 

encouragement, love and constant support. 

  



  

 v  

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a thesis committee consisting of Dr. Nima Kalantari and 

Dr.Zhangyang Wang of the Department of Computer Science and Dr. Xiaoning Qian of 

the Department of Electrical and Computer Engineering. All the work conducted for the 

thesis was completed by the student independently.  

Funding Sources 

There are no outside funding contributions to acknowledge related to the research and 

compilation of this document.  

 

 

 



  

 vi  

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION ................................................................................................................. iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

CONTRIBUTORS AND FUNDING SOURCES .............................................................. v 

TABLE OF CONTENTS .................................................................................................. vi 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES ............................................................................................................ ix 

1. INTRODUCTION .......................................................................................................... 1 

2. RELATED WORKS ...................................................................................................... 5 

3. PROPOSED APPROACH ........................................................................................... 10 

3.1. Segmentation Network .......................................................................................... 10 
3.2. Coarse Network ..................................................................................................... 12 
3.3. Fine Network ......................................................................................................... 13 

4. TRAINING PROCESS ................................................................................................ 16 

4.1. Dataset ................................................................................................................... 16 
4.2. Training Details ..................................................................................................... 18 

5. RESULTS ..................................................................................................................... 19 

5.1. Evaluation.............................................................................................................. 19 
5.2. Comparison with State of the Art Networks ......................................................... 19 

6. ANALYSIS .................................................................................................................. 23 

6.1. Performance on Out of Class Objects ................................................................... 23 
6.2. Dependency on Mask Shape ................................................................................. 24 
6.3. Segmentation Error Propagation ........................................................................... 26 



  

 vii  

 

6.4. Architecture & Training Choices .......................................................................... 27 

7. CONCLUSION ............................................................................................................ 29 

7.1. Drawbacks ............................................................................................................. 29 
7.2. Future Work .......................................................................................................... 30 

7.3. Conclusion ............................................................................................................. 31 

REFERENCES ................................................................................................................. 32 

 

  



  

 viii  

 

LIST OF FIGURES 

 

 Page 

Figure 3.1 Proposed Three-Step Network Pipeline .......................................................... 11 

Figure 3.2 Segmentation Network Architecture .............................................................. 12 

Figure 3.3 Coarse Network Architecture ......................................................................... 13 

Figure 3.4 Fine Network Architecture ............................................................................. 14 

Figure 4.1 Generated Dataset – Sample Images............................................................... 17 

Figure 5.1 Comparison with State of the Art networks – Boundaries ............................. 20 

Figure 5.2 Comparison with State of the Art networks – Cluttered Scenes ..................... 21 

Figure 5.3 Comparison with State of the Art Networks – Edges ..................................... 22 

Figure 6.1 Performance on Out of Class Objects ............................................................. 24 

Figure 6.2 Dependency on Mask Shape – Qualitative Evaluation ................................... 25 

Figure 6.3 Segmentation Error Propagation ..................................................................... 27 

Figure 6.4 Architecture & Training Choices .................................................................... 28 

Figure 7.1 Drawback – Propagation of Segmentation Error ............................................ 29 

Figure 7.2 Drawback – Shadow & Reflection ................................................................. 30 

 

 

 

 

 

 

 



  

 ix  

 

LIST OF TABLES 

 

 Page 

 

 

Table 5.1 Comparison with State of the Art Network – Quantitative Metrics ................. 21 

Table 6.1 Dependency on Mask Size – Quantitative Metrics .......................................... 25 

 

 

 

 

 

 

 

 



 

1 

1. INTRODUCTION  

 

Image Inpainting, the task of restoring old and damaged images has been around for a 

really long time. In the recent years, image inpainting has gained huge popularity in the 

domain of digital images due to the development of various advanced image processing 

techniques. More specifically in the digital domain, image inpainting is the task of 

reconstructing missing or corrupted pixels of an image while maintaining its structural and 

textural coherency. Although restoring images, removing objects and text from images are 

its obvious applications, image inpainting finds applications in various tasks including 

image-based rendering, super resolution, image stitching, compression and many others.   

 

In the past, various diffusion based and patch based algorithms [1, 2, 3, 4] have been 

proposed to solve the problem of inpainting. These methods work by interpolating the 

neighboring pixels into the hole region or by replacing the hole region by the best fitting 

patch found in the rest of the image. The efficiency of these methods is limited to small, 

narrow whole regions and images with a global texture. These methods do not hold the 

ability to utilize semantic information available in the image and hence fail to perform in 

images with high structural complexity. 

 

Recently, deep learning methods have shown huge potential in learning semantic features 

of an image. Various deep learning networks have been proposed for the task of image 

inpainting as well. [12] is the first deep learning framework that was proposed to perform 
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image inpainting for rectangular hole regions. Later, this method was extended by [8]. 

They proposed an architecture which allowed for better semantic feature extraction and 

also aimed at performing inpainting for irregular holes. To further improve the 

performance of inpainting in irregular holes, [12] and [23] proposed novel convolution 

operations which took the mask in consideration while performing the convolution 

operation. These methods perform considerably well in structured cases and can even 

hallucinate objects to fill in the missing area.  

 

Very recently, efforts have been made to generate more detailed inpainting results with 

sharper boundaries for various regions in the hole. These methods explicitly incorporate 

the learning of various structural information - contour [20], semantic map [17], edge [11], 

into the network to aid the process of inpainting. These are two step networks where the 

first network predicts the structural information of the hole region which is utilized by the 

second network which performs the actual inpainting task. 

 

All these proposed methods treat the task of object removal similar to the task of hole 

filling. They perform object removal from an image by first masking the image with a 

rough mask around the object and then fill in this masked area using the network. We need 

to note that apart from the pixels belonging to the object (to be removed), the process of 

masking the image with a rough mask also removes some pixels which do not belong to 

the object.  
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The background pixels within mask region, if not removed, can be used in the inpainting 

process to generate more detailed and semantically correct images. These removed 

background pixels can be of much more importance in cases of highly structured images 

where generating sharp boundaries is a challenge. In most cases, the quality of inpainted 

image especially in terms of semantic correctness deteriorates with the increase in size of 

the mask.  

 

In this work, we propose a segmentation guided inpainting network which incorporates 

the usage of all the background pixels to specifically solve the problem of object removal 

from an image. The proposed network is a three- step network that removes an object from 

an image by segmenting the object to be removed along with inpainting the region 

belonging to the object in the image. The network takes the complete image (as opposed 

to masked) and rough mask as input in separate channels and generates both the 

segmentation mask of the object to be removed and the inpainted image as output. Taking 

the complete image as input unlike the masked image in previous approaches, enables 

least information loss and allows the network to learn identifying the spatial locations 

which are necessary for reconstruction and use them accordingly. The network is 

explicitly made to output the segmentation mask of the object to be removed, to aid this 

classification of foreground and background spatial locations by the network.  

 

To train this fully supervised inpainting network which focuses on object removal, we 

require a dataset which contains paired images- with and without the object of interest. 
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However, such a dataset with a size comparable to other commonly used inpainting 

datasets [24], is not publicly available. So, we create our own paired dataset using Places2 

[24] and COCO [9] dataset which are both publicly available.  

 

With this work, we have two major contributions. Firstly, we propose a three- step network 

for object removal which incorporates the use of all background pixels in the generation 

of inpainted output. Secondly, we create a paired image dataset – with and without an 

object, to train a fully supervised object removal network. We compare the performance 

of our proposed network with other state of the art inpainting networks for object removal. 

We also show how the output inpainted image remains almost unaffected by increase in 

object size, thus removing the dependency on mask shape and size. 
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2. RELATED WORKS 

 

Numerous Image Inpainting techniques have been proposed in the past. We discuss the 

development of these inpainting algorithms in the section below. 

 

Diffusion based methods propagate the neighboring pixels into the hole region for 

interpolation. They start from the boundaries of the hole and move inwards filling the 

region. The method proposed by [1], enforces constraint of isophate lines arriving at the 

boundaries to be completed in the hole region to propagate the pixels in the hole. However, 

the reconstruction is dependent only on local pixels and thus fails to be globally coherent.  

Diffusion based methods are also effective only in cases of small and narrow holes.  

 

Patch based methods fill in the missing pixels by a patch in the undamaged portion of the 

image. These algorithms scan through the image patch by patch looking for the best match 

for the hole region. [3] and [4] proposed non parametric patch patching algorithms which 

worked by assuming a markov random field and building the hole region pixel by pixel 

by finding all similar neighborhoods. However, these methods had high memory and 

computation requirements. To reduce these requirements a randomized algorithm, [2] was 

developed. Though the patch based methods perform well in a consistently textured image, 

it fails to perform in cases where the texture is unique to the hole region. It also fails to 

semantically pleasing results in highly structured images.  
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Recently, various deep learning methods have been proposed to perform automatic 

inpainting. Neural Networks have the ability to learn the semantic features of an image 

required for inpainting and thus perform better than the traditional methods in relatively 

structured scenes. Context Encoder [12] is one of the first deep learning based methods 

for image in which uses an encoder-decoder architecture to perform inpainting in 

rectangular hole regions. They explore the adversarial loss [6] along with a standard pixel 

wise reconstruction loss for training which helped produce sharper images as opposed to 

using just the reconstruction loss. Although the method generated semantically plausible 

results, the filled regions lacked the textural details and the network was constrained to 

take only rectangular hole regions as input. 

 

[8] built upon Context Encoders and proposed a fully convolutional inpainting network to 

fill arbitrary shaped holes in high resolution images. The network is trained using local 

and global discriminators to allow the generated images to maintain both local and global 

coherency. They also employed dilated convolutions in all the layers of the generator 

allowing for a greater receptive field without increasing the number of learnable 

parameters to improve global coherency. Fast marching method [18], followed by Poisson 

image blending [13], is employed as a post processing step to remove the color 

inconsistencies in the hole region and surrounding areas. The method produces visually 

pleasing results with reasonable semantic correctness and textural details but still relies on 

a post processing step to perform color corrections and is not free of artifacts. 
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Convolutional neural networks are not particularly effective in learning long distance 

correlations thus creating boundary artifacts and distorted structures in the inpainted 

results. [22] proposed a two-step feed forward generative network with a novel contextual 

attention layer. This contextual attention layer allows for the information distant from the 

hole to be available for use in the hole filling. They use a local as well as global 

discriminator and train the network adversarially using the [7] loss. They also employ a 

spatially discounting reconstruction loss to allow for higher freedom for hallucination of 

pixels by weighing the reconstruction loss higher at the boundary of the hole when 

compared to the regions away from the boundary.  

 

Vanilla convolution filters treat both the valid and hole pixels in the input image equally 

and hence the extracted features depend on the hole pixel values as well. The dependency 

on the initial hole values is attributed to several issues in the inpainted results like color 

contrasts and edge artifacts. [10] proposed a novel partial convolution layer to address this 

dependency on the initial hole values in the input image. Partial Convolution performs 

masked convolution and renormalizes the output to condition only on the valid pixel. The 

convolution is followed by a mask update step. This network demonstrated the efficacy of 

training image-inpainting models on irregularly shaped holes.  

 

Partial convolution heuristically categorizes pixel locations to be valid or invalid and thus 

multiplies hard gating values to the input feature maps. Moreover, invalid pixels disappear 

in deep layers making all the gating values to be 1. To tackle this problem [23] proposed 
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a gated convolution which allows the network to learn the optimal gating values. This 

allows for a dynamic feature selection mechanism for each channel, at each spatial 

location, across all layers. They use a two-step network and also propose a novel GAN 

discriminator SN-PatchGAN which eliminates the need to have both local and global 

discriminators. Gated Convolution effectively eliminates the color inconsistencies and 

generates visually pleasing results.  

 

The previously mentioned deep generative models enabled an efficient end-to-end 

framework for image inpainting, but these methods don’t exploit image structure 

knowledge explicitly to constrain the object shapes and contours, which usually lead to 

blurry results on the boundary and color bleeding to other regions. Recently various 

networks have been proposed which utilize explicit image structure knowledge for 

inpainting to generate better object boundaries. [17] proposes SPG-net which first predicts 

the segmentation labels in the missing area and then generates inpainting results utilizing 

the predicted segmentation labels. They use state of the art segmentation networks to 

initialize the segmentation labels and train a network to predict segmentation labels in the 

hole region. This predicted semantic label map along with the incomplete image are input 

to the inpainting network which outputs the inpainted image. [11] proposes another 

approach of inpainting by making the network explicitly learn the edges of the missing 

region, thus allowing for sharper and cleaner boundaries. The edge generator hallucinates 

edges of the missing region of the image, and the image completion network fills in the 

missing regions using hallucinated edges as a priori. [20] also followed the same strategy 
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and proposed a foreground aware inpainting system which cleanly separates out the 

contour prediction task from image completion. The contour for the hole region is 

predicted which is used in the image inpainting to generate better boundaries and sharper 

images.  
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3. PROPOSED APPROACH 

 

We consider the process of object removal given the complete image and a mask as a three 

step process. Firstly, the spatial locations within the mask region which belong to the 

object are identified i.e., the process of segmenting the object of interest present in the 

mask region. Making use of this segmentation mask, a coarse inpainted image is generated 

in the second step. The goal of this process to grab the regions within the mask which 

belong to the background and use them directly in the output image. The object region is 

coarsely filled using all the replicated background pixels. This step also plays a major role 

in eliminating any minor errors in the segmentation process. The last step takes the 

segmentation mask, input mask and coarse image and fills in the details to the image. This 

results in the final output inpainted image with the object removed. To replicate this three-

step process we propose a three-step network for object removal. The 3 components are 

namely – segmentation network, coarse network and fine network. Figure 3.1 shows the 

pipeline of our proposed network. The strategy of using two step networks for inpainting 

has been adopted from [22]. In the subsections to follow, we discuss each of the networks 

in detail. 

 

3.1. Segmentation Network 

Segmentation Network takes image and random mask as input. It predicts the 

segmentation mask of the object within the mask region as output. Segmentation Network 

follows encoder-decoder architecture adopted from UNet [14]. The task of segmentation  
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Figure 3.1 Proposed Three-Step Network Pipeline  

 

is particularly difficult as a prediction needs to be made for every spatial location. Skip 

connections used in the Unet architecture allow for better reconstruction in the decoder 

part of the network.  We however, have larger sized kernels in the starting layers of the 

encoder part unlike Unet to provide a higher receptive field which is essential in the 

segmentation process. Figure 3.2 shows the architecture of Segmentation Network in 

detail. 

 

In our network, segmentation is a pixel wise two-class classification task where each pixel 

is classified as foreground (object) or background. We use binary cross entropy loss to 

train the segmentation network. Equation 3.1 represents the segmentation loss function. 𝑋 

and 𝑇 are predicted and true segmentation masks respectively. N is total number of pixel 

in the segmentation mask. 𝑡𝑖 and  𝑥𝑖 represent the ith pixel in 𝑇 and 𝑋 respectively. 

 

𝐵𝐶𝐸(𝑋,  𝑇) = ∑ (𝑡𝑖 log 𝑥𝑖 +  (1 − 𝑡𝑖) log(1 − 𝑥𝑖)) 𝑁
𝑖=1                    (3.1)                          
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Figure 3.2 Segmentation Network Architecture 

 

3.2. Coarse Network 

Coarse Network takes the segmentation mask outputted by the segmentation network 

along with the input image and mask as inputs and outputs a coarsely inpainted image. 

Coarse Network tries to grab all possible background pixels from the input image and uses 

these pixels to coarsely fill the object region. The network architecture is adopted from 

[23]. It is an encoder-decoder architecture with a series of dilated convolutions in the 

center. The task of inpainting requires both global and local semantic understanding. The 

dilated convolutions provide a large receptive field which aids global semantic 

understanding.  Figure 3.3 shows the architecture of Coarse Network in details.  
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We use weighted L1 reconstruction loss to train the coarse network. Higher weight is 

given to the pixels within the input mask. Equation 3.2 represents the reconstruction loss 

function.  

 

𝐿𝑅𝑒𝑐𝑜𝑛 = 𝛼‖𝑀 ∗ (𝐼𝑐 − 𝐼)‖1 + 𝛽‖(1 − 𝑀) ∗ (𝐼𝑐 − 𝐼)‖1    

 

𝐼 and 𝑀 are the input image and input mask respectively. 𝐼𝑐 is the coarse image output by 

the coarse network. 𝛼 and 𝛽 are the weights for masked region and unmasked region 

respectively. The values of 𝛼  and  𝛽 are taken as 3.0 and 1.0.  

 

 
Figure 3.3 Coarse Network Architecture 

 

3.3. Fine Network 

The Fine Network is the last network in the three-step network. It takes in the coarse 

image, segmentation mask and input mask as inputs and outputs the final detailed 

inpainted output. It performs the job of adding further details to the coarsely filled regions 

in the coarse image. The architecture for this network has been adopted from [23] which 

has two branches – dilated convolution and contextual attention. The dilated convolution 

(3.2) 
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branch works similar to coarse network and allows for a semantic understanding at global 

level. The contextual attention branch on the other hand allows the network to learn from 

where to borrow information from the background patches to fill in the missing patches. 

Figure 3.4 shows the detailed architecture of the Fine Network.  

 

  

 
Figure 3.4 Fine Network Architecture 

 

A weighted sum of two losses is used to train the fine network. Firstly, L1 loss is used to 

provide the basic guideline for reconstruction. Equation 3.3 represents the L1 loss. 𝐼𝑓 is 

the predicted fine image and 𝐼 is the ground truth image. 

 

𝐿𝑅𝑒𝑐𝑜𝑛 = ‖(𝐼𝑓 − 𝐼)‖1 

 

 

(3.3) 
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Secondly, GAN loss is used which is essential for adding details by hallucinating textures 

as well as replicating them. We use the Spectrally Normalized PatchGAN proposed in 

[23] which has been widely used for image inpainting task since. We also adopt the hinge 

GAN loss as proposed in [23]. Equations 3.4 and 3.5 represent the generator hinge GAN 

loss and discriminator hinge GAN loss respectively.   

 

𝐿𝐺𝐴𝑁𝑔𝑒𝑛
= −𝐸𝑝𝑟𝑒𝑑 (𝐷 (𝐺(𝐼𝑐,  𝑀,  𝑀𝑝𝑟𝑒𝑑))) 

 

𝐿𝐺𝐴𝑁𝑑𝑖𝑠
= 𝐸 (𝑅𝑒𝐿𝑢(1 − 𝐷(𝐼))) +  𝐸𝑝𝑟𝑒𝑑 (𝑅𝑒𝐿𝑢 (1 + 𝐷 (𝐺(𝑋,  𝑀,  𝑀𝑝𝑟𝑒𝑑)))) 

 

 

𝐺 is the generator network i.e., the fine network. 𝐷 is the SN Patch GAN. 𝑀 and 𝑀𝑝𝑟𝑒𝑑 

are the input mask and predicted segmentation mask respectively. 

 

(3.4) 

(3.5) 
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4. TRAINING PROCESS 

 

4.1. Dataset  

Training the fully supervised network we proposed, requires a dataset which contains 

paired images - with and without the object of interest. Due to unavailability of such a 

dataset of considerable size we create our own dataset. In this section, we discuss the 

process we followed to generate this dataset. To be specific, we require a dataset which 

provides us the following - image with object of interest, image without the object of 

interest and the segmentation mask of the object.  

 

We use two publicly available datasets to generate our required dataset - Places2 [24] and 

COCO [9]. Places2 dataset contains more than 10 million images comprising more than 

400 unique scene categories. This dataset is commonly used in image inpainting tasks due 

to large size and varied scene categories. COCO is a large-scale object detection, 

segmentation, and captioning dataset. COCO dataset provides 80 thousand images 

comprising 91 object categories along with the respective segmentation masks.  

 

We use images from Places2 dataset as our base image and paste the objects from coco 

dataset on these images at random spots. We resize the objects covering more than 50% 

of the image to fit within half of the image to allow reasonable hole sizes. Segmentation 

masks are also resized and translated in the same way as the object. Also, we filter out 

objects which cover less than 5% of the image area before pasting them. We also employ 
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a set of augmentation techniques while pasting the objects. For a given background image, 

we select a random object image from the COCO dataset. . The object is placed at a 

random location in the background image after random rotation and random resizing. This 

allows for generation of a diverse paired dataset for supervised learning along with the 

segmentation masks. Figure 4.1 shows some sample images from the generated dataset.  

 

 
Figure 4.1 Generated Dataset – Sample Images 
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4.2. Training Details 

In this section, we specify the training details of our model. Specifically, we train the three 

networks separately for a number of reasons. Firstly, segmentation network is trained on 

real images from COCO dataset instead of using the generated datasets. This prevents the 

network from overfitting to the generated dataset where objects are just superimposed on 

background images. Both the inpainting networks, coarse and fine are trained using the 

generated dataset. We train both these networks separately to allow for better object 

removal. We discuss more on this in the section 6.  

 

All the three networks were trained using the Adam optimizer with a learning rate of 

0.0001. The segmentation network and coarse networks were trained for 150K iterations 

each. On the other hand, fine network was trained for 350K iterations. Fine network was 

be trained for more iterations as it did not over fit easily. Segmentation Network and 

Coarse Network have higher chances of overfitting as they have COCO objects in their 

inputs which are limited in number (140K). The fine network never gets to see these 

objects as the coarse network already removes the object from the image.   
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5. RESULTS 

 

5.1. Evaluation 

We present an extensive qualitative inspection which is the best way to evaluate the task 

of image inpainting. Image inpainting lacks good quantitative metrics as a given input can 

have multiple plausible output inpainted image. We, however, also report the L1 Error and 

L2 Error to compare our model with previous approaches which report the same metrics. 

L1 error and L2 error correspond to mean pixel wise L1 and L2 distance between output 

image and ground truth image.  

 

5.2. Comparison with State of the Art Networks 

We present both qualitative and quantitative comparisons with three previous state of the 

art networks for image inpainting – [10], [22] and [23]. Due to unavailability of official 

network for [10], we train the network ourselves using rectangular masks for this 

comparison. For qualitative evaluation, we use COCO validation images and remove the 

object of interest from them. Rectangular masks are generated from the segmentation 

masks of the objects available in the COCO dataset. The masked images along with the 

mask are given as input to the previous state of the art networks. As opposed to the masked 

image, our network takes the complete image as input. Our network, makes use of the 

background pixels in the mask region and produces semantically plausible images. We 

observe three different scenarios in particular where our network performs better than the 

previous approaches.  Firstly, our network generates sharper and semantically correct 
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boundaries in the masked region. This is a major concern for previous approaches when 

small portion of background objects are covered by the mask. Figure 5.1 shows the 

comparison of our network with previous approaches generating semantically correct 

object boundaries is a major challenge.  

 

 
Figure 5.1 Comparison with State of the Art networks – Boundaries 

 

Secondly, our network performs better in cluttered scenes which are particularly 

challenging for other inpainting approaches. Most inpainting networks fill unrealistic 

structures in cluttered scenes as they are unable to understand the image semantically. 

These unrealistic structures, though look blend in at first glance, can be pointed out clearly 

on a little more observation. Figure 5.2 shows how our network generates realistic 

completions when compared to previous approaches when it comes to cluttered scenes.  
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Figure 5.2 Comparison with State of the Art networks – Cluttered Scenes 

 

Lastly, our network performs better in cases where the mask is at edges. Inpainting at 

edges is more challenging as the available neighboring pixels is drastically reduced. Figure 

5.3 shows comparisons for some cases with mask at the edges.  

 

Method L1 L2 

Liu et al. 2018 0.8763 0.5629 

Yu et al. 2018 0.8261 0.5355 

Yu et al. 2019 0.7846 0.4723 

Ours 0.5229 0.2539 

Table 5.1 Comparison with State of the Art Network – Quantitative Metrics 
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For the quantitative evaluation, paired images are required – with object and without the 

object. Due to unavailability of such a database, we provide the quantitative evaluation on 

the generated data using validation images from Places2 and COCO. Table 5.1 shows the 

quantitative comparison of our network with previous approaches. Our network clearly 

has lower L1 and L2 error as our network is designed to use and grab as much information 

possible from the input image.  

 

 
Figure 5.3 Comparison with State of the Art Networks – Edges 
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6. ANALYSIS 

 

6.1. Performance on Out of Class Objects 

Our network is specifically trained for object removal using the objects from images in 

the COCO dataset. COCO dataset contains images with about 91 unique object categories 

which cover various broad categories including – person, animals, automobile, appliances, 

food items and other miscellaneous objects. Though these categories cover most common 

object categories, the task of object removal might require removal of objects outside these 

categories, like – flowers, fish, distant building, pathways etc. We qualitatively evaluate 

the performance of the network on out of class object removal from images. We observe 

that our network performs equally well with out of class objects. This can be attributed to 

the generalized nature of segmentation network. Firstly, we made sure to train the 

segmentation network on COCO dataset and not the generated dataset. Secondly, the mask 

input given to the network allows the network to generalize and just learn to predict any 

object inside the mask irrespective of the object class. Figure 6.1 shows some inpainted 

results on out of class objects. It can be seen that the network performs effectively for all 

these varied out of class objects. 
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Figure 6.1 Performance on Out of Class Objects 

 

6.2. Dependency on Mask Shape 

One of the major motivations of this work is to remove the dependency of the object 

removal process on the input mask shape and size. Our network is especially designed to 

get rid of this dependency as it inherently classifies the background pixels and foreground 

pixels and thus not requiring the input image to be masked. Firstly, our network does not 

require a free form mask like previous methods to perform efficient object removal. 

Moreover, an increase in the size of rectangular mask also does not affect the quality of 

output. Table 6.1 show the quantitative evaluation for the same. We have used three 

different mask sizes based on margins in pixels – 5pi, 30pi, 60pi, for the quantitative 

evaluation. As it can be seen, the evaluation metrics remain almost the same over all mask 



  

 25  

 

sizes. Qualitative evaluation for the same can be seen in Figure 6.2. It shows how the 

results of the inpainting remain almost the same with increasing mask shapes. 

 

Mask Margin L1 L2 

5pi 0.49 0.22 

30pi 0.46 0.19 

60pi 0.50 0.21 

Table 6.1 Dependency on Mask Size – Quantitative Metrics 

 

 
Figure 6.2 Dependency on Mask Shape – Qualitative Evaluation 
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6.3. Segmentation Error Propagation 

One of the major drawbacks of serially connected networks is the propagation of error 

from one network to another. This is one of the challenges for our network as the coarse 

network depends highly on the segmentation network to identify the spatial locations 

which need to be discarded. In cases where the segmentation mask fails to predict a precise 

masks, coarse network is prone to make errors by leaving small portions of objects in the 

output image. Our network, however, is resistant to errors in segmentation masks 

especially for cases when the mask lacks exact boundaries. On the other hand, if the same 

predicted mask is used to mask the images for input to previous approaches, they result in 

artifacts in the images due to lack exact boundaries. It is impossible to eliminate the 

propagation of error when using previous approaches. Our network manages the minor 

flaws in segmentation mask effectively. This property can be attributed to the 2 step nature 

of the network. We discuss in section 6 about the architecture and training choices which 

contribute towards lesser segmentation error propagation. Figure 6.3 shows some cases 

where the network effectively manages the flaws in segmentation mask. It also shows the 

output of [23] when the same segmentation mask is used to mask the input image.  
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Figure 6.3 Segmentation Error Propagation 

 

6.4. Architecture & Training Choices 

One of the architectural choices that we made for the network was to have a two-step 

network for inpainting or a single step network. Single step networks generate reasonable 

inpainted images when trained with a GAN loss.   

 

For our approach, we find the use of two step network to be necessary. The two step 

process allows the network to replicate the step wise process and demarcate the inpainting 

task effectively. This demarcation allows the coarse network to only focus on identifying 

the background pixels in the mask region and also effectively manage minor errors in 

segmentation mask. This proper object removal and coarse filling provides clear guidance 

to the fine network and also increases its receptive field allowing for accurate detail 

additions. Single step network on the other hand, failed to remove the object completely 
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even in cases with almost no segmentation error. Figure 6.4 displays this difference in the 

performance of object removal for one step vs two step network. 

 

Training strategy for the Two-Step Inpainting network played a crucial role in the object 

removal process. Training them separately aided the process of object removal and also 

allowed for more stable GAN training for the fine network. Figure 6.4 displays this 

difference in the performance of object removal when the networks were trained together 

vs when they were trained separately. 

 

 
Figure 6.4 Architecture & Training Choices 
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7. CONCLUSION 

 

7.1. Drawbacks 

We have demonstrated the effectiveness of our proposed network under situations with 

minors errors in segmentation mask as well as in case of out of class objects. The network 

however still fails to remove the objects completely for particularly difficult cases. These 

cases include when the object to be removed is occluded or camouflaged. This results in 

errors in the segmentation mask by a huge margin which the inpainting network cannot 

manage. Figure 7.1 shows some of these difficult cases where object could not be removed 

successfully by our network.  

 

 
Figure 7.1 Drawback – Propagation of Segmentation Error 
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The network also fails to identify the shadows and reflections of the objects to be removed. 

As a result, even though, the object is successfully removed from the image, its shadow 

or reflection remains in the image. Figure 7.2 shows some examples to demonstrate this 

drawback. 

 

 
Figure 7.2 Drawback – Shadow & Reflection 

 

7.2. Future Work 

Our present work focusses on removing opaque objects which can easily be extended to 

translucent objects like glass and watermarks. The region within these translucent objects 

also contain useful information which can be used for efficient reconstruction. Each pixel 

in an image can be considered to be a weighted sum of foreground and background pixels. 

This weight is called the alpha value and there are several state of the art networks 

predicting the alpha mask of an image. We would replace the segmentation network with 

a matting network which predicts the alpha mask value at each spatial location in the mask 

region. Changes need to be made to the dataset as well by adding matting datatset to the 

COCO dataset we are already using. This would result in a more generalized network 
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which can perform object removal with minimum information loss for any kind of object 

– opaque and translucent. 

 

7.3. Conclusion 

In this work, we propose a segmentation guided three step network for object removal 

which utilizes all available background pixels for reconstruction in the object region. This 

network is minimizes information loss irrespective of the mask shape and size. Our 

network generates sharper and clearer boundaries in the output inpainted image when 

compared to state of the art inpainting networks. The network generates realistic objects 

in cluttered scenes and also generates clean results for masks with edges.  Moreover, the 

network manages minor errors in segmentation mask efficiently and removes objects of a 

wide range of classes effectively. 
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