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ABSTRACT

This dissertation can be said to consider the Novikov conjecture for an extension of

coarsely embeddable groups.

The first part of the dissertation is about defining a C�-algebra associated with an

extension of coarsely embeddable groups. This C�-algebra comes with an action of the

extension group, and we explore the properties of this action. We then construct twisted

Roe algebras and twisted localization algebras associated with the extension, and develop

a framework to compute their K-theory.

In the second part of this dissertation, we define and study the Bott map from the

suspension of the localization algebra to the twisted localization algebra and the Bott map

from the suspension of the Roe algebra to the twisted Roe algebra associated with the

extension group. We show that the Bott map between localization algebras induces an

isomorphism on K-theory. It follows that the strong Novikov conjecture with coefficients

in any C�-algebra holds for a group G when a normal subgroup N of G and the quotient

group G~N are coarsely embeddable into Hilbert spaces. As a result, the group G satisfies

the Novikov conjecture under the same hypothesis on N and G~N .
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1. INTRODUCTION

The Novikov conjecture is an important problem in higher dimensional topology. It

asserts that the higher signatures of a compact smooth manifold are invariant under ori-

entation preserving homotopy equivalences. In the past few decades, noncommutative

geometry has provided powerful techniques to study the Novikov conjecture. Using this

approach, the Novikov conjecture has been proved for an extensive class of groups (c.f.

[4], [5], [13], [16], [20], [21], [19], [22], [31], [32], [33]).

The Novikov conjecture is a consequence of the strong Novikov conjecture in the com-

putation of the K-theory of group C�-algebras. Given a countable discrete group G, there

is a universal proper G-space EG which is unique up to equivariant homotopy equivalence

(see [2]). Let B be any C�-algebra equipped with a G-action by �-automorphisms. The

Baum–Connes assembly map for a countable discrete group G and a G-C�-algebra B is a

group homomorphism

µ �KKG
�
�EG,B��K��B #r G�,

where KKG
�
�EG,B� is the equivariant K-homology with G-compact supports with coef-

ficients in B of the universal space EG for proper G-actions, and K��B #r G� is the K-

theory of the reduced crossed product B #r G (see [19]). In the special case when B is the

complex numbers C with trivial G-action, the Baum–Connes assembly map µ is a group

homomorphism mapping each Dirac type operator to its higher index in K��C�

r �G��,
where C�

r �G� is the reduced group C�-algebra. The Baum–Connes conjecture with coef-

ficients in B claims that µ is an isomorphism, while the strong Novikov conjecture with

coefficients inB claims that µ is injective. WhenB is the complex numbers C, this reduces

to the usual Baum–Connes conjecture and strong Novikov conjecture, respectively.

Let us recall the concept of coarse embedding which was introduced by Gromov in
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[11]. Let X be a metric space, and H a Hilbert space. A map ϕ �X � H is called a coarse

embedding if there exist two non-decreasing functions ρ�, ρ� � �0. �ª� � �0,�ª�, with

ρ��t� B ρ��t� for all t C 0, and lim
t��ª

ρ��t� � �ª, such that

ρ��d�x, y�� B Yϕ�x� � ϕ�y�Y B ρ��d�x, y�� for all x, y >X .

Yu [32] and Skandalis–Tu–Yu [26] proved the Novikov conjecture for any group which

admits a coarse embedding into Hilbert space. In [21], Kasparov and Yu strengthened this

result, showing that the Novikov conjecture holds for groups which are coarsely embed-

dable into Banach spaces with property �H�.
In [23], Oyono-Oyono established a group extension result for the Baum–Connes con-

jecture. Let N and G be countable discrete groups, and N a normal subgroup of G.

Oyono-Oyono showed that if the quotient groupG~N and all subgroups ofG containingN

with finite index satisfy the Baum–Connes conjecture, then G satisfies the Baum–Connes

conjecture. With this extension result, one can show that the Baum–Connes conjecture

holds for a large class of groups. For instance, based on Higson and Kasparov’s result on

the Baum–Connes conjecture for a-T-menable groups ([16]), the result of Oyono-Oyono

implies that the Baum–Connes conjecture holds for all extensions of a-T-menable groups.

To obtain an extension result for the Novikov conjecture, one might attempt to show

that coarse embeddability into Hilbert space is closed under taking group extensions, and

apply Yu’s result ([32]). However, in [1], Arzhantseva and Tessera constructed a finitely

generated group G which is not coarsely embeddable into Hilbert space, but has a normal

subgroup N such that N and G~N are coarsely embeddable into Hilbert spaces. Note

that every subgroup of G containing N with finite index is also coarsely embeddable into

Hilbert space. To obtain an analogue of the extension result of the Baum–Connes conjec-

ture ([23]), other techniques are needed to show that the group obtained from extension of

coarsely embeddable groups satisfies the Novikov conjecture.

2



Our main result is the following.

Theorem 1.0.1. Let 1 � N � G � G~N � 1 be a short exact sequence of countable

discrete groups and B a G-C�-algebra. If N and G~N are coarsely embeddable into

Hilbert spaces, then the strong Novikov conjecture holds for G with coefficients in the

G-C�-algebra B, that is, the Baum–Connes assembly map

µ �KKG
�
�EG,B��K��B #r G�

is injective, where EG is the universal space for properG-action, andB#rG is the reduced

crossed product C�-algebra.

Let G be a countable discrete group with a coarsely embeddable normal subgroup

N B G. Assume that the quotient group G~N is also coarsely embeddable into Hilbert

space. It follows from Theorem 1.0.1 that the rational strong Novikov conjecture holds for

G, that is, the Baum–Connes assembly map

µ �KKG
�
�EG�aQ�K��C�

r G�aQ

is injective. We remark that the rational strong Novikov conjecture implies the Novikov

conjecture on the homotopy invariance of higher signatures and the Gromov-Lawson-

Rosenberg conjecture regarding the existence of positive scalar curvature on closed as-

pherical manifolds.
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2. PRELIMINARY

2.1 C�-algebras

In this section, we shall recall some basic facts about C�-algebras which can be found,

for instance, in [7].

Definition 2.1.1. A Banach algebra A is an algebra equipped with a multiplicative norm,

i.e., YabY B YaYYbY for all a, b > A, and such that �A, Y � Y� is a Banach space.

A Banach algebra A is unital if there exists an element 1 > A such that 1 � a � a � 1 � a

for all a > A. The algebra A is said to be non-unital if such an element does not exist.

Definition 2.1.2. Let A be a Banach algebra. A map � � A � A is called an involution if

it satisfies

• �a � b�� � a� � b� for all a, b > A,

• �λa�� � sλa� for all λ > C and a > A,

• �ab�� � b�a� for all a, b > A,

• �a��� � a for all a > A.

A Banach algebra A is said to be a C�-algebra if A is equipped with a norm satisfying

the equality Ya�aY � YaY2 for all a > A.

Definition 2.1.3. Let A be a �-algebra, and let A� � A ` C be the direct sum of vector

spaces A and C. Define a �-algebra structure on A� by

�a,α��b, β� � �ab � βa � αb,αβ�, �a,α�� � �a�, sα�
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for all �a,α�, �b, β� > A�. Define ı � A � A� by ı�a� � �a,0� and π � A�
� C by

π�a,α� � α.

Proposition 2.1.4 ([7]). There exists a norm on A� such that A� is a unital C�-algebras.

Let A be a C�-algebra. We say that B ` A is a C�-subalgebra of A if B is a C�-

algebra equipped with the inherited operations and norm from A. A C�-subalgebra I ` A

is a called an ideal of A if a � I ` I and I � a ` I for all a > A.

For any given ideal I ` A, one can define a quotient C�-algebra A~I .

Example 2.1.5. 1. Let X be a compact Hausdorff space. Then C�X�, the set all con-

tinuous functions onX , is a Banach algebra when equipped with pointwise multipli-

cation and the norm YfY �� supx>X Sf�x�S. Moreover, one can endow C�X� with an

involution by f��x� ��f�x� for all f > C�X�. Then C�X� is a unital C�-algebra.

If Y is locally compact space but not compact, then C0�X�, the set of continuous

functions on X vanishing at infinity, is a non-unital C�-algebra when equipped with

the above multiplication, involution and norm.

2. Let H be a complex Hilbert space. Then B�H�, the set of bounded linear operators

on H , is a unital C�-algebra with composition as multiplication, operator adjoint

as involution and operator norm. In particular, if H is a finite-dimensional Hilbert

space with n � dim�H�, it is obvious thatB�H� is the C�-algebraMn�C� of n-by-n

matrices.

3. Let H be a complex Hilbert space. Then K�H�, the set of compact operators on H ,

is a non-unital C�-algebra equipped with the above multiplication and norm. It is

well-known that K�H� is an ideal of B�H�.
Definition 2.1.6. Let A, B be two C�-algebras. A linear map ϕ � A � B is called a

�-homomorphism if it satisfies ϕ�ab� � ϕ�a�ϕ�b� and ϕ�a�� � ϕ�a�� for all a, b > A.

5



Given a sequence of C�-algebras �An�n>N. Suppose that for each pair j @ i there is a

sequence of �-homomorphisms ϕij � Aj � Ai with the coherence condition ϕij � ϕikXϕkj .

Let LiAi be the product C�-algebra equipped with coordinate-wise operation inherited

from Ai’s and the norm

Y�ai�Y � sup
i
YaiY,

for all �ai� > LiAi. Let `iAi be the C�-algebra of LiAi generated by sequences whose

all but finitely many terms are 0, and let π �LiAi �LiAi~`iAi be the canonical quotient.

Set

Aª � ��ai� >M
i

Ai � §i0 such that ai � ϕi,i0�ai0� for all i A i0¡ .
Definition 2.1.7. The inductive limit of the directed system �Ai, ϕi,j� is defined to the

C�-algebra

lim
Ð�

Ai �� the closure of π�Aª� `M
i

Ai~`i Ai.
By the definition of inductive limit, one obtains a canonical homomorphism ϕi � Ai �

lim
Ð�

Ai for each i, such that the following diagram commutes:

Aj
ϕj //

ϕi,j

��

lim
Ð�

Ai

Ai

ϕi

<<

The inductive limit has the following universal properties. If B is any C�-algebra and

for each i there is a homomorphism φi � Ai � B satisfying φi X ϕi,j � ϕj for all j @ i, then

there exists a homomorphism φ � lim
Ð�

Ai � B such that the following diagram commutes:

lim
Ð�

Ai

φ

��
Ai

ϕi
<<

φi // B

6



Example 2.1.8. For each positive integer n, let Mn�C� be the set of n-by-n matrices.

Then Mn�C� can be viewed as the C�-algebra of bounded operators on an n-dimensional

HIlbert space. By the definition of inductive limit, we have

K�H� � lim
Ð�

Mn�C�,

where H � `2�N� is the Hilbert space of square summable sequences on N.

2.2 K-theory of operator algebras

In this section, we will recall the definitions of K-theory and some basic properties of

K-theory which can be found in [3].

For each positive integer n, we define the matrix algebraMn�A� to be the algebra of n-

by-nmatrices �ai,j�1Bi,jBn with each entry ai,j > A equipped with the following operations:

�ai,j��bi,j� � �Q
k�1n

ai,kbk,j�, �ai,j�� � �a�j,i�

for all �ai,j��bi,j� >Mn�A�.
Proposition 2.2.1 ([7]). There exists a unique norm on Mn�A�, such that Mn�A� is a

C�-algebra.

Definition 2.2.2. 1. Let A be a C�-algebra. An element p > A is called a projection if

p� � p � p2.

2. For any two projections p, q > A, we say that p and q are homotopic if there exists a

norm-continuous path of projections in A from p to q.

In order to define the K0-group of a C�-algebra A, we consider projections not only

in A, but also in Mª�A� �� �nMn�A�, where the union of matrix algebras can be viewed

7



as an inductive limit of Mn�A� with the homomorphisms Mn�A� � Mm�A� via a (

diag�a,0� for all n @m.

Definition 2.2.3. Let A be a C�-algebra. Define V �A� to be the set of homotopy classes

of projections in Mª�A�. On V �A�, define addition by �p� � �q� � �diag�p, q��.
It is straightforward to check that this addition operation on V �A� is well-defined and

makes V �A� into an abelian semigroup with identity �0�.
Example 2.2.4. 1. V �C� � V �K�H�� � N8 �0�, where K�H� denotes the algebra of

compact operators on a seperable Hilbert space H .

2. LetH be an infinite-dimensional complex separable Hilbert space. Then V �B�H�� �
N 8 �0,ª�.

Let φ � A� B be a �-homomorphism between C�-algebrasA andB, then φ extends to

a homomorphism from Mª�A� to Mª�B�, which induces a semigroup homomorphism

φ� � V �A�� V �B� by �p�( �φ�p�� for all �p� > V �A�.
Definition 2.2.5. Let A be a unital C�-algebra. The group K0�A� is defined to be the

Grothendieck group of V �A�.
For a non-unitalC�-algebraA, defineK0�A� to be ker�π� �K0�A���K0�C��, where

π � A�
� C is the canonical homomorphism given by π�a, λ� � λ.

It is obvious to verify that

• if A � A1 `A2, K0�A� �K0�A1�`K0�A2�;
• if A � lim

Ð�

Ai, then K0�A� � lim
Ð�

K0�An�.
Example 2.2.6. 1. K0�C� � K0�K�H�� � Z, where K�H� is the algebra of compact

operators on a separable Hilbert space H .

8



2. K0�B�H�� � 0, where B�H� is the algebra of all bounded linear operators on H .

Next, we will recall the defintion of K1-group. Let A be a C�-algebra. Let GLn�A� �
�x > GLn�A�� � x � In mod Mn�A��. One can embed GLn�A� into GLn�1�A� via u (

diag�u,1�. Let GLª�A� �� lim
Ð�

GLn�A�, which can be viewed as the group of invertible

infinite matrices that have diagonal elements in 1A� � A, off-diagonal elements in A and

only finitely many entries different from 0 or 1.

Definition 2.2.7. Let u, v be invertible elements in a unital C�-algebra A. We say that u

is homotopic to v if there exists a norm-continuous path of invertible elements in A from u

to v.

Definition 2.2.8. Let A be a C�-algebra. The group K1�A� is the set of homotopy classes

of invertibel elements in GLª�A� endowed with the addition �u� � �v� � �diag�u, v�� for

all �u�, �v� >K1�A�.
Example 2.2.9. K1�C� � 0 since every invertible matrix can be connected to the identity

matrix by a norm-continuous path of invertible elements with ocmplex entries.

It is straightforward to verify the following properties for K1-group:

• If φ � A � B is a �-homomorphism between C�-algebras, then it extends to to a

unital homomorphism A�
� B�. Consequently, we obtain a homomorphism φ� �

K1�A��K1�B�.
• K1�A1 `A2� �K1�A1�`K1�A2�.
• K1�lim

Ð�

Ai� � lim
Ð�

K1�Ai�.
Definition 2.2.10. Let A be a C�-algebra. The suspension of A, denoted by SA, is

C0�R,A� equipped with pointwise operations and the sup norm.

9



Theorem 2.2.11 ([3]). There is an isomorphism θA �K1�A��K0�SA� such that the map

θA is natural, i.e., if φ � A � B is a homomorphism, we have the following commutative

diagram:

K1�A� θ� //

θA
��

K1�B�
θb
��

K0�SA� �Sφ�� // K0�SB�
where Sφ � SA� SB is a homomorphism induced by φ.

A sequence G0
φ0
Ð� G1

φ1
Ð� G2 of groups and group homomorphisms is said to be exact

if im�φ0� � ker�φ1�.
Next, we will recall an important algorithm to compute theK-theory of a C�-algebras.

Let A be a C�-algebra, and let I , J be two ideals of A. Suppose that the sum I �J is dense

in A. Denote iI � I 9J � I , iJ � I 9J � J , κI � I � A, and κJ � J � A to be the inclusions,

respectively.

Theorem 2.2.12 (Mayer–Vietoris sequence, [3]). Let A be a C�-algebra and I , J two

ideals of A. Suppose that A ��I � J , then we have a six-term exact sequence:

K0�I 9 J� // K0�I�`K0�J� // K0�A�
��

K1�I 9 J�
OO

K1�I�`K1�J�oo K1�A�oo

The homomorphisms

K��I 9 J��K��I�`K��J� and K��I�`K��J��K��A�
in the above diagram are respectively given by

x( �iI���x�` �iJ���x� and y ` z ( κI
�
�y� � κJ

�
�z�

10



for all x >K��I 9 J�, y >K��I�, z >K��J�.
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3. THE BAUM–CONNES MAP AND LOCALIZATION

In this section, we will first recall the definition of Roe algebras, and the Baum–Connes

assembly map. We then move on to define the local index map and show the connection

between the local index map and the Baum–Connes assembly map.

3.1 Roe algebras

Let G be a countable discrete group, and ∆ a locally compact metric space with a

proper cocompact G-action. The action is proper if the map

∆ �G�∆ �∆, via �x, g�( �x, gx�,
is a proper map. A G-action is said to be cocompact if there exists a compact subset

∆0 ` ∆ such that G �∆0 � ∆. Let C0�∆� be the C�-algebra of all continuous functions on

∆, which vanish at infinity. Let B be any G-C�-algebra.

Definition 3.1.1 ([28]). Let H be a Hilbert module over B and let π � C0�∆�� B�H� be

a �-homomorphism from C0�∆� to B�H�, where B�H� is the algebra of all adjointable

operators on H . Let T > B�H� be an adjointable operator on H .

1. The support of T , denoted by supp�T �, is defined to be the complement (in ∆ �∆)

of all pairs �x, y� > ∆ � ∆ for which there exist f, g > C0�∆� with f�x� x 0 and

g�y� x 0 such that π�f�Tπ�g� � 0.

2. The propagation of T is defined to be

propagation�T � � sup�d�x, y� � �x, y� > supp�T ��.

If propagation�T � @ª, the operator T is said to have finite propagation.
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3. The operator T is said to be locally compact if π�f�T and Tπ�f� are in K�H�
for all f > C0�∆�, where K�H� is defined to be the operator norm closure of all

finite-rank operators on the Hilbert module H .

Let H be a countably generated Hilbert module over B, and U � G � U�H� a unitary

representation of G. A �-homomorphism π � C0�∆� � B�H� is said to be covariant if

π�γf� � Uγπ�f�Uγ�1 , for all γ > G, f > C0�∆�. The triple �C0�∆�,G, π� is called a

covariant system. An operator T > B�H� is said to be G-invariant if UγTUγ�1 � T , for all

γ > G. Let us also recall the definition of an admissible covariant system, more details can

be found in [29].

Definition 3.1.2 ([29]). A covariant system �C0�∆�,G, π� is said to be admissible if

1. H is isomorphic to H∆aEaB as G-Hilbert modules over B, where H∆ and E are

Hilbert spaces,

2. π � π0 a 1 for some G-equivariant �-homomorphism π0 � C0�∆� � B�H∆�, such

that π0�f� is not in K�H∆� for any non-zero function f > C0�∆�, and π0 is non-

degenerate in the sense that �π0�C0�∆��H∆� is dense in H∆,

3. for every finite subgroup F of G and every F -invariant Borel subset U of ∆, E is

isomorphic to `2�F � aHU as F -Hilbert spaces for some Hilbert space HU with a

trivial F -action.

Let G be a countable discrete group, and ∆ a locally compact metric space with a

proper cocompact G-action and let B be a G-C�-algebra. There is always an admissible

covariant system. Chose an infinite-dimensional separable Hilbert space H0 and a count-

able dense G-invariant subset X ` ∆, then define

H � `2�X�aH0 a `
2�G�aB.
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The tensor product H is a Hilbert B-module with the B-valued inner product

`ua a, v a be � `u, ve � a�b,

for all u, v > `2�X� a H0 a `2�G� and a, b > B. The space H is equipped with a right

B-action by

�ua a� b � ua ab,
for all ua`2�X�aH0a`2�G� and a, b > B. In addition, the Hilbert B-module is endowed

with the diagonal action of G by

Ug � δz a v a δh a a( δgz a v a δgh a g � a,

where g, h > G, a > B, z >X . Define an action of C0�∆� by pointwise multiplication

f � δz a v a δh a a( f�z�δz a v a δh a a.

Following Lemma 4.5.5 in [29], it is obvious that �C0�∆�,G� is an admissible system.

Now we are ready to define the Roe algebra, following Roe [25].

Definition 3.1.3. Let �C0�∆�,G, π� be an admissible covariant system. The algebraic Roe

algebra with coefficients inB, denoted byC�

alg�∆,G,B�, is defined to the algebra of all the

G-invariant, locally compact operators in B�H� with finite propagation. The Roe algebra

with coefficients in B, denoted by C��∆,G,B�, is the norm closure of C�

alg�∆,G,B�
under the operator norm on H .

Next, we will recall some basic properties of Roe algebras. Let ∆1, ∆2 be two locally

compact metric spaces with proper and isometric G-actions. A Borel map f � ∆1 � ∆2 is

G-equivariant if f�gx� � gf�x�, for all x > ∆1, g > G. The map f � ∆1 � ∆2 is said to be
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a coarse embedding if there exist non-decreasing functions ρ�, ρ� � �0,ª� � �0,ª� such

that

1. lim
t��ª

ρ��t� � �ª,

2. ρ��d�x, y�� B d�f�x�, f�y�� B ρ��d�x, y��, for all x, y > ∆1.

Given an equivariant coarse embedding, we will define an isometry between admis-

sible Hilbert modules covering the map. Let �C0�∆1�, π1,G� and �C0�∆2�, π2,G� be

admissible systems on H1 �H∆1 aE1 aB and H2 �H∆2 aE2 aB as in Definition 3.1.2.

For any adjointable operator T � H1 � H2, the support, denoted by supp�T �, is defined

to be the complement (in ∆2 �∆1) of all the pairs �x, y� > ∆2 �∆1 for which there exist

f > C0�∆1� and g > C0�∆2� with f�y� x 0 and g�x� x 0 such that π2�g�Tπ1�f� � 0.

A space ∆1 is said to be G-equivariantly coarsely equivalent to ∆2, if there exist G-

equivariant coarse embedding f � ∆1 � ∆2 and g � ∆2 � ∆1, such that d�fg�y�, y� @ c
for all y > ∆2 and d�gf�x�, x� @ c for all x > ∆1, where c is a positive constant. Let us

recall the result that the K-theory of Roe algebras with coefficients in any G-C�-algebra

B is invariant under equivariant coarse equivalence. For completeness, we also present the

proof.

Proposition 3.1.4 ([29]). Let ∆1 and ∆2 be metric spaces with proper G-actions. If ∆1

is G-equivariantly coarsely equivalent to ∆2, then K��C��∆1,G,B�� is isomorphic to

K��C��∆2,G,B��, for any G-C�-algebra B.

Proof. Since the G-action on ∆2 is proper and isometric, by Lemma A.2.8 in [28], one

can find a Borel cover �Ui� with mutually disjoint elements, such that

1. Ui � Ki �Gi G, where Gi B G is a finite subgroup, and Ki ` ∆1 is Gi-invariant for

all i,
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2. Ki has non-empty interior for all i,

3. the diameter of Ki is uniformly bounded for all i.

One obtains a cover �f�1�Ui�� of ∆1. The representation of C0�∆1� on H1 extends to a

representation of the algebra of all bounded Borel functions on ∆1. Thus, for each i, we

have χUiH2 � χUiH∆2 a `
2�Gi� aHUi aB by Definition 3.1.2. Since Ki has non-empty

interior and is Gi-invariant, we can define a Gi-equivariant isometry Vi � χf�1�Ki�H1 �

χKiH2. Hence, we obtain a G-equivariant isometry Vi � χf�1�Ui�H1 � χUiH2, which, in

return, gives us an isometry V �>i Vi �H1 �H2. It follows from condition (3) above that

the operator V TV � has finite propagation when T has finite propagation. Therefore, the

map

Ad�V � � C��∆1,G,B�� C��∆2,G,B�
given by Ad�V ��T � � V TV � is well-defined and induces a homomorphism on K-theory

Ad�V �� �K��C��∆1,G,B���K��C��∆2,G,B��.

Similarly, the equivariant coarse map from ∆2 to ∆1 gives rise to an inverse map.

Remark 3.1.5. It is easy to check that when f is the identity map, the isometry above is

a unitary, thus, there is an isomorphism between Roe algebras defined on different admis-

sible covariant systems. As a result, the definition of Roe algebras is independent of the

choice of the admissible covariant system.

The following result is essentially due to John Roe.

Proposition 3.1.6 ([21]). Let G be a countable discrete group, and ∆ a locally compact

metric space with a proper cocompact G-action. If �C0�∆�,G, π� is an admissible co-
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variant system, then the Roe algebra C��∆,G,B� is �-isomorphic to �B#rG�aK, where

K is the algebra of all compact operators on some infinite-dimensional separable Hilbert

space.

3.2 The Baum–Connes assembly map

Let H be a G-Hilbert module over B. Let F be an operator in B�H�, and let π �

C0�∆� � B�H� be a �-representation of C0�∆�, such that F is G-invariant, π�f�F �

Fπ�f�, π�f��FF � � 1� and �F �F � 1�π�f� are in K�H� for all f > C0�∆�. The triple

�H,π,G� is called a KK-cycle.

The group KKG
0 �∆,B� is an abelian group consisting of the homotopy equivalence

classes of KK-cycles. By Proposition 5.5 in [20], any class in KKG
0 �∆,B� can be rep-

resented by a KK-cycle �H,π,F � such that the covariant system �C0�∆�,G, π� is ad-

missible, where H is G-Hilbert module over B, F is an operator in B�H�, such that F is

G-invariant and π�f�F � Fπ�f�, π�f��FF � � 1�, and π�f��F �F � 1� are in K�H� for

all f > C0�∆�.
For any fixed ε A 0, let �Ui�i>I be a locally finite and G-equivariant open cover of ∆

such that diameter�Ui� @ ε for all i > I . An open cover is said to beG-equivariant if g�Ui� >
�Ui�i>I , for all g > G, i > I . Let �φi�i>I be a G-equivariant partition of unity subordinate

to the open cover �Ui�i>I . A partition of unity �φi�i>I is said to be G-equivariant if g � φi >

�φi�i>I , for all g > G, i > I .

Define an operator on H by

Fε ��Q
i>I

π�»φi�Fπ�»φi�,

where the sum converges in the strong operator topology.

Note that the propagation of Fε is smaller than ε, and �H,π,Fε� is equivalent to

�H,π,F � in KKG
0 �∆,B�, for any ε A 0. By the definition of Fε, Fε is a multiplier of
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C��∆,G,B�, and it is invertible modulo C��∆,G,B�. Let M�C��∆,G,B�� be the mul-

tiplier algebra of C��∆,G,B�. Then we have the boundary map in K-theory

B �K1�M��C��∆,G,B��~C��∆,G,B���K0�C��∆,G,B��.

We define the Baum–Connes assembly map for G

µ �KKG
0 �∆,B��K0�C��∆,G,B�� �K0�B #r G�

by

µ���H,π,F ��� � B��Fε��.
It is not difficult to check that the map µ is well-defined.

Similarly, we can define the Baum–Connes assembly map

µ �KKG
1 �∆,B��K1�C��∆,G,B�� �K1�B #r G�.

This induces the Baum–Connes assembly map

µ �KKG
�
�EG,B��K��B #r G�,

where KKG
�
�EG,B� is defined to be the inductive limit of KKG

�
�∆,B� over all G-

invariant and cocompact subspaces ∆ of EG. Later, we will show that these invariant

and cocompact subspaces can be chosen to be finite-dimensional simplicial complexes,

since there exist simplicial models for the universal space EG.

By Proposition 1.8 in [2], one can choose a model for the universal space EG for proper

G-action as follows.
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Definition 3.2.1. For each d A 0, we define the Rips complex, denoted by Pd�G�, to be

the simplicial complex with vertex set G and such that a finite subset �γi�ni�1 ` G spans a

simplex if and only if d�γi, γj� B d.

For each d A 0, the Rips complex Pd�G� is endowed with a spherical metric as fol-

lows. For the simplex �Pni�0 ciγi � ci > �0,1�, with Pni�1 ci � 1� spanned by the finite subset

�γi�ni�1 ` G, it is identified with the part of the �n � 1�-sphere in the positive orthant via

the map
n

Q
i�0

ciγi ( �c0~ � n

Q
i�0

c2
i� , c1~ � n

Q
i�0

c2
i� ,�, cn~ � n

Q
i�0

c2
i�� .

The simplex spanned by �γi�ni�1 ` G admits a metric induced by pullback of the standard

Riemannian metric on the sphere. The spherical metric on the Rips complex Pd�G� is the

maximal metric such that it restricts to the above spherical metric on each simplex.

We can choose the union �dA0Pd�G� as a model of EG, where the union is equipped

with the weak topology under which a subset C ` �dA0Pd�G� is closed if and only if

C 9 Pd�G� is closed for each d A 0.

3.3 Localization algebras and the local index map

Let us now recall localization algebras and the local index map, and introduce some

basic properties of the K-theory of localization algebras.

Let ∆ be the topological realization of a locally compact and finite-dimensional sim-

plicial complex endowed with the simplicial metric. Let �C0�∆�,G, π� be an admissible

covariant system, where π � C0�∆� � B�H� is a �-homomorphism for some Hilbert

module H over B.

Definition 3.3.1. 1. The algebraic localization algebra C�

L,alg�∆,G,B� is defined to

be the algebra of all the bounded and uniformly continuous maps f � �0,ª� �
C�

alg�∆,G,B� such that propagation�f�t��� 0 as t�ª.
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2. The localization algebra C�

L�∆,G,B� is the norm closure of C�

L,alg�∆,G,B� under

the norm

YfY � sup
t>�0,ª�

Yf�t�Y.
The localization algebra is an equivariant analogue of the algebra introduced by Yu in

[30]. Note that, up to �-isomorphism, the localization algebraC�

L�∆,G,B� is independent

of the choice of the admissible covariant system by Remark 3.1.5.

A Borel coarse map f � ∆1 �∆2 is said to be Lipschitz, if there exists a constant c A 0,

such that d�f�x�, f�y�� B cd�x, y� for all x, y > ∆1. A Lipschitz coarse map f � ∆1 � ∆2

induces a homomorphism Ad�Vf� � C�

L�∆1,G,B�� C�

L�∆2,G,B� as follows.

Let �εn�n>N be a sequence of positive numbers with limn�ª εn � 0. By the same

argument as Proposition 3.1.4, for each k, there exists a G-equivariant isometry Vk �H1 �

H2 between the Hilbert B-module, such that

supp�Vk� ` ��y, x� > ∆2 �∆1 � d�y, f�x�� B εk� .

Define a family of isometries �Vf�t��t>�0,ª�
from H1 to H2 by

Vf�t� �� R�t � k��Vk ` Vk�1�R��t � k�,

for t > �k, k � 1�, where

R�t� � ����
cos�πt~2� sin�πt~2�
� sin�πt~2� cos�πt~2�

���� .

Then Vf�t� induces a homomorphism on unitization

Ad�Vf�t�� � �C�

L�∆1,G,B��� � �C�

L�∆2,G,B��� aM2�C�
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by

Ad�Vf�t���u�t� � cI� � Vf�t��u�t�` 0�V �

f �t� � cI
for all u > C�

L�∆1,G,B� and c > C.

The family of maps Ad�Vf�t�� induces a homomorphism,

Ad�Vf�t��� �K��C�

L�∆1,G,B���K��C�

L�∆2,G,B��

on the K-theory. Note that Ad�Vf�t���u�t� � cI� is uniformly continuous on t, even

though Vf�t� is not continuous. It is also easy to check the propagation condition of the

path Ad�Vf�t���u�t� � cI�. By Lemma 3.4 of [30], the homomorphism between the K-

groups is independent of the choice of the family of isometries �Vk�k.

Definition 3.3.2. Let ∆1 and ∆2 be two proper metric spaces and f , g two Lipschitz maps

from ∆1 to ∆2. The map f is said to be strongly Lipschitz homotopy equivalent to g if

there exists a continuous homotopy F �t, x� � �0,1� �∆1 �∆2, such that

1. F �t, x� is a coarse map from ∆1 to ∆2 for each t,

2. there exists a constant C A 0, such that d�F �t, x�, F �t, y�� B Cd�x, y� for all x, y >

∆1 and t > �0,1�,
3. for any ε A 0, there exists δ A 0, such that d�F �t1, x�, F �t2, x�� B ε for all x > X ,

and St1 � t2S @ δ,
4. F �0, x� � f�x�, F �1, x� � g�x�, for all x >X .

Definition 3.3.3. The metric space ∆1 is said to be strongly Lipschitz homotopy equivalent

to ∆2 if there exist two Lipschitz coarse maps f � ∆1 � ∆2 and g � ∆2 � ∆1 such that

f X g and g X f are respectively strongly Lipschitz homotopy equivalent to id∆2 and id∆1 .
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The K-theory of localization algebras is invariant under strong Lipschitz homotopy

equivalence. Following the proof of Proposition 3.7 in [30], it is not difficult to prove the

following equivariant analogue. For ease of reference later, we include the proof.

Proposition 3.3.4 ([30]). Let f � ∆1 � ∆2 be a strongly Lipschitz homotopy equivalence,

then the map

Ad�Vf�t��� �K��C�

L�∆1,G,B���K��C�

L�∆2,G,B��

is an isomorphism.

Remark 3.3.5. Let �C0�∆1�, π,G� be an admissible covariant system on a Hilbert mod-

ule H1 � H∆1 a E a B. Set H �

1 � `ª

k�1H∆1 a E a B. Define a natural homomorphism

η � C�

L�∆1,H1,G,B� � C�

L�∆2,H �

1,G,B� via η�b� � b ` 0. It is easy to show that η

induces an isomorphism on K-theory of localization algebras defined on different admis-

sible covariant systems.

Proof. It suffices to show that the homomorphism Ad�Vgf�t��� is the identity map on K-

theory. Let F �x, t� � ∆1 � �0,1��∆2 be the strong Lipschitz homotopy equivalence with

F �x,0� � �gf��x�, F �x,1� � x, for all x >X . Fix a sequence of positive numbers �εn�n>N
with limn�ª εn � 0 and a sequence of non-negative numbers �ti,j�ªi,j�0, satisfying

• t0,j � 0, ti�1,j C ti,j , for all i, j C 0,

• for each j, § Nj , such that ti,j � 1 for all i C Nj ,

• d�F �x, ti,j�, F �x, ti�1,j�� B εj , and d�F �x, ti,j�, F �x, ti,j�1�� B εj , for all x >X .

We shall prove that Ad��VF ��,t0,j��t�� � Id for K1-case. The K0-case can be dealt with in a

similar way by a suspension argument. Notice thatCL�∆1,G,B�aMn�C� � C�

L�∆1,G,B�
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for all n. Thus, every element in K��C�

L�∆1,G,B�� can be represented by an invertible

element u in �C�

L�∆1,G,B���. Let v � u` I > �C�

L�∆1,G,B��� aM2�C�. Consider the

following invertible elements in �C�

L�∆1,G,B��� aM2�C�.

a � `kC0Ad��VF ��,tk,i��t���u�v�1,

b � `kC0Ad��VF ��,tk�1,i��t���u�v�1,

c � `kC1Ad��VF ��,tk,i��t���u�v�1.

By the definitions of operators AdF ��,ti,j� and the sequence �ti,j�, it is not difficult to

check that a, b, c are indeed elements in �C�

L�∆2,G,B�aM2�C���. Obviously, we have

that a is equivalent to b, and b is equivalent to c in K1�CL�∆2,G,B��. It follows that

Ad�VF ��,t0,i��t���u�v�1 � a`kC1I � bc�1 which is equivalent to`kC0I inK1�C�

L�∆2,G,B��.
By Remark 3.3.5, we have that Ad�VF ��,t0,i��t���u� is equivalent to v inK1�CL�∆2,G,B��.

The following Mayer–Vietoris sequence is an equivariant analogue of the Mayer–

Vietoris sequence introduced by Yu, and more details can be found in [18].

Proposition 3.3.6 ([18]). Let ∆ be a simplicial complex endowed with the spherical met-

ric, and let G be a countable discrete group. Assume G acts on ∆ properly by isometries.

Let X1,X2 ` ∆ be G-invariant simplicial subcomplexes endowed with subspace metric.

Then we have the following six-term exact sequence:

K0�LX19X2,B� K0�LX1,B�`K0�LX2,B� K0�LX18X2,B�

K1�LX18X2,B� K1�LX1,B�`K1�LX2,B� K1�LX19X2,B�,
where we set LX1,B � C�

L�X1,G,B�, LX2,B � C�

L�X2,G,B�, LX18X2,B � C�

L�X1 8
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X2,G,B�, and LX19X2,B � C�

L�X1 9X2,G,B� for brevity.

Remark 3.3.7. It is easy to verify that the above exact sequence is natural with regard

to the coefficient algebra B in the following sense. If ϕ � B � B� is a G-equivariant

�-homomorphism between G-C�-algebras B and B�, then it induces �-homomorphism

between the Roe algebras ϕ � C��Y,G,B�� C��Y,G,B�� by

ϕ ��Ty,z�y,z>Y � � �ϕ�Ty,z��y,z>Y ,

for each �Ty,z�y,z>Y > C��Y,G,B�, where Y ` ∆ be any countable G-invariant set. Obvi-

ously, this map induces a homomorphism on the localization algebras ϕL � C�

L�Y,G,B��
C�

L�Y,G,B��. As a result, we obtain a map

ϕL,� �K��C�

L�Y,G,B���K��C�

L�Y,G,B���

induced by ϕL on K-theory.

The exact sequence in Proposition 3.3.6 is natural with respect to coefficient algebras

in the sense that the diagram

� // K0�LX19X2,B� //

ϕL,�

��

K0�LX1,B�`K0�LX2,B� //

ϕL,�

��

K0�LX18X2,B�
��
ϕL,�

��

// �

� // K0�LX19X2,B�� // K0�LX1,B��`K0�LX2,B�� // K0�LX18X2,B.� // �.

commutes, where we set LX1,B � C�

L�X1,G,B�, LX2,B � C�

L�X2,G,B�, LX18X2,B �

C�

L�X1 8X2,G,B�, LX19X2,B � C�

L�X1 9X2,G,B� LX1,B� � C�

L�X1,G,B��, LX2,B� �

C�

L�X2,G,B��, LX18X2,B� � C�

L�X1 8X2,G,B��, and LX19X2,B� � C�

L�X1 9X2,G,B��
for brevity.

Let us now define the local index map. For every positive integer n, let �Un,i�i>I be a
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locally finite and G-equivariant open cover for ∆ with diameter�Un,i� B 1
n for all i. Let

�φn,i�i>I be the partition of unity subordinate to the open cover �Un,i�i. Let �∆, π,F � >
KKG

0 �∆,B�. Define an operator-valued function F �t� on �0,ª� by

F �t� �Q
i

�1 � �t � n��π�»φn,i�Fπ�»φn,i� � �t � n�π�»φn�1,i�Fπ�»φn�1,i�

for all t > �n,n � 1�, where the sum converges in the strong operator topology. Note that

propagation�F �t��� 0

as t �ª. We obtain a multiplier �F �t��t>�0,ª� of C�

L�∆,G,B�, which is invertible mod-

ulo C�

L�∆,G,B�. We define a local index map

indL �KKG
0 �∆,B��K0�C�

L�∆,G,B��,

by

indL��H,π,F �� � B��F �t���,
where B �K1�M�C�

L�∆,G,B��~C�

L�∆,G,B���K0�C�

L�∆,G,B�� is the boundary map

on the K-theory, and M�C�

L�∆,G,B�� is the multiplier algebra of C�

L�∆,G,B�. Simi-

larly, we can define the local index map

indL �KKG
1 �∆,B��K1�C�

L�∆,G,B��.

The following result established the relation between the K-homology and the K-

theory of localization algebras.

Proposition 3.3.8 ([21]). Let B be any G-C�-algebra, and ∆ a finite-dimensional simpli-
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cial complex endowed with a G-invariant metric. Then the local index map

indL �KKG
�
�∆,B��K��C�

L�∆,G,B��,

is an isomorphism.

Proof. This result is a consequence of the Mayer–Vietoris sequence and the Five Lemma

(see [30]).

In [24], Qiao and Roe proved that the local index map is an isomorphism for proper

metric spaces.

By choosing the model of EG as the union�dA0Pd�G�, the groupKKG
�
�EG,B� is the

inductive limit

lim
d�ª

KKG
�
�Pd�G�,G,B�.

The above map induces a local index map

indL �KKG
�
�EG,B�� lim

d�ª
K��C�

L�Pd�G�,G,B��.

It is not difficult to show that the map indL is an isomorphism by Proposition 3.3.8.

We will conclude this section by discussing the relation between the Baum–Connes

assembly map and the local index map.

For each d A 0, it is natural to define an evaluation-at-zero map

ev � C�

L�Pd�G�,G,B�� C��Pd�G�,G,B�,

given by

ev�f� � f�0�,
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for all f > C�

L�Pd�G�,G,B�. The evaluation-at-zero map induces a homomorphism on

K-theory

ev� �K��C�

L�Pd�G�,G,B���K��C��Pd�G�,G,B�� �K��B #r G�.

Following the arguments in [30], it is easy to check that µ � ev� X indL holds. We will

show that the map ev� is an isomorphism under some assumptions. Combining the above

relation and Proposition 3.3.8, it follows that the Baum–Connes assembly map is also an

isomorphism under the same assumption.
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4. TWISTED ROE ALGEBRAS, TWISTED LOCALIZATION ALGEBRAS AND

K-THEORY *

In this chapter, we will prove the main result of this dissertation, and this part is based

on [6].

4.1 The C�-algebra associated with an infinite-dimensional Euclidean space

In this section, we will recall the C�-algebra associated with an infinite-dimensional

Hilbert space (defined in [17]).

Let E be a separable, infinite-dimensional Euclidean space. Let Ea, Eb be any finite-

dimensional, affine subspaces of E. Let E0
a be the finite-dimensional linear subspace of

E consisting of differences of elements in Ea. Let C�Ea� be the Z2-graded C�-algebra of

continuous functions from Ea to the complexified Clifford algebra of E0
a which vanish at

infinity. Let S be the Z2-graded C�-algebra of all continuous functions on R vanishing at

infinity, where S is graded according to odd and even functions. Let A�Ea� be the graded

tensor product SÂaC�Ea�, where the Z2-grading on C�Ea� is induced from Cliff�E0
a�.

Assume Ea ` Eb. There exists a decomposition Eb � Eba ` Ea, where Eba is the

orthogonal complement of Ea in Eb. For each element vb > Eb, there exists a unique

decomposition vb � vba � va, for some vba > Eba, va > Ea.

For each function h > C�Ea�, we can extend it to a function on Eb via h̃�vb� � h�va�,
for all vb � vba � va. The decomposition Eb � Eba ` Ea gives rise to a Clifford algebra

valued function, denoted by Cba � Eb � Cliff�E0
b � on Eb which maps vb > Eb to vba >

Eba ` Cliff�E0
b �.

Denote byX � S � S the function of multiplication by x on R, viewed as a degree one,

*Reprinted with permission from "The Novikov conjecture and extensions of coarsely embeddable
groups" by Jintao Deng, 2020, to appear in Journal of Noncommutative Geometry, Copyright [2020] by
European Mathematical Society.
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essentially selfadjoint, unbounded multiplier of S with domain the compactly supported

functions in S .

Definition 4.1.1 ([12]). 1. Let Ea ` Eb be a pair of finite-dimensional affine subspaces

of E. One can define a homomorphism

βba � A�Ea�� A�Eb�

by βba�fÂah� � f�XÂa1 � 1ÂaCba��1Âah̃�, for all f > S , h > C�Ea�.
2. We define a C�-algebra

A�E� �� lim
Ð�

A�Ea�,
where the direct limit is over all finite-dimensional affine subspaces.

Remark 4.1.2. If Ea ` Eb ` Ec, then we have βcb X βba � βca, therefore the direct limit is

well-defined.

Given any discrete group Γ, if Γ acts on the Euclidean space E by linear isometries,

then the Γ-action onE induces a Γ-action on theC�-algebraA�E�. Note thatA��0�� � S .

For each f > S , let βt�f� � ft�XÂa1 � 1ÂaC� for every t > �1,ª�, where ft�x� � f�x~t�.
We define the Bott map

β� �K��S #max Γ��K��A�E� #max Γ�.

to be the homomorphism induced by the asymptotic morphism

βt � S #max Γ� A�E� #max Γ,

given by f ( βt�f�, for each t > �1,ª�. The following result is due to Higson, Kasparov
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and Trout [12].

Theorem 4.1.3 (Bott Periodicity for infinite-dimensional spaces [17]). Let Γ be a count-

able discrete group, E an infinite-dimensional Euclidean space with a Γ-action by linear

isometries. Then the Bott map

β� �K��S #max Γ��K��A�E� #max Γ�

is an isomorphism.

4.2 A continuous field of Hilbert spaces associated with a coarsely embeddable

group

In this section, we will define a continuous field of Hilbert spaces for a coarsely embed-

dable group and we will use it to generalize the construction of Higson–Kasparov–Trout in

[12]. The following construction is essentially due to Tu [27]. The usage of the probability

space is essentially due to Higson [14].

Let Γ be a countable, discrete group with identity element e > Γ , and let X be a

compact Hausdorff space admitting a Γ-action by homeomorphisms. Let us recall the

definition of the transformation groupoid, denoted by X # Γ, associated with a group

action Γ¸X .

Definition 4.2.1. As a topological space, X # Γ � ��x, g� � x > X,g > Γ� is equipped with

the product topology. In addition, the topological space is endowed with the following

structure.

1. The product is given by �x, g��x�, g�� � �x, gg��, for all �x, g�, �x�, g�� > X # Γ

satisfying x� � xg.

2. The inverse is given by �x, g��1 � �xg, g�1�, for all �x, g� >X # Γ.
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Let us recall the definition of a continuous field of Hilbert spaces over a compact space.

Let X be a compact topological space, and let �Hx�x>X be a family of Banach spaces.

Denote H � *x>XHx. Let Θ�X,H� be a collection of sections s � X � H satisfying

s�x� > Hx, for all x >X .

Definition 4.2.2. Let X be a compact space. A continuous field of Banach spaces over X

is a family of Banach spaces �Hx�x>X , with a set of sections Θ�X,H�, such that

1. the set of sections Θ�X,H� is a linear subspace of the direct productLx>XHx,

2. for every x >X , the set of all s�x� for all s > Θ�X,H� is dense in Hx,

3. for every s > Θ�X,H�, the function x( Ys�x�Y is a continuous function on X ,

4. let s � X � H be a section, i.e. s�x� > Hx, for all x > X . If for every x > X , and

every ε A 0, there exists a section s� > Θ�X,H� such that Ys�y�� s��y�Y @ ε for all y

in some neighborhood of x, then s > Θ�X,H�.
If every fiberHx is a Hilbert space, we will say �Hx�x>X is a continuous field of Hilbert

spaces. If every fiber is a C�-algebra and the collection of sections is closed under the �-

operation and pointwise multiplication, the continuous field is called a continuous field of

C�-algebras.

Let X #Γ be a transformation groupoid associated with the right group action Γ¸X ,

and let �Hx�x>X be a continuous field of Hilbert spaces over X . Let us recall the concept

of the affine isometric action of X # Γ on the continuous field of Hilbert spaces �Hx�x>X .

Definition 4.2.3. Let �Hx�x>X be a continuous field of Hilbert spaces over X . We say that

the transformation groupoid X # Γ acts on �Hx�x>X by affine isometries if

1. for each �x, g�, there exists an affine isometric map V�x,g� � Hxg � Hx;

2. V�x,g�V�xg,h� � V�x,gh�, for all x >X , g, h > Γ;
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3. V�x,e� � idHx , for all x >X;

4. for each continuous section s > Θ�X,H� and each g > Γ, the section give by

x( V�x,g��s�xg��

is a continuous section.

An affine isometry V�x,g� � Hxg � Hx is an isometry of the form

V�x,g��v� � U�x,g��v� � b�x, g�,

for all v > Hxg, where U�x,g� � Hxg � Hx is a unitary map, b�x, g� is a vector in Hx.

The above condition (2) implies that b�x, gh� � U�x,g��b�xg, h�� � b�x, g�, for all x > X ,

g, h > Γ.

Since each fiber of the continuous field is a Hilbert space, we can define a C�-algebra

A�Hx� associated with each fiber Hx. Following the construction of Higson–Kasparov–

Trout ([17]) on each fiber, we obtain a bundle of C�-algebras �A�Hx��x>X . Next, we

will introduce a structure of a continuous field of C�-algebras for the bundle �A�Hx��x>X ,

some more details can also be found in [15].

A function s �X � *x>X A�Hx� is said to be a continuous section, if it satisfies

1. s�x� > A�Hx�, for all x >X ,

2. for each x > X , ε A 0, there exists a neighborhood x > U ` X , such that for each

y > U , there is a linearly isometric embedding φy � Rn
� Hy satisfying that

• for each 1 B i B n, the map y ( φy�ei� is a local continuous section over U ,

where �ei�ni�1 is an orthonormal basis of Rn,
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• there is an element v > A�Rn�, such that

Y�φy���v� � s�y�Yy @ ε,

for all y > U , where the �φy�� � A�Rn� � A�Hy� is induced by the linear

embedding φy � Rn
� Hy.

The above definition gives rise to a continuous field structure on �A�Hx��x>X . For any

x > X , note that there exists a collection of sections en > Θ�X,H�, such that �en�x��n>N
is an orthonormal basis of the fiber bundle Hx. Indeed, let �an > Θ�X,H��n>N be the

collection of continuous sections such that �an�x�� is a basis for Hx. For each positive

integer n, there exists a neighborhood x > U �

n, such that the collection �ai�y� � 1 B i B n�
is linearly independent for each y > U �

n. By the Gram–Schmidt process, one can find a

family of continuous local sections �e�i � 1 B i B n� over U �

n, such that the collection of

vectors �e�i�y� � 1 B i B n� are mutually orthogonal with norm one for each y > U �

n. By

Urysohn Lemma, we can find a open set Un ` U �

n and a function f � X � �0,1�, such that

supp�f� ` U �

n and f�y� � 1 for each y > Un. For each i, we obtain a global section ei by

setting ei�y� � f�y�e�n�y� for all y > U �

n and extending by zero outside U �

n. By induction

on n, we obtain such a collection of continuous global sections �en�n>N.

The C�-algebra of all continuous sections of the continuous field of C�-algebras is

denoted by A�X,H�.
Define a Γ-action on A�X,H� as follows. For each γ > Γ, we have an isometry V�x,γ� �

Hxγ � Hx given by

V�x,γ��v� � U�x,γ��v� � b�x, γ�,
for all v > Hxγ and x > X . A local continuous affine distribution over an open sub-

set U ` X is a collection of affine subspaces �Ea�y��y>U , such that there exist a col-
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lection of continuous local sections �s, v1, v2,�, vk� over U , for which Ea�y� � s�y� �
span�v1�y�, v2�y�,�, vk�y�� for each y > U . The associated linear subspace consisting of

differences of elements in Ea�y� is denoted by E0
a�y� � span�v1�y�, v2�y�,�, vk�y��. We

have a continuous local distribution of C�-algebras �Cliff�E0
a�y��y>U . As �V�xγ�1,γ��x>X

is a collection of continuous isometries for each γ > Γ , we obtain another continuous lo-

cal affine distribution �V�yγ�1,γ��Ea�y���y>U over γ�U� with associated linear distribution

�U�yγ�1,γ��Ea�y���y>U . The unitary U�y,γ�1� �Hyγ�1 �Hy induce a homomorphism

U�y,γ�1� � Cliff�U�yγ�1,γ��E0
a�y���� Cliff�E0

a�y��,

for all y > U .

Thus, for every γ > Γ, we get a homomorphism

γ � A�Ea�y��� A�V�yγ�1,γ�Ea�y��,

by

γ � �fÂah� � fÂaγ � h,
for all f > S , h � Ea�y�� Cliff�E0

a�y��, where �γ � h��v� � U�yγ�1,γ��h�V�y,γ��v���.
Let �Eb�y��y>U be another continuous affine distribution with Ea�y� ` Eb�y�, for all

y > U . Then, there exists a linear continuous distribution �Eba�y��y>U such that Eb�y� �
Eba�y�`Ea�y� for all y > U .

LetEa � *y>U Ea�y�. DefineA�U,Ea� to be the algebra of all the bounded continuous

sections s � U � A�Ea� with s�y� > *y>U A�Ea�y�� for all y > U . For all γ > Γ, denote

γEa�y� � V�yγ�1,γ��Ea�y��, UγEa � *y>U U�y,γ�1,γ�Ea�y� and γEa � *y>U γEa�y�.
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Lemma 4.2.4. The following diagram

A�U,Ea�
γ

��

βU,ba // A�U,Eb�
γ

��
A�γU, γEa� βγ

γU,ba// A�γU, γEb�.
is commutative, where the maps βU,ba and βγγU,ba are defined fiber-wise.

Proof. Since S is generated by g0�e� � e�x2 and g1�x� � xe�x2 by the Stone-Weierstrass

theorem, it suffices to show that

γ�βU,ba�gÂah�� � βγγU,ba�γ�gÂah��,

for g equal to g0 or g1 and h � U � Cliff�Ea� a continuous local section over U . We will

prove the lemma for g � g0; the case for g � g1 can be proved similarly.

Let Cba and Cγ
ba be the Clifford multiplications on C�Ea� and C�γEa� under the trans-

formation ϕa,y � Ea�y� � γEa�y� for each y > U . Since we have Eb � Eba ` Ea, and

γ�Eb� � Uγ�Eba� � γEa, then

βγU,ba�γ�g0Âah�� � βγU,ba��g0Âaγ�h���
� g0�XÂa1 � 1ÂaCγ

ba��1Âa�Èγh��
� g0�x�Âag0�Uγvba�γh�va�,

and

γ�βU,ba�g0Âah�� � γ�g0�x�Âag0�YvbaY�h�va�� � g0�x�Âag0�YvbaY�γh�va�,
where vb, va, vba are continuous local sections over U with vb�y� � vba�y� � va�y� for all
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y > U , and γ�vb� � Uγ�vba� � γ�va�. Since Uγ is unitary, thus

γ�βU,ba�gÂah�� � βγγU,ba�γ�gÂah��,

for all g � g0.

Because of the definition of A�X,H�, and the above commutative diagram, we have a

Γ-action on A�X,H�.
Define a fiber-wise Bott map βt � C�X�ÂaS � A�X,H� as follows. Viewing an el-

ement in C�X�ÂaS as a continuous function f � X � S , we obtain an element βt�fx� >

A�Hx� for each x > X . By the definition of the continuous field structure, it is easy to

check that �βt�fx��x>X > A�X,H�. Thus, we have an asymptotic morphism

βt � C�X�ÂaS � A�X,H�
�fx�x>X ( �βt�fx��x>X ,

for all t > �1,ª�.
We have an affine isometric action of Γ on the continuous field of Hilbert spaces

�Hx�x>X , and it is easy to check that �βt�t>�1,ª� is an asymptotic Γ-equivariant morphism.

This asymptotic morphism induces a map on K-theory of the reduced crossed products

β� �K���C�X�a S� #r Γ0��K��A�X,H� #r Γ0�,

for every finite subgroup Γ0 B Γ. Following the argument in [17], we also have a fiber-

wise defined Dirac map. Let us briefly recall the definition of the Dirac map on each fiber

A�Hx� for each x >X .
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Let Ea�x� ` Hx be a finite-dimensional affine subspace. Define Va�x� to be the

Hilbert space of square integrable functions from Ea�x� into Cliff�E0
a�x��, where E0

a�x�
is the linear space of differences between pairs of vectors in Ea�x�, and the norm on

Cliff�E0
a�x�� is obtained by fixing an orthonormal basis on E0

a�x�. If Ea�x� ` Eb�x�,
then there is a canonical isomorphism

Vb�x� � Vba�x�ÂaVa�x�

where Vba�x� is the Hilbert space associated with the orthogonal complement E0
ba�x� of

E0
a�x� in E0

b �x�.
We define a unit vector ξ0 > Vba�x� by

ξ0�vba� � π�dim�E0
ba�x��~4 exp��1

2
YvbaY2�,

for all vba > E0
ba. Regarding Va�x� as a subspace of Vb�x� via the isometry ξ ( ξ0Âaξ, we

define

V �x� � lim
Ð�

Va�x�.
Using the similar construction of the continuous field structure on �A�Hx��x>X , we

obtain a continuous field structure on �K�V �x���
x>X

, where K�V �x�� is the algebra of

all compact operator on V �x� for each x > X . Let V � *x>X V �x�. Define K�X,V � to

be the C�-algebra of all continuous sections of the continuous field �K�V �x���
x>X

. By

the structure of the continuous field of �K�V �x���
x>X

, we have that the K-theory of the

C�-algebra C�X� is the same as the K-theory of K�X,V �.
Denote by s�x� � lim

Ð�

sa�x� the direct limit of the Schwartz subspaces sa�x� ` Va�x�.
If Ea�x� is a finite-dimensional affine subspace, then the Dirac operator Da�x� is defined
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by

Da�x�ξ � n

Q
i�1

��1�deg�ξ�B�ξ�
Bxi

vi,

for every homogeneous element ξ > s�Ea�x��, where �v1, v2, . . . , vn� is an orthonormal

basis for E0
a�x�, and �x1, x2, . . . , xn� are the dual coordinates to �v1, v2, . . . , vn�. The

Clifford operator on Ea�a� is given by

Ca�x�ξ � n

Q
i�1

xiviξ.

For each fiber Hx, choose the dense subset E�x� �� �s�x� � s > Θ�X,H�� where

Θ�X,H� is the space of sections in Definition 4.2.2. Fix a direct sum decomposition

E�x� � E0�x�`E1�x�`E2�x�`�,

where each Ei�x� is a finite-dimensional linear subspace of E�x�. For each n, we define

an unbounded operator Bn,t on V �x� � lim
Ð�

Vn�x�, by the formula

Bn,t � t0D0�x� � t1D1�x� �� � tn�1Dn�1�x� � tn�Dn�x� �Cn�x�� ��

where ti � 1 � i~t, and Vn�x� is the Hilbert space of square integrable functions from

En�x� to Cliff�En�x��. This infinite sum is well-defined since any vector in the Schwartz

space s�x� can be approximated by the one which has only finitely many nonzero terms

in its infinite series. It is well-known that the operators Bn,t�x� are essentially selfadjoint.

Following the argument in [17], we obtain an asymptotic morphism αn from A�E0�x� `
E1�x�`�`En�x�� to SÂaK�V �x�� by

αnt �x��fÂah� � ft�XÂa1 � 1ÂaBn,t��1ÂaMht�,
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for each fÂah > A�E0�x�`E1�x�`�`En�x�� where ht�v� � h�v~t� for all t > �1,ª�,
v > E0�x� ` E1�x� ` � ` En�x� and Mht is the operator of left multiplication by the

function ht. Moreover, the diagram

A�E0�x�`E1�x�`�`En�x�� SÂaK�V �x��

A�E0�x�`E1�x�`�`En�1�x�� SÂaK�V �x��

αn�x�

β �

αn�1�x�

is asymptotically commutative. As a result, we get an asymptotic morphism α�x� �

A�Hx�� SÂaK�V �x��. Moreover, we obtain an asymptotic morphism

α � A�X,H�� SÂaK�X,V �.

Following the argument in [17], the map induced by α on K-theory is the inverse map

of the fiber-wise defined Bott map. Consequently, we have the following result.

Theorem 4.2.5. Let Γ be a countable discrete group and X a compact Hausdorff space

with Γ-action. Assume the associated transformation groupoidX #Γ acts on a continuous

field of Hilbert spaces �Hx�x>X by affine isometries. Then for each finite subgroup Γ0 B Γ,

the Bott map

β� �K���C�X�a S� #r Γ0��K��A�X,H� #r Γ0�
induces an isomorphism on K-theory.

An affine isometric action of a transformation groupoid X # Γ on a continuous field

of Hilbert spaces �Hx�x>X is said to be proper, if for any R A 0, the set �g > Γ � §x >

X such that V�x,g��B�xg,R�� 9 B�x,R� x g� is finite, where B�x,R� is the set of all

elements in Hx with norm less than R. Due to Tu (see [27]), the a-T-menability of the

transformation groupoid guarantees the existence of a proper affine isometric action on a

continuous field of Hilbert spaces �Hx�x>X .
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Definition 4.2.6. Let X # Γ be a transformation groupoid. A continuous function ϕ �

X # Γ� R is said to be conditionally negative definite if

1. ϕ�x, e� � 0, for all x >X ,

2. ϕ�x, g� � ϕ�xg, g�1�,
3. Pni,j�1 titjϕ�xgi, g�1

i gj� B 0, for all �ti�ni�1 ` R with Pni�1 ti � 0, gi > Γ, and x >X .

A conditionally negative definite function ϕ �X #Γ� R is said to be proper if for any

R A 0, the number of elements in the set �g > Γ � §x >X, such that Sϕ�x, g�S B R� is finite.

The concept of a-T-menability for groupoids was introduced by Tu in [27].

Definition 4.2.7. A transformation groupoidX#Γ is said to be a-T-menable if there exists

a proper conditionally negative definite function ϕ �X # Γ� R.

Now, let us recall the construction of the transformation groupoid from a coarsely

embeddable group, by Skandalis, Tu, and Yu in [26].

Proposition 4.2.8 ([26]). Let h � Γ � H0 be a coarse embedding. Then there exists a

compact Hausdorff space X with a Γ-action, such that

1. for any finite subgroup Γ0 B Γ, X is Γ0-contractible,

2. the groupoidX #Γ has a proper continuous conditionally negative definite function.

Let us describe the construction of the topological space X . For any fixed element

γ > Γ, we define a bounded function fγ � Γ� R by

fγ�y� � Yh�y� � h�yγ�Y,

for any y > Γ.
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Let c0�Γ� be the C�-subalgebra of `ª�Γ� consisting all functions vanishing at infinity.

We define a Γ-action on `ª�Γ� by �γ � f��x� � f�xγ�, for each f > `ª�Γ�, x, γ > Γ.

Let X � be the spectrum of the unital commutative Γ-invariant C�-subalgebra of `ª�Γ�
generated by all constant functions, c0�Γ� functions, and all functions of the form fγ

together with their translations by group elements in G. It is obvious that every function

fγ extends continuously to X �. Indeed, the space X � is a compactification of Γ, and it

admits a right action of Γ induced by the Γ-action on C�X �� where C�X �� is viewed as a

C�-subalgebra of `ª�Γ�.
We obtain a continuous conditionally negative definite function defined on the trans-

formation groupoid X � # Γ by ϕ��y, γ� � fγ�y�.
LetX be the probability space ofX �. It is a second countable, compact space equipped

with the weak-� topology (A reference of weak-� topology is Chapter 1 in [7]) and it

admits a Γ-action induces by the action of Γ on X �. We define a conditionally negative

definite function on X # Γ by

ϕ�m,γ� � S
X�

ϕ��y, γ�dm�y�

for any m >X .

Proposition 4.2.9. Let Γ � H0 be the coarse embedding as above. The continuous map

ϕ �X #G� R defined above is a proper conditionally negative definite function.

Proof. It is obvious that condition (1) in the Definition 4.2.6 is satisfied. Let us verify
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condition (2). For each �x, g� >X # Γ, we have

ϕ�mg, g�1� � S
X�

ϕ��y, g�1�d�mg�
� S

X�

ϕ��yg, g�1�dm
� S

X�

ϕ��y, g�dm
� ϕ�m,g�.

The third equality follows from ϕ��yg, g�1� � ϕ�y, g� for all �y, g� >X #Γ. Condition (3)

follows from the fact that Pni,j�1 titjϕ
��ygi, g�1

i gj� B 0, for all �ti�ni�1 ` R with Pni�1 ti � 0,

gi > Γ, and y >X �.

The properness of ϕ follows from the definition of ϕ� and the fact that the map h � Γ�

H0 is a coarse embedding.

The space X � Γ is equipped with the product topology. Let Cc�X � Γ� be the C�-

algebra of all complex valued functions on X � Γ with compact support. Define

C0
c �X # Γ� �� �f > Cc�X � Γ� �Q

g>Γ

f�x, g� � 0¡ .

Let ϕ �X#Γ� R be a continuous, proper conditional negative definite function. Then

we can define a continuous field of Hilbert spaces as follows.

For each x > X , consider a linear space C0
c �Γ� �� �f > Cc�Γ� � Pg>Γ f�g� � 0�, and

define a sesquilinear form

`ξ, ηex � �1

2
Q
g,g�>Γ

ξ�g��η�g��ϕ�xg�1, gg��,

for all ξ, η > C0
c �Γ�. Since ϕ is conditionally negative definite type, the form above turns

out to be positive semidefinite and one can quotient out by the zero subspace, denoted by
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Ex. Then completeEx to a Hilbert space, denoted byHx. For any function f > C0
c �X�Γ�,

we can view it as a continuous map ξ �X � C0
c �Γ� by ξ�x� � f�x, �� > C0

c �Γ�.
Let us introduce a continuous field structure on the collection of Hilbert spaces �Hx�x>X .

It suffices to define the space of the continuous sections, denoted by Θ�X,H�, where

H � *x>XHx. A map ξ �X � H is called a continuous section, if it satisfies

1. ξ�x� > Hx, for every x >X ,

2. ¦ x >X , ¦ ε A 0, there exists an element ξ� > C0
c �X�Γ�, such that Yξ�y��ξ��y�YHy @

ε for all y in some neighborhood of x.

The affine isometric action of X # Γ is defined as follows. For every γ > Γ, and

every x > X , the unitary U�x,γ� � Hxγ � Hx is defined by U�x,γ��f��g� � f�γ�1g� for

all f > Ex, and for all g > Γ, γ > Γ, then extends to a unitary U�x,γ� � Hxγ � Hx. The

cocycle b�x, g� is defined to be the element in Ex represented by the function δg � δe. Let

V�x,γ��v� � U�x,γ��v� � b�x, γ� for all v > Hxγ , �x, γ� > X # Γ. It is easy to check that the

collection of affine isometries �V�x,γ���x,γ�>X#Γ
consists of a proper affine isometric action

of X # Γ on the continuous field of Hilbert spaces �Hx�x>X .

4.3 Twisted Roe algebras and twisted localization algebras

Let 1� N � G� G~N � 1 be a short exact sequence of countable discrete groups. In

this section we will construct twisted Roe algebras and twisted localization algebras with

coefficients in some G-C�-algebra, and prove that the twisted Baum–Connes conjecture

with coefficients holds for the group G, under the assumption that both G and G~N are

coarsely embeddable into Hilbert spaces.

Fix a left invariant proper metric on G. This metric restricts to every subgroup of G

and the quotient group G~N is endowed with the quotient metric.
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4.3.1 Some Geometric Constructions

In this section, we will construct a compact topological G-space Y , such that

1. for every subgroup N � B G containing N with finite index, i.e., SN �~N S @ ª, the

transformation groupoid X #N � is a-T-menable,

2. for every finite subgroup G0 B G, the space Y is G0-contractible.

Let N � B G be a subgroup containing N with finite index. The fact that SN �~N S @ ª

implies that N � is coarsely equivalent to N . Since N is coarsely embeddable into a Hilbert

space H0, we have that N � is aslo coarsely embeddable into the Hilbert space H0. Let

h�N � � N �
� H0 be the coarse embedding map, and let ρN �

�
, ρN

�

�
� �0,ª� � �0,ª� be two

non-decreasing functions with limt�ª ρN
�

�
�t� �ª, such that

ρN
�

�
�d�x, y�� B Yh�N ��x� � h�N ��y�Y B ρN �

�
�d�x, y��,

for all x, y > N �.

Let S ` G be a set of the representatives of the left cosets G~N �. Then we have a

decomposition G � *g>S gN �, and the coarse embedding h�N � � N �
� H0 can be extended

to a map hN � � G� H0 by

hN ��g � n� � h�N ��n�,
where g > S, n > N �. Since every element g� > G can be uniquely written as g� � gn for

some g > S, n > N �, the extension is well-defined, and it is not a coarse embedding in

general.

For any fixed element n > N �, define a function fn � G� R by

fn�g� � YhN ��g� � hN ��gn�Y2
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for all g > G.

By the coarse embeddability of N �, fn is a bounded function on G for each n > N �.

Unfortunately, fn could be an unbounded function on G if the element n > G is not in

N �. Let Y �

N � be the spectrum of the unital commutative G-invariant C�-subalgebra of

`ª�G� generated by all c0�G� functions, all constant functions and all functions of the

form fn together with their right translations. The right action of G on `ª�G� is defined

by �γf��g� � f�gγ�, for all γ, g > G, all f > `ª�G�. Accordingly, the compact space

Y �

N � admits a right action induced by the restriction of the right G-action on `ª�G� to the

C�-subalgebra which is �-isomorphic to C�Y �

N ��.
Define a function φ�N � � G #N �

� R by φ��g, n� � YhN ��g� � hN ��gn�Y2, for all g > G,

n > N �. For each n > N �, the bounded function φ�N ���, n� � G � R extends to a continuous

function on YN � by the definition of YN � . As a result, we obtain a continuous conditionally

negative definite function φ�N � � Y �

N � #N �
� R by extending the map φ�N � � G #N �

� R.

Then, replace Y �

N � with the space of all the probability measures on Y �

N � , denoted by YN � .

The space YN � is a second countable compact space equipped with the weak-� topology

(c.f. [7]). The G-action on Y �

N � induces a right action on YN � . We define a continuous

function φN � � YN � #N � R by

φN ��m,g� � S
Y �

N �

φ��y, g�d�mg�,

for all m > YN � , g > N �.

Proposition 4.3.1. The countinuous function φN � � YN � #N �
� R is a proper conditionally

negative definite function.

Proof. By Proposition 4.2.9, we have that φN � is a continuous conditionally negative defi-

nite functionon the transformation groupoid YN � #N �.
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By the definition of the map φN � � G �N �
� R, we have ρN �

�
�SnS� B φN ��g, n� for all

g > G, n > N �. It follows that the extension φN � � YN � #N �
� R satisfies the inequality

ρN
�

�
�SnS� B φ��y, n� for all y > Y �

N � , n > N �. It follows that the conditionally negative

definite function φN � � YN � #N �
� R is proper.

Remark 4.3.2. For each subgroup N � B G, we can find a compact space YN � with a right

G-action, such that the groupoid YN � #N � is a-T-menable in the sense that YN � #N � admits

a proper, continuous conditionally negative definite function.

Lemma 4.3.3. For each finite subgroupG0 B G, the compact space YN � isG0-contractible.

Proof. Since YN � is a convex set, it contracts to a point y0 > YN � . For any finite subgroup

G0 B G, it is obvious that Pg>G0

1
SG0S

y0g > YN � . It follows that YN � is G0-contractible to the

point Pg>G0

1
SG0S

y0g.

Let F be the set of all subgroups ofG containingN with finite index. For eachN � > F ,

we can find a compact space YN � . We then define a compact topological space

Y �� M
N �>F

YN � .

The topology on Y is the product topology, and the G-action is then defined by

g � �yN ��N �>F
� �yN �g�1�

N �>F

for all g > G, �yN ��N �>F
> Y .

Proposition 4.3.4. For each N �

0 > F , the associated transformation groupoid Y # N �

0 is

a-T-menable.

Proof. Define a continuous conditionally negative definite function on the transformation
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groupoid Y #N �

0 by

φ ��yN ��N �>F
, n� � φN �

0
�yN �

0
, n�,

for all n > N �

0, �yN ��N �>F
> Y . It is easy to check that this map is a proper conditionally

negative definite function.

Remark 4.3.5. The domain of the conditionally negative definite function is Y #N �

0 instead

of Y #G for each N �

0 > F .

Assume the quotient group G~N coarsely embeds into a Hilbert space. In Section

4.3.1, we obtained a compact metrizable space X such that X #G~N is a-T-menable, and

a properG~N -C�-algebra, denoted byA�X,H�. In the rest of this section, we will formu-

late the twisted Baum–Connes conjecture for G with coefficients in C�Y �ÂaA�X,H�ÂaB.

We would like to point out that there are other constructions of the C�-algebra asso-

ciated with coarsely embeddable groups by Kasparov–Yu in [21] and Gong–Wu–Yu in

[10].

For each d A 0, let Pd�G� be the Rips complex endowed with the spherical metric.

Take a countable dense subset Zd ` Pd�G�, such that Zd ` Z �

d whenever d @ d�. Let

�Hx�x>X be the continuous field of Hilbert spaces such that the transformation groupoid

X # G~N acts properly on �Hx�x>X by affine isometries. For every �x, g� > X # G~N ,

there is an affine isometry V�x,g� � Hxg � Hx and a continuous section b � X �G~N � H

with b�x, g� > Hx, such that for every v > H�x,g�, V�x,g��v� � U�x,g��v� � b�x, g�, for all

�x, g� >X#G~N , where U�x,g� � Hxg � Hx is a linear isometry for each �x, g� >X#G~N .

The map b � G~N � Θ�X,H� is called the cocycle associated with the groupoid action of

X #G~N on the continuous field of Hilbert spaces �Hx�x>X . By the construction of the

continuous field of Hilbert spaces, b�x, e� � 0 > Hx, for all x >X . By coarse embeddability

and the definition of b, we have that infx>X Yb�x, g�YHx �ª as SgS�ª.

Let Θ�X,H� be the space of all continuous sections associated with the continuous
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field of Hilbert spaces �Hx�x>X . We will define a second countable, locally compact topo-

logical space W , and a proper G~N -action on W . As a set, denote W � R� � *x>XHx,

where R� is the set of all non-negative numbers. A topology can be defined as follows.

Let ��ti, xi, vi��i be a net in W , it converges to a point �t, x, v� >W if

1. xi � x, and t2i � YviY2
Hx
� t2 � YvY2

Hx
;

2. for any continuous section e � X � H, we have `e�xi�, vieHxi � `e�x�, veHx , as

i�ª.

The topology on W can also be characterized in terms of its base consisting of the

following open sets. For each point �t0, x0, v0� > R� �H, each Ux0 ` Y a neighborhood of

x0, each constant ε A 0, each section s > Θ�X,H�, define open sets

��t, x, v� � S�t2 � t20� � �YvY2
Hx

� Yv0Y2
Hx0

�S @ ε, x > Ux0� ,
and

��t, x, v� � S`s�x�, v � v0eHx S @ ε, x > Ux0� .
The topology on W is generated by sets of the above forms. The space W is a second

countable, locally compact and Hausdorff space. By the construction of the space X , it

is obvious that X is second countable and separable. We obtain a countable basis for the

topology onW by taking ε and t0 in the rational numbers Q, x0 in a countable dense subset

of X , and v0 in countable dense subset in each fiber Hx in the definition of the above open

subsets. As a consequence, the space W is second countable. For local compactness, for

each R A 0, the subset

��t, x, v� >W � t2 � YvY2
Hx

B R2�
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is compact. To see this, we first choose a net

��ti, xi, vi��i>I > ��t, x, v� `W � t2 � YvY2
Hx

B R2� .

Since �ti�i is bounded, a convergent subnet exists. Without loss of generality, we assume

�ti�i converges to t0. We can also assume �xi�i converges to x0 due to the compactness of

the spaceX . Fix an orthonormal basis �en�nC0 for the fiberHx0 , one can find a sequence of

continuous sections �en > Θ�X,H�� such that en�x0� � en, for all n C 0. By the diagonal

argument, we can find a subnet ��ti, xi, vi��i such that, limi`en�xi�, vieHxi exists for each

n C 0. Let λin � `en�xi�, vieHxi , and λn � limi λin. It is easy to check that ��ti, xi, vi��i
converges to the point �t0, x0, v0� under the above topology, where v0 � Pª

n�1 λnen.

Obviously, ��t, x, v� > R� �H � StS2 � Yv � s�x�Y2
Hx

@ R,x > Ux0� is an open subset of

the space W � R� �H, where R is a positive constant, Ux0 is an open neighborhood of x0

in X , and s � Ux0 � H is a local continuous section over Ux0 .

Now, let us define the G~N -action on W . Let g > G~N , �t, x, v� >W , we define

g � �t, x, v� � �t, xg�1, V�xg�1,g��v��.

For every g > G~N , every continuous section s > Θ�X,H�, it follows that g � s is also a

continuous section. In addition, every function onW of the form �t, x, v�( t2�Yv�v0Y2
Hx

is continuous under the topology of W , where x >X , v, v0 > Hx. As a result, the action of

G~N on W is well-defined.

According to [2], the properness of the G~N -action on W is equivalent to the fact that

the set �g > G~N � g �K 9K x g� is finite for each compact subset K `W .

Proposition 4.3.6. The action G~N ¸W is proper.

Proof. For each positive integer n A 0, let Kn � ��t, x, v� >W � t2 � YvY2
Hx

B n�. Since
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Kn is compact for each n A 0, and W � �nA0Kn, it suffices to show that the set

�g > G~N � g �Kn 9Kn x g�

is finite for each n A 0. Let �t, x, v� > Kn, g � �t, x, v� � �t, xg�1, V�xg�1,g��v�� for all

g > G~N . Since V�xg�1,g��v� � U�xg�1,g��v� � b�xg�1, g� and infx>X Yb�x, g�YHx � ª as

SgS�ª, there exists some R A 0, such that

inf
x>X

Yb�xg�1, g�Y2 A n � sup
x>X

YvY2
Hx

for all SgS A R. Since U�xg�1,g� is an isometry for each �xg�1, g� >X #G~N , so g ��t, x, v� ¶
Kn. By the properness of the metric on G~N , the set �g > G~N � g �Kn 9Kn x g� is finite

for each n A 0. Thus, the G~N -action on W is proper.

Note that theC�-algebraC0�W � of all continuous functions onW vanishing at infinity

is contained in the center of the C�-algebra A�X,H�, see [27] for more details. For each

open subset U `X and a continuous affine distribution �Ea�y��y>U over U , we have that

A�U,Ea� � C0�WU� �A�U,Ea�

where Ea � *y>U Ea�y� and W�U,Ea� �� ��t, y, v� � t > R�, y > U, v > E0
a�y�� ` W . If

U ` V are open subset of X , and �Ea�y��y>U and �Eb�y��y>V are continuous affine distri-

butions over U and V respectively, with Ea�y� ` Eb�y� for each y > U , then the fiber-wise

defined Bott map βU,ba takes C�W�U,Ea�� into C0�W�V,Eb��. Accordingly, the C�-algebra

C0�W � can be viewed as a direct limit lim
Ð�

C0�WU,Ea�. As a result, C0�W � �A�X,H� is

dense in A�X,H�. We have an action of G~N on the C�-algebra A�X,H� as defined in

Section 4.3.1. The C�-algebra C0�W � is contained in the center of the C�-algebra, and
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the properness of the G~N -action on W implies that the action of G~N on A�X,H� is

proper. In the rest of this section, we lift G~N -actions on W and A�X,H� to G-actions

via the quotient map G� G~N , and we use the same notations for G and G~N actions.

4.3.2 Twisted Roe algebras and twisted localization algebras

In this section, we will define the twisted version of Roe algebras and localization

algebras. Let d A 0, and let Pd�G� be the simplical complex at scale d, endowed with the

simplicial metric. Let Zd be the countable dense G-invariant subset of Pd�G� consisting

of all linear combinations Pg>G cgg with cg > Q and cg x c�g for any pair g x g�. Note that

for each subcomplex C ` Pd�G�, the intersection C 9Zd is non-empty and C ��C 9Zd.

Since the left translation action G¸ Pd�G� is proper and cocompact, one can define a

coarse G-equivariant map J � Pd�G�� G. This map is defined as follows. For each d A 0,

we can fix a bounded subset ∆d ` Zd such that

1. G �∆d � Zd,

2. for every z > Zd, there exist unique x > ∆d and unique g > G, such that z � g � x,

3. for d @ d�, ∆d ` ∆d� .

By condition (2), for every element z > Zd, there exists a unique element g > G, such

that g�1z > ∆d. The map J � Zd�G� � G can be defined as J�z� � g, where z > Zd, and

z � gx, for some g > G and x > ∆d. Note that the map J is G-equivariant. Indeed, for

all γ > G, z > Zd, we have J�z��1z > ∆d, so �γ � J�z���1�γz� � J�z��1z > ∆d. Hence

J�γz� � γJ�z�.
Define an open set

OR�g� � ��t, x, v� � t2 � Yv � b�x, g�Y2
Hx

@ R2� `W.

for all g > G. We need the following lemma to define twisted Roe algebras.
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Lemma 4.3.7. If z > Zd, γ > G, then γ �OR�J�z�� � OR�J�γz��.
Proof. For any �t, x, v� > OR�z�, the action is given by γ ��t, x, v� � �t, xγ�1, V�xγ�1,γ��v��,
and b�xγ�1, J�γz�� � b��xγ�1, γ��x, J�z��� � V�xγ�1,γ�b�x, J�z��. Since V�xγ�1,γ� is an

isometry for each x > X , we have that t2 � YV�xγ�1,γ��v� � b�xγ�1, J�γz��Y2 @ R2, for all

γ > G. As a result, γ � �t, x, v� > OR�γz�.
Let H0 be any fixed separable complex Hilbert space with infinite dimension. Let KG

be the algebra of all compact operators on H0Âa`2�G�, and B a G-C�-algebra. Define a

G-action on H0Âa`2�G� by first defining γ�vÂaδg� � vÂaδγg, for all γ, g > G and v > H0,

and then extending linearly to H0Âa`2�G�. The algebra BÂaKG is equipped with a unitary

G-action by γ � �bÂaT � � γ � bÂaγTγ�, for all b > B, T >KG, γ > G.

Definition 4.3.8. For an element S > C�Y �ÂaA�X,H�ÂaBÂaKG, we can define the support

of S, denoted by supp�S�, to be the complement of the set of �t, x, v� > R� �H such that

there exists f > C0�R� �H� with f�t, x, v� x 0, �1Y ÂafÂak� � S � 0, for all k > BÂaKG.

Definition 4.3.9. Define the algebraic twisted Roe algebra, denoted by

C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,

as the set of all the functions T on Zd �Zd such that

1. T �y, z� > C�Y �ÂaA�X,H�ÂaBÂaKG,

2. there exists M A 0 such that YT �y, z�Y BM , for all x, y > Zd,

3. there exists L A 0, such that

#�y � T �y, z� x 0� @ L and #�z � T �y, z� x 0� @ L,

4. there exists r1 C 0, such that T �y, z� � 0, for any y, z > Zd with d�y, z� A r1,
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5. there exists r2 A 0, such that supp�Ty,z� � Or2�J�y��,
6. the operator T is G-invariant, i.e., γ�Tγ�1y,γ�1z� � Ty,z, for all γ > G, y, z > Zd.

The algebraic twisted Roe algebra is equipped with a �-algebra structure by the matrix

operations.

Remark 4.3.10. By Lemma 4.3.7, the above condition (4) makes sense.

Let

E � �Q
z>Zr

az�z� � az > C�Y �ÂaA�X,H�ÂaBÂaKG, Q
z>Zr

a�zaz converges in norm¡ .

It is a G-Hilbert module over C�Y �ÂaA�X,H�ÂaBÂaKG. For allPz>Zr az�z�,Pz>Zr bz�z� >
E, a > C�Y �ÂaA�X,H�ÂaKG

dQ
z>Zr

az�z�, Q
z>Zr

bz�z�i �� Q
z>Zr

a�zbz,

and

�Q
z>Zr

az�z��a �� Q
z>Zr

aza�z�.
The action of G is given by

g � �Q
z>Zr

az�z�� �� Q
z>Zr

�g � az��gz�.

Define a �-representation of C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G on E by

T �Q
z>Zr

az�z�� �� Q
y>Zr

�Q
z>Zr

Ty,zaz� �y�

According to the definition of the algebraic twisted Roe algebra, the �-representation
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on E is well-defined. The twisted Roe algebra, denoted by

C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,

is defined to be the completion of the algebraic twisted Roe algebra under the operator

norm in B�E�, where B�E� is the C�-algebra of all adjointable module homomorphisms.

Let C�

L,alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G be the set of all bounded, uniformly norm-

continuous functions

g � R� � C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,

such that

propagation�g�t��� 0, as t�ª.

Taking the completion with respect to the norm

YgY � sup
t>R�

Yg�t�Y,

we have the twisted localization algebra, denoted by C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G.

Remark 4.3.11. By Proposition 3.1.4 and Remark 3.1.5, we have that the twisted Roe

algebras and the twisted localization algebras are independent of the choice of the count-

able dense subset Zd for each d A 0. Indeed, if we have two countable dense G-invariant

subset Zd, Z �

d ` Pd�G�, then Zd 8 Z �

d is also a countable dense G-invariant subset of

Pd�G�. Following the constructions in Proposition 3.1.4 and Remark 3.1.5, the inclusion

map Zd � Zd 8 Z �

d induces an isomorphisms between the twisted Roe algebras defined

by choosing Zd and Zd 8 Z �

d, while the inclusion map Z �

d � Zd 8 Z �

d induces an isomor-

phism between the twisted Roe algebras defined by choosing Z �

d and Zd 8Z �

d. As a result,
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the definitions of twisted Roe algebras and twisted localization algebras (by the similar

argument) are independent of the choice of the countable dense G-invariant subset Zd.

There is a natural evaluation-at-zero map

ev � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,

defined by ev�g� � g�0�, for all g > C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G. Obviously, it is a

�-homomorphism. The evaluation-at-zero map induces a homomorphism on K-theory

ev� �K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G��K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G�.

4.4 The K-theory of twisted Roe algebras and twisted localization algebras

In this section, we will prove the following twisted Baum–Connes conjecture for

groups which are extensions of coarsely embeddable groups.

Theorem 4.4.1. Let 1 � N � G � G~N � 1 be a short exact sequence of countable

discrete groups. Assume N and G~N can be coarsely embedded into Hilbert spaces. The

map

ev� � lim
d�ª

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G��

lim
d�ª

K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G�
induced by the evaluation-at-zero map is an isomorphism.

To prove this theorem, the main idea is to decompose the twisted Roe algebra into

ideals whoseK-theory can be easily computed, and then use the Mayer–Vietoris sequence

and the Five Lemma to piece them all together. The decomposition of the twisted Roe
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algebra relies on the structure of the G-action on the space W (Proposition 4.3.6). Let us

recall an equivalent definition of proper action of a discrete group on a topological space

(Definition 1.3 in [2]).

Definition 4.4.2. Let Γ be a countable discrete group, X a topological space equipped

with a continuous action of Γ. The Γ-action is called proper if

1. X is second countable,

2. X~Γ is second countable,

3. for every x >X there is a Γ-invariant neighborhood U of x and a finite subgroup Γ0

of Γ, such that there exists a continuous Γ-map U � Γ~Γ0.

In Section 4.3.1, we obtained a properG~N -action on a topological spaceW (Proposi-

tion 4.3.6) and lifted the G~N -action to a G-action on W via the quotient map G� G~N .

For any R A 0, let OR�g� � ��t, x, v� � t2 � Yv � b�x, g�Y2
Hx

@ R2� `W . We have checked

that OR � �g>G~N OR�g� is G~N -invariant as is the closure of OR by Lemma 4.3.7.

The restriction of the G~N -action on the closure �OR is proper and cocompact, because

�OR � G~N ��OR�e�. Fix R0 A 0, for any R @ R0, every point in OR has a G~N -invariant

neighborhood identical to V �N �~N G~N , where V is an open subset of OR0�e�, and N �

is a subgroup of G containing N with finite index. Throughout this paper, we identify

sets of the form V �N � G~N with G~N � V via �v, g� ( vg, and V � �g� is identified

with g � V for all g > G~N . Those open sets together with the difference �OR0�e� ��OR�e�
comprise an open cover of �OR0�e�. By compactness of �OR0�e�, we can find a finite open

cover �Vi �Ni~N G~N�k
i�1

for OR, where Vi ` ��x, s, v� � s2 � YvY2
Hx

@ R2� and Vi is Ni-

invariant, for some Ni a subgroup of G containing N with finite index. We will consider

the restriction of the G-action on W to an Ni-action on Vi. Let G � Vi denote the union

*g>G~Ni g � Vi.
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Definition 4.4.3. 1. For any element T > C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G, the sup-

port of T is defined to be the set

supp�T � � ��y, z, v� > Zd �Zd � �R� �H� � v > supp�Ty,z�� .

2. For any element a > C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G, the support of a is defined

to be

supp�a� ��
tC0

supp�a�t��.
For each open subset U `W � R��H, defineC��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GU to be

the C�-subalgebra of C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G generated by all operators with

support contained in Zd �Zd �U .

We can also define the localization algebra C�

L�Pd�G�,C�Y �ÂaA�X,HÂaB�GU to be

the C�-subalgebra of C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G generated by all paths a�t� with

support contained in Zd �Zd �U . We have an evaluation-at-zero map

ev � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GU � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GU

given by ev�f� � f�0�, where f > C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GU .

Proposition 4.4.4. Let G � Vi � �g>G~Ni g � Vi. The homomorphism,

ev� � lim
d�ª

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi��

lim
d�ª

K��C��Pd�G�,C�Y �ÂaA�X,HÂaB��GG�Vi�,
induced by the evaluation-at-zero map on K-theory is an isomorphism.

In order to prove this theorem, we need some lemmas. For each Ni and d A 0, we
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define the Roe algebra with coefficients in C�Y �ÂaA�X,H�ViÂaB as follows. Since Ni B

G, we can assume Pd�Ni� ` Pd�G� has the restricted spherical metric of Pd�G�. Let

Zi
d � Zi 9Pd�Ni�. By the definition of Zd, the set Z1

d is non-empty for all i. The algebraic

Roe algebra, denoted by

C�

alg�Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni ,

is defined to be the set of all matrices �Ty,z�y,z>Zi
d

which represent bounded, finite propa-

gation, locally compact, and Ni-invariant operators on the Hilbert module

`2�Zi
d�ÂaA�X,H�ViÂaBÂaKG,

where KG is the algebra of all the compact operators on `2�G�ÂaH endowed with the

tensor product unitary representation of Ni. Define the Roe algebra

C��Pd�Ni�,C�Y �ÂaA�X,H�Vi�Ni

to be the norm closure of the algebraic Roe algebraC�

alg�Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni ,
on the Hilbert module `2�Zi

d�ÂaA�X,H�ViÂaBÂaKG.

For each i, we can define an inclusion homomorphism

ıi � C
��Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi ,

between the C�-algebras by

ıi�T �x,y �
¢̈̈̈̈
¦̈̈̈
¤̈
g�1�Tgx,gy� if § g > G such that gx, gy > Pd�Ni�,
0 otherwise.
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Similarly, we can define the inclusion map on the localized version,

ıL,i � C
�

L�Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi .

The following result is crucial to reducing twisted Roe algebras and twisted localiza-

tion algebras of G to twisted Roe algebras and twisted localization algebras associated

with its subgroups Ni.

Lemma 4.4.5. For each Vi, the maps

�ıi�� �K��C��Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni��

K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi�,
and

�ıL,i�� � lim
d�ª

K��C�

L�Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni��

lim
d�ª

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi�,
induced by inclusion are isomorphisms.

Proof. For any T > C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi , the support of T is contained in

the subset Zd � Zd � ��g>G gVi�. Since supp�Ty,z� ` J�y� � Vi, T can be expressed as a

product

T � M
g>G~Ni

T g,

where T g is a Zd �Zd-matrix with all entries supported in g �Vi and the map J � Zd � G is
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the map defined in Section 4.3.2. Since every element

T > C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi
is G-invariant, the matrix T is determined by T e.

For each g > G, define Ag,�alg to be the algebra of all bounded, locally compact operators

T � �Ty,z�y,z>Zd on the Hilbert module `2�Zd�ÂaC�Y �ÂaA�X,H�g�ViÂaBÂaHG, satisfying:

(1) supp�Ty,z� ` g � Vi for all y, z > Pd�G�; (2) there exists some C A 0, such that Ty,z x 0

implies that d�y,Pd�Ni��, d�z,Pd�Ni�� B C; (3) T is gNig�1-invariant.

Taking closure under the operator norm over the Hilbert module

`2�Zd�ÂaC�Y �ÂaA�X,H�g�ViÂaBÂaHG

gives rise to a C�-algebra, denoted by Ag,�.

Similarly, we can define a localized version of the above algebra, denoted by Ag,�L . Let

us define

AG,� �

¢̈̈¦̈̈¤�T
g� > M

g>G~Ni

Ag,� � T g � g � T e,¦g > G

£̈̈§̈̈¥ ,
and

AG,�L �

¢̈̈¦̈̈¤�T
g� > M

g>G~Ni

Ag,�L � T g � g � T e,¦g > G

£̈̈§̈̈¥ .
It is not difficult to check that

AG,� � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi ,

and

AG,�L � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi .
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According to the definition of twisted Roe algebras and coarse embeddability of the group

G~Ni, for any T > Ae,�, there is a constant M such that Tx,y x 0 implies that

x, y > Pd�BG�J�x� �Ni,M��,

where Pd�BG�J�x� �Ni,M�� is the subcomplex of Pd�G� with vertices set contained in

the M -neighborhood of J�x� �Ni in G. Therefore, we have

Ae,� � lim
M�ª

Ae,�M

and

Ae,�L � lim
M�ª

Ae,�L,M ,

whereAg,�M is theC�-subalgebra ofAg,� generated by all matrices �T gx,y� with supp�T gx,y� `
g � Vi, and d�x,Ni�, d�y,Ni� BM .

For the Roe algebra case, there is a �-isomorphism

Ae,�M � C��Pd�BG�Ni,M��,C�Y �ÂaA�X,H�ViÂaB�Ni

for any fixed M A 0 by Proposition 3.1.4, because Pd�BG�Ni,M�� is Ni-coarsely equiva-

lent to Pd�Ni�.
For the localization algebra case, it suffices to show that for d A 0 large enough, the

C�-algebra Ae,�L,M has the same K-theory as C�

L�Pd�BG�Ni,M��,C�Y �ÂaA�X,H�ÂaB�Ni
for any fixed M . By Proposition 3.3.4, it suffices to show that Pd�BG�Ni,M�� is strongly

Ni-homotopy equivalent to Pd�Ni� when d is large enough.

When d is large enough, we can define a strong Lipschitz homotopy equivalence be-

tween the subcomplexes Pd�BG�Ni,M�� and Pd�Ni� as follows. For any element g > G
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with d�g,Ni� BM , there exists an element s > G with SsS BM such that gs�1 > Ni, and the

number of elements in the M -ball of the group G is finite. Let BG�Ni,M� � *n0

k�1Nisk

where SskS BM , and �s1, s2,�, sn0� is a subset of representatives for the right cosetsG~Ni.

We can define a map ρ � BG�Ni,M �� � Ni by ρ�g� � g� where g � g�s is the unique prod-

uct with g� > Ni, and s > �s1, s2,�, sn0�. Uniqueness of the product is guaranteed by the

fact that �s1, s2,�, sn0� is a subset of the representatives for the right cosets of G~Ni. It is

easy to check that the map ρ is well-defined and Ni-invariant.

We can define a strong Lipschitz homotopy equivalence

H��, t� � Pd�BG�Ni,M��� Pd�Ni�

by

H �Q
i

cigi, t� �Q
i

�tcigi � �1 � t�ciρ�gi��,
where t > �0,1�, and Pi cigi > Pd�BG�Ni,M��. By Proposition 3.3.4, the localization

algebra version is done.

Lemma 4.4.6. For all i, and all d A 0, we have a commutative diagram

K��AL,Vi�
�ıL,i��
��

ev� // K��AVi�
�ıi��
��

K��AL,G�Vi� ev� // K��AG�VI�.
where we set up

AL,Vi � C
�

L�Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni ,

AVi � C
��Pd�Ni�,C�Y �ÂaA�X,H�ViÂaB�Ni ,
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AL,G�Vi � C
�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi ,
and

AG�Vi � C
��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi

for brevity.

We need the following result due to Tu (see [27]).

Theorem 4.4.7. Let Y # Γ be an a-T-menable transformation groupoid. Then for any

Γ-C�-algebra A, the Baum–Connes conjecture with coefficients in C�Y �ÂaA holds for Γ,

i.e., the map

ev� � lim
d�ª

K��C�

L�Pd�Γ�,Γ,C�Y �ÂaA��� lim
d�ª

K��C��Pd�Γ�,Γ,C�Y �ÂaA��

on K-theory induced by the evaluation-at-zero map is isomorphic.

In [27], Tu constructed a continuous field of C�-algebras which admits a proper Y #Γ-

action by the a-T-menability of the groupoid X # Γ. The continuous field of C�-algebras

defined by Tu is essentially the same as the one that we described in Section 4.3.1. Then

the Baum–Connes conjecture for the groupoid X # Γ is reduced from the Baum–Connes

conjecture for X #Γ with coefficients in the continuous field of C�-algebras by the Dirac-

dual-Dirac method. In fact, the Baum–Connes conjecture for the group Γ with coefficients

in C�X� is actually equivalent to the Baum–Connes conjecture for the groupoid X # Γ.

Remark 4.4.8. The twisted Roe algebra C��Pd�Ni�,C�Y �ÂaA�X,H�Vi�Ni is exactly the

Roe algebra for Pd�Ni� with coefficients in C�Y �ÂaA�X,H�Vi by the definition of twisted

Roe algebras. Similarly, the twisted localization algebra

C�

L�Pd�Ni�,C�Y �ÂaA�X,H�Vi�Ni
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is the localization algebra for Pd�Ni� with coefficients in C�Y �ÂaA�X,H�Vi .
Combining Lemma 4.4.5 with Theorem 4.4.7, we have the following result.

Proposition 4.4.9. The homomorphism

ev� � lim
d�ª

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi��

lim
d�ª

K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi�
induced by evaluation-at-zero is an isomorphism.

Lemma 4.4.10. Let O and O� be open subsets of R� � H. If O ` O�, then the C�-

subalgebras

C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GO
and

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GO
are respectively closed, two-sided ideals of C�-algebras

C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GO�

and

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GO� .

In the definition of Vi, the choice of Vi depends on the constant R, so we denote it as

Vi�R� in the rest of this section. Fixing anyR0, for everyR @ R0, let VR,i � Vi�R0�9OR�e�
where �Vi�R0��Ni�1 is a finite open cover of OR�e� obtained from the compactness of

�OR0�1�e�. We obtain the following decomposition for the twisted localization algebras

and the twisted Roe algebras.

64



Lemma 4.4.11. For every fixed R0 A 0, let OR,i0 � �i0i�1G � Vi�R�. Then we have the

following,

(1) C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0�1 � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0
�C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi0�1�R�

,

(2) C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0�1 � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0
�C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi0�1�R�
,

(3) C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i09G�Vi0�1 �
C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0 9C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi0�1 ,

(4) C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i09G�Vi0�1�R�
�

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR,i0 9C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GG�Vi0�1�R�
,

for all R B R0.

The proof of Lemma 4.4.11 is similar to that of Lemma 6.3 in [32], and is therefore

omitted.

Note that, for any 1 B i @ i� B N , the intersection OR�i� 9OR�i�� is of the same form

as V � �N � G for some open subset V � ` W and some subgroup N � B G containing N

with finite index. So by the Mayer–Vietoris sequence and the Five Lemma, we have the

following result.

Proposition 4.4.12. Let 1 � N � G � G~N � 1 be an extension of countable dis-

crete groups. Assume N and G~N are coarsely embeddable into Hilbert spaces. The

evaluation-at-zero map

ev� � lim
d�ª

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR��
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lim
d�ª

K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR�
is isomorphic for each R.

By taking the direct limit over R, we have the twisted Baum–Connes conjecture with

coefficients in C�Y �ÂaA�X,H�ÂaB.

The proof of Theorem 4.4.1. Since we have

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G � lim
R�ª

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR ,

and

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G � lim
R�ª

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR ,

it suffices to show that the map

ev� � lim
d�ª

K��Dd,L,R0�� lim
d�ª

K��Dd,R0�,

is an isomorphism, where we set

Dd,L,R0 � lim
R@R0,R�R0

C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR
and

Dd,R0 � lim
R@R0,R�R0

C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�GOR
for brevity. By Lemma 4.4.11 and OR � �iG � Vi�R�, the proof is completed using the

Mayer–Vietoris sequence and the Five Lemma.
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4.5 The Novikov conjecture for the extension

In this section, we will define a geometric analogue of the infinite-dimensional Bott

map introduced by Higson, Kasparov and Trout in [17], and then prove the Novikov con-

jecture for the extension group from the twisted Baum–Connes conjecture.

LetX be the compact space and �Hx�x>X the continuous field of Hilbert spaces defined

in Section 4.2. Every element in C�X�ÂaS can be viewed as a continuous S-valued map.

The action of G on C�X�ÂaS is given by g � �fx�x>X � �f �x�x>X , where f �x � fxg�1 .

In Section 4.3.1, we obtain the fiber-wise defined Bott map βt � C�X�ÂaS � A�X,H�,
by

βt��fx�x>X� � �βt�fx��x>X
where fx > S , for any x >X . It induces an isomorphism on the K-theory level.

Each element T > C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS can be expressed as

T � �Ty,z�y,z>ZdÂaf,

where f > S , Ty,z > C�Y �ÂaC�X�ÂaBÂaKG, for all y, z > Zd.

We define the Bott map between the algebraic Roe algebras and algebraic twisted

localization algebras,

β � C�

alg�Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS � C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,

by

βt�T ��y, z� � Ty,zÂasy,z,
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where sy,z > A�X,H� is a section with sy,z�x� � βt�b�x, J�y���f�, and

βt�b�x, J�y��� � A��b�x, J�y����� A�Hx�

is the Bott map induced by the inclusion �b�x, J�y���� Hx, for t > �0,ª�.
We are going to show that the Bott map βt is well-defined. It suffices to show that,

for each T Âaf � �Ty,z�y,z>ZrÂaf > C�

alg�Pd�G�,G,C�Y �ÂaC�X�ÂaB� a S , βt�T Âaf� is

G-invariant in the sense that g�βt�T Âaf�g�1y,g�1z� � βt�T Âaf�y,z for all g > G, y, z > Zd.

Let sg � X � H � *x>XHx be the continuous section defined by sg�x� � b�x, g�, for

all g > G. By Lemma 4.2.4, we have that β�g � s� � g � β�s� for all s > A�X,H�. For each

g > G, y, z > Zd, it follows from the definition of T Âaf that

g�Tg�1y,g�1z� � Ty,z.

So we need to show:

g � �βt�T Âaf�g�1y,g�1z� � βt�T Âaf�y,z.
On the one hand,

βt�T Âaf�y,z � Ty,zÂaβt�sJ�z���f�.
On the other hand, we have

g � Tg�1y,g�1zÂag � �βt�sJ�g�1y���f�� � Ty,zÂag � �βt�sJ�g�1y���f��.

It suffices to show that g � �βt�sJ�g�1y���f�� � β�sJ�y���f�. For each x > X , we have

β�sJ�y���f��x� � β�b�x, J�y����f� > A�Hx�.
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For the section sJ�y�, we have

�g � sJ�g�1y���x� � g�sJ�g�1y��xg��
� g�b�xg, g�1J�y���
� b�x, J�y��
� sJ�y��x�,

for all x >X . Therefore g � sJ�g�1y� � sJ�y�, for all y > Zd, and hence it follows that

g�β�sJ�g�1y���f�� � βtsJ�y��f�.

Therefore,

g�βt�T Âaf�g�1y,g�1z� � βt�T Âaf�y,z.
As a consequence, the map

βt � C
�

alg�Pd�G�,G,C�Y �ÂaC�X��ÂaS � C�

alg�Pd�G�,C�Y �ÂaA�X,H��G

for all t > �1,ª� is well-defined.

Proposition 4.5.1. The family of maps

βt � C
�

alg�Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS � C�

alg�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G

for t > �1,ª� extends to an asymptotic morphism

β � C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G.
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Proof. Let

E � �Q
z>Zd

az�z� � az > C�Y �ÂaA�X,H�ÂaBÂaKG, Q
z>Zd

a�zaz converges in norm¡ .

For every g > S , define a bounded module homomorphism Ng � E � E given by

Ng �Q
z>Zd

az�z�� � Q
z>Zd

�β�s�J�z����g�Âa1�az�z�

for all Pz>Zd az�z�. It is easy to check that

βt�T Âag� � Ngt�T Âa1�

for all g > S and T > C�

alg�Pd�G�,G,C�Y �ÂaC�X�ÂaB�, where T Âa1 is a bounded module

homomorphism from E to E by

�T Âa1��Q
z>Zd

az�z�� � Q
y>Zd

�Q
z

�Ty,zÂa1�az� �y�.

By the definition of Roe algebras, the map βt extends to a linear map

C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaalgS � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G

satisfying

Yβt�T Âag�Y B YgYYT Y
for all g > S , and T > C�

alg�Pd�G�,G,C�Y �ÂaC�X�ÂaB�. By the definition of

C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�
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and the properness of the G~N -action on the C�-algebra C�Y �ÂaA�X,H�ÂaB, one can

verify that βt is an asymptotic morphism from C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaalgS to

C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G. Hence βt extends to a homomorphism

C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂamaxS � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G.

As a consequence of the nuclearity of S , βt extends to a homomorphism

C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G.

We define the Bott map on K-theory,

β� �K��C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS���

K��C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G�,
as that induced by the asymptotic morphism

βt � C
��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS�� C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G

for t > �1,ª�.
Similarly, we can define the localized version of the asymptotic morphism

βL,t � C
�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G.

for t > �1,ª�. Since this is an asymptotic morphism, it induces the Bott map βL,� on

K-theory. Let C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G be the twisted localization algebra. Let

C1 ` C2 ` Pd�G� be G-invariant closed subsets such that Ci � �Ci 9Zd for i � 1,2.
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Assume that the inclusion map i � C1 � C2 is a strong Lipschitz homotopy equivalence.

Let C�

L�Ci,C�Y �ÂaA�X,H�ÂaB�G be the C�-subalgebra consisting of all the operators

T > C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G with support in Ci � Ci �W ` Zd � Zd �W , for

i � 1,2.

Then the map i � C1 0 C2 induces a map on the twisted Roe algebras

i� � C
��C1,C�Y �ÂaA�X,H�ÂaB�G � C��C2,C�Y �ÂaA�X,H�ÂaB�G

by

i�T �y,z �
¢̈̈̈̈
¦̈̈̈
¤̈
Ty,z if y, z > C1,

0 otherwise,

for all T � �Ty,z�y,z>C1 > C��C1,C�Y �ÂaA�X,H�ÂaB�G. This map is well-defined, be-

cause the inclusion map i � C1 0 C2 is isometric. Similarly, one can define a homomor-

phism between the localization algebras

iL � C
�

L�C1,C�Y �ÂaA�X,H�ÂaB�G � C�

L�C2,C�Y �ÂaA�X,H�ÂaB�G.

The following result is a twisted analogue of the result that the K-theory of twisted local-

ization algebras is invariant under strong Lipschitz homotopy equivalence. The proof is

similar to that of Proposition 3.3.4.

Lemma 4.5.2. Assume the inclusion map i � C1 0 C2 is a strong Lipschitz homotopy

equivalence. The map

�iL�� �K��C�

L�C1,C�Y �ÂaA�X,H�ÂaB�G��K��C�

L�C2,C�Y �ÂaA�X,H�ÂaB�G�
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induced by iL on K-theory is an isomorphism.

Similarly, we have a twisted version of the Mayer–Vietoris sequence for twisted local-

ization algebras, as in Proposition 3.3.6. The proof will be similar, so it is omitted.

Lemma 4.5.3. Let ∆ be a simplicial complex endowed with the spherical metric, and letG

be a countable discrete group. AssumeG acts on ∆ properly by isometries. LetC1,C2 ` ∆

be G-invariant simplicial subcomplexes endowed with the subspace metric. Then we have

the following six-term exact sequence

K0�LC19C2� K0�LC1�`K0�LC2� K0�LC18C2�

K1�LC19C2� K1�LC1�`K1�LC2� K1�LC18C2�,
where we set

LC1 � C
�

L�X1,C�Y �ÂaA�X,H�ÂaB�G,
LC2 � C

�

L�X1,C�Y �ÂaA�X,H�ÂaB�G,
LC19C2 � C

�

L�X1 9X1,C�Y �ÂaA�X,H�ÂaB�G
and

LC18C2 � C
�

L�X1 8C2,C�Y �ÂaA�X,H�ÂaB�G
for short.

Proposition 4.5.4. For each d A 0, the map

βL,� �K��C�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS��

K��C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G�
is an isomorphism.
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Proof. By induction on the dimension of the space Pd�G�, the theorem is a consequence of

the fact that the K-theory of localization algebras is invariant under the strong Lipschitz

homotopy equivalence (see Lemma 4.5.2), Theorem 4.2.5, the twisted Mayer–Vietoris

sequence (see Lemma 4.5.3) and the Five Lemma.

Let us recall the commutative diagram which is obvious from the definition of twisted

localization algebras and twisted Roe algebras.

K��AL,S�
βL,�
��

ev� // K��AS�
β�
��

K��AL,A� ev� // K��AA�.
where we set

AL,S � C
�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS�,
AS � C

��Pd�G�,G,C�Y �ÂaC�X�ÂaB�ÂaS,
AL,A � C�

L�Pd�G�,C�Y �ÂaA�X,H�ÂaB�G,
and

AA � C��Pd�G�,C�Y �ÂaA�X,H�ÂaB�G
for brevity.

In the above diagram, the vertical map βL,� and the bottom horizontal map are isomor-

phisms. As a result, we have that the Novikov conjecture holds for G with coefficients in

C�Y �ÂaC�X�ÂaB.

Lemma 4.5.5. The map

ev� � lim
d�ª

K��C�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB���
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lim
d�ª

K��C��Pd�G�,G,C�Y �ÂaC�X�ÂaB��,
induced by the evaluation-at-zero map on K-theory is injective.

In the rest of this chapter, we will reduce the Novikov conjecture to Lemma 4.5.5.

By identifying the C�-algebra C�Y �ÂaC�X� with C�Y � X�, one can define a map c �

C � C�Y �ÂaC�X� mapping each constant s > C to the constant function with value s on

Y �X . By tensoring with the identity map on compact operators, we can define a map

cÂa1 �KG � C�Y �ÂaC�X�ÂaKG.

Note that Y �X admits a G-action and it is G0-contractible for any finite subgroup

G0 B G. The map ca 1 induces a homomorphism between the Roe algebras

Çc � C��Pd�G�,G,B�� C��Pd�G�,G,C�Y �ÂaC�X�ÂaB�

given by

Çc�T ��x, y� � cÂa1�Tx,y�,
for x, y > Zd, T � �Tx,y�x,y>Zd .

Similarly, one can define a localized version of the homomorphism

ÇcL � C�

L�Pd�G�,G,B�� C�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB�,

by

ÇcL�g��t� � Çc�g�t��,
where g > C�

L�Pd�G�,G,B�.
Lemma 4.5.6. Let G0 B G be a finite subgroup, and B any G-C�-algebra. If V ` Pd�G�
is a G0invariant and G0-contractible subcomplex such that G � V is homeomorphic to the
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space V �G0 G, then we have

K��C�

L�V �G0 G,G,B�� �K��C�

L�V,G0,B��.

Proof. Define a homomorphism

ı � C�

L�V,G0,B�� C�

L�V1 �G0 G,G,B�

by

ı�b�t��x,y �
¢̈̈̈̈
¦̈̈̈
¤̈
g�1�b�t��gx,gy if § g > G such that gx, gy > V ,

0 otherwise,

for all b�t� > C�

L�V,G0,B�. Any element in K1�C�

L�V �G0 G,G,B�� can be represented

by an invertible element a � I , for some a > C�

L�V �G0 G,G,B�. Since the propagation

of a�t� approaches 0 as t � ª, we can find a large constant T0 such that supp�a�t�� `

*g>G~G0
gV � gV for all t C T0. By uniform continuity of the path a�t�, as�t� � a�t � sT0�

(s > �0,1�) is a homotopy between a�t� and a�t�T0�. Thus, any element in K1�C�

L�V �G0

G,G,B�� can be represented by an invertible element b� I > �C�

L�V �G0 G,G,B��� with

supp�b�t�� ` *g>G~G0
gV1 � gV1. Since b�t� is G-invariant for all t > �0,ª�, we can find

an element b� > C�

L�V,G0,B� such that ı���b� � I�� � �b � I�. Consequently, the map ı is

onto, and we can similarly prove that it is injective. Therefore we have

K1�C�

L�V �G0 G,G,B�� �K1�C�

L�V,G0,B��.

The K0 case can be dealt with by a suspension argument.

The following result was proved originally using E-theory ([12], Lemma 12.11). We

now give an alternative proof using localization algebras.
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Proposition 4.5.7. The map

�ÇcL�� � lim
d�ª

K��C�

L�Pd�G�,G,B��� lim
d�ª

K��C�

L�Pd�G�,G,C�Y �ÂaC�X�ÂaB��

on K-theory induced by ÇcL is an isomorphism.

Proof. When d is large enough, there exist finitely many precompact open subsets Vi,

and finite subgroups Gi B G, i � 1, . . . , k, such that Pd�G� � �ki�1 Vi �Gi G and each

Vi is Gi-contractible by a strong Lipschitz Gi-homotopy equivalence. The existence of

subsets Vi and finite subgroups Gi is guaranteed by properness of the G-action on Pd�G�.
By the Mayer–Vietoris sequence, it suffices to show that the map �ÇcL�� � K��C�

L�Vi �Gi
G,G,B���K��C�

L�Vi �Gi G,G,C�Y �X�ÂaB�� is an isomorphism for each i. Without

loss of generality, it suffices to show this for i � 1.

By Lemma 4.5.6, we have

K��C�

L�V1 �G1 G,G,B�� �K1 �C
�

L�V1,G1,B��,

and

K��C�

L�V1 �G1 G,G,C�Y �X�ÂaB�� �K��C�

L�V1,G1,C�Y �X�ÂaB��.

It suffices to show that

K��C�

L�V1,G1,B�� �K��C�

L�V1,G1,C�Y �X�ÂaB��.

By the G1-contractibility of V1, we have

K��C�

L�V1,G1,B�� �K��C�

L�pt,G1,B��,
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and

K��C�

L�V1,G1,C�Y �X�ÂaB�� �K��C�

L�pt,G1,C�Y �X�ÂaB��.
It suffices to show that K��C�

L�pt,G1,B� � K��C�

L�pt,G1,C�Y �X�ÂaB�. Let c � C �

C�Y �X� be the �-homomorphism given by mapping each constant s > C to the constant

function with value s on Y �X . Let c� � C�Y �X�� C be the �-homomorphism obtained

by evaluation at the point �y0, x0�, where the space Y �X contracts to a point �y0, x0� >
Y �X via someG1-equivariant homotopy equivalence. So we have the �-homomorphisms

on the reduced crossed product

c � B #r G1 � �C�Y �X�ÂaB� #r G1

and

c� � �C�Y �X�ÂaB� #r G1 � B #r G1.

Note that, on the K-theory level, the compositions c� X c�� and c�
�
X c� are identity maps. By

the Green-Julg Theorem (see [12]),

ev� �K��C�

L�pt,G1,B���K��C��pt,G1,B��

and

ev� �K��C�

L�pt,G1,C�Y �X�ÂaB���K��C��pt,G1,C�Y �X�ÂaB��

are isomorphisms onK-theory, where ev� is the homomorphism induced by the evaluation-

at-zero map. Since we have

C��pt,G1,B� � �B #r G1�aK,
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and

C��pt,G1,C�Y �X�ÂaB� � ��C�Y �X�ÂaB� #r G1�aK.
In addition, the map

�ÇcL�� �K��C�

L�pt,G1,B���K��C�

L�pt,G1,C�Y �X�ÂaB��

is an isomorphism. As a result,

�ÇcL�� �K��C�

L�Vi �Gi G,G,B���K��C�

L�Vi,G,C�Y �X�ÂaB��

is an isomorphism for each i. The proof is completed using the Mayer–Vietoris sequence

(see Proposition 3.3.6) and the Five Lemma.

According to Proposition 3.3.8, the following result implies Theorem 1.0.1.

Theorem 4.5.8. The map

ev� � lim
d�ª

K��C�

L�Pd�G�,G,B��� lim
d�ª

K��C��Pd�G�,G,B��

induced by the evaluation-at-zero map on K-theory is injective.

Proof. We have the following commutative diagram

lim
d�ª

K��C�

L�Pd�G�,G,B��
�ÇcL��

��

ev� // lim
d�ª

K��C��Pd�G�,G,B��
Çc�

��
lim
d�ª

K��C�

L�Pd�G�,G,C�Y �X�ÂaB�� ev� // lim
d�ª

K��C��Pd�G�,G,C�Y �X�ÂaB��.

Since the map �ÇcL�� is an isomorphism, and the lower horizontal map is injective, the

upper horizontal map is injective.
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5. SUMMARY AND CONCLUSIONS

In this dissertation, we construct a C�-algebra associated with a coarsely embeddable

group using the geometry of the coarse embeddability. This C�-algebra comes with a

nice group action. Then we define a C�-algebra associated the extension groups and use

this C�-algebra to investigate the K-theory of group C�-algebras of the extension groups.

Here we give a broad outline of some future outlines.

5.1 Further study

It follows from my work that the Novikov conjecture holds for a large class of groups

related to coarse embeddability. A group can be viewed a metric space admitting a co-

compact action of itself. It is natural to generalize the Novikov conjecture to the setting of

noncompact metric spaces with proper group action.

Let X be a metric space with bounded geometry and let G be a countable discrete

group acting on X properly by isometries. One can define an equivariant Roe algebra

C��Pd�X��G and an equivariant localization algebra C�

L�Pd�X��G associated with the

G-action on the Rips complex Pd�X� for each d A 0. The coarse equivariant Novikov

conjecture claims that the map

ev� � lim
d�ª

K��C�

L�Pd�X��G��K��C��Pd�X��G� �K��C��X�G�

on K-theory is injective. When the group G is the trivial group, this conjecture is the

coarse Novikov conjecture for the space X . In 2000, Yu ([32]) showed that the coarse

Baum–Connes conjecture holds for bounded geometry metric spaces which admit a coarse

embedding into Hilbert space, thus, the coarse Novikov conjecture holds for such spaces.

When the space X is the group G endowed with word length metric, one gets back the
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Novikov conjecture for the group G. Yu ([32]) and Skandalis–Tu–Yu ([26]) verified the

Novikov conjecture for coarsely embeddable groups. In [8], Fu and Wang showed that

the coarse equivariant Baum–Connes conjecture hold if the metric space X is equivari-

antly coarsely embeddable into Hilbert spaces. Recently, Fu–Wang–Yu ([9]) proved that

the coarse equivariant Novikov conjecture holds when the group G and the quotient space

X~G coarsely embeddable into Hilbert spaces and theG-action onX has a geometric con-

dition called bounded distortion. It is natural to ask when the equivariant coarse Novikov

conjecture holds. TheC�-algebra constructed in this dissertation can be used to investigate

the K-theory of the equivariant Roe algebras. It will be interesting to find other conditions

on the group action under which the equivariant coarse Novikov conjecture holds.
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