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ABSTRACT

The problem considered is that of distributing machine learning operations of ma-

trix multiplication and multivariate polynomial evaluation among computer nodes a.k.a

worker nodes some of whom don’t return their outputs or return erroneous outputs. The

thesis can be divided into three major parts.

In the first part of the thesis, a fault tolerant setup where t worker nodes return erro-

neous values is considered. For an additive random Gaussian error model, it is shown

that for all t < N −K, errors can be corrected with probability 1 for polynomial codes.

In the second part of the thesis, a class of codes called random Khatri-Rao-Product

(RKRP) codes for distributed matrix multiplication in the presence of stragglers is pro-

posed. The main advantage of the proposed codes is that decoding of RKRP codes is

highly numerically stable in comparison to decoding of Polynomial codes [67] and de-

coding of the recently proposed OrthoPoly codes [18]. It is shown that RKRP codes are

maximum distance separable with probability 1.

In the third part of the thesis, the problem of distributed multivariate polynomial

evaluation (DPME) is considered, where Lagrange Coded Computing (LCC) [66] was

proposed as a coded computation scheme to provide resilience against stragglers for the

DPME problem. A variant of the LCC scheme, termed Product Lagrange Coded Comput-

ing (PLCC) is proposed by combining ideas from classical product codes and LCC. The

main advantage of PLCC is that they are more numerically stable than LCC;
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1. INTRODUCTION

1.1 Overview of the Dissertation

In the data-centric age, distributed large scale machine learning has become a paradigm

of prime importance1. Distributed machine learning involves distributing the machine

learning task among various computer nodes, commonly called worker nodes, and com-

bining the outputs of the worker nodes at a central/master node to get the original ma-

chine learning task’s output.

Recent work in the area of distributed machine learning that use techniques from cod-

ing theory to encode the data input to the machine learning algorithm has shown remark-

able improvement in performance in terms of straggler tolerance compared to traditional

distributed computing methods. A key parameter in distributed machine learning is the

minimum fraction of workers that have to return their outputs for the master node to

construct the solution to the original problem. Smaller the fraction, better is the coding

scheme since it can tolerate a large number of failing/slow worker nodes (stragglers).

Techniques based on coding theory have been shown to have much better performance

compared to traditional distributed computing schemes using repetition coding, in terms

of the fraction of workers that have to return in order to compute the final solution. Even

though some of these schemes have optimal theoretical properties, practical implementa-

tion poses some challenges. Since the arithmetic on computers have a finite bit-precision,

practical implementations suffer from numerical instability while trying to reconstruct

the solution at the master node.

This thesis studies two important machine learning problems. i) distributed matrix

multiplication, and ii) distributed polynomial evaluation. Distributed matrix multiplica-

tion, which involves multiplying two large matrices, is very important in machine learn-

ing. Gradient computation at each layer in a Neural Network as part of the Backprop-

1The contents of this section have been presented in verbatim as part of the thesis proposal of the author
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agation algorithm and computation of the output of a layer of the Neural Network can

be considered as matrix multiplication problems. Important machine learning problems

like linear regression and tensor product computation can be considered as polynomial

evaluation problems. The thesis constructs new codes that can implement solutions to the

aforementioned problems in a numerically stable and distributed manner. The thesis also

proposes a new decoding algorithm called “Collaborative Peterson’s algorithm" to exist-

ing polynomial-based distributed computing codes which will substantially increase the

resilience of distributed matrix multiplication in the presence of random additive errors

in the computation.

1.2 Motivation for the thesis

A typical distributed computing scenario consists of a master node which distributes

its work to several worker nodes [9, 72]. There are three important problems that have to

be addressed in a distributed algorithm for such a scenario.

1. Straggler resiliency - resilience to straggling workers where each worker takes a

random amount of time to respond.

2. Fault/Adversarial tolerance - Worker nodes introducing random or Byzantine er-

rors respectively.

3. Scalability - The algorithm must be numerically stable when the number of workers

increases, which is an issue with existing algorithms.

This thesis considers two important distributed computation tasks;

1. Matrix multiplication [17,27,70] which is essential in computing the gradient [53] of

a Neural Network which is part of the backpropagation algorithm and in evaluating

the output of a Neural Network.

2. Multivariate polynomial evaluation on massive data-sets. Machine learning prob-

lems like linear regression and tensor computations are essentially multivariate poly-

2



nomial evaluations [66].

Recently, coding theoretic techniques applied to the above problems to eliminate strag-

glers have shown significant improvements over traditional Distributed computing liter-

ature which doesn’t take into account the particular type of operation performed. This has

led to a number of papers in this area of coded distributed computing [1,2,4,6–8,10,11,15–17,

19,21,23–25,28,31,34–37,39,40,42,45,47,48,50,54,59–62,64–66,69,70]. Polynomial based

codes (Reed-Solomon type) have been shown to be optimal for the problem of matrix

multiplication [17, 69, 70] in terms of number of stragglers that can be tolerated. Further

the work of Lagrange coded computing [66] has been shown to be optimal in terms of

straggler resiliency for the multivariate polynomial evaluation problem. However, these

polynomial based codes are highly unstable as the error in recovering the message from

the encoded polynomial evaluations in the Real Field involves inverting a Vandermonde

matrix. The condition number of Vandermonde matrices grows exponentially in the size

of the matrix [43] (size of the matrix depends on the size of the code) and hence the opera-

tion is numerically unstable. Implementing even a small distributed system with 54 worker

nodes and 5 stragglers results in a serious loss of precision when trying to decode the the

Polynomial code [69] (see empirical results presented in Fig. 4.3 on Page 19).

1.3 Thesis Contributions

This thesis proposes solutions to counter the numerical stability issues of polynomial

based codes. This effort has resulted in the publication of two papers [55, 57]. The thesis

deals with the following problems in the area of coded computation

1. Collaborative Decoding of Polynomial Codes: It is shown in [69] that an (N,K)

Polynomial code/Reed Solomon code can correct upto bN−K
2
c errors. We have

proved that polynomial codes used for the matrix multiplication problem are Gen-

eralized Interleaved Reed Solomon codes and hence can be collaboratively decoded.

This results in an increase in the decoding radius of upto N −K − 1 errors and re-

3



markably, we have empirically shown that the condition number of the underlying

Vandermonde matrices decreases with increase in the number of codes that are col-

laboratively decoded.

2. Random Khatri-Rao Product Codes: We propose a simple class of codes based on

Random linear codes as an alternative to polynomial codes. These codes have a

higher degree of freedom since the choice of evaluation points is random and not

constrained by any parameter. We prove that these codes are MDS (Maximum Dis-

tance Separable) with probability 1. These codes have been shown to be of several

magnitudes better in terms of error in the reconstructed message [57].

3. Product Lagrange-Coded Computing: We propose a product coded variant of La-

grange codes [66]. For Polynomial codes with degree of the message upto 20, it is

possible to find evaluation points [55] such that there is no error in the reconstruc-

tion of the message. But to the best of our knowledge there is no literature that can

specify evaluation points for messages with a higher degree. We utilize this obser-

vation to break the message in 2 dimensions. This converts a message of degree

400 to a series of messages with degree 20 =
√

400. This results in a huge gain in

numerical stability.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 gives a short description

of previous works in the field of coded computing. Chapter 3 describes the Collaborative

decoding problem in the real field and its application to distributed matrix multiplication.

Chapter 4 elaborates on the numerical instability issues in existing codes proposed for the

distributed matrix multiplication problem and proposes a novel random coding scheme

called Random-Khatri Rao product codes to alleviate the instability problem. Chapter 5

describes numerical instability issues of existing coding schemes for distributed polyno-

mial computation and proposes product lagrange codes which are much stabler in terms

4



of reconstruction error. Finally, we conclude the thesis in chapter 6 and mention some

open problems in the field of coded computation.

5



2. BACKGROUND

2.1 Distributed Matrix Multiplication problem

We consider the problem of computing ATB for two matrices A ∈ Fs×r and B ∈ Fs×r′

(for an arbitrary field F) in a distributed fashion with N worker nodes using a coded

matrix multiplication scheme [12, 13, 29, 30, 32, 33, 49, 63, 67, 68, 71]. To compute this dis-

tributed matrix multiplication operation, we assume that the matrices A and B are split

into m subblocks and n subblocks, respectively. These subblocks are encoded for exam-

ple, using a Polynomial code [68]. Each worker node performs a matrix multiplication

and returns a matrix with a total of L = rr′

mn
elements (from F) to the master node.

2.2 Polynomial based Codes for Distributed Matrix Multiplication

2.2.1 Notation

Throughout the thesis, we denote matrices by boldface capital letters, e.g., A, and

denote vectors by boldface small letters, e.g., a. Occasionally, we use underlined variables

to represent vectors, e.g., a . For an integer i ≥ 1, we denote {1, . . . , i} by [i], and for two

integers i and j such that i < j, we denote {i, i+1, . . . , j} by [i, j]. We use the short notation

((f(i, j))i∈[m],j∈[n]) to represent anm×nmatrix whose entry (i, j) is f(i, j), where f(i, j) is a

function of i and j. We occasionally use the compact notation (a1, a2, . . . , an) to represent

an m × n matrix whose columns are the column-vectors a1, a2, . . . , an, each of length m.

Similarly, sometimes we use the compact notation (a1; a2; . . . ; am) to represent an m × n

matrix whose rows are the row-vectors a1, a2, . . . , am, each of length n. We also denote by

A(i, :) and A(:, j) the ith row and the jth column of a matrix A, respectively. If S1 ⊂ Z+

and S2 ⊂ Z+ are two subsets of positive integers, then the submatrix of A corresponding

to the rows from S1 and columns from S2 is given by [A](S1,S2). We denote the set of

integers from i to j, inclusive of i and j by i : j and we denote the set of integers from

1 to i by [i]. Also, for a vector v, we denote the part of vector v between indices i and j
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as vi:j . We will assume that vectors without transposes are column vectors unless stated

otherwise. Random variables will be denoted by capital letters and their realizations will

be denoted by lower case letters. A vector or a matrix with a ∧ above is an estimate.

2.2.2 Polynomial Codes

In this section, we review the Polynomial codes of Yu, Maddah-Ali and Avestimehr

[67] for distributed matrix multiplication. Consider the problem of computing ATB in

a distributed fashion for two matrices A ∈ Fs×r and B ∈ Fs×r′ for an arbitrary field F.

In the scheme of Polynomial codes in [67], the master node distributes the task of matrix

multiplication among N worker nodes as follows.

The columns of A and B are first partitioned into m partitions A0,A1, . . . ,Am−1 of

equal size r
m

and n partitions B0,B1, . . . ,Bn−1 of equal size r′

n
, respectively,

A = [A0 A1 · · ·Am−1], B = [B0 B1 · · ·Bn−1].

Let x1, x2, . . . , xN be N distinct elements in F. For two parameters α, β ∈ [N ], let Ãi

and B̃i be matrices defined by,

Ãi =
m−1∑
j=0

Ajx
jα
i , B̃i =

n−1∑
j=0

Bjx
jβ
i .

The dimensions of the matrices Ãi and B̃i are s× r
m

and s× r′

n
, respectively.

The ith worker node computes the smaller matrix product C̃i given the values of Ãi

and B̃i,

C̃i = ÃT
i B̃i =

m−1∑
j=0

n−1∑
k=0

AT
j Bk x

jα+kβ
i . (2.1)

The parameters α and β are chosen carefully such that for each pair (j, k) the correspond-

ing exponent of xi (i.e., jα + kβ) is distinct. For instance, one such choice for α and β is

α = 1 and β = m. In this case, the ith worker node essentially evaluates P(x) at x = xi
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and returns P(xi), where

P(x) =
m−1∑
j=0

n−1∑
k=0

AT
j Bk x

j+km. (2.2)

The coefficients in the polynomial P(x) are the mn uncoded symbols of the product C̃i in

(2.1). The crux of the Polynomial code is that the vector of coded symbols (P(x1), . . . ,P(xN)) =

(C̃1, C̃2, · · · , C̃N) can be considered as a codeword of a Reed-Solomon (RS) code. If N

worker nodes are available in the distributed system, a Polynomial code essentially eval-

uates the polynomial P(x) at N points of the field F; any mn of which can recover the

coefficients which can be put together to recover the matrix product. The minimum num-

ber of worker nodes that need to compute and return the correct evaluations of P(x) for

the master node to be able to successfully recover the matrix product ATB is called the

recovery threshold. Viewing the recovery process of a Polynomial code as a polynomial

interpolation operation, it can be seen that the recovery threshold of the Polynomial code

is mn [67].

2.2.3 OrthoPoly codes

One important drawback of Polynomial codes is that the process of recovering ATB

from the results of the worker nodes (the decoding process) involves explicitly or im-

plicitly inverting a Vandermonde matrix, which is well known to be highly numerically

unstable even for moderate values of K , mn. Very recently, Fahim and Cadambe [18]

proposed a very interesting polynomial code called OrthoPoly code which uses an or-

thogonal polynomial basis resulting in a Chebyshev-Vandermonde structure for the gen-

erator matrix. OrthoPoly codes are also MDS codes, i.e., have optimal recovery thresh-

old; however, they afford better numerical stability than Polynomial codes. In particular,

when there are S stragglers among N nodes, i.e., N = K+S, the condition number of the

matrix that needs to be inverted grows only polynomially in N .

In this section, we will briefly review OrthoPoly codes for the sake of completeness.

Details can be found in [18]. The encoding scheme consists of the master node dividing
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the matrices A and B as in Section 4.2 and subsequently computing

ÃT
i =

m−1∑
j=1

Tj(xi)A
T
j , B̃i =

n−1∑
j=1

Tjm(xi)Bj

where Tr(x) = cos(r(cos−1(x))) and xi = cos( (2i−1)π
2N

), and sending ÃT
i and B̃i to the ith

worker node. The ith worker node computes ÃT
i B̃i and sends the result back the master

node for decoding. Let us assume that worker nodes i = 1, . . . , K (K is defined as K ,

mn) return their outputs. As before, we focus on the recovery of [AT
i Bj](1, 1). Let yi =

[ÃT
i B̃i](1, 1) denote the (1, 1)th entry in the matrix product computed by the ith non-

straggler worker node and let zj,l = [AT
j Bl](1, 1). For j ∈ [mn], let j′ = dj/ne and j′′ =

((j − 1) mod n) + 1 and let wj = zj′,j′′ . The computed values yi’s are related to the

unknown values wj’s according to



y1

y2

...

yi
...

yK


︸ ︷︷ ︸

y

=


T0(x1) · · · TK−1(x1)

... . . . ...

T0(xK) · · · TK−1(xK)


︸ ︷︷ ︸

GO

H



w1

w2

...

wj
...

wK


︸ ︷︷ ︸

w

(2.3)
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where H is a K ×K matrix such that

H((r, (i− 1) + (j − 1)m+ 1)) =



1, r = (i− 1) + (j − 1)m+ 1,

i = 1, j ∈ [n]

1
2
, r = (i− 1) + (j − 1)m+ 1,

i 6= 1, i ∈ [m], j ∈ [n]

1
2
, r = |(i− 1)− (j − 1)m|+ 1,

i 6= 1, i ∈ [m], j ∈ [n]

0, otherwise.

An estimate of w ( wi = [AjBl](1, 1) such that i = r + lm + 1, for 0 ≤ r ≤ m − 1 and

0 ≤ l ≤ n− 1) is then obtained according to

ŵ = H−1G−1
O y. (2.4)

2.3 Distributed Multivariate Polynomial Evaluation problem and Lagrange codes

Polynomial based codes, despite being unstable have been used to construct solutions

to the Distributed Multivariate Polynomial Evaluation problem (DPME). One such solu-

tion would be the Lagrange codes [66]. In this section, we look at the DPME problem and

the Lagrange code solution.

The goal is to computeK evaluations {f(Xk)}1≤k≤K usingN workers where {Xk}1≤k≤K

are K matrices, each of size r × d with entries from the real field, and f is a matrix func-

tion of the form f(Xk) = [fi,j(Xk)]1≤i≤a,1≤j≤b where fi,j(Xk) is a multivariate polynomial

whose variables are the entries of the matrix Xk. We refer to this problem as the Dis-

tributed Multivariate Polynomial Evaluation (DPME). We briefly explain the main ideas of

the Lagrange Coded Computing (LCC) scheme of [66] via an example.

Consider K = 2 matrices X1 and X2 with real entries, each of size 3 × 2 (i.e., r = 3
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and d = 2). Suppose that we wish to compute f(X1) and f(X2) distributedly using N = 4

workers among which at most S = 1 worker node is a straggler, where f(Xk) = XT
kXkw

for w = [1, 1]T. Note that f : R3×2 → R2×1 is a matrix function of the form

f(Xk) =

f1,1(Xk)

f2,1(Xk)


=

x2
1,1 + x2

2,1 + x2
3,1 + x1,1x1,2 + x2,1x2,2 + x3,1x3,2

x1,1x1,2 + x2,1x2,2 + x3,1x3,2 + x2
1,2 + x2

2,2 + x2
3,2


where xi,j is the (i, j)th entry of the matrix Xk. Note that deg(f) = 2 because f1,1 and f2,1

have total degree 2.

First, the master node encodes X1 and X2 using a Lagrange interpolation polynomial

as follows:

u(z) = X1 ·
z − β2

β1 − β2

+ X2 ·
z − β1

β2 − β1

,

where β1, β2 are K = 2 distinct elements from R. Noting that u(β1) = X1 and u(β2) = X2,

computing f(X1) and f(X2) is equivalent to computing f(u(β1)) and f(u(β2)), respec-

tively. Let α1, . . . , α4 be N = 4 distinct elements from R. The master node requests the ith

worker node to compute f(u(αi)).

From the construction, it is easy to see that f(u(αi)) is the evaluation of the composi-

tion polynomial f(u(z)) at z = αi. Since the degree of the polynomial u(z) isK−1 = 1, the

degree of the (univariate) polynomial f(u(z)) (in variable z) is at most (K− 1) deg(f) = 2.

Thus, the master node is able to recover the polynomial f(u(z)) from any (K−1) deg(f)+

1 = 3 out of N = 4 evaluations f(u(α1)), . . . , f(u(α4)), using polynomial interpolation.

Since the evaluations f(u(α1)), . . . , f(u(α4)) are the results of the computations by the

worker nodes, any (K − 1) deg(f) + 1 = 3 worker nodes suffice for the master node to

recover the polynomial f(u(z)). Followed by the recovery of the polynomial f(u(z)), the

master node can readily recover f(X1) and f(X2) by evaluating f(u(z)) at z = β1 and
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z = β2, respectively.

In general, the worst-case recovery threshold of LCC is (K − 1) deg(f) + 1 [66]. It

should be noted that the average-case recovery threshold of LCC is also the same.

12



3. COLLABORATIVE DECODING OF POLYNOMIAL CODES 1

3.1 Introduction and Main Result

In this chapter, we consider the problem of computing ATB for two matrices A ∈ Fs×r

and B ∈ Fs×r′ (for an arbitrary field F)2 in a distributed fashion with N worker nodes

using a coded matrix multiplication scheme [12, 13, 29, 30, 32, 33, 49, 63, 67, 68, 71] To keep

the presentation clear, we will focus on one class of codes, namely Polynomial codes, and

explain our results in relation to the Polynomial codes [67]; notwithstanding, our results

also apply to Entangled Polynomial codes [68] and PolyDot codes [12]. We assume that

the matrices A and B are split into m subblocks and n subblocks, respectively. These

subblocks are encoded using a Polynomial code [68]. Each worker node performs a matrix

multiplication and returns a matrix with a total of L = rr′

mn
elements (from F) to the master

node.

Our main interest is in the fault-tolerant setup where some of the N worker nodes

return erroneous values. We say that an error pattern of Hamming weight t has occurred

if t worker nodes return matrices that contain some erroneous values. The main idea in

the Polynomial codes, Entangled Polynomial codes and PolyDot codes is to encode the

subblocks of A and B in a clever way such that the matrix product returned by the worker

nodes are symbols of a codeword of a Reed-Solomon (RS) code over F. The properties

of an RS code are then used to obtain bounds on the error-correction capability of the

scheme.

The main contribution of this work relies on the observation that Polynomial codes,

Entangled Polynomial codes, and PolyDot codes are not just RS codes, but an Interleaved

Reed-Solomon (IRS) code which consists of several RS codes that can be collaboratively

decoded (see Section 3.2 or [52] for a formal definition). This additional structure provides

1The contents of this section have been presented in verbatim as part of the paper "Collaborative decod-
ing of polynomial codes" at the Information Theory Workshop 2019 [55] for which I was the first author

2Some results in this chapter will apply to specific fields and this will be clarified later.
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the opportunity for collaborative decoding of multiple RS codes involved in such coded

matrix multiplication schemes. Such a collaborative decoding, for which efficient multi-

sequence shift-register (MSSR) based decoding algorithms exist [26], provides a practical

decoder with quadratic complexity in t, while potentially nearly doubling the decoding

radius.

The main results of this chapter and their relation to the existing results are as fol-

lows. In [68], it is shown that any error pattern with Hamming weight t can be corrected

if t ≤ bN−K
2
c where K = mn is the effective dimension of the Polynomial code. Very

recently, Dutta et al. in [12] showed that when F = R (the real field) and error values are

randomly distributed according to a Gaussian distribution, with probability 1 all error

patterns of Hamming weight t ≤ N −K − 1 can be corrected. To attain this bound, [12]

uses a decoding algorithm which is similar in spirit to exhaustive maximum likelihood

decoding with a complexity that is O
(
LNmin{t,N−t}). This can be prohibitive for many

practical values of N and t. In [12], it is suggested that in practice, the performance of

ML decoding can be approximated by algorithms with polynomial complexity in N such

as the `1-minimization algorithm [3]. However, there is no proof (nor evidence) that such

algorithms can correct all error patterns of Hamming weight up to N −K− 1 with proba-

bility 1. Indeed, as we will show in this work, the standard `1-minimization based decod-

ing algorithm [3] fails to correct all error patterns of Hamming weight up to N − K − 1

with a non-zero probability.

In this work, we show that we can use the MSSR decoding algorithm of [26] for de-

coding Polynomial codes with the complexity of O
(
Lt2 +N

)
. For this algorithm, we will

show that when F = Fq (a finite field with q elements), for bN−K
2
c < t ≤ L

L+1
(N − K),

all but a fraction γ(t) of the error patterns of Hamming weight t can be corrected where

γ(t) → 0 as q → ∞. In particular, the convergence of γ(t) to zero is exponentially fast in

L, i.e., γ(t) = q−Ω(L), for bN−K
2
c < t ≤ L

L+1
(N −K). In addition, when F = R, by extending

the results of [26] and [51] to the real field and using the results of [12], we will show that
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for L ≥ N −K − 1 and bN−K
2
c < t ≤ N −K − 1, all error patterns of Hamming weight t

can be corrected with probability 1, under the random Gaussian error model previously

considered in [12].

In a nutshell, our results show that with a probability arbitrarily close to 1 (or respec-

tively, with probability 1), all error patterns of Hamming weight up to L
L+1

(N−K), which

can be made arbitrarily close to N − K − 1 for sufficiently large L, can be corrected for

sufficiently large finite fields (or respectively, the real field). Not only does this indicate

a substantial increase in the error-correction radius with provable guarantees when com-

pared to the results in [68], but it also shows that the Dutta et al.’s upper bound in [12]

can be achieved with a practical decoder with a quadratic complexity in the number of

faulty worker nodes (t). This improvement in complexity is the result of collaboratively

decoding the IRS code instead of separately decoding the RS codes using a maximum

likelihood decoder as is done in [12].

3.2 Polynomial Codes are Interleaved Reed-Solomon Codes

Definition 1. Generalized Reed-Solomon (RS) Codes: Let m = (m0,m1, . . . ,mK−1) and let the

associated polynomial m(x) be defined as m(x) := m0 + m1x + . . . + mK−1x
K−1. Further, let

c = (c0, c1, . . . , cN−1), ααα = (α0, α1, . . . , αN−1) and v = (v0, v1, . . . , vN−1) be three row vectors

such that ci, αi, vi ∈ F, vi 6= 0, and αi 6= αj . A Generalized Reed-Solomon (GRS) code C over F

of length N , dimension K, evaluation points ααα, weight vectors v, denoted by GRS(F, N,K,ααα,v),

is the set of all row-vectors (codewords) c = (v0m(α0), v1m(α1), . . . , vN−1m(αN−1)), i.e., ci =

vim(αi). Equivalently, a GRS code is also the set of codewords c such that for all i ∈ [0, N−K−1],∑N−1
j=0 ujcj(αi)

j = 0, where u−1
i = vi

∏
j 6=i

(αi − αj). The minimum distance of such a GRS code is

dmin = N −K + 1.

Reed-Solomon (RS) codes are a special case of GRS codes with vi = 1, ui = 1, ∀i ∈

[0, N − 1]. For finite fields and the complex field, an ααα exists such that vi = 1 and ui = 1,

i ∈ [0, N − 1]. However for the real field, ui and vi cannot be simultaneously set to 1 and,

hence, it is required to consider GRS codes.
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Definition 2. Interleaved Generalized Reed-Solomon (IRS) Codes [52]: Let {C(l) = RS(F, N,K(l),ααα,uuu)}l∈[L]

be a collection of L GRS codes, each of length N over a field F, where the dimension and minimum

distance of the lth RS code are K(l) and d(l), respectively. Then, an Interleaved Reed-Solomon

(IGRS) code CIGRS is the set of all L × N matrices (c(1); c(2); . . . ; c(L)) where c(l) ∈ C(l) for

l ∈ [L] [26]. If all the L GRS codes C(l) are equivalent, i.e., C(l) = C for all l ∈ [L], the IGRS code

CIRS is called homogeneous.

The chief observation in this work is that the Polynomial codes, Entangled Polynomial

codes, and PolyDot codes are IGRS codes. Here, we formally prove this observation for

the Polynomial codes. We shall henceforth refer to GRS codes as RS codes.

Theorem 3. A Polynomial code is an IGRS code.

Proof: Let W be an a × b matrix with entries from F, and let Γ : Fa×b → Fab denote a

vectorizing operator which reshapes a matrix W into a column-vector w = (w1, . . . , wab)
T,

i.e., Γ(W) = w, such that w(i−1)b+j = W(i, j), where W(i, j) is the element (i, j) of W.

Let C̃i(p, q) be the element (p, q) of the matrix C̃i,

C̃i(p, q) ,
m−1∑
j=0

n−1∑
k=0

[AT
j Bk](p, q)x

j+km
i . (3.1)

Consider the rr′

mn
× N matrix D , (Γ(C̃1),Γ(C̃2), . . . ,Γ(C̃N)), where the ith column of D,

namely Γ(C̃i), is obtained by applying the vectorizing operator Γ to C̃i. Let (pi, qi) be the

unique pair (p, q) such that i = (p − 1) r
′

n
+ q. Then, the element (i, j) of D is C̃j(pi, qi),

and accordingly, the ith row of D is given by [C̃1(pi, qi), C̃2(pi, qi), . . . , C̃N(pi, qi)], which is

a codeword of an RS code. Thus the matrix D is a codeword of an IRS code with L = rr′

mn
.

In particular, the ith worker node computes C̃i that has dimension r
m
× r′

n
. It is evident

from (3.1) that the element (p, q) of C̃i is the message polynomial
m−1∑
j=0

n−1∑
k=0

[AT
j Bk](p, q)x

j+km

evaluated at xi. Thus, C̃i contains rr′

mn
RS codes evaluated at xi by the ith worker node.

That is, the computations returned by the ith worker node constitute the ith column of an

16



IGRS code withN being the number of worker nodes and L = rr′

mn
being the number of RS

codes. This shows that a Polynomial code is a homogeneous IGRS code with K(l) = mn

for l ∈ [L].

3.2.1 Error Matrix and Error Models

We consider the case when the worker nodes introduce additive errors in their compu-

tation. Let Ei ∈ F r
m
× r′

n denote the error matrix introduced by the ith worker node. Then

the master node receives the set of matrices R̃i, for i ∈ [N ] where R̃i = C̃i ⊕ Ẽi. Let R

be the rr′

mn
× N matrix of values received by the master node where the ith column of R

is given by Γ(R̃i), and let E, referred to as the error matrix, be the rr′

mn
× N matrix of error

values where the ith column of E is given by Γ(Ẽi). Then, R = D ⊕ E where D is a

codeword of an IRS code. If the ith worker node returns erroneous values, then the ith

column of R will contain errors. Thus, the original problem of fault-tolerant distributed

matrix multiplication reduces to the problem of decoding D from R.

Definition 4. The Hamming weight of the matrix E denoted by WH(E) is defined as the number

of non-zero columns in E.

We consider two different error models. First, we consider the Uniform Random Error

for Finite Fields (UREF) model where the non-zero columns of the error matrix E are

assumed to be uniformly distributed over all the non-zero vectors in FLq for a finite field

Fq. We further extend this model to the real field R where each non-zero entry in the

error matrix E is assumed to be an independently and identically distributed Gaussian

random variable (with arbitrary mean and variance). This model is referred to as the

Gaussian Random Error (GRE) model.

3.2.2 Decoding and Error Events

Let ψ : FL×N → {CIRS, F} be the decoding function, where F is a symbol that denotes

decoding failure. A decoding error is said to have occurred if ψ(R) 6= D. An undetected
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decoding error is said to have occurred if ψ(R) 6= D and ψ(R) 6= F , whereas a decoding

failure is said to have occurred if ψ(R) = F .

3.3 Collaborative Decoding of Interleaved Reed-Solomon Codes

Simultaneous decoding of all the RS codes in an IRS code is known as collaborative

decoding. As shown in [52] and [26], collaborative decoding of IRS codes has certain ad-

vantages. In particular, when burst errors occur, they occur on the same column of the

IRS code. Hence, multiple RS codewords share the same error positions. Note that an IRS

code is actually a set of RS codes stacked together, each of which yields a set of syndrome

equations. Intuitively, when burst errors occur, the error locator polynomials are more

or less the same for all the RS codes but the number of syndrome equations increases

with the number of stacked RS codes. This implies that a much larger set of errors can

be corrected. This is because the rank of the stacked syndrome matrix is greater than or

equal to the rank of the individual syndrome matrices, thus giving rise to the possibility

of a greater decoding radius than the unique decoding bound of 1−R
2

, where R is the code

rate. More specifically, it was shown by Schmidt et al. in [52] that when a set of L RS

codes are collaboratively decoded, except for a small probability of failure and a small

probability of error (discussed in Section 3.5), the fraction of errors that can be corrected

can be as large as L
L+1

(1−R).

3.4 Decoding Algorithms

3.4.1 Collaborative Peterson’s Algorithm

In this section, we propose a collaborative version of the Peterson’s algorithm [41] to

correct up to t ≤ tmax , L
L+1

(N −K) errors.

Consider t non-zero errors in columns j1, j2, . . . , jt of the matrix R (i.e., the indices of

the non-zero columns of the error matrix E are j1, j2, . . . , jt). Let r(l)(z) ,
∑N−1

j=0 ujR(l, j)zj−1

be the modified (multiplying component-wise by uj) received polynomial for the lth RS

code, where R(l, j) is the element (l, j) of the matrix R. Then, the syndrome sequence
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for the lth RS code is given by S(l) , {S(l)
i }N−K−1

i=0 , where S(l)
i ,

∑N−1
j=0 ujR(l, j)αij for

i ∈ [0, N −K − 1]. Define the error locator polynomial Λ(z) as

Λ(z) ,
t∏
i=1

(1− zαji) = 1 + λ1z + · · ·+ λtz
t

and let λ(t) = (λt, λt−1, . . . , λ1)T be the error locator vector associated with the error lo-

cator polynomial Λ(z). When t errors occur Λ(z) has a degree of t. The syndrome matrix

S(l)(t) and a vector a(l)(t) for the lth RS code are given by

S(l)(t) ,



S
(l)
0 S

(l)
1 · · · S

(l)
t−1

S
(l)
1 S

(l)
2 · · · S

(l)
t

...
...

...

S
(l)
N−K−t−1 S

(l)
N−K−t · · · S

(l)
N−K−2


, a(l)(t) ,



−S(l)
t

−S(l)
t+1

...

−S(l)
N−K−1


(3.2)

Now we can write the following consistent linear system of equations for the IRS code,



S(1)(t)

S(2)(t)

...

S(L)(t)


︸ ︷︷ ︸

SL(t)



λt

λt−1

...

λ1


︸ ︷︷ ︸

λ(t)

=



a(1)(t)

a(2)(t)

...

a(L)(t)


︸ ︷︷ ︸

aL(t)

(3.3)

where SL(t), the syndrome matrix for the IRS code, is the stacked matrix of S(l)(t) for

l ∈ [L], and aL(t), a vector for the IRS code, is the stacked vector of a(l)(t) for l ∈ [L]. If

t columns of the matrix R are in error, then the error locator vector λ(t) can be obtained

by the collaborative Peterson’s algorithm, described in Algorithm 1. The complexity of

computing the rank of rank(SL(τ)) is O(Lτ 3); computing λ̂ requires O(τ 3) operations if

the structure of SL(τ) is not exploited, and the Chien search has a complexity of O(N).

Since we have to consider all values of τ ∈ [tmax], the overall complexity is O(Lt4max +N).
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Definition 5. (t-valid polynomial Λ(z)): A polynomial Λ(z) over F is called t-valid if it is a

polynomial of degree t and possesses exactly t distinct roots in F.

Algorithm 1 Collaborative Peterson’s algorithm for IRS Decoding

Input: S(l) = {S(l)
i }N−K−1

i=0 ∀l ∈ [L]
Output: D̂ ∈ {FL×N , F (decoding failure)}

1: D̂ = F
2: if SL(t) = 0 then
3: D̂ = R
4: else
5: for each t from 1 to tmax do
6: if rank(ST

L(t)SL(t)) = t then
7: λ̂ = (ST

L(t)SL(t))−1ST
L(t))aL(t)

8: if SL(t) λ̂ = aL(t) then
9: (λ̂t, λ̂t−1, . . . , λ̂1) = λ̂

T

10: Λ̂(z) = 1 + λ̂1z + · · ·+ λ̂tz
t

11: if Λ̂(z) is t-valid then
12: Compute error locations ĵi, ĵ2, . . . , ĵt using a Chien search [41]
13: for each l from 1 to L do
14: From ĵ1, . . . , ĵt, and S(l), compute Ê(l, :) using Forney’s algo-

rithm [41]
15: Compute D̂(l, :) = R(l, :)− Ê(l, :)
16: end for
17: end if
18: end if
19: end if
20: end for
21: end if

3.4.2 Multiple Sequence Shift Register algorithm

A more computationally efficient decoding algorithm to achieve error correction up

to t ≤ tmax = L
L+1

(N − K) is the Multiple Sequence Shift Register (MSSR) algorithm

proposed by Schmidt et al. in [51]. This algorithm has a complexity of O(Lt2 + N). The

MSSR algorithm, reviewed here for completeness, is described in Algorithm 2.
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Algorithm 2 Collaborative IRS Decoder (Schmidt et. al [52])

Input: S(l) = {S(l)
i }N−K−1

i=0 ∀l ∈ [L]
Output: D̂ ∈ {FL×N , F (decoding failure)}

# Synthesize t and Λ̂(z) using the shift register synthesis algorithm in [51]
[t, Λ̂(z)] = Shift Register Synthesis Algorithm(S(1), . . . , S(L))
D̂ = F
if t ≤ tmax and Λ̂(z) is t-valid then

for each l from 1 to L do
From Λ̂(z) compute Ê(l, :)

Compute D̂(l, :) = R̂(l, :)− Ê(l, :)
end for

end if

It can be seen that in the absence of numerical round-off errors, the outputs of the

collaborative Peterson’s algorithm and the MSSR algorithm are identical for every R since

both of them compute the solution to (3.3).

3.5 Analysis of probability of failure and error for finite fields (F = Fq)

In Section 3.2, we showed that Polynomial codes are IRS codes. Hence the fault tol-

erance of the Polynomial codes can be analyzed using similar techniques for IRS codes.

In this section, we consider the uniformly random error model for finite fields (UREF),

defined in Section 3.2.1, which was originally considered in [52]. In particular, we define

the error events

E1(t) = {E : WH(E) = t and the MSSR/collaborative algorithm fails},

E2(t) = {E : WH(E) = t and the MSSR/collaborative algorithm makes an undetected error},

E(t) = {E : WH(E) = t}.

(3.4)

Since the outputs of the collaborative Peterson’s algorithm and the MSSR algorithm

are identical for every R, both algorithms have the same probability of failure and the

same probability of undetected error. We denote by PF (t) and PML(t) the probability of

failure and the probability of undetected error, respectively, given that WH(E) = t. Under
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the UREF model, PF (t) and PML(t) are given by [52]

PF (t) =
|E1(t)|
|E(t)|

, PML(t) =
|E2(t)|
|E(t)|

.

3.5.1 Probability of Failure

A necessary condition for the failure of both the collaborative Peterson’s algorithm

and the MSSR algorithm is that the matrix SL(t) is not full rank, as shown in [52]. To

calculate an upper bound on PF (t), we refer to the analysis by schmidt et al. in [52], and

recall the following result from [52].

Theorem 6. [52, Theorem 7] Under the UREF model, for all t ≤ tmax = L
L+1

(N −K),

PF (t) ≤

(
qL − 1

q

qL − 1

)
q−(L+1)(tmax−t)

q − 1
. (3.5)

By the result of Theorem 6, it can be readily seen that for all t < tmax, PF (t) diminishes

as q−Ω
(
L
)

and for t = tmax, PF (t) decays as q−1 .

3.5.2 Probability of Undetected Error

As shown in [52, Theorem 5], the MSSR algorithm has the Maximum Likelihood

(ML) certificate property, i.e., whenever the decoder of [51] does not fail, it yields the ML

solution, namely the codeword at minimum Hamming distance from the received word.

The collaborative Peterson’s algorithm has the same ML certificate property as well. An

error matrix E with WH(E) = t is said to be a bad error matrix of Hamming weight t if there

exists a non-zero codeword D ∈ CIRS such that WH(D	 E) ≤ t.

We now use a result from [20, Page 141] without proof.

Lemma 7. [20, Page 141] Let C ⊆ {0, 1, · · · q−1}N be a code with relative distance δ = dmin/N ,

and let S ⊆ [N ] be such that |S| = (1− γ)N , where 0 < γ ≤ δ − ε for some ε > 0. Let ES be the

set of all error vectors with support Sc, and let BS be the set of all bad error vectors with support
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Sc. Then,

|BS| ≤ q
N

log2 q
− εN

2
+ 1

2 |ES|.

Theorem 8. Under the UREF model, for all t ≤ N −K − 1 (and in particular, for all t ≤ tmax =

L
L+1

(N −K)), PML(t)→ 0 as qL →∞.

Proof: It is easy to see that an IRS code can be viewed as a single code over FqL , i.e. CIRS

is a
(
FqL , N,K,N − K + 1

)
code. Lemma 7 holds for a single code and, hence, can be

applied to CIRS with q being replaced by qL. Since the upper bound in Lemma 7 depends

only on the cardinality of ES , it follows that the probability of having a bad error matrix

with WH(E) = t for the
(
FqL , N,K,N −K + 1

)
code (replacing q by qL since CIRS is over

qL) which we denote by Pe(t) is upper bounded by

Pe(t) =
|BS|
|ES|

≤ q
L( N

log2 qL
− εN

2
+ 1

2
)
. (3.6)

By setting δ = N−K+1
N

and ε = 2
N

, it is easy to see that Pe(t) → 0 as qL → ∞. For this

choice of δ and ε, it follows that γ ≤ δ − ε = N−K−1
N

, which implies that (3.6) holds for all

t ≤ N −K − 1.

Note that the algorithms in Section 3.4 have the ML certificate property. Note, also,

that the fraction of error matrices that give rise to an undetected error is upper bounded

by the fraction of bad error matrices. This is simply because without a bad error matrix of

Hamming weight up to (δ− ε)N , an undetected error cannot occur. Thus, PML(t) ≤ Pe(t).

Since Pe(t) vanishes as qL →∞, then PML(t) vanishes as qL →∞. Moreover, N and K are

fixed and finite, and hence,
∑N−K−1

t=1 PML(t)→ 0 as qL →∞.

3.6 Analysis of probablity of failure and probability of error for the real field

In this section, we analyze the probability of failure and probability of error under

the GRE model when the computations are performed over the real field. In particular,

we consider the case that the error values are independently and identically distributed
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standard Gaussian random variables (with zero mean and unit variance). Note, however,

that this assumption does not limit the generality of the results, and is made for the ease

of exposition only. For this model, conditioned on t errors occurring, the probability of

failure (PF (t)) and the probability of undetected error (PML(t)) are given by

PF (t) =

∫
E1(t)

φ(x) dx∫
E(t)

φ(x) dx
, PML(t) =

∫
E2(t)

φ(x) dx∫
E(t)

φ(x) dx
,

where E1(t), E2(t), E(t) are defined as in (3.4), and φ(x) is the probability density func-

tion of an Lt-dimensional standard Gaussian random vector (with zero-mean vector and

identity covariance matrix).

3.6.1 Probability of Failure

It should be noted that the results of [52] for finite fields cannot be directly extended

to the real field, simply because the counting arguments used in [52] for finite fields do

not carry over to the real field. In this section, we propose a new approach to derive the

probability of failure for the real field case.

For simplifying the notation, hereafter, we use ρ , N −K− t. Suppose that t ≤ tmax =

L
L+1

(N−K) errors occur at positions j1, j2, · · · , jt with values e(l)
j1
, e

(l)
j2
, · · · , e(l)

jt
for the lth RS

code. Recall the syndrome matrix S(l)(t) for the lth RS code (see (3.2)). As shown in [52],

S(l)(t) can be decomposed as

S(l)(t) = H(l)(t) · F(l)(t) ·D(t) ·Y(t),

where H(l)(t) , (α
(i−1)
jk

)i∈[ρ],k∈[t] is an ρ× tmatrix, F(l)(t) , diag((e
(l)
ji

)i∈[t]) is a t× t diagonal

matrix, D(t) , diag((αji)i∈[t]) is a t × t diagonal matrix, and Y(t) , (α
(k−1)
ji

)i∈[t],k∈[t] is a

t× t matrix.

Theorem 9. Under the GRE model, for all t ≤ tmax = L
L+1

(N −K), PF (t) = 0. In particular,

for L ≥ N −K − 1, for all t ≤ N −K − 1, PF (t) = 0.
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Proof: The decoding algorithms described in Section 3.4 fail when the stacked matrix

SL(t) defined in (3.3) is rank deficient, i.e., there exists a non-zero row-vector v such that

SL(t) · vT = 0. Alternatively, SL(t) is rank deficient iff there exists a non-zero row-vector

v such that

S(l)(t) · vT = (H(l)(t) · F(l)(t) ·D(t) ·Y(t)) · vT = 0 ∀l ∈ [L]. (3.7)

Since D(t) and Y(t) are invertible, the condition (3.7) holds iff there is a non-zero row-

vector v such that

(H(l)(t) · F(l)(t)) · vT = 0 ∀l ∈ [L]. (3.8)

Let v = (v1, v2, . . . , vt), and let fi,l , e
(l)
ji

for all i ∈ [t]. Expanding (3.8), it is easy to see that



v1 v2 · · · vt

v1 · αj1 v2 · αj2 · · · vt · αjt

v1 · α2
j1

v2 · α2
j2

· · · vt · α2
jt

...
...

...

v1 · α(ρ−1)
j1

v2 · α(ρ−1)
j2

· · · vt · α(ρ−1)
jt


︸ ︷︷ ︸

H



f1,l

f2,l

...

ft,l


︸ ︷︷ ︸

f (l)

= 0. (3.9)

Combining the condition (3.9) for all the RS codes in the IRS code (for all l ∈ [L]), it holds

that

H · F = 0, (3.10)

where H is defined in (3.9), and F , (f (1), f (2), . . . , f (L)) is a t × L matrix where f (l) for

l ∈ [L] is defined in (3.9). Alternatively, (3.10) can be written as

v ·Φ = 0, (3.11)
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where Φ is a t× ρL matrix given by

Φ ,



f1,1 · · · f1,L (αj1f1,1) · · · (αj1f1,L) · · · (α
(ρ−1)
j1

f1,1) · · · (α
(ρ−1)
j1

f1,L)

f2,1 · · · f2,L (αj2f2,1) · · · (αj2f2,L) · · · (α
(ρ−1)
j2

f2,1) · · · (α
(ρ−1)
j2

f2,L)

...
...

...
...

...
...

ft,1 · · · ft,L (αjtft,1) · · · (αjtft,L) · · · (α
(ρ−1)
jt

ft,1) · · · (α
(ρ−1)
jt

ft,L)


.

(3.12)

Let F be the set of all t × L matrices F = (fi,l)i∈[t],l∈[L] for each of which the condi-

tion (3.10) holds for some non-zero vector v. We need to show that F is a set of measure

zero.

We consider two cases as follows: (i) t ≤ L, and (ii) t > L.

Case (i): For the condition (3.10) to hold, there must exist a non-zero vector v in the

left null space of F. It is easy to see that, under the GRE model, the set of all matrices F

that have a row-rank of t is a set of measure 1. This implies that the set of all matrices F

for each of which there exists some non-zero vector v in the left null space of F is a set of

measure zero. Thus, for t ≤ L, F is a set of measure zero.

Case (ii): For a vector v, let the weight of v, denoted by wt(v), be the number of non-

zero elements in v. For any integer 1 ≤ w ≤ t, let Fw be the set of all matrices F for each of

which there exists a non-zero vector v such that wt(v) = w and the condition (3.10) holds.

We consider two cases as follows: (1) w ≤ ρ, and (2) w > ρ. (Recall that ρ = N −K− t.)

(1) w ≤ ρ: Assume, without loss of generality, that v1, v2, · · · , vw are the non-zero el-

ements of v. Let Hw , ((vk · α(i−1)
jk

)i∈[w],k∈[w]) be the w × w sub-matrix of H (de-

fined in (3.10)) corresponding to the first w rows and the first w columns, and let

Fw , ((fi,l)i∈[w],l∈[L]) be the w× L sub-matrix of F corresponding to the first w rows.

Then, the condition (3.10) reduces to

Hw · Fw = 0.
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It is easy to see that the matrix Hw generates a Generalized Reed-Solomon code

with distinct parameters {αji}i∈[w] and non-zero multipliers {vi}i∈[w]. Thus, Hw is

full rank (and hence, invertible). This implies that for each l ∈ [L] the column-

vector f (l) (defined in (3.9)) is an all-zero vector. Thus, every matrix in Fw for w ≤ ρ

contains a w×L all-zero sub-matrix. In particular, every matrix in Fw for w ≤ ρ has

at least one fixed (zero, in this case) entry. Under the GRE model, it is then easy to

see that Fw for w ≤ ρ is a set of measure zero.

(2) w > ρ: Assume, without loss of generality, that v1, . . . , vw are the non-zero elements

of v, and let ṽ , (v1, v2, · · · , vw). Let Φw be the w × ρL sub-matrix of Φ (defined

in (3.12)) corresponding to the first w rows,

Φw ,



f1,1 · · · f1,L (αj1f1,1) · · · (αj1f1,L) · · · (α
(ρ−1)
j1

f1,1) · · · (α
(ρ−1)
j1

f1,L)

f2,1 · · · f2,L (αj2f2,1) · · · (αj2f2,L) · · · (α
(ρ−1)
j2

f2,1) · · · (α
(ρ−1)
j2

f2,L)

...
...

...
...

...
...

fw,1 · · · fw,L (αjwfw,1) · · · (αjwfw,L) · · · (α
(ρ−1)
jw

fw,1) · · · (α
(ρ−1)
jw

fw,L)


.

Then, the condition (3.11) reduces to

ṽ ·Φw = 0. (3.13)

Since in (3.3) the number of variables must be less than the number of equations,

then w ≤ t ≤ ρL. Note that Φw is a w × ρL matrix. Thus, rank(Φw) ≤ w. More-

over, there exists a non-zero vector ṽ in the left null space of Φw. This implies that

rank(Φw) ≤ w − 1. Since the row-rank and the column-rank are equal, there exists a

non-zero column-vector u such that

Φw · u = 0.
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Let αi , αji for i ∈ [w], and let α(k) = (αk−1
1 , αk−1

2 , · · · , αk−1
w )T for k ∈ [ρ]. We define

the product operator � between the two vectors α(k) and f (l) as

α(k) � f (l) , (α
(k−1)
1 f1,l, α

(k−1)
2 f2,l, . . . , α

(k−1)
w fw,l)

T.

Then, we can rewrite Φw as

(
α(1) � f (1), . . . ,α(1) � f (L),α(2) � f (1), . . . ,α(2) � f (L), . . . ,α(ρ) � f (1) . . . ,α(ρ) � f (L)

)
.

Since u = (u1, . . . , uL, uL+1, . . . , uL+L, . . . , u(ρ−1)L+1, . . . , u(ρ−1)L+L) 6= 0, there exist

l ∈ [L] and k ∈ [ρ] such that u(k−1)L+l is non-zero. Assume, without loss of generality,

that u1 6= 0. Consider the columns α(1) � f (1),α(2) � f (1), . . . ,α(ρ) � f (1) in the matrix

Φw, and their corresponding elements u1, uL+1, . . . , u(ρ−1)L+1 in the vector u. Let

ũk , u(k−1)L+1 for k ∈ [ρ], and let ũ , (ũ1, . . . , ũρ). Note that ũ 6= 0 (by construction).

Consider the vector

g , ũ1(α(1) � f (1)) + ũ2(α(2) � f (1)) + · · ·+ ũρ(α
(ρ) � f (1)).

Expanding g = (g1, . . . , gw)T, we get gi = (ũ1α
0
i + ũ2α

1
i + · · · + ũρα

ρ−1
i )fi,1 for all

i ∈ [w]. Note that there exists i ∈ [w] such that the coefficient of fi,1 in gi, i.e., ũ1α
0
i +

ũ2α
1
i + · · · + ũρα

ρ−1
i , is non-zero. The proof is by the way of contradiction. Suppose

that for all i ∈ [w] the coefficient of fi,1 in gi is zero. Let M , ((αk−1
i )i∈[w],k∈[ρ]). Then

it is easy to see that M · ũ = 0. Since M is a w × ρ Vandermonde matrix with ρ < w,

then rank(M) = ρ. This implies that ũ = 0. This is however a contradiction because

ũ 6= 0 (by assumption). Thus, for some i ∈ [w] the coefficient of fi,1 in gi must be

non-zero. Thus, every matrix in Fw for w > ρ contains at least one entry which can

be written as a linear combination of the rest of the entries. Under the GRE model,

this readily implies that Fw is a set of measure zero.
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Noting that F = ∪tw=1Fw and taking a union bound over all w (1 ≤ w ≤ t), it follows

that for t > L, F is a set of measure zero. This completes the proof.

3.6.2 Probability of Undetected Error

Similarly as in the case of the finite fields, both the MSSR decoding algorithm and the

collaborative Peterson’s decoding algorithm give an error locator polynomial Λ(z) over

the real field (R) of the least possible degree which satisfies all the syndrome equations

in (3.3). This implies that these decoding algorithms have the ML certificate property (for

details, see Section 3.5.2).

As was shown by Dutta et al. in [12, Theorem 3], under the GRE model, when the

number of errors (i.e., the Hamming weight of the error matrix) is less than N −K, with

probability 1 the closest codeword to the received vector is the transmitted codeword.

This implies that for any decoding algorithm satisfying the ML certificate property, the

set of all bad error matrices (defined in Section 3.5.2) is of measure zero, and thereby, the

probability of undetected error is zero.

Theorem 10. Under the GRE model, for all t ≤ N −K − 1 (and in particular, for all t ≤ tmax =

L
L+1

(N −K)), PML(t) = 0.

3.7 Numerical Results

We present simulation results for N = 8, K = 2, and αi = 0.9i for different L. Fig. 3.1

shows the probability of error (Pe(t) = PF (t) + PML(t)) for decoding GRS codes individ-

ually using Peterson’s algorithm (L = 1), decoding GRS codes individually using the `1

minimization decoder, and collaborative decoding using the CPDA algorithm with L = 6.

For each data point, 12500 IGRS codewords were simulated. It can be seen that the CPDA

with L = 6 corrects all t errors for t ≤ N − K − 1, which is a significant improvement

over decoding GRS codes individually. This is consistent with the theoretical results.

The probability of error for the `1 minimization decoder remains fairly high for several

values of t ≤ N − K − 1. These results are consistent with the results of Candes and
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Figure 3.1: The probability of error versus the number of errors for different decoding algorithms
for N = 8 and K = 2. Reprinted from [55]

Tao (Figures 2 and 3 in [3]). This shows that individually decoding GRS decoder using

the `1-minimization decoder does not suffice to achieve small probability of error as sug-

gested in [12]; whereas, collaborative decoding can achieve the decoding radius bound of

N −K − 1 with polynomial complexity.

For larger values ofN andK, we noticed that computing the rank of SL(t) had numer-

ical inaccuracies. This is a well-known issue with decoding GRS codes over the real field.

Interestingly, from simulations, we observe that collaborative decoding seems to alleviate

this issue. Table 3.1 shows the probability of error (Pe(t) = PF (t) + PML(t)) for N = 20,

K = 12 and αi = i. For a fixed number of errors, increasing L improved the condition

number of SL(t)TSL(t). With L = 20, we were able to decode up to N −K − 1 errors with

Pe(t) = 0 in 12500 trials.

Our results have shown that collaborative decoding of Polynomial codes can correct

up to tmax = L
L+1

(N − K) errors. It can be seen that tmax = N − K − 1 for all L ≥ N −

K − 1 and hence, it is natural to wonder if there is any advantage in increasing L beyond

N −K − 1. Here we empirically show that increasing L improves the numerical stability

of the collaborative Peterson’s algorithm for determining the error locator polynomial.

Fig. 4.4 (N = 8, K = 2, αi = 0.9i) shows a plot of the average condition number of the

stacked syndome matrix SL(t) (defined in (3.3)) as a function of t for different L. It can be
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Table 3.1: Probability of error for the CPDA, N = 20K = 12, 12500 trials. Reprinted from [55]

L\t 1 2 3 4 5 6 7
1 0 0 0 0.0008 - - -
2 0 0 0 0 0 - -
3 0 0 0 0 0 0 -
4 0 0 0 0 0 0 -
5 0 0 0 0 0 0 -
6 0 0 0 0 0 0 -
7 0 0 0 0 0 0 0.0026
8 0 0 0 0 0 0 0.0008

20 0 0 0 0 0 0 0

seen from simulations that for all t, increasing L decreases the average condition number.

Since the collaborative Peterson’s algorithm requires inversion of the matrix ST
L(t)SL(t),

the numerical stability of the algorithm will improve with increasing L.
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4. RANDOM KHATRI-RAO-PRODUCT CODES FOR NUMERICALLY-STABLE

DISTRIBUTED MATRIX MULTIPLICATION1

4.1 Introduction and Main Results

In this chapter, we consider the same problem in chapter 3 of computing ATB for

two matrices A ∈ RN2×N1 and B ∈ RN2×N3 in a distributed fashion using a coded matrix

multiplication scheme with N worker nodes but in the presence of straggling/erasure

nodes [12, 13, 29, 30, 32, 33, 49, 63, 67, 68, 71]. In [67], Yu, Maddah-Ali and Avestimehr pro-

posed an elegant encoding scheme called Polynomial codes in which the matrices AT and

B are each split into m and n sub-matrices, respectively, the sub-matrices are encoded us-

ing a polynomial code and the computations are distributed to N worker nodes. This

scheme is shown to have optimal recovery threshold, i.e., the matrix product ATB can be

computed (recovered) using the results of computation from any subset of worker nodes

of cardinality K = mn. In the language of coding theory, Polynomial codes are gener-

alized Reed-Solomon codes, their generator matrices have Vandermonde structures, and

they are maximum distance separable (MDS) codes.

In this chapter, we propose a coding scheme for the distributed matrix multiplication

problem which we call Random Khatri-Rao-Product (RKRP) codes which exhibits sub-

stantially better numerical stability than Polynomial codes [67] and OrthoPoly codes [18].

The proposed coding scheme is not based on polynomial interpolation; rather, it is de-

signed in the spirit of random codes in information theory.

RKRP codes split both AT and B into sub-matrices and encode them by forming ran-

dom linear combinations of the sub-matrices. The proposed RKRP codes have several

desirable features: (i) RKRP codes have the same thresholds, encoding complexity and

communication cost as that of Polynomial codes and OrthoPoly codes; (ii) Decoding pro-

1The contents of this section have been presented in verbatim as part of the paper "Random Khatri-Rao-
product codes for numerically-stable distributed matrix multiplication" at Allerton 2019 [57] for which I
was the first author
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cess of RKRP codes is substantially more numerically stable than that of Polynomial and

OrthoPoly codes, and decoding can be implemented even for fairly large values ofK,S,N

(e.g., K = 1000 and any S,N ); and (iii) decoding complexity of RKRP codes is lower than

that of OrthoPoly codes. To the best of our knowledge, the RKRP code construction and

the analysis of their MDS property are new.

We present two ensembles of generator matrices for RKRP codes called the non-systematic

RKRP ensemble and the systematic RKRP ensemble. Codes from these ensembles will be

referred to as non-systematic RKRP codes and systematic RKRP codes2, respectively. System-

atic RKRP codes have better average decoding complexity and better numerical stability.

Hence, systematic RKRP codes would be preferred over non-systematic RKRP codes for

most applications. However, we present both non-systematic and systematic ensembles

in this chapter for the following reasons. Since Polynomial and OrthoPoly codes are pre-

sented with non-systematic encoding, non-systematic RKRP codes allow for a fair com-

parison with Polynomial and OrthoPoly codes. The proofs are also easier to follow when

presented for the non-systematic ensemble first and then extended to the systematic en-

semble. Finally, non-systematically RKRP codes provide privacy which systematic RKRP

codes do not, although this issue is not studied further in this chapter.

4.2 System Model and Preliminaries

We consider a system with one master node which has access to matrices AT and B

and N worker nodes which can perform multiplication of sub-matrices of AT and B. At

the master node, the matrix AT is split into m sub-matrices row-wise and B is split into n

2The terminology of associating the words systematic and non-systematic with the code, rather than
with the encoder is not standard in coding theory. While it is possible to find a systematic encoder for
a non-systematic RKRP code, the resulting code would not belong to the systematic RKRP ensemble and
hence, should be treated as a non-systematic RKRP code.
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sub-matrices column-wise as shown below.

AT =



AT
1

AT
2

...

AT
m


, B =

[
B1 B2 · · · Bn

]
(4.1)

In order to compute the matrix product ATB, we need to compute the matrix products

AT
j Bl for j = 1, . . . ,m and l = 1, . . . , n. The main idea in distributed coded computation is

to first encode AT
1 , . . . ,A

T
m and B1, . . . ,Bn intoN pairs of matrices

(
ÃT
i , B̃i

)
, i = 1, . . . , N .3

The ith worker node is then tasked with computing the matrix product C̃i = ÃT
i B̃i. It

is assumed that K out of the N workers return the result of their computation; these

worker nodes are called non-stragglers. Without loss of generality we assume that the

non-stragglers are worker nodes 1, . . . , K.

Definition 11. An encoding scheme is a mapping from (AT
1 , . . . ,A

T
m,B1, . . . ,Bn) to {(C̃i =

ÃT
i B̃i)} for i = 1, . . . , N . A codeword is a vector of matrices C̃i = [C̃1, C̃2, . . . , C̃N ]. A code

is the set of possible codewords {C̃}.

Definition 12. An encoding scheme is said to result in a maximum distance separable (MDS)

code, or the corresponding code is said to be MDS, if the set of matrix products {AT
i Bj} for

i = 1, . . . ,m and j = 1, . . . , n can be computed (recovered) from any subset of {C̃1, C̃2, . . . , C̃N}

of size mn, where C̃i = ÃT
i B̃i.

Definition 13. The row-wise Khatri-Rao product of two matrices P ∈ RK×m and Q ∈ RK×n

denoted by P�Q is given by the matrix M whose ith row is the Kronecker product of the ith row

of P and the ith row of Q, i.e.,

M(i, :) = P(i, :)⊗Q(i, :) (4.2)

where ⊗ refers to the Kronecker product.
3This is not the most general form of encoding but many of the existing encoding schemes in the litera-

ture as well as the proposed scheme can be represented in this way.
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4.3 Non-Systematically encoded Random Khatri-Rao-Product Codes

4.3.1 Encoding:

Our proposed non-systematic RKRP codes are encoded as follows. For i = 1, . . . , N ,

the master node computes

ÃT
i =

m∑
j=1

pi,jA
T
j , (4.3)

B̃i =
n∑
l=1

qi,lBl (4.4)

where pi,j, qi,l are realizations of independent identically distributed random variables Pi,j

and Qi,l, respectively. Both Pi,j and Qi,l are assumed to be continuous random variables

with a probability density function f ∀i, j, l, i.e., their distribution is absolutely continuous

with respect to the Lebesgue measure. Ãi and B̃i are then transmitted to the ith worker

node which is tasked with computing C̃i = ÃT
i B̃i. We first note that C̃i can be written as

C̃i =

( m∑
j=1

pi,jA
T
j

)( n∑
l=1

qi,lBl

)

=
m∑
j=1

n∑
l=1

pi,jqi,lA
T
j Bl. (4.5)

Since the matrix C̃i is a linear combination of the desired matrix products AT
j Bl, the

(s, t)th entry of C̃i, namely [C̃i](s, t), is a linear combination of the (s, t)th entries of the

matrix products AT
j Bl, namely [AT

j Bl](s, t). During the decoding process, we attempt to

recover [AT
j Bl](s, t) from C̃i(s, t), . . . , [C̃i](s, t) for each pair of s, t separately.

To keep the discussions clear, we focus on the recovery of the (1, 1)th entry of AT
j Bl,

namely [AT
j Bl](1, 1). The same idea extends to the recovery of other indices as well. Let

yi = [C̃i](1, 1) denote the (1, 1)th entry in the matrix product computed by the ith non-

straggler worker node, and let zj,l = [AT
j Bl](1, 1).

The vector of computed values can be written as a linear combination of matrix prod-
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ucts given by



y1

y2

...

yi
...

yN


=



p1,1q1,1 p1,1q1,2 . . . p1,1q1,n . . . p1,mq1,n

p2,1q2,1 p2,1q2,2 . . . p2,1q2,n . . . p2,mq2,n

...

pi,1qi,1 pi,1qi,2 . . . pi,1qi,n . . . pi,mqi,n
...

pN,1qN,1 pN,1qN,2 . . . pN,1qN,n . . . pN,mqN,n





z1,1

z1,2

...

z1,n

...

zm,n


(4.6)

It will be more convenient to express (4.6) in a slightly different form. For j ∈ {1, . . . ,mn},

let j′ = dj/ne and j′′ = (j − 1) mod n + 1, and let wj = zj′,j′′ . Without loss of generality,

let us assume that the worker nodes which return their computation are worker nodes

1, 2, . . . , K. The computed values yi’s are related to the unknown values wj’s according to



y1

y2

...

yi
...

yK


=



p1,1q1,1 p1,1q1,2 . . . p1,1q1,n . . . p1,mq1,n

p2,1q2,1 p2,1q2,2 . . . p2,1q2,n . . . p2,mq2,n

...

pi,1qi,1 pi,1qi,2 . . . pi,1qi,n . . . pi,mqi,n
...

pK,1qK,1 pK,1qK,2 . . . pK,1qK,n . . . pK,mqK,n





w1

w2

...

wj
...

wK


(4.7)

or, more succinctly as

y = G w (4.8)

where y = [y1, y2, . . . , yK ]T, w = [w1, w2, . . . , wmn]T, and G is an N ×mn generator matrix

for a code with [G]i,j = pi,j′qi,j′′ .

Let P and Q be two matrices whose entries are given by [P]i,j′ = pi,j′ and [Q]i,j′′ = qi,j′′ .

It can be seen that

G = P�Q, (4.9)
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i.e., G is the row-wise Khatri-Rao product of two matrices P and Q. Hence, we call these

codes as Random Khatri-Rao-Product codes.

Example 14. In order to clarify the main idea, consider an example with m = 2 and n = 3 and

N > 6. Without loss of generality, assume that the worker nodes 1, 2, . . . , 6 return the results

of their computations, namely, C̃1, . . . , C̃6. In this case, the set of computations returned by the

worker nodes is related to the matrix products that we need to compute according to



y1

y2

y3

y4

y5

y6


=



p1,1q1,1 p1,1q1,2 p1,1q1,3 p1,2q1,1 p1,2q1,2 p1,2q1,3

p2,1q2,1 p2,1q2,2 p2,1q2,3 p2,2q2,1 p2,2q2,2 p2,2q2,3

p3,1q3,1 p3,1q3,2 p3,1q3,3 p3,2q3,1 p3,2q3,2 p3,2q3,3

p4,1q4,1 p4,1q4,2 p4,1q4,3 p4,2q4,1 p4,2q4,2 p4,2q4,3

p5,1q5,1 p5,1q5,2 p5,1q5,3 p5,2q5,1 p5,2q5,2 p5,2q5,3

p6,1q6,1 p6,1q6,2 p6,1q6,3 p6,2q6,1 p6,2q6,2 p6,2q6,3





w1

w2

w3

w4

w5

w6


(4.10)

Definition 15. The ensemble of N × K generator matrices obtained by choosing the genera-

tor matrix G as in (4.9) where pi,j, qi,j are realizations of random variables Pi,j, Qi,j such that

{P1,1, . . . , PN,m, Q1,1, . . . , QN,n} is a set of independent random variables with probability den-

sity function f will be referred to as the non-systematic random Khatri-Rao-product genera-

tor matrix ensemble Gnon−sys(N,K, f).

4.3.2 Decoding:

During decoding, an estimate of w, namely ŵ, is obtained as follows

ŵ = G−1y. (4.11)

In the absence of numerical round-off errors, if G is invertible, then ŵ = w. However,

when performing computation with finite bits of precision, there will be numerical errors
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in the computation. Let e = w − ŵ be the error, and define the relative error as

η :=
||e||2
||w||2

. (4.12)

4.4 Non-Systematic RKRP codes are MDS codes with probability 1

Our first main result in this chapter is that if a generator matrix is randomly chosen

from the non-systematic RKRP ensemble Gnon−sys(N,K, f), the encoding scheme defined

in (4.4) results in an MDS code with probability 1.

Lemma 16. Consider an analytic function h(x) of several real variables x = [x1, x2, · · · , xn] ∈

R
n. If h(x) is nontrivial in the sense that there exists x0 ∈ Rn such that h(x0) 6= 0 then the zero

set of h(x),

Z = {x ∈ Rn | h(x) = 0}

is of measure (Lebesgue measure in Rn) zero.

Proof: This lemma is proved in [22, Lemma 1] for the complex field C. The proof for the

real field can be obtained by following the same steps and replacing C with R.

Theorem 17. Non-systematic RKRP codes are MDS codes with probability 1.

Proof: To prove the theorem, we need to prove that the matrix G obtained when K = mn

in (4.7) is a full rank matrix with probability 1. Let pi,j be a realization of the random

variable Pi,j and let qi,j be a realization of the random variable Qi,j . The generator matrix
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in (4.7) is a realization of the matrix of random variables {Pi,j}i∈[K],j∈[m] and {Qi,j}i∈[K],j∈[n]:

Γ =



P1,1Q1,1 P1,1Q1,2 . . . P1,1Q1,n . . . P1mQ1,n

P2,1Q2,1 P2,1Q2,2 . . . P2,1Q2,n . . . P2mQ2,n

...

Pi,1Qi,1 Pi,1Qi2 . . . Pi,1Qin . . . Pi,mQin

...

PK,1QK,1 PK,1QK,2 . . . PK,1QK,n . . . PK,mQK,n


(4.13)

We will show that Pr(rank(Γ) 6= mn) = 0. The determinant of Γ is a polynomial in the

variables {Pi,j}i∈[K],j∈[m] and {Qi,j}i∈[K],j∈[n] with degree 2mn. Let

det(Γ) = h(P1,1, . . . , PK,m, Q1,1, . . . , QK,n) (4.14)

We first show that there exists at least one P1,1, . . . , PK,m, Q1,1, . . . , QK,n for which

h(P1,1, . . . , PK,m, Q1,1, . . . , QK,n) 6= 0.

For j ∈ [mn], let j′ = dj/ne and j′′ = ((j − 1) mod n) + 1. Let Pj,j′ = 1, Qj,j′′ = 1,∀j ∈

[mn], Pj,l = 0,∀j ∈ [mn], l 6= j′, and Qj,l = 0,∀j ∈ [mn], l 6= j′′. For this choice of

P1,1, . . . , PK,m, Q1,1, . . . , QK,n, it can be seen that the matrix Γ reduces to an identity matrix,

and hence h(P1,1, . . . , PK,m, Q1,1, . . . , QK,n) = 1 (6= 0). From Lemma 16, we then see that

the zero set of h has measure zero, and hence, Pr(rank(Γ) 6= mn) = 0.

4.5 Systematic Khatri-Rao-Product Codes

In this section, we introduce a systematic construction of random Khatri-Rao-Product

codes which reduces the average encoding and decoding complexities compared to its

non-systematic counterpart.
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4.5.1 Encoding:

In systematic encoding, the first K worker nodes are simply given the submatrices AT
j

and Bl without encoding and the other N −K worker nodes are given encoded versions

as in the non-systematic version. For i ∈ {1, . . . , K = mn}, let i′ = di/ne and i′′ = ((i− 1)

mod n) + 1. The encoding process can be described as below

ÃT
i =


AT
i′ , i ∈ [K],∑m
j=1 pi−K,jA

T
j , K + 1 ≤ i ≤ N,

(4.15)

B̃i =


Bi′′ , i ∈ [K],∑n

l=1 qi−K,lBl, K + 1 ≤ i ≤ N,

(4.16)

where pi,j, qi,j are realizations of Pi,j, Qi,j which are absolutely continuous random vari-

ables with respect to the Lebesgue measure. Ãi and B̃i are then transmitted to the ith

worker node which is tasked with computing C̃i = ÃT
i B̃i. We will refer to worker nodes

1, 2, . . . , K as systematic worker nodes and we will refer to worker nodes K + 1, . . . , N as

parity worker nodes.

As in the case of non-systematic encoding, we focus on the recovery of the (1, 1)th

entry of AT
j Bl, namely [AT

j Bl](1, 1). The same idea extends to the recovery of other indices

as well. Let yi = [C̃i](1, 1) denote the (1, 1)th entry in the matrix product computed by

the ith non-straggler worker node and let zj,l = [AT
j Bl]1,1. For j ∈ [mn], let j′ = dj/ne and

j′′ = ((j − 1) mod n) + 1 and let wj = zj′,j′′ . The computed values yi’s are related to the

unknown values wj’s according to
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y1

y2

...

yK

yK+1

...

yN



=



1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0

...

0 0 . . . 0 . . . 1

p1,1q1,1 p1,1q1,2 . . . p1,1q1,n . . . p1mq1,n

p2,1q2,1 p2,1q2,2 . . . p2,1q2,n . . . p2mq2,n

...

pS,1qS,1 pS,1qS,2 . . . pS,1qS,n . . . pS,mqS,n





w1

w2

...

wj
...

wK


, (4.17)

where S = N −K.

The generator matrix in (4.17) can be written as [IK×K FT]T where F is an N −K ×K

matrix whose ith row is given by p
i
� q

i
, i.e.,

F =



p1,1q1,1 p1,1q1,2 . . . p1,1q1,n . . . p1mq1,n

p2,1q2,1 p2,1q2,2 . . . p2,1q2,n . . . p2mq2,n

...

pS,1qS,1 pS,1qS,2 . . . pS,1qS,n . . . pS,mqS,n


. (4.18)

Definition 18. The ensemble of N × K generator matrices obtained by choosing the generator

matrix G as in (4.17) where Pi,j, Qi,j ∼ f will be referred to as the systematic random Khatri-

Rao-product generator matrix ensemble Gsys(N,K, f).

4.5.2 Decoding

We consider the case when there are S1 stragglers among the systematic worker nodes

and S2 = S−S1 stragglers among the parity worker nodes. Without loss of generality we

assume that the stragglers are the worker nodes 1, 2, . . . , S1 and K + S1 + 1, . . . , N . This

implies that the master nodes obtains yS1+1, . . . , yK and since the encoding is systematic,

the master node can trivially recoverwS1+1, . . . , wK by settingwi = yi for i = S1+1, . . . , SK .

42



We can recover w1, . . . , wS1 from yK+1, . . . , yK+S1 as follows. Notice that



yK+1

yK+2

...

yK+S1


= [F](K + 1 : K + S1, 1 : S1)



w1

w2

...

wS1


(4.19)

+ [F](K + 1 : K + S1, S1 + 1 : K)



wS1+1

wS1+2

...

wK


, (4.20)

which in turn implies that



yK+1

yK+2

...

yK+S1


− [F](K + 1 : K + S1, S1 + 1 : K)



wS1+1

wS1+2

...

wK


︸ ︷︷ ︸

y

(4.21)

= [F](K + 1 : K + S1, 1 : S1)︸ ︷︷ ︸
Gsys



w1

w2

...

wS1


︸ ︷︷ ︸

w

,

or more succinctly,

y = Gsys w. (4.22)
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We can obtain an estimate of w, namely ŵ, as

ŵ = G−1
sys y. (4.23)

Note that in the above description it is assumed that the stragglers were worker nodes

1, 2, . . . , S and K + S1 + 1, . . . , N . However, the same ideas can be used for arbitrary sets

of stragglers. The following example will clarify this.

Example 19. Consider an example withm = 2, n = 3, K = 6 withN = 10 worker nodes. Let the

straggler nodes be the worker nodes 2,4,5, and 8. In this case, we first recover w1, w3, w6 by setting

w1 = y1, w3 = y3 and w6 = y6. Then, we recover w2, w4, and w5 from w1, w3, w6, y7, y9, y10 using


y7

y9

y10

− [F]({7, 8, 9}, {1, 3, 6})


w1

w3

w6

 = [F]({7, 8, 9}, {2, 4, 5})


w2

w4

w5

 . (4.24)

We show that if a generator matrix is chosen at random from the systematic RKRP

ensemble Gsys(N,K, f), the encoding scheme in (4.17) result in an MDS code with proba-

bility 1.

Theorem 20. Systematic RKRP codes are MDS codes with probability 1.

Proof: To prove the theorem, we need to prove that Gsys is full rank with probability 1.

The proof follows along the same lines as the proof of Theorem 17.

4.6 Decoding Complexities

In this section, we briefly discuss the decoding complexity of systematic RKRP codes

and OrthoPoly codes. Decoding of systematic RKRP codes involves two steps. It involves

inversion of the S1×S1 matrix Gsys in (4.22) whose complexity is O(S3
1). To retrieve every

entry of [AT
j Bl], we need to multiply G−1

sys and y which requires O(S2
1) operations. This
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step needs to be repeated for each of the N1N3

mn
entries of [AT

j Bl] and hence, the overall

decoding complexity is O(S3
1 + S2

1
N1N3

mn
).

OrthoPoly codes cannot be easily implemented in systematic form because of the mul-

tiplication by H. Hence, the decoding complexity of OrthoPoly codes involves inverting

a K × K matrix followed by N1N3

mn
multiplication of a K × K matrix and a K × 1 vector.

The overall complexity is hence O(K3 +K2N1N3

mn
).

Since S1 ≤ K, the average decoding complexity for systematic RKRP codes is lower

than that of OrthoPoly codes and the worst-case complexities (when S1 = K) are identi-

cal.

4.7 Simulation results

We now present simulation results to demonstrate the superior numerical stability

of RKRP codes. We performed Monte Carlo simulations of the encoding and decoding

process by choosing the entries of A and B to be realizations of i.i.d Gaussian random

variables with zero mean and unit variance. For the presented results, we have consid-

ered the recovery of the (1, 1)th entry of AT
j Bl. The corresponding vector w is then a

realization of the vector-valued random variable W . Then, we computed y using (4.8),

(4.17), and (2.3) for non-systematic RKRP codes, systematic RKRP codes, and OrthoPoly

codes, respectively. We randomly chose a subset of N −K worker nodes to be stragglers.

Then, we computed ŵ using (4.11), (4.23), (2.4) for non-systematic RKRP codes, system-

atic RKRP codes, and OrthoPoly codes, respectively. For each of these codes, we define

the average relative error to be

ηave := E

[
||W − Ŵ ||2
||W ||2

]

and we estimate ηave from Monte Carlo simulations.
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Figure 4.1: Plot of average relative error as a function of N for a fixed α; N = dK/(1 − α)e.
Reprinted from [57]

4.7.1 MDS property

Firstly, in several million simulations, we never observed any instance where the gen-

erator matrix G in (4.8) or Gsys in (4.21) was singular, which provides empirical evidence

to our claim that non-systematic and systematic RKRP codes are MDS codes with proba-

bility 1.

4.7.2 Average relative error

In Fig. 4.1, we plot the average relative error as a function of N when the total number

of worker nodes is set to be N = dK/(1 − α)e or K = bN(1 − α)c. This model is mean-

ingful when we consider practical scenarios where each worker node fails with a fixed

probability. In the plots in Fig. 4.1, α is fixed and K and N are varied. The results are

shown for α = 0.1 and for OrthoPoly codes, non-systematic RKRP codes, and systematic

RKRP codes. It can be seen that the average relative error is several orders of magnitude

lower for RKRP codes when N is about 100.

In Figure 4.2, we plot the average relative error versus α = N−K
N

for a fixed K. Again,

it can be seen that the proposed RKRP codes are very robust to numerical precision errors

and substantially outperform OrthoPoly codes. It should also be noted that the aver-
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age relative error remains largely independent of α for RKRP codes whereas they grow

rapidly with α for OrthoPoly codes.
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Figure 4.2: Plot of average relative error versus fraction of straggler nodes (α) for K = 49; α =
N−K
N . Reprinted from [57]

In Figure 4.3, we plot the average relative error versus the number of straggler nodes

S for a fixed K when N = K + S. It can be seen that the proposed RKRP codes provide

excellent robustness even as the number of stragglers increases.

4.7.3 Average log condition number

The expected value of the logarithm of the condition number of a random matrix is a

measure of loss in precision in computing the inverse of the determinant of the matrix,

when the matrix is chosen from an underlying ensemble [14]. We computed the expected

value of the logarithm of the condition number of matrices from three ensembles. For

non-systematic RKRP codes, we chose G from the Gnon−sys(N,K, f) ensemble where f is

a Gaussian density with zero mean and unit variance. For systematic RKRP codes, we

chose Gsys from the Gsys(N,K, f) ensemble, and for OrthoPoly codes, we randomly chose

K × K submatrices of GO and multiplied the matrix by H. In Figure 4.4, we plot the
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Figure 4.3: Plot of average relative error versus number of stragglers (S) for K = 49; N = K + S.
Reprinted from [57]

average of the log of the condition number as a function of α for the three ensembles. We

fix K and let N = K(1 + α).

It can be seen that the average of the log of the condition number is substantially lower

for RKRP codes than for Orthopoly codes showing that the number of bits of precision

lost is substantially lower for RKRP codes.
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Figure 4.4: Plot of E[log(condition number)] of inverted matrix versus fraction of stragglers (α) for
K = 49. Reprinted from [57]

4.8 Summary

We proposed a new class of codes called random Khatri-Rao-product (RKRP) codes for

which the generator matrix is the row-wise Khatri-Rao product of two random matri-
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ces. We proposed two random ensembles of generator matrices and corresponding codes

called non-systematic RKRP codes and systematic RKRP codes. We showed that RKRP

codes are maximum distance separable with probability 1 and that their decoding is sub-

stantially more numerically stable than Polynomial codes and OrthoPoly codes. The av-

erage decoding complexity of RKRP codes is lower than that of OrthoPoly codes.
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5. PRODUCT LAGRANGE CODED COMPUTING1

5.1 Introduction

In this chapter, we consider the third problem introduced in section [1.3] of the Intro-

duction chapter; the Distributed Multivariate Polynomial Evaluation (DMPE) problem

which appears in several machine learning and deep learning algorithms—for instance,

in computing the gradient of a loss-function on a big dataset in gradient descent/ascent

optimization algorithms [53], or in decomposing low-rank tensors in high-dimensional

optimization problems [46].

For any large-scale master-worker distributed computing scheme, robust algorithms need

to address several important factors including (i) resilience to straggling workers, where

each worker takes a random amount of time to conclude their task, and (ii) scalability—

the numerical accuracy and implementation complexity of distributed algorithms need

to scale efficiently with the number of workers.

Starting from the work of Lee et al. [27], there have been breakthrough developments in

the design of distributed algorithms (mostly for distributed matrix-matrix multiplication)

addressing the issue of resilience to stragglers, by leveraging ideas from coding theory.

This has led to the paradigm of coded distributed computing [1,4,6–8,10,11,15–17,19,23–25,

28,31,34–37,39,40,42,44,45,47,48,50,54,56,59–62,64–66,69,70]. The use of codes based on

polynomial-evaluation (particularly, Reed-Solomon codes over the real field) has played

a central role in the design of coded distributed computing schemes. They have been

shown to be optimal for distributed matrix-matrix multiplication in terms of the number

of stragglers that can be tolerated [17, 69, 70]. The issue of scalability has been addressed

in recent works [6, 7, 16, 44, 47, 48, 56].

Recently, Yu et al. in [66] introduced a coding-based scheme relying on polynomial-based

1The contents of this section will appear in verbatim as part of the paper "Product Lagrange Coded
Computing" [58] at the International Symposium on Information Theory 2020 for which I was the first
author
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codes, called Lagrange Coded Computing (LCC), for the DMPE problem. They showed

that the LCC scheme provides optimal resilience to stragglers amongst all linear cod-

ing schemes for DMPE [66]. The theory of LCC is mathematically elegant and powerful

and it provides an excellent solution to addresses the resilience issue for the DMPE prob-

lem. However, the LCC scheme of [66] is not highly scalable. Specifically, the decoding

algorithm for LCC is numerically unstable as it involves explicitly or implicitly inverting a

Vandermonde matrix and Vandermonde matrices over the real field are very poorly con-

ditioned. In fact, the condition number of Vandermonde matrices grows exponentially

in the size of the matrix [5, 43]. One possible approach to implement the LCC scheme

of [66] is to use quantized inputs and perform computation over finite fields to prevent

numerical overflow such as in [54]. However, a comprehensive study of how the loss in

precision from quantization scales as a function of the degree of f , K and N is still not

available in the literature.

5.1.1 Main Contributions

In this work, we propose a new variant of LCC, referred to as the Product Lagrange Coded

Computing (PLCC), which is inspired by and builds upon the LCC scheme [66] and prod-

uct codes [38]. The PLCC scheme is more numerically stable than the LCC scheme, in

the presence of numerical errors due to computing with finite precision. This advantage

of PLCC comes at the price of sacrificing the optimality of LCC in terms of resilience to

stragglers. That said, in many real-world applications dealing with large datasets, due

to physical limitations it may be required to partition the dataset into many chunks (i.e.,

large K), and accordingly distribute the task of computation among many workers (i.e.,

large N ). In such scenarios, PLCC can be implemented for cases with much larger K and

N than those that can be handled by LCC, while providing a satisfactory level of accuracy.
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5.2 Problem Formulation

Let X1, . . . ,XK ∈ Rr×d be K matrices, each of size r × d, and let f : Rr×d → Ra×b

be a matrix function. In particular, let the matrix function f have the form f(Xk) =

[fi,j(Xk)]1≤i≤a,1≤j≤b, where fi,j : Rr×d → R, and fi,j(Xk) is a multivariate polynomial

whose variables are the rd entries of the matrix Xk. Let deg(f) be the maximum total

degree of the multivariate polynomials fi,j’s, where the total degree of fi,j is the maximum

of degrees of all monomials in fi,j .

In this work, we consider the problem of computing f(X1), . . . , f(XK) distributedly in a

master-worker framework with one master node and N worker nodes. This problem is

referred to as the Distributed Multivariate Polynomial Evaluation (DMPE). For example, con-

sider solving a linear least-squares regression problem using the gradient descent (GD)

algorithm [66]. In each GD iteration, one needs to compute the function f(X) = XTXw,

where X ∈ RKr×d is a feature/design matrix and w ∈ Rd×1 is a weight vector. Splitting

X into K row-disjoint sub-matrices X1, . . . ,XK ∈ Rr×d, the problem of evaluating f(X)

becomes equivalent to computing the sum of the K evaluations f(X1), . . . , f(XK). Note

that, in this example, the matrix function f(Xk) = [f1,1(Xk), . . . , fd,1(Xk)]
T has degree

deg(f) = 2, because fi,1(Xk) for each 1 ≤ i ≤ d is a multivariate polynomial in the en-

tries of the matrix Xk and has total degree 2. This is a multivariate polynomial evaluation

problem, and computing the K evaluations f(X1), . . . , f(XK) distributedly is an instance

of the DMPE problem.

We assume that S (out ofN ) worker nodes are stragglers, and that the computation results

of stragglers are not received by the master node, i.e., they are erased. The worst-case

recovery threshold of a DMPE scheme is defined as the minimum number of worker nodes

(regardless of the configuration of the S stragglers) that the master node needs to wait for

in order to guarantee recoverability of allK evaluations. The average-case recovery threshold

of a DMPE scheme is defined as the average of the minimum number of worker nodes

for which the master node needs to wait, where the average is taken over all possible
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configurations of S stragglers (assuming that all configurations are equally likely). In

addition, we measure the numerical stability of a DMPE scheme by the relative error —

due to numerical round-off errors from computing with finite precision, in the estimated

evaluation matrix Ŷ = f̂(X) in comparison to the actual evaluation matrix Y = f(X),

where the relative error is defined as ‖Ŷ−Y‖‖Y‖ where ‖ · ‖ denotes the L2-norm.

In this work, we are interested in designing a DMPE scheme that is more numerically

stable than the state-of-the-art LCC scheme.

5.3 Product Lagrange Coded Computing

In this section, we propose a new solution for the DMPE problem. The proposed scheme,

referred to as the Product Lagrange-Coded Computing (PLCC), is inspired by the LCC

scheme [66] and product codes [38]. As will be discussed later, PLCC resolves the numer-

ical instability issue associated with LCC to a great extent; this improvement however

comes at a cost in terms of the recovery threshold.

In the following, we will explain the construction of two-dimensional PLCC, based on

two-dimensional product codes. The extension of the code construction to higher dimen-

sional PLCC is straightforward, and hence omitted.

The main idea of the proposed construction is to design a product code whose component

codes per row and column are Reed-Solomon codes with message polynomials of the

form f(u(z)) or f(v(z)) where u(z) and v(z) are Lagrange interpolation polynomials. The

key challenge in the design of such a product code is to guarantee the consistency between

the components codes along the rows and the columns. To solve this problem, we propose

to use two sets of Lagrange basis polynomials (defined shortly) and couple the Lagrange

interpolation polynomials u(z) and v(z) using the two sets of Lagrange basis polynomials.

5.3.1 Encoding

Let K = K1K2 and N = N1N2 be such that Ni > (Ki − 1) deg(f) + 1. For each 1 ≤ k ≤ K,

we rename Xk by Xi,j where 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2 are the unique integers such that
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k = (i− 1)K2 + j.

For example, for K1 = 3 and K2 = 2, we have


X1 X2

X3 X4

X5 X6

 =


X1,1 X1,2

X2,1 X2,2

X3,1 X3,2

 .

We shall construct a two-dimensional PLCC scheme with parameters (N1, N2, K1, K2)

based on a two-dimensional (N1, (K1 − 1) deg(f) + 1) × (N2, (K2 − 1) deg(f) + 1) prod-

uct code, represented by an N1 ×N2 matrix C = [Ci,j]1≤i≤N1,1≤j≤N2 whose N = N1N2

entries Ci,j’s are the code symbols. The master node then requests each of the N worker

nodes to compute one of the code symbols Ci,j .

Let α1, . . . , αN2 ∈ R and β1, . . . , βN1 ∈ R be two (not necessarily disjoint) sets of distinct

real numbers. For each 1 ≤ j ≤ K2 and each 1 ≤ i ≤ K1, we define Lagrange basis

polynomials lj(z) and mi(z) given as follows:

lj(z) =
∏

1≤k≤K2
k 6=j

z − αk
αj − αk

, mi(z) =
∏

1≤k≤K1
k 6=i

z − βk
βi − βk

.

Note that the polynomials lj(z)’s and mi(z)’s have degree K2− 1 and K1− 1, respectively.

For example, for K1 = 3 and K2 = 2, we have l1(z) = z−α2

α1−α2
and l2(z) = z−α1

α2−α1
, each

of degree K2 − 1 = 1, and we have m1(z) = (z−β2)(z−β3)
(β1−β2)(β1−β3)

, m2(z) = (z−β1)(z−β3)
(β2−β1)(β2−β3)

, and

m3(z) = (z−β1)(z−β2)
(β3−β1)(β3−β2)

, each of degree K1 − 1 = 2.

Using the Lagrange basis polynomials lj(z)’s and mi(z)’s, we define the code symbols

Ci,j’s as follows:

(i) For 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2, we set Ci,j = f(Xi,j).

(ii) For 1 ≤ i ≤ K1, we associate a Lagrange interpolation polynomial ui(z) =∑K2

j=1 lj(z)Xi,j of degree K2 − 1 to the ith row of matrix C. For 1 ≤ i ≤ K1 and

54




f(X1,1) f(X1,2) f(u1(α3)) = f(v3(β1)) f(u1(α4)) = f(v4(β1))
f(X2,1) f(X2,2) f(u2(α3)) = f(v3(β2)) f(u2(α4)) = f(v4(β2))
f(X3,1) f(X3,2) f(u3(α3)) = f(v3(β3)) f(u3(α4)) = f(v4(β3))

f(u4(α1)) = f(v1(β4)) f(u4(α2)) = f(v2(β4)) f(u4(α3)) = f(v3(β4)) f(u4(α4)) = f(v4(β4))
f(u5(α1)) = f(v1(β5)) f(u5(α2)) = f(v2(β5)) f(u5(α3)) = f(v3(β5)) f(u5(α4)) = f(v4(β5))
f(u6(α1)) = f(v1(β6)) f(u6(α2)) = f(v2(β6)) f(u6(α3)) = f(v3(β6)) f(u6(α4)) = f(v4(β6))


(5.1)

K2 < j ≤ N2, we set Ci,j = f(ui(αj)). (Note that for 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2, we

have ui(αj) = Xi,j .)

(iii) For 1 ≤ j ≤ K2, we associate a Lagrange interpolation polynomial vj(z) =∑K1

i=1mi(z)Xi,j of degree K1 − 1 to the jth column of matrix C. For K1 < i ≤ N1

and 1 ≤ j ≤ K2, we set Ci,j = f(vj(βi)). (Note that for 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2,

we have vj(βi) = Xi,j .)

(iv) For K1 < i ≤ N1 and K2 < j ≤ N2, we associate a Lagrange interpolation poly-

nomial ui(z) =
∑K2

j=1 lj(z)vj(βi) of degree K2 − 1 to the ith row of matrix C and

a Lagrange interpolation polynomial vj(z) =
∑K1

i=1 mi(z)ui(αj) of degree K1 − 1 to

the jth column of matrix C. (The evaluations u1(αj), . . . , uK1(αj) required for com-

puting vj(z) and the evaluations v1(βi), . . . , vK2(βi) required for computing ui(z) are

defined in (ii) and (iii), respectively.) The key feature of this construction is that

ui(αj) = vj(βi) for all 1 ≤ i ≤ N1 and all 1 ≤ j ≤ N2 (see Lemma 21). This allows us

to set Ci,j = f(ui(αj)) = f(vj(βi)) for all K1 < i ≤ N1 and all K2 < j ≤ N2.

Lemma 21. For 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2, we have

ui(αj) = vj(βi).

Proof: Recall that by the definition, we have

ui(z) =


∑K2

k=1 lk(z)Xi,k, 1 ≤ i ≤ K1,∑K2

k=1 lk(z)
∑K1

h=1 mh(βi)Xh,k, K1 < i ≤ N1,
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and

vj(z) =


∑K1

h=1mh(z)Xh,j, 1 ≤ j ≤ K2,∑K1

h=1mh(z)
∑K2

k=1 lk(αj)Xh,k, K2 < j ≤ N2.

We prove the result of the lemma for the following four different cases (depending on i, j)

separately.

• For 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2, we have

ui(αj) =
∑

1≤k≤K2
k 6=j

lk(αj)Xi,k + lj(αj)Xi,j

=
∑

1≤k≤K2
k 6=j

0 ·Xi,k + 1 ·Xi,j = Xi,j,

and

vj(βi) =
∑

1≤h≤K1
h6=i

mh(βi)Xh,j +mi(βi)Xi,j

=
∑

1≤h≤K1
h6=i

0 ·Xh,j + 1 ·Xi,j = Xi,j,

noting that for 1 ≤ k ≤ K2 and 1 ≤ h ≤ K1, we have

lk(αj) =


0, k 6= j,

1, k = j,

and mh(βi) =


0, h 6= i,

1, h = i.

• For 1 ≤ i ≤ K1 and K2 < j ≤ N2, we have

ui(αj) =
∑

1≤k≤K2

lk(αj)Xi,k,
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and

vj(βi) =
∑

1≤h≤K1

mh(βi)
∑

1≤k≤K2

lk(αj)Xh,k

=
∑

1≤h≤K1
h6=i

mh(βi)
∑

1≤k≤K2

lk(αj)Xh,k

+mi(βi)
∑

1≤k≤K2

lk(αj)Xi,k

=
∑

1≤h≤K1
h6=i

0 ·
∑

1≤k≤K2

lk(αj)Xh,k

+ 1 ·
∑

1≤k≤K2

lk(αj)Xi,k

=
∑

1≤k≤K2

lk(αj)Xi,k.

• For K1 < i ≤ N1 and 1 ≤ j ≤ K2, we have

ui(αj) =
∑

1≤k≤K2

lk(αj)
∑

1≤h≤K1

mh(βi)Xh,k

=
∑

1≤k≤K2
k 6=j

lk(αj)
∑

1≤h≤K1

mh(βi)Xh,k

+ lj(αj)
∑

1≤h≤K1

mh(βi)Xh,j

=
∑

1≤k≤K2
k 6=j

0 ·
∑

1≤h≤K1

mh(βi)Xh,k

+ 1 ·
∑

1≤h≤K1

mh(βi)Xh,j

=
∑

1≤h≤K1

mh(βi)Xh,j,
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and

vj(βi) =
∑

1≤h≤K1

mh(βi)Xh,j.

• For K1 < i ≤ N1 and K2 < j ≤ N2, we have

ui(αj) =
∑

1≤k≤K2

lk(αj)
∑

1≤h≤K1

mh(βi)Xh,k

=
∑

1≤k≤K2

∑
1≤h≤K1

lk(αj)mh(βi)Xh,k,

and

vj(βi) =
∑

1≤h≤K1

mh(βi)
∑

1≤k≤K2

lk(αj)Xh,k

=
∑

1≤h≤K1

∑
1≤k≤K2

mh(βi)lk(αj)Xh,k.

For example, consider a PLCC with parameters N1 = 6, N2 = 4, K1 = 3, and K2 = 2. The

code matrix C = [Ci,j]1≤i≤6,1≤j≤4 for this example is given in (5.1). For instance, in this

example we have v3(β1) = m1(β1)u1(α3) + m2(β1)u2(α3) + m3(β1)u3(α3) = 1 · u1(α3) + 0 ·

u2(α3)+0 ·u3(α3) = u1(α3); and u4(α1) = l1(α1)v1(β4)+l2(α1)v2(β4) = 1 ·v1(β4)+0 ·v2(β4) =

v1(β4).

Theorem 22. The proposed code construction for a two-dimensional PLCC scheme with parame-

ters (N1, N2, K1, K2) yields a two-dimensional (N1, (K1−1) deg(f)+1)×(N2, (K2−1) deg(f)+

1) product code.

Proof: The result follows from the following two facts: (i) for each 1 ≤ j ≤ N2, the code

symbols C1,j = f(vj(β1)), . . . ,CN1,j = f(vj(βN1)) along the jth column of matrix C are N1

evaluations of the univariate polynomial f(vj(z)) of degree (K1 − 1) deg(f) at points z ∈
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{β1, . . . , βN1}; and (ii) for each 1 ≤ i ≤ N1, the code symbols Ci,1 = f(ui(α1)), . . . ,Ci,N2 =

f(ui(αN2)) along the ith row of matrix C are N2 evaluations of the univariate polynomial

f(ui(z)) of degree (K2 − 1) deg(f) at points z ∈ {α1, . . . , αN2}. That is, each column of

matrix C is a codeword of an (N1, (K1−1) deg(f)+1) Reed-Solomon code with parameters

β1, . . . , βN1 ; and each row of matrix C is a codeword of an (N2, (K2 − 1) deg(f) + 1) Reed-

Solomon code with parameters α1, . . . , αN2 .

5.3.2 Decoding

The goal of the decoding is to recover f(X1,1), . . . , f(XK1,K2) from the code symbols re-

ceived by the master node. This can be done similar to the decoding of product codes,

i.e., by decoding the Reed-Solomon codes along rows and columns combined with an it-

erative peeling decoding algorithm. More specifically, given the code symbols computed

by any (K1 − 1) deg(f) + 1 worker nodes along a column or the code symbols computed

by any (K2 − 1) deg(f) + 1 worker nodes along a row, the master node is able to recover

all other code symbols in that row or column, respectively.

Theorem 23. The (worst-case) recovery threshold of a two-dimensional PLCC scheme with pa-

rameters (N1, N2, K1, K2) is

N1N2 − (N1 − (K1 − 1) deg(f) + 1)(N2 − (K2 − 1) deg(f) + 1).

In particular, for K1 = K2 =
√
K and N1 = N2 =

√
N , the (worst-case) recovery threshold is

N − (
√
N − (

√
K − 1) deg(f) + 1)2.

Proof: The result follows directly from the (worst-case) erasure decoding guarantee of a

two-dimensional (N1, (K1 − 1) deg(f) + 1) × (N2, (K2 − 1) deg(f) + 1) product code [38],

and hence omitted.
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5.4 Numerical Stability vs. Recovery Threshold

The main advantage of PLCC over LCC is its numerical stability. When decoding a Reed-

Solomon code along a column or a row in PLCC, the master node needs to interpolate a

polynomial of degree (K1 − 1) deg(f) or (K2 − 1) deg(f), respectively. On the other hand,

the decoding of LCC requires the master node to interpolate a polynomial of degree (K−

1) deg(f) = (K1K2 − 1) deg(f), which can be significantly larger than (K1 − 1) deg(f) and

(K2− 1) deg(f). This implies that the decoding of LCC involves inverting a Vandemonde

matrix of substantially larger size, namely ((K− 1) deg(f) + 1)× ((K− 1) deg(f) + 1), and

hence far less numerically stable. For example, when deg(f) = 2 and K = 100, for the

LCC scheme the master node needs to invert a 199 × 199 Vandermonde matrix; whereas

for the PLCC scheme with K1 = K2 =
√
K = 10, Vandermonde matrices of much smaller

size 19× 19 need to be inverted.

On the other hand, a simple comparison shows the superiority of LCC over PLCC in

terms of the worst-case recovery threshold. However, depending on which worker nodes

are straggling the master node may still be able to successfully recover all f(Xi,j)’s from

the results of less than N1N2− (N1− (K1− 1) deg(f) + 1)(N2− (K2− 1) deg(f) + 1) worker

nodes. Thus, the average-case recovery threshold of PLCC can be lower than their worst-

case recovery threshold.

5.5 Simulation Results

In this section, we present numerical results to show that PLCC has better numerical sta-

bility than that of LCC. To illustrate this, we consider the computation of degree two poly-

nomial Y = XTX distributedly, where X is a matrix whose entries are the realizations of

a Gaussian random variable with zero mean and unit variance. To measure the numerical

stability of these two schemes, we consider the relative error, defined as η , ||Y−Ŷ||
||Y|| , where

Ŷ is the estimate of Y. We performed Monte Carlo simulations of encoding and decoding

process of LCC, described in Section 2.3, and PLCC, described in Section 5.3, to estimate
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Figure 5.1: The empirical CDF of the relative error in LCC for different values ofK andN = 2K−1,
where there are no stragglers. Reprinted from [58]

η.

In Fig. 5.1, we plot the empirical cumulative distribution function (CDF) of the relative

error, P(η < x), in LCC for different values ofK. Notice that P(η < x) depends both on the

probability of the iterative decoding process being successful and the relative error from

numerical precision when the decoding is successful. It can be seen that the probability

with which the relative error exceeds a fixed value increases as K increases. For example,

the relative error is greater than 10−4 with probability 0.36 for K = 9; whereas it is greater

than 10−4 with probability 0.62.
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Figure 5.2: The empirical CDF of the relative error in PLCC and LCC for K = 16 and N = 100,
where there are αN stragglers. Reprinted from [58]
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Figure 5.3: The average relative error in PLCC and LCC for K = 16 and N = 100, when there are
αN stragglers. Reprinted from [58]

In Fig. 5.2, we plot the empirical CDF of the relative error, P(η < x), for a fixed K when

α fraction of workers are stragglers. To simulate PLCC, we chose K1 = K2 = 4 and

N1 = N2 = 10. For comparison, we also simulate LCC for K = 16 and N = 100. It can be

seen that the relative error of PLCC is much smaller than that of LCC, even though LCC

is optimal in terms of the recovery threshold.

In Fig. 5.3, we plot the average relative error, E(η), for both LCC and PLCC as a function

of α when K = 16. It can be seen that the average relative error of PLCC is several orders

less than that of LCC when α is sufficiently small, i.e., N(1 − α) is not much larger than

the recovery threshold of PLCC. For larger values of α when N(1− α) is far greater than

the recovery threshold of PLCC, the average relative error of both schemes are very large,

and almost the same.

One option to improve the numerical stability of LCC is to quantize the inputs and embed

the quantities inside a finite field as in [54]. In this case, the relative error is determined

by the quantization used. The quantization required may be coarser with the degree of f

and hence, this needs to be studied in more detail in future work.
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6. CONCLUSION

In this thesis, we have introduced the problem of numerical instability of polynomial

codes in the real field and have proposed various coding schemes to improve the stability

of codes for distributed machine learning.

In chapter 2, we have shown that polynomial codes (and some related codes) used for

distributed matrix multiplication are interleaved Reed-Solomon codes and, hence, can be

collaboratively decoded. We consider a fault tolerant setup where t worker nodes return

erroneous values. For an additive random Gaussian error model, we show that for all

t < N − K, errors can be corrected with probability 1. Further, numerical results show

that in the presence of additive errors, when L Reed-Solomon codes are collaboratively

decoded, the numerical stability in recovering the error locator polynomial improves with

increasing L.

In chapter 3, we have proposed a class of codes called random Khatri-Rao-Product

(RKRP) codes for distributed matrix multiplication in the presence of stragglers. The

main advantage of the proposed code is that decoding of RKRP codes is highly numer-

ically stable in comparison to decoding of Polynomial codes [67] and decoding of the

recently proposed OrthoPoly codes [18]. We have shown that RKRP codes are maximum

distance separable with probability 1. The communication cost and encoding complexity

for RKRP codes are identical to that of OrthoPoly codes and Polynomial codes and the

average decoding complexity of RKRP codes is lower than that of OrthoPoly codes. Nu-

merical results presented in this chapter, show that the average relative L2-norm of the

reconstruction error for RKRP codes is substantially better than that of OrthoPoly codes.

In chapter 4 we have considered the problem of distributed multivariate polynomial eval-

uation (DPME) using a master-worker framework, which was originally considered by Yu

et al., where Lagrange Coded Computing (LCC) was proposed as a coded computation

scheme to provide resilience against stragglers for the DPME problem. In this chapter, we
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have proposed a variant of the LCC scheme; termed Product Lagrange Coded Computing

(PLCC), by combining ideas from classical product codes and LCC. PLCC was demon-

strated to be more numerically stable than LCC; however, their resilience to stragglers is

sub-optimal.

6.1 Open problems

1. In chapter 2, it has been shown that collaborative decoding can correct upto N −

K − 1 errors under the Gaussian noise model. It remains to be seen if it possible to

construct an encoding scheme that can correct upto N−K−1 errors when the noise

injected by the workers is adversarial.

2. In chapter 3, we have proposed RKRP codes which have extremely high decod-

ing complexity compared to reed-solomon codes decoded with the Berlekamp-

Massey(BM) decoder. It remains an open problem to construct codes that have

similar accuracy characteristics to that of RKRP codes, but have the structure to

be decoded in O(N2)(N is the size of the code), which is the complexity of the BM

decoder.

3. The PLCC codes of chapter 4 have superior numerical stability compared to LCC

codes. But this is at the cost of optimality in resilience to stragglers. It remains an

open problem to construct numerically stable codes that have higher resilience to

stragglers for the distributed polynomial evaluation problem.
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