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SUMMARY

Building clinical decision support systems, which includes diagnosing patient’s disease states

and formulating a treatment plan, is an important step toward personalized medicine. The counter-

factual nature of clinical decision-making is a major challenge for machine learning-based treat-

ment recommendation, i.e., we can only observe the outcome of the clinician’s actions while the

outcome of alternative treatment options is unknown. The thesis is an attempt to formulate robust

counterfactual learning frameworks for efficient offline policy evaluation and policy learning using

observational data. We focus on the offline data scenario and leverage historically collected Elec-

tronic Health Records, since online policy testing can potentially adversely impact the patient’s

well-being. The problem is compounded by the inherent uncertainty in clinical decision-making

due to heterogeneous patient contexts, the presence of significant variability in patient-specific

predictions, smaller datasets, and limited knowledge of the clinician’s intrinsic reward function

and environment dynamics. This motivates the need to tackle uncertainty and enable improved

clinical policy generalization via context-based policy learning. We propose counterfactual frame-

works to tackle the highlighted challenges under two learning scenarios: contextual bandits and

dynamic treatment regime. In the bandit setting, we focus on effectively tackling the model un-

certainty inherent in inverse propensity weighting methods and highlight our approach’s efficacy

on oral anticoagulant dosing task. In dynamic treatment regime, we focus on sequential treatment

interventions and consider the problem of imitating the clinician’s policy for sepsis management.

We formulate it as a multi-task problem and propose meta-Inverse Reinforcement Learning frame-

work to jointly adapt policy and reward functions to diverse patient groups, thus enabling improved

policy generalization.

ix



CHAPTER 1

INTRODUCTION

1.1 The Importance of Clinical Decision-Making

Clinical decision support systems leverage clinical knowledge and patient-related information to

improve patient care [1]. Building clinical decision support systems (CDSS), which includes di-

agnosing patient’s disease states and formulating a treatment plan, is an important step toward

personalized medicine. We have now witnessed an increasing popularity of machine learning-

based diagnosis systems [2], such as in skin cancer detection [3], prediction of cardiovascular risk

factors from retinal fundus photographs [4]. However, high-accuracy diagnosis by itself is not

sufficient to solve the challenges of building clinical decision support systems. In addition to diag-

nosing patients, a major part of clinical decision-making is to recommend appropriate treatments

for patients with certain diagnoses, i.e., learning policies for treatment recommendation. Clinical

treatment recommendations can be grouped into two major categories. The first group focuses on

making more accurate predictions for future patient outcomes, sometimes referred to as prognosis

prediction, such as in cancer patients [5] and dermatology [6]. Typically, these methods apply

supervised learning on historical patient data to predict disease progression, survival outcomes,

and certain clinical events in response to a prescribed treatment. Consequently, treatment options

with the best outcomes are suggested for decision-support. The second group focuses on building

models to map the observed clinical features to treatment actions directly, such that the overall

reward, which is directly related to the patient’s health, is maximized. Recent biomedical stud-

ies have leveraged bandit and reinforcement learning algorithms to recommend adaptive treatment

policy regimes in chronic diseases and critical care settings. Some examples include optimizing

antiretroviral therapy in HIV patients [7], tailoring anti-epilepsy drugs for seizure control [8], tim-

ing ventilation support for ICU patients [9] and determining optimal antibiotic dosing for sepsis
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patients [10]. In contrast to the first group which focuses on predictive modeling and suggesting ac-

tions which are close to clinician’s judgement, reward-based policy learning focuses on exploring

alternate optimal actions to derive policy that optimizes the probability of favourable clinical out-

comes. This makes the scenario more complicated since the policy output affects both the patient’s

future health and future treatment plan. In this thesis, our focus is on developing efficient counter-

factual learning frameworks to tackle the challenges arising from reward-based policy learning in

clinical settings.

1.2 Challenges in Biomedical Domain

The counterfactual nature of clinical decision-making is one of the biggest modeling challenges

for machine learning-based clinical decision-making, i.e., for a patient at any given time, we have

multiple treatment options, however, we only observe the outcome of the clinician’s action and

have no knowledge about the efficacy of alternative treatments. Thus, understanding the effec-

tiveness of our treatment suggestion requires us to compare the counterfactual outcome with the

observed factual outcome: “Had we administered another treatment to this patient, would the pa-

tient be cured?”. A common practice to address the counterfactual problem is via randomized

controlled trials (RCTs), where the treatment is assigned to patients randomly and the difference

between the average outcome of treatment and control groups is a consistent estimator of the effect

of the studied treatment. However, to account for patient heterogeneity and be representative of

the population, RCTs need to be conducted at a large scale and even then, RCTs provide limited

information about treatment applicability to the individual patient [11]. Most of the clinical treat-

ment data is available in the form of observational data, such as electronic health records (EHRs)

retained by hospitals and insurance companies. In observational data, the treatment has been as-

signed by the physicians based on their domain expertise and the patient’s condition. Majority of

the policy learning algorithms based on reinforcement learning, require interacting with the envi-

ronment (in our case, the patients) in real time to collect feedback and update the algorithms. This

practice is unsafe as learning algorithms can make the policy output arbitrary decisions, which can
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adversely affect the patient’s health. Thus, it will be unethical to directly deploy the algorithm in

a clinic and hence, in this work, we focus on learning decision policies in an offline manner using

publicly available health records data.

Limited Data Policy learning algorithms based on reinforcement learning (RL) are often data

hungry. For example, it was reported that to match human performance in playing games, an RL

algorithm watched “200 million frames from each of the games”, equivalent to 38 full days and 500

times as much as human players need [12]. However, in the clinical setting, collecting a sufficient

amount of data itself is daunting task due to the personal health data protection regulations as well

as the concerns of individuals toward sharing personal data. A typical approach to counter data

paucity is to aggregate smaller datasets from various hospitals, however, due to varying clinical

protocols and medical devices with different specifications, the multicenter datasets are highly

hetereogeneous.

Uncertainty : The heterogeneity in the patient data gives rise to uncertainty, leading to signifi-

cant variability in patient-specific model predictions and decisions [13]. Even the dataset from a

particular institution comprises of patients with varying demographics. The uncertainty is com-

pounded due to limited knowledge of the clinician’s intrinsic propensity model for selecting treat-

ments and their underlying reward function. Predictive models based on neural networks have

been shown to be prone to model uncertainty under limited data scenarios. Hence, policy learning

methods which rely on imputing clinician’s action propensity scores to derive optimal policies are

rendered prone to uncertainty. Models which achieve nearly similar performance, can disagree

significantly in the final predictions, particularly in regions with little or no data. It has been previ-

ously shown that effectively capturing the model uncertainty directly translates into lower variance

and better exploration during policy learning [14, 13]. Since medical decision-making requires

lower risk and higher confidence in policy efficacy, this motivates us to tackle model uncertainty

in propensity score estimation and incorporate that into existing off-policy learning frameworks.
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Policy Generalization : The heterogeneity and uncertainty also pose a generalization challenge

for the learned policy. While the patient’s clinical state is defined based on dynamic vitals such

as heart rate, albumin level, etc., there are static parameters such as demographics which define

the context. Patients with different contexts but similar vitals can respond very differently to a

particular treatment [15]. With multicenter datasets having many different underlying patient dis-

tributions, and each having limited samples, a central question in ensuring personalized medicine

is : “How can our learned policies effectively generalize and adapt to different patient scenar-

ios?”. Conventionally, dataset concatenation is used to tackle this problem. This approach, while

straightforward, can ignore the underlying differences between datasets, thus trying to learn treat-

ment for the ‘average patient’ and ignoring context. In addition, most approaches only consider

the performance of learning algorithms on historical data, however, in real-world scenarios, the

datasets during deployment or test can be different from the historical patient dataset, thus, making

the clinical policy adaptation to unseen scenarios a key challenge.

1.3 Contributions

In this thesis, we propose counterfactual frameworks to effectively tackle uncertainty and data

heterogeneity while learning clinical policies from electronic health records in an offline setting.

We consider two learning scenarios: contextual bandits and dynamic treatment regime.

In the first work, we formulate the clinical decision-making process in the framework of contex-

tual bandits and tackle the model uncertainty inherent in propensity score-based off-policy bandit

frameworks. Our frameworks enable policy learning and evaluation with lower reward variance

and higher confidence. Specifically, our contributions are as follows:

• We propose bootstrapping-based inverse propensity scoring estimators (IPSinv, IPSavg) for

policy evaluation, that can give both the reward estimate and a confidence interval, thus

enabling physicians to choose actions with lower variance, when desired.

• Besides estimating confidence intervals for individual patients, bootstrapping reduces the
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model uncertainty inherent in IPS-based estimators, thus leading to lesser variance in policy

evaluation and improved policy optimization.

• We also tackle model uncertainty from a distributionally robust counterfactual risk mini-

mization perspective and propose an adversarial IPS learner (IPSadv) which focuses on max-

imizing the reward over the worst-case propensity model bounded by an uncertainty set.

• We demonstrate the efficacy of our proposed frameworks (IPSinv, IPSavg, IPSadv) in a clin-

ical setting involving oral dosing of two popular anticoagulants, heparin and warfarin. Our

proposed frameworks help in learning better dosage initialization policies and achieve higher

rewards. Moreover, we create semi-synthetic and real-world clinical bandit datasets to pro-

mote further research in this field.

In the second work, we consider a dynamic treatment regime involving sequential clinical in-

terventions and address the problem of suboptimal generalization of RL-based treatment policy on

heterogeneous patient data. Motivated by the challenges in manually defining the reward function

for clinical policy learning [16], we focus on learning the reward function and imitating the clin-

ician’s policy for sepsis management using Inverse Reinforcement Learning (IRL). We propose a

multitask framework, wherein patients are separated into different groups based on their context

(demographics, comorbities) and the reward formulation and policy networks are jointly adapted

using meta-learning. We incorporate meta-learning to enable the policy to adapt and generalize

across heterogeneous patient groups. Specifically, our contributions are as follows:

• We propose a multitask formulation of offline max-margin IRL that leverages meta-learning

to jointly learn and adapt a global policy and reward function to heterogeneous patient

groups, thus enabling the policy to generalize better on previously unseen patient contexts.

• By running experiments on real-world clinical problem of sepsis treatment, we showcase

the effectiveness of our approach in more effectively replicating the clinician’s vasopressor

dosage actions compared to the single task IRL, which does not account for patient context

explicitly.
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CHAPTER 2

BACKGROUND

In this chapter, we provide background on offline counterfactual learning frameworks in contex-

tual bandit and reinforcement learning scenarios. Our focus is on policy learning and evaluation

using purely observational data, since evaluating policies by deploying them on patients can be

dangerous. In comparison to online learning, offline learning, also known as batch learning, is

statistically more challenging since the collected data is generated by a historical policy different

from the current policy we intend to evaluate and optimize. We first layout the problem of decision

making and introduce relevant notations:

Definition 2.0.1. We call a mapping, h : x → a, a policy, which recommends treatments similar

to how a physician makes clinical decisions. The decision-making process involves a tuple of three

components

• x : the context of the patient, which can include information such as demographics and lab

test results, drawn according to distribution λ

• a : the treatment action taken by the policy or the physician, for example, whether to ad-

minister a drug, or a particular dosage of the drug. The action can be either continuous or

discrete, however in our work, we focus on discrete action settings.

• r : the reward (or feedback) the policy obtains by taking action a on patient with context x.

It is implicitly determined by a function f(x, a), which we typically do not have access to.

2.1 Contextual Bandits

In the contextual bandit setting, the learner (machine-learning model) repeatedly observes a con-

text, takes an action, and observes a reward for the chosen action (e.g., +1 if patient recovers, -1
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if the patient dies). The learner receives feedback (reward) immediately on performing an action,

hence bandit learning is essentially single step reinforcement learning without state transitions. It

has been recently explored to study clinical decision-making in an offline setting. Kallus and Zhou

[17, 18, 19] designed policy learning algorithms in a continuous action space, for recommend-

ing the dosage of the drug warfarin to patients with blood clots. Bandit models have also been

used in designing and analyzing clinical trials [20, 21], as well as in mobile health applications

[22]. Herein, the goal of policy learning for decision-making is to find the optimal policy h which

obtains the maximized reward when applied, i.e.,

h∗ = arg max
h

Ex,a∼h[r] (2.1)

The learner typically leverages a historical observational dataset comprising of n i.i.d. samples

D = (xi, ai, ri), i ∈ {1, 2, 3, .., n}; which was collected under a behavioral policy h0 (also known

as logging policy or clinician policy). However, before deploying the treatment policy learned by

a black-box clinical support system, special care must be taken to evaluate these policies due to

the high-stake scenario. Hence, we first focus on the related problem of counterfactual evaluation

in the bandit setting. Accurate policy evaluation is necessary to address the related policy learning

problem.

2.1.1 Off-Policy Evaluation

In off-policy evaluation, we seek to estimate the quality of an alternative target policy h by esti-

mating its expected reward, had we applied it to the dataset D:

R̂h = Eh[r] =
n∑
i=1

Ea∼h(.|xi)Er∼F(·|ai,xi)[r] (2.2)

Various statistical approaches have been developed to access the quality of target policies based

on historical data. There are primarily two classes of evaluation approaches: 1) the direct method

(DM) based estimator, also known as regression adjustment and; 2) importance sampling-based
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estimator. Direct method uses regression approach to fit a parametric or nonparametric approxi-

mation to the true reward function as r̂(x, a; θ), and the reward of a new policy h is estimated as:

R̂DM
h =

1

n

N∑
i=1

∑
a∼h

ph(a|xi)r̂(xi, a) (2.3)

where ph also known as the propensity score, is the probability of selecting action a under policy

h, given the observed features x. This approach is simple in its design, but suffers from several

biases. The first bias results from the possible mis-specification of the reward function r̂ (linear

vs nonlinear models), and the second bias arises from the sampling distribution: the target policy

might be choosing different actions compared to the logging policy h0. If h0 is biased towards a

particular region in the action space, the logged data will contain a lot of samples from that region,

and the resulting imbalanced dataset will create bias in the reward function estimation.

A common approach to correct for the mismatch in the action distributions under h and h0

is importance weights, defined as w(x, a) = ph(a|x)
ph0 (a|x)

, where ph and ph0 are the probability of

selecting the action a given the observed features, under policies h and h0 respectively. Importance

sampling-based estimators are built on importance weighting with a widely popular estimator being

the inverse propensity scoring (IPS) estimator[23]:

R̂IPS
h =

1

n

N∑
i=1

ph(ai|xi)
ph0(ai|xi)

ri (2.4)

From the formulation, it can be noted that IPS estimator is an unbiased estimator ofR i.e. E[R̂IPS
h ] =

Rh, which makes it well-suited to policy optimization. However, the estimator suffers from high

variance in reward estimation, especially when ph(a|x) >> ph0(a|x). For consistent estimation,

it is standard to assume that whenever ph > 0, then ph0 > 0 also and we assume this throughout

our analysis. To reduce the variance of IPS, several techniques have been proposed in the bandit

literature. A line of work focuses on regularizing the variance of IPS [24, 25, 26] with the POEM

estimator being widely used. Another straightforward approach is capping propensity weights [27,
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28], which leads to the estimator

IPSM : R̂h =
n∑
i=1

p(ai|xi)
max(M, ph0(ai|xi))

ri; 0 < M < 1 (2.5)

Smaller values of M reduce the variance of R̂h but introduce bias. Given that the IPS estimator

is not equivariant [29], thresholding propensity weights exacerbates this effect. Moreover, IPS

estimator is prone to overfitting of propensity weights, i.e., for positive reward, policies which

avoid actions in the dataset D are selected; for negative reward, policies that overrepresent actions

in D are selected. Hence, Swaminathan and Joachims [29] proposed the self-normalized estimator

(SNIPS), which uses weight normalization to counter the propensity overfitting problem of IPS.

SNIPS : R̂h =

n∑
i=1

riwi

N∑
i=1

wi

with wi =
p(ai|xi)
ph0(ai|xi)

(2.6)

SNIPS has lower variance than the vanilla IPS estimator because of its ability to normalize and

bound the propensity weights between 0 and 1. Additionally, another line of work focuses on

reducing both the bias and variance of off-policy estimators by combining the direct method and

IPS-based methods in a linear fashion, leading to the doubly-robust estimator [30].

In clinical settings, the behaviour policy is typically unknown. Since IPS-based approaches

require the behaviour policy’s propensity score ph0 , we need to impute these scores using a be-

haviour propensity model. The model must accurately represent the clinician’s treatment action

probability distribution. If the behaviour policy is estimated incorrectly, IPS-based estimators suf-

fer from significant bias and variance. Given that we do not know the parametric class of behaviour

policy, we can leverage universal function approximators such as neural networks to estimate the

propensity scores. Neural networks often lead to a reduced approximation error with an increasing

number of layers and neurons and have been shown to work well in off-policy bandit scenarios

[29, 31]. However, learning a highly accurate model for imputing behaviour policy is not enough,

our model should provide well-calibrated probability estimates which represent true probabilities.
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Using overparameterized approximators such as neural networks, which are capable of expressing

a wide range of functions, along with the limited size and heterogeneity of clinical datasets leads to

model uncertainty i.e. uncertainty regarding the true underlying parameters. Multiple neural net-

works can achieve similar accuracy, however, the probability estimates can widely differ and every

model might not be able to capture the true conditional probability for the clinician’s actions.

Therefore, the question which we ask here is: How can we confidently estimate the propensity

score in the presence of model uncertainty due to the limited scale and heterogeneity of clinical

data?

2.2 Uncertainty of Predictive Models

There are two types of uncertainty in machine learning and deep learning models: data uncer-

tainty and model uncertainty [32]. Consider a binary classification setting in which we have

y ∼ Bernoulli(λ), where y is the binary classification target, and λ(·|x; θ) is the logit representing

the conditional distribution p(y|x; θ) with feature x and parameters θ.

In data uncertainty, the logit λ is a deterministic function of x and θ i.e., λ = g(x, θ), and the

uncertainty in data is reflected in the feature x. This uncertainty might be due to inherent noise

in the process which generated the data or unaccounted factors which created variability in the

targets. This is often referred to as irreducible or aleatoric uncertainty.

On the other hand, model or epistemic uncertainty refers to the uncertainty in the values of

the parameters θ for modeling the prediction i.e. we are unable to properly constrain our model’s

parameters. More specifically, we can model λ as a distribution over a plausible values instead of a

point estimate, as λ ∼ P(λ|x,w) and are unsure of which distributions better explain the data. This

could be due to the use of a complex model relative to the amount of training data. Additionally,

our choice of model structure might be wrong and is unable to reflect the process which generated

the data (here, the clinician). Model uncertainty can be reduced by observing more data, however,

typical clinical datasets for bandit learning have limited size (≤ 5,000 patients). Our focus here

is on tackling model uncertainty caused by uncertainty in the parameters. To quantify model
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uncertainty in clinical setting, we explore the use of two popular approaches: Model Ensembling

and Bayesian Neural Networks.

2.2.1 Model Ensembling

Deep ensembles proposed by Lakshminarayan et al.[33] is a simple yet powerful method in char-

acterizing the model uncertainty. It has been shown to yield high quality predictive uncertainty

estimates, requires little hyperparameter tuning, and is readily parallelizable. Ensembles tackle

uncertainty by collecting predictions from M independently trained deterministic models (ensem-

ble components). We train an ensemble of neural networks (NNs) (NN1, ..., NNM ) by varying

the random seed in our training process. The seed affects the initialization of the neural network’s

weights and the order of mini-batch samples seen by the neural network during training. At the test

time, for a given patient, we output the ensembled action prediction as p(a|x) = 1
M

M∑
m=1

pNNm(a|x).

In addition, the collection of prediction values pNNi
(x); i = {1, 2, ...,M} can be seen as samples

from the distribution p(λ|x, θ) describing the model uncertainty.

2.2.2 Bayesian Neural Networks

Bayesian inference is a principled approach to model the distribution over possible outcomes and

estimate the uncertainty in the prediction of a machine learning model. Bayesian Neural Networks

(BNNs) are neural networks whose parameters θ are represented by probability distributions, so

the uncertainty of weights characterizes the uncertainty of models. Given a dataset D = (xi, yi)
N
i=1,

BNN is defined in terms of a prior p(w) on the weights and the data likelihood p(D|w). By

sampling from the posterior weight distributions, BNN could train an infinite number of different

realizations of the NNs, and these realizations capture the model uncertainty in the predictive dis-

tribution p(λ|x, θ). However, training BNNs is much more challenging since we need to compute

the posterior distribution. Various approximate inference methods are proposed to efficiently train

BNNs, such as MC-Dropout [34], Variational Inference, [14] and Noisy Natural Gradient method

[35]. Bayesian approaches to uncertainty estimation have been proposed to assess the reliability
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of clinical predictions [13] but have been applied to very few real-world policy learning settings

using clinical data.

Variational Inference

Variational approximation methods aim to estimate the weight posterior by maximizing the ev-

idence lower bound (ELBO) to fit an approximate posterior q(w|θ), given data D. Variational

inference is formulated as an optimization problem of minimizing the Kullback-Leiber (KL) di-

vergence between the approximate p(w) and exact q(w|θ) posterior. The loss function embodies a

trade-off between data-dependent likelihood cost and prior-dependent complexity cost as follows:

L(D, θ) = Eq(w|θ))[log(p(D|w)]−KL[q(w|θ)||p(w)] (2.7)

where p(w) is the prior distribution on weights, which enforces simplicity. The most common

approach to learn an approximate posterior over the weights qθ(w) given the prior is mean-field

variational inference wherein we assume a fully factorized Gaussian prior and posterior, q(w) =∏m
i=1 qi(x). This reduces the computational complexity of estimating ELBO. To reduce the time

complexity of computing KL-divergence during a forward pass through the network, we lever-

age Monte Carlo estimates. Blundell et al. [14] proposed Bayes-by-Backprop by applying the

re-parametrization trick from Kingma et al. [36] to variational inference and reduced the compu-

tational complexity involved in calculating the data likelihood expectation Eq[log(p(D|w))] over

q(w|D). They estimate the variational inference loss function by sampling weights from the pos-

terior q(w|D):

L(D, θ) ≈
n∑
i=1

log[q(wi|θ)]− logP (wi)− logP (D|wi) (2.8)

where wi are the sampled weights. To enable training by backpropagation, they choose a Gaussian

variational posterior on weights given as : q(w|θ) =
∏n

i=1N (wi|µ, σ2). To perform inference

using BNNs, Monte Carlo sampling is performed from the weight distribution. Multiple networks

are sampled from the variational posterior q and their predictions are averaged to compute the
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network output. In BNNs learned using variational inference, typically both the mean and variance

of weights are learnable.

MC-Dropout

Gal et al. [34] showed that optimising a standard neural network with dropout and L2 regular-

ization techniques is equivalently a form of variational inference in a probabilistic interpretation.

MC-Dropout is quite popular due to the simplicity of the idea: by enabling dropout during testing

and applying different dropout masks, multiple networks can be sampled to predict the output and

related uncertainty. This contrasts with performing inference using deterministic neural network

wherein the dropout approximation is fixed at the test time. However, in practical applications,

MC-Dropout faces some challenges such as the choice of dropout probability and L2 regulariza-

tion, the position to insert the dropout layers at, etc.

Figure 2.1: (a) Neural Network Ensemble: Each network is initialized with a different seed and
network weights are point-estimate (b) Bayesian Neural Networks represent weights by probability
distributions and sample networks from learned weight posterior during inference
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2.3 Dynamic Treatment Regime

Many clinical settings involve sequential decision-making, also known as dynamic treatment regime,

wherein the clinician prescribes certain treatments to improve the patient’s condition over a period

of time [37]. In such settings, offline policy learning is typically formulated as a Markov Decision

Process (MDP) and approached using Reinforcement Leaning with a manually specified proxy-

reward function. Manually specifying the reward function is challenging and a poorly specified

reward function can adversely affect policy training [38]. Hence, in our second work, we focus on

Inverse Reinforcement Learning (IRL) [39] to efficiently recover the clinician’s underlying reward

function, such that our learned policy imitates the clinician’s actions in the best possible manner.

Existing offline-IRL approaches [40, 41] have focused on recovering the overall reward function,

without explicitly accounting for the patient context. This limits the ability of the policy agent to

generalize across unseen patient contexts. Instead, we focus on learning contextual rewards for

different patient groups by formulating the IRL problem as a multitask setting. Instead of learning

separate policies for different groups, we meta-learn a global generalizable policy by adapting it

along with the reward function to individual tasks(patient groups). Meta learning refers to build-

ing models that can learn from a distribution of tasks and can quickly adapt to unseen tasks. In

this section, we introduce the reinforcement learning problem and provide background on Inverse

Reinforcement Learning and multitask learning.

2.3.1 Reinforcement Learning and Markov Decision Process

In a typical online sequential decision-making problem, the policy learner interacts with the envi-

ronment and optimizes its actions for a sequence of states. The learner takes actions which influ-

ence future states and receives rewards for its actions. The reward can be received either at the end

of sequential process or after each action. Sequential decision-making is typically modeled using

a Markov Decision Process (MDP), which is a mathematical framework for modeling discrete-

time sequential processes. A MDP is a tuple (X,A, T, γ, R) comprising of states xt ∈ X; actions
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at ∈ A; the probability of transitioning to xt+1 from xt after taking action at, T (xt+1|xt, at); the

initial state distribution d(x0); discount factor γ ∈ [0, 1) and reward function R(x, a). The state

transitions proceed in a stochastic manner and the process continues until the agent reaches a ter-

minal state xT . In a MDP, the transition probability distribution of the next state depends only on

the current state-action pair. The sequence of state-action pairs observed for a particular starting

state is also called an episode or trajectory. The goal of the learner is to learn an optimal policy h

by maximizing the value function

h∗ = arg max
h

V (x) = Ea(·|x)[
T∑
t=0

γtr(xt, at)] (2.9)

Given that we rely on observational data, we focus on offline RL i.e., the learner has access to

precollected expert(clinician) demonstrations De = (xt, at, xt+1). The performance of RL depends

on accurately defining the reward function corresponding to the optimal treatment. In clinical

settings, manually defining rewards is challenging and rewards based on the ultimate outcome

such as mortality might not capture the objective of improving the patient’s condition [42]. Hence,

we focus on recovering the reward function from demonstrations which explains the clinician’s

behaviour and leverage it to derive our policy. This would also help in identifying elements which

the expert optimizes unknowingly or might have missed.

2.3.2 Apprenticeship Learning

Apprenticeship learning refers to learning to act from expert (clinician) demonstrations. Learning

from demonstrations enables an agent to query an expert as it starts to learn and potentially train

itself in an offline setting without access to simulators. There are two major approaches:

1. Behaviour Cloning: In this case, the goal of the agent is to learn the policy directly from

the demonstrations using a multi-class supervised learning approach. Such policies can be

biased towards actions taken by the clinician and might suffer from error accumulation,

wherein the learned policy starts taking actions not encountered during training for a partic-
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ular state space.

2. Inverse Reinforcement Learning: In this case, the goal of the agent is to imitate the expert

by recovering their underlying reward function. The key assumption is that the expert be-

haves optimally with respect to some unknown reward function, which encodes knowledge

of optimally performing a task. The reward function allows us to succinctly represent a task

and IRL focuses on recovering it such that policies trained on the recovered reward function

take actions which match with the expert’s actions.

Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) observes and tries to mimic an expert, instead of manually

defining the rewards to learn optimal policies and produce the desired behaviour. Abbeel and Ng

[39] proposed one of the initial formulations of IRL, known as max-margin IRL. Max-margin IRL

algorithms [39, 43] leverage the feature expectation of a policy µθ as a proxy for evaluating the

similarity between an expert policy and a policy learned using IRL. The reward function R =

wT · F(x, a); ||w||1 = 1, is typically assumed to be a linear function of a set of known features,

which could correspond to raw state-action feature set (x, a) or be derived from a feature mapping

F . We compute the feature expectation of a policy as follows:

µh(s, a) = F(s, a) + Eat∼h(·|xt)
[ T∑
t=1

γF(xt, at)
]

(2.10)

The feature expectation for the expert µe is estimated from the set of demonstrated trajectories.

Max-margin IRL uses ||µh−µe||2 as the objective to determine the reward weights. Abbeel and Ng

showed that the convergence of feature expectations implies similar expected reward between the

two policies and proposed a projection method to determine the weights when they are bounded

by euclidean norm. IRL algorithms often require engineering feature functions F since linear

estimators do not have enough representational power to model real-world tasks.
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2.3.3 Multitask Learning

As we discussed in Chapter 1, in biomedical settings, due to practical constraints in data collection,

often, we only have a limited number of samples per dataset, which greatly limits the power of

our learning algorithm. Thus, it is often desirable to integrate several small-scale datasets from

different clinical institutions to improve the performance of our policy learning. A straight-forward

approach in such data integration is to concatenate all datasets together and apply a base off-policy

learning algorithm. However, this approach ignores the difference between different tasks and

could lead to suboptimal learning performance. Multitask learning, on the other hand, allows

the model to leverage common knowledge from related tasks and thus prevents the model from

overfitting to a single task.

As a thought experiment, imagine we are learning decision-making algorithms for cancer pa-

tients, whether to suggest chemotherapy or not, i.e., a ∈ {0, 1}. We have only two datasets

{D1, D2} from two regions, one colored in black and another in blue. The best actions for pa-

tients represented as in circles are a = 1, while the best actions for patients in squares are a = 0.

We cannot directly observe the shape, but only a two dimensional measurement X1, X2. If we

concatenate the two datasets together, we cannot find a linear function h : x → a that assigns the

best treatment. However, if we can allow our policy to act differently with respect to datasets, we

can identify the optimal policy as follows:

a∗ = h(x) =


I[x1 > 3] x from dataset 1

I[x1 < 3] x from dataset 2
(2.11)

In a clinical setting, a simple multitask approach would be to apply a single-task IRL algorithm

to recover the reward functions for each task and subsequently learn a global policy. However, in

practice, the reward functions for patients with similar underlying disease have similar structures

which multitask learning can leverage. However, this approach might favor tasks with significantly

larger amounts of data and is sample inefficient [44] (Figure 2.3). Moreover, this is not exactly how
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Decision Boundary

Figure 2.2: An illustration of how multitask learning can help us to identify optimal policies

clinicians learn to make decisions, interacting with the patients daily, updating their knowledge

and continuously personalizing their treatments. This motivates us to think: how can we build a

learning algorithm that can simultaneously learn common knowledge from all tasks and exploit

to learn to adapt to individual tasks differently? The adaptation is important for the policy to

learn to generalize. Meta-learning is an appealing alternative to multitask learning that enables

rapid generalization by learning a good initialization and fine-tuning on multiple tasks with limited

training data.

2.3.4 Meta Learning and Biomedical Informatics

Meta learning, also called learning to learn, describes the machine learning paradigm that extracts

knowledge from a set of tasks to learn and allows for rapid adaptation to new tasks. The meta-

learner learns to leverage task-specific information to generalize better on training tasks and learn

new tasks with fewer samples. Meta-learning approaches can be gradient-based or recurrence-
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Figure 2.3: Multitask learning vs meta learning: Meta learning aims at learning an optimal model
initialization θ which can be easily adapted to unseen patient groups with lesser samples. Multitask
learning may be biased towards larger patient groups. Image adapted from Gu et al.[45].

based [46]. Here, we leverage gradient-based approach which tries to learn a good initialization

of the model’s meta-parameter θ, which is iteratively updated on each training task, such that the

model learns to perform new tasks quickly with few gradient steps. Examples include second-

order algorithms like Model-Agnostic Meta-Learning (MAML) [47] or first-order methods such

as FOMAML [48] and Reptile [49]. While MAML tries to optimize the efficiency of the learning

algorithm such that it can customize the model’s parameter with few gradient steps on test-task,

Reptile tries to optimize the model such that it can generalize well on all training tasks. Reptile

is also computationally more efficient than MAML and is easily extendable to the offline clinical

setting.

Recently, meta-learning has shown great progress in few-shot image classification, reinforce-

ment learning, and hyper-parameter tuning. In biomedical informatics, meta-learning has attracted

interest recently (since 2018). Zhang et al. [50] used meta-learning for clinical risk prediction

when there are several datasets, each with limited patient health records, and showed improve-

ment over conventional data integration methods. Liu et al. [51] and Li et al. [52] studied a

similar problem in rare disease prediction via learning shared initialization properties when we

have several tasks. Jiang et al. [53] proposed a baseline procedure that aims to evaluate different
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meta-learning algorithms in medical imaging settings. Sharma et al. [54] studied how to apply

meta-learning for treatment effect estimation. Recently, meta-learning has been applied to online

IRL problems, for instance, Gleave & Habryka [55] explore adversarial-IRL and Reptile on con-

tinuous control tasks while Xu et al. [56] leverage MAML to learn reward prior for grid-based

environment. However, limited studies have explored meta-learning for recovering reward using

IRL in offline settings.

Reptile : Reptile is a first-order gradient-based meta-learning algorithm and is similar to joint

training. Reptile adapts the global model’s parameters towards task-specific parameters by multiple

gradient descent steps. The meta-parameter update step is given by:

θ = θ + β
1

NTi

∑
Ti∼p(T )

(θ
(k)
i − θ) (2.12)

where θ(k)m is obtained after apply k steps of SGD on training task Ti and β is the meta-learning

rate.
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CHAPTER 3

TACKLING THE UNCERTAINTY IN OFFLINE POLICY LEARNING

In this chapter, we focus on offline clinical policy evaluation using inverse propensity scoring(IPS)

based estimators in a contextual bandit scenario. As described in Chapter 1, directly testing poli-

cies in the real-world (online) is not possible because it can adversely impact a patient’s well-being,

thus, offline evaluation works as a good surrogate for evaluating policies which can be advanced

to the next stage of a clinical trial. However, IPS-based approaches require clinician’s propensity

scores, which we typically don’t have access to from the observational data. Thus, a common

approach is to impute the propensity score by fitting a behaviour policy model ĥ0 to predict the

clinician’s conditional probability of choosing a medical intervention, given the patient’s physi-

ological features. Such a model can take a parametric or nonparametric form, however, because

of our limited knowledge of the behaviour policy h0, we typically rely on universal function ap-

proximators such as neural networks. Given the limited scale of clinical datasets and the potential

over-parameterization of neural networks, this introduces model uncertainty over the parameters,

i.e., equally likely models with nearly equivalent accuracy can have diverse parameter distribu-

tions and thus, lead to varying final propensity score estimates. This chapter begins by defining

a boostrapping-based approach to tackle the model uncertainty inherent in IPS-based approaches.

We initially focus on off-policy evaluation problem and subsequently extend our framework to

policy optimization. We conclude by accessing the quality of our proposed estimators over the

clinical task of optimal dosage initialization of orally-administered anticoagulant drugs, warfarin

and Heparin.

3.1 Bootstrapped Counterfactual Estimator

In this section, we first introduce the off-policy evaluation problem and then present our framework

for bootstrapped-based evaluation. For each patient, the physiological feature x, policy treatment
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recommendation a ∼ h(x;w), and a reward r was observed. The collection of these triplets

{(xi, ai, ri)}i=1,...,N forms an offline dataset D. The goal of offline evaluation is to estimate its

expected reward R(h) using the dataset D only. This problem is important as it represents a

majority of scenarios arising during the evaluation of a clinical decision support system. Suppose

we use our machine learning algorithm to build a new treatment policy h using EHRs obtained

from a hospital, how do we ensure this policy is advantageous before deploying it in the clinic?

Traditionally, to obtain an unbiased estimate of R(h), we can use the inverse propensity scoring

estimator as follows:

IPS : R(h) =
N∑
i=1

ph(ai|xi)
ph0(ai|xi)

ri (3.1)

where ph is the propensity score of the policy h.

In clinical setting, however, ph0(a|x), is not available, as physicians will not record the exact

probability of them choosing a treatment. Modeling h0 via supervised learning using a maximum

likelihood-based approach, is possible, but introduces additional model-uncertainty: There can be

multiple versions of h0 that are equally-likely and evaluate the same on a finite training set of N

data points, however having totally different behaviors on other data points(test set). To see this,

imagine our policy is only a polynomial of degree ‘N + 1’, and with N data points x, we can

fit infinite number of functions f(x,w) attaining zero error and satisfying the learning objective,

thus, giving out a diverse range of model parametersw. The distribution over the model parameters

w ∼ p(w) induces uncertainty in the learned function, characterized by ĥ0 ∼ U(fw), subsequently

leading to variance in the marginalized predictive probability distribution ph0(a|x). If we consider

more complex functions such as neural networks, the potential solutions for h0 are even more.

Thus, we propose to reduce such model uncertainty in IPS-based estimators using a bootstrapping-

based approach. We highlighted the various approaches for addressing model uncertainty in Chap-

ter 2. By bootstrapping over multiple resamples of the dataset D and using model ensembling, we

can reduce the uncertainty from learning h0 and obtain a better estimate of the policy reward. In

addition, we also obtain a confidence interval for the overall performance of the new policy h, and

when we have multiple policies, we can choose not only based on the mean reward, but also the
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tightness of the reward confidence interval as a criterion for the stability of the policy. We present

our bootstrapped policy evaluation framework in Algorithm 1.

Algorithm 1 Bootstrapped Policy Evaluation
Require: The number of bootstrap evaluations B
Require: An off-policy dataset D
Require: A new policy h to evaluate

Init Result← [ ]
for b← 1toB do

Resample a dataset Db from D
Fit a propensity score model hb
Compute Rb, for example, using Eq. (3.1)
Append Rb to the result array Result

end for
return Mean and standard deviation of Result

To tackle model uncertainty, we explore both deterministic NN ensembles and probabilistic

BNN-based approaches. For simplicity, we discretize the clinician actions a and formulate the

propensity score imputation problem as a multiclass classification problem. Specifically, we train

a classifier on (xi, ai) ∈ D and derive the propensity scores from softmax-layer probability scores.

For NN ensembles, we train a deterministic MLE classifier by minimizing the cross-entropy loss

and obtain the ideal hyperparameter values(network size, dropout probability) via 5-fold cross-

validation.

θNN ∼ arg min
θ

L(x, a) = −
∑
k

aklog(f(xk; θ) + (1− ak)log(1− f(xk; θ)) (3.2)

Subsequently, we initialize B replica networks with varying random seeds and train using mini-

batch stochastic gradient descent. During testing, we obtainB probability score predictions ph0(a|x)

corresponding to clinician’s actions in the dataset.

For BNNs, we learn a posterior distribution over weights p(w|x) and sample network during infer-

ence by sampling w. We train the BNN using Mean-field variational inference and MC-Dropout

approaches, described in Chapter 1. In training BNN using variational inference, we leverage a

scale mixture of two Gaussian distributions as prior over weights p(w) with zero mean and tunable
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standard deviation. We assume factorized weight posteriors, i.e., q(w|µ,Σ) =
∏

i q(wi|µi,Σi),

where each weight wi follows a normal distribution with learnable mean µi and diagonal covari-

ance Σi. The BNN is trained using ‘Bayes-By-Backprop’ approach described in Chapter 2, which

combines variational approximation with the re-parameterization trick. In MC-Dropout, we train

a deterministic neural network using cross-entropy loss with dropout and L2 regularization, and

subsequently sample neural networks during inference using Monte-Carlo sampling i.e., randomly

varying dropout masks. After bootstrappingB networks, we propose our counterfactual estimators

based on the propensity score estimates obtained from those models:

IPSavg : R̂(h) =
1

N

N∑
i=1

ph(a|x)
1
M

∑M
m=1 p

m
h0

(a|x)
(3.3)

IPSinv : R̂(h) =
1

N

1

M

N∑
i=1

M∑
m=1

ph(a|x)

pmh0(a|x)
(3.4)

where pbh0 is the propensity score derived from bth bootstrapped model.

The simplest approach is to average the propensity scores from bootstrapped models to reduce

the variance of ph0 leading to IPSavg. The inverse estimator, IPSinv, computes a harmonic mean

of propensity scores and is equivalent to averaging the estimated rewards R̂(h)m from each boot-

strapped model. The average estimator can also be seen as a special case of multiple importance

sampling and is equivalent to the Balance Heuristic estimator (Veach et al. [57]) when N = KNk:

R̂ =
K∑
k=1

N∑
i=1

p(xik)
K∑
j=1

Njp
j
0(xik)

ri ; where
K∑
k=1

Nk = N (3.5)

3.2 Bootstrapped Counterfactual Learning

In the policy evaluation scenario, we have a collection of data and a clinical policy which we

want to evaluate. However, the more common scenario in clinical settings is: Given we have an

offline dataset collected from a clinician’s policy h0, we would like to find a policy h that attains
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a high reward. The policy might be defined by weights belonging to a certain class of parametric

functions such as a linear model or nonparametric method such as neural networks. Thus, the goal

of counterfactual learning is to estimate a set of weights such that the expected reward R(h(w)) of

the corresponding policy is maximized.

h∗w = arg max
w

R[a ∼ h(x;w), x] (3.6)

In the previous section, we defined how we can evaluate the expected reward R̂(h) for any h.

Intuitively, if we have a finite set of h to choose from, by an exhaustive evaluation of all h, we

can find the optimum h∗. However, here our focus is on policies defined using a neural network.

This renders the optimal parameter search to be NP-complete with an infinite space of weights and

corresponding network h, hence, we leverage stochastic gradient-based optimization. Using the

IPS formulation, we can evaluate the gradient of policy h as

∇R(h) =
N∑
i=1

∇h(ai|xi)
h0(ai|xi)

ri (3.7)

When we model h with neural networks, we can automatically compute its gradient via back-

propagation, so gradient-based optimization can be applied. Based on our bootstrapped evaluation

algorithm, we define our bootstrapped counterfactual learning formulation as follows:

IPSavg : h∗w = arg max
w

1

N

N∑
i=1

ph(a|x;w)
1
B

∑B
b=1 p

b
h0

(a|x)
(3.8)

IPSinv : h∗w = arg max
w

1

N

1

B

N∑
i=1

B∑
b=1

ph(a|x;w)

pbh0(a|x)
(3.9)

where B is the number of bootstrapped models. As in policy evaluation, we bootstrap models

using deterministic NN ensembles and Bayesian approaches. We outline the bootstrapped learning

algorithm in Algorithm 2. The benefit of this algorithm is that by adding bootstrapping, we reduce

the variance in propensity scores while learning h0 and optimize h against multiple possible pro-
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posal distribution, thus improving its performance and stability. In addition, we can also populate

the confidence intervals.

Algorithm 2 Bootstrapped Policy Optimization
Require: The number of bootstrap evaluations B
Require: An off-policy dataset D

Init h0 ← [ ]
for b← 1 to B do

Resample a dataset Db from D
Fit a propensity score model hb
Append hb to the collection array h0

end for
Init h randomly
while Not converged do

Compute gradient as
Update h← h− α∇h

end while
return h as the optimum h∗

3.3 Adversarial Bandit Learner

While, bootstrapping optimizes the learned policy against an ensemble of propensity models with

varying propensity scores, the empirical reward R̂[hw] cannot be used a performance certificate for

the optimal true reward. This is because we are not explicitly optimizing for tackling the uncer-

tainty due to the worst-case propensity model hworst0 . To circumvent this limitation, we treat the

propensity model parameter P (θ) distribution with skepticism and replace it with an uncertainty

set Uε(P ) with ε controlling the size of uncertainty set. Given, that the propensity model h0 is

already constrained by the cross-entropy loss by virtue of behaviour policy imputation (the goal of

h0 is to model clinician’s actions accurately), we can derive a distributionally robust counterfactual

learning objective as follows:

IPSadv : h∗w ∼ arg max
w

min
w0

1

N

n∑
i=1

ph(a|x;w)

pĥ0(a|x;w0)
ri + λ ∗ CE(ai, ĥ0(xi;w0)) (3.10)
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where CE is the standard multiclass cross-entropy loss, λ is a hyperparameter which define trade-

off between accurate behaviour policy imputation (2nd term) vs reward maximization (1st term).

Consequently, we propose an adversarial policy learning framework (IPSadv) with an iterative op-

timization scheme, which simultaneously optimizes networks corresponding to h and h0. h is

optimized to maximize reward against the worst-case possible h0, which acts in an adversarial

manner to h : the goal of h0 is to learn a classification model to impute clinician’s action probabil-

ities accurately and at the same time, reduce the reward achieved by learned policy h. We present

the pseudocode of our adversarial policy optimization algorithm in Algorithm 3.

Algorithm 3 Adversarial Policy Optimization
Require: An off-policy dataset D

Initialize policy network h(w) randomly
Initialize propensity model h0(w0) by training for K steps over (xi, ai) with CE loss
while Not converged do

Train h0:
Sample minibatch of m examples (xi, ai, ri)i={1,2,...,m} from dataset D

Update h0 by SGD:∇w0

m∑
i=1

h(ai|xi,w)
h0(ai|xi,w0)

ri + λ ∗ CE(âi, a) where âi = h0(xi;w2)

Train h1:
Sample minibatch of m examples (xi, ai, ri)i={1,2,...,m} from dataset D

Update h by SGD: ∇w

m∑
i=1

h(ai|xi,w)
h0(ai|xi,w0)

ri

end while
return h as the optimum h∗

3.4 Experiments

We evaluate the efficacy of our proposed frameworks on a synthetic bandit dataset as well as on the

clinical task of dosing initialization for orally administered anticoagulant drugs. Anticoagulants

are blood thinners administered to remove blood clots and their dosage during treatment initiation

varies significantly across patients. Moreover, incorrect dosing can have significant side effects,

thus making it a challenging clinical setting for treatment recommendation systems. We consider

two commonly used anticoagulants in hospitals, namely, warfarin and heparin. We use two freely

available electronic health records databases to derive the clinical bandit datasets: 1) PharmGKB
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(Consortium 2009) [58] for warfarin dosing and 2) Multiparameter Intelligent Monitoring in In-

tensive Care (MIMIC-III v1.4) [59] for heparin dosing. For Warfarin dosing, we have access to

counterfactuals and artificially simulate the logging policy to derive semi-synthetic bandit dataset.

For heparin dosing, we derive a true real-world bandit dataset without access to counterfactuals.

3.4.1 Datasets

Non-clinical Datasets

Synthetic Dataset : We simulate a synthetic dataset with 3 discrete actions by sampling patient

context and clinician action propensities from multivariate standard normal distributions. Similar

to context x, the actions a are represented using a 10-dimensional representation and reward is

computed via an outer-product of x and a.

xi ∼ N(µ = 0,Σ = I10x10) where xi ∈ R10

p0(ai|xi) ∼ N(µ = 0,Σ = I3x3) where p0 ∈ R3

(3.11)

UCI Dataset : We select 3 multiclass classification datasets from UCI repository previously used

for off-policy bandit evaluation[60] and convert them to contextual bandits by choosing actions

derived from a multiclass logistic regression policy trained on 5% of the dataset, similar to Dudik

et al. [60].

Clinical Datasets

Warfarin Dosing (Semi-synthetic) Using the PharmGKB [61] dataset, we develop a case study

to evaluate our framework on Warfarin dosing. Warfarin dosing is concerned with determining

the correct dosage of the blood anticoagulant drug for a heart patient. The dataset includes pa-

tient information (demographics, physiological, and genotype features) with final ideal therapeutic

dosage. Warfarin’s administration needs to be monitored closely, since incorrect dosage can lead

to adverse side effects such as heart attacks. The therapeutic dosage varies widely across patients

due to different contextual features. Physicians typically prescribe an initial dose which is adjusted
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according to the patientś response. Previous work [62] on predicting dosage policies using ban-

dits, discretize the dosage into three categories, ’low’(< 21 mg/wk), ’medium’ (≥ 21 mg/wk, ≤

49 mg/wk) or ’high’ (> 49 mg/wk). Although, recently warfarin dosing has been approached in

the continuous domain which allows for finer adjustments, we focus on tackling uncertainty in

propensity score estimation under discrete dosage setting to keep the overall formulation simple.

With dosage discretization, Warfarin dataset was converted to a supervised classification dataset

D = (xi, yi)ni=1 with access to treatment counterfactuals. This provides us with the ground-truth

action for each patient. Since the dataset is supervised, we simulate a contextual bandit environ-

ment by simulating clinician’s policy and using a custom reward function. We follow the Super-

vised → Bandit conversion approach highlighted in [30, 63, 24] and simulate expert (clinicianś)

behavior using stochastic logging policy to sample y∗i = h(∗|xi) with reward defined based on the

match between ground-truth and sampled actions, ri = I(yi = y∗i ). We simulate the following

stochastic logging policies with 3 and 5 discrete dosage levels(policy actions). These policies are

also referred to as expert policies.

1. LR: We follow the experimental design specified in [24] and use multi-class logistic regres-

sion model trained on 5% data, as logging policy. For different simulations, we randomly

sample 5% data from our training set and fit a multi-class logistic regression model to obtain

weight vector wlr. To introduce further stochasticity, we randomly perturb wlr using random

noise drawn from a standard normal distribution u ∼ N [0, 1].

2. PHARMA: We adopt the clinical policies (WPGA, WCGA)[61] as our base determinis-

tic policies (h1, h2). Both WPGA and WCGA are clinically motivated linear models with

WPGA incorporating genotype features to improve over WCGA. Our aim was to emu-

late clinicians using WPGA or WCGA for dosage recommendation and combine them in

a stochastic manner. Motivated from the friendly softnening approach proposed by Fara-

jtabar et al. [63], we transform the deterministic policy into stochastic policy by drawing
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actions ai = h0(xi) from a mixture of these models with equal probability.

ai =


h1(xi), ri <= 0.5

h2(xi), otherwise

(3.12)

where ri ∈ [0, 1] is a random number for patient xi.

Heparin Dosing (True Bandit) : One of the most commonly used anticoagulant medications

in hospitals and ICUs is Heparin. The dosage of intravenous unfractionated heparin is commonly

based on the patient’s weight, as per most clinical practice guidelines [64]. Such weight-based

approach alone may result in improper dosage for obese patients. Although some works have

recommended using an adjusted body weight [65], in practice, activated partial thromboplastin

time (aPTT) is a good indicator of blood coagulation level. There is significant variation in the

guidelines for the initial loading dose of heparin, the rate of dosage, and the time measurement

intervals of aPTT. A higher aPTT level reflects slow blood clotting, whereas a low level indicates

fast clotting. Samples of blood are usually taken every 4-6 hours to measure the levels of aPTT, and

the result of anticoagulation therapy is analysed by observing whether aPTT reaches the therapeutic

window timely. Typically, aPTT between 60s and 100s is considered therapeutic with aPTT> 100s

being supra-therapeutic and aPTT< 60s being subtherapeutic. While machine learning techniques

have tried to develop the ability to provide clinical decision support for heparin dosing, the high

patient variability has led to the underperformance of multinomial logistic regression-based models

[66]. Here, we formulate heparin dosing as an offline bandit problem by considering the aPTT after

6 hours of dosage initialization as the reward outcome. We discretize the Heparin dosages into 3

categories(actions) ’low’(< 10 mg/wk), ’medium’ (≥ 10 mg/wk, ≤ 15 mg/wk) or ’high’ (> 15

mg/wk). The outcome of interest was the aPTT value 6 hours after initial heparin infusion and the
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rewards were defined as:

ri =


1, 60s <= aPTTt=6hrs <= 100s

0, otherwise

(3.13)

Patient demographics and physiological features of interest used to define the context included

: age, height, weight, ethnicity, gender, obesity, creatinine concentration, SOFA score, type of ICU

admission, end-stage-renal-disease(ESRD) and pulmonary embolism. These features contribute

collectively to patient’s response to Heparin dose, for instance, creatinine concentration reflects

the filtration function of glomeruli and together with ESRD serves as an indicator of renal func-

tion. We selected these features in line with the previous studies [66, 67], with most of the features

being statistically significant for predicting aPTT outcomes. To create the patient cohort, we follow

the scheme proposed by Ghassemi et al. [66]. A total of 4,761 adult patients, who had undergone

Heparin dosing during ICU stay, are extracted from MIMIC-III database. We included only those

patients with aPTT measurements 6 hours after the initial Heparin infusion, reducing the cohort

size to 2,981 patients. Further, some patients had missing covariates and removing these patients,

we obtained 2,136 patients. Lastly, we removed patients who were transferred from another hospi-

tal,since their Heparin infusion might have started prior to the ICU admission and we have limited

knowledge of medical interventions taken before transfer. Our final cohort comprises of 1,378

patients.

3.4.2 Baselines

We consider two popular off-policy estimators: IPS [28] and SNIPS [29] and use the propensity

score imputed from a single neural network with vanilla IPS/SNIPS formulation as the baseline.

The single neural network can be a deterministic neural network in case of NN ensemble or a

network obtained by sampling once from the posterior weight distribution of Bayesian NN.

Our logging policy imputation model is a single hidden-layer perceptron network with ReLU

activation units. We establish baseline estimators by selecting one of bootstrapped models as

31



propensity score estimator. We denote these baseline estimators as Vanilla SNIPS/Vanilla IPS. To

bootstrap deterministic NN model, we initialize the model weights randomly and use dropout

(0.25) for fitting the models. To train BNN with variational inference framework, we follow

‘Bayes-by-Backpropagation’ approach [14] assuming a scale mixture of two Gaussian densities

as the prior distribution for weights wh0 ∼ 0.5N(0, 0.5) + 0.5N(0, 0.002). The network config-

urations are different for Warfarin dosing (hidden units = 20) and Heparin dosing (hidden units

= 40). We use the Adam optimizer [68] (β1 = 0.999, β2 = 0.9) with a learning rate of 1e−3 and

mini-batch size of 50 for both datasets, and use progressive validation to detect convergence. We

determined the optimal training hyperparameters using 5-fold cross-validation on both datasets.

For adversarial IPS learner, we determined λ = 1 to be optimal after experimenting with multiple

values (0.5, 1, 1.5, 2).

3.4.3 Policy Evaluation

In this experiment, we evaluate whether bootstrapping-based framework leads to more confident

reward estimation of a custom clinical policy. Here, we leverage the synthetic non-clinical dataset

and semi-synthetic Warfarin dosing dataset, since they allow comparing estimated policy reward

with the ground-truth reward (estimated from counterfactuals). We perform 20 simulations and

report the root-mean squared error (RMSE = E[R̂(h) − R(h)]2) of our proposed estimators and

baselines over these 20 sampled datasets, where R(h) is the ground-truth reward. We follow the

following methodology of Dudik et al. [30] during each simulation to derive the semi-synthetic

bandit dataset for Warfarin dosing

1. For each logging policy, we create a partially-labeled bandit dataset by applying the trans-

formations described in section 3.4.1.

2. We randomly subsample 70% of the synthetic-bandit dataset as our evaluation dataset and

divide it into train/validation sets in 80/20 ratio for fitting the propensity model.

3. We obtain the evaluation policy h by training a multiclass logistic regression model on full
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classification dataset and define its classification accuracy as the ground truth reward R(h).

4. We bootstrap 10 models (ĥb0, b ∈ {1, 2, ...10}) for imputing logging policy propensity scores

as described in 3.1. For ensemble approach, we initialize 10 models with seeds in multiples

of 2. In variational inference, we train 10 BNNs and sample 10 models, one from each of the

10 weight distributions. For MC-Dropout model, we apply dropout randomly to sample net-

works during inference. We also resample data while bootstrapping a NN ensemble model

or training a new BNN.

Results

We present the policy evaluation results for SNIPS and IPS estimators on Warfarin bandit dataset

(LR and PHARMA policies) in Table 3.1 and Table 3.2 respectively. We highlight both bias and

variance of the estimated policy rewards. Using bootstrapping leads to significantly lower bias

and variance, even in the case of SNIPS which typically has lower variance due to weight nor-

malization. Comparing the two bootstrap-based estimators, we find that average propensity score

estimator is able to achieve lower policy evaluation bias compared to the inverse estimator. We

also observe that NN ensemble and MC-Dropout based networks lead to slightly better variance

reduction compared to BNNs, which is in line with the uncertainty reduction results observed in

[33]. In the case of NN ensemble, we also evaluate the impact of bootstrap count on the reduction

in bias and variance of SNIPS-based reward estimators (Figure 3.1). We observe that an ensemble

of 5 neural networks performs sufficiently well in reducing both the variance and bias. As the num-

ber of bootstrapped models increases, the bias and variance of SNIPSinv and SNIPSavg estimators

reduce significantly with SNIPSavg achieving lower bias and variance. Thus, bootstrapping multi-

ple models allows to sample from multiple proposal distributions and avoids the situation wherein

a single propensity score model suffers from very low probability coverage over certain regions of

the action space.
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Table 3.1: Policy Evaluation: Mean Average Error (µ ± σ) of SNIPS-based estimators

Dataset Logging
Policy SNIPS(htrue0 )

ĥ0 - NN ĥ0 - BNN
Baseline
SNIPS

NN Ensemble Baseline
SNIPS

Variational Inf. MC-Dropout
SNIPSinv SNIPSavg SNIPSinv SNIPSavg SNIPSavg

Synthetic
Gaussian
(3 actions) 215.1 ± 209.3 3.7 ± 11.1 4.5 ± 9.7 2.3 ± 6.2 11.5 ± 26.4 5.0 ± 5.0 6.6 ± 14.2 2.7 ± 6.8

Warfarin

LR
(3 actions) 6.7 ± 0.7 16.7 ± 18.5 9.3 ± 3.2 7.7 ± 0.7 27.6 ± 18.2 30.0 ± 7.3 8.0 ± 1.0 7.0 ± 0.7

LR
(5 actions) 10.0 ± 0.6 11.6 ± 6.7 9.3 ± 2.3 10.1 ± 0.9 19.4 ± 11.8 17.7 ± 8.0 9.4 ± 1.5 10.3 ± 0.6

PHARMA
(3 actions) 21.2 ± 0.4 19.7 ± 16.7 17.8 ± 5.2 15.6 ± 1.4 17.2 ± 12.0 18.3 ± 4.8 15.4 ± 1.1 12.0 ± 0.7

PHARMA
(5 actions) 12.2 ± 1.7 15.2 ± 9.1 14.4 ± 3.1 12.9 ± 0.9 9.7 ± 3.1 13.6 ± 3.4 12.3 ± 1.0 11.6 ± 0.6

Table 3.2: Policy Evaluation: Mean Average Error (µ ± σ) of IPS-based estimators

Dataset Logging
Policy IPS(htrue0 )

ĥ0 - NN ĥ0 - BNN
Baseline

IPS
NN Ensemble Baseline

IPS
Variational Inf. MC-Dropout

IPSinv IPSavg IPSinv IPSavg IPSavg

Synthetic
Gaussian
(3 actions) 482.9 ± 505.4 3.7 ± 11.1 4.6 ± 9.6 2.4 ± 6.1 1172.2 ± 3542.1 616.5 ± 1138.5 7.2 ± 9.2 71.9 ± 11.9

Warfarin

LR
(3 actions) 28.3 ± 0.9 47.7 ± 0.8 47.4 ± 1.5 47.8 ± 0.6 1504.1 ± 6105.1 215.0 ± 85.4 45.8 ± 0.8 12.5 ± 1.1

LR
(5 actions) 41.9 ± 1.0 66.4 ± 38.0 55.8 ± 12.6 63.0 ± 1.0 1734.5 ± 5800.5 378.0 ± 120.1 61.5 ± 1.8 17.8 ± 1.3

PHARMA
(3 actions) 17.3 ± 2.0 13.7 ± 9.1 14.4 ± 5.7 20.7 ± 1.6 18.4 ± 24.8 43.9 ± 21.2 19.1 ± 1.7 4.0 ± 1.5

PHARMA
(5 actions) 13.0 ± 3.6 14.3 ± 6.2 11.5 ± 5.7 19.9 ± 1.6 5.9 ± 6.8 13.0 ± 8.3 9.9 ± 2.4 12.1 ± 1.1

Figure 3.1: Policy Evaluation: Impact of bootstrap count on mean average error and standard
deviation of reward estimates (ĥNN )
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3.4.4 Policy Learning

In this experiment, we use the bootstrapping and adversarial learning frameworks to learn opti-

mal policies with maximum reward. Based on the performance of our bootstrapped estimators

for policy evaluation, we expect that addressing uncertainty with bootstrapping and adversarial

formulations will translate to learning better policies. We perform 10 simulations and learn the

dosing policy h using IPS-based loss formulation and minibatch stochastic gradient descent. To

evaluate our frameworks, we report the mean reward achieved by our learned policies along with

their variance (µR(h) ± σR(h)). We follow the following steps during each simulation:

1. We randomly split the data into training (70%) and test (30%) sets.

2. For each logging policy type, we obtain partially labelled semi-synthetic bandit dataset for

Warfarin dosing by applying the transformations described in section 3.4.1. Moreover, we

also consider the Heparin dosing dataset which is a true bandit dataset and allows us to

evaluate policy learning on non-simulated real-world clinical setting.

3. Bootstrapping: We bootstrap 10 models for imputing the logging policy. By incorporating

the average and inverse learning formulations described in section 4 into IPS and SNIPS

estimators, we learn optimum policies havg and hinv respectively.

4. Adversarial Bandit Learner: We train the models h0 and h alternately using the IPSadv loss

formulation. Before initiating the adversarial training, we initialize propensity model h0 by

training it for 4 epochs on the bandit dataset. This assures that h0 initializes with parameters

not widely different from the optimal propensity model, which stabilizes the subsequent ad-

versarial learning process. We train both networks alternately for 100 epochs with a learning

rate of 0.001.
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Evaluation Setup

For Warfarin dosing, we execute the learned policy on the test dataset and compare the predicted

actions with ground truth dosage actions from the full classification dataset. For Heparin dosing,

since we have access to a real-world bandit dataset, we do not have access to counterfactuals, i.e.,

the optimal ground-truth dosage for each patient. Hence, we leverage the SNIPS estimator for

evaluating the performance of our learned policies, given that offline SNIPS estimates have been

shown to be highly correlated to the true (online) performance for a wide range of policies by

Zenati et al. [69]. In our evaluation experiments (Table 3.1), we found SNIPS to have both lower

variance and bias compared to IPS.

Results

In Table 3.3, we highlight the results of policy learning on clinical datasets. Using bootstrapping

leads to improved policy learning both on semi-synthetic data (LR logging policy in Warfarin

dosing) as well as true-bandit data (Heparin dosing). Moreover, we observe that IPSinv outperforms

IPSavg across multiple datasets. Consistent with the policy evaluation results, we find that NN

ensemble is more effective at reducing uncertainty than BNNs. An interesting observation is that

bootstrapping leads to lower rewards for warfarin datasets simulated using PHARMA logging

policy. However, on further analysis, we find that this is because the PHARMA policy actions are

heavily biased towards certain actions (dosage 1 in 3-action case and dosages 1 & 2 in 5-action

case). This bias in the simulated actions of the logging policy leads to the learned policy being

substantially biased towards action ‘1’. However, the bootstrapped framework leads to a policy

which is less-biased and more balanced in its actions, although it achieves a lower overall reward.

As observed in figure 3.2, policy learning using IPSinv achieves higher accuracy for infrequent

actions (dosages 0 & 2 in 3-action and dosages 3, 4 & 5 in 5-action scenarios).

In the case of heparin dosing, all learned policies outperform the actual clinician policy which

achieves a reward of 0.27 (based on actual aPTT outcomes). This highlights that formulating

heparin dosing as a bandit problem is a promising approach to develop dosage recommendation
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Table 3.3: Policy Learning: Rewards (µ ± σ) of clinical policies learned using bootstrapped IPS
frameworks (IPSinv , IPSavg)

Dataset Clinician Policy/
Logging Policy

ĥ0 - NN ĥ0 - BNN
Vanilla IPS NN Ensemble Varational Inf.
(Single NN) IPSinv IPSavg IPSavg

Synthetic None 2.169 ± 1.048 2.166 ± 1.038 2.182 ± 1.032 2.206 ± 1.005

Warfarin
(semi-synthetic)

LR (3 actions) 0.493 ± 0.040 0.506 ± 0.037 0.492 ± 0.040 0.500 ± 0.041
LR (5 actions) 0.457 ± 0.034 0.469 ± 0.033 0.458 ± 0.032 0.462 ± 0.030
PHARMA (3 actions) 0.656 ± 0.017 0.610 ± 0.028 0.640 ± 0.018 0.661 ± 0.015
PHARMA (5 actions) 0.596 ± 0.020 0.525 ± 0.022 0.556 ± 0.020 0.578 ± 0.018

Heparin
(true bandit) Unknown 0.295 ± 0.043 0.317 ± 0.033 0.311 ± 0.043 0.295 ± 0.051
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Figure 3.2: Policy Learning: Comparison of true clinical actions and policy actions for Vanilla IPS
(1st row) and IPSinv (2nd row). Each cell represents predicted count as a percentage of true action
total count.

Table 3.4: Policy Learning: Rewards (µ± σ) of policies learned on UCI datasets using IPSadv

Methods SatImage Letter OptDigits
# train samples 3858 12000 3372
# actions 6 26 10
Vanilla IPS 0.859 ± 0.010 0.520 ± 0.057 0.935 ± 0.034
Adversarial IPSadv 0.859 ± 0.009 0.666 ± 0.027 0.944 ± 0.009
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Table 3.5: Policy Learning: Comparison of rewards (µ ± σ) of clinical policies learned using our
proposed frameworks (IPSinv, IPSavg and IPSadv)

Dataset Clinician Policy/
Logging Policy

ĥ0 - NN
Vanilla

IPS
NN Ensemble

IPSinv
NN Ensemble

IPSavg
Adversarial

IPSadv

Warfarin
(semi-synthetic)

LR (3 actions) 0.493 ± 0.040 0.506 ± 0.037 0.492 ± 0.040 0.515 ± 0.038
LR (5 actions) 0.457 ± 0.034 0.469 ± 0.033 0.458 ± 0.032 0.471 ± 0.030
PHARMA (3 actions) 0.656 ± 0.017 0.610 ± 0.028 0.640 ± 0.018 0.657 ± 0.019
PHARMA (5 actions) 0.596 ± 0.020 0.525 ± 0.022 0.556 ± 0.020 0.626 ± 0.012

Heparin
(true bandit) Unknown 0.295 ± 0.043 0.317 ± 0.033 0.311 ± 0.043 0.306 ± 0.035

systems in addition to the traditional prediction-driven supervised learning approaches, which typi-

cally are more effective in replicating the clinician’s policy. In Table 3.5, we highlight the results of

our adversarial learning framework. We observe that explicitly optimizing policy h for the worst-

case propensity-scoring model h0 leads to more optimal policy learning with learned h achieving

higher rewards compared to bootstrapping. In Table 3.4, we also observe that adversarial IPS

achieves higher rewards and explicitly optimizing for the worst-case propensity scoring model acts

as a regularization , leading to significantly lower variance in nonclinical settings involving UCI

datasets.
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CHAPTER 4

IMPROVING POLICY GENERALIZATION WITH MULTITASK META-LEARNING

This chapter explores the use of multitask formulation and meta-learning based adaptation in re-

inforcement learning (RL) to learn generalizable clinical policies in dynamic treatment regime.

Here our focus is on learning from demonstrations, i.e., we have access to a fixed set of expert

trajectories generated by the clinician following a near-optimal policy with unknown underlying

reward function. Our goal is to imitate the clinician in this offline setting by recovering the reward

function from the demonstrations using Inverse Reinforcement Learning (IRL). As highlighted

in Chapter 2, clinical policy learning can be formulated as a multitask problem with clinician

demonstrations coming from multiple intrinsic reward functions, each contextualized to a specific

patient group. To achieve rapid generalizability across multiple reward functions, we leverage

meta-learning technique with IRL. We present the key components of our meta-IRL framework

and evaluate its efficacy on the clinical problem of sepsis management in ICU patients, comparing

it with single-task IRL and behaviour-cloning baselines.

4.1 Meta-IRL Framework

Multitask Formulation

We assume that we have a collection of tasks {D1, ...,DM} over which we want our clinical pol-

icy to generalize, and we have access to the task distribution P(D) from which we sample the

tasks. Within each learning episode, a set of expert trajectories Dj = (τ j1 , τ
j
2 , ....., τ

j
K) from an

unknown new MDP environment are drawn, where each trajectory is a sequence of state-action

pairs {(sj1, a
j
1), (s

j
2, a

j
2), ....(s

j
T , a

j
T )}. The goal of our learning algorithm is to learn a linear reward

function R = wT · F(s, a), where F is a feature map, that enables the corresponding policy to

imitate the clinician’s actions on all tasks: h∗ = arg maxED∼PR(h;Dj)
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We leverage an off-policy variant of max-margin IRL formulation proposed by Abbeel and

Ng [39] to recover reward function and learn clinical policy. Specifically, we leverage Batch-IRL

approach proposed by Lee et al. [40] which leverages deep network-based feature expectation

instead of directly sampling from the expert’s state space. In a multi-task IRL setting, the reward

R(Dj) varies with each task(patient group) and a simple approach would be to apply single-task

IRL to each task separately. This works well when the tasks are unrelated to each other, however,

in clinical data, patients with different contexts, but suffering from a particular disease, have com-

mon disease dynamics with a similar structure of underlying reward function for recommending

treatment. By leveraging the shared transferable knowledge between tasks, we can influence the

parameter trajectories of our reward and policy networks to enable smooth convergence with fewer

clinician’s trajectories. Moreover, by exposing our reward model to multiple tasks with sufficient

training on each task, we can create a meta-learner which efficiently infers the contextual reward

function and learns generalizable clinical policies. To leverage shared knowledge for quick task

adaptation of reward and policy networks, we setup a set of parameters θ0 that are shared among

all tasks. We meta-learn the shared parameter θ0 with a procedure B2 using all patient groups in

training data {D1, ...,DM}. We selected Reptile [49] as the basis for our meta-learning procedure

due to its computational efficiency and ability to extend to offline settings, where online gradient

adaptation-based methods cannot be applied. To capture the different characteristics of each task

Dj , we define a procedure B2 that uses θ0 and Dj to effectively leverage information across task

trajectories and derive task-specific parameters θj .

Task-specific Learning: B2 : θji = Batch-IRL(θ0,Dj)

Task Adaptation B1 : θ0 = MetaLearn(θ0, θji )

(4.1)

Note that here we cannot directly assign a separate θj to each task because, in practice, during test-

ing, the tasks can come from distributions not in the M training tasks. Before formally introducing

our IRL algorithm, we introduce the key components of our Meta-IRL framework:
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Task Creation

In our model, a task represents a group of patients with similar contextual features. We define

the context based on 7 static features at the time of ICU admission: gender, age, weight, GCS,

Elixhauser comorbidity score, whether the patient was mechanically ventilated at t = 0 and pa-

tient readmission. The tasks are derived by clustering the patients into 20 groups using K-Means

algorithm [70] on the contextual features.

IRL Components

Since our IRL framework is based on Batch-IRL framework, we leverage their feature expectation

network (DSFN), reward formulation, and warm-start network(TRIL) to initialize our algorithm

with near-optimal policy. However, instead of relying on Deep Q-network for policy optimization,

we leverage Batch-Constrained Q-Learning [71] due to its superior performance in offline settings.

1. Deep-Successor Feature Expectation Network (DSFN): As discussed in Chapter 2, matching

feature expectations between expert and learned policies is a key optimization metric for

max-margin IRL. Batch-IRL approaches feature expectation as a policy evaluation problem

and parameterizes the feature expectation estimator using a deep neural network. DSFN has

been inspired from the linear least-squares approach of LSTD and uses a training procedure

analogous to that of Deep Q-learning [72]. Given the expert trajectories De = (si, ai, si+1)

where i ∈ {1, 2, ...N} sampled from unknown clinician policy he, DSFN aims to learn a

feature expectation estimator network parameterized by θ, µh(s, a; θ), for a learned policy h

such that µh(s, a; θ)≈ µe(s, a). The network is trained using MSE-Loss based on TD-errors

derived from Bellman equation [73].

Estimate u(sj, aj) = F(sj, aj) + γ µh(sj+1, a ∼ h(sj+1); θ)

DSFN Loss L(θ) =
N∑
j=1

[
||u(sj, aj)− µh(sj, aj; θ)||2

] (4.2)
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where F ∈ Rd is a feature map defined for state-action pairs over S × A.

2. Reward Function: To reduce the dimension of the problem and keep the formulation sim-

ple, the reward function is assumed to be linear in feature F over the state-action pairs:

R(s, a;w) = wT · F(s, a). The weights for the reward function are learned by solving the

max-margin QP:

wi = minw∈Rd ||w||2

s.t. wTi µj ≤ wTµe + 1 j ∈ {1, 2, 3, ..., i− 1}
(4.3)

3. Warm-Start Network: Online IRL typically starts with a random policy. However, since

the feature expectation is computed basis actions sampled from learned policy h, in of-

fline scenario, if h significantly differs from expert policy he, the action support could be

nearly disjoint. Since, it is impossible to collect additional transitions in offline setting,

the gradient updates for µh could be heavily-biased. Thus, Batch-IRL initializes IRL with

a near-optimal policy which has decent overlap with expert policy in the action space A.

The warm-start policy is learned using regularized imitation learning named TRIL, which

leverages a two-channel network to jointly predict clinician’s action as well as the next state

transition. Moreover, the intermediate shared layers of the TRIL network are used as feature

encoders to derive corresponding feature representations F(s, a) in IRL.

TRIL Loss : L(θ0, θT ) = LCE[=
[
aj, h0(s; θ0)

]
+ λLMSE

[
T (sj, aj; θT ), sj+1

]
(4.4)

where LCE is the cross-entropy loss for predicting clinician action, LMSE is the mean-

squared error for next-state prediction, given current state and clinician action; and λ is

the regularization parameter.

4. Policy Network: In our model, we use batch-constrained Q-learning (BCQ) as a MDP solver

for policy optimization. Fujimoto et al. [71] showed that off-policy deep Q-learning fails due
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to extrapolation error i.e. state-action pairs outside the expert trajectories can have arbitrarily

inaccurate Q-values. This error is propagated via temporal-difference(TD) update of off-

policy Q-learning, thus causing extreme overestimation and adversely affecting the training.

While exploring actions would correct for such values in an online setting, it is impossible

to do so in an offline setting. Hence, during TD-update, BCQ constrains the action space to

eliminate actions which are unlikely to be present in the provided expert data. We leverage

a discrete-action version of BCQ [74] which uses a state-conditioned generative model to

sample policy actions during TD-update. We specify the learned policy network by h(φ),

where φ denotes the Q-learning network parameters.

In our Meta-IRL framework, we implement the idea of jointly adapting both the policy network

h(φ) and the feature expectation network µ(θ) along with the reward weights w, by applying

gradient-based meta-update derived from REPTILE. This is because we want to obtain an optimal

global policy h∗ which imitates clinician accurately for all tasks Dj and generalizes well during

test-time by relying on contextual rewardR(w) which is also meta-learned. Thus, our shared meta-

learnable parameter space is given by θ0 = {θ, φ, w}. The pseudocode for Meta-IRL is presented

in Algorithm 4.

4.2 Sepsis Management

In this section, we evaluate our algorithm on real-world medical task of sepsis management in

ICU patients. Sepsis is a leading cause of cost and mortality in ICU [75]. Sepsis management

is extremely complex and includes several strategies such as controlling infection via antibiotics,

correction of hypovolemia by administering intravenous fluids (IV fluids) and administration of va-

sopressors to counter sepsis-induced vasodilation. Multiple dosing strategies have been shown to

lead to patient mortality, highlighting the importance of carefully timing these interventions [76].

From a learning perspective, RL models have been developed to determine optimal strategies in

both continuous and discrete settings [77, 78, 42]. These studies make assumptions about reason-

able patient behavior over subsequent steps and incorporate them into the reward function. How-
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ever, incorrect reward specifications can lead to adverse behaviors, for instance, sudden changes

in drug dosage. Thus, in this case study, we focus on recovering the clinician’s reward function

using Inverse Reinforcement Learning (IRL) and using it to train a policy which mimics the clin-

ician. Successful reward recovery would help in understanding clinician’s implicit goals and help

develop robust generalizable agents. We demonstrate the efficacy of Meta-IRL in imitating the

clinician’s policy for sepsis treatment using MIMIC-III dataset.

Algorithm 4 Meta-IRL

Input: Expert Demonstrations: De = (si, ai) ; Task (Patient Group): τ ∈ {τ1, τ2, τ3....., τm};N
(max iterations)
Parameters: w0, θ0, φ0

Randomly initialize feature expectation network µθ and reward function Rw

Initialize policy network π(φ) and feature map F using TRIL
for i = 1 to N do

Set weights of µθ, Rw, πφ to be θ0, w0, φ0 respectively
Randomly sample task τj and sample expert trajectories: Dj

e = (sjk, a
j
k, s

j
k+1)

for n = 1 toM do
B2: Run one iteration of Batch-IRL on task-specific learning
Estimate true feature expectation from Dj

e : µje = Et[γt−1F(sjt , a
j
t)]

Estimate task-specific µ(θjn) with DSFN and µje
Solve QP for reward formulation and obtain task-specific reward weights wjn
Run BCQ to obtain task-specific policy π(φjn) with Rw = [wjn]T · F(s, a)

end for
B1: Perform Meta Update
θ0 = θ0 + β(θjM − θ0)
w0 = w0 + β(wjM − w0)
φ0 = φ0 + β(φjM − φ0)

end for

4.3 Experiments

4.3.1 Datasets

Our input data comprises of a cohort of 17,000 adult patients from the Multiparameter Intelligent

Monitoring in Intensive Care (MIMIC-III v1.4) database [59]. The patients fulfill the Sepsis-3

criteria, namely the presence of a suspected infection along with evidence of organ dysfunction

[75]. We follow the formulation of Raghu et al. [77] and define each trajectory using a continuous
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state-space which combines 46 static and dynamic physiological features including demographics,

vitals, lab measurements and ventilation/fluid output related events. The dynamic features are

collected at an interval of 4 hours and mortality or successful discharge from the ICU is the terminal

state. Typically, IV fluid administration and vasopressor dosing are the two actions under policy

control, while other treatments such as antibiotic dosing are out of scope of our study. Here, we

further limit the action space to the amount of vasopressor dosage given to a patient at each 4-

hour interval. The dosages are discretized into five bins, the first representing no treatment (zero

dosage) while non-zero dosages being represented by quartiles. Limiting the action space makes

the challenging IRL problem more tractable.

4.3.2 Training Details

To derive multiple tasks, we cluster the patients into 20 groups using K-means algorithm using

their static contextual features at the time of admission. We divide the tasks in 70/30 ratio to

create the training and test datasets. As shown in Figure 4.1 the different clusters are of varying

siz and are mostly well-separated. To ensure stable training and effective adaptation, we limit

the maximum number of patients sampled from a group during task-specific training to 100. A

particular patient group is randomly selected during each iteration. We use single-task formulation

as our baseline setting with all patient groups concatenated into a single dataset. We consider

two baseline policies, derived from vanilla Batch-IRL and TRIL-based behaviour cloning. We

consider two learning settings under Meta-IRL framework: 1) we apply the meta-update on the

policy network only, while training feature expectation network µtheta and reward function Rw

from scratch on each task; 2) we meta-learn both the policy and feature expectation networks

along with the reward formulation. We employ Adam optimizer [68] for training all networks with

a learning rate of 3e−4 and executeN = 600 total iterations for both Batch-IRL and Meta-IRL. The

training configurations for Batch-IRL and Meta-IRL are described in Table 4.1. We also use an

isotropic multivariate Gaussian output layer for sampling feature expectation values from DSFN,

as it has been shown to improve training in stochastic clinical setting. To do a fair comparison,
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both Batch-IRL and Meta-IRL were initialized with the same initial policy πφ and feature space F

using TRIL. To determine the optimal meta-learning rate, we experimented with 5 different rates

(0.005, 0.01, 0.025, 0.05, 0.1) and found the rate of 0.01 to perform best.

Figure 4.1: Visualization of tasks: tSNE plot of patient groups

Hyperparameters Warm Start Batch-IRL Meta-IRL
TRIL DSFN BCQ DSFN BCQ

number of hidden layers 2 2 2 2 2
hidden node size 128 64 64 64 64
max training iterations 50,000 10,000 20,000 5,000 5,000
activation function tanh ReLU ReLU ReLU ReLU
mini-batch size 64 32 128 32 128
λ (regularization) 1.4 - - - -
prioritized experience replay N N Y N Y
moving average for target network - 0.01 0.01 0.01 0.01
discount rate 0.99 0.99 0.99 0.99 0.99
β (meta-update rate) - - - 0.01 0.01

Table 4.1: Hyperparameter settings for multilayer neural networks employed in Batch-IRL and
Meta-IRL

Evaluation : In a real-world offline setting, we cannot evaluate the reward of the IRL-based

policy by simulating it in an environment, we can only measure its accuracy. We evaluate our

approach by comparing the actions recommended by our policy network with the clinician’s ac-

tions. The action-matching accuracy is defined as the proportion of transitions in the test data in

which the policy action matches with the clinician’s action. While accuracy does not necessarily
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Method All dosages Zero dosage Non-zero dosages
Behaviour Cloning (single-task) 70.3 ± 0.4% 86.3 ± 0.7% 15.4 ± 0.8%
Batch-IRL (single-task) 73.9 ± 1.4% 93.7 ± 2.2% 6.6 ± 0.6%
Meta-IRL (policy adaptation) 67.8 ± 5.1% 85.8 ± 8.3% 13.1 ± 2.3%
Meta-IRL (policy and reward adaptation) 69.8 ± 4.1% 86.6 ± 5.8% 12.2 ± 3.2%

Table 4.2: Action matching accuracy (µ ± σ)

imply optimal reward values, these measures are often correlated and a higher action match with

clinician would ensure a reward close to that achieved by the clinician. We perform 5 simulations

by varying the initialization seed during training. Since the expert action space is highly biased

towards zero (no vasopressor dosage), in addition to the overall accuracy on for all actions, we also

evaluate the accuracy on non-zero dosages.

4.3.3 Results

Meta-IRL imitates clinicians better than the Batch-IRL baseline. Table 4.2 shows the mean action-

matching accuracy (with standard deviation) over 5 simulations on the 6 test groups. We observe

that our multitask framework outperforms single-task IRL significantly on non-zero dosages. For

zero dosage, our network slightly underperforms single-task IRL formulation. However, we be-

lieve that imitating the clinician on non-zero dosages is more challenging since in expert trajecto-

ries, non-zero dosage actions occur very infrequently, accounting for ≈ 20% of all transitions. We

also observe that adapting both the policy and reward networks helps in preventing the reward net-

work from overfitting on the training tasks and thus, leads to 1% improvement in overall accuracy.

Meta-IRL performs comparably to behaviour cloning in terms of overall accuracy but underper-

forms on non-zero dosages. This is because Meta-IRL undertakes the harder task of learning the

underlying reward function, while behavioural cloning just mimics the clinician and doesn’t need

to reason about the underlying process. We also found that leveraging BCQ significantly stabilizes

policy training, while the DDQN network used in the original Batch-IRL approach suffers from

poor Q-value estimation and high variance during policy optimization.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we propose counterfactual frameworks for robust offline clinical policy learning

using observational data. Our proposed frameworks effectively tackle the inherent uncertainty in

Electronic Health Records and enable improved policy generalization over heterogeneous patient

groups. We observe that our frameworks outperform baseline methods on multiple clinical tasks,

both in contextual bandit and dynamic treatment regime settings. Our frameworks can be valuable

in designing robust clinical decision support systems by enabling more confident clinical policy

evaluation as well as personalized treatment recommendations for patient cohorts with limited

data.

In the first work, we described boostrapping and adversarial learning-based variants of IPS to

tackle model uncertainty due to the clinician’s propensity score imputation in an offline setting.

Our work is one of the initial studies to highlight the importance of robust propensity score mod-

eling for policy evaluation with higher confidence. Moreover, while existing research in off-policy

learning has primarily focused on synthetic or semi-synthetic setups with access to true propensity

scores, our estimators do not make such assumptions. We are the first to formulate the Hep-

arin dosing problem in a bandit framework and derive a real-world clinical dataset with unknown

clinician’s propensity. In the second work, we presented a meta-Inverse Reinforcement Learning

framework to learn sequential treatment policies with improved generalization over patients with

varying contexts. While meta learning has shown great success in supervised learning tasks and

online policy learning problems, it has not been investigated in the study of offline policy learning

problems, particularly in clinical settings. Our work highlights that the multitask formulation with

meta-learning based adaptation is a promising framework for recovering a physician’s intrinsic

contextual reward function in a large-scale chaotic clinical setting.

There are multiple promising future directions worth pursuing. Our frameworks can be com-
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bined with more optimal off-policy bandit (e.g., doubly-robust method [30]) or IRL algorithms

(e.g., f-IRL [79]). Our bootstrapping and adversarial learning frameworks could be extended to a

more practical continuous drug dosage scenario which is difficult than the discrete action setting

[80]. Another interesting direction for meta-learning-based IRL would be to leverage context-

based meta-learning and encode the context via latent probabilistic embeddings. This would en-

able meta-learning of rewards and policy with unstructured multitask demonstrations and would

not require us to explicitly create the task distribution, thus making it more amenable to real-world

clinical data. Lastly, a better clinical policy algorithm by itself is not sufficient to practically de-

ploy it in hospitals, it is important that all aspects of our framework, including policy, reward

formulation and state feature representation, be critically evaluated by experts.
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