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ABSTRACT 

 

Network-on-Chip (NoC) communication architectures are widely used as on-chip 

interconnect in multi-core systems. These systems are increasingly used in safety-critical 

applications, so it is essential to quickly detect faults within the NoC during system 

operation.  

The current approach to detect a fault in an NoC system is to apply periodic test 

using built-in self-test (BIST) circuitry during system idle periods. This approach has the 

advantage that it is a structural test, so can quickly achieve high fault coverage. A second 

advantage is that the BIST infrastructure can be used during manufacturing test. The 

disadvantage is the need for the idle time to apply the test, and the time to save/restore the 

functional state that is overwritten during the test. An additional disadvantage is that the 

system is at risk of an undetected fault between self-tests. 

In this research we propose to test the NoC system while it is in functional 

operation, which is an on-line test. We will use functional invariants to detect errors in 

functional operation, which can then trigger diagnosis and fault recovery or system 

reconfiguration. The advantage of this approach is that it minimizes fault detection 

latency, and avoids the need for a system idle period or for save/restore state operations. 

The disadvantage is that it is much more difficult to achieve high fault coverage since our 

approach detects functional errors based on existing functional network traffic, rather than 

self-test stimulus. 
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In order to evaluate our functional test approach, we have designed a gate-level 

NoC implementation, which can be the target for gate-level fault injection and simulation 

using realistic network traffic. We inject stuck-at faults and single event transients into the 

gate-level logic during simulation of synthetic NoC traffic. We found that the functional 

invariants proposed in prior work miss detection of many faults. Most of these escapes are 

detected by end-to-end cyclical redundancy checks. However, we found it necessary to 

create additional functional checkers to detect the remaining faults. 
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CHAPTER I  

INTRODUCTION  

 

Semiconductor technology scaling has allowed complete systems with hundreds 

of cores to be placed on a single chip [1]. Packet-based Network-on-Chip (NoC) have 

become the common communication mechanism for these designs [2][3][4][5]. There has 

been much academic research on NoC design and analysis [6], and commercial design 

automation tools are available [7][8]. 

Increasingly integrated circuits are used in safety-critical systems, most notably 

automotive applications [9]. Safety standards such as ISO 26262 [10] place very stringent 

reliability requirements on electronic systems to maintain system functional safety. This 

includes the NoC within the integrated circuits. 

One of the traditional approaches to building high-reliability systems is to use 

redundancy (e.g. error detecting and correcting codes, repeated execution, duplicate 

modules) and reconfiguration to provide fault tolerance [11]. The drawback of these 

approaches is that their cost is too high for many applications, in terms of chip area, timing, 

or power. The approach being taken in many automotive systems is BIST, where testing 

can be interleaved with system operation. If a fault is detected, diagnosis and corrective 

action is taken, such as swapping in a spare module or operating in a degraded, but safe 

condition. This is now a very active area of research and commercial development, with 

its own dedicated workshop [12]. 
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The drawback of periodic BIST is that it is very invasive to the design process. For 

example, when tests are applied to circuits that are not in functional operation, any current 

state is overwritten. If that state is needed for system operation, it must be saved and 

restored. This is very difficult when testing memories. A second drawback of periodic 

BIST is that the system is at risk during the period that it is in functional operation. 

In the context of NoC, most faults in the packet payload can be detected using low-

overhead error detecting codes, such as cyclical redundancy check (CRC) applied when 

the packet is received at the final destination. This end-to-end check has high fault 

coverage, but it can be difficult to localize the fault that occurred on the routing path, and 

faults in the buffering and control logic in the NoC routers can cause the packet to be 

damaged, lost or mis-delivered. The control logic can be protected with periodic BIST, 

but there are several challenges to implementing it in NoC architectures: 

 The area overhead of the BIST engine is such that it must be shared across many NoC 

routers. This increases the time to deliver the test patterns and check the results. It also 

introduces extra routing overhead for the BIST information. 

 The shared BIST engine means that a full NoC test cycle must be spread over many 

system clock cycles, due to the limited amount of time for periodic BIST, before the 

system must return to functional operation. This may result in an unacceptably long 

time window between complete tests. 

 When a set of routers are in a BIST cycle, they block network traffic. Attempts have 

been made to determine network traffic patterns and schedule the BIST cycles during 
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idle times [13], but this is a complex process in systems with changing activity and 

traffic patterns. 

As noted above, testing memories with periodic BIST is challenging due to the 

need to save and restore state, and the limited access path to and from the memory, and an 

alternate location to save the state. This is a particular problem in NoCs, due to the port 

buffers in every router. One option is to wait until the buffers are empty before executing 

the BIST cycle, but this will have a greater impact on network traffic. Packet-level CRC 

can detect some buffer faults, but rarely-used buffer entries (e.g. the last entry in the last 

virtual channel, only used when the buffer is full), may not be detected until the system is 

very busy, which may be during a system emergency. 

Due to the shortcomings of periodic BIST to detect faults in NoC architectures, 

Prodromou, et al. [14] proposed that error detecting codes be used to check the data paths 

in the NoC, and that an on-line fault detection mechanism, termed NoCAlert, using 

functional invariance checkers, be used to detect faults in the router control logic and 

crossbar switch. As shown in Fig. 1, their invariance checkers compare the inputs and 

outputs of logic modules, and signal an error if any invariance is violated. This approach 

demonstrated high fault coverage with low fault detection latency and no false negatives 

(fault escapes). The checker designs had minimal power and area overhead. 
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Figure 1. NoCAlert invariance checker. 

 

 

The analysis in [14] only considered single event transient (SET) faults on inputs 

and outputs of the behavioral modules covered by an invariance checker. This is a small 

fraction of the potential fault universe. Other research has examined detection of transistor 

short-channel faults in NoCs [15]. In this work, we evaluate the performance of module-

level invariance checkers on gate-level faults within the routers of the NoC. This includes 

faults within the control logic, crossbar switch, and input and output ports. In addition, we 

include end-to-end CRC checking for each packet, and determine the coverage 

relationship between CRC checking and the invariance checkers. We show that invariance 

checkers have high coverage of gate-level faults within the control modules, and that CRC 

detects data path faults. The results show that some faults are not detected, and propose 

additional checkers to detect such faults. 
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CHAPTER II  

NOC MICRO-ARCHITECTURE 

 

In this work, we use a 2D mesh NoC architecture with wormhole switching, atomic 

Virtual Channel (VC) buffers, deterministic X-Y routing and credit-based flow control. 

Each packet is divided into 32-bit flits. The first two bits of each flit specifies the flit type. 

The head flit contains source and destination address (in terms of (x,y) location in the 

mesh), and packet ID (PID). A number of payload flits, which include the PID and data, 

follows the head flit. The tail flit contains the PID and a 24-bit CRC. 

We will use a baseline router micro-architecture [16] that has been widely used in 

the literature, including [14]. Fig. 2 presents an abstract view of the router design. Flow 

control for the router uses a state buffer, which contains routing computation, virtual 

channel allocation, and switch allocation status. Each router has five input/output ports – 

one for each of the routing directions in a 2D mesh – and one port to communicate with 

the processing element at that location in the mesh. Each port has four virtual channels 

(VCs), each with four flit buffer slots. These VCs are used primarily to avoid deadlock in 

the network. A parallel crossbar switch connects the input and output ports together. 
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Figure 2. Overview of the router design. 

 

 

The control logic consists of the routing computation (RC), virtual channel 

allocation (VA), and switch allocation (SA) modules. The RC module computes the output 

direction of an incoming packet, based on the routing algorithm and the destination 

address of the packet (in the head flit). The VA module allocates the VC that the packet 
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will use in the next router. The SA module selects the flits switched by the crossbar in 

each clock cycle. 

The router has a five-stage pipeline, consisting of RC, VA, SA, crossbar traversal, 

and link traversal. The RC and VA stages are only required for the header flit. Each VC 

only stores flits belonging to a single packet. The input and output control signals of each 

VC are shown in Fig. 3. The state buffer for the routing control is shown in Fig. 4. Since 

the CRC is generated at the originating processing element, and evaluated at the 

destination processing element, the CRC is treated as payload by the router. This work 

uses the 24-bit CRC from wideband code division multiple access (W-CDMA) [17]: 

𝑥24+𝑥23 + 𝑥6 + 𝑥5 + 𝑥1 + 1 

 

 

Figure 3. Virtual channel control signals. 

 



 

8 

 

 

Figure 4. State buffer for routing control. 

 

 

To avoid deadlock, the input port of the router contains a virtual channel module 

with four virtual channels. Each virtual channel contains a FIFO implemented as a circular 

buffer. If the head flit is at the head of the FIFO, the routing computation is done to 

calculate which direction the packet needs to go, as shown in Fig. 5. 

 

 

Figure 5. Routing computation. 

 

 

When the routing computation is done, the virtual allocator calculates the virtual 

channel location in the next router (virtual channel ID or VCID). If all of the virtual 

channels are full, the virtual allocator deasserts the valid signal, so that the switch allocator 

enters an idle cycle, as shown in Fig. 6. 
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Figure 6. Virtual allocator. 

 

 

The switch allocator calculates whether the flit under consideration can be routed 

through crossbar in the next cycle, as shown in Fig. 7. Routing computation, virtual 

allocator, and switch allocator is done only on head flits, so there is the possibility that a 

body or tail flit is being transmitted to the same output port requested by the head flit. The 

switch allocator does not grant the request until the output port is free. 

 

 

Figure 7. Switch allocator. 

 

 

When the head flit completes the switch allocator process, all flits in the packet 

pass through the crossbar without pausing. The crossbar switch is implemented using 

multiplexers as shown in Fig. 8. 
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Figure 8. Multiplexer-based crossbar switch. 

 

 

 

Figure 9. NoC mesh. 
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For our simulations, we use a 4x4 mesh NoC system, as shown in Fig. 9. Each 

router communicates with its neighbor routers by transmitting flit data and credit data. Flit 

data is transmitted using the message format in Fig. 10. A message is made up of multiple 

packets. A packet is made up of three types of flits (head flit, body flit, and tail flit). The 

head flit contains destination, source location, packet size and virtual channel ID. The 

body flit contains the data being transmitted from one processing element to another. The 

tail flit contains the CRC-24 code. 

 

 

Figure 10. Message format. 
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Table 1. NoCAlert invariants. 

Routing Computation (RC) Unit 

1 Illegal turn 

2 Invalid RC output direction 

3 Non-minimal routing (if required) 

Arbiter Modules (VA and SA Stages) 

4 Grant w/o request 

5 Grant to nobody 

6 1-hot grant vector 

7 Grant to occupied or full VC 

8 One-to-One VC assignment 

9 One-to-One port assignment 

10 VA agrees with RC 

11 SA agrees with RC 

12 Intra-VA stage order 

13 Intra-SA stage order 

Crossbar 

14 1-hot column control vector 

15 1-hot row control vector 

16 # Incoming flips == # Outgoing flits 

Buffer State (Each VC Buffer maintains its state) 

17 Consistent VC buffer state 

18 Only header flits in free VC buffers 

19 Invalid output VC value 

20 Complete RC stage on a non-header flit 

21 Complete RC stage on an empty VC 

22 Complete VC stage on a non-header flit 

23 Complete VA stage on an empty VC 

24 Read from an empty buffer 

25 Write to a full buffer 

26 Buffer atomicity violation 

27 Packet mixing in non-atomic buffer 

28 Packet flit-count violation 

Port-Level Invariances 

29 Concurrent read from multiple VCs 

30 Concurrent write to multiple VCs 

31 Concurrent RC completion of multiple VCs 

Network-Level Invariance 

32 End-to-End delivery violation 
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Prodromou et al. [14] developed a set of 32 invariants covering the routing 

computation, arbiter modules (virtual channel allocation and switch allocation), crossbar 

switch, virtual channel buffer state, input/output ports, and end-to-end delivery. These 

invariants are listed in Table 1. Fourteen invariants (5, 8, 12, 13, 14, 15, 18, 19, 22, 26, 28, 

29, 30, 31) are not considered here since these errors cannot occur in our gate-level design. 

In this design, the virtual channel ID is binary-encoded, not one-hot encoded, so checkers 

8, 19, 29, 30, 31 are not needed in our design. Our crossbar switch design uses a 

multiplexer approach, rather than a switch matrix so checkers 14 and 15 are unnecessary. 

There is no intra/inter VA/SA separation in the design so checkers 12 and 13 are not 

implemented. There is possibility that VA does not give any grant when there is not 

available virtual channel for next hop, so 5 is not proper checker for our design. Also, the 

flit size needs to be flexible so checker 28 is not implemented in our design. In our design, 

there is no unique signal when the virtual allocator calculates virtual channel ID, so 

checker 22 is not implemented. There is some chance that a body flit can become stuck in 

a virtual channel buffer, so 18 is not proper checker for our design. Since our virtual 

channel can contain 4 flits (which is more than one packet), the head flit can become stuck 

in a non-free virtual channel, which means checker 26 is unnecessary. 

As noted in [14], an invariance checker detects illegal outputs, but may not detect 

incorrect, but legal outputs. A later router or the destination (e.g. CRC calculation) may 

catch some of these incorrect outputs. The checkers may not catch some faults. For 

example, a bit flip in the packet destination address may deliver the packet to the wrong 

destination without any invariance violation. The destination processing element will 
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presumably use higher level routing protocols, such as sequence numbers, to reject such 

packets, and depend on a timeout and retransmit by the source processing element. Such 

higher-level routing protocols are beyond the scope of this thesis. 
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CHAPTER III  

FAULT MODELING 

 

In this research we consider single stuck-at faults (SAF) and single-event transients 

(SET), which can be viewed as a stuck-at fault for a single clock cycle. We cannot use 

traditional structural fault simulation in this research, since we will be combining 

behavioral NoC system simulation with gate-level simulation of the router. In our 

approach we modify the gate model so that we can inject stuck-at-0 (SA0) and stuck-at-1 

(SA1) faults into the inputs and outputs of each logic gate. Fig. 11 shows an example of a 

logical AND gate with additional circuitry to permit fault injection during the simulation. 

When the ST0 signal is zero on the output, the AND gate output is SA0. When the ST1 

signal is zero, the output is SA1. Similarly for the ST0 and ST1 signals on the inputs. For 

fault-free operation, all ST0 and ST1 signals are one. To inject a fault, one of the ST0 or 

ST1 signals is set to zero. For N logic gates in the circuit, there will be 6N control signals. 

For a single-fault model, only one signal is set zero at a time. For a stuck-at fault model, 

the signal is set zero for all clock cycles in the simulation. For a single-event transient, the 

signal is set zero for one clock cycle. 
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Figure 11. AND gate with fault insertion logic. 



 

17 

 

CHAPTER IV  

EXPERIMENTAL SETUP AND RESULTS 

 

The original NoCAlert analysis [14] performed cycle-accurate simulation of an 

8x8 mesh NoC using the GARNET NoC simulator [18], modeling the routers at the micro-

architectural level, with the addition of the invariance checkers. Single-event transient 

(SET) faults were injected at the inputs and outputs of the RC, VA, SA and crossbar switch 

modules. There were 205 module-level SET fault injection sites within each router, and a 

total of 11,808 fault sites within the 8x8 2D mesh. The mesh was simulated with synthetic 

traffic patterns with traffic injection rates varying from 0.1 to 0.4 flits/PE/cycle. SET fault 

injection was performed at cycle 0, 32K and 64K, for a total of 248K fault injection 

simulations. 

To perform a gate-level analysis of the network, we replaced router (2,1) with a 

gate-level implementation, which was simulated using NCverilog. The NoC level 

behavioral simulation was performed using BookSim 2.0 with uniform traffic. This NoC 

level traffic is fed into the gate-level simulation. 

In our simulations, we randomly injected gate-level stuck-at faults, by setting one 

of the gate injection control lines in Fig. 11 to zero. If the fault is an SET, it is set for only 

a single clock cycle, either specified or randomly chosen. Only one fault is injected in each 

simulation run. Faults are not injected into the invariance checkers, since our goal is to 

understand their ability to detect gate-level faults within the router. As a practical matter, 

checkers are unlikely to be faulty since they are only about 3% of the router area [14].  
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In our implementation, all parts of the router except the virtual channel buffer were 

implemented at gate level. There are 38,100 stuck-at fault sites (RC/VA/SA/Crossbar/ 

status buffer) in each router. For the fault simulations, we randomly injected 3800 faults 

(10% of the fault sites). The simulation was performed for 500 clock cycles, which is long 

compared to the 36 cycles for a packet to transit completely across the mesh. The injection 

rate for the uniform traffic pattern is 0.05 (0.05 packets/cycle injected by each processing 

element, addressed to a different random processing element). Experiments were done 

using both stuck-at faults and single-event transient faults.  

In the stuck-at fault experiment, we examine the faults detected by the invariance 

checkers and the CRC. Faults labeled “masked” do not result in any faulty behavior, or 

one bit flipped in an all-0 idle flit. Single stuck-at faults are injected into random fault sites 

and are active across all clock cycles. The results are shown in Table 2. 

 

Table 2. Single stuck-at faults. 

 NoCAlert detected NoCAlert not detected 

 
CRC detected 

CRC not 

detected 
CRC detected 

CRC not 

detected 

Faulty 294 581 535 188 

Masked 0 164 0 2028 

 

 

The faults that are only detected by CRC are faults that only affect the packet 

payload or CRC.  

In the 188 cases that are not detected by the checkers or CRC, 159 cases are benign 

– virtual channel ID (VCID) is changed, so the packet uses a different virtual channel than 
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intended. The VCID is not checked by the CRC, since it changes with packet routing. The 

VCID is not checked by the invariance checkers, if a virtual channel is available. 

There are 29 cases that escape detection, but do not cause a benign fault. There are 

four different categories: 1. Packet ID is duplicated, 2. Flit type is changed, 3. Bit flipped 

in Head/Body/Tail flit, and 4. Flit disappears.  

For case 1, the packet ID is changed, and the changed packet ID is already used 

for another virtual channel, causing the body flit and tail flit to be sent to the wrong virtual 

channel. Such packets will ultimately be detected as truncated packets due to a receiver 

timeout, and a higher-level protocol would then retransmit them.  

For case 2, where the flit type is changed, the destination processing element has 

to recognize the erroneous flit by using sequential numbers. 

For case 3, where a bit is flipped in the Head/Body/Tail flit, normally they would 

be detected by the CRC checker, but these cases are similar to case 1, in that the flits 

cannot be assembled correctly for the CRC checker, and are eventually discarded. The 

reason is that with a packet insertion rate is 0.05 packets/cycle/PE for 16 PEs, and 500 

simulation cycles, there are approximately 400 packets in the simulation. This would 

require a 9-bit packet ID field to uniquely identify them. But the packet ID field is only 4 

bits, since packets only need to be uniquely identified on their routes, not in the entire 

array.  But this limited packet ID field means that bit flips can cause failure in reassembling 

flits at the destination. 

For case 4, a stuck-at fault can cause a flit to be lost. There are four causes of flit 

disappearance: 1. virtual allocator does not generate output even if there is no wait signal 
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(9 cases), 2. switch allocator does not generate output even if there is no wait signal (9 

cases), 3. the flit data is changed in the virtual allocator (3 cases), and 4. flit data is changed 

in the switch allocator (1 case). We created a small invariance checker to detect these 

cases. 

We repeated the stuck-at fault simulation with our new checkers (NC) inserted. 

The results are shown in Table 3. 

 

Table 3. Single stuck-at fault with new checkers. 

 NoCAlert detected NoCAlert not detected 

 CRC detected CRC not detected CRC detected CRC not detected 

 
NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

Faulty 103 191 145 436 136 399 63 135 

Masked 0 0 0 164 0 0 1 2027 

 

 

In the 135 cases that are not detected with the checkers or CRC, there are 120 cases 

of benign faults (virtual channel ID is changed) and 14 cases can be detected by higher 

level protocol, such as timeout (packet ID changed -11 cases, flit type is changed – 1 case). 

The remaining 3 cases are loss of flits due to insufficient number of bits in the packet ID 

(bit flipped in Head/Body/Tail flit), which must be detected by packet timeout. 

For SET faults, three different experiments were performed. In the first 

experiment, the SET occurs in cycle 250 at random fault sites. In the second experiment, 

the fault site and fault cycle are randomly selected. In the third experiment, three SETs are 

randomly injected into fault sites on random cycles. The results for SET injection at cycle 

are shown in Table 4. 



 

21 

 

 

Table 4. SET injected at cycle 250. 

 NoCAlert detected NoCAlert not detected 

 CRC detected CRC not detected CRC detected CRC not detected 

 
NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

Faulty 0 0 1 16 0 0 13 75 

Masked 0 0 1 0 0 0 0 3582 

 

 

As can be seen in the result, most SETs do not cause faulty behavior since their 

incorrect value is not propagated, either due to logical or temporal masking, or the circuit 

is idle.  

In the 75 cases that are not detected with the checkers or CRC, there are 32 cases 

of benign faults (virtual channel ID is changed - 29 cases, bit flipped in all-0 idle flits - 3 

cases). There are 9 cases that can be detected by a timeout (packet ID changed - 6 cases, 

flit type is changed - 3 cases), and 37 cases (bit flipped for Head/Body/Tail flit) where flits 

are lost (and must be detected by timeout) but would have been detected by CRC if more 

packet ID bits were available. 

In the second SET experiment, SETs occur randomly in fault sites and clock 

cycles. The results are shown in Table 5. 
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Table 5. Result with one SET in different cycle. 

 NoCAlert detected NoCAlert not detected 

 CRC detected CRC not detected CRC detected CRC not detected 

 
NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

Faulty 0 0 8 17 1 0 24 51 

Masked 0 0 1 1 0 0 100 3598 

 

 

In this experiment, there are 51 cases that are not detected by the CRC or the 

checkers. In 31 cases, the SET caused a benign change in the virtual channel ID. There 

are three cases where the packet ID is changed. In the remaining 17 cases, the SET causes 

bit flit in Head/Body/Tail flit, requiring timeout for detection. 

 

In the third SET experiment, three SETs are injected into random fault sites on 

random cycles. The results are shown in Table 6. 

 

Table 6. Result with three SET faults in random cycle. 

 NoCAlert detected NoCAlert not detected 

 CRC detected CRC not detected CRC detected CRC not detected 

 
NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

NC 

detected 

NC not 

detected 

Faulty 0 0 19 59 1 0 65 157 

Masked 0 0 5 3 0 0 292 3200 

 

 

In the 157 cases that are not detected by the checkers or CRC, 98 cases are benign 

faults (virtual channel ID is changed - 97 cases, flit is delayed in one cycle  - 1 case). There 
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are 4 cases where the packet ID is changed and 55 cases are bit flip in Head/Body/Tail flit, 

which must be detected by higher level protocols.  

We evaluated a higher 0.1 packets/cycle/node packet injection rate for random 

traffic. This corresponds to an average of a 30% utilization of each PE port and a 7.5% 

utilization of the remaining ports. This utilization is high enough to sometimes cause 

virtual channel buffers to be full. The virtual allocator uses credit-based flow control to 

determine which virtual channel to assign to a packet in the next input port, and uses a 

round-robin approach to selecting the next available virtual channel. However, the 

allocation decision is only made based on the head flit, and then all remaining packet flits 

are sent, without any request/acknowledge signaling. As a result, flits will be dropped 

when there was enough space to send the head flit, but some of the remaining packet flits 

will not fit into the virtual channel. These truncated packets must be detected by the 

destination. Our checkers will flag these truncated packets, even though there was no fault. 

These can be viewed the same as cases where benign faults are flagged. 
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CHAPTER V  

CONCLUSIONS 

 

In this thesis, we performed a structural analysis of the invariant checkers and CRC 

proposed in [14]. These checkers had previously only been evaluated for a small set of the 

possible faulty behaviors that can occur in a router. We evaluated these checkers using 

single stuck-at faults and single-event transients injected into the gate-level circuit 

structure. We found that the CRC and invariant checkers had high coverage of the 

structural faults, but a significant number of faults still escaped. Most of these faults were 

benign, causing different timing or different use of virtual channels, but not affecting 

packet delivery. 

In a small number of cases, undetected faults would cause packets to be damaged, 

so that they would be rejected by the destination processing element. The most serious 

case were 

In the remaining cases we proposed additional on-line checkers to detect the faults 

that had escaped. We propose on-line test checkers which is missed from NoCAlert 

checker and CRC checker. In the stuck-at fault simulation, 63 more faults are detected by 

adding three checkers, increasing the number of detected faults from 3602 to 3665 (1.66% 

increase), out of the 3800 faults injected. 
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