
A STRUCTURAL ANALYSIS OF ON-LINE FAULT DETECTION MECHANISMS

IN NETWORK-ON-CHIP ARCHITECTURES

A Thesis

by

HAN BEE OH

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Duncan M. H. Walker

Co-Chair of Committee, Gwan Choi

Jeyavijayan Rajendran Committee Member,

Head of Department, Miroslav M. Begovic

May 2020

Major Subject: Computer Engineering

Copyright 2020 Han Bee Oh

ii

ABSTRACT

Network-on-Chip (NoC) communication architectures are widely used as on-chip

interconnect in multi-core systems. These systems are increasingly used in safety-critical

applications, so it is essential to quickly detect faults within the NoC during system

operation.

The current approach to detect a fault in an NoC system is to apply periodic test

using built-in self-test (BIST) circuitry during system idle periods. This approach has the

advantage that it is a structural test, so can quickly achieve high fault coverage. A second

advantage is that the BIST infrastructure can be used during manufacturing test. The

disadvantage is the need for the idle time to apply the test, and the time to save/restore the

functional state that is overwritten during the test. An additional disadvantage is that the

system is at risk of an undetected fault between self-tests.

In this research we propose to test the NoC system while it is in functional

operation, which is an on-line test. We will use functional invariants to detect errors in

functional operation, which can then trigger diagnosis and fault recovery or system

reconfiguration. The advantage of this approach is that it minimizes fault detection

latency, and avoids the need for a system idle period or for save/restore state operations.

The disadvantage is that it is much more difficult to achieve high fault coverage since our

approach detects functional errors based on existing functional network traffic, rather than

self-test stimulus.

iii

In order to evaluate our functional test approach, we have designed a gate-level

NoC implementation, which can be the target for gate-level fault injection and simulation

using realistic network traffic. We inject stuck-at faults and single event transients into the

gate-level logic during simulation of synthetic NoC traffic. We found that the functional

invariants proposed in prior work miss detection of many faults. Most of these escapes are

detected by end-to-end cyclical redundancy checks. However, we found it necessary to

create additional functional checkers to detect the remaining faults.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Walker, my co-chair Dr. Choi, and

my committee member Dr. Rajendran, for their guidance and support throughout the

course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff

for making my time at Texas A&M University a great experience.

Finally, thanks to my mother and father for their encouragement, patience and

love.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Duncan

M. Walker (advisor) of the Department of Computer Science and Engineering, and

Professor Gwan Choi (co-advisor) and Professor J. V. Rajendran of the Department of

Electrical and Computer Engineering.

The network-on-chip architecture and traffic patterns were taken from the open

literature, as were the initial set of functional checkers. The open-source Booksim

simulator was used for fault simulations.

 All other work conducted for the thesis was completed by the student

independently.

Funding Sources

The student was self-funded during this research.

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

ACKNOWLEDGEMENTS .. iv

CONTRIBUTORS AND FUNDING SOURCES .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ..vii

LIST OF TABLES ... viii

CHAPTER I INTRODUCTION .. 1

CHAPTER II NOC MICRO-ARCHITECTURE ... 5

CHAPTER III FAULT MODELING .. 15

CHAPTER IV EXPERIMENTAL SETUP AND RESULTS .. 17

CHAPTER V CONCLUSIONS ... 24

REFERENCES ... 25

vii

LIST OF FIGURES

 Page

Figure 1. NoCAlert invariance checker. ... 4

Figure 2. Overview of the router design. ... 6

Figure 3. Virtual channel control signals. .. 7

Figure 4. State buffer for routing control. .. 8

Figure 5. Routing computation. .. 8

Figure 6. Virtual allocator. ... 9

Figure 7. Switch allocator. ... 9

Figure 8. Multiplexer-based crossbar switch. .. 10

Figure 9. NoC mesh. .. 10

Figure 10. Message format. .. 11

Figure 11. AND gate with fault insertion logic. ... 16

viii

LIST OF TABLES

 Page

Table 1. NoCAlert invariants. .. 12

Table 2. Single stuck-at faults. ... 18

Table 3. Single stuck-at fault with new checkers. .. 20

Table 4. SET injected at cycle 250. .. 21

Table 5. Result with one SET in different cycle. ... 22

Table 6. Result with three SET faults in random cycle. ... 22

1

CHAPTER I

INTRODUCTION

Semiconductor technology scaling has allowed complete systems with hundreds

of cores to be placed on a single chip [1]. Packet-based Network-on-Chip (NoC) have

become the common communication mechanism for these designs [2][3][4][5]. There has

been much academic research on NoC design and analysis [6], and commercial design

automation tools are available [7][8].

Increasingly integrated circuits are used in safety-critical systems, most notably

automotive applications [9]. Safety standards such as ISO 26262 [10] place very stringent

reliability requirements on electronic systems to maintain system functional safety. This

includes the NoC within the integrated circuits.

One of the traditional approaches to building high-reliability systems is to use

redundancy (e.g. error detecting and correcting codes, repeated execution, duplicate

modules) and reconfiguration to provide fault tolerance [11]. The drawback of these

approaches is that their cost is too high for many applications, in terms of chip area, timing,

or power. The approach being taken in many automotive systems is BIST, where testing

can be interleaved with system operation. If a fault is detected, diagnosis and corrective

action is taken, such as swapping in a spare module or operating in a degraded, but safe

condition. This is now a very active area of research and commercial development, with

its own dedicated workshop [12].

2

The drawback of periodic BIST is that it is very invasive to the design process. For

example, when tests are applied to circuits that are not in functional operation, any current

state is overwritten. If that state is needed for system operation, it must be saved and

restored. This is very difficult when testing memories. A second drawback of periodic

BIST is that the system is at risk during the period that it is in functional operation.

In the context of NoC, most faults in the packet payload can be detected using low-

overhead error detecting codes, such as cyclical redundancy check (CRC) applied when

the packet is received at the final destination. This end-to-end check has high fault

coverage, but it can be difficult to localize the fault that occurred on the routing path, and

faults in the buffering and control logic in the NoC routers can cause the packet to be

damaged, lost or mis-delivered. The control logic can be protected with periodic BIST,

but there are several challenges to implementing it in NoC architectures:

 The area overhead of the BIST engine is such that it must be shared across many NoC

routers. This increases the time to deliver the test patterns and check the results. It also

introduces extra routing overhead for the BIST information.

 The shared BIST engine means that a full NoC test cycle must be spread over many

system clock cycles, due to the limited amount of time for periodic BIST, before the

system must return to functional operation. This may result in an unacceptably long

time window between complete tests.

 When a set of routers are in a BIST cycle, they block network traffic. Attempts have

been made to determine network traffic patterns and schedule the BIST cycles during

3

idle times [13], but this is a complex process in systems with changing activity and

traffic patterns.

As noted above, testing memories with periodic BIST is challenging due to the

need to save and restore state, and the limited access path to and from the memory, and an

alternate location to save the state. This is a particular problem in NoCs, due to the port

buffers in every router. One option is to wait until the buffers are empty before executing

the BIST cycle, but this will have a greater impact on network traffic. Packet-level CRC

can detect some buffer faults, but rarely-used buffer entries (e.g. the last entry in the last

virtual channel, only used when the buffer is full), may not be detected until the system is

very busy, which may be during a system emergency.

Due to the shortcomings of periodic BIST to detect faults in NoC architectures,

Prodromou, et al. [14] proposed that error detecting codes be used to check the data paths

in the NoC, and that an on-line fault detection mechanism, termed NoCAlert, using

functional invariance checkers, be used to detect faults in the router control logic and

crossbar switch. As shown in Fig. 1, their invariance checkers compare the inputs and

outputs of logic modules, and signal an error if any invariance is violated. This approach

demonstrated high fault coverage with low fault detection latency and no false negatives

(fault escapes). The checker designs had minimal power and area overhead.

4

Figure 1. NoCAlert invariance checker.

The analysis in [14] only considered single event transient (SET) faults on inputs

and outputs of the behavioral modules covered by an invariance checker. This is a small

fraction of the potential fault universe. Other research has examined detection of transistor

short-channel faults in NoCs [15]. In this work, we evaluate the performance of module-

level invariance checkers on gate-level faults within the routers of the NoC. This includes

faults within the control logic, crossbar switch, and input and output ports. In addition, we

include end-to-end CRC checking for each packet, and determine the coverage

relationship between CRC checking and the invariance checkers. We show that invariance

checkers have high coverage of gate-level faults within the control modules, and that CRC

detects data path faults. The results show that some faults are not detected, and propose

additional checkers to detect such faults.

Logic
Module

Checker

Input
Output

Invariance
Assertion

5

CHAPTER II

NOC MICRO-ARCHITECTURE

In this work, we use a 2D mesh NoC architecture with wormhole switching, atomic

Virtual Channel (VC) buffers, deterministic X-Y routing and credit-based flow control.

Each packet is divided into 32-bit flits. The first two bits of each flit specifies the flit type.

The head flit contains source and destination address (in terms of (x,y) location in the

mesh), and packet ID (PID). A number of payload flits, which include the PID and data,

follows the head flit. The tail flit contains the PID and a 24-bit CRC.

We will use a baseline router micro-architecture [16] that has been widely used in

the literature, including [14]. Fig. 2 presents an abstract view of the router design. Flow

control for the router uses a state buffer, which contains routing computation, virtual

channel allocation, and switch allocation status. Each router has five input/output ports –

one for each of the routing directions in a 2D mesh – and one port to communicate with

the processing element at that location in the mesh. Each port has four virtual channels

(VCs), each with four flit buffer slots. These VCs are used primarily to avoid deadlock in

the network. A parallel crossbar switch connects the input and output ports together.

6

Figure 2. Overview of the router design.

The control logic consists of the routing computation (RC), virtual channel

allocation (VA), and switch allocation (SA) modules. The RC module computes the output

direction of an incoming packet, based on the routing algorithm and the destination

address of the packet (in the head flit). The VA module allocates the VC that the packet

7

will use in the next router. The SA module selects the flits switched by the crossbar in

each clock cycle.

The router has a five-stage pipeline, consisting of RC, VA, SA, crossbar traversal,

and link traversal. The RC and VA stages are only required for the header flit. Each VC

only stores flits belonging to a single packet. The input and output control signals of each

VC are shown in Fig. 3. The state buffer for the routing control is shown in Fig. 4. Since

the CRC is generated at the originating processing element, and evaluated at the

destination processing element, the CRC is treated as payload by the router. This work

uses the 24-bit CRC from wideband code division multiple access (W-CDMA) [17]:

𝑥24+𝑥23 + 𝑥6 + 𝑥5 + 𝑥1 + 1

Figure 3. Virtual channel control signals.

8

Figure 4. State buffer for routing control.

To avoid deadlock, the input port of the router contains a virtual channel module

with four virtual channels. Each virtual channel contains a FIFO implemented as a circular

buffer. If the head flit is at the head of the FIFO, the routing computation is done to

calculate which direction the packet needs to go, as shown in Fig. 5.

Figure 5. Routing computation.

When the routing computation is done, the virtual allocator calculates the virtual

channel location in the next router (virtual channel ID or VCID). If all of the virtual

channels are full, the virtual allocator deasserts the valid signal, so that the switch allocator

enters an idle cycle, as shown in Fig. 6.

9

Figure 6. Virtual allocator.

The switch allocator calculates whether the flit under consideration can be routed

through crossbar in the next cycle, as shown in Fig. 7. Routing computation, virtual

allocator, and switch allocator is done only on head flits, so there is the possibility that a

body or tail flit is being transmitted to the same output port requested by the head flit. The

switch allocator does not grant the request until the output port is free.

Figure 7. Switch allocator.

When the head flit completes the switch allocator process, all flits in the packet

pass through the crossbar without pausing. The crossbar switch is implemented using

multiplexers as shown in Fig. 8.

10

Figure 8. Multiplexer-based crossbar switch.

Figure 9. NoC mesh.

11

For our simulations, we use a 4x4 mesh NoC system, as shown in Fig. 9. Each

router communicates with its neighbor routers by transmitting flit data and credit data. Flit

data is transmitted using the message format in Fig. 10. A message is made up of multiple

packets. A packet is made up of three types of flits (head flit, body flit, and tail flit). The

head flit contains destination, source location, packet size and virtual channel ID. The

body flit contains the data being transmitted from one processing element to another. The

tail flit contains the CRC-24 code.

Figure 10. Message format.

12

Table 1. NoCAlert invariants.

Routing Computation (RC) Unit

1 Illegal turn

2 Invalid RC output direction

3 Non-minimal routing (if required)

Arbiter Modules (VA and SA Stages)

4 Grant w/o request

5 Grant to nobody

6 1-hot grant vector

7 Grant to occupied or full VC

8 One-to-One VC assignment

9 One-to-One port assignment

10 VA agrees with RC

11 SA agrees with RC

12 Intra-VA stage order

13 Intra-SA stage order

Crossbar

14 1-hot column control vector

15 1-hot row control vector

16 # Incoming flips == # Outgoing flits

Buffer State (Each VC Buffer maintains its state)

17 Consistent VC buffer state

18 Only header flits in free VC buffers

19 Invalid output VC value

20 Complete RC stage on a non-header flit

21 Complete RC stage on an empty VC

22 Complete VC stage on a non-header flit

23 Complete VA stage on an empty VC

24 Read from an empty buffer

25 Write to a full buffer

26 Buffer atomicity violation

27 Packet mixing in non-atomic buffer

28 Packet flit-count violation

Port-Level Invariances

29 Concurrent read from multiple VCs

30 Concurrent write to multiple VCs

31 Concurrent RC completion of multiple VCs

Network-Level Invariance

32 End-to-End delivery violation

13

Prodromou et al. [14] developed a set of 32 invariants covering the routing

computation, arbiter modules (virtual channel allocation and switch allocation), crossbar

switch, virtual channel buffer state, input/output ports, and end-to-end delivery. These

invariants are listed in Table 1. Fourteen invariants (5, 8, 12, 13, 14, 15, 18, 19, 22, 26, 28,

29, 30, 31) are not considered here since these errors cannot occur in our gate-level design.

In this design, the virtual channel ID is binary-encoded, not one-hot encoded, so checkers

8, 19, 29, 30, 31 are not needed in our design. Our crossbar switch design uses a

multiplexer approach, rather than a switch matrix so checkers 14 and 15 are unnecessary.

There is no intra/inter VA/SA separation in the design so checkers 12 and 13 are not

implemented. There is possibility that VA does not give any grant when there is not

available virtual channel for next hop, so 5 is not proper checker for our design. Also, the

flit size needs to be flexible so checker 28 is not implemented in our design. In our design,

there is no unique signal when the virtual allocator calculates virtual channel ID, so

checker 22 is not implemented. There is some chance that a body flit can become stuck in

a virtual channel buffer, so 18 is not proper checker for our design. Since our virtual

channel can contain 4 flits (which is more than one packet), the head flit can become stuck

in a non-free virtual channel, which means checker 26 is unnecessary.

As noted in [14], an invariance checker detects illegal outputs, but may not detect

incorrect, but legal outputs. A later router or the destination (e.g. CRC calculation) may

catch some of these incorrect outputs. The checkers may not catch some faults. For

example, a bit flip in the packet destination address may deliver the packet to the wrong

destination without any invariance violation. The destination processing element will

14

presumably use higher level routing protocols, such as sequence numbers, to reject such

packets, and depend on a timeout and retransmit by the source processing element. Such

higher-level routing protocols are beyond the scope of this thesis.

15

CHAPTER III

FAULT MODELING

In this research we consider single stuck-at faults (SAF) and single-event transients

(SET), which can be viewed as a stuck-at fault for a single clock cycle. We cannot use

traditional structural fault simulation in this research, since we will be combining

behavioral NoC system simulation with gate-level simulation of the router. In our

approach we modify the gate model so that we can inject stuck-at-0 (SA0) and stuck-at-1

(SA1) faults into the inputs and outputs of each logic gate. Fig. 11 shows an example of a

logical AND gate with additional circuitry to permit fault injection during the simulation.

When the ST0 signal is zero on the output, the AND gate output is SA0. When the ST1

signal is zero, the output is SA1. Similarly for the ST0 and ST1 signals on the inputs. For

fault-free operation, all ST0 and ST1 signals are one. To inject a fault, one of the ST0 or

ST1 signals is set to zero. For N logic gates in the circuit, there will be 6N control signals.

For a single-fault model, only one signal is set zero at a time. For a stuck-at fault model,

the signal is set zero for all clock cycles in the simulation. For a single-event transient, the

signal is set zero for one clock cycle.

16

Figure 11. AND gate with fault insertion logic.

17

CHAPTER IV

EXPERIMENTAL SETUP AND RESULTS

The original NoCAlert analysis [14] performed cycle-accurate simulation of an

8x8 mesh NoC using the GARNET NoC simulator [18], modeling the routers at the micro-

architectural level, with the addition of the invariance checkers. Single-event transient

(SET) faults were injected at the inputs and outputs of the RC, VA, SA and crossbar switch

modules. There were 205 module-level SET fault injection sites within each router, and a

total of 11,808 fault sites within the 8x8 2D mesh. The mesh was simulated with synthetic

traffic patterns with traffic injection rates varying from 0.1 to 0.4 flits/PE/cycle. SET fault

injection was performed at cycle 0, 32K and 64K, for a total of 248K fault injection

simulations.

To perform a gate-level analysis of the network, we replaced router (2,1) with a

gate-level implementation, which was simulated using NCverilog. The NoC level

behavioral simulation was performed using BookSim 2.0 with uniform traffic. This NoC

level traffic is fed into the gate-level simulation.

In our simulations, we randomly injected gate-level stuck-at faults, by setting one

of the gate injection control lines in Fig. 11 to zero. If the fault is an SET, it is set for only

a single clock cycle, either specified or randomly chosen. Only one fault is injected in each

simulation run. Faults are not injected into the invariance checkers, since our goal is to

understand their ability to detect gate-level faults within the router. As a practical matter,

checkers are unlikely to be faulty since they are only about 3% of the router area [14].

18

In our implementation, all parts of the router except the virtual channel buffer were

implemented at gate level. There are 38,100 stuck-at fault sites (RC/VA/SA/Crossbar/

status buffer) in each router. For the fault simulations, we randomly injected 3800 faults

(10% of the fault sites). The simulation was performed for 500 clock cycles, which is long

compared to the 36 cycles for a packet to transit completely across the mesh. The injection

rate for the uniform traffic pattern is 0.05 (0.05 packets/cycle injected by each processing

element, addressed to a different random processing element). Experiments were done

using both stuck-at faults and single-event transient faults.

In the stuck-at fault experiment, we examine the faults detected by the invariance

checkers and the CRC. Faults labeled “masked” do not result in any faulty behavior, or

one bit flipped in an all-0 idle flit. Single stuck-at faults are injected into random fault sites

and are active across all clock cycles. The results are shown in Table 2.

Table 2. Single stuck-at faults.

 NoCAlert detected NoCAlert not detected

CRC detected

CRC not

detected
CRC detected

CRC not

detected

Faulty 294 581 535 188

Masked 0 164 0 2028

The faults that are only detected by CRC are faults that only affect the packet

payload or CRC.

In the 188 cases that are not detected by the checkers or CRC, 159 cases are benign

– virtual channel ID (VCID) is changed, so the packet uses a different virtual channel than

19

intended. The VCID is not checked by the CRC, since it changes with packet routing. The

VCID is not checked by the invariance checkers, if a virtual channel is available.

There are 29 cases that escape detection, but do not cause a benign fault. There are

four different categories: 1. Packet ID is duplicated, 2. Flit type is changed, 3. Bit flipped

in Head/Body/Tail flit, and 4. Flit disappears.

For case 1, the packet ID is changed, and the changed packet ID is already used

for another virtual channel, causing the body flit and tail flit to be sent to the wrong virtual

channel. Such packets will ultimately be detected as truncated packets due to a receiver

timeout, and a higher-level protocol would then retransmit them.

For case 2, where the flit type is changed, the destination processing element has

to recognize the erroneous flit by using sequential numbers.

For case 3, where a bit is flipped in the Head/Body/Tail flit, normally they would

be detected by the CRC checker, but these cases are similar to case 1, in that the flits

cannot be assembled correctly for the CRC checker, and are eventually discarded. The

reason is that with a packet insertion rate is 0.05 packets/cycle/PE for 16 PEs, and 500

simulation cycles, there are approximately 400 packets in the simulation. This would

require a 9-bit packet ID field to uniquely identify them. But the packet ID field is only 4

bits, since packets only need to be uniquely identified on their routes, not in the entire

array. But this limited packet ID field means that bit flips can cause failure in reassembling

flits at the destination.

For case 4, a stuck-at fault can cause a flit to be lost. There are four causes of flit

disappearance: 1. virtual allocator does not generate output even if there is no wait signal

20

(9 cases), 2. switch allocator does not generate output even if there is no wait signal (9

cases), 3. the flit data is changed in the virtual allocator (3 cases), and 4. flit data is changed

in the switch allocator (1 case). We created a small invariance checker to detect these

cases.

We repeated the stuck-at fault simulation with our new checkers (NC) inserted.

The results are shown in Table 3.

Table 3. Single stuck-at fault with new checkers.

 NoCAlert detected NoCAlert not detected

 CRC detected CRC not detected CRC detected CRC not detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

Faulty 103 191 145 436 136 399 63 135

Masked 0 0 0 164 0 0 1 2027

In the 135 cases that are not detected with the checkers or CRC, there are 120 cases

of benign faults (virtual channel ID is changed) and 14 cases can be detected by higher

level protocol, such as timeout (packet ID changed -11 cases, flit type is changed – 1 case).

The remaining 3 cases are loss of flits due to insufficient number of bits in the packet ID

(bit flipped in Head/Body/Tail flit), which must be detected by packet timeout.

For SET faults, three different experiments were performed. In the first

experiment, the SET occurs in cycle 250 at random fault sites. In the second experiment,

the fault site and fault cycle are randomly selected. In the third experiment, three SETs are

randomly injected into fault sites on random cycles. The results for SET injection at cycle

are shown in Table 4.

21

Table 4. SET injected at cycle 250.

 NoCAlert detected NoCAlert not detected

 CRC detected CRC not detected CRC detected CRC not detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

Faulty 0 0 1 16 0 0 13 75

Masked 0 0 1 0 0 0 0 3582

As can be seen in the result, most SETs do not cause faulty behavior since their

incorrect value is not propagated, either due to logical or temporal masking, or the circuit

is idle.

In the 75 cases that are not detected with the checkers or CRC, there are 32 cases

of benign faults (virtual channel ID is changed - 29 cases, bit flipped in all-0 idle flits - 3

cases). There are 9 cases that can be detected by a timeout (packet ID changed - 6 cases,

flit type is changed - 3 cases), and 37 cases (bit flipped for Head/Body/Tail flit) where flits

are lost (and must be detected by timeout) but would have been detected by CRC if more

packet ID bits were available.

In the second SET experiment, SETs occur randomly in fault sites and clock

cycles. The results are shown in Table 5.

22

Table 5. Result with one SET in different cycle.

 NoCAlert detected NoCAlert not detected

 CRC detected CRC not detected CRC detected CRC not detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

Faulty 0 0 8 17 1 0 24 51

Masked 0 0 1 1 0 0 100 3598

In this experiment, there are 51 cases that are not detected by the CRC or the

checkers. In 31 cases, the SET caused a benign change in the virtual channel ID. There

are three cases where the packet ID is changed. In the remaining 17 cases, the SET causes

bit flit in Head/Body/Tail flit, requiring timeout for detection.

In the third SET experiment, three SETs are injected into random fault sites on

random cycles. The results are shown in Table 6.

Table 6. Result with three SET faults in random cycle.

 NoCAlert detected NoCAlert not detected

 CRC detected CRC not detected CRC detected CRC not detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

NC

detected

NC not

detected

Faulty 0 0 19 59 1 0 65 157

Masked 0 0 5 3 0 0 292 3200

In the 157 cases that are not detected by the checkers or CRC, 98 cases are benign

faults (virtual channel ID is changed - 97 cases, flit is delayed in one cycle - 1 case). There

23

are 4 cases where the packet ID is changed and 55 cases are bit flip in Head/Body/Tail flit,

which must be detected by higher level protocols.

We evaluated a higher 0.1 packets/cycle/node packet injection rate for random

traffic. This corresponds to an average of a 30% utilization of each PE port and a 7.5%

utilization of the remaining ports. This utilization is high enough to sometimes cause

virtual channel buffers to be full. The virtual allocator uses credit-based flow control to

determine which virtual channel to assign to a packet in the next input port, and uses a

round-robin approach to selecting the next available virtual channel. However, the

allocation decision is only made based on the head flit, and then all remaining packet flits

are sent, without any request/acknowledge signaling. As a result, flits will be dropped

when there was enough space to send the head flit, but some of the remaining packet flits

will not fit into the virtual channel. These truncated packets must be detected by the

destination. Our checkers will flag these truncated packets, even though there was no fault.

These can be viewed the same as cases where benign faults are flagged.

24

CHAPTER V

CONCLUSIONS

In this thesis, we performed a structural analysis of the invariant checkers and CRC

proposed in [14]. These checkers had previously only been evaluated for a small set of the

possible faulty behaviors that can occur in a router. We evaluated these checkers using

single stuck-at faults and single-event transients injected into the gate-level circuit

structure. We found that the CRC and invariant checkers had high coverage of the

structural faults, but a significant number of faults still escaped. Most of these faults were

benign, causing different timing or different use of virtual channels, but not affecting

packet delivery.

In a small number of cases, undetected faults would cause packets to be damaged,

so that they would be rejected by the destination processing element. The most serious

case were

In the remaining cases we proposed additional on-line checkers to detect the faults

that had escaped. We propose on-line test checkers which is missed from NoCAlert

checker and CRC checker. In the stuck-at fault simulation, 63 more faults are detected by

adding three checkers, increasing the number of detected faults from 3602 to 3665 (1.66%

increase), out of the 3800 faults injected.

25

REFERENCES

[1] International Technology Roadmap for Semiconductors, 2017. [Online]

Available: http://www.itrs2.net. [Accessed: 15-Sep-2018].

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,” Design Automation Conference, Las Vegas, NV, 2001, pp. 684-689.

doi: 10.1109/DAC.2001.156225

[3] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE

Computer, vol. 35, no. 5, pp. 70-78, 2002.

[4] G. De Micheli and L. Benini, “Networks on Chips: 15 Years Later,” IEEE

Computer, vol. 50, no. 5, pp. 10-11, 2017.

[5] M. S. Gaur, V. Laxmi, M. Zwolinski, M. Kumar, N. Gupta and Ashish,

“Network-on-Chip: Current Issues and Challenges,” IEEE International

Symposium on VLSI Design and Test, Ahmedabad, India, June 2015, pp. 1-3. doi:

10.1109/ISVDAT.2015.7208160

[6] S. K. Mandal, N. Gupta, A. Mandal, J. Malave, J. Lee and R. N. Mahapatra,

“NoCBench: A Benchmarking Platform for Network on Chip,” International

Workshop on Unique Chips and Systems, Boston, MA, April 2009.

[7] Netspeed Systems Orion, 2018. [Online] Available:

https://netspeedsystems.com/products/orion. [Accessed: 15-Sep-2018].

[8] J.-J. Lecler and G. Baillieu, “Application Driven Network-on-Chip Architecture

Exploration and Refinement for a Complex SoC,” Springer Design Automation

26

for Embedded Systems, vol. 15, pp. 133-158, 2011. Doi: 10.1007/s10617-011-

9075-5

[9] K. Greb and R. Mariani, “Functional Safety Poses Challenges for Semiconductor

Design,” May 2011. [Online] Available: https://www.embedded.com. [Accessed:

15-Sep-2018].

[10] Road vehicles — Functional safety, ISO 26262-1:2018, International

Standardization Organization, 2018.

[11] I. Koren and C. M. Krishna, Fault Tolerant Systems, San Francisco, CA: Morgan

Kaufmann, 2007.

[12] IEEE International Workshop on Automotive Reliability and Test, Phoenix, AZ,

November 2018.

[13] J. Liu, J. Harkin, Y. Li and L. Maguire, “Online Traffic-Aware Fault Detection

for Networks-on-Chip”, Journal of Parallel and Distributed Computing, vol. 74,

no. 1, January 2014, pp. 1984-1993.

[14] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “NoCAlert: An On-

Line and Real-Time Fault Detection Mechanism for Network-on-Chip

Architectures,” IEEE/ACM International Symposium on Microarchitecture,

Vancouver, BC, 2012, pp. 60-71. doi: 10.1109/MICRO.2012.15

[15] B. Bhowmik, S. Biswas, J. K. Deka and B. B. Bhattacharya, “Reliability-Aware

Test Methodology for Detecting Short-Channel Faults in On-Chip Networks,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no.

6, June 2018, pp. 1026-1039. doi: 10.1109/TVLSI.2018.2803478

27

[16] L. Peh and W. J. Dally, "A Delay Model for Router Microarchitectures," IEEE

Micro, vol. 21, no. , pp. 26-34, 2001. doi:10.1109/40.903059

[17] L. B. Milstein, “Wideband Code Division Multiple Access,” IEEE Journal on

Selected Areas in Communications, vol. 18, no. 8, pp. 1344-1354, Aug. 2000.

doi: 10.1109/49.864000

[18] N. Agarwal, T. Krishna, L. Peh and N. K. Jha, “GARNET: A Detailed On-Chip

Network Model Inside a Full-System Simulator,” IEEE International Symposium

on Performance Analysis of Systems and Software, Boston, MA, 2009, pp. 33-42.

doi: 10.1109/ISPASS.2009.4919636J

