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SUMMARY 

The International Monitoring System arm of the Comprehensive Nuclear-Test-Ban 

Treaty Organization in part utilizes sampling of atmospheric radioxenon to scan the world 

for nuclear testing events. Radioxenon has a natural abundance in the atmosphere but is 

also a commonly released byproduct of fission reactions involving heavier atoms. Due to 

its inert nature and short half-life, the gas makes an excellent indicator of recent nuclear 

activity.  With that given, differentiating the signatures released from nuclear power plants, 

nuclear testing, and medical isotope production facilities requires a fast, high resolution 

detection system. 

 Current designs utilized in the field involve plastic scintillator cells run in 

coincidence with NaI(Tl) or HPGe detectors. The use of plastic scintillators as electron 

detectors exhibit some issues in comparison to other materials. The energy resolution tends 

to be lower and the diffusion of gas into the plastic creates long-term signal degradation. 

Silicon detectors are analyzed as an alternative to plastic scintillators for beta detection 

based on their higher energy resolution and lowered memory effect. 

A radioxenon detection setup was created with the intent of measuring radioxenon 

samples using coincidence counting between silicon and NaI(Tl) detectors as well as 

silicon and HPGe. The absolute efficiency of both setups is calculated and compared. 

 

 



 1 

CHAPTER 1. INTRODUCTION 

This chapter contains discussion on the state of the nuclear forensics field, the 

objectives of the work, and a description of analysis of radioxenon data.  

1.1 Motivation 

The final draft of the Comprehensive Nuclear Test Ban Treaty (CTBT) was first 

proposed in 1996 and set forth guidelines for putting a halt to construction of further 

nuclear weapons and dismantling old ones. As part of the creation of this treaty, countries 

included have begun operation of an International Monitoring System (IMS) program 

involving use of seismic, hydroacoustic and nuclear signature detection systems. The 

detection of nuclear signatures is done through both radioactive particulates and noble gas 

measurements. Detection of radioxenon is currently performed in the field utilizing mainly 

plastic scintillators and with photon detectors performing coincidence measurements. 

Coincidence measurements between electrons and photons allow for effective removal of 

background signatures in air samples and to properly discriminate between the four major 

radioxenon isotopes. Plastic scintillators have shortcomings as electron detectors due to 

lower energy resolution and memory effect problems. The goal of this work is to 

characterize improvements in the use of silicon as a beta detector instead. 

1.2 Objectives           

The purpose of this thesis is to perform measurements of radioxenon using passivated 

implanted planar silicon (PIPS) detectors and perform a comparison of the data obtained 

using different photon detectors. To accomplish this goal, first a radioxenon detection 
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laboratory would have to be created. The laboratory requires multiple features: a gas 

containment system, a detection system, and an electronics system for data collection. Next 

two types of measurements need to be performed:    

- Counting measurement of radioxenon using a passivated implanted planar silicon 

semiconductor with a sodium iodide (NaI(Tl)) scintillator. 

- Counting measurement of radioxenon using a passivated implanted planar silicon 

semiconductor with a high purity germanium (HPGe) semiconductor. 

The collected data can be analyzed to examine the characteristics of each setup and 

a comparison of NaI(Tl) and HPGe beta-gamma coincidence spectra can be performed.  

1.3 Thesis Outline 

The structure of the thesis will be laid out in the following manner. Chapter 2 will 

include background information on radioxenon gas, the different sources of radioxenon in 

the atmosphere, and on historical methods of radioxenon detection and the technologies 

involved. All information shown is presented from publicly available sources. Chapter 3 

will go over the experimental setup created, including the gas manifold, detectors, and the 

electronics used. Chapter 4 will provide the methodology used to collect data, including 

operation of the CAEN software used. Chapter 5 will present some accumulated spectra 

and present the comparison calculations of the two setups absolute efficiency. Finally, 

Chapter 6 will contain the conclusion and future work sections. 
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CHAPTER 2. BACKGROUND 

 This chapter contains an explanation of the characteristics of radioxenon that make 

it an attractive detection target. Sources of radioxenon in the atmosphere are discussed. 

Finally, past and current designs used for radioxenon detection are mentioned.  

2.1 Radioxenon 

 Nuclear weapons pose a constant risk to national security and have been the source 

of looming threat over the 21st century. The acknowledgement of the issue with creation 

and testing of nuclear weapons has led to the inception of the CTBT, a treaty banning all 

nuclear testing and creating the need for a global detection arrangement. The important job 

of detecting atmospheric nuclear signatures has fallen onto a large network of stations as 

part of the IMS. While the system is comprised of detection systems using seismic, 

hydroacoustic and other data, only radioactive xenon measurements allow for monitoring 

of the air as a method to determine if nuclear testing has been performed covertly 

underground [1]. 

 Xenon, as a noble gas, is an ideal carrier of information for nuclear forensics 

purposes. As an inert gas, it does not react chemically with shielding used to hide nuclear 

testing. It is capable of passing through the ground after a test has occurred, with the 

primary losses as it passes through earth being through adsorption on sediment. 

There are four major radioxenon isotopes that are used in the identification of 

atmospheric nuclear signatures. Each isotope is found in the atmosphere due nearly entirely 

to anthropogenic sources. The four isotopes are 131mXe, 133Xe, 133mXe, and 135Xe. The most 

commonly observed form of atmospheric radioxenon is 133Xe. As its half-life is 5.243 days 
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it exists for long enough to be measurable but not long enough to influence background 

measurements in the long term. 

When distinguishing the potential sources of radioxenon in the atmosphere, a 

common method is through analyses of the ratios of the metastable xenon isotopes and the 

other two radioactive isotopes. Each isotope has a different half-life and expected release 

based on the exact source of the radiation. Additionally, the decay modes of each isotope 

vary by process and energy. Table 2.1 lists the four radioxenon isotopes and describes their 

various decay energies.  

Table 2.1 Primary Radioxenon Isotopes Energies  

Nuclide 131mXe 133mXe 133Xe 135Xe 

Gamma energy (keV) 163.9 233.2 81.0 249.8 

X-ray energy (keV) 29.5-34.6 29.5-34.6 30.6-36.0 30.6-36.0 

Beta endpoint energy (keV)    346 905 

Conversion electron energy (keV) 129 199 45 214 

 

2.2 Radioxenon Sources  

Radioactive xenon in the air can come from a variety of sources, leading to the need 

for accurate measurements of the four isotopes in small concentrations. Expected 



 5 

concentrations of the isotopes released depends on the initial source. The four major 

sources are discussed in the following sections. 

2.2.1 Naturally Occurring Radioxenon 

The Earth’s atmosphere contains approximately 0.087 ppm of stable xenon. For the 

most part, radioxenon contained within air samples is manmade. Primary natural sources 

come from spontaneous fission of uranium in nature and air activations of xenon from 

cosmic rays. In total approximately 24% of the yields from uranium or plutonium fissions 

are noble gases, with xenon isotopes being the majority [2].  

2.2.2 Nuclear Power Plants 

Radioxenon is an important factor in the operation of nuclear power plants, as 135Xe 

is commonly created as a daughter of 135I. 135Xe in a nuclear power plant acts as a neutron 

absorber and is otherwise known as a significant source of poison to a nuclear reactor.  

Radioxenon created in most nuclear power plants is generated within the fuel rods 

in the reactor and is retained there. Thus, the release of xenon from power plants is not 

nearly as huge a source as radiopharmaceutical companies despite the similar processes 

[3]. Estimates for total release of radioxenon in a generic year were estimated to be 1.3 

PBq from nuclear power plants alone in 2009 [4]. 

An example of potential xenon releases from a power plant accident can be 

identified from the Fukushima Daiichi nuclear reactor incident in 2011. US monitoring 

stations measured levels of 133Xe in the air of up to 17 Bq m-3, much above the minimum 

detectable concentrations needed by IMS standards [5]. 
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2.2.3 Radiopharmaceutical Industry 

133Xe is a commonly produced isotope for the purposes of medical imaging. It is 

typically used for measuring the parameters of lungs and imaging. The use of 133Xe is on 

the decline however with the increased availability of 99mTc. 

It was found that large spikes in radioxenon background were coming from a few 

radiopharmaceutical manufacturers during production of medical radioisotopes. Mean 

activity of 133Xe in the air for various stations around the world show the effect of nearby 

nuclear power plants and radiopharmaceutical plants. The International Noble Gas 

Experiment radioxenon station in Ottawa which is located 150 km from where Chalk River 

was located would measure spikes of 1-10 Bq m-3. Production of 131mI gives rise to its 

daughter nuclide 131mXe which often escapes into the atmosphere during reprocessing. 

Most noble gas releases from nuclear reactors occurs from cracking in fuel rod cladding 

while radiopharmaceutical releases occur during chemical separation.  

A radioisotope production facility that irradiates for two days and releases 

radioxenon within seven will closely resemble the signal of a nuclear explosion. 

Radioxenon stations with high time resolution were able to lower overall measurement 

times to 12 to 24 hours and identify all four radioxenon isotopes. Literature showed that 

the combined release of all nuclear power plants worldwide was 0.74x1015 Bq of 133Xe 

while the four largest radiopharmaceutical companies alone released 11x1015 Bq of 133Xe 

per year [6]. 

Implementation of strict xenon release goals for radiopharmaceutical companies 

are potentially not practical. Mixing in natural xenon as tracer can shift the radioxenon 
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isotopic ratios away to the left from the region where nuclear detonations reside. Barium 

and Cesium can significantly alter the Xenon ratios but are impractical to manufacture in 

quantities large enough for irradiation. Stable tracers such as Sulfur Hexafluoride and 3He 

have been examined but SF6 is a greenhouse gas and 3He is no longer produced and quite 

expensive. Metal particulates have also been examined, however these tracer would need 

to be detected through means such as neutron activation analysis or X-ray fluorescence, 

which the IMS network currently does not include [7]. 

2.2.4 Nuclear Testing 

After the claimed nuclear test by the Democratic People’s Republic of Korea in 2006, 

a detection setup in the Republic of South Korea sampled atmospheric air in the days 

following. In the case studied, sampling was performed in the 72-132 hours after the 

explosion, with measurements occurring in the 6-13 days after. A maximum concentration 

of 133Xe was found to be 7 mBq. A 1 kt device would release about 1016 Bq, which meant 

this measurement was compatible with a 0.7% release of radioxenon from the test site.   

Measurable quantities of 133Xe and 133mXe were observed with concentrations potentially 

characteristic of a nuclear test [8]. 

2.3 Radioxenon Detection 

Under the IMS regime there have been four main systems that are deployed globally 

to measure radioxenon gas captured from the air. They are the Automated Radioxenon 

Sampler Analyzer (ARSA), Automatic Radioanalyzer for Isotopic Xenon (ARIX), 

Swedish Automatic Unit for Noble Gas Acquisition (SAUNA), and the Syste`me de 
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Pre´le`vement  Automatique  en  Ligne  avec  l’Analyse  du Xe´non  (SPALAX). Table 2.2 

lists the four major systems and their detection setup. 

Table 2.2 Main Features of the Four Systems [9] 

System Activity Measurement Sampling Cycle (h) Eff. Air Volume Sampled (m3) 

SPALAX High purity germanium detector 24 29.5 

ARSA 
Beta-gamma coincidence, gamma 
energy and beta energy 8 19.9 

ARIX 
Beta-gamma coincidence, gamma 
energy 12 8.2 

SAUNA 
Beta-gamma coincidence, gamma 
energy and beta energy 12 5.9 

 

2.3.1 ARSA 

The ARSA system was first prototyped in 2000 by Pacific Northwest National 

Laboratory to fulfil CTBT minimum detectable requirements for 133Xe of less than 1 mBq 

m-3 of air for a 24-hour sampling period. The detection system was compromised of four 

plastic beta cells surrounded by two NaI(Tl) scintillator crystals. The full apparatus 

compromised a nearly 4π counting system. The plastic beta cells were made of 1.2mm 

thick plastic formed into 5 cm long hollow tubes. Each cell ended with a photomultiplier 

tube (PMT) allowing for light collection to be converted into voltage pulses. The NaI(Tl) 

crystal were manufactured as 5” by 8” planes with three PMTS adjoined to each face. Each 

cell ended with a photomultiplier tube (PMT) allowing for light collection to be converted 

into voltage pulses. Figure 2.1 shows the design of ARSA at the time. 
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Figure 2.1 ARSA Design [10] 

The counting system utilized a beta-gamma coincidence setup to individually detect 

the four xenon isotopes. The detection cell was found to have an approximately 5% 

memory effect from previous xenon samples. The highest MDC for 133Xe was found to be 

0.39 mBq m-3 [10]. 

 In 2007 a redesign was performed on the ARSA model to simplify the system while 

retaining its strong MDC characteristics. The new setup utilized a single well detector for 

photons and a single PMT gas cell for the charged particles. Three different photon 

sensitive scintillators were tested, NaI(Tl), CsI(Na), and CsI(Tl). After each were tested a 

switch to CsI(Na) was made as it had the highest density, and best temperature 

independence. The beta cell was also converted to require only one PMT negating the need 

for gain matching [11].  

2.3.2 ARIX 

ARIX was developed at the NPO Khlopin Radium Institute. The ARIX system used 

a NaI(Tl) scintillator much as ARSA did for photons but switched out the plastic scintillator 
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for an organic polystyrene scintillator applied to the walls of the measurement chamber. 

The measurement chamber was an aluminium barrel placed within the well of the NaI(Tl) 

crystal to maximize efficiency in detecting γ-rays. PMTs were placed on opposite ends of 

the measurement chamber to collect the light from the beta cell and NaI(Tl) individually. 

Figure 2.2 depicts a diagram of the detection setup. 

 

Figure 2.2 ARIX Design [12] 

Much like ARSA, the ARIX design also operated using the beta-gamma 

coincidence principle. Results from the detectors were an MDA of 6.2 (131mXe), 6.6 

(133mXe), 4.8 (133Xe), and 7.7 (135Xe) mBq respectively. These convert to an MDC of 

approximately 0.5 mBq m-3 [12]. 

2.3.3 SAUNA 
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SAUNA was developed by the Swedish Defence Research Agency as a detection 

module and collected and shared its data as part of the International Noble Gas Experiment. 

Gas collection from air occurred similarly to the other radioxenon analysers, using 

activated charcoal to have xenon adsorb onto the surface. A push in this case was to remove 

the need for cooling of the activated charcoal system (removing power consumption and 

simplifying the system greatly). Air processed in the system was cleaned in molecular 

sieves to remove water and CO2. Adsorption of charcoal for xenon was found to be 1000 

cm3/g. A gas chromatograph was used to quantify the amount of extracted xenon. 

 The setup consisted of two coincidence detectors placed inside lead-copper 

radiation shields. Beta detectors similar to those in ARSA were manufactured from BC404 

plastic scintillator material shaped into cylinders. Thickness of the cylinders were made to 

be 1 mm to fully stop 350 keV electrons. Two PMTs were affixed to either end for light 

collection. In a similar setup to ARSA, the use of NaI(Tl) scintillators with a PMT for 

photon detection. Figure 2.3 demonstrates the setup, with the beta detectors inserted 

through the NaI(Tl) cylinder. 

 

Figure 2.3 SAUNA Design [13] 
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Memory effect of this setup was found to be on the order of 3-4% of the sample 

activity. Average MDC’s for all four radioxenon isotopes were well below the 1 mBq m-3 

requirement and went down to 0.1-0.2 mBq m-3. Attempts to reduce the memory effect 

while maintaining efficiency and energy resolution were later made using a modified Al2O3 

coated plastic scintillator cell. Effects on resolution were found to be comparable to 

uncoated detectors while the reduction in memory effect was about a factor of 1000. [14] 

2.3.4 SPALAX 

Prototyped by the French Atomic Energy Commission (CEA) in 2000, this 

detection setup operated on a principle of solely utilizing γ spectrometry to analyze 

radioxenon samples. A fully automated system, gas collection operated on a coupled gas 

permeator and charcoal collector for air cleaning and xenon adsorption.  The detector itself 

was a HPGe cooled by an electric cryostat. Pure gamma spectrometry was selected over 

beta-gamma spectrometry as it allowed for direct measurement of the four radioxenon 

isotopes. In a 24-hour sampling period, MDC of 133Xe was 0.15 mBq m-3 [15]. 

 An improved version of the SPALAX system was developed in 2013 in 

collaboration with the Canberra Semiconductors company to rectify issues with the pure 

gamma measurements. The decision was made to switch to a beta-gamma coincidence 

system as the other three major efforts had produced. A PIPSbox silicon semiconductor 

detector was used for measurement of betas and conversion electrons. The two silicon 

detectors measured 500 µm thick with a 1200 mm2 surface area. The photon measurements 

were made via a BEGe. The model BEGe 5030 is 30 mm thick with a 50 cm2 area crystal. 
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Shielding on the experiment was provided by a 5 cm layer of low activity lead [16]. Figure 

2.4 displays the detectors used. 

 

Figure 2.4 SPALAX Experiment with PIPSbox and HPGe Detector [16] 

  



 14 

CHAPTER 3. EQUIPMENT 

The following chapter includes sections covering the description of the physical 

experimental equipment, including the detectors, gas manifold, high voltage, and data 

acquisition electronics. Additionally, the software interfacing with the electronics will be 

mentioned.  

3.1 Detectors  

The general principle for the operation of a beta-gamma coincidence detection 

system requires two detectors. A detector for conversion electrons and beta particles is run 

in a coincidence timing window with a detector for photons (X-rays and Gamma-rays). 

This work utilized two different photon detectors to compare results of beta-gamma 

coincidence. 

3.1.1 Passivated Implanted Planar Silicon (PIPS) 

For beta detection a passively implanted planar silicon semiconductor was selected. 

The basis for selection was to provide avenues of comparison to the more commonly used 

plastic scintillator cells previously discussed which have a much lower energy resolution.  

Semiconductor detectors are fabricated as a PN junction with a depletion zone. The 

depletion zone is created by biasing a region of opposing polarities creating a zone in which 

any incident radiation energy deposited will free electrons from the valence band. The freed 

electrons produce a current in the semiconductor material which is carried then to the 



 15 

preamplifier for shaping and amplification. Information about the energy deposited in the 

detector is analysed based on the total amount of charge collected by the preamplifier. 

The laboratory acquired a Mirion Technologies PIPSbox for this purpose. The 

design of this detector was compromised of two silicon detectors encapsulating an empty 

cell with a port which was utilized as the gas testing cell. Specifications for both silicon 

were given as 1200 mm2 active surface area with a silicon thickness of 500 µm, 

significantly thick enough to allow for full deposition of electrons up to 350 keV. The 

detectors and gas cell were confined by an aluminium housing with carbon windows to 

block sources of external radiation (mainly photons). These detectors required no cooling 

for operation and boasted a minimal temperature instability (<100 ppm/ °C) in the realm 

of room temperature (0 to 50 °C). The PIPSbox could be operated in any orientation but 

did not stand on its own in a vertical orientation. To facilitate using the detector upright 

with both windows facing an NaI(Tl) detector a plastic stand was designed and printed. 

Figure 3.1 is an image of the PIPSbox detector in its vertical orientation with the printed 

stand. 
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Figure 3.1 PIPSbox in Stand 

 

3.1.2 Sodium Iodide 

NaI(Tl) detectors are inorganic scintillators which produce light when absorbing 

energy from radiation. The light emitted is wave shifted using dopant materials in the 

crystal, allowing produced light to travel to the PMT without reabsorption. The PMT 

contains a photocathode which absorbs the photon and releases an electron, which is 

multiplied and collected. The amount of light produced by the NaI(Tl) crystal thus 

corresponds to a certain number of electrons, the information the system needs to deduce 

the energy of the radiation. 
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Two different NaI(Tl) scintillators were used at points for experimentation. Two 

Canberra model 802 were brought in with crystals measuring 2” by 2”. These detectors 

came with a built in PMT for light collection and were slightly used leading to potentially 

some discrepancies with data collected from them. 

 Bought new for the experiment were also two Scionix model 51B51/2M-E1. These 

models were selected as they came with built-in voltage dividers and were well suited for 

the energy range (rated to go as low as 20 keV). Dimensions of the crystal were 220 mm 

length by 59 mm diameter. The two NaI(Tl) detectors are depicted in Figure 3.2. 

 

Figure 3.2 Canberra NaI(Tl) (left) and SCIONIX NaI(Tl) (right) 

3.1.3 High Purity Germanium 
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HPGe detectors operate in a similar fashion as the silicon detectors, both being a 

semiconductor type detector with a depletion zone in which radiation can deposit its 

energy and be converted to a current. Germanium however has a much lower bandgap 

energy, and thus suffers from easy thermal excitations of electrons at room temperature. 

In order to operate a germanium detector, the system must be cooled to a low enough 

temperature that thermal excitations no longer dominate the interactions. This cooling is 

typically provided by a source of liquid nitrogen, which can bring the detector down to 

77K. 

The germanium detector utilized was a Canberra BE3825 which is specifically a 

BEGe. Portable HPGe’s available were unable to detect X-rays and low energy γ-rays in 

the energy region of interest and thus the need for a broad energy photon detector 

necessitated using a BEGe instead. Detectors dimension were 38 cm2 with a thickness of 

25 mm and a given relative efficiency of 26%. Energy resolution was specified as 0.45 at 

5.9 keV and 0.72 at 122 keV. 

The detector itself was contained within a large cylindrical lead shield with a 

rotatable cap. As it was a germanium detector, constant cooling was required and 

provided by a liquid nitrogen cryostat filled regularly. The detector was fixed within its 

lead shielding at a certain height. The HPGe in its shielding is shown in Figure 3.3 
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Figure 3.3 Germanium Detector within Shielding 

3.2 Gas Manifold and Control 

The gas manifold was designed to allow a straightforward method of controlling the 

flow of vacuum pumping. Controls also allowed for easy purging of radioxenon samples 

by inert “cleaning” gases such as nitrogen to help remove old samples of gas left in the 

pipes. Figure 3.4 shows the manifold design. 
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Figure 3.4 Gas Manifold 

The valves, fittings, and pressure regulators were all Swagelok. Vacuum pumping 

was provided by an Agilent Technologies model X3810-64000. A simple pressure gauge 

was included on the testing side of the apparatus to monitor loss of vacuum during testing. 

A line to a low-pressure regulator on a nitrogen bottle was included to allow for sweeping 

out old test gas and air between experimental runs.  

 133Xe samples were obtained from the Lantheus Medical Imaging company. Xenon 

gas samples were received in rubber capped sample vials. Injection of the samples into the 

gas manifold was accomplished using a Hamilton gastight syringe. A rubber septum 

installed on one port gave a leak tight seal which could be penetrated for gas injection. The 

syringe and sample vial are shown in Figure 3.5. 
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Figure 3.5 Hamilton Syringe and 133Xe Sample Vial 

3.3 Electronics 

Electronics for the detectors were provided by three desktop CAEN modules. Power 

to the electronics was run through a Tripplite isolation transformer to sanitize any signal 

noise that could be picked up from the buildings electricity. A CAEN DT5423 with four 

outputs was used for low voltage power distribution of preamplifiers. This model was 

effectively capable of supplying power to up to four preamplifiers or PMTs, enough to do 

coincidence with both silicon detectors. 

A Mirion Technologies preamplifier designed for use with the PIPSbox was used to 

bias the silicon detectors and collect the charge information. The preamplifier boasted a 

specialization in situations where low noise is required. The sensitivity was given as 400 

mV/MeV and had an output range of ±3.5 volts on a 50 Ω termination. The device featured 

high voltage inputs, detector signal inputs, and energy signal outputs for both detectors. 
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The high voltage was provided by a CAEN DT5533EM mixed power supply. The 

characteristics needed for the supply was availability of negative and positive polarity high 

bias voltage for the silicon and NaI(Tl) detectors, respectively. Additionally, this power 

supply was chosen as it was necessary to be able to bias detectors up to 1000 volts while 

having an input current control granularity on the order of 5 nA. 

A CAEN DT5781 Quad Digital Multi Channel Analyzer (MCA) functioned as the 

digital pulse processor and data acquisition system. The system came with four 

independent 16k channel digital multi-channel analyzers for up to 4 detectors. The duty of 

the MCA was to take in signals coming in from the preamplifiers and PMT’s of detectors 

and generating a trigger logic on pulses of appropriate height. A lower energy threshold 

was set to keep accepted pulses above the noise and pulse pile up conditions set by the user 

are used to remove spurious pulses. Energy pulses accepted by the system are passed 

through a digital Jordanov trapezoidal filter whose trapezoidal flat top corresponds to the 

original energy of the incident radiation. The system than binned the count based on its 

energy into its corresponding channel. Built in logic to perform coincidence and anti-

coincidence measurements between separate channels were also a feature of the MCA. A 

picture of the desktop electronics modules is included as Figure 3.6 
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Figure 3.6 Electronics Setup for PIPSbox 

3.4 Software 

All software was installed and run on a Dell laptop computer utilizing the Windows 

10 operating system.  

Software controls were provided by CAEN to interface with their own electronics. 

Interfacing between the electronics and software controller was done through a USB 

connection. CAEN GECO2020 software was used to control the bias voltage supplied to 

both silicon detectors and all NaI(Tl) detectors. The software allowed for independent 

control of bias voltage to all detectors and gave monitoring status of applied voltage and 

current draw. 

CAEN Multi-Parameter Spectroscopy Software (COMPASS) was used to interface 

with the MCA board and control the parameters used to analyze the incoming detector 
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signals. While the software had functionality for digital pulse processing of pulse shape 

discrimination (PSD) and pulse height analysis (PHA) only the PHA features are utilized. 

The software allows for two modes of data collection, a wave mode and a list mode. In 

wave mode, the incoming signal was plotted as a function of time and captured the moment 

that a trigger occurs. In list mode all events were recorded as time stamped data, with the 

capability of saving both energy and channel binned data. The data files could be saved in 

a few formats, notably as CSV files and ROOT files. Analysis of the collected data was 

done entirely in MATLAB. 
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CHAPTER 4. METHODOLOGY 

The following chapter contains a complete description of the operation of the 

radioxenon laboratory as operated for this thesis. Discussion will first focus on the setup 

of the detectors and shielding, followed by the gas manifold and gas controls, and finally 

the use of the CAEN electronics and accompanying software. 

4.1 Detector Setup  

The detector system geometry impacted the quality of the measurements obtained 

and needed to be considered fully to maximise the coverage of the system. Detectors were 

kept close together to increase geometric efficiency of interactions with released radiation 

and to minimize the amount of shielding that needed to be used. 

4.1.1 PIPSbox with NaI(Tl) 

Four total detectors were utilized in the silicon-NaI(Tl) detector setup, to enable 

two different coincidence measurements. As the silicon detectors were both in parallel with 

opposite facing windows, the NaI(Tl) detectors were placed on opposite sides of the 

PIPSbox. The setup was placed directly below the gas manifold to minimize the tube 

connection to the measurement cell in the PIPSbox. Additionally, aluminium foil was 

wrapped around the PIPSbox to shield from any outside sources of photons. Electronics 

were kept on the workspace alongside them but left out of the shielding. Figure 4.1 shows 

the geometry of the coupled detectors. 
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Figure 4.1 Silicon and NaI(Tl) Detectors Aligned for Coincidence 

Shielding for the detectors was comprised of 1-inch thick lead bricks. The bricks 

were stacked to create as little gap as possible for light to travel through while still leaving 

space for the cables and the gas line. Figure 4.2 depicts the completed shielding setup. 
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Figure 4.2 Lead Shielding Around the Detectors 

4.1.2 PIPsbox with HPGe 

The detector setup for measurements with the HPGe were simplified by having 

prebuilt copper-lined lead shielding already encasing the germanium detector. The 

experiment still had its own source of complications in the need to run the gas line from 

the manifold deep into the HPGe lead containment. The manifold was moved next to the 

HPGe stand and a long stainless-steel tube was run into the lead housing to the 

measurement cell. The PIPSbox itself was placed on top of a 3D printed plastic cover for 
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the HPGe to avoid damaging either detector’s carbon window. Figure 4.3 depicts the 

PIPSbox resting on the cover protecting the HPGe window. 

 

 

Figure 4.3 PIPSbox and HPGe Inside Shielding 

 The gas line and electronics cables were fed through a slit in the shielding out to 

the preamplifier on the other side. Figure 4.4 is an image of the gas manifold, electronics, 

and detector shielding. The clear tube shown running from the manifold to the shielding 

was the Xenon-133 gas transfer line. 
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Figure 4.4 Configuration of Gas Manifold and HPGe Shielding 

 Cooling of the HPGe detector was done through filling of the cryostat at the base 

of the shielding with liquid nitrogen (LN2). LN2 arrived in large dewars with ports for 

dispensing liquid which could be connected to the fill port on the collar of the cryostat just 

under the HPGe stand. The procedure for liquid nitrogen filling was as follows. 

1. Take the fill line and make the connection on the liquid port on the dewar. Teflon 

tape can be used to thread the connection on easier. 
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2. Connect the other end of the fill line to the fill port on the cryostat collar. Either 

port can be used for filling. The line should be held onto the fill port tube using a 

pipe clamp.  

3. With both connections on tight, turn the valve slightly open to begin dispensing 

liquid. Nitrogen should be dispensed at a slow rate at first while the transfer line 

frosts up. Smoke will pour out of the exit port of the cryostat at this time. 

4. After the line frosts up and the puffs of smoke coming from the cryostat become a 

more constant stream, the valve on the dewar can be opened further to increase flow 

rate. 

5. The dewar takes a while to fill up and may go through some transitions along the 

way. As the metal cools it will contract and may make loud pinging noises. The 

puff of smoke exiting the outlet port will grow and shrink. Even at a fully opened 

valve the initial cooling of the detector can take some time. Be patient. 

6. Once the dewar is full the stream of smoke exiting the outlet port converts to a 

stream of liquid nitrogen. The liquid stream is allowed to flow for a minute or two 

to top off the cryostat completely and finally the valve on the dewar is shut closed 

again. 

7. After the cryostat is filled, let the HPGe cool down over the course of at least 24 

hours before turning on. Extra LN2 will need to be added daily to keep the detector 

at operating temperatures. 

4.2 Electronics 

4.2.1 Desktop Module Power 
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In setting up the electronics system first the main desktop CAEN equipment was 

powered up and turned on. The three main pieces of equipment were the CAEN DT5423 

desktop power distributer, CAEN DT5533E High Voltage (HV) power supply, and the 

CAEN DT5781 MCA. The power distributer and HV power supply were both powered 

through the Tripplite isolation transformer plugged directly into the wall outlet. The MCA 

was powered through a direct connection to a wall outlet. The DT5423 had no power switch 

and turned on immediately once powered, the other two devices had power switches on 

their backends. USB data acquisition cables were connected to the HV power supply and 

MCA to the computer for control.  

4.2.2 Preamplifier and PMT Power 

The preamplifiers and PMT’s associated with the detectors were next powered on 

using the four low-voltage SubD9 connectors on the DT5423. Removal of the mounting 

hardware on the DB9 cables was sometimes necessary to make connections to the female 

connectors on the power distributer. It was important to make these connections now before 

biasing the detectors to avoid damaging the sensitive electronics. 

4.2.3 Detector connections 

The PIPSbox was connected to its associated preamplifier using two LEMO-00 to 

BNC connector, one for each detector. Bias voltage was provided to the preamplifier using 

two SHV cables that connected to the power supply. Data acquisition connections were 

made using two more LEMO-00 to BNC cables going from the energy out port on the 

preamplifier to the MCA. 
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 The Canberra NaI(Tl) detectors required a SHV to BNC cable for data acquisition 

and a SHV cable for HV power. All connections were made directly into the PMT. The 

Scionix NaI(Tl) detectors did not require a DB9 connection as they not have a PMT that 

needs powering. They were connected using a BNC connector for the DAQ and a SHV 

cable for HV. 

4.3 Software 

Two programs were run for controlling the equipment used, the GECO2020 software 

for biasing detectors and the COMPASS software for configuring the data acquisition. Both 

programs were available to download for free from CAEN’s website. 

4.3.1 GECO2020 

After launching the GECO2020 software the user must next connect the software 

to the HV board. Selecting the connect option under the File tab showed the box in the 

Figure 4.5. 
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Figure 4.5 GECO2020 Board Connection 

The power supply type was selected to be a DT55XXE model and connection type 

was set to be a USB connection. The port connection parameter depended on what port on 

the computer the USB cable was plugged into and was verified using the computer Device 

Manager. Baud rate and data were selected as 9600 and 8, respectively. After successful 

connection to the board the software displayed all available channels to be controlled as 

seen in Figure 4.6. 
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Figure 4.6 GECO2020 High Voltage Control Page 

From this page the desired current and voltage could be set using ISet and VSet for 

each respective detector. A ramp up and ramp down voltage speed could be set as well as 

a maximum allowable voltage. When all settings were appropriately changed the bias 

voltage was applied to the detector using the power button. Polarity on this board model 

was not configurable, the first two channels could only bias positively and the last two 

could only bias negatively. 

4.3.2 COMPASS  

Launching and connecting the COMPASS software was done simply by pressing 

the connect all active boards button on the startup menu. After connecting the MCA, the 

user was taken to the acquisition page (Figure 4.7). 
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Figure 4.7 COMPASS Acquisition Page 

The acquisition page allowed for selecting between two run modes, a wave mode, 

and a list mode. Wave mode allowed for seeing the incoming signal from the preamplifier 

and to track how modifying digital shaping parameters affected signal form. List mode was 

used for saving data collected during experiments in a variety of formats. Data was also 

able to be saved in raw, unfiltered, and filtered formats. An offline mode allowed for further 

data processing to be applied to a previously performed measurement. Digital signal 

shaping for each channel was performed in the Settings tab starting with the input. 
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Figure 4.8 Input Signal Parameters 

The input signal tab (Figure 4.8) viewed on the waveform in waves mode could be 

modified using the record length and pre-trigger time periods which dictated what time was 

saved before and after each detected pulse. The number of baseline samples used to 

calculate the mean baseline of the signal was set here. The coarse gain set the amount of 

amplification applied to the input signal or the input dynamic range. 
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Figure 4.9 Discriminator Settings 

The discriminator tab (Figure 4.9) controlled the settings for the RC-CR2 timing 

signal shaping that decided whether an incoming pulse was counted or not. The threshold 

setting decided the least significant bit value which was defined by the noise level. Trigger 

holdoff values determined when a pulse could be accepted following the zero point of the 

previous pulse. The fast discriminator smoothing algorithm was used to determine the 

number of samples needed to create the RC-CR2 signal, a tradeoff of signal amplitude to 

noise. The input rise time was set to match the timing signals rise time to the input signals 

rise time.  
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Figure 4.10 Rejection Settings 

The rejections tab (Figure 4.10) worked with the built in CAEN software to forgo 

a received pulse based on the list of parameters provided. Saturation rejection canceled 

pulses received during the electronics deadtime and pileup rejections works to revoke 

pulses that have occurred close enough to stack their amplitudes. Energy high- and low-

cut values allowed for discrimination based on the energy value, dictating a window of 

acceptable signals described by the user. 
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Figure 4.11 Trapezoidal Settings 

The trapezoidal filtering parameters (Figure 4.11) described the shaped signal 

which would be used to identify the input energy of the preamplifier signal. All parameters 

here were applied in a Jordanov trapezoidal filter to convert the short rise-long tailed 

preamplifier signal into a trapezoid whose height from the baseline corresponded to the 

energy of the incident radiation. Settings used for beta-gamma coincidence in this case 

were optimized for high energy resolution and lower counting rates. 
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Figure 4.12 Onboard Coincidence settings 

The CAEN DT5781 MCA allowed for coincidence to be performed on online data 

collected, only saving counts if they happened within the user defined coincidence timing 

window (Figure 4.12). The paired mode set the coincidence between pairs of channels and 

worked well for the silicon and photon detection systems. Coincidence window settings 

were optimized experimentally. The saved data was assigned the unfiltered category in the 

software. 
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Figure 4.13 Time Selection Settings for 2D Spectra 

The time selection tab (Figure 4.13) set the coincidence timing window parameters 

that were used to plot 2D spectra of the incoming radiation based on the channel pairs. This 

tab differed from the previous tab in that the 2D spectra collected here did not impact saved 

unfiltered data but only created a plot of the online data collected. Data saved from this 

mode was placed in the filtered data category. 

 Table 4.1 depicts the final parameters used in performing the measurements of 

133Xe. The parameters were settled on primarily using trial runs and comparing results over 

many measurements. 
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Table 4.1 COMPASS Parameters 

Detector PIPS #1 HPGe PIPS #2 
SCIONIX 
NaI(Tl) 

Canberra 
NaI(Tl) 

High Voltage 112.07 850.1 112.43 600 850.44 

Input           

Record Length 50000 50000 50000 50000 50000 

Pre-Trigger 1000 1000 1000 1000 1000 

N Samples Baseline 4096 256 4096 256 256 

DC Offset 20% 20% 20% 20% 20% 

Coarse Gain 3x 10x 3x 33x 33x 

Discriminator           

Threshold 50 40 60 30 100 

Trigger Holdoff 500 480 480 900 300 

Fast Discrim. Smoothing 32 4 32 4 32 

Input Rise Time 250 100 250 300 500 

Trapezoid           

Trap. Rise time 6.2 6 6.2 5 3 

Trap. Flat Top 1.5 3 1.5 1 3 

Trap. Pole Zero 30 50 30 50 50 

Peaking Time 50% 80% 50% 10% 80% 

N Samples Peak 64 64 64 16 16 

Peak Holdoff 0.96 0.96 0.96 0.96 0.96 

Energy Fine Gain 1 1 1 1 1 

Spectra           

Energy N Channels 4096 4096 4096 1024 1024 

 

4.4 Gas Manifold Operation 

Control of the testing gas was done entirely mechanically; no valves or equipment 

utilized electrical switches. The main functions of the system as installed were the ability 

to evacuate the manifold and testing cell, purge the system with nitrogen for reducing 

memory effects, and injecting fresh radioxenon for performing measurements. Figure 4.14 

depicts the different flow paths through the manifold for each function. 
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Figure 4.14 Gas Manifold Flow Paths 

As a first step before injecting radioxenon the entire gas manifold needed to be put 

through a pump and flush procedure. The method used dry nitrogen gas to flush out the gas 

manifold lines, valves, and testing cell combined with multiple pumping cycles. The 

purpose of this procedure was to remove as much remaining radioactive gas sample and 

moisture from the system before doing an experimentation run. Once radioxenon was 

injected into the cell the system remained closed off from pumping until the measurement 

run was over. 

The procedure for a pump and flush is given below, assuming all connections to the 

pump, the nitrogen regulator, and the testing cell had already been made. 
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1. Most valves should be closed from whatever previous test was performed, but if 

not, close all valves to avoid contaminating clean lines with radioactive gas. 

2. Turn on the vacuum pump using the black switch at the base. 

3. Once the pump has been on for a few minutes to allow it to reach full speed, open 

the first valve to begin pumping the clean gas side of the manifold. If the pressure 

regulator is attached the pressure being read out should begin to drop. 

4. Open the valve to nitrogen fill line for a minute to evacuate any air that may be in 

the line. After a minute close that valve. 

5. Open the central valve to begin pumping on the radioxenon side of the manifold, 

the valve to the pressure regulator should also be opened to get a read of the 

vacuum.  

6. If the vacuum is stabilizing, meaning there are not any large leaks, the valve to the 

detection cell can be opened. 

7. After a few minutes of pumping, open all other valves on the manifold that need to 

be cleaned out except for the nitrogen fill valve. 

8. After another few minutes of pumping the entire system, the pressure in the system 

should sit at about -95 psi. Close the valve to the vacuum pump. 

9. Open the nitrogen pressure regulator up until a very small flow of nitrogen gas is 

traveling into the system and let the manifold rise back up to just over atmospheric 

pressure. On the vacuum gauge this occurs when then needle travels just past the 

zero demarcation. 

10. Close the nitrogen fill valve, the pressure regulator can be kept at the same position 

you had it. Let the system sit filled with nitrogen for about 2 minutes. 
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11. Open the vacuum valve again to the manifold and let it pump for about 5 minutes. 

12. Repeat steps 8-11 at minimum five times to completely clean out the system. Once 

done close the vacuum valve for the last time. 

13. The pump can be shut off and all valves can be closed. 

After the flush and purge cycle had been performed enough times to clean out the 

system, radioxenon gas sample could be injected into the gas cell. The process of pulling 

some radioxenon sample out of the gas vial was done under the fume hood to capture any 

radioactive gas released when breaking the rubber septum. Equipment needed was a 100 

µL gastight syringe and gloves. The procedure for injection of gas sample was as follows. 

1. Turn the vacuum pump and give it a minute or two to reach top speed. 

2. Open valves to the gas cell in order 

a. Vacuum pump valve 

b. Left manifold to right manifold valve 

c. Rubber septum injection valve 

d. Measurement cell valve 

3. Allow the system to stabilize at its minimum pressure. 

4. Close the valve between the left manifold and right side and finally close the 

vacuum valve. 

5. With gloves on and working under the fume hood, puncture the rubber seal on the 

sample vial using the tip of the syringe in one straight motion to avoid leakage. 

6. Pull a small amount of radioxenon from the center of the vial, on the order of 10-

15 µL. 
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7. Retract the syringe from the sample vial without touching the plunger, walk the 

syringe over to the manifold. 

8. Holding the syringe straight over the rubber septum injection port, push the needle 

slowly but firmly into the center of the of rubber bottom until the surface is broken. 

9. Push the needle deeply into the injection port until it will not move further and then 

press the plunger down to inject radioxenon. 

10. Once fully injected, retract the needle from the port. Hold the rubber septum down 

as the needle is pulled out to avoid losing unnecessary vacuum. 

11. With the needle pulled out close the injection port valve. 

With the gas injected the pressure gauge could be used to monitor the status of the 

measurement cell. Loss of vacuum did not become an issue for most trials until two weeks 

after closing the system. 
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CHAPTER 5. RESULTS 

The contents of this chapter list the results of counting measurements performed 

using the two different detector setups. Measurements were performed on samples of 133Xe 

and calibration of the detectors was done using calibration sources. Finally, an absolute 

efficiency calculation is performed to quantify the two detector setups. 

5.1 Silicon-NaI(Tl) Beta-Gamma Coincidence 

The Canberra NaI(Tl) detector was calibrated using 22Na, and 137Cs sources. 

Calibrating the PIPSbox was done in coincidence mode with the NaI(Tl) using a 137Cs 

source. Peak beta energies along the 137Cs beta-gamma spectrum represent the difference 

between the initial energy (661.7 keV) of the gamma and the energy deposited in the 

NaI(Tl) detector. Figure 5.1 depicts the beta-gamma spectrum produced for energy 

calibration. 
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Figure 5.1 137Cs Beta-Gamma Coincidence Calibration Curve 

Data saved from measurements of the 133Xe sample were recorded in both a singles 

collection mode and a coincidence timing window mode simultaneously. Performing the 

absolute efficiency calculation requires knowledge of the isolated beta-singles and gamma-

singles measurements in conjunction with the β-γ coincidence counts. The gamma-singles 

counts have three main features, the 30 keV X-ray peak, the 81 keV gamma-peak from 

133Xe, and the 163.2 keV gamma-peak from 131mXe. The X-ray peak of the gas measured 

using the NaI(Tl) cannot be split into 131mXe and 133Xe X-rays due to the energy resolution 

of the detector. The 81 keV γ-peak is the second peak and is emitted in coincidence with 

the 133Xe beta spectrum. The smallest peak at 163.9 keV is the single gamma-peak of 

131mXe. This peak does not release in coincidence with an electron and thus mostly goes 

away in coincidence counting mode. Figure 5.2 show the measured gamma-singles with 

the NaI(Tl). 
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Figure 5.2 NaI(Tl) Gamma-Singles Spectrum (3 hour count) 

 The beta spectrum of the PIPSbox depicts two features, a small peak sitting on top 

of a large beta spectrum. The small peak represents the 129 keV conversion electrons from 

131mXe, while the beta spectrum below it comes entirely from 133Xe counts. Low energy 

beta counts are filtered out using the threshold settings in the COMPASS software. This 

was necessary to avoid high frequency noise that pervaded the silicon signal. Figure 5.3 

depicts the beta-singles spectrum observed. 
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Figure 5.3 Silicon Beta-Singles Spectrum from 133Xe (3 hour count) 

 The combined beta-gamma coincidence plot was measured using a 10 µs timing 

window. Displayed as a 2D spectrum of beta counts and gamma counts, the main features 

of Figure 5.4 are the 133Xe coincidence region along the 81 keV γ-ray. 
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Figure 5.4 Beta-Gamma Spectrum (3 hour count) 

5.2 Silicon-HPGe Beta-Gamma Coincidence 

The HPGe was calibrated using 22Na, 60Co, and 137Cs. Identified peaks were used to 

assign energy values to channel bins. Figure 5.5 depicts the gamma spectrum used. Each 

peak has a corresponding known energy value which is associated with the channel is 

appears in. 
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Figure 5.5 HPGe Calibration Gamma Spectrum 

 Using the now calibrated HPGe detector, the calibration for the PIPSbox was 

performed again. Similar to the NaI(Tl) setup, a 137Cs source was measured in coincidence 

mode and the beta peaks were extracted from the 2D spectrum. Figure 5.6 depicts the beta-

gamma spectrum obtained. 
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Figure 5.6 137Cs Beta-Gamma Calibration Spectrum 

 The HPGe singles xenon spectrum contained the same three main features as the 

NaI(Tl) spectrum. Energy resolution on all three peaks was much higher than the 

scintillator which was expected. The X-ray peaks on the HPGe spectrum were distinct, the 

131mXe and 133Xe x-rays were not merged as seen for the NaI(Tl). Figure 5.7 shows the γ-

singles spectrum with the 81 keV gamma-ray, 163.2 gamma-ray, and two characteristic X-

rays visible. 



 54 

 

Figure 5.7 HPGe Gamma-Singles Counts (1 hour) 

 The beta spectrum as shown in Figure 5.8 produced by the PIPSbox during the 

HPGe coincidence measurements appears slightly different due to having occurred after 

many half-lives of 133Xenon. The concentration of 131mXe in the sample vial increased to 

such an extent that the two conversion electrons of 131mXe, at 129 and 162 keV respectively, 

overshadowed the 133Xe beta spectrum. A high threshold setting was used again, only 

allowing electrons of energies above around 80 keV to be detected. Height of the 131mXe 

129 keV conversion electron peak should be taller than the 162 keV but is shrunk from 

being so close to the threshold energy set.   Noise issues in the silicon were made worse 

when operating the detector in a flat orientation in comparison to the vertical orientation of 

the NaI(Tl) measurements. 
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Figure 5.8 Silicon Beta-Singles Counts (1 hour) 

 Finally, a β-γ spectrum coincidence spectrum was produced using a 10 µs 

coincidence window. The 133Xe region shrunk relative to the 131mXe region due to the 

amount decayed. The 131mXe 162 keV conversion electron vanished in coincidence mode 

due to it having no associated photon within the timing window. The 131mXe 129 keV CE 

appears as a tall peak over the X-ray spectrum. Lack of low energy electron counts means 

that most X-rays seen in coincidence will be produced from 131mXe, the 60 keV CE from 

133Xe was not detectable due to low energy noise issues requiring a high threshold. Figure 

5.9 depicts the produced 2D beta-gamma spectrum. 
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Figure 5.9 Silicon and HPGe Beta-Gamma Plot 

 

5.3 Absolute Efficiency Calculation [17] 

The absolute efficiency calculation provides performance metrics on how efficiently 

a beta-gamma coincidence setup measures each isotope of interest in a sample. The method 

used here to calculate the efficiency of the system relies on using actual radioxenon 

samples to make an absolute efficiency determination. The main source of uncertainty in 

performing these calculations for efficiency directly comes from uncertainties in the 

branching ratios of the different decay modes. For this work the absolute efficiency of 
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detecting 133Xe was calculated from the coincidence spectrum produced by its 81 keV 

gamma-ray. 

The absolute efficiency for detection of the 81 keV gamma-ray is calculated using 

efficiencies of detecting the beta particles and gamma-rays separately. Equation 5.1 

describes this relationship where εβγ81 is the absolute 81 keV beta-gamma efficiency, εβ is 

the beta efficiency and εγ81 is the gamma efficiency. 

 𝜀𝛽𝛾81 = 𝜀𝛽 ∗ 𝜀𝛾81 Equation 5.1 

 

 The beta efficiency describes ratio of beta particles accepted in the coincidence 

measurement to total singles seen. The calculation for the beta efficiency is given in 

equation 5.2, with Cβγ81 being the total counts in the 81 keV beta-gamma peak and Cγ81 

representing the total counts in the gamma-singles peak. 

 
𝜀𝛽 =

𝐶𝛽𝛾81

𝐶𝛾81
 

Equation 5.2 

 

 Calculating the 81 keV gamma-ray efficiency takes some more math, as finding the 

ratio of the beta particles accepted means factoring in the branching ratios of the other 

decay modes. The used branching ratio values for the calculation are provided in table 5.1. 
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Table 5.1 Branching Ratio Values [17] 

Decay Modes Branching Ratio 

Gamma-81 0.38 ± 0.007 

Gamma-32 0.4876 ± 0.0145 

Beta 0.999 ± 0.014 

CE-76 0.100936 ± 0.002068 

Auger-25 0.052 ± 0.004 

 

 Simplification of the gamma-ray efficiency calculation is made by assuming 100% 

efficiency of the conversion electrons and auger electrons. The calculation for the 

efficiency is given in equation 5.3. 

 𝜀𝛾81 =
𝐶𝛽𝛾81∗(1−(1−𝐵𝑅𝛽∗𝜀𝛽)∗(−𝐵𝑅𝐶𝐸76−𝐵𝑅𝛾32+(1−𝐵𝑅𝐴𝑢𝑔𝑒𝑟25)

2
))

𝐵𝑅𝛾81∗𝜀𝛽∗𝐶𝛽
  

 

Equation 5.3 

 

 Data used to perform the calculations contained beta-gamma coincidence 

measurements of both PIPS detectors in coincidence with either one NaI(Tl) detector or 

one HPGe detector. Background was removed from the gamma-singles counts using a fit 

line to the surrounding background counts in the spectrum. Superimposed conversion 

electron peaks on the beta spectrum were removed using line fits to the beta spectrum 

counts. Beta efficiency was calculated from the measurements performed with the HPGe 

detector and applied to both as the setups are theoretically similar. The results of the 

efficiency calculations are provided in table 5.2. 
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Table 5.2 Absolute Efficiency Results 

Detectors Beta Efficiency Gamma Efficiency Β-γ Efficiency Uncertainty (%) 

x2 Silicon – 
NaI(Tl) 0.10197 0.31164 0.031777931 0.3042 

x2 Silicon-HPGe 0.10197 0.4505 0.045937 0.0762 

 

 Efficiency of detecting the 81 keV gamma-ray according to Cooper was 0.81959 

for an almost 4π detection geometry. McIntyre using a slightly different efficiency 

calculation method applied to the ARSA system found a beta efficiency of 0.927 and a 

gamma efficiency of 0.597 [18]. 

Low beta efficiency of the systems could be the result of large energy rejection 

thresholds set to keep the accepted signals above the silicon noise. Photon counts 

significantly dwarfed beta counts in most measurements giving poor β-γ efficiency 

statistics. Photon detection efficiency was more in line with expected results, especially 

given the larger surface area of the HPGE (38 cm2) to the NaI(Tl) (20.26 cm2).  
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CHAPTER 6. CONCLUSIONS 

Included here is a summary of completed work and the conclusions drawn. A section 

for potential future work is included as well. 

6.1 Conclusions 

A complete, viable radioxenon forensics lab has been created at Georgia Tech which 

was utilized to perform spectroscopy of two xenon isotopes. Procedures were developed to 

measure samples of radioactive gas in a controlled environment using both NaI(Tl) 

detectors as well as an HPGe. The PIPSbox was characterized over numerous 

measurements of radioxenon gas and calibration sources to find optimum settings for high 

resolution measurements. Grounding and shielding techniques were utilized to minimize 

the noise characteristics of silicon. Results show that noise reduction in silicon is of upmost 

importance for measuring low energy electrons. 

 Spectra produced by the detection setups showed that unique signatures of 131mXe 

and 133Xe could be distinguished using beta-gamma spectroscopy with a 10 µs coincidence 

window. With the HPGe detector, the separate x-rays of 133Xe and 131mXe were observable. 

The silicon detector could distinguish the 129 and 163 keV conversion electron peaks from 

131mXe on top of the beta spectrum. Absolute beta-gamma efficiencies were calculated as 

3.17% and 4.59% for the NaI(Tl) and HPGe detection setups, respectively.  

6.2 Future Work 
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Noise reduction in the silicon detectors would be the first place to start in bringing 

this laboratory in a position to produce more refined results. At such a high energy 

threshold for counts particles such as the 133Xe 45 keV conversion electron are lost, 

removing some of the ability to perform analysis of the spectra. Testing could include the 

addition of another high-resolution spectroscopy preamplifier to compare against the 

Mirion one. A beta-gamma simulation using codes such as MCNP-POLIMI to estimate the 

best-case absolute efficiency could be also performed. 

With a reduction in noise threshold the 133Xe X-ray efficiency could be calculated, 

as well as the absolute efficiency for the decays of 131mXe. Bringing in gas samples of all 

four radioxenon isotopes to be detected would then allow for full efficiency calculations. 

Measurements of the minimum detectable activity of each isotope could be compared 

against other major beta-gamma systems. 
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APPENDIX A.  MATLAB SCRIPT 

% Beta-Gamma Offline Coincidence 

  
tau = 5e+6; % time difference between radiation (ps) 

  
bt = length(betatime1); % number of elements 
gt = length(gammatime); 

  

agpeak = histcounts(gammaenergy,4096); 
gammapeaktotal = sum(agpeak(50:62)); 
gs = 1; 

  
for jj = 1: bt 
    countcheck(jj) = jj; 

         
        for ii = gs : gt          
         dtt = abs(betatime1(jj)-gammatime(ii)); % time difference 

between peaks 
         if dtt <= tau 

          
            betacoin1(jj) = betaenergy1(jj); 
            gammacoin1(jj) = gammaenergy(ii); 
            break  
            gs = ii+1; 
         end 

        
        end 
end 
truebetacoin1 = nonzeros(betacoin1); 
truegammacoin1 = nonzeros(gammacoin1); 
tgc1 = histcounts(truegammacoin1,4096); 
gammapeak1 = sum(tgc1(50:62)); 

  
bt1 = length(betatime2); % number of elements 
gt1 = length(gammatime); 

  

  
for jj = 1: bt1 
    countcheck(jj) = jj; 

         
        for ii = 1 : gt1      
         dtt = abs(betatime2(jj)-gammatime(ii)); % time difference 

between peaks 
         if dtt <= tau 

              

            betacoin2(jj) = betaenergy2(jj); 
            gammacoin2(jj) = gammaenergy(ii); 

  
            break            
         end 
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        end 
end 
truebetacoin2 = nonzeros(betacoin2); 
truegammacoin2 = nonzeros(gammacoin2); 
tgc2 = histcounts(truegammacoin2,4096); 
gammapeak2 = sum(tgc2(50:62)); 
gammapeakcoin = gammapeak1+gammapeak2; 
betaefficiency = gammapeakcoin/gammapeaktotal 
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