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ABSTRACT 

Failure detection of DC motors is a common study, and could be extremely useful in real 

world applications. Undiagnosed eminent motor failure could cause a range of effects, 

and without maintenance will inevitably occur. Motor faults can be classified as 

electrical or mechanical, both with wide ranges of causes. Electrical failure includes 

stator or rotor winding faults, inverter faults, position of sensor faults in brushless 

motors, bearing faults, and brush faults. Mechanical faults include bearing faults, broken 

rotor bar, rotor eccentricity faults, end ring faults, and load faults. The aim of this study 

was to observe the effect of brush fault within a permanent magnet DC (PMDC) motor. 

Carbon contact brushes are used in PMDC motors to transmit electrical current from the 

stator of the motor to the rotor of the motor, ensuring the rotation of the commutators. 

Over time, the carbon contact becomes worn down from commutators continually 

moving across them. As the contacts length is decreased, the spring holding it in place 

becomes more stretched out, putting in more effort to hold the brush in place. This 

introduces a resistance, referred to as a contact resistance, that can affect the motor speed 

and performance. Changes in speed and resistance can be measured and observed, and 

curves can be fitted to their relationship with statistical significance. We can also create 

a simulation method using basic differential equations that describe the motor and 

introducing random noise to the simulation with generation of random numbers for the 

motor parameters. Finally, a prediction interval is generated, and eminent motor failure 

can be predicted when values measured values stray from the simulated path. Erratic 

motor behavior can also be observed at the point of eminent motor failure. 
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1. INTRODUCTION 

DC motors were the first electrically powered motor, and was the most widely used 

motor type until the invention of the induction motor and the transformer. Onward, 60 

hertz AC power systems became the standard. With the introduction of AC power, DC 

motors had to utilize speed control systems, increasing their cost, giving them a 

disadvantage within the market. Standard DC brushes also require more service and 

maintenance. With the introduction of solid-state electronics came more readily ways, 

such as thyristor converters, of interfacing DC motors to an AC line with greater control 

and mobility and lower cost. Power transistors and SCRs make up a solid-state switch 

that can be used to control the motor from a battery supply. This enabled DC motors to 

have applications to industrial lift trucks, golf carts, recreational vehicles, marine crafts, 

and many more [1]. Even though the introduction of AC power may have forced DC 

motors to share their spotlight, they still have many reasons why they are chosen in 

specific scenarios. These reasons include lower cost, larger installed base, simple and 

efficient design, easy service and maintenance, easy speed control, full torque at zero 

speed, higher motor power density, less inertia, and smaller converters and drives [2]. 

There are many kinds of DC motors such as series, shunt, compound, permanent magnet, 

brushless, servo, servo tachometer motors, the first 5 being the most popular. All of 

these motors are designed differently and will be covered later in this paper. 

Applications for series motors include products such as elevators, traction systems, 

cranes, air compressors, vacuum cleaners, sewing machines, and hair dryers. 

Applications for shunt motors include products such as lather machines, centrifugal 
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pumps, fans, blowers, conveyors, lifts, weaving machines, drills, shapers, spinning 

machines. Applications for compound motors include products such as presses, shears, 

conveyors, elevators, rolling mills, reciprocating machines and heavy planners.  

Motors are comprised of multiple components, and these components can have both 

similarity and variability between motor types. Since motors are constantly subjected to 

forces such as load, torque, stresses, and heat as well as a variety of other outside forces 

contributed to by the environment the motor is subjected to, these components will 

inevitably be deformed, eroded, or corroded. Component failure means motor failure, 

which can lead to consequences with a range of severity from inconvenient to fatally 

catastrophic if the failure is entirely unexpected. Motor failure in consumer products 

could hurt a company's revenue by discouraging customers from returning, to inviting 

lawsuits due to bodily harm resulting from product failure. Motor failure in industrial 

products could lead to loss of revenue due to halting the production process, replacement 

of the failed motor, or lawsuits from employee injury resulting from a machine failure. 

Knowing when and why a failure is predicted to occur can give companies and 

consumers the ability to avoid problems caused by motor failure.  

The aim of this research is to diagnose probable failure or future failure of a Permanent-

Magnet of a DC motor due to brush wear. To begin to understand how to determine 

when and why motor failure is inevitable, the design of the motor must be understood. 
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1.1. DC Machine Construction 

There are four basic parts of a dc machine. One part of the machine must establish a 

strong magnetic field necessary for energy conversion, normally consisting of field 

windings. The field assembly is made up of a core of ferrous material, normally iron or 

steel, to establish the magnetic field, the coil winding to provide current for the main 

field, insulating material, and a structure to hold the core and complete the circuit from 

its poles. Conductors must be interconnected to allow current flow and be able to move 

relative to the magnetic field, to create what is called the armature. The armature is made 

up of a steel core to minimize hysteresis and eddy-current losses. The armature winding 

varies from motor to motor depending on the desired functionality, and the number of 

turns and wire size determine the voltage and current characteristics of the motor. 

Finally, the commutator is connected to the conductors, normally made of copper. To 

keep the torque from reversing every time the coil moves through the plane 

perpendicular to the magnetic field commutators which ring the armature are used to 

reverse the current at that point. This is done with the use of either spring-loaded carbon 

contracts, named brushes, or a solid-state switching device, which will reverse current 

flow through the armature as they move from one field to the next. Finally, all these 

components must be held together properly, including a bearing and shaft to allow 

armature movement [1]. When a current is running through the conductor, a magnetic 

field is generated. When it is subsequently placed within the external magnetic field 

generated by the field windings, the armature experiences a force proportional to the 

current in the conductor and to the strength of the external magnetic field. The rotating 
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components are normally called the rotor, while the stationary components make up the 

stator, or field assembly. It is necessary for all conductors opposite a particular magnet 

polarity to have currents flowing in the same direction, and current direction must 

change as the polarity of the magnet opposite it changes. 

1.2. Permanent Magnet Motor 

In a permanent-magnet (PM) motor, permanent magnets are used in place of field 

windings to generate a magnetic field, and armature windings located in the rotor. The 

air-gap flux is constant due to the permanent magnet, resulting in a straight-line torque-

speed characteristic, comparable to a shunt motor. Permanent magnets are extremely 

popular in commercial applications, due to the ease of access to ceramic magnets, a 

lower cost than wound field motors. Though ceramic magnets have a higher frequency 

of use due to their high coercivity, magnetization resistance, and smaller size, alnico 

magnets may be and are sometimes used instead, due to their high flux densities and 

resulting motor performance, but have high costs and are susceptible to demagnetization. 

Motor sizes may vary from sub fractional to small integral horsepower sized, and are 

used in a range of products from toys to space and computer applications. Thrust motors 

based on pm brushed motors are typically used in propulsion systems of small electric-

powered boats, and PMDC motors are used in variable speed and torque applications 

such as antenna positioning, medical equipment, agricultural equipment, door openers, 

and nuclear power plants [4]. 
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Disadvantages of permanent-magnet motors include a fixed air-gap flux resulting in a 

lack of speed control, possible demagnetization from a high armature current pulse, and 

brush sparking due to a lack of interpoles used to improve commutation. Brush sparking 

can indicate poor brush-life, and other factors such as current density and heat 

generation may be contributing factors as well.                                                   

Permanent-magnet motors have popularity due to their low-cost relative to wound-field 

motors resulting from their smaller number of poles, which in turn results in a larger 

diameter motor. Pm motors also do not need an external power supply to generate their 

magnetic field, resulting in a lack of need for the controller to provide field winding 

voltage. The constantly enabled magnetic field also increases its reliability factor, as the 

function is not 3 affected by the field voltage supply or field windings, and provides a 

detent torque, allowing for the exclusion of a holding brake, as well as a lack of heat 

generation during quiescent periods within field windings.                                            

The voltage of the system can be determined with the following equation:  

 

The voltage across the resistor can be determined with: 

 

The back emf can be represented and reduced to: 
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where substitution leads to the completion of the first equation: 

 

where VR is the voltage across the resistor, VL is the voltage across the armature coil, Vb 

is the back emf, ia is the armature current, L is the inductance across the armature coil, R 

is the resistance, Φd is the net flux, Ka is a geometric constant, Km is the back emf, and 

Wm is the rotation speed.  

The resistance in this last equation can be expanded to: 

𝑅 = 𝑅𝑁𝑜𝑚 + 𝑅𝑇𝑒𝑚𝑝 + 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 

Where RNom is the nominal resistance, RTemp is the resistance introduced in the motor 

coils due to temperature increase, and Rcontact is the resistance introduced by the contact 

between the worn brushes and the commutators. 

The torque can be determined with the equations: 

𝑇𝑚 = 𝐽
𝑑𝜔

𝑑𝑡
 

𝑇𝑑 − 𝑇𝑓 − 𝑇𝐿 − 𝑇𝑚 = 0 

𝑇 = 𝐾𝑡𝑖𝑎 

which will be represented as: 
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𝐽
𝑑𝜔

𝑑𝑡
= 𝑇 − 𝑇𝑓 − 𝑇𝐿 

Where Tm is the moment torque, T is the electromagnetic torque, Tw’ is the torque due to 

rotational acceleration of the rotor, Tf is the friction torque, TL is the load torque, and Kt 

is the torque gain, and J is the moment inertia of the rotor. 
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2. LITERATURE REVIEW 

 

2.1. Specific Problems of DC Motors 

Faults are characterized by causes of a change in the behavior of a system due to 

manufacturing error, environmental change, and human control action error that lead a 

system to lose functionality [4]. Fault analysis is the process of feature extraction, 

reduction, and categorization. Reasons for motor failure include exceeding the standard 

lifetime, abnormal power/voltage/current, overload, unbalanced load, 

mechanical/dynamic/thermal stress, electrical stress from fast switching inverters or 

unstable ground, residual stress from manufacturing, and harsh application environment, 

including dust, water, vibration, chemicals, and temperature. Dc motor faults are 

categorized as either electrical or mechanical. 

Electrical faults include stator or rotor winding faults, inverter faults, position of sensor 

faults in brushless motors, bearing faults, and brush faults. Electrical faults are normally 

caused by frequency variation and unbalanced voltage. Stator or rotor winding faults are 

caused by either winding of inverter switch open or short circuits [8]. Winding short 

circuits result in increased harmonic generation and increased coil current, leading to 

failure. Inverter switch faults due to short circuits are due to thermal stresses caused by 

high switching frequency and excessive loading. Inverter switch faults due to open 

circuits are due to a change in terminal voltage. Hall effect position sensor failures are 

due to sensor misalignment due to corrosion, cracks, residual magnetic fields and core 

breakage, current change, or magnetic field orientation change, which is caused by 
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mechanical shocks [4]. The process of commutating the coil current through the use of 

sliding contacts or brushes result in a disadvantage of high wear rate and limited life. 

This introduces the need for strict maintenance schedules, else the brush wears too 

much, resulting in the brush shunt being pushed into the commutator causing severe 

damage and repair costs [1]. 

Mechanical faults include bearing faults, broken rotor bar, rotor eccentricity faults, end 

ring faults, and load faults. Eccentricity faults are due to unbalance, rotor misalignment, 

improper mounting or a bent rotor shaft producing an output torque oscillation, and can 

be indicated by mechanical vibration, temperature ununiformed air-gap, torque increase, 

and changes in voltage and line current. Broken rotor bars and end ring faults are due to 

thermal stresses from overload, magnetic stresses from electromagnetic forces, inherent 

stresses from to manufacturing, and mechanical stresses from lost laminations, fatigued 

parts, and bearing failure. Unbalanced load leads to lifespan reduction of bearings, 

shafts, and gears, and can be indicated by stator current time frequency, torque 

oscillation, and vibration. Bearing faults can occur due to many factors. Distributed 

bearing defects normally occur due to design and manufacturing errors, improper 

mounting, wear, and corrosion. Localized bearing defects such as cracks, pits, and spalls 

on the rolling surface normally occur due to plastic deformation and material fatigue. 

Winding and bearing faults make up the majority of causes for electrical motor failure. 

[4] gear and other mechanical faults manifest themselves as mechanical vibrations, 

acoustic noise, and current transients [8]. 
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2.2. Previous Methods Summary 

Many other previously researched methods of motor diagnostic testing have been 

reviewed to gain a better understanding of the process needed. 

Zhang [3] used current signals from a brushed dc motor to diagnose the severity of short 

circuit resistance faults within windings with the hidden markov method and various 

algorithms. Glowacz [5] diagnoses short circuits of a motor by recording acoustic 

signals, extracting features to the time and frequency domain with coiflet wavelet 

transform, and using the k-nearest neighbor classification method for fault analysis. In 

[24], short-circuits within winding turns in Permanent-Magnet Synchronous Motors 

(PMSM) are detected for steady-state conditions and speed transients in motor operation, 

and the stator current is decomposed by empirical mode decomposition (EMD), 

generating intrinsic mode functions (IMFS). Smoothed pseudo-Wigner-Ville and Zhao-

atlas-marks are the quadratic time-frequency distributions applied to the most significant 

IMFS for fault detections. In [14], winding short circuit and pole displacement are 

diagnosed by taking acoustic signals and vibrational signals converted to the frequency 

domain via fast-Fourier transform (FFT) and analyzing the results of healthy and 

defective motors. This method does not employ algorithms or machine learning and does 

not seem entirely reliable, especially so for prognosis and prediction. In [9], cage-

winding defects, broken rotor bars [mechanical], and air-gap eccentricity faults of a dc 

six-pole flue gas compressor motor were detected by analyzing frequency spectrum of 

the stator current signal. In [13], air-gap eccentricity in a dc shunt motor is diagnosed by 

taking features such as torque developed at the slot harmonic frequency in armature 
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current, speed, and armature rms current as features, normalizing, feeding to a bayes 

classifier, and applying a discriminant function. In [10], [11], and [12], MOSFET/switch 

fault of a brushless PMDC motor is detected by extracting the motor current using 

wavelet transform, and adaptive neuro-fuzzy inference system (ANFIS)-based intelligent 

agent, specifically a zero-order sugeno-type ANFIS with three gaussian membership 

functions per input, was trained using a set of indexes from multiple operating 

conditions. The faulty switch was then characterized.  In [6], stator turn fault is 

diagnosed by obtaining measurements of 3-phase voltage and current, calculating the 

negative sequence impedance and cross-couple impedance, using a generic Fourier 

transform, and using training and monitoring algorithms in MATLAB to predict fault 

based on cross-coupled impedance. In [6], stator turn fault is diagnosed by obtaining 

measurements of 3-phase voltage and current, calculating the negative sequence 

impedance and cross-couple impedance, using a generic Fourier transform, and using 

training and monitoring algorithms in MATLAB to predict fault based on cross-coupled 

impedance. In [29], harmonics of the stator currents induced by the fault conditions of 

demagnetization were analyzed for prognosis and condition monitoring of a permanent 

magnet synchronous motor in various non-stationary conditions involving speed and 

load variation. Simulation was conducted with a 2d finite-element analysis. Continuous 

wavelet transform and discrete wavelet transform were used to detect and classify 

different faults. 

In [6], broken rotor bars are detected by acquiring the 3-phase voltage and current, using 

a modified fast Fourier transform for extraction of frequency components, and once 
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again using algorithms to determine the fault indexes. [15] also diagnoses broken rotor 

bars in PMBLDC motors by taking the motors current signal, converting to frequency 

variations using windowed Fourier ridges and Wigner Ville based distributions. [16] 

diagnoses broken rotor bars in induction motors by using multirate signal processing to 

improve performance of Fourier transform based analysis. In [28], diagnostics take place 

of the signatures of broken rotor bars, given by the spectrum modulus of line current, 

when a squirrel-cage induction motor is fed or not by an unbalanced line voltage. A 

genetic algorithm is used to record the amplitude of faulty lines and a fuzzy logic 

approach gives the load level operating system, as well as the rotor fault severity. This 

system requires steady-state operating conditions. In [30], rotor fault detection is 

conducted on induction motors. Motor current signature analysis is used to obtain grid 

frequency and machine slip tracked by statistical time-domain methods. These variables 

are then used to influence the parameters of a fast Fourier transform algorithm to 

increase frequency resolution with unchanged computational cost, or lowering 

computation cast with unchanged frequency resolution. In [7], multiple faults are 

detected, such as two bearing faults, two misalignment faults, and one inter-turn fault 

[electrical]. Dual tree complex wavelet packet transform was used to extract handcrafted 

features from measurements of current, then use a support vector machine (SVM) based 

classifier, training a convolutional neural network and recurrent neural network. In [4], 

bearing faults are detected and diagnosed by converting both vibrational and current 

signals of a brushless PMDC motor to the time-frequency domain with discrete wavelet 

transform, reduces features and trains his model with the orthogonal fuzzy neighborhood 
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method, and uses a dynamic neural network for classification. This method was run 

under stationary and non-stationary operating conditions. In [17], bearing defects such as 

ball defect, inner race defect, and outer race defect, are diagnosed for induction motors. 

Vibrational signal features are extracted to the time domain, frequency domain, and 

time-frequency domain as well as statistical measures of the features through the use of 

methods such as fast Fourier transforms, wavelet packet transform, empirical mode 

decomposition, singular spectrum analysis, and local mean decomposition. Features are 

then selected and sorted by calculating the Pearson’s correlation, and fed additively into 

a classifier until performance accuracy is unchanging to avoid further complexity. In 

[21], bearing defects in induction motors are diagnosed by using a class imbalanced 

learning technique. In [22], bearing faults are detected by taking vibration signals from 

an induction motor with normal and defective bearings, applying wavelet transform to 

generate features, and an adaptive neural-fuzzy inference system (ANFIS) was trained 

and used as a diagnostic classifier to reliably separate different fault conditions. In [23], 

vibration signals taken from a laboratory setup for normal and defective bearings were 

decomposed into wavelet packets and the node energies of the decomposition tree were 

used as features. Features extracted from normal bearing vibration signals were used to 

train a Hidden Markov Model (HMM) to model normal bearing operating conditions, 

and this model was then used to make predictions/probabilities to track the condition of 

the bearings. In [26], HMMs were used for the diagnostics and prognostics of machining 

processes such as drilling. Thrust force and torque were measured with a data acquisition 

device, and features were selected. Multiple types of HMMs were used and the best case 
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was chosen for study. The final product predicted the remaining useful life of the drill-

bit. In [27] acoustic vibration signal evolution is modeled with HMMs to estimate the 

state of wear at the tools edge for three different time scales, characterizing the 

machining tools efficiency of metal removal. In [18], a wide range of faults are 

diagnosed such as buckling restrained brace, rotor bending, bearing failure, stator 

winding fault, and rotor imbalance in induction motors. Vibration signal was applied to a 

convolution neural network, pooled, and then used in a support vector machine 

classifier. The method of using the neural network proposed in this paper is called 

convolutional discriminative feature learning, which feeds data back into the neural 

network and is robust and discriminative. [19] goes on to change the method of [18] for 

the better, introducing a sparse deep stacking network to increase accuracy and 

robustness. [20] uses 2-d filters by appropriately arranging the time series data in 

industrial vibration signals for use in a dislocated time series convolutional neural 

network to diagnose multiple faults in an induction motor. Zaidi [8] outlines the 

prognosis of gear failures, by using undecimated wavelet transform to extract features to 

the frequency domain, computing linear discriminant classifiers, and training a hidden 

markov method to make predictions of failure states. In [25], both recurrent neural 

networks and neuro-fuzzy systems are analyzed, and it is found that the neuro-fuzzy 

system has a better performance and training efficiency, leading to an adoption of the 

neuro-fuzzy system for on-line machine fault prognosis of gear wear defects including 

worn gear, chipped gear, and cracked gear, as well as previous data sets for gear pitting 

damage and shaft misalignment. 
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No research papers were found on the study of remaining useful life of PMDC carbon 

contact brushes. 
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3. METHODS 

 

3.1. Simulation 

Taking select equations described in the introduction we can create a model derived 

from differential equations to simulate motor performance with the use of MATLAB and 

Simulink. The equations to be used are as follows: 

𝒅𝒊

𝒅𝒕
=

𝑽

𝑳
−

𝑹𝒊

𝑳
−

𝑲𝒎𝝎

𝑳
 

𝑹 = 𝑹𝑵𝒐𝒎 + 𝑹𝑻𝒆𝒎𝒑 + 𝑹𝒄𝒐𝒏𝒕𝒂𝒄𝒕 

Where Rtemp is calculated using the equation 𝑹𝑻𝒆𝒎𝒑 = 𝟎. 𝟎𝟎𝟑𝟗𝟑𝑻𝑪𝒉𝒂𝒏𝒈𝒆, with 0.00393 

being the temperature coefficient of copper. 

𝒅𝝎

𝒅𝒕
=

𝑻

𝑱
−

𝑻𝒇𝒓𝒊𝒄𝒕𝒊𝒐𝒏

𝑱
−

𝑻𝑳𝒐𝒂𝒅

𝑱
 

𝑻 = 𝑲𝒕𝒊  

Using these equations to create a model in Simulink, the model can be seen below. 

 

Figure 3.1: Simulink Model 
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Using MATLAB, we can obtain curves for speed over time, current over time, speed vs 

torque, speed vs resistance, speed vs voltage, as well as the corresponding curve 

equations and correlations. By increasing the Rcontact in the MATLAB code, we can 

estimate at what resistance the speed will drop to zero for the nominal set of data.  

Next, we can assume that most of the parameters will have some sort of noise or 

variation from motor to motor. Random numbers are generated along lognormal 

distributions for resistance, inductance, polar inertia, back emf, and temperature change 

using the nominal values and a standard deviation of 5% the nominal value. There are a 

few reasons for generating random numbers on lognormal curves. First, if was found that 

certain parameters such as resistance generally follow a lognormal distribution. 

Secondly, lognormal distributions cannot be negative, and neither can any of the 

parameters needed for this simulation. Random numbers are generated along a uniform 

distribution for voltage of +/-5% the nominal value. These sets of random numbers are 

then run through the simulation, with the contact resistance increasing three to four times 

for each set. A line is then fit to each of the data sets and the entire line of speed vs 

resistance is generated. Next the data is averaged at every single point corresponding to 

resistance change, and a prediction interval is fit around the averaged data. This gives us 

an estimate of what the speed of the motor should be for the specific resistance of the 

motor. If the motor speed being measured is not within the prediction interval, we can 

claim the motor is defective. Knowing the estimated resistance at which the motor will 

be a certain decreased speed gives us the opportunity to gauge the remaining brush life 

of the motor being measured. 
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3.2. Parameter Estimation 

When the motor is running in steady state, we have the following equation: 

𝐕 = 𝐈𝐑 + 𝐊𝛚 

where V is the voltage applied, I is the current, R is the resistance, K is the back emf 

gain, and ω is the motor speed (in rad/sec). By measuring V, I and ω at different values 

of V, one can use regression to find the resistance and back emf gain K. If the power is 

disconnected from the motor while it is spinning, the motor will work as a generator. 

The voltage generated by the motor is proportional to the speed. The gain is defined as 

the back emf gain.  

Using a LabVIEW VI, the back emf gain can be determined by switching the motor 

from 100% duty cycle to 0% duty cycle. Back emf gain can be found after switching the 

motor to 0% duty cycle and determining the voltage at which it begins to fluctuate in a 

downward slope. Back emf gain and resistance can then be found with the following 

equations:  

𝑲 =
𝑽

𝛚
 

𝑹 =
𝑽

𝑰
 

Resistance may also be found using a multimeter. When the motor is powered, we have 

the following equation, which was determined earlier: 

T =𝑲𝒕𝒊 

where T is the motor torque, I is the current, and K is the torque gain. The torque gain is 

equal to the back emf gain. By using the back emf gain you measured the current reading 



 

19 

 

we can calculate the motor torque (Nm) using the above equation. Using the following 

equation derived earlier:  

𝑱
𝒅𝝎

𝒅𝒕
= 𝑻 − 𝑻𝒇 − 𝑻𝑳 

where J is the motor inertia, ω is the speed, T is the motor torque, TL is the load torque, 

and Tf  is the friction torque. If we run the motor at 100% duty cycle without a load in 

steady state, we have 

𝟎 = 𝑻 − 𝑻𝒇 

that is Tf  = T  = KI. This allows us to calculate the friction torque. If we then turn The 

motor off, to 0% duty cycle, the initial speed will be the motor maximum speed, the load 

torque is 0, and the motor torque is 0 since the current is 0. The equation then becomes 

𝑱
𝒅𝝎

𝒅𝒕
= −𝑻𝒇 

or equivalently  

𝑱 = −𝑻𝒇 ÷
𝒅𝝎

𝒅𝒕
 

Therefore, we can calculate the motor inertia using the friction torque and the motor 

deceleration. With no resistance attached, we should have a torque load of zero. Two fans 

are being used to estimate the load torque, one being 8 inches in diameter with 5 blades, 

one being 6 inches in diameter with 4 blades. We can calculate the load torque of these 

with the following equation: 

𝑻𝑳 = 𝑲𝒕𝒊 − 𝑻𝒇 
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Next, we go about calculating the inductance (L) of a motor using an AC voltage divider. 

The following voltage divider circuit can be used to measure the inductance of the motor. 

When the motor is not spinning, it can be modeled as a resistor and an inductor connected 

in series. However, the voltage at the point between the motor resistor and motor 

inductance is not accessible. Measuring the voltage across the motor (Vout), we can find a 

function of the AC voltage (Vin), the frequency (f), the motor resistance previously 

calculated (R2), voltage across the motor, and L. From this equation, you can solve for the 

inductance (L) as a function of other variables. 

 

Figure 3.2: Inductance Calculation Circuit 

 

The equation derived can be seen below. 
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𝐿 =  

√

2𝑅2𝑅1 + 𝑅1
2 − (1 −

𝑉𝑖𝑛
2

𝑉𝑜𝑢𝑡
2) 𝑅2

2

(
𝑉𝑖𝑛

2

𝑉𝑜𝑢𝑡
2 − 1) (2𝜋)2

𝑓
 

3.3. PCB Design 

The following Multisim and Ultiboard files were used in the creation of the PCB. 

Acknowledgements are made to Dr. Zhan for providing the initial motor control board 

design. 

 

Figure 3.3: Multisim Page 1 
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The circuit design has inputs for dc voltage that sends power to the positive input for the 

motor, as well as an led light and a voltage divider for measuring the voltage on the 

positive side of the motor. Power is alco sent through a 5V voltage regulator to reduce to 

voltage for powering of certain components. AO0 sends the PWM output to the 

MOSFET causing the motor to turn at the desired PWM. There is also a voltage divider 

on the negative side of the motor to allow measuring of the voltage across the motor. 

There is also a current sensing device which may be seen below. The ina169na/3k is 

created by Texas Instruments and outputs the current throughput, or a voltage 

proportionate to an equation given in the datasheet. The encoder is connected to the 5V 

supply voltage, ground, and outputs from the encoder. 

 

Figure 3.4: Multisim Page 2 
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The bottom left is the inductance calculation circuit which needs to be connected to an 

AC generator. The pins Meas1 – Meas8 are the test pins to be connected to the DAQ. 

The functions of these pins can be found below: 

• Meas1 = PWM output 

• Meas2 = Positive Side Voltage 

• Meas3 = Negative Side Voltage 

• Meas5 = Encoder Output 

Unfortunately, this current sensing method was deemed unusable due to the source 

resistor Rs on the current sensor and its effects of probable performance reduction. Board 

revisions could not be made in time of the completion of this project. Thankfully, data 

was still able to be collected, and conclusions were achieved. The following figures 3.5 

and 3.6 are a picture of the test bench and a diagram of the test bench, respectively. 

 

Figure 3.5: Test Bench 
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Figure 3.6: Test Bench Diagram 

 

3.4. Overall Method 

Originally it was desired to estimate the parameters of the motor with the push of a 

button in LabVIEW, combining the measurement of voltage, speed, and resistance, 

estimation of back emf, and inductance, calculations of torque, friction torque, and 

moment of inertia, and finally the simulation of the predicted motor to resistance change, 

and placement of the actual motor to resistance change on the simulation graph to 

display the simulations accuracy. 

The motor to be used for experimentation is the DAYTON 3XE19, which has 

replaceable brushes. This motor was chosen due to the presence of replaceable brushes, 

and its low full load current ratings. Unfortunately, this motor does not have a built-in 

encoder, so an external encoder is fixed to the motor. To simulate brush wear, multiple 

sets of brushes are cut to specific lengths and experimentation is conducted on the motor 

for each set of brushes. The Brushes were cut or sanded down to percent changes of 18, 
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35, 44, 54, 58, 76, 98, and 100. These values were acquired with calipers for precision. 

The DAQ being used is the NI BNC-2120, as well as an NI MyRIO. Software used, as 

previously mentioned is MATLAB and LabVIEW.  
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4. RESULTS 

The MATLAB results for a simulation and the experiments may be seen in figures 4.1 

and 4.2.  

 

Figure 4.1: No Torque Load Results 12V 

 

 
Figure 4.2: Added Torque Load Results 12V 
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We can see the same general relationships when simulations and tests are conducted at 

8V and 16V. The results for the 8V simulations and tests for no torque load and with the 

added torque load may be found in figures 4.3 and 4.4, respectively. The results for the 

16V simulations and tests for no torque load and with the added torque load may be 

found in figures 4.5 and 4.6, respectively. The presence of less data points for the 8V 

and 16V experiments is due to a lack of brushes after initial testing at 12V.  It can be 

determined that a high voltage and an added torque load makes it impossible to 

determine eminent motor failure. 

 

 

Figure 4.3: No Torque Load Results 8V 
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Figure 4.4: Added Torque Load Results 8V 

 

 

Figure 4.5: No Torque Load Results 16V 
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Figure 4.6: Added Torque Load Results 16V 

 

The lines of the graph are the simulation results, and the points are the experimental 

results. This graph was completed with 5000 randomly generated number sets for 

multiple variables. Resistance, inductance, polar moment, back emf, and temperature 

change values are generated along lognormal distributions with a mean of their 

measured and calculated nominal values and a standard deviation of 5% of their nominal 

values. Voltage was generated along a uniform distribution of ±5% of the measured 

value. The prediction interval was generated with the equation as follows: 

𝒙̅ ± 𝒕𝜶 𝟐⁄ ,𝒏−𝟏√𝑴𝑺𝑬(𝟏 + 𝟏 𝒏⁄ ) 

Where 𝑥̅ is the average, t is the student t-distribution, MSE is the mean squared error, 

and n is the size of the set. The prediction interval was generated piecewise at each point 

of the outputs of the sets of randomly generated variables. Each point of the averaged 
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data is calculated by taking the average of the output speeds. We can validate that these 

data points follow a normal distribution by doing probability plots, which can be seen for 

no torque load in figures 4.3 and 4.4, and with the added torque load in figures 4.5 and 

4.6. All plots have a p-value less than 0.05, giving them statistical significance. 

 

Figure 4.7: Probability Plot No Torque Load or Resistance Change 
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Figure 4.8: Probability Plot No Torque Load, 50% Resistance Change 

 

 

Figure 4.9: Probability Plot Added Torque Load, No Resistance Change 
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Figure 4.10: Probability Plot Added Torque Load, 50% Resistance Change 

 

These plots are used as examples, and this process may be done at every point on the 

average speed plot. Eminent failure can be approximated when the speed approaches 

values outside of the prediction interval. As the brush length decreases, the resistance 

across the motor increases. This relationship can be seen in figure 4.7, and the fitted line 

has an R2 value over 0.95, giving it statistical significance. 
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Figure 4.11: Brush Length to Resistance Relationship 

 

Interestingly, upon eminent failure the resistance drops and begins to increase again. 

This can likely be explained by the connection of the motor commutators with the 

copper wire that attaches to the brush. This relationship can be seen in figure 4.8.  

 

Figure 4.12: Brush Length to Resistance Relationship Eminent Failure 
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The corresponding speed changes for the resistance and length changes can be seen for 

no torque load in figures 4.9 and 4.10, and for an added torque load in figures 4.11 and 

figure 4.12. 

 

Figure 4.13: Speed to Resistance Relationship, No torque Load at 12V 

 

 

Figure 4.14: Speed to Length Relationship, No Torque Load at 12V 
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Figure 4.15: Speed to Resistance Relationship, Added Torque Load at 12V 

 

 

Figure 4.16: Speed to Length Relationship, Added Torque Load at 12V 
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These fitted curves can be done for the shown 8V and 16V datasets as well. Eminent 

failure can be estimated as a function of speed versus length change. Upon eminent 

failure when the resistance drops, the motor begins to behave erratically. Before 

reaching steady state, the speed spikes to values even greater than the speed for a 

completely healthy brush. That said, this does not indicate better performance because 

the speed   is not constant, ands decreases upon achieving steady state. The erratic 

behavior can be visualized in figures 4.13, 4.14, and 4.15, and should be an indicator of 

eminent failure 

 

 

Figure 4.17: Erratic Motor Behavior with No Torque Load at 12 V 
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Figure 4.18: Erratic Motor Behavior with No Torque Load at 12V 

 

 

Figure 4.19: Erratic Motor Behavior with No Torque Load at 12V 
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For the erratic behavior conditions, the steady state speed was taken at the lower end of 

the speed curves. Interestingly enough, eminent failure is not only associated with a 

resistance drop but also a voltage drop, as seen in figure 4.16. 

 

 

Figure 4.20: Voltage Drop at Eminent Failure at 12V 
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5. CONCLUSIONS 

 

Carbon contact brushes used in PMDC are subjected to wear and become worn down 

from commutators continually moving across them. As the contacts length is decreased, 

the spring holding it in place becomes more stretched out, putting in more effort to hold 

the brush in place. This introduces a resistance, referred to as a contact resistance, that 

can affect the motor speed and performance. Changes in speed and resistance can be 

measured and observed, and curves can be fitted to their relationship with statistical 

significance. We can also create a simulation method using basic differential equations 

that describe the motor and introduce random noise to the simulation with generation of 

random numbers for the motor parameters. Finally, a prediction interval can be 

generated, and eminent motor failure can be predicted when values measured values 

stray from the simulated path. Erratic motor behavior can also be observed at the point 

of eminent motor failure, and the RUL can be estimated using generated equations 

describing the speed, length, and resistance relationships. This method could 

theoretically be performed on any permanent magnet DC motor with replaceable 

brushes, and could have applications to the industry, introducing a way of performing 

preventative maintenance to streamline the maintenance process and increase 

productivity. 
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APPENDIX A  

MATLAB 

clear all                                           

close all 

  

%Motor Values 

VALUES = xlsread('test10.xlsx'); 

[Sig, TStr, Raw] = xlsread('test10.xlsx',1,'A2:A50'); 

VALUESC = xlsread('current10.xlsx'); 

[SigC, TStrC, RawC] = xlsread('current10.xlsx',1,'A2:A500'); 

DC0 = find(VALUES(:,2)>0); 

DC0C = find(VALUESC(:,2)>0); 

MotorV = (mean(VALUES(DC0(end-8:end-3),1)))/50; 

MotorW = (mean(VALUES(DC0(end-8:end-3),2)))/10; 

MotorRNom = (mean(VALUES(DC0(end-8:end-3),3))); 

MotorL = (mean(VALUES(DC0(end-8:end-3),4))); 

MotorI = (mean(VALUESC(DC0C(end-62:end-1),1))); 

MotorKV = (mean(VALUES(DC0(end-8:end-3),5))); 

MotorK = (MotorKV)/(MotorW/9.55);  

MotorTf = MotorK*MotorI; 

MotorR = (MotorV-MotorKV)/MotorI; 

MotorT = MotorTf; 

MotorTL = MotorT - MotorTf; 

Wchange = (VALUES(DC0(end)+1,2)-VALUES(DC0(end)-3,2)); 

timechange = datetime(Raw(DC0(end)+1))-datetime(Raw(DC0(end)-3)); 

[Year, Month, Day, Hour, Min, Secs] = datevec(timechange); 

SecChange = (Hour*3600+Min*60+Secs); 

dWdT = ((VALUES(DC0(end)+1,2)-MotorW)/9.55)/SecChange; 

MotorJ = -MotorTf/dWdT; 

  

%Increase .5 

VALUES3 = xlsread('test40.xlsx'); 

[Sig3, TStr3, Raw3] = xlsread('test40.xlsx',1,'A2:A50'); 

VALUES3C = xlsread('current10.xlsx'); 

[Sig3C, TStr3C, Raw3C] = xlsread('current10.xlsx',1,'A2:A500'); 

DC3 = find(VALUES3(:,3)>0); 

DC3C = find(VALUES3C(:,2)>0); 

MotorV3 = (mean(VALUES3(DC3(end-24:end),2)))/50; 

MotorW3 = (mean(VALUES3(DC3(end-24:end),3)))/10; 

MotorRNom3 = (mean(VALUES3(DC3(end-24:end),4))); 

 

%Increased Brush Resistance Values .75 
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VALUES6 = xlsread('test70.xlsx'); 

[Sig6, TStr6, Raw6] = xlsread('test70.xlsx',1,'A2:A50'); 

VALUES6C = xlsread('Current20.xlsx'); 

[Sig6C, TStr6C, Raw6C] = xlsread('Current20.xlsx',1,'A2:A500'); 

DC6 = find(VALUES6(:,2)>0); 

DC6C = find(VALUES6C(:,2)>0); 

MotorV6 = (mean(VALUES6(DC6(end-46:end-1),1)))/50; 

MotorW6 = (mean(VALUES6(DC6(end-46:end-1),2)))/10; 

MotorRNom6 = (mean(VALUES6(DC6(end-46:end-1),3))); 

  

%Increased Brush Resistance Values 1 

VALUES1 = xlsread('test20.xlsx'); 

[Sig1, TStr1, Raw1] = xlsread('test20.xlsx',1,'A2:A50'); 

VALUES1C = xlsread('Current20.xlsx'); 

[Sig1C, TStr1C, Raw1C] = xlsread('Current20.xlsx',1,'A2:A500'); 

DC1 = find(VALUES1(:,2)>0); 

DC1C = find(VALUES1C(:,2)>0); 

MotorV1 = (mean(VALUES1(DC1(end-7:end),1)))/50; 

MotorW1 = (mean(VALUES1(DC1(end-7:end),2)))/10; 

MotorRNom1 = (mean(VALUES1(DC1(end-7:end),3))); 

  

  

%Increase 1.5 

VALUES4 = xlsread('test50.xlsx'); 

[Sig4, TStr4, Raw4] = xlsread('test50.xlsx',1,'A2:A50'); 

VALUES4C = xlsread('current20.xlsx'); 

[Sig4C, TStr4C, Raw4C] = xlsread('current20.xlsx',1,'A2:A500'); 

DC4 = find(VALUES4(:,3)>0); 

DC4C = find(VALUES4C(:,2)>0); 

MotorV4 = (mean(VALUES4(DC4(end-15:end-1),2)))/50; 

MotorW4 = (mean(VALUES4(DC4(end-15:end-1),3)))/10; 

MotorRNom4 = (mean(VALUES4(DC4(end-15:end-1),4))); 

 

  

%Increased Brush Resistance Values 2 

VALUES2 = xlsread('test30.xlsx'); 

[Sig2, TStr2, Raw2] = xlsread('test30.xlsx',1,'A2:A50'); 

VALUES2C = xlsread('current30.xlsx'); 

[Sig2C, TStr2C, Raw2C] = xlsread('current30.xlsx',1,'A2:A500'); 

DC2 = find(VALUES2(:,2)>0); 

DC2C = find(VALUES2C(:,2)>0); 

MotorV2 = (mean(VALUES2(DC2(end-7:end-2),1)))/50; 

MotorW2 = (mean(VALUES2(DC2(end-7:end-2),2)))/10; 

MotorRNom2 = (mean(VALUES2(DC2(end-7:end-2),3))); 
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%Increase 2.5 

VALUES5 = xlsread('test60.xlsx'); 

[Sig5, TStr5, Raw5] = xlsread('test60.xlsx',1,'A2:A50'); 

VALUES5C = xlsread('current30.xlsx'); 

[Sig5C, TStr5C, Raw5C] = xlsread('current30.xlsx',1,'A2:A500'); 

DC5 = find(VALUES5(:,3)>0); 

DC5C = find(VALUES5C(:,2)>0); 

MotorV5 = (mean(VALUES5(DC5(end-30:end-4),2)))/50; 

MotorW5 = (mean(VALUES5(DC5(end-30:end-4),3)))/10; 

MotorRNom5 = (mean(VALUES5(DC5(end-30:end-4),4))); 

 

%Increased Brush Resistance Values 3 

VALUES7 = xlsread('test80.xlsx'); 

[Sig7, TStr7, Raw7] = xlsread('test80.xlsx',1,'A2:A50'); 

VALUES7C = xlsread('Current20.xlsx'); 

[Sig7C, TStr7C, Raw7C] = xlsread('Current20.xlsx',1,'A2:A500'); 

DC7 = find(VALUES7(:,2)>0); 

DC7C = find(VALUES7C(:,2)>0); 

MotorV7 = (mean(VALUES7(DC7(end-61:end-3),1)))/50; 

MotorW7 = (mean(VALUES7(DC7(end-61:end-3),2)))/10; 

MotorRNom7 = (mean(VALUES7(DC7(end-61:end-3),3))); 

  

%Increased Brush Resistance Values last  

VALUES8 = xlsread('test90.xlsx'); 

[Sig8, TStr8, Raw8] = xlsread('test90.xlsx',1,'A2:A50'); 

DC8 = find(VALUES8(:,2)>0); 

MotorV8 = (mean(VALUES8(DC8(end-37:end-1),1)))/50; 

MotorW8 = (mean(VALUES8(DC8(end-37:end-1),2)))/10; 

MotorRNom8 = (mean(VALUES8(DC8(end-37:end-1),3))); 

  

  

%Setting Nominal Values 

RNom = MotorRNom;                      %Nominal R (Ohm) 

LNom = MotorL;                  %Nominal L (H)enry 

JNom = MotorJ;          %Nominal J (kg-m^2) 

KNom = MotorK;                     %Back EMF, conversion (Nm/A) 

Tload=MotorTL;                      %Nominal Tload (N-m) 

Tfriction = MotorTf;                %Average Friction Force, conversion, (N-m) 

VbattNom = MotorV;                      %Nominal Vbatt (V) 

TempChangeNom = 0.01;            %Nominal Temperature Change (C) 

Period = 1/500;                  %PWM Generator Period, (s)(1/Hz) 

DC = 100;                         %Duty Cycle (%) 
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%Simulation Inputs 

multi=1000                         %UN COMMENT IF NOT FINDING ZERO SPEED 

RESISTANCE 

%Rchange=0.5     %Stepside of Resistance Increase  

Q=3;        %Number of Resistance Increases for actual simulations 

S=5*multi;      %Number of Randomly Generated Numbers 

B=200;       %Number of Bins in Histograns 

P=.001;      %Stepsize of Simulation 

F=0.025;     %Stepsize of Zero Speed Estimation Resistance Increase 

Time=2;     %Length of Simulation Time in Seconds 

Inc=100;      %Percent Increase Of Estimate 

IncReset=Inc; 

  

%Setting Random Generation Values 

Rmean = log(RNom);                                     %Nominal R Ohm 

if Rmean < 0; 

    Rstd = -Rmean*0.05;                                %R stdev 

else 

    Rstd = Rmean*0.05; 

end 

Lmean = log(LNom);                                     %Nominal L (H)enry 

if Lmean < 0; 

    Lstd = -Lmean*.05;                                 %L stdev 

else 

    Lstd = Lmean*0.05; 

end 

Jmean=log(JNom);                                       %Nominal J kg-m^2 

if Jmean < 0; 

    Jstd = -Jmean*.05;                                 %J stdev 

else 

    Jstd = Jmean*0.05; 

end 

Kemfmean  = log(KNom);                                 %Back EMF, conversion (Nm/A) 

if Kemfmean < 0; 

    Kemfstd = -Kemfmean*0.05;                          %Back EMF Standard Deviation 

else 

    Kemfstd = Kemfmean*0.05; 

end 

Tempchangemean = log(TempChangeNom);                   %Nominal Temperature 

Change (C) 

if Tempchangemean < 0 

    Tempchangestd = -Tempchangemean*0.05;              %Temperature Change stdev 

else 

    Tempchangestd = Tempchangemean*0.05; 
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end                                                                                         %PWM Generator Duty 

Cycle, (%) 

Vstd = VbattNom*0.05; 

  

%Random Number Generation 

Rmean_Rand=lognrnd(Rmean,Rstd,[S,1]);                  %Random Generation for R       

L_Rand=lognrnd(Lmean,Lstd,[S,1]);                         %Random Generation for L 

J_Rand=lognrnd(Jmean,Jstd,[S,1]);                         %Random Generation for J   

Kemfmean_Rand=lognrnd(Kemfmean,Kemfstd,[S,1]);              %Random Generation 

for K 

Tempchange_Rand=lognrnd(Tempchangemean,Tempchangestd, [S,1]); %Random 

Generation for Temperature Change 

Vbatt_Rand=(VbattNom-Vstd)+(2*Vstd).*rand([S,1]);                           %Random 

Generation for Vbatt 

  

MaxR=1;      %Max Resistance Change to determine Rchange            

Rchange=MaxR/(Q);                      %Resistance Increase Interval 

  

%Actual Simulation of Nominal Set 

for i=0:Q 

      RtempConv = TempChangeNom.*0.00393;        %Convert Temperature Change to 

Resistance 

      Rtemp = RtempConv;                         %Setting Temperature Resistance 

      R = RNom;                        %Setting Resistance 

      Rcontact = Rchange*i; 

      Linv = 1/(LNom);                           %Setting Inductance Inverse 

      Jinv = 1/(JNom);                           %Setting Inertia Inverse 

      Kemfmean = KNom;                           %Setting Kemf 

      Tload = Tload;                             %Setting Tload as Constant 

      Vbatt = VbattNom;                             %Setting Voltage 

      Kemf=Kemfmean;                             %Back EMF 

      Ktorque=Kemf;                              %Back EMF 

      [T,X,Y]=sim('DCPMmotorSteady.slx', [0:P:Time]);     %0 to 2s, intervals of .001, 

switch to DCPMmotor.mdl for PWM 

      Speed=Y(:,1);                                     %Acquire speed                                 

      Speed0(:,1) = Speed;                               %Create array 

      Speed00(1,i+1) = max(Y(:,1));   %Finding max speed 

%      %UNCOMMENT THESE TO MONITOR THE SPEED PLOTS BEING 

PRODUCED 

%           figure((11));                                 %Setting figure 1 

%           plot(T,Speed)                                  %Plot speed vs time 

%           title({strcat('Speed Over Time, Constant Tload, 

R=Rnom+',num2str(Rchange),'*(0:',num2str(i),')')});           %Set title 

%           xlabel('Time');                                %label x axis 
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%           ylabel('Speed RPM');                           %label y axis 

%           hold on                                    %Hold for continuous graphing to monitor         

end 

hold off 

  

%Estimate Speeds of Nominal Set 

Rchangeperc = ((Rchange)/RNom)*100 ; 

Rchangeend = (((MaxR))/RNom)*100; 

U1 = [0:Rchangeperc:Rchangeend];                         %Setting the y interval 

Speed00neg(1,:) = (find(Speed00(1,:)<=0));           %Find the location of the zero or neg 

speed in matrix 

Speed00new = Speed00; 

Speed00new(Speed00neg) = 0; 

c1 = polyfit(U1,Speed00new,1);                            % Here 'c' contains the 'm' and 'b' 

disp(['Line Equation of Nominal Set is y = F(x) = ',num2str(c1(1)),'*x + 

','(',num2str(c1(2)),')']); 

disp(['Zero Speed Resistance of Nominal Set = ',num2str(-c1(2)/c1(1)),'% ', newline]); 

Speed00_est=polyval(c1,U1); 

for x = 0:Inc 

    Speed00_estnew(1,x+1)=c1(1)*x+c1(2); 

    while Speed00_estnew(end) > 0 

        Inc=Inc+1; 

        Speed00_estnew(1,Inc+1)=c1(1)*Inc+c1(2); 

    end 

    if Speed00_estnew(end) < 0; 

        Speed00_estnew(end) =0; 

    end 

end 

Speed00zero = min(find(Speed00_estnew(1,:)<=0)); 

Speed00_estnew(Speed00zero) = 0; 

Speed00_estnew = Speed00_estnew(1:(Speed00zero)); 

U11 = [0:(Speed00zero-1)]; 

U11(end) = -c1(2)/c1(1); 

%UNCOMMENT THESE TO MONITOR THE PLOTS BEING PRODUCED 

figure(1); 

Inc=IncReset; 

plot(U1,Speed00new) 

xlabel('\Delta R (%)');                                     %Setting x label 

ylabel('Speed RPM');                                      %Setting y label 

title({strcat('Speed vs Resistance of Nominal Values')});           %Set title 

grid on 

hold on 

plot(U11,Speed00_estnew) 

hold off 
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%Actual Simulation of Random Number Sets 

for i=0:Q 

    for k=1:S                                        %for loop for each random number 

          RtempConv = Tempchange_Rand.*0.00393;      %Convert Temperature Change to 

Resistance 

          Rtemp = RtempConv(k,1);                    %Setting Temperature Resistance 

          R = RNom;            %Setting Resistance 

          Rcontact = Rchange*i; 

          R_s(k,i+1)=R; 

          Linv = 1/(L_Rand(k,1));                    %Setting Inductance Inverse 

          Jinv = 1/(J_Rand(k,1));                    %Setting Inertia Inverse 

          Kemfmean = Kemfmean_Rand(k,1);             %Setting Kemf 

          %Tload = Tload_Rand(k,1);                  %Setting Tload for Random 

          Tload = Tload;                             %Setting Tload as Constant 

          Vbatt = Vbatt_Rand(k,1);                   %Setting Voltage 

          Kemf=Kemfmean;                             %Back EMF 

          Ktorque=Kemf;                              %Back EMF 

          [T,X,Y]=sim('DCPMmotorSteady.slx', [0:P:Time]);     %0 to 2s, intervals of .001, 

switch to DCPMmotor.mdl for PWM 

          Speed=Y(:,1);                                     %Acquire speed                                 

          Speed1(:,1) = Speed;                               %Create array 

          Speed2(k,i+1) = max(Y(:,1));   %Finding mean speed 

%           %UNCOMMENT THESE TO MONITOR THE SPEED PLOTS BEING 

PRODUCED           

%           figure((i+3));                                 %Setting figure 1 

%           plot(T,Speed)                                  %Plot speed vs time 

%           title({strcat('Speed Over Time, Constant Tload, 

R=Rrand+',num2str(Rchange*i))});           %Set title 

%           xlabel('Time');                                %label x axis 

%           ylabel('Speed RPM');                           %label y axis 

%           hold on                                    %Hold for continuous graphing to monitor             

    end                                           %End random number for loop 

    Speed3 = mean(Speed2,1); 

    hold off 

    Ravg= mean(Rmean_Rand(:,1),1); 

end 

steps = 2; 

stepsinv = 1/steps; 

%Estimate Speeds of Random Number Sets 

for n=1:S 

    Speed2_estnew = []; 

    U22 = []; 

    x = []; 
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    Inc=IncReset; 

    Rchangeperc = ((Rchange)/Rmean_Rand(n,1))*100; 

    Rchangeend = (((Rchange*Q))/Rmean_Rand(n,1))*100; 

    U2 = [0:Rchangeperc:Rchangeend];                         %Setting the y interval 

    c2(n,:) = polyfit(U2,Speed2(n,:),1);                            % Here 'c' contains the 'm' and 'b' 

    Speed2_est(n,:)=polyval(c2(n,:),U2); 

    for x = 0:stepsinv:Inc 

        Speed2_estnew(1,x*steps+1)=c2(n,1)*x+c2(n,2); 

        while Speed2_estnew(end) > 0 

            Inc=Inc+stepsinv; 

            Speed2_estnew(1,Inc*steps+1)=c2(n,1)*Inc+c2(n,2); 

        end 

    end 

    Speed2zero = min(find(Speed2_estnew(1,:)<=0)); 

    Speed2_estnew1 = Speed2_estnew; 

    Speed2_estnew1 = Speed2_estnew(1:(Speed2zero)); 

    U22 = [0:(Speed2zero-1)]; 

    figure((i+4));                                 %Setting figure 1 

    lengths(n,:) = length(Speed2_estnew); 

    M1{n,1} = Speed2_estnew; 

    M11{n,1} = Speed2_estnew1; 

    M2{n,1} = U22; 

%    %UNCOMMENT THESE TO MONITOR THE SPEED PLOTS BEING 

PRODUCED 

%     plot(U22,Speed2_estnew1(1,:))                                  %Plot speed vs time 

%     title({strcat('Speed vs Resistance Estimated of Random Numbers')});           %Set 

title 

%     xlabel('\Delta R (%)');                                     %Setting x label 

%     ylabel('Speed RPM');                           %label y axis 

%     grid on 

%     hold on                                    %Hold for continuous graphing to monitor 

end 

  

% hold off 

maxlength = max(lengths); 

v = [0:maxlength-1]; 

v1 = repelem(v,[S],[1]); 

%Estimate Average Speeds of Random Number Sets 

Rchangeperc = ((Rchange)/Ravg)*100; 

Rchangeend = (((Rchange*i))/Ravg)*100; 

U3 = [0:Rchangeperc:Rchangeend];                         %Setting the y interval 

Speed3neg(1,:) = (find(Speed3(1,:)<=0));           %Find the location of the zero or neg 

speed in matrix 

Speed3new = Speed3; 
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Speed3new(Speed3neg) = 0; 

c3 = polyfit(U3,Speed3new,1);                            % Here 'c' contains the 'm' and 'b' 

disp(['Line Equation Weird is y = F(x) = ',num2str(c3(1)),'*x + ','(',num2str(c3(2)),')']); 

Speed3_est=polyval(c3,U3); 

SSE1 = sum((Speed3new-Speed3_est).^2); 

SSyy1 = sum((Speed3new-mean(Speed3)).^2); 

Rsq1 = 1-SSE1/SSyy1; 

for x = 0:stepsinv:Inc 

    Speed3_estnew(1,x*steps+1)=c3(1)*x+c3(2); 

    while Speed3_estnew(end) > 0 

        Inc=Inc+stepsinv; 

        Speed3_estnew(1,Inc*steps+1)=c3(1)*Inc+c3(2); 

    end 

    if Speed3_estnew(end) < 0; 

        Speed3_estnew(end) =0; 

    end 

end 

Speed3zero = min(find(Speed3_estnew(1,:)<=0)); 

Speed3_estnew(Speed3zero) = 0; 

Speed3_estnew = Speed3_estnew(1:(Speed3zero)); 

U33 = [0:(Speed3zero-1)];                         %Setting the y interval 

U33(end) = -c3(2)/c3(1);                % setting y to zero, solving for x 

disp(['Zero Speed Resistance Weird = ',num2str(-c3(2)/c3(1)),'%', newline]); 

% %UNCOMMENT THESE TO MONITOR THE SPEED PLOTS BEING 

PRODUCED 

% figure(i+5); 

% Inc=IncReset; 

% plot(U3,Speed3new) 

% xlabel('\Delta R (%)');                                     %Setting x label 

% ylabel('Speed RPM');                                      %Setting y label 

% title({strcat('Speed vs Resistance Estimated Average')});           %Set title 

% grid on 

% hold on 

% plot(U33,Speed3_estnew) 

% hold off 

% SSE1 = sum((Speed3-Speed3_est).^2); 

% SSyy1 = sum((Speed3-mean(Speed3)).^2); 

% Rsq1 = 1-SSE1/SSyy1; 

  

%Prediction Interval 

[~,I] = sort(cellfun(@length,M1),'descend'); 

M3 = M1(I); 

lengths1 = sort(lengths,'descend'); 

for n = 1:maxlength 
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    for k=1:S 

        M4(k,:) = M3{k}(n); 

        if n == 1 

            M6(k,:) = M3{k}(n); 

        end 

        if n == 50 

            M7(k,:) = M3{k}(n); 

        end 

        if n==lengths1(S); 

            S=S-1; 

        end 

    end 

    M5(:,n) = M4; 

    N1 = S;                                      % Number of ‘Experiments’ In Data Set 

    N2(n,1) = N1; 

    if N1 > 1 

        CI95notnan = [1:n]; 

    end 

    SpeedMean(1,n) = mean(M4); 

    SpeedMSE(1,n) = sqrt(((sum(M4-SpeedMean(1,n)^2)/N1))*(1+1/N1));                          

% Compute ‘Standard Error Of The Mean’ Of All Experiments At Each Value Of ‘x’ 

    CI95(:,n) = tinv([0.025 0.975], N1-1);                        % Calculate 95% Probability 

Intervals Of t-Distribution 

    if CI95 == NaN 

        CI95(:,n) = 0; 

    end 

    CI951 = CI95(:,CI95notnan); 

    SpeedMean1 = SpeedMean(:,CI95notnan); 

    SpeedMSE1 = SpeedMSE(:,CI95notnan);  %Standard error sigma/sqrt(n) 

    CI95notnanlength=length(CI95notnan); 

    if n-1<CI95notnanlength 

        SpeedCI95 = bsxfun(@times, SpeedMSE1, CI951(:,n)); %Piecewise multiplication 

of t(alpha/2) and sigma/sqrt(n) 

    end 

end 

% %UNCOMMENT THESE TO MONITOR THE SPEED PLOTS BEING 

PRODUCED 

% figure(9); 

% U44 = [0:CI95notnan(end)-1]; 

% line(U44, SpeedCI95act,'Color','r') 

% title({strcat('Speed vs Resistance Confidence Interval')});           %Set title 

% xlabel('\Delta R (%)');                                     %Setting x label 

% ylabel('Speed RPM');                                      %Setting y label 

% grid on 



 

53 

 

  

%Length to Resistance 

L0 = 15.84; 

L3 = 13.07; 

L6 = 10.33; 

L1 = 8.9; 

L4 = 7.34; 

L2 = 6.6; 

L5 = 3.79; 

L7 = 1.67; 

L0PERC = ((L0-L0)/L0)*100; 

L1PERC = ((L0-L1)/L0)*100; 

L2PERC = ((L0-L2)/L0)*100; 

L3PERC = ((L0-L3)/L0)*100; 

L4PERC = ((L0-L4)/L0)*100; 

L5PERC = ((L0-L5)/L0)*100; 

L6PERC = ((L0-L6)/L0)*100; 

L7PERC = ((L0-L7)/L0)*100; 

L8PERC = 100; 

figure(2) 

R0PERC = ((MotorRNom-MotorRNom)/MotorRNom)*100; 

R1PERC = ((MotorRNom1-MotorRNom)/MotorRNom)*100; 

R2PERC = ((MotorRNom2-MotorRNom)/MotorRNom)*100; 

R3PERC = ((MotorRNom3-MotorRNom)/MotorRNom)*100; 

R4PERC = ((MotorRNom4-MotorRNom)/MotorRNom)*100; 

R5PERC = ((MotorRNom5-MotorRNom)/MotorRNom)*100; 

R6PERC = ((MotorRNom6-MotorRNom)/MotorRNom)*100; 

R7PERC = ((MotorRNom7-MotorRNom)/MotorRNom)*100; 

R8PERC = ((MotorRNom8-MotorRNom)/MotorRNom)*100; 

figure(3) 

scatter(L0PERC, R0PERC) 

hold on 

scatter(L3PERC, R3PERC) 

hold on 

scatter(L6PERC, R6PERC) 

hold on 

scatter(L1PERC,R1PERC); 

hold on 

scatter(L4PERC,R4PERC); 

hold on 

scatter(L2PERC,R2PERC) 

hold on 

scatter(L5PERC,R5PERC) 

hold on 
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scatter(L7PERC, R7PERC) 

hold on 

scatter(L8PERC, R8PERC) 

title('Length vs Resistance');  %Setting Title 

xlabel('\Delta Length (%)');                                     %Setting x label 

ylabel('\Delta R (%)'); 

hold off 

  

figure(11) 

scatter(R0PERC, MotorW); 

hold on 

scatter(R3PERC, MotorW3); 

hold on 

scatter(R6PERC, MotorW6); 

hold on 

scatter(R1PERC, MotorW1); 

hold on 

scatter(R4PERC, MotorW4); 

hold on 

scatter(R2PERC, MotorW2); 

hold on 

scatter(R5PERC, MotorW5); 

hold on 

scatter(R7PERC, MotorW7); 

hold on 

scatter(R8PERC, MotorW8); 

title('Length vs Resistance Ecperimental Data');  %Setting Title 

xlabel('\Delta R (%)');                                     %Setting x label 

ylabel('Speed RPM'); 

hold off 

  

  

figure(10);                      %Setting the y interval 

U66 = [0:size(SpeedMean1,2)-1]; 

U666 = U66.'; 

SpeedMean1fit = SpeedMean1.'; 

c6 = polyfit(U66(1:20),SpeedMean1(1:20),1); 

Speedaverages_est=polyval(c6,U66); 

%U444(end) = -c4(2)/c4(1); 

U66(end) = -c6(2)/c6(1); 

disp(['Line Equation of Average is y = F(x) = ',num2str(c6(1)),'*x + 

','(',num2str(c6(2)),')']); 

disp(['Zero Speed Resistance of Averages = ',num2str(-c6(2)/c6(1)),'Ohms', newline]); 

Speedaverages_estneg = min(find(Speedaverages_est(1,:)<=0)); 
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maxs = max(M5); 

U7 = [0:size(maxs,2)-1]; 

mins = min(M5); 

U8zero = min(find(mins(1,:)<=0)); 

U8 = [0:U8zero-1]; 

M5=M5(:,1:size(SpeedMean1,2)); 

v1 = v1(:,1:size(SpeedMean1,2)); 

M5linear = M5(:); 

v1linear = v1(:); 

fitresult = fit(v1linear,M5linear,'poly2'); 

p12 = predint(fitresult,v1linear,0.95,'observation','on'); 

plot(U66(1:Speedaverages_estneg)./steps,Speedaverages_est(1:Speedaverages_estneg)); 

hold on 

grid on 

SpeedCI95act = SpeedCI95+Speedaverages_est; 

SpeedCI95act1L = p12(:,1); 

SpeedMean1zero = min(find(SpeedMean1(1,:)<=0)); 

SpeedMean1act = SpeedMean1; 

SpeedMean1act(SpeedMean1zero) = 0; 

SpeedMean1act = SpeedMean1act(1:(SpeedMean1zero)); 

SpeedCI95act1U = p12(:,2); 

U444 = [0:size(SpeedCI95act1L)-1];                         %Setting the y interval 

U4444 = U444./(10); 

U555 = [0:size(SpeedCI95act1U)-1];  

U5555 = U555./10; 

c4 = polyfit(U4444(1:20000),SpeedCI95act1L(1:20000).',1); 

StraightL = polyval(c4,U4444); 

straightzeroL = min(find(StraightL<=0)); 

UStraightL = [0:straightzeroL-1]./(10*multi); 

UStraightL(end)=(-c4(2)/c4(1))/((10/10)*multi); 

StraightL(straightzeroL)=0; 

StraightL = StraightL(1:straightzeroL); 

c5 = polyfit(U5555(1:20000),SpeedCI95act1U(1:20000).',1); 

StraightU = polyval(c5,U5555); 

UStraightU = [0:straightzeroL-1]./(10*multi); 

StraightU(straightzeroL)=0; 

StraightU = StraightU(1:straightzeroL); 

UStraightU(end)=(-c5(2)/c5(1))/((10/10)*multi); 

line(UStraightL, StraightL,'Color','r'); 

hold on 

line(UStraightU, StraightU,'Color','c'); 

hold on 

SpeedMean1act_est=polyval(c6,U66); 
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SSE2 = sum((SpeedMean1(1:5)-SpeedMean1act_est(1:5)).^2); 

SSyy2 = sum((SpeedMean1-mean(SpeedMean1)).^2); 

Rsq2 = 1-SSE2/SSyy2; 

scatter(R0PERC, MotorW); 

hold on 

 scatter(R3PERC, MotorW3); 

 hold on 

scatter(R6PERC, MotorW6); 

hold on 

scatter(R1PERC, MotorW1); 

hold on 

 scatter(R4PERC, MotorW4); 

 hold on 

scatter(R2PERC, MotorW2); 

hold on 

 scatter(R5PERC, MotorW5); 

 hold on 

 scatter(R7PERC, MotorW7); 

 hold on 

scatter(R8PERC, MotorW8); 

hold on 

legend11 = sprintf('Avg Data (Random #s), R^{2} = %g', Rsq2);                         %Set 

legend 

legend10 = sprintf('Lower CI'); 

legend16 = sprintf('Upper CI') 

legend(legend11,legend10,legend16,'Location','northeast'); 

title('Avg Speed of Sets of Randomly Generated Variables, No Torque Load');  %Setting 

Title 

xlabel('\Delta R (%)');                                     %Setting x label 

ylabel('Speed RPM');                                      %Setting y label 

hold off 

 


