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SUMMARY

Heart failure (HF) is the leading cause of hospitalization and hospital readmission for

patients aged over 65 and older in the United States, with roughly one in five individuals

hospitalized with heart failure being readmitted within 30 days of discharge. HF affects

6.2 million Americans with health care costs of almost $31 billion per year. Management

of HF is a complicated process that requires frequent clinic visits and outpatient manage-

ment systems for hemodynamic monitoring and patient-reported symptoms. Hemodynam-

ically guided HF management via tracking pulmonary congestion and taking proactive care

have shown efficacy in reducing HF-related readmission significantly. However, the cost-

prohibitive nature of such pulmonary congestion monitoring systems precludes their usage

in the large patient population affected by HF. For that reason, an inexpensive alternative

is necessary to bring hemodynamic monitoring systems to the large patient population af-

fected by HF, not only in the United States but also around the world.

Advancement of novel biomedical sensor technologies and advanced signal processing

and machine learning algorithms have merit in tracking health parameters unobtrusively.

A promising sensing modality is seismocardiography (SCG), defined as the measurement

of local chest wall vibrations associated with the cardiac cycle. SCG has shown efficacy in

tracking changes in cardiac contractility via the cardiac timing intervals it yields, such as the

pre-ejection period (PEP). However, different sensing modalities of SCG acquisition exist

using accelerometer and gyroscope based sensors, and inter-subject variability of these

acquired signals has made it challenging to develop a robust hemodynamic monitoring

system using SCG. Accordingly, most researches in the field of SCG focus on advancing

the understanding and processing of the signal in healthy individuals. The translation of

the SCG-based hemodynamic monitoring approaches into the actual patient population, for

example, in patients with HF, is necessary to validate such a system for both inpatient and

outpatient HF management.
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This work addresses some of these key aspects. First, the two sensing techniques for

acquiring SCG, accelerometer and gyroscope sensors, are compared in their ability to track

cardiac contractility changes via PEP estimation. Second, general time, frequency, and am-

plitude features are extracted from the SCG signals and used in a population level machine

learning regression algorithm to estimate key cardiovascular features for healthy subjects

and patients with HF, by overcoming the inter-subject variability of the signals. Third, the

SCG sensing system, along with the signal processing and machine learning algorithm,

is verified and validated with two gold-standard clinical procedures: cardiopulmonary ex-

ercise test (CPX) and right heart catheterization (RHC). Gas exchange variables from the

CPX and changes in pulmonary congestion from the RHC procedures were estimated using

features from simultaneously recorded SCG signals to demonstrate the efficacy of such a

sensing system and algorithm to track relevant hemodynamic parameters in patients with

HF.

The algorithms and methods presented in this work can enable remote cardiovascular

health monitoring for patients with HF to enable personalized titration of care, and im-

proving medication adherence in a hemodynamically-guided HF management system. The

inexpensive wearable sensing technology has the potential to be a viable and ubiquitous

alternative to the already-proven hemodynamic congestion monitoring systems, which can

improve the quality of life and outcome in patients with HF by reducing hospitalization and

reducing the overall health care costs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

As an outcome of improved health care systems and lower mortality rates, life expectancy

is growing rapidly worldwide. The aging population (aged 65 or older) is projected to

grow from an estimated 524 million in 2010 to nearly 1.5 billion in 2050, with most of

the increase in developing countries [1]. This growing aging population needs frequent

and longitudinal health care for various diseases such as cardiovascular diseases (CVDs),

respiratory complications, cancers, and neurological disorders. CVDs, including heart fail-

ure (HF), are consistently ranked as the number one cause of death in the United States

(US) and contribute to approximately 6 million deaths per year [2] with an annual cost of

$30.7 billion, mainly due to hospitalization costs [3]. The difficulty of HF management is

attributed not only to a high rate of HF-related admissions—approximately 1 million per

year in the US [4]—but also as the leading cause of hospital readmission for patients aged

65 and older [5]. It is projected that the total direct medical costs due to HF with all CVDs

will increase from $396 billion in 2012 to $918 billion in 2030 [6].

Due to the high 30-day readmission rate and associated health care cost related to HF,

the Hospital Readmissions Reduction Program (HRRP), under the Affordable Care Act

(ACA) passed in March 2010, identified HF among the three targeted conditions (acute

myocardial infarction and pneumonia being the other two) to reduce hospitalization. The

HRRP program sought to penalize hospitals with higher rates of readmission for these three

targeted conditions to reduce unnecessary hospital costs [5]. While this policy may have

led to a reduction in HF 30-day readmissions (readmissions for HF declined from 23.5%

in 2008 to 21.4% in 2014) [7, 8], much of that reduction may have been due to adminis-
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trative re-classification or upcoding of patients [8]. In addition, early independent studies

suggest that penalizing hospitals for higher 30-day HF readmissions led to an increase in

30-day, 90-day, and 1-year risk-adjusted HF mortality [9]. Finally, two large randomized

trials, one with only HF patients and the other with medically and socially complex pa-

tients with a history of hospitalization, failed to demonstrate the utility of care transition

programs to decrease hospital admissions [10, 11]. For this reason, the health care systems

and cardiologists are exploring novel implanted or wearable technologies to assist in HF

management in addition to hospital readmission reduction penalties and hospital-to-home

care transitions [12].

HF management is a unique and critical task that requires frequent hospital visits and

recurrent monitoring from clinicians. However, frequent monitoring by clinicians is not

enough to mitigate the impact of HF. For this reason, clinicians are exploring implantable

and non-invasive biosensors to monitor these affected patient populations both in hospi-

tal and at home [13, 12]. Clinicians have explored different outpatient home monitoring

techniques for patients with HF that include daily weight monitoring and telemonitoring

of patient-reported symptoms [11, 14], implantable bioimpedance monitors [15, 16], non-

invasive bioimpedance monitors [17], natriuretic peptides [18], implantable hemodynamic

sensors [19, 20, 21], and non-invasive lung fluid congestion monitoring [22]. Unfortu-

nately, except for the direct measurement of intracardiac filling pressures and non-invasive

lung fluid congestion monitoring, no other approaches for outpatient HF monitoring has

successfully shown improvement in outcomes for patients with HF in large randomized

controlled trials [13, 23, 15, 22].

An implantable pressure sensor, CardioMEMS (CardioMEMS HF System, Abott, Chicago,

IL, USA), was one of the first hemodynamic monitoring systems for tracking the pulmonary

artery pressure and volume status in HF patients, and has shown efficacy in reducing HF-

related rehospitalization by 30% [24] and was approved by the FDA in 2014. CardioMEMS

has shown the importance of tracking filling pressure (via tracking changes in pulmonary
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congestion) of the heart as an early predictor of the progression of compensated hemody-

namically stable HF patient to a symptomatic acute decompensated HF patient, as shown

in Fig. 1.1. For that reason, by sensing the increased filling pressure of the heart, the clini-

cians can have more time to titrate the necessary set of medications to reduce the underlying

congestion and alternate the course of decompensation in affected the individuals.

Figure 1.1: Progression of Heart Failure Pathophysiology. Adapted from [25]

Another pulmonary congestion monitoring system that has shown efficacy in HF man-

agement is the Remote Dielectric Sensing Technology (ReDS, Sensible Medical Innova-

tions Ltd.; Netanya, Israel), a non-invasive technology that uses a wearable vest with tis-

sue dielectric measurement capabilities to quantify lung fluid concentration [22]. Similar

to CardioMEMS, ReDS technology aims to identify worsening pulmonary vascular con-

gestion prior to the development of overt clinical symptoms. It uses the differences and

ratios of dielectric coefficients in pulmonary tissue (i.e., the ratio of fluid to air) to cre-

ate a sensitive and direct indicator of fluid concentration in the lungs [26]. A study of 50

patients showed that ReDS-guided HF management may reduce readmissions for patients

discharged after acute decompensated HF [22]. The results of a larger randomized study

of 268 patients were presented in 2019 and showed that ReDS-guided HF management

3



prevented 48% of HF readmissions [27]. Furthermore, there are current studies under-

way to examine whether ReDS technology can guide inpatient decision-making regarding

readiness for the discharge of HF patients [28].

Although both CardioMEMS and ReDS systems have shown efficacy in reducing HF-

related readmission, the high-cost associated with each technology (> $25,000 for Car-

dioMEMS and $43,000 for ReDS) make them financially infeasible solutions of HF man-

agement for the large population affected with HF, both in the US and around the world.

Thus, the development of inexpensive cardiovascular health monitoring devices, which can

track hemodynamic parameters effectively in the hospital and at home, can help in HF

management, improve the quality of life of the affected individuals and potentially reduce

the costs of care. Fig. 1.2 illustrates a wearable sensor ecosystem that can enable remote

cardiovascular health monitoring system for patients with HF.

Figure 1.2: Concept of a wearable cardiovascular health monitoring system to enable re-
mote longitudinal monitoring of patients with cardiovascular and respiratory diseases, and
cancer survivors by: (1) recording wearable signals during daily life activities and exercise,
(2) processing the signals and estimate relevant physiological variables and (3) enabling
physicians/caregiver to intervene based on the longitudinal assessment of cardiovascular
health.
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1.2 Specific Aims and Contributions

The ultimate goal of this work is to develop and validate a wearable sensor to monitor car-

diovascular health for patients with HF by (1) investigating different modalities of wearable

sensing systems to track changes in hemodynamics with physiological and pharmacolog-

ical perturbation, (2) developing robust signal processing and machine learning algorithm

to extract clinically relevant features from these wearable signals by overcoming the inter-

subject variability of the signals, and (3) validating the wearable sensor and algorithms to

track clinical parameters in patients with HF against gold-standard clinical procedures. To

achieve these goals in a systematic way, the work has three specific aims:

1. To analyze the performance of different wearable sensors and robust population-

level regression model in estimating changes in cardiac contractility via pre-ejection

period (PEP) estimation.

2. To estimate exercise capacity and exercise intolerance using a wearable sensor in

patients with HF to stratify risks associated with HF.

3. To track changes in intracardiac and pulmonary pressures with pharmacological per-

turbation using a wearable sensor in patients with HF to track hemodynamics non-

invasively.

1.3 Thesis Organization

Chapter 2 and 3 provide the scientific background of the work while Chapters 4-6 present

original research. Finally, Chapter 7 presents the conclusions and future direction of

the work. Specifically, Chapter 2 provides the physiological background of the cardio-

pulmonary system and the pathophysiological changes of the heart with HF. Chapter 3

provides a brief overview of different wearable sensing systems to monitor cardiovascular
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health. Chapter 4-6 are organized in order of the specific aims of the work mentioned

above. Last of all, Chapter 7 presents the conclusions and future direction of the work.
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CHAPTER 2

CARDIOVASCULAR PHYSIOLOGY

2.1 Anatomy of the Heart

The heart is located in the middle of the chest, slightly to the left of the sternum, and it

has four chambers and four valves, as shown in Fig. 2.1. The two upper chambers are the

two atria, and the two lower chambers are the two ventricles. Out of the four valves, two

are atrioventricular (AV), and two are semilunar (pulmonary and aortic) valves. The valve

between the right atrium and right ventricle is the tricuspid valve, and the valve between

the right ventricle and pulmonary artery is the pulmonary valve. The valve between the left

atrium and left ventricle is the mitral valve, and the valve between the left ventricle and

aorta is the aortic valve.

Figure 2.1: Anatomy of the heart with black arrows showing the blood flow.
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The heart pumps blood to different organs of the body through an intricate network

of arteries, capillaries, and veins, known as the cardiovascular system. It is connected

to the lungs through the pulmonary artery and veins, known collectively as the pulmonary

circulation. The right side of the heart (right atrium and right ventricle) receives blood from

the venae cavae (the largest veins of the body) and sends the blood to the lungs. The blood

returns back to the left side of the heart (left atrium and left ventricle) and flows to other

parts of the body except for the lungs. The circulation from the left side of the heart flows

to the whole body and its return back to the right side is known as the systemic circulation.

Fig. 2.2 shows the systemic and pulmonary circulation of the blood. The blood with low

O2 concentration and high CO2 concentration returns back to the right atrium of the heart

through the superior and inferior venae cavae, which goes through the right ventricle to

the lungs through the pulmonary artery. The blood receives oxygen from the alveoli in the

lungs and returns back to the left atrium through pulmonary veins. It travels through the

mitral valve to the left ventricle, and when the left ventricle contracts, it pumps out through

the aortic valve to the aorta and the other organs of the body.

2.2 Cardiac Cycles and Cardiac Timing Intervals

The cardiac cycle of the heart is broadly divided into two phases: diastole, the filling phase,

and systole, the ejection phase. Diastole and systole may be subdivided into four phases:

1) Isovolumetric relaxation, 2) Ventricular filling (further subdivided into two sub-phases:

passive and active filling), 3) Isovolumetric contraction, and 4) Ventricular Ejection. The

cardiac cycle is depicted in Fig. 2.3.

The cardiac cycle begins with the isovolumetric relaxation (diastole) phase when both

the ventricles are relaxed, and both the AV and semilunar valves are closed. During the

second phase of ventricular filling, blood starts to flow from the atria to the ventricles

passively since the pressure in the ventricles is lower than the ventricles. This early phase

of ventricular filling is also known as the rapid filling/inflow phase. As the ventricles are
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Figure 2.2: Systemic and pulmonary circulation of blood, with white arrows showing the
direction of blood flow.

filling, the pressure in the ventricles increases and the flow of the blood decreases, which

is known as diastasis. At the end of the ventricular filling phase, the atria contracts and the

remaining blood flows to the ventricles, which is known as atrial systole or atrial “kick”.

At the end of this ventricular filling phase, the AV valves close, and the heart enters into the

isovolumetric contraction (IVC) phase. In the IVC phase, the ventricles start to contract.

The pressure increases to match the pressure of the aorta/pulmonary artery. When it reaches

the pressure, the semilunar valves open, and blood flows to the aorta and pulmonary artery
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Figure 2.3: The cycle diagram depicts one heartbeat of the continuously repeating cardiac
cycle, namely: ventricular diastole followed by ventricular systole, etc.—while coordinat-
ing with atrial systole followed by atrial diastole, etc. The cycle also correlates to key
electrocardiogram tracings: the P wave (atrial systole), the QRS complex (ventricular sys-
tole), and the T wave (which indicates ventricular diastole);—all shown as color red.

from the left and right ventricles, respectively. As the blood ejects from the ventricles, the

pressure decreases. When it decreases below the pressure in the aorta/pulmonary artery, the

semilunar valves close and the heart enters into the isovolumetric relaxation phase again.

Isovolumetric relaxation and ventricular filling comprise the “Diastole” period, whereas

IVC and ventricular ejection comprise the “systole” period of the cardiac cycle.

The IVC time period is an important indicator of cardiac contractility, and is also known

as the pre-ejection period (PEP) [29, 30]. Multiple studies have shown that PEP is inversely

correlated with cardiac contractility [29, 30, 31]. The time for the left ventricular ejection

is another important metric for left ventricular health, and the ratio of PEP and the left

ventricular ejection time (LVET) (PEP/LVET) is also shown to be inversely correlated with

cardiac contractility [32].

Other important cardiovascular parameters include stroke volume (SV), cardiac output

(CO), and ejection fraction (EF). SV is the volume of blood that the heart pumps out in
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each heartbeat. It is measured as the difference between the end-diastolic volume (EDV)

and the end-systolic volume (ESV). CO is the average volumetric flow rate of blood from

the heart in liters per minute, and is calculated by multiplying SV with heart rate (HR).

EF is the measurement of the fraction of blood the heart pumps in each heartbeat, and is

calculated as the ratio of SV over EDV. The equations to calculate the parameters are given

below as well.

SV = EDV − ESV (2.1)

CO = SV ×HR (2.2)

EF =
SV

EDV
(2.3)

2.3 Heart Failure Pathophysiology

HF is a syndrome caused by structural or functional abnormalities of the heart, which re-

sult in impairmed myocardial contractility (systolic dysfunction) or impairmed ventricular

filling (diastolic dysfunction) that lead to reduced CO and elevated intracardiac pressure

[33, 7]. HF is often characterized by symptoms such as dyspnea, edema and fatigue [34]

and signs such as elevated left ventricular filling pressure and peripheral edema [35, 36].

Fig. 2.4 shows a pictorial demonstration of the two cases of HF in contrast to a healthy

heart.

2.3.1 Systolic Heart Failure

In the case of systolic HF, the heart muscle becomes weak and enlarged. It cannot pump

enough oxygen-rich blood forward to the rest of the body when the ventricles contract. In

systolic heart failure, the EF is lower than normal (<45%). This can cause blood to back up
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Figure 2.4: Comparison of systolic and diastolic heart failure with a normal healthy heart.
Adapted from [37].

into the lungs and cause shortness of breath and eventually ankle swelling (edema). This

phenotype of HF is commonly referred to as HF with reduced ejection fraction (HFrEF).

2.3.2 Diastolic Heart Failure

In the case of diastolic HF, the heart muscle becomes stiff (low compliance). It does not

relax normally between contractions, which keeps the ventricles from filling with blood.

EF is often in the normal range (>45%), but preload is diminished thus leading to reduced

CO. This can still lead to the backup of blood into the body and affect the organs such as

the liver. This phenotype of HF is commonly referred to as HF with preserved ejection

fraction (HFpEF).
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CHAPTER 3

WEARABLE CARDIOVASCULAR HEALTH MONITORING

Advancement of sensing systems, digital technologies, and advanced data processing tech-

nologies have shown an increase in the wearable health care monitoring systems to monitor

the health of an individual both for self-health tracking (fitness/activity monitoring) and

for medical level monitoring for relevant patient populations (hemodynamic monitoring)

by monitoring vital signs[38]. These vital signs include heart rate, respiration rate, body

temperature, blood pressure, blood glucose, and oxygen saturation. Wearable sensors for

measuring these parameters comprise various shapes and form factors, including smart-

watches, wearable chest patches, chest belts, earworn sensors, finger clip sensors, wrist

bands, and instrumented vests. [38]. To monitor these vital signs for both healthy individ-

uals and patients with various diseases, myriad sensing modalities have been explored and

researched, including electrocardiogram, impedance cardiogram, seismocardiogram, bal-

listocardiogram, photoplethysmogram, and galvanic skin response. [39, 38]. Out of these

different sensing modalities, some can record the central cardiovascular parameters (elec-

trical and mechanical activity of the heart), and some can record the peripheral parameters

related mainly to the vasculature or sympathetic activity (vasoconstriction, vasodilation,

and skin conductance). Table. 3.1 and Fig. 3.1 (a) illustrate representative signals that can

measure central hemodynamic parameters of the cardiovascular system noninvasively. The

following sections will explain these sensing modalities briefly and discuss their usability

in remote HF management.

3.1 Electrocardiogram

The electrocardiogram (ECG) signal captures the propagation of action potentials in the

heart. The ECG can be measured as the potential difference between various points on
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Table 3.1: Noninvasive Biosignals for Monitoring Central Hemodynamic / Electrophysio-
logic Parameters Indicative of Cardiovascular Health.

Signals Aspect Unit Obtrusive/Portable
Electrocardiogram Measures electrical activity

of the heart by recording elec-
trical potentials

mV No/Yes

Impedance Cardio-
gram

Measures thoracic impedance
which is modulated by the
pulsatile blood flow

ohm/
ohms-1

Yes/Yes

Seismocardiogram Measures local chest vi-
bration associated with the
movement of the heart and
pumping of blood through
the vasculature

mg No/Yes

Ballistocardiogram Measures the forces acting
on the body associated with
movement of blood through
the vascular tree

N No/ Maybe

the body with skin-mounted electrodes. By different configurations of these electrodes, the

ECG projection at different directions can be measured [40]. The ECG shown in Fig. 3.1(a)

is recorded in a Lead II configuration as demonstrated in Fig. 3.1(b).

The characteristic feature points depict the depolarization (starting of contraction of the

heart muscles) and repolarization (starting of relaxation of the heart muscles) of the heart

muscle, as also explained in Fig. . The P wave represents the start of depolarization of the

atria (atrial systole/kick), the QRS complex represents the depolarization of the ventricles

(ventricular systole) with q-wave as the start of the ventricular systolic phase, and the T

wave represents the repolarization of the ventricles.

The ECG has been used to monitor the rhythm of the heart and for detecting abnor-

mal rhythm or abnormalities in the heartbeats (or shape of the signals or peaks), which are

known as arrhythmias, and ST-segment elevation for myocardial infarction (heart attack).

In the hospitals, the clinicians generally use a 12-lead ECG system as an early diagnos-

tic tool [40]. ECG can be measured using a Holter-type ambulatory monitor or patch, a

modality that is very common for arrhythmia detection in outpatient monitoring [41, 42].
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Figure 3.1: (a) Representative wearable signals with characteristic feature points. (b) Typ-
ical sensor placements for ECG, ICG, SCG and BCG with the red arrow and +/- sign
showing the lead II configuration for the ECG.

3.2 Impedance Cardiogram

The impedance cardiogram (ICG) signal captures the electrical conductivity (impedance)

of the thorax that changes with the pulsatile flow of the blood ejected from the heart with

each heartbeat [43]. The ICG sensing system consists of four pairs of electrodes, as shown

in Fig. 3.1(b), two pairs on the neck, and two pairs near the diaphragm, The outer pair of

electrodes are current electrodes, and the inner pair of electrodes are voltage electrodes.

An electrical current is passed between the current electrodes, and the potential difference

between the voltage electrodes is measured, and the thoracic impedance is estimated using

Ohm’s law [44].
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The ICG is used to measure several hemodynamic parameters and cardiac timing in-

tervals, such as SV, cardiac output CO, PEP, and LVET [44]. As shown in Fig. 3.1(a),

the B and X points represent the aortic valve opening (AO) and aortic valve closing (AC)

respectively [45]. The B-point is defined as the inflection point of the waveform, or point

of maximum second-derivative; the X-point is defined as the minimum point of the signal

following the global maximum. The ICG has been often used as a reference standard for

AO and AC estimation due to its convenience compared to echocardiography, an imaging

modality to view the heart in a noninvasive way. However, recent studies have shown that

ICG derived PEP (time difference between the Q or R peak of the ECG and the B-point of

the simultaneously recorded ICG) overestimates the PEP extracted from echocardiography

[46, 45, 47].

3.3 Seismocardiogram

The seismocardiogram (SCG) signal is the local vibration of the chest wall due to heartbeat,

and it was first discovered and characterized by Bozhenko [48], and first applied clinically

by Salerno and Zanetti, using an accelerometer placed on the mid sternum [49]. In 1994,

Crow used concurrently recorded echocardiogram images to identify fiducial points in the

SCG waveform corresponding to CTIs [50]. As research in this field grew, researchers

delved more deeply into the correlation between specific SCG features and events seen on

echocardiography [51, 52]. Such studies showing the correlation between SCG features

and known CTIs provide the most concrete basis for the use of SCG to monitor cardiac

function. For the last decade, the SCG signal has been studied extensively where ampli-

tudes and timing intervals of different peaks of the SCG signal have been used to derive

cardiovascular parameters in daily life activities [53] and to detect various diseases [54, 55,

56].

The majority of the research on SCG signals [39, 57, 58] focuses on the linear acceler-

ation of the chest wall in the dorso-ventral axis, with the underlying assumption that chest
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vibrations due to the heartbeat are mainly comprised of linear motion. However, a recent

study by Migeotte, et al. has shown that the rotational component represents more than

60% of the total kinetic energy transferred from the heart to the body in both healthy sub-

ject, and persons with CVDs [59]. This study suggests that the rotational component of

chest wall vibrations may provide more information regarding the mechanical aspects of

the heart, in addition to the linear component. Recently Tadi, et al. used a gyroscope on the

mid sternum to record the mechanical activity of the heart [60]. They found that time inter-

vals between the ECG R-wave and some peaks within the gyroscope signal correlated well

with AO and AC, measured using echocardiography. Fig. 3.1(a) shows two typical SCG

signals from the accelerometer (SCGACC) and gyroscope (SCGGYRO) sensor, where the AO

and AC complexes are marked. Researchers typically use the specific peaks in these AO

and AC complexes to obtain CTIs from SCG with the help of concurrently recorded ECG

R-peak as a reference [39, 58, 51].

Recent studies have demonstrated the utility of SCG in monitoring cardiovascular health

for persons with CVDs [39, 23, 58, 61, 55, 62]. As SCG can be recorded using an unobtru-

sive portable sensor placed on the chest wall [39, 58], it has shown promise in monitoring

cardiovascular health during exercise and daily life activities and has the potential in remote

home management for patients with HF.

3.4 Ballistocardiogram

The ballistocardiogram (BCG) signal is a measurement of the recoil forces of the body in

reaction to the cardiac ejection of blood into the vasculature [63], which was first observed

by Gordon in 1877 [64]. The BCG is generally recorded in the longitudinal (head-to-foot)

direction [39] using a modified weighing scale [65], bed or table-based systems [63] and

modified toilet seats [66]. The bottom picture of Fig. 3.1(a) shows the longitudinal BCG

recorded using a modified weighing scale [65].

Researchers have been used the characteristic features points in the BCG signal to track
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hemodynamics in healthy subjects [67, 68] and patients with CVDs [69]. Researchers have

shown the changes in intervals between simultaneously recorded ECG R-peak and BCG I

and J peak (R-I and R-J intervals) are correlated with cardiac contractility (PEP) [67, 70].

Aydemir, et al. has shown that the features of a modified weighing scale based BCG signal

can be used to assess the clinical state of patients with HF [71]. Another recent study has

shown the application of bed-based BCG in detecting sleep stages [72].

Though BCG has proven its merits in monitoring cardiovascular health both in healthy

subjects and patients with CVDs, it can be corrupted by motion artifacts, its morphology

can be affected by gravity, and any contact of the body with external objects can affect the

repeatability of the measurement [39]; it has been proved that the ideal environment for as-

sessing the BCG would be in microgravity [73, 74, 75]. These limitations may preclude the

usage of BCG in cardiovascular health monitoring when a person is moving or exercising.
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CHAPTER 4

PERFORMANCE ANALYSIS OF GYROSCOPE AND ACCELEROMETER

SENSORS FOR WEARABLE SEISMOCARDIOGRAPHY

4.1 Overview

Systolic time intervals such as the pre-ejection period (PEP) are important parameters for

assessing cardiac contractility that can be measured non-invasively using seismocardiogra-

phy (SCG). Recent studies have shown that specific points on accelerometer and gyroscope

based SCG signals can be used for PEP estimation. However, the complex morphology and

inter-subject variation of the SCG signal can make this assumption very challenging and

increase the root mean squared error (RMSE) when these techniques are used to develop a

global model. In this study, we compared gyroscope and accelerometer based SCG signals,

individually and in combination, for estimating PEP to show the efficacy of these sensors

in capturing valuable information regarding cardiovascular health. We extracted general

time domain features from all the axes of these sensors and developed global models using

various regression techniques. In single axis comparison of gyroscope and accelerometer,

angular velocity signal around head to foot axis from the gyroscope provided the lowest

RMSE of 12.63±0.49 ms across all subjects. The best estimate of PEP, with a RMSE of

11.46±0.32 ms across all subjects, was achieved by combining features from the gyro-

scope and accelerometer. Our global model showed 30% lower RMSE when compared to

algorithms used in recent literature. Gyroscopes can provide better PEP estimation com-

pared to accelerometers located on the mid sternum. Global PEP estimation models can be

improved by combining general time domain features from both sensors. This work can

be used to develop low cost wearable heart monitoring device and to generate a universal

estimation model for systolic time intervals using single or multiple sensor fusion.
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4.2 Introduction

The pre-ejection period (PEP) of the heart is defined as the time elapsed from the start of

ventricular depolarization to the ensuing opening of the aortic valve, and is an important

parameter for assessing cardiac health outside of clinical settings [30, 29, 31]. In particular,

the changes in PEP resulting from exercise stressors can provide insight into the ability of

the heart to respond appropriately to increased sympathetic nervous system activity and

increased demand for blood flow to the muscles. An important recent finding was that the

clinical status of patients with heart failure (HF) – a disorder in which the heart is unable to

supply enough blood to meet the demands of the body – could be assessed using SCG (and

PEP) responses to exercise measured with a wearable sensing system [76, 69, 23]. The

wearable system used for that study facilitates computation of PEP from electrocardiogram

(ECG) and seismocardiogram (SCG) signals [77]. The Q- or R-wave of the ECG signal

provides the timing information required for detecting the depolarization of the ventricles

(the start of the PEP interval); the Ao “peak” on the SCG signal provides the corresponding

timing for the aortic valve opening (AVO) (the end of the PEP interval) [46]. In this system,

the ECG is measured using three adhesive-backed gel (Ag/AgCl) electrodes, and the SCG

is measured using a low-noise, tri-axial micro-electromechanical systems (MEMS) based

accelerometer positioned at the middle of the sternum. Though promising results have been

obtained with this system both in healthy subjects and in patients with HF, there are sensing

and data analytics advancements that can potentially improve the accuracy with which PEP

is measured. First, recent work has shown that gyroscope based measurements of chest

wall vibrations may provide improved detection of heart and blood movement activity as

compared to accelerometers [78, 79, 60]. A rigorous investigation is needed comparing

gyroscope and accelerometer based SCG waveforms and the corresponding accuracy with

which PEP can be extracted. Second, while the opening of aortic valve may be read-

ily detectable from SCG signals in supine subjects, high inter-subject variability in SCG
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waveforms renders Ao peak detection inaccurate and ambiguous in many subjects standing

upright or walking. Novel machine learning approaches for combining multiple features

of gyroscope, accelerometer, and combined gyroscope and accelerometer based SCG mea-

surements can be employed to address this limitation. In this work we perform, for the first

time, a rigorous investigation of gyroscope and accelerometer based SCG measurement in

the context of PEP detection accuracy. We use a low-noise MEMS gyroscope with suffi-

ciently wide bandwidth to facilitate SCG measurement. We further leverage state-of-the-art

nonlinear and linear regression algorithms [80, 81] to map features of the SCG signal to

AVO, as detected by a reference standard signal—the impedance cardiogram (ICG) [82,

43]. In addition to single axis based estimates, we evaluate multi-axis and multi-sensor

fusion approaches to assess the possible corresponding improvement in PEP estimation.

Finally, we compare our PEP estimation approaches directly against several methods from

the existing literature. Fig. 4.1 shows a hypothetical system to estimate systolic timing

intervals from wearable sensors’ fusion using our estimation method.

4.3 Method

4.3.1 Experimental Protocol

The study was conducted under a protocol approved by the Georgia Institute of Tech-

nology Institutional Review Board. A total of 17 healthy subjects (7 females and 10

males) participated in the study (Age: 26.1±4.1 years, Weight: 66.2±13.6 kg and Height:

168.2±8.9 cm). All subjects provided written informed consent before experimentation

and reported no heart problems. The purpose of the protocol was to induce changes in PEP

non-invasively, and to then measure PEP with a reference standard (ICG) simultaneously

with different sensors under test. Regression algorithms were then applied to compare the

PEP estimation accuracy for these sensors under test compared to the reference standard.

Exercise was selected as the means by which PEP was modulated non-invasively because

it is known to change PEP substantially from the resting value in a relatively short period
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Figure 4.1: (a) Concept of a wearable device to monitor cardiovascular health parameters
and (b) proposed sensors and corresponding signals.

of time.

Fig. 5.3 (a) illustrates the placement of sensors on each subject. For each subject, the

middle point between the suprasternal notch and xiphoid process was located on the mid-

sternal line. The accelerometer was placed on top of the point and the gyroscope was

placed below the point. Both the sensors were attached using tape (Kinesio Tex, Kinesio,

Albuquerque, NM). After placing the wearable sensors, each subject was asked to step

on the modified weighing scale, which is capable of measuring ballistocardiogram (BCG)

signal. The subject was asked to stand vertically and motionless for five minutes. Then,

the subject performed three minutes of walking exercise at 3 miles per hour (mph) on a

treadmill followed by one and a half minutes of squatting exercise. After the full exercise

period, the subject stepped on the BCG scale again for monitoring the recovery period for

five minutes. The whole procedure was performed continuously, as shown in Fig. 5.3 (f).
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PEP decreased due to exercise and returned to baseline value of resting PEP during the

recovery.

4.3.2 Sensing Hardware

Linear and angular vibrations of the chest wall due to the heart beat were recorded using a

three-axis analog output accelerometer (ADXL354, Analog Devices, Inc., Norwood, MA)

and a three-axis differential analog output gyroscope (QGYR330HA, Qualtre Inc., Marl-

borough, MA) [83] respectively. Both the MEMS accelerometer and gyroscope have very

low noise and low drift. Fig. 5.3 (c) shows the linear and angular directions for the ac-

celerometer and gyroscope, respectively. The gyroscope’s differential outputs were passed

through an instrumentation amplifier (AD8226, Analog Devices, Inc., Norwood, MA) to

have one output signal per axis, shown in Fig. 5.3(b). BCG was measured simultaneously

using a previously validated modified weighing scale [65]. Seven outputs (three from the

accelerometer, three from the gyroscope and one from the scale) were connected to the data

acquisition system (MP150, BIOPAC System, Inc. Goleta, CA). ECG and ICG signals

were measured concurrently using BN-EL50 and BN-NICO wireless modules (BIOPAC

System, Inc., Goleta, Ca). Both signals were transmitted wirelessly to the MP150. The

sampling frequency for all the signals was 2 kHz.

4.3.3 Signal Processing and Feature Extraction

Linear Filtering and Pre-Processing: All the raw signals (accelerometer and gyroscope

based SCGs, ICG, BCG, and ECG) were filtered with finite impulse response (FIR) Kaiser

window band-pass filters (cut-off frequencies: 1-40 Hz for both the accelerometer and

gyroscope signals, 0.5-20 Hz for the BCG, 1-30 Hz for the ICG and 0.5-40 Hz for the

ECG). These cut-off frequencies were chosen based on the existing literature [77, 65, 84],

to remove out-of-band noise without distorting the shape of the signals. The same cutoff

frequencies were used for both gyroscope and accelerometer based chest vibration signals.
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Figure 4.2: (a) The experimental setup with the subject standing on the BCG scale, with all
other wearable sensors attached to the body. One accelerometer (ADXL354) and one gyro-
scope (QGYR330HA) are placed on the mid sternum. ECG and ICG signals are collected
simultaneously. (b) Circuit connection for the conversion of differential output of the gy-
roscope to single output per axis, using an instrumentational amplifier (AD8226). (c) Axis
labels used for the accelerometer and gyroscope, with accelerometer X axis in the head to
foot direction, Y axis in the side to side (lateral) direction and Z axis in the dorso-ventral
direction. Gyroscope X axis angular velocity corresponds to the rotation around head to
foot axis, Y axis angular velocity corresponds to the rotation around frontal axis and Z axis
angular velocity corresponds to the rotation around sagittal axis. (d) Block diagram of the
segmentation for ICG signal with reference R peaks from the corresponding ECG signal,
feature extraction from the ICG segments to calculate ground truth PEP. (e) Block dia-
gram of the segmentation for accelerometer and gyroscope signals with reference R peaks
from corresponding ECG signal, feature extraction from the segments to estimate PEP. (f)
PEP trend with the chronology of the experiment, 5-minute rest standing on BCG scale,
3-minute walk at 3 miles per hour speed, 1.5-minute of squats and 5-minute post exercise
standing on the scale. PEP remains fairly stable during the rest period, it decreases due to
exercise, and returns nearly to the baseline rest values during the recovery period.
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The signal-to-noise ratio (SNR) of the ECG was found to be very poor for one of the

subjects due to hardware issues, therefore data from this subject was discarded and data

from the other 16 subjects were used for further processing and analysis.

As most physiological measurements are corrupted by motion artifact during exercise,

which typically leads to higher noise, the signals recorded during exercise were discarded.

Since the goal of this analysis was to determine which features of SCG (accelerometer and

gyroscope) signals were most salient in PEP estimation, we decided rather to use only the

cleaner portions of the datasets – those corresponding to the initial 5-minute resting and

5-minute post-exercise recovery data. The signal processing and feature extraction were

performed in Matlab 2017b with a Macbook Pro Laptop with Core i5 dual core processor

and 16 GB of RAM and required approximately 54 minutes of processing time.

Ensemble Averaging: The R-wave peaks were detected on the ECG signal and all the

other signals (SCG, BCG, and ICG) were segmented into individual heartbeat frames using

the R peaks from the corresponding ECG signals, with a frame length equal to the minimum

R-to-R interval. With frame length equal to the minimum R-to-R interval, one frame con-

tained at a maximum one heartbeat by definition. In other cases, one frame contained less

than one heartbeat. Multiple frames were ensemble averaged to get averaged frames, which

reduced noise [85]. Five frames were averaged together to generate an ensemble averaged

frame, with an overlap of four frames between consecutive ensemble averages. This tech-

nique of averaging was used to maximize the number of ensemble averaged frames, with a

total of 13,993 heartbeat frames from 16 subjects.

Feature Extraction from ICG and BCG: The B-point and X-point of the ICG (dz/dt)

frames, were extracted based on [67]. The B-point was then used as the reference standard

AVO, and the ground truth PEP was obtained via calculating the R-B interval for every

ensemble average frames. A high level block diagram of this process is shown in Fig. 5.3

(d). The X-point of the ICG corresponds to the aortic valve closing (AVC). For BCG

frames, I, J and K peaks were extracted following the work of Inan et al. [65].
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Feature Extraction from SCG: For the accelerometer and gyroscope signals, initially

we extracted and analyzed different time domain, amplitude and frequency domain fea-

tures. Time domain features performed better in PEP estimation compared to amplitude

and frequency domain features as PEP itself is a time domain parameter. A total of 12

time domain features were chosen for detailed analysis in this work. These 12 features

per axis were extracted from each averaged frame by an automated algorithm and every

frame was visually checked to maintain the accuracy of the feature extraction. Features

extracted were as follows: largest and second largest maxima locations (0-250 ms), largest

and second largest maxima width (0-250 ms), largest and second largest minima location

(0-250 ms), largest and second largest minima width (0-250 ms), largest maxima location

(250-500 ms), largest maxima width (250-500 ms), largest minima location (250-500 ms),

largest minima width (250-500 ms). Peaks and valleys in the frame were ranked according

to their amplitudes, and the highest and second highest amplitude were used as the largest

and second largest maxima or minima accordingly. Location was calculated as the distance

from the corresponding R-peak in ms. Width was calculated as the width of the peak or val-

ley at half-prominence, in ms. We extracted eight timing features from the systolic portion

of the signal (0-250 ms) rather than putting emphasis on one location feature, to explore

how multiple points in the accelerometer and gyroscope signals are related to the AVO.

Although PEP is related to the timing features from the systolic portion of the signals, we

decided to explore features from the diastolic portion (250-500 ms) of the signals as well

and we have extracted four timing features from the diastolic portion of the signals.

4.3.4 Regression Models

Overall Framework: We trained a regression model to estimate the PEP using the features

extracted from the accelerometer and gyroscope signals described in Section II.C. For ev-

ery axis, M features were extracted from N ensemble averages. These features were placed

in an matrix A while the corresponding PEP values were placed in an vector bPEP. A re-
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gression model was trained on these to learn the relationship between A and bPEP. Resulted

trained model can then be used to estimate PEP for new heartbeat frames, from the features

extracted from the accelerometer or gyroscope signals. Fig. 5.3 (e) shows the high level

block diagram of the feature extraction and regression on the accelerometer and gyroscope

signals to estimate the PEP. The machine learning techniques, including various regression

models, were performed using Python 3.6 with the same laptop described in the later sec-

tion. It required approximately 20 to 60 minutes of processing time for different regression

techniques based on the parameters and features used.

XGBoost Regression: The majority of the research on SCG to estimate hemodynamic

parameters used conventional linear regression to relate the features from SCG to the esti-

mated parameter [60, 84, 86, 87, 88], with the underlying assumption that the relationships

are linear. However, the relationship between PEP and SCG features may not be linear as is

the case in most real data sets. That is, if we let Y represent PEP as a random variable and

X represent one of our features, it is unlikely that f(X)=E(Y|X) would be a linear function

in X [89]. Our aim was to evaluate whether a non-linear model performs better in estimat-

ing PEP compared to the standard linear models. Therefore, rather than using only linear

techniques, we leveraged Extreme Gradient Boosting (XGBoost) regression, which is a rel-

atively new machine learning algorithm that has recently gained popularity [81]. XGBoost

is a computationally efficient implementation of the gradient boosting machine learning al-

gorithm [90], and is an example of an ensemble method, combining multiple estimators to

predict a variable rather than using a single estimator [91]. It generates multiple regression

trees where errors from previous models are predicted by new models and are then added

together. It uses a gradient descent algorithm for this addition to minimize the loss and

these sequential additions are carried out until no further improvements can be made.

We used XGBoost regression (with hyper-parameter settings: learning rate=0.1, num-

ber of boosting rounds=200, column sampling factor=0.5, row sampling factor=0.5, reg-

ularization parameter (λ)=1) to estimate PEP using features extracted from different axes
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of the accelerometer and gyroscope based SCG signals and combination of multiple axes

from the same sensor or both the sensors. Estimated PEPs from different axes and from

different combinations of axes and sensors were compared using a variation of the repeated

cross-validation model assessment method discussed in [92].

Cross-Validation and Regression Model Evaluation: We first randomly paired the sub-

jects in our dataset, which consists of 16 subjects, into eight groups. We then performed

cross-validation by leaving one group (two subjects) out at each fold and trained an XG-

Boost regressor on the data from all subjects except the two that were left out. We then

predicted PEP for the left-out subjects and repeated this seven more times leaving a differ-

ent pair of subjects out each time. As a result, we have PEP predictions for all ensembles

from all subjects. The root mean squared error (RMSE) was then calculated between the

estimated PEP values (PEPe) and the ground truth PEP acquired from the ICG signals

(PEPa):

RMSE =

√√√√ 1

N

N∑
i=1

(RMSEe,i −RMSEa,i)2 (4.1)

where N=13,993, the number of ensemble average frames from 16 subjects. We used

leave-two-out cross validation over leave-one-out cross validation to have more variation

in the training sets, and did not have enough subjects to leave more subjects out in the

cross-validation steps. We repeated the entire process 50 times with a new random pairing

of subjects each time. The cross-validation RMSE was calculated as the average of the

RMSE scores from 50 repetitions. In this way, we trained a global model rather than

multiple subject-specific models.

Regression for Multiple Axes: This approach was repeated for different axes of the

accelerometer and gyroscope and their combination, and we compared the resulting RMSE

scores. For the combination of multiple axes from the same or different sensors, features

from a pair of axes or multiple axes were combined using vector concatenation and were
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fed into regressors. The same cross-validation procedure was used to compute the RMSE.

We performed statistical analysis of the cross-validation results for single and multiple axes

comparisons.

Regression for BCG Signals: Three features (R-J interval, R-I interval and R-K interval)

from the ensemble averaged BCG frames were also used in similar fashion to develop

another global model following the same cross-validation step stated above, to estimate

PEP. Average RMSE from this model gave us the comparison between wearable sensors to

the scale based cardiac hemodynamics monitoring.

4.3.5 Feature Importance Evaluation

To generate global models of PEP estimation from the accelerometer and gyroscope sig-

nals, we trained XGBoost regressors using many features acquired from one or multiple

axes from one or both of the sensors. However, some of these features are more relevant to

PEP estimation than others. One advantage of using XGBoost (and other gradient boost-

ing methods) is that, it can provide feature importance estimates from a trained predictive

model. This importance indicates how useful each feature is in constructing the boosted

decision trees within the model [93]. Typically, the main node of a tree is divided based

on the most important feature whereas the deep nodes are divided based on less important

features. The feature importance values obtained from all of the decision trees within the

model are averaged to get the final relative feature importance scores. These scores can be

used to rank the features.

To evaluate which features generated from the accelerometer and gyroscope based SCG

signals contributed more to PEP estimation, we trained an XGBoost regressor on the com-

bination data set from all 16 subjects, with features from all the axes of the gyroscope and

accelerometer. The resulting regression model was then used to generate relative feature

importance scores as described above.
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4.3.6 Comparing Our Estimation with Existing Literature

We compared our PEP estimation method with recent PEP estimation methods used in

literature, where the researchers annotated specific points in the accelerometer and gyro-

scope signals using ECG as a reference signal and found those points to be well correlated

with the AVO [78, 60, 94, 95]. Tadi et al. [94] and Javaid et al. [95] used a fixed length

window of 90 and 200 ms respectively from ECG R peaks to find the AVO points in the

dorso-ventral SCG. Yang et al. showed that the maximum peak of the envelope of rotational

energy, calculated from the gyroscope signal, is close to the isovolumic moment (IM) of the

accelerometer signal, where IM is the minima immediately before AVO in the accelerom-

eter based dorso-ventral SCG signal [78]. Tadi et al. annotated the major maximum peak

in angular velocity around the head-to-foot axis (from the gyroscope signal) as AVO and

found strong correlation between the time interval between this point and corresponding

ECG R-peak with PEP from echocardiography [60]. We have used the aforementioned

algorithms to find AVO from the ensemble average heartbeat frames of corresponding ac-

celerometer and gyroscope signals, in our dataset. We have used the same cross-validation

method, described in Section II.E and calculated RMSE for each method to compare to our

methods.

4.3.7 Statistical Analysis

We performed statistical analysis on the cross-validated RMSE results to compare different

axes and combination of axes. In our cross-validation procedure which consisted of 50

repetitions, the random seed was fixed so that the subjects were paired in the same way in

the ith repetition, for all sensor axes/combinations. Multiple comparison tests were per-

formed on the RMSE results from the 50 repetitions to compare different axes and sensor

combinations. The Friedman test was performed to detect statistical differences if exist

and the Wilcoxon signed rank test was performed for post-hoc testing, on different axes

or combinations. Additionally, for the post-hoc testing Benjamini-Hochberg correction for
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multiple comparison was performed on the p-value. Details on these statistical tests and the

reasons behind their use are discussed in [96]. We performed similar procedure to compare

different regression techniques and to compare our method with different algorithms from

recent literature statistically. In this work, p-values below 0.05 were considered statistically

significant.

4.4 Results and Discussion

4.4.1 Intersubject Variability

A visual comparison of the complex nature and intersubject variation in signals from both

the accelerometer and gyroscope is shown in Fig. 4.3. AVO and AVC points, extracted

from corresponding ICG signals, are marked on these signals, demonstrating that the AVO

and AVC may not always correspond to specific points or patterns on the accelerometer

or gyroscope signal, as often stated in existing literature. Estimation of systolic timing

intervals based on this assumption might be error-prone and may work on a specific data

set or subject, but not for a global model.

4.4.2 t-SNE Visualization

The features extracted from the ensemble averaged frames were analyzed using machine

learning techniques. To visually compare the features generated using different axes and

combinations of axes of the accelerometer and gyroscope signals, t-SNE (t-Distributed

Stochastic Neighbor Embedding) [97] was used. The dimensionality of our data set, which

has twelve features (dimensions) per sensor axis, was reduced to two dimensions using

t-SNE. A scatter plot of the data was constructed where the two axes are the two t-SNE

dimensions and each point represents one ensemble averaged frame (Fig. 4.4). Each point

was colored according to the ground truth PEP of the frame to visualize the relationship

between the t-SNE dimensions and our target variable (PEP). If a particular feature has

information relevant to PEP, we would expect to see a pattern in the color distribution,
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Figure 4.3: Illustration of inter-subject variability in accelerometer and gyroscope signals
from rest data of 16 subjects, with AVO (B-point) and AVC (X-point) annotated from cor-
responding ICG signals. (Left) Ensemble average of 100 heartbeats of the accelerometer Z-
axis (dorso-ventral) signal and (right) ensemble average of 100 heartbeats of the gyroscope
X-axis (angular velocity around head-to-foot axis) signal. All the signals are normalized in
amplitude.

whereas if no relevant information is present, we would expect the colors to be randomly

distributed spatially in the plot. Examples where t-SNE is used to visualize the relationship

between a high dimensional feature space and a continuous variable can be found in [98,

99].

The t-SNE method considers pj|ithe probability that a data point xi would pick xj as its

neighbor, in high dimensions, as a similarity metric between data points. The similarity

metric between lower dimension counter parts of these points are denoted as qj|i which

is defined similarly to pj|i. The t-SNE algorithm finds a low dimensional embedding of

the data such that pj|i and qj|i remain similar [97]. We prefer t-SNE to other dimensional-

ity reduction techniques such as principal component analysis (PCA) or isometric feature
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Figure 4.4: Visual comparison of features from single axis and combination of axes from
the accelerometer and gyroscope signal, and features from BCG with target variable PEP
from ICG using t-Distributed Stochastic Neighbor Embedding (t-SNE): (a) plot for features
from z axis of the accelerometer, (b) plot for features from x axis of the gyroscope, (c) plot
for combination of features from x and z axes of the accelerometer, (d) plot for combination
of features from x and y axes of the gyroscope, (e) plot for combination of features from
x and z axes of the accelerometer and x and y axes of the gyroscope. (f) plot for features
from scale based BCG.

mapping (ISOMAP) because it was shown in the literature [99] that t SNE preserves the

details within the data structure better and minimizes local distortions. One limitation of

t-SNE is that it has computational complexity that is quadratic in the number of data points.
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To reduce computational time, our data points were down-sampled by a factor of three from

13,993 points to 4,664 points, which is sufficient for the purpose of t-SNE visualization.

Fig. 4.4 is showing the visual comparison among features from a single or combina-

tion of axes from the gyroscope and accelerometer with our target variable PEP. Features

from scale-based BCG are also shown in the figure to compare the wearable sensor with

the scale-based BCG. In case of the accelerometer and gyroscope, each data point corre-

sponds to all the features (12, 24 or 48 based on number of axes used) collected from the

ensemble averaged frames. In case of BCG each point corresponds to three features, ex-

tracted from the ensemble average frames of BCG. These multiple dimensions (features)

of data were reduced to two using t-SNE. Clear transition in the color pattern in the plots

for the combination of axes over random nature in the color pattern for the single axis (both

in the gyroscope and accelerometer) suggests that it is better to combine and use features

from multiple axes in estimating PEP than using one axis only. While BCG is showing

the best gradient in the color pattern, a combination of features from x and z axes of the

accelerometer and x and y axes of the gyroscope is showing a color pattern which is the

closest (compared to other four plots for single axis or pair of axes) to BCG.

4.4.3 Comparison and Combination of Accelerometer and Gyroscope

Table 4.1 shows the RMSE values in milli-seconds (ms) from different axes and their com-

bination from the gyroscope and accelerometer signals. Statistically significant differences

were found in these results according to Friedman test (p<0.05). Wilcoxon signed rank

test was performed on the different axes and their combinations to investigate where the

significance exists in post-hoc testing. When comparing single axes from the gyroscope

and accelerometer, the results showed that the x-axis of the gyroscope signals provided the

lowest RMSE of 12.63±0.49 ms in PEP estimation (Fig. 4.5 (a)) (p<0.05). RMSE from

y-axis of the gyroscope and z-axis of the accelerometer were similar (p>0.05). The z-

axis of the gyroscope yielded a slightly higher RMSE than the x-axis of the accelerometer,
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whereas the y-axis of the accelerometer provided the highest RMSE in PEP (p<0.05).

Table 4.1: RMSE (ms) for PEP estimates from single axis and combination of multiple
axes from Accelerometer (A), Gyroscope (G) signals and BCG

Axis RMSE
Gx 12.63±0.49

Gy 13.54±0.31

Gz 15.50±0.29

Gx+Gy 12.13±0.40

Gx+Gy+Gz 12.26±0.33

Ax 15.16±0.40

Ay 19.03±0.55

Az 13.54±0.31

Ax+Gz 12.98±0.30

Ax+Gy+Gz 13.66±0.39

Gx+Az 12.63±0.42

Gx+Ax+Az 11.76±0.32

Gx+Gy+Az 11.84±0.41

Gx+Gy+Ax+Az 11.46±0.32

Gx+Gy+Gz+Ax+Ay+Az 11.79±0.44

BCG 9.39±0.20

For the linear acceleration components of the SCG signal, the most salient informa-

tion being derived from the z-axis from the accelerometer is consistent with the existing

literature [39], as the z-axis represents the dorso-ventral component of the signal – the

component that has been most commonly analyzed and demonstrated as being useful in

prior studies [77, 86, 53, 100]. For the rotational velocity components, the most salient

information being derived from the x-axis of gyroscope is consistent with the direction of

blood and heart movement inside the chest [101]. Prior imaging studies [101, 102, 103]

have shown that blood flow has a right hand helical pattern around the ascending aorta and

aortic arch at the beginning of systole: thus the most salient information being contained in

the x-axis of gyroscope, which represents rotational velocity around the head-to-foot axis
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Figure 4.5: (a) Comparison of RMSE in estimation of PEP using features from single axes
of gyroscope and accelerometer placed on the mid sternum, with RMSE in estimation using
BCG features as a reference. (b) Comparison of RMSE in PEP estimation using combina-
tion of features from multiple axes of the gyroscope and accelerometer, with RMSE from
BCG features as a reference. (c) Comparison of RMSE for PEP estimation using differ-
ent regression techniques. (d) Comparing RMSE in estimated PEP from our method with
RMSE calculated, using algorithms from recent literatures.

of the body, is as expected. Combination of axes from both the gyroscope and accelerom-

eter reduced the RMSE compared to single axis results (p<0.05) (Fig. 4.5 (b)). For the

gyroscope, combining the x and y axes provided lower RMSE than all three axes combined

(p<0.05), which suggests that adding features from the z-axis actually increases the error

in estimation of PEP; accordingly, the z-axis is not providing substantial information re-

garding PEP. In case of the accelerometer, combination of x and z axes provided the lowest

RMSE compared to the combination of all three axes (p<0.05), which suggests that the y-

axis from the accelerometer is not providing useful information regarding PEP. When axes

from both the gyroscope and accelerometer were combined, results show that the combi-

nation of x and y axes of the gyroscope and x and z axes of the accelerometer is providing

the lowest RMSE of 11.46±0.32 ms from all the axes and combination (p<0.05), whereas

combination of all the axes from both the sensors yields RMSE of 11.79±0.44 ms. This
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result is supported by the feature ranking of the best 15 features in estimating PEP, shown

in Fig. 4.6, where there are no features from the z-axis of the gyroscope and y-axis of the

accelerometer.

Figure 4.6: Ranking of the best 15 features from gyroscope (Gyro) and accelerometer
(ACC) in estimating PEP.

This feature ranking also shows that, out of 15 most contributing features in estimating

PEP, 10 features are from the gyroscope; this suggests that the gyroscope is contributing

more to PEP estimation compared to the accelerometer, in accordance with the work of

Migeotte et al. [59]. One interesting finding is that three out of 15 features are widths

of different peaks, which is suggesting that not only peak locations but also peak widths

should be considered in PEP estimation. Finally, three out of 15 features are from the

diastolic portion of the signals, which will require further studies to understand.

4.4.4 Comparison of Different Regression Technique

We hypothesized that non-linear regression models such as XGBoost regression would

perform better than linear regression models for estimating PEP from SCG features. To

address this hypothesis, we compared results obtained from the XGBoost regression on the
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combination of axes (x and z axes of the accelerometer and x and y axes of the gyroscope,

which showed the lowest cross-validated RMSE) to the same combination (same feature

set) but using other regression models.

We compared XGBoost regression to ordinary linear, Ridge, Lasso, random forest (RF)

and extra trees (ET) regression techniques. Ordinary linear, Ridge and Lasso are all linear

regression techniques, whereas XGBoost, RF and ET are ensemble learning algorithms.

Ensemble methods using regression tree estimators can fit complicated non-linear functions

robustly compared to linear models.

For Ridge and Lasso, the regularization parameter was varied between 10-3 to 102 loga-

rithmically. For RF and ET, regressors contained 200 trees and column sampling factor was

chosen as 0.5, similar to the XGBoost model parameters. For these ensemble models, each

tree was trained on a subset of features consisting of features. The cross-validated RMSE

results were compared for the different regression models, keeping the same features and

dataset and only the regression technique was altered.

As hypothesized, XGBoost produced the lowest RMSE (Fig. 4.5 (c), p<0.05) when dif-

ferent regression techniques were compared. Ordinary least squares regression resulted in

an RMSE that was 4 ms higher (p<0.05) compared to XGBoost. Linear regression results

does not improve with the introduction of L2 regularization via Ridge regression. Fig. 4.5

(c) is showing the result only for ridge=1. However, results did not change substantially for

the range of ridge values tested. L1 regularization via Lasso regression decreases RMSE

results by only 0.2 ms (p<0.05). Out of the three ensemble methods tested, RF regression

performed better than ET regression (p<0.05), while XGBoost performed the best.

As hypothesized, the relation between the extracted SCG features and PEP was bet-

ter characterized by non-linear models rather than linear ones, used in existing literature.

Ensemble methods produced lower RMSE compared to linear methods. Automatic feature

selection performed by the ensemble methods might be more effective than intrinsic feature

selection (due to shrinkage of regression coefficients) used in L1 or L2 regularization.

38



4.4.5 Comparison with Algorithms from Existing Literature

Fig. 4.5 (d) shows the comparison of RMSE in estimating PEP using features via algo-

rithms from recent publications. As expected, PEP estimation using specific points on the

accelerometer or gyroscope is providing higher (more than 30%) RMSE compared to our

PEP estimation using combination of x and y axes of the gyroscope and x and z axes of the

accelerometer (p<0.05). RMSE was similar (p>0.05) for PEP estimation models based on

features following Javaid et al. [95] and Yang et al. [78].

These results demonstrate that emphasizing specific points (as in the existing literature)

from the accelerometer or gyroscope signal in estimating PEP can increase the error of

estimation in a global model, due to intersubject variation and complex morphology of

the signals. As a result, these approaches may not be applicable as a universal model

across subjects or across studies. As an alternative, our work suggests that general time

domain features from these signals can provide necessary information regarding PEP and

constitute a better-performing global model, which can reduce the complexity in feature

extraction techniques. Another point to note is that, in all four algorithms, researchers used

one peak/point from a single axis in the accelerometer or gyroscope signal, whereas we are

using combination of features from multiple axes from both the sensors.

4.5 Conclusion and Future Work

In this work, we have compared gyroscope and accelerometer based SCG signals and de-

veloped a global model to estimate PEP and compared our estimation with the ground truth

PEP extracted from a simultaneously-recorded ICG signal. We have demonstrated that the

combination of general time domain features from multiple axes of both accelerometer and

gyroscope provides a better estimation of PEP compared to the use of specific locations or

patterns from single axes of these sensors due to intersubject variability in these signals. In

the case of individual sensors, the gyroscope provided more valuable information regarding
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PEP compared to the accelerometer for our dataset, when the sensors are placed on the mid

sternum. It was also shown that the relationship between SCG signal features and PEP can

be modelled using ensemble learning techniques to develop the universal model. Finally,

this work highlights the advantages of sensor fusion for developing wearable sensors to

monitor cardiac health.

In this work, we collected data from healthy subjects and used the signals acquired from

the mid sternum only. Future work should look at the signals from different locations and

data from patients with cardiovascular diseases as well to assess how the model performs

with higher intersubject variability and take necessary measures to obtain more accurate

estimation of PEP. Exercise signals were not used for PEP estimation in this work. Future

work should focus on exercise data to assess the possible estimation of PEP during move-

ment with these regression methods. Gravity vector projection on different postures was

not considered in this work. Future work can take this into account and can use this as a

feature in the prediction model to see if it improves the prediction accuracy. Future work

should also focus on estimation of left ventricular ejection time, stroke volume, and other

cardio-mechanical parameters. In this work, we explored the relationship between PEP

and features from the diastolic portion of both accelerometer and gyroscope signal. Future

work can be conducted to investigate the underlying mechanisms.
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CHAPTER 5

WEARABLE PATCH-BASED ESTIMATION OF OXYGEN UPTAKE AND

ASSESSMENT OF CLINICAL STATUS DURING CARDIOPULMONARY

EXERCISE TESTING IN PATIENTS WITH HEART FAILURE

5.1 Overview

The aim of this work is to estimate oxygen uptake (VO2) from cardiopulmonary exercise

testing (CPX) using simultaneously recorded seismocardiogram (SCG) and electrocardio-

gram (ECG) signals captured with a small wearable patch. CPX is an important risk stratifi-

cation tool for patients with heart failure (HF) owing to the prognostic value of the features

derived from the gas exchange variables such as VO2. However, CPX requires specialized

equipment, as well as trained professionals, to conduct the study.

We have conducted a total of 68 CPX tests on 59 patients with HF with reduced ejection

fraction (31% women, mean age 55±13 years, ejection fraction 0.27±0.11, 79% stage C).

The patients were fitted with a wearable sensing patch and underwent treadmill CPX. We

divided the dataset into a training–testing set (n=44) and a separate validation set (n=24).

We developed globalized (population) regression models to estimate VO2 from the SCG

and ECG signals measured continuously with the patch. We further classified the patients

as stage D or C using the SCG and ECG features to assess the ability to detect clinical

state from the wearable patch measurements alone. We developed the regression and clas-

sification model with cross-validation on the training–testing set and validated the models

on the validation set. The regression model to estimate VO2 from the wearable features

yielded a moderate correlation (R2 of 0.64) with a root mean square error of 2.51±1.12

mL · kg–1 · min–1 on the training–testing set, whereas R2 and root mean square error on the

validation set were 0.76 and 2.28±0.93 mL · kg–1 · min–1, respectively. Furthermore, the
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classification of clinical state yielded accuracy, sensitivity, specificity, and an area under the

receiver operating characteristic curve values of 0.84, 0.91, 0.64, and 0.74, respectively, for

the training–testing set, and 0.83, 0.86, 0.67, and 0.92, respectively, for the validation set.

The result from this work shows that wearable SCG and ECG can assess CPX VO2 and

thereby classify clinical status for patients with HF. These methods may provide value in the

risk stratification of patients with HF by tracking cardiopulmonary parameters and clinical

status outside of specialized settings, potentially allowing for more frequent assessments to

be performed during longitudinal monitoring and treatment.

5.2 Introduction

A hallmark symptom of heart failure (HF) is exercise intolerance, which often manifests

through exertional dyspnea and fatigue. The degree of exercise intolerance is captured

by subjective assessments (New York Heart Association functional class), quality of life

questionnaires (e.g., Kansas City Cardiomyopathy Questionnaire, Minnesota Living with

Heart Failure questionnaire), and/or various objective exercise measures (e.g., 6-minute

walk distance). Cardiopulmonary exercise testing (CPX) is the most comprehensive exer-

cise test performed in clinical settings to quantify the degree of myocardial impairment and

pulmonary dysfunction [104, 105].

CPX has also evolved as an important diagnostic and prognostic tool to manage patients

with HF by elucidating mechanisms of exercise intolerance, quantifying disease progres-

sion, and facilitating recommendation for advanced therapies, such as heart transplantation

or ventricular assist device implantation [104, 105, 106, 107]. Peak oxygen uptake (VO2),

the slope of minute ventilation (VE) and carbon dioxide production (VCO2) and VO2 at

the anaerobic threshold are key CPX parameters that are used for this risk stratification and

disease status quantification. Although CPX is a valuable diagnostic and prognostic tool, it

requires a specialized environment and trained professionals to conduct the study. Accord-

ingly, although the information gained from CPX is valuable for patient assessment and
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titration of care, longitudinal CPX for patients with HF is cost-prohibitive, inconvenient,

and thus not feasible on a large scale. Using novel wearable technology, an unobtrusive and

inexpensive alternative to the CPX, with the ability to potentially garner similar informa-

tion as CPX from daily activities in home settings, could improve the remote monitoring

and management of patients with HF.

Recently, our team has developed a wearable device [77] capable of measuring electro-

cardiogram (ECG) and seismocardiogram (SCG) signals and atmospheric sensing (atmo-

spheric temperature, pressure, and humidity) and tested it in patients with HF [23]. The

SCG represents the chest wall movements associated with the movement of blood in the

heart and includes features representing the ejection of blood through the aorta [39]. Our re-

cent studies have shown that clinical status—degree of myocardial dysfunction and ability

to augment cardiac output for patients with HF—can be assessed using SCG after exercise

via pre-ejection period estimation and novel machine learning methodology [23, 76, 69].

However, although these results were promising, no group has demonstrated to date that an

HF clinical state can be accurately classified using wearable SCG and ECG signals or that

key parameters of cardiopulmonary function can be quantified from these signals.

In this work, we recorded ECG and SCG signals using an updated version of the pre-

viously validated wearable patch [77] simultaneously with CPX for patients with HF with

reduced ejection fraction (HFrEF). We extracted multiple features from these wearable

signals and estimated VO2 continuously throughout the course of exercise using state-of-

the-art regression algorithms. We then classified the clinical state of the patients based on

the changes in wearable signals associated with the exercise and compared the accuracy

of this classification against gold-standard clinical assessment based on CPX. The method-

ology of this work can be translated into monitoring cardiopulmonary health in patients

with HF for longitudinal remote home monitoring. Fig 5.1 shows a hypothetical system for

longitudinal monitoring of patients with HF using our wearable patch.

Following the work on estimating VO2 continuously using our custom-built wearable
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Figure 5.1: Illustration of our envisioned three-step process for longitudinal monitoring of
HF patients: 1) Recording of SCG and ECG signals using a custom-built wearable patch
during exercise and daily activities. 2) Estimation of cardiopulmonary gas exchange vari-
ables and prediction of the clinical state of HF (stage C or D). 3) Intervention by a clinician
based on the longitudinal assessment of cardiopulmonary parameters and HF status (future
work).

patch, throughout the course of CPX for patients with HF, we translated similar method-

ology to estimate VO2 in a minimally controlled outdoor walking environment and in a

controlled treadmill exercise environment in healthy individuals. The follow-up study was

carried out to showcase the efficacy of the methods of the CPX study with wearable SCG

and ECG in tracking changes in VO2 in a daily living scenario. The follow-up study is

another important step towards facilitating remote monitoring of cardiopulmonary health.

5.3 Methods for CPX Study

5.3.1 Experimental Protocol

The CPX study in patients with HF was conducted under a protocol reviewed and approved

by the University of California, San Francisco, and the Georgia Institute of Technology

Institutional Review Boards. All patients provided written consent before the procedure.
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We have conducted a total of 68 CPX tests in 59 patients with HFrEF (with 9 patients

having 2 CPX tests separated by 253±117 days). All of the patients were recruited from

the cardiopulmonary stress test laboratory at the University of California, San Francisco.

Only patients with HFrEF and a body mass index of less than 40 were considered for this

study. We have separated the CPX tests into 2 groups of 44 CPX for a training–testing

set and 24 CPX for a separate validation set. The 24 CPX tests for the validation set were

obtained after the model was trained on the training–testing set.

Fig 5.2 (a) illustrates the experimental setup and placement of different sensors on each

patient. Before starting the procedure, normal skin preparation methods were administered,

and ECG leads were attached in a 12-lead ECG configuration. A gas exchange mask (Med-

graphics) was placed on the patient. A finger pulse oximeter, a forehead pulse oximeter,

and a blood pressure cuff were placed, and minimal baseline spirometry data were collected

to measure forced and slow vital capacity. The custom-built wearable device was placed

just below the suprasternal notch. After placing all the sensors, all wires were taped down

such that the patient could perform the protocol comfortably.

All CPX tests were performed on a treadmill (GE T2100) per the American College

of Cardiology/American Heart Association Guidelines [108] and following the modified

Naughton protocol [109]. Tests were terminated owing to general or leg fatigue, shortness

of breath, angina, dizziness, or electrocardiographic evidence of ischemia or arrhythmia.

Breath-by-breath measurements of respiratory rate, VE, VO2, VCO2, partial pressure of

oxygen, and partial pressure of carbon dioxide were collected at rest, at zero grade low-

speed walk, during exercise, and during recovery. Heart rate (HR), rhythm, and oxygen

saturation were continuously monitored with intermittent sphygmomanometry. ECG and

SCG signals were obtained continuously using the wearable patch.

As an outcome of the CPX tests, patients were classified as American College of Cardi-

ology/American Heart Association stage C HF (n=54) or stage D HF (n=14) based on the

recommendations from 2 HF physicians (Dr. Teresa De Marco and Dr. Liviu Klein from
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Figure 5.2: Experimental setup with wearable patch hardware and representative cardio-
genic signals. (a) The experimental setup with the patient walking on a treadmill, with all
the cardiopulmonary exercise testing measurement sensors and wearable patch attached to
the body. (b) The wearable patch top and bottom view with snaps for electrocardiogram
(ECG) electrodes and internal hardware. (c) Representative ECG and triaxial SCG signals
(head-to-foot [HtoF], dorsoventral [DV], and lateral [LAT]) from 1 patient in the study.

UCSF), following standard guidelines [108, 110, 111]. Patients were classified as stage D

HF if they were recommended for a heart transplant or ventricular assist device implant

based on their peak VO2 (<14 mL/kg/min or < 50% predicted if women or obese) and

VE/VCO2 ratio (>38 if respiratory exchange ratio was <1.05).

5.3.2 Sensing Hardware

Breath-by-breath data were collected using MGC Diagnostic/Medgraphics Ultima Series

with Breeze suite 8.1.0.54 SP7 (software version number). ECGs (12-lead) were collected

using GE Case V6.72. Pulse oximetry was measured using Radical 7 Masimo Rainbow

Set.

For all patients, the wearable ECG and 3 axis SCG signals (head-to-foot [HtoF], dorsoven-

tral [DV], and lateral [LAT]) were collected with a novel wearable patch as shown in Fig.
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1B. This patch is an improvement upon our previous version, as described in [77]. It

contains an ATSAM4LS microcontroller (Atmel Corporation, San Jose, CA), whereas the

previous version used an ATmega1284P microcontroller (Microchip Technology, Chan-

dler, AZ). The ECG sensor uses an analog-front-end-integrated circuit with an on-board

analog-to-digital converter ADS1291 (Texas Instruments, Dallas, TX). The accelerometer

in the present patch that acquires triaxial SCG signals is the ADXL355 (Analog Devices,

Norwood, MA), which has a low noise floor of 25 µg/
√
Hz compared to the triaxial ac-

celerometer BMA280 (Bosch Sensortech GmbH, Reutlingen, Germany) used in the previ-

ous version [77] with a noise floor of 120 µg/
√
Hz. The patch also contains a BME280

(Bosch Sensortech GmbH, Reutlingen, Germany) environmental sensor which records at-

mospheric pressure (AP), ambient temperature and relative humidity, whereas the previous

version [77] had only pressure sensing capability using the MS5611-01BA03 (Measure-

ment Specialties, Fremont, CA). The patch used in this work has a diameter of 7 cm and

weight of 38.2 gm. When fully charged, it can record continuously for approximately 45

hours, which is more than sufficient for constant remote monitoring. Initially it samples

the ECG signal at 1kHz, the accelerometer signals at 500 Hz and the environmental sig-

nals at 20 Hz, and saves the data into a SD card in the patch. A custom-built graphical

user interface accesses all the data into a computer and resamples the accelerometer and

environmental signals at 1 kHz to have the same sampling frequency of 1 kHz for all the

signals. Fig 5.2 (c) shows representative ECG and triaxial SCG signals from the wearable

patch. Fig 5.3 illustrates the overall workflow used in this work.

5.3.3 Data Analytics Techniques for Reducing Noise and Extracting Features from the

Wearable SCG and ECG Signals

Whereas the CPX equipment captures breath-by-breath VO2 data, the wearable patch cap-

tures one data point every 0.001 second (1 kHz sampling rate). A sliding window approach

was used to combine all of the values from the SCG and ECG signals for the period in
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Figure 5.3: Overview of the regression and classification techniques. (a) Wearable ECG
and seismocardiogram (SCG) (only showing 1 axis of the signal for simplicity) signals
were synchronized with breath-by-breath data from the CPX computer. R-peaks of the
ECG signal were detected, and the SCG signals were segmented into heartbeats using cor-
responding R-peaks. Ten heartbeat frames from the SCG signals were averaged to get
ensemble-averaged heartbeats corresponds to 1 oxygen uptake (VO2) value from breath-
by-breath data from CPX, and features were extracted from the averaged heartbeats. The
features were fed into a Random Forest regressor as estimators to estimate VO2. Estimated
VO2 was compared with actual VO2 to see the estimation accuracy. (b) The features from
SCG and ECG were fed into a support vector machine (SVM) classifier with radial basis
function kernel to estimate the clinical state of a patient and it was compared with the actual
clinical state derived from CPX.

between breaths to estimate a single VO2 value to compare against the gold standard. At

a high level, the approach to estimating VO2 was as follows: (1) the signals were prepro-
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cessed using our existing data analytics algorithms for SCG and ECG signals to decrease

motion artifacts and other noise; (2) representative features, or signal characteristics, we

hypothesized to be relevant for VO2 estimation were extracted from the SCG, and ECG

signals; and (3) regression models were trained to mathematically estimate VO2 from these

SCG and ECG signal features for all CPX instances in the training–testing set and later

validated in the validation set.

Preprocessing and ECG Artifact Removal: All the signals from the wearable patch

were synchronized with the breath-by-breath data from the CPX computer. The raw ECG

and SCG signals from the wearable patch were digitally filtered (cut-off frequencies: 0.5–40.0

Hz for the ECG and 1–40 Hz for the SCG signals) to remove out-of-band noise. After fil-

tering, a fourth SCG signal (SCGMag) was computed using vector summation on the 3

axes of the SCG. All the wearable signals were inspected for motion artifacts, and portions

of the signals corrupted by motion artifacts were excluded from the analysis.

Motion artifacts in the ECG signal can pose a major challenge to subsequent signal

processing and regression steps. Accordingly, an algorithm was implemented to detect and

remove artifact-corrupted segments of the signal automatically. Specifically, the ECG for

each 30-second-long frame was passed through an artifact detection function to choose the

window frame (i.e., length) of signal that is artifact-free (Fig 5.4). First, the upper (Eu) and

lower (El) envelope of the data is detected and a difference Ed (= Eu – El) is computed.

Then, the mean (µ) and standard deviation (σ) of Ed throughout the recording is calculated.

An artifact is defined as the signal segment when the Ed of that specific portion is greater

or less than 3σ from the µ. The longest artifact-free segment of the signal was chosen, and

the time stamp for this portion was used to segment all the wearable signals to obtain the

signals where high-quality ECG was present.

The ECG R-wave peaks were detected using a simple thresholding based peak detec-

tion method. The four SCG signals (SCGHtoF, SCGLAT, SCGDV, and SCGMag) were seg-

mented into individual heartbeats using the R-peaks from the ECG signals. Each heartbeat
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Figure 5.4: Automatic artifact removal of ECG: (a) Filtered ECG and SCG signals. (b)
ECG is passed through artifact detection algorithm. Segments with artifacts are chosen
when the difference (Ed) of upper (Eu) and lower (El) envelope of the signal is outside
the range of mean (µ) ± 3×standard deviation (σ) of Ed. The longest artifact free signal
segment is chosen and the time stamp of the start and end of that segment is calculated. (c)
Both ECG and SCG signals are segmented with the time stamps from the previous step,
where the ECG was found to be artifact free.

was windowed to a 600-ms duration from the R-peak. For each SCG signal, 10 consec-

utive heartbeats surrounding 1 VO2 measurement from the CPX hardware were averaged

time-point by time-point to obtain an ensemble-averaged heartbeat (Fig 5.3). Ensemble-

averaged heartbeats were computed across the whole recording with a step size of 1 heart-

beat. Ensemble averaging was used to reduce noise and motion artifacts within each heart-

beat [85]. This process resulted in a total of 46,673 ensemble-averaged heartbeats from 44

CPX instances in the training–testing set and 28,230 ensemble-averaged heartbeats from

24 CPX instances in the validation set. For each ECG signal, the R-to-R interval and in-

stantaneous HR were calculated for each heartbeat and averaged in the same way as the

ensemble-averaged waveforms. The average VO2 measurements corresponding to each

ensemble-averaged heartbeat were computed to be used as the target variables for each

ensemble-averaged heartbeat (i.e., the output variables against which the regression model

was trained).

Feature Extraction: The next step toward estimating VO2 from the measured signals
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involved extracting multiple features—or characteristics—that could then be input to a ma-

chine learning regression algorithm. A total of 17 frequency-domain features were auto-

matically extracted from each of the four SCG signals resulting in a total of 68 SCG features

per ensemble-averaged heartbeat. The SCG features extracted were as follows: total band

power (0-500 Hz), and band power in 3 Hz bandwidth frequency ranges from DC to 30

Hz. Additional frequency domain features were: the highest prominent frequency (fp1),

second prominent frequency (fp2), and third prominent frequency in the power spectral

density (PSD), and the amplitudes of the PSD at fp1, fp2, and fp3.

For prominent frequency, peaks in the PSD of the frame were ranked according to their

amplitudes, and the highest, second-highest, and third-highest amplitudes were used to

locate the first, second, and third prominent frequency accordingly. The averaged R-to-R

interval and instantaneous HR for each averaged heartbeat were used as ECG features.

SCG Outiler Heartbeat Removal: Before training a regression model to estimate VO2,

we removed outlier beats from the ensemble-averaged SCG heartbeats using the Maha-

lanobis distance [112]. For each subject, the first 50 averaged frames from the rest signal

were assumed as baseline frames and all the features (for a particular feature set) of the

50 frames were averaged to create baseline feature distribution. The Mahalanobis dis-

tance [112] was calculated between the baseline feature distribution and each averaged

heartbeat frame for a particular subject. The underlying hypothesis was that the wearable

signal would change in morphology with various intensity of exercise, and it would vary

the most at peak exercise compared to baseline, which would be reflected by the Maha-

lanobis distance. The first and third quartile (Q1 and Q3) were extracted, and the interquar-

tile range (IQR) was calculated as IQR=Q3-Q1, for subject-wise distribution. A particular

frame was considered as an outlier if the Mahalanobis distance of the frame is lower than

(Q1-1.5×IQR) or higher than (Q3+1.5×IQR) of the distribution. These outlier frames and

corresponding target variables were removed from the dataset. The distance calculated for

each frame was used as a feature in the regression model, which makes the total number
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of features equal to f+1. The signal processing and feature extraction were performed in

Matlab 2018a.

5.3.4 Regression and Classification

Regression Model: For each VO2 measurement recorded by the CPX equipment, a corre-

sponding set of features from the SCG signals was derived using methods described else-

where in this article. A regression algorithm was then designed and trained on the training

set to mathematically estimate VO2 from this set of features using part of the recorded data

as a training set and the remainder of the data as a testing set. Specifically, we trained a

Random Forest (RF) [113] regression algorithm to estimate VO2 from the wearable signal

features and used leave-one-subject-out (LOSO) cross-validation [114] to evaluate the es-

timation accuracy. For all 44 CPX instances in the training–testing set, at each fold—or

iteration of the cross-validation process—an RF regression model was trained on the data

from 43 patients (thus leaving 1 CPX instance out) to learn the relationship between fea-

tures from the wearable sensors and the target variable VO2. The resulting trained model

was then used to estimate the corresponding VO2 values for the heartbeat frames from the

left out CPX instance. This procedure was repeated 43 more times, leaving a different CPX

instance out each time. This cross-validation method was used to develop a global regres-

sion model with optimized hyperparameters on the data in the training–testing set only. For

the validation of the global model, the regression model (with the optimized hyperparame-

ters) was trained on the whole training–testing set (all 44 CPX instances) and tested on the

separate validation set (with 24 CPX instances). As a result, we obtained predictions of all

target variables from all ensemble-averaged heartbeats, from all 68 CPX instances.

Two figures of merit that are commonly used in the existing literature were used to

evaluate the regression model and approach. First, the root mean squared error (RMSE)

was calculated for each left out CPX instance: specifically, the error between the estimated

VO2 values and the CPX equipment measured VO2 values across all breaths. The cross-
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validated RMSE was then calculated as the average of the RMSE scores from 44 folds in

the training–testing set and 24 CPX instances in the validation set. Second, the coefficient

of determination (R2) between the true values and the cross-validated predictions of VO2

across all CPX instances were calculated for the training–testing set and the validation set

separately.

To assess the benefit of using a combined SCG/ECG approach for predicting VO2, the

RF regression approach was repeated for 3 different feature sets: the SCG features only, the

ECG features only, and the combined SCG and ECG features. We compared the resulting

cross-validated RMSE scores to assess the performance of each feature set to estimate VO2.

We performed statistical analysis on the cross-validation results from the different feature

sets.

To understand the value of the information provided by SCG signals and our ma-

chine learning algorithm compared with the ECG-derived HR for estimating instantaneous

VO2, we trained an RF regression model using SCG signal features alone and a second

model with HR alone using a simple linear regression model as used in literature to in-

vestigate the VO2–HR relationship [115, 116]. We performed the same LOSO cross-

validation and calculated the cross-validated RMSE. We performed statistical analyses on

the cross-validation results to compare the SCG signal feature-based model with the HR-

based model.

Classification: In addition to estimating VO2 using regression, we aimed to assess the

ability to classify each patient’s clinical status based on the wearable sensing data measured

during treadmill exercise using classification. We used a machine learning classification

technique to classify the patients with HF as stage C or stage D on a particular CPX pro-

cedure day using the wearable measurement alone and compared the estimated class with

the true class based on the CPX outcome. Specifically, a support vector machine classi-

fier with a radial basis function kernel [117, 118] was used, and classification performance

was evaluated using LOSO cross-validation in the training–testing set and later validated
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on the separate validation set similarly as described in the regression model section. We

preprocessed the wearable features before using them in the classifier. The details on the

preprocessing of the wearable features for the classifier are given below.

For each subject, ensemble-averaged heartbeats were ranked from lowest to highest us-

ing corresponding Mahalanobis distance (described above) for a particular subject and the

highest 100 heartbeats were chosen for each subject for further classification analysis, giv-

ing us a total of 4400 heartbeats from 44 subjects. The underlying hypothesis of choosing

the highest 100 heartbeats was that the subjects were classified based on the peak exercise

capacity during CPX, and wearable signal segments correspond to peak exercise capacity

would reflect the difference between stage C and stage D subjects. These heartbeats were

labeled for each subject based on the true class for that particular subject.

Similar to the regression analysis approach with the training–testing set, for the clas-

sification task, the classifier was trained on the features from 43 of the 44 CPX instances

to map the features into an output of stage C and D state. We then used this classifier to

predict the class of each heartbeat frame for the left-out patient. The majority vote (i.e.,

class) of the heartbeats was chosen as the predicted class for the patient on that particu-

lar CPX procedure day. We repeated these steps 43 more times, leaving a different CPX

instance out each time. In this way, we obtained a predicted class for all CPX instances.

Similarly, for the validation set, we trained the classification model (with hyperparameters

tuned in the training–testing set of the classification task) on all 44 CPX instances in the

training–testing set and estimated the class of each CPX instances in the validation set.

Finally, we compared the estimated class to the true class of the patients from the corre-

sponding CPX outcome to calculate classification performance for the training–testing and

validation set separately. The machine learning techniques for regression and classification

were performed using Python 3.6.

Estimation of Peak VO2: Because the peak VO2 is among the key parameters extracted

from a CPX procedure to assess the clinical status of the patients, we tried to see how our
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regression model, which estimates instantaneous VO2, can be used in estimating peak VO2

as well. The maximum of the estimated VO2 values for a particular CPX instance was used

as the estimated peak VO2 value for that CPX and compared with the true measured peak

VO2 from corresponding CPX procedure, in a correlation and a Bland–Altman analysis.

We have calculated the percentage error between estimated and true values of peak VO2

and reported the average of the percentage error. We have used values from all 68 CPX

instances, including both the training–testing and the validation CPX instances.

Peak HR-Based Regression and Classification: To understand the potential added

value from SCG signals and our machine learning approach beyond peak HR alone, we

have directly studied peak HR-based correlation and classification for the same dataset.

We performed a simple correlation analysis (without any cross-validation) between peak

VO2 and peak HR. Further, we also applied exactly the same methodology (regression

model with cross-validation) as for SCG-based peak VO2 estimation and formed a model

for estimating peak VO2 from peak HR alone. In addition to the regression analysis, we

classified the patients based on peak HR alone into stage C and stage D, in exactly the same

manner we applied to our SCG-based features.

5.3.5 Statistical Analysis

We performed statistical analysis on the cross-validated RMSE results to compare regres-

sion results from different feature sets. Multiple comparison tests were performed on the

RMSE results from the cross-validation. The Friedman test was performed to detect if sta-

tistical differences exist, and the Wilcoxon signed-rank test was performed in post hoc test-

ing for pairwise comparison. Additionally, for the post hoc testing, Benjamini–Hochberg

correction for multiple comparison was performed on the P values. The demographics of

patients in stage C and stage D were compared using the Student t-test. In this work, P

values of less than .05 were considered statistically significant.
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5.4 Methods for Healthy Subject Study

5.4.1 Experimental Protocol and Hardware

For the follow-up study with healthy individuals, we conducted the study under a protocol

(H18452) approved by the Georgia Institute of Technology Institutional Review Board. A

total of 17 healthy subjects (9 females and 8 males) participated in the study (Age: 26.8

± 4.1 years, Weight: 67.5 ± 14.1 kg and Height: 170.5 ± 9.9 cm). All subjects provided

written informed consent before experimentation and reported no cardiopulmonary issues.

To record the gold-standard VO2 for this follow-up study, we used a COSMED K5

(COSMED, Rome, Italy) metabolic system. The same wearable patch, used in the CPX

study, was used in this follow-up study with healthy individuals. Fig. 5.5(a) shows the

placement of both sensors: our custom-built wearable patch and the COSMED K5 metabolic

system. Fig. 5.5(b) shows the custom-built wearable sensor hardware, which measures

ECG, triaxial SCG, and environmental features (atmospheric pressure, temperature, and

humidity). For each subject, we placed the wearable sensor evenly between the supraster-

nal notch and xiphoid process on the mid-sternal line, using three ECG electrodes (model

2670, 3M, Saint Paul, MN, USA). For the COSMED K5 system, we fitted subjects with a

gas exchange mask on their face and the K5 system on their back. We situated a heart rate

belt from the K5 system just below the chest line. After fitting subjects with all the sensors

and systems, we asked them for confirmation of their comfort before testing. At the start

of each trial, we synchronized both the wearable sensor and K5 system to a smart mobile

phone in order to record timestamps throughout the protocol.

Fig. 5.5(d) shows the outline of the study protocol, which we divided into two parts:

a treadmill walking portion in a laboratory setting and an outdoor walking portion in an

uncontrolled setting. For the treadmill part of the protocol, subjects first stood still for

two minutes to record baseline data. Then, subjects walked on a treadmill at five different

speed settings (0.75, 1, 1.25, 1.5 and 1.75 meters/second, roughly 1.7, 2.2, 2.8, 3.4 and 4
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Figure 5.5: (a) A subject configured with both the wearable patch and the COSMED K5
system, with inset showing a zoomed-in image of the ECG electrodes. (b) The wearable
patch top, bottom, and inside. The microSD (1), microUSB (2), and battery (3) are shown.
(c) A map of the outdoor walking route across Georgia Institute of Technology with marked
terrain. (d) An outline of the study protocol.

miles/hour) for six minutes at each speed, totaling 30 minutes of walking. After completing

the treadmill walk, subjects stood still for 5 minutes to record a recovery period. Including

this recovery period, subjects performed the treadmill protocol continuously for a total of

37 minutes.

After the treadmill part, subjects rested for 15 minutes before starting the outside walk-

ing protocol. They began this section standing still for 2 minutes at the “Start/Stop” location

of the route marked in Fig. 5.5(c). Then, subjects walked the route shown in Fig. 5.5(c),

arriving back at the same “Start/Stop” point. The route contains a mixture of level ground,

uphill and downhill walkways (with significant slopes), two uphill stairs climbing, and four
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traffic signals along the way. The terrain is marked in Fig. 5.5(c). Subjects completed this

walk at their own chosen speed and followed normal pedestrian traffic laws. After complet-

ing the route, subjects stood still for 3 minutes to record a recovery period. This part of the

protocol took approximately 20-30 minutes depending on each subject’s speed as well as

traffic conditions during their testing. Of 17 subjects, two females were not able to perform

the outside walk due to precipitation. For that reason, we obtained data from 17 treadmill

protocols and 15 outdoor protocols.

For this study, we recorded the gold standard breath-by-breath (BxB) metabolic data

with the COSMED K5 system (COSMED, Rome, Italy). Subjects wore the COSMED

heart rate probe (i.e., belt), which provided an HR reading corresponding to the ground-

truth metabolic data.

We collected ECG and triaxial SCG (axes: head-to-foot (HtoF), dorso-ventral (DV),

and lateral (Lat)), with the same wearable patch described in the method section of the

CPX study, shown in Fig. 5.5(b).

5.4.2 Signal Processing and Regression

For signal processing of the BxB data and wearable sensor, we followed similar procedures

(ECG artifact removal, heartbeat segmentation, and ensemble averaging), as mentioned

for the CPX study. For SCG feature extraction, we extracted a couple of more time and

amplitude features on top of the frequency domain features mentioned above in the CPX

study.

Using an automated algorithm, we extracted 28 time domain, 17 amplitude, and 17 fre-

quency domain features (62 total) from the ensemble-averaged waveforms for each of the

four SCG signals. The list of extracted features is provided in Table. 5.1. We extracted

the amplitude and time domain features from the time-domain representation of the SCG

signals, and the frequency domain features from the power spectral density (PSD) estimate

of the SCG signals. Peaks and valleys in the averaged frames were ranked according to

58



their amplitudes, and the highest and second-highest amplitudes were used. The location

was calculated as the distance from the corresponding R-peak in ms. The width was calcu-

lated as the width of the peak or valley at half-prominence, in ms. We evaluated different

combinations of feature sets for performance in estimating VO2

Table 5.1: SCG Features Extracted

Signals Feature Names
Number of Features

Ampl. Time Freq.

SCG (0-200 ms)

Highest and second highest peak
(Ampl., Loc. and Width)

2 4

Lowest and second lowest valley
(Ampl., Loc. And Width)

2 4

Number of peaks and valleys 2
First and second peak (Ampl., Loc.
And Width)

2 4

First and second valley (Ampl.,
Loc. And Width)

2 4

Highest peak of absolute signal
(Ampl., Loc. And Width)

1 2

SCG (200-500
ms)

Highest peak (Ampl., Loc. and
Width)

1 2

Lowest valley (Ampl., Loc. And
Width)

1 2

Number of peaks and valleys 2
Highest peak of absolute signal
(Ampl., Loc. And Width)

1 2

SCG AUS (0-100 ms), ..., (400-500 ms) 5
SCG PSD Band
Power

(0-3 Hz), (3-6 Hz), ..., (27-30 Hz)
and (0-500 Hz)

11

SCG PSD First, second and third prominent
frequency (Ampl. and Freq.)

6

Single Axis Total 17 28 17
4-Axes Total 68 112 68

Ampl: amplitude, Freq: frequency, Loc: location, AUS: area under signal, PSD:
power spectral density.

Regression Model: For the regression model in the follow-up study, we chose an ex-

treme gradient boosting (XGBoost) regression [81] from our initial analysis in this work.

XGBoost is a decision-tree based ensemble algorithm that uses a gradient boosting [119]
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framework. It is an example of an ensemble method [91] that is computationally effi-

cient, parallelizable, able to handle missing values, and able to be pruned/regularized to

avoid over-fitting. We fit an XGBoost regressor on the extracted features for all ensemble-

averaged heartbeats to estimate corresponding target VO2 values. We then used this model

to estimate VO2 values for unseen heartbeat frames as represented by the same feature sets.

We performed this process with different combinations of feature sets extracted from the

SCG, ECG, and AP signals, optimizing hyper-parameters with a grid search. The final

hyper-parameters are as follows: learning rate=0.05, max depth=10, subsample=0.6, col-

sample bytree=0.7, n estimators=100, min child weight=2, gamma=0.3. We used Python

3.6 for all machine learning techniques.

Statistical Analysis: We performed the same statistical tests to compare the perfor-

mance of different feature sets of SCG and ECG to estimate VO2, as described in the CPX

study method section.

5.5 Results and Discussion from CPX Study

Patient demographics and clinical characteristics for the CPX study are detailed in Table 5.2

and CPX characteristics are provided in Table 5.3.

5.5.1 Regression Model Comparison

Fig 5.6 (a) shows the correlation analysis between the actual (measured) VO2 and the esti-

mated VO2 using the combined features from SCG and ECG for the training–testing set and

Fig 5.7 (a) shows the corresponding analysis for the validation set. For the training–testing

set, the regression model with the SCG features only performed better in estimating VO2

compared with the model using ECG features only: RMSE of 2.55±1.16 mL · kg–1 ·min–1

vs 3.75±1.68 mL · kg–1 · min–1, respectively (P< .001) and a corresponding R2 of 0.63 vs

0.19. Combining SCG and ECG features improved the estimation accuracy slightly com-

pared with SCG features only, but the improvement was not significant (P>.05) with an
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RMSE of 2.50±1.12 mL · kg–1 · min–1 and an R2 of 0.64.

Table 5.2: Patient Demographics and Characteristics

All CPX

Instances

(N=68)

Stage C

(n=54)

Stage D

(n=14)

P

Value

Age, years 54.53 ± 12.68 54.81±12.88 53.43±12.28 0.53

Sex

Male 47 (69%) 40 (74%) 7 (50%)

Female 21 (31%) 14 (26%) 7 (50%)

Height, cm 172.4±9.14 172.67±9.34 171.4±8.57 0.59

Weight, kg 87.99±18.39 87.57±17.96 89.59±20.63 0.68

BMI, kg/m2 29.53±5.26 29.27±4.85 30.51±6.73 0.37

Ejection fraction,% 27.25±10.64 26.21±9.29 31.29±14.46 0.13

NYHA class

I 12 (13%) 12 (18%) 0 (0%)

II 24 (30%) 22 (36%) 2 (0%)

III 32 (57%) 20 (45%) 12 (100%)

Orthopnea 17 (27%) 13 (27%) 4 (27%) 0.73

Bilateral leg edema 12 (20%) 8 (18%) 4 (27%) 0.23

Systolic blood pressure,

mmHg
105±15 105±14 102±19 0.41

Diastolic blood pres-

sure, mmHg
68±10 68±9 68±15 0.85

BNP, pg/mL
568.4±722.5

(23∗)

368±514

(17∗)

1136.3±962.1

(6∗)
0.02
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Table 5.2: Patient Demographics and Characteristics

All CPX

Instances

(N=68)

Stage C

(n=54)

Stage D

(n=14)

P

Value

NT-proBNP, pg/mL
1635±1671

(31∗)

1783±1687

(25∗)

1018±1587

(6∗)
0.35

Serum Creatinine,

mg/dL

1.40±1.43

(60∗)

1.49±1.61

(46∗)

1.13±0.43

(14∗)
0.38

Loop Diuretics,

Furosemide, mg/d

83.7±93.4

(68%)
64±71 (65%)

146.4±128.1

(79%)
0.01

β-blockers, Bisoprolol,

mg/d

6.1±3.8

(94%)

5.9±3.9

(93%)

6.7±3.7

(100%)
0.54

ACE-Inhibitors, Lisino-

pril, mg/d

18.6±15.5

(10%)

18.6±15.5

(13%)
0 (0%)

ARB, Losartan, mg/d
54.8±30.4

(19%)

61.1±30.9

(17%)

40.6±27.7

(29%)
0.28

ARNI, Sacubitril-

Valsartan, mg/d

102.4±64.2

(58%)

101.2±64.8

(61%)

107.7±65.5

(50%)
0.91

MRA, Spironolactone,

mg/d

29.8±16.7

(85%)

29.3±15.5

(81%)

31.6±20.7

(100%)
0.64

Subsequent Events

(OHT/VAD/Death)a
11(16%) 7 (13%) 4 (29%) 0.16
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Table 5.2: Patient Demographics and Characteristics

All CPX

Instances

(N=68)

Stage C

(n=54)

Stage D

(n=14)

P

Value

Values shown are mean±standard deviation or n (% of population) or mean±standard deviation

(% of population) unless otherwise indicated. Statistical significance between stage C and D

patients in values, where applicable, was evaluated using an unpaired t test or a χ2 test.

ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; ARNI, angiotensin

receptor blocker—neprilysin inhibitor; BNP, B-type natriuretic peptide; CPX, cardiopulmonary

exercise testing; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro b-

type natriuretic peptide; NYHA, New York Heart Association; OHT, orthotopic heart transplan-

tation; VAD, ventricular assisted device implantation.

∗Number of CPX test instances with available laboratory results.

aSubsequent events were recorded up to 6 months after the completion of the study. In the cases

where 1 cardiopulmonary exercise testing patient had multiple events (e.g., VAD, followed by

transplant later), only the first occurring event was counted as subsequent events for a particular

patient.

In the case of the validation set, similar results were obtained using SCG and ECG

features separately: RMSE of 2.28±1.04 mL · kg–1 · min–1 vs 3.52±1.5 mL · kg–1 · min–1,

respectively (P < .001) and a corresponding R2 of 0.76 vs 0.36. Similarly, combining the

SCG and ECG features improved the estimation accuracy (RMSE of 2.28±0.93 mL · kg–1 ·

min–1 and R2 of 0.76) slightly compared with SCG features only, although the improvement

was not significant (P > .05).

In the case of comparing SCG features with ECG-derived HR in estimating instanta-

neous VO2, SCG features resulted in a significantly higher R2 of 0.63 compared with 0.31

using HR only for the training–testing set (P < .05), and correspondingly 0.76 compared
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Table 5.3: Cardiopulmonary Exercise Test Responses

All CPX
Instances
(N=68)

Stage C
(n=54)

Stage D
(n=14)

P Value

Peak VO2, ml/kg/min 15.58±4.82 17.21±3.92 9.32±1.93 <0.001
Percent predicted peak
VO2, %

58±21 63±20 37±9 <0.001

VE/VCO2 slope 33.35±6.65 32.44±6.48 36.82±6.34 0.04

VO2 at AT, ml/kg/min
11.79±3.95
(62*)

12.92±3.33
(50*)

7.08±2.69
(12*)

<0.001

Peak oxygen pulse,
ml/beat

12.02±3.68 12.91±3.47 8.59±2.24 <0.001

Peak respiratory exchange
ratio

1.05±0.12 1.07±0.11 0.96±0.12 0.002

Exercise duration, s 672±235 743±200 401±148 <0.001
Peak heart rate, beats/min 120.06±23.8 124.57±22.79 102.64±19.77 0.002

Values shown are mean±SD. Statistical significance between stage C and stage D subjects in values,
where applicable, was evaluated using an unpaired t test
∗Number of CPX instances with detectable AT points, Modified V-slope method was used to detect

the AT points.

Figure 5.6: Regression and classification results on the training–testing set. (a) Correlation
analysis between VO2 predicted vs VO2 actual for the training and testing set. (b) The blue
curve is showing the receiver operating characteristic (ROC) curve for the support vector
machine (SVM) classifier with a radial basis function kernel for the training and testing set.
The red line is the ROC curve for classification based on random chance. The area under
the blue ROC curve (AUC) is 0.74.

with 0.25 using HR only in the validation set (P < .05). The corresponding RMSE values

were 2.55±1.16 (SCG) vs 3.58±1.54 mL · kg–1 · min–1 (HR) for the training–testing set
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and 2.28±1.04 (SCG) vs 3.66±1.74 mL · kg–1 · min–1 (HR) for the validation set.

Figure 5.7: Regression and classification results on the validation set. (a) Correlation anal-
ysis between VO2 predicted vs VO2 actual for the validation set. (b) The blue curve is
showing the ROC curve for the SVM classifier with radial basis function kernel for the
validation set. The red line is the ROC curve for classification based on random chance.
The AUC of the blue ROC curve is 0.92.

5.5.2 Classification

Table 5.4 and Table 5.5 show the classification results using the support vector machine

with a radial basis function kernel for the training–testing and validation sets, respectively.

Accuracy, sensitivity, and specificity obtained for the training–testing set were 0.84, 0.91,

and 0.64, respectively, whereas for the validation set, they were 0.83, 0.86, and 0.67 re-

spectively. Fig 5.6 (b) and Fig 5.7 (b) show the receiver operating characteristics curve

of the classifier with an area under the curve of 0.74 and 0.92 for the training–testing and

validation sets, respectively.

5.5.3 Peak VO2 Estimation

Fig 5.8 shows the correlation analysis and Bland–Altman analysis between measured and

estimated peak VO2 values using SCG and ECG features for all 68 CPX instances, with a

percentage error of 20.74% and an R2 of 0.5.
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Table 5.4: Confusion Matrix for Classification on the Training-Testing Set

n=44 Predicted Stage C Predicted Stage D
Actual Stage C 30 (TP) 3 (FN) 33
Actual Stage D 4 (FP) 7 (TN) 11

34 10

TP = True Positive, FN = False Negative, FP = False Positive, TN= True Negative
Accuracy = 0.84, Sensitivity = 0.91, Specificity = 0.64, Positive predictive value = 0.88 and

Negative predictive value = 0.7

Table 5.5: Confusion Matrix for Classification on the Validation Set

n=24 Predicted Stage C Predicted Stage D
Actual Stage C 18 (TP) 3 (FN) 21
Actual Stage D 1 (FP) 2 (TN) 3

19 5

Accuracy = 0.83, Sensitivity = 0.86, Specificity = 0.67, Positive predictive value = 0.95 and
Negative predictive value = 0.4

Figure 5.8: Results of peak VO2 estimation. (a) Correlation analysis and (b) Bland–Altman
analysis between predicted peak VO2 vs actual peak VO2 for all 68 CPX instances used in
the study.

5.5.4 Peak HR-Based Regression and Classification

The correlation analysis between the peak VO2 and the peak HR resulted in an R2 of 0.23

for all 68 CPX instances. In contrast, estimation of the peak VO2 using the peak HR using

the same regression model and LOSO cross-validation approach used with SCG features

resulted in an R2 of 0.19 between the measured and estimated peak VO2 values for all 68
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CPX instances. The Bland–Altman confidence interval was calculated to be 17.1 mL · kg–1

· min–1 in this case. In the case of classifying the patients based on peak HR alone into

stage C and stage D HF, the resultant area under the curve values for the receiver operating

characteristics curve were 0.59 for the training–testing set and 0.54 for the validation set.

5.5.5 Discussion

With this proof-of-concept study, we have shown the potential of a small, lightweight,

wearable patch capable of measuring SCG and ECG to estimate beat-by-beat VO2 estima-

tion throughout a standard CPX procedure. Our results have shown that features from the

wearable patch may capture the changes in cardiopulmonary demand during exercise and

may be used to differentiate between stage C and stage D HFrEF. These promising initial

results provide a foundation for determining cardiopulmonary variables and the clinical

status of patients with HF in their daily life and activities using wearable sensors. With

further research, this approach could enable remote monitoring of these patients outside

clinical settings.

An important finding in this work was that the features from the SCG signal were more

salient in estimating VO2 as compared with the ECG signal. Many Holter-type patches

are currently available for ECG measurement and have been used in studies for monitoring

patients with HF [41, 42]. Additionally, smartwatches are commercially available and can

measure HR and possibly HR variability (provided there is minimal motion artifact). Al-

though such commercially available tools are convenient and readily applicable to studies

in patients with HF, the results from this article demonstrate that HR-based features may

not provide sufficient value in assessing cardiopulmonary health in patients with HF dur-

ing exercise. Rather, approaches using a combination of ECG- and SCG-based sensing are

needed such that VO2 and a patient’s clinical status can be accurately determined during

exercise. This result is consistent with our prior work [23], where changes in the SCG sig-

nal in response to a 6-minute walk test were found to be more salient in assessing clinical
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state for patients with HF than ECG or HR features alone.

Another important, and perhaps surprising, finding in this work is that the signal qual-

ity of the SCG signals measured during treadmill exercise in patients with low signal levels

overall (patients with HF) was sufficiently high to enable accurate estimation of VO2. The 2

main factors allowing such high signal quality to be obtained during exercise from a signal

that has typically been limited to low motion/vibration environments only were the follow-

ing: (1) the improved wearable patch we have developed that was used in this work employs

the lowest noise microelectromechanical system accelerometer available, with a noise floor

that is 2.5 times lower than any other microelectromechanical system accelerometer used

in prior studies to the best of our knowledge; and (2) the direct coupling of the patch to

the chest wall at the sternum with a triangular configuration of ECG electrodes provides a

rigid and robust mechanical interface to the body from which SCG signals can be reliably

recorded, even in the presence of motion artifacts. Thus, the results of this work may form

a foundation upon which future efforts focused on assessing the mechanical aspects of left

ventricular function during movement can be designed and realized.

From the result with peak VO2 estimation, it is apparent that the model underestimated

and overestimated peak VO2 for very high and low values of measured peak VO2, respec-

tively. This limitation is well-known in machine learning-based models, because it will try

to produce results close to the overall mean of the distribution rather than extreme values.

Increasing the number of patients with a broader spectrum of exercise capabilities may de-

crease the estimation accuracy for the extreme peak VO2 values in future studies. Also, a

point to note here is that the regression model presented here was trained to learn the un-

derlying relationship of SCG and ECG features with beat-by-beat VO2, not only peak VO2.

Maximal effort covers only a small portion of the CPX protocol. This can be attributed

to the comparatively lower performance of peak VO2 estimation in our analysis compared

with the estimation of the beat-by-beat estimation of VO2.

Although the measurement of VO2 values at less than peak may not currently be clin-
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ically relevant, one can imagine that with the capability of estimating VO2 accurately for

submaximal exercise tasks, such as walking upstairs or outdoors, the ability to assess pa-

tients with HF outside of clinical settings may be enhanced. Thus, in future clinical care

scenarios where digital data collection methodologies are being leveraged, the measure-

ment of VO2 in submaximal tasks could potentially become an important and clinically

relevant capability.

Comparing the results of peak VO2 estimation using our method with peak HR-based

method demonstrates that augmenting HR with cardiomechanical features may result in

a higher correlation coefficient and smaller confidence interval for estimating peak VO2.

The SCG signal features resulted in a more robust classification performance for separat-

ing patients with stage C and D HF as well. Future work should focus on improving the

estimation accuracy of peak VO2 from wearable SCG and ECG signals.

The peak VO2 was used along with the VE/VCO2 ratio to determine the severity of HF

(stage C and D) in these patients. In our regression analysis, the algorithm was trained to

learn the underlying features of the SCG and ECG signals to estimate instantaneous VO2

throughout the CPX protocol, whereas the classification algorithm was trained to learn

the underlying features of the SCG and ECG signals to determine the severity (stage C vs

stage D) of HF for these patients. The regression model can be used to estimate VO2 during

submaximal exercise levels as well as maximal effort, whereas classification tasks can give

1 label to the whole CPX test. These preliminary findings, however, need verification in

a larger patient population with a variety of exercise levels. Because peak VO2 played a

key role in determining the true class of the patients, there can be some common SCG and

ECG features that were used by both regression and classification models. Future work

should examine both SCG and ECG features from both maximal and submaximal exercise

to relate to the severity of HF and investigate the underlying physiological relationship

between them.

It should also be noted that, although the regression and classification approaches used
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in this work are “black box,” as is the case for any machine learning technique, the relative

importance of SCG frequency domain features vs. ECG-HR features does provide some

insight into possible physiologic mechanisms behind the relationship between SCG signals

and VO2. Specifically, the changes in the frequency domain characteristics of the signals

might suggest the presence of nonlinearity (i.e., harmonics) in the vibrations of the chest in

response to the heartbeat at higher levels of exercise and VO2. Another potential mechanis-

tic link could be in the relationship between some frequencies of the SCG signal and stroke

volume, which is an important factor constituting VO2. Nevertheless, these mechanistic

links are conjecture at this point and should be investigated in the future using studies with

direct hemodynamic measurements (e.g., right heart catheterization) taken simultaneously

with SCG signals to characterize the origin and characteristics of the signal in the context

of left ventricular function and health.

This study also has several limitations that should be noted. Our dataset had only 21%

patients with stage D HF (25% in the training–testing set and 13% in the validation set),

resulting in higher peak VO2 for patients with stage D HF. For a few cases of patients

with stage C HF with a very high peak VO2compared with the rest of the population, our

model underestimated their VO2 and corresponding peak VO2 estimation. In future studies,

we will increase the number of patients and incorporate patients with a broader spectrum

of exercise capabilities, which may decrease the estimation error for these extreme cases.

Similarly, our classification model classified 30 of 33 stage C CPX instances accurately,

whereas 7 of 11 stage D CPX instances were accurately classified in the training–testing set.

For the validation set, it classified 18 of 21 stage C CPX instances accurately, whereas 2 of

3 stage D CPX instances were accurately classified. The comparatively poor performance

in the classification of patients with stage D HF can be associated with a smaller number of

patients with stage D HF (n=14) in our dataset, the shorter duration of exercise compared

with patients with stage C HF, and greater pathophysiologic differences among patients

owing to various HF-related diseases. Increasing the number of patients with stage D HF
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in future studies should increase the classification accuracy for patients with stage D HF as

well.

This preliminary study demonstrated the potential of using advanced machine learning

algorithms to estimate continuous VO2 throughout the CPX procedure and clinical status

of patients with HF, both in a training–testing set and a separate validation set. Results in

the validation set were comparatively better than the training–testing set. One reason can

be that our validation set had fewer patients with stage D HF by chance compared with the

training–testing set, and our model performed well for the patients with stage C HF because

it has more patients with stage C HF to learn from in the training phase. Incorporating more

patients with stage D HF in future studies should verify these initial findings in a large set

of population pool.

In this work, we have only estimated VO2. Future work should focus on estimating

other gas exchange variables (e.g., VCO2, VE, and tidal volume) from the CPX and to

investigate the underlying mechanisms. Additionally, we have collected data only from

patients with HFrEF. Future studies can assess the efficacy of this sensor in patients with

HF with preserved ejection fraction. In addition, these tests were performed in a controlled

clinical setting with trained professionals. The data from home or an unsupervised setting

may be of lower quality compared with the data obtained here. Future studies can elucidate

whether wearable SCG and ECG parameters measured during normal activities of daily

living can be predictive of the parameters measured during extensive CPX.

5.6 Results and Discussion from Healthy Subject Study

5.6.1 Comparison of Different Feature Sets of SCG with ECG

Table. 5.6 shows the RMSE in ml/kg/min and R2 values for different combinations of fea-

ture sets extracted from the wearable signals. Statistically significant differences existed in

these results, according to the Friedman test (p<0.05). We performed Wilcoxon signed-

rank tests on the different feature sets to investigate the significance of their differing ac-
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curacy values. All the feature sets described in this table included an AP signal feature

(except HR-based linear regression model) in addition to the features explicitly stated.

Table 5.6: RMSE (ml/kg/min) and R2 for VO2 estimation from different feature sets of SCG
(Amplitude, Ampl, Frequency, Freq and Time, Time ) and ECG using XGBoost, and HR
using linear regression model

Treadmill Protocol Outside Walking Protocol
Feature Set RMSE R2 RMSE R2

Ampl 4.06±1.06 0.76 4.8±1.53 0.52

Freq 3.68±0.98 0.77 4.85±1.31 0.57

Time 5.42±1.39 0.45 5.13±1.18 0.45

ECG 7.48±1.83 0.17 5.81±1.07 0.4

Ampl+ECG 4.24±1.18 0.72 4.46±1.56 0.58

Freq+ECG 3.99±1.28 0.71 4.30±1.47 0.64

Time+ECG 5.07±1.79 0.5 4.89±1.66 0.47

Ampl+Freq 3.78±0.98 0.78 4.79±1.53 0.54

Ampl+Time 4.04±1.27 0.68 4.93±1.62 0.47

Freq+Time 3.9±1.33 0.67 4.92±1.41 0.48

Ampl+Freq+ECG 3.98±1.27 0.75 4.52±1.52 0.59

Ampl+Time+ECG 4.27±1.54 0.64 4.81±1.67 0.48

Freq+Time+ECG 4.27±1.61 0.61 4.69±1.65 0.51

Ampl+Freq+Time 3.87±1.18 0.73 4.95±1.57 0.47

Ampl+Freq+Time+ECG 4.12±1.4 0.68 4.75±1.66 0.5

HRa 6.31±1.72 0.44 5.94±1.76 0.35

aA simple linear regression model was used for HR only. For other feature sets, XGBoost
regression model was used to generate the reported results.

As shown in table 5.6, of the single SCG feature sets, frequency domain features

achieved the lowest RMSE and highest R2 for the treadmill protocol. Amplitude fea-

tures were slightly worse (p>.05), and time-domain features performed the poorest (p<.05

compared to both frequency and amplitude). For the outdoor protocol, frequency features

achieved the best R2 and had an RMSE only slightly above (p>.05) that of amplitude fea-

tures (with a narrower confidence interval). Time-domain features once again performed
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Figure 5.9: (a) Correlation analysis for VO2 predicted vs VO2 actual (b) Bland-Altman
analysis for VO2 predicted and VO2 actual for treadmill exercise. (c) Correlation analysis
for VO2 predicted vs VO2 actual (d) Bland-Altman analysis for VO2 predicted and VO2

actual for outside walking exercise. In the Bland-Altman plots, the solid black line indicates
the mean while the blue dashed lines indicate mean ± 1.96 x standard deviation.

the worst, though not significant (p>.05). From these results it appears that frequency do-

main features provided the most salient information for estimating VO2 from SCG in both

settings.

Better performance of frequency domain features in the estimation of VO2 is under-

standable as exercise leads to substantial changes in the shape and timing of waveforms.

For example, the shortening of isovolumetric contraction time associated with increased

sympathetic tone compresses the SCG waveform in time and thus increases high-frequency

components [77]. VO2 relates to Stroke Volume [120], which has been shown to have a re-
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lation with the amplitude features of the SCG signal [39]. This result is consistent with

[121, 23], where researchers have used frequency-domain features of the SCG signal to

assess clinical state for patients with HF. When comparing the frequency and amplitude

features, frequency features performed slightly (p>0.05) better. Our results show that

exercise-induced changes of VO2 change not only the amplitude of the SCG signals but

also the signal power at different frequency bands. Frequency domain features captured

these changes better than amplitude features.

ECG features alone performed worse than all three SCG features alone in both protocols

(p<0.05 compared to all three feature sets of SCG for the treadmill protocol and p<0.05

compared to amplitude and frequency feature sets of SCG for the outside walking protocol),

using XGBoost regression algorithm. As other studies have demonstrated high linear corre-

lations between HR and VO2 [122, 123, 115, 124], the comparatively poor performance of

ECG features (instantaneous HR and R-to-R interval) in our approach is likely attributable

to the overly-complex nature of an XGBoost regression model and/or the addition of the

R-to-R interval feature. To compare our results with the common HR-based approach, we

also fit a simple linear regression model with HR only to estimate instantaneous VO2 using

the same LOSO cross-validation approach, which achieved an RMSE of 6.31±1.72 and

R2 of 0.44 for the treadmill protocol and an RMSE of 5.94±1.76 and R2 of 0.35 for the

outside walking protocol. Still, these results are significantly poorer (p<0.05) compared to

the amplitude and frequency domain features of SCG. Separate from the HR-based simple

linear regression model with LOSO cross-validation, we also performed a simple correla-

tion analysis between instantaneous HR and VO2 across all subjects, which resulted in an

overall R2 of 0.49 and 0.42 for the treadmill and outside walking protocol, respectively.

A similar analysis on each subject individually resulted in a higher R2 of 0.73±0.11 and

0.71±0.16 for the treadmill and outside walking protocol, respectively. The lower value of

the global R2 compared to the subject-wise R2 is in agreement with existing literature [115,

124]. For this reason, researchers often use %VO2-max and %HR-max when attempting
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to show population-level relationships between VO2 and HR rather than their raw values

directly [115, 124, 125, 126, 127]. Overall, these results show the benefit of incorporating

cardio-mechanical information from SCG into a complex machine learning algorithm for

the development of a global regression model to estimate instantaneous VO2 compared to

simple linear models involving only HR-based information.

When combining different feature sets of SCG with ECG in XGBoost regressors, we

achieved our best results (i.e., lowest RMSE and highest R2) on the treadmill protocol using

amplitude and frequency features of SCG (RMSE of 3.78±0.98 ml/kg/min and R2 of 0.78),

which is significantly lower (p<0.05) than amplitude features alone. Still, the lowest RMSE

for the treadmill protocol was obtained using frequency-domain features alone (RMSE of

3.68±0.98 ml/kg/min with frequency-domain features alone vs. 3.78±0.98 with amplitude

and frequency domain features together, p>0.05). For the outdoor protocol, we obtained

our best results using frequency features of SCG and ECG features (RMSE of 4.30±1.47

ml/kg/min and R2 of 0.64). These results were significantly better (p<0.05) than those

from frequency, amplitude, time, and ECG features alone. Best results in RMSE and R2

values for each protocol are shown in bold in Table 5.6. Fig. 5.9 provides a correlation

analysis and Bland-Altman analysis of actual VO2 values and estimated VO2 values, using

the feature set with the lowest RMSE for each protocol. It is apparent that regression

models can generally estimate instantaneous VO2 well on a heartbeat by heartbeat basis.

Fig. 5.10 shows examples of best and worst estimations of VO2 compared to actual

VO2 for both protocols. The same model used in Fig. 5.9 generated the VO2 estimations

here. Even when achieving the worst results in both protocols, as shown in Fig. 5.10 (b)

and (d), the algorithm still tracks relative changes well despite overestimating overall VO2

values. Hence, we see a consistent offset between actual and predicted values in both cases.

From Table. 5.6 in the case of the treadmill protocol, adding ECG features indepen-

dently to both the amplitude feature set and the frequency feature set increased the error

in both cases. This is as expected because the performance of ECG features was the worst
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Figure 5.10: Example of subject-wise VO2 prediction for both exercise tasks: (a) Best case
scenario and (b) worst case scenario for treadmill exercise. (c) Best case scenario and (d)
worst case scenario for outside walking exercise.

among all the feature sets for the treadmill protocol. For the outside walking protocol,

adding ECG features reduced the RMSE for these same two feature sets (p<0.05). For

better VO2 estimation, the selection of feature sets for a global model should incorporate

domain knowledge of cardio-electromechanical responses to ranges of exercise and activ-

ity.

Overall from Table 5.6, the estimation results were better for the treadmill protocol

than for the outside walking protocol. This is expected as the treadmill protocol took place

indoors with standardized speeds and conditions, whereas the outside walking protocol

was completed at the subject’s pace with variable atmospheric conditions depending on the

day. Future studies should examine wider varieties of exercise with subjects of broader

age range and health status to apply this methodology in estimating instantaneous VO2

throughout daily activities.

5.7 Conclusions

We have demonstrated that a wearable chest patch-based sensor capable of recording ECG

and SCG may be used to estimate VO2 from CPX for patients with HF using a global re-

gression model and may facilitate the determination of the clinical state of the patient. We

have also demonstrated that the patch-based sensor is capable of estimating VO2 in uncon-

trolled daily life activities with healthy individuals. We thus demonstrated that wearable
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sensors can potentially be used to monitor cardiopulmonary health and to stratify disease

risk for patients with HF both in an inpatient and in an outpatient management system.

The approach described in this work may thus provide the capability to perform longitu-

dinal CPX testing for patients with HF in clinical and hospital settings such that treatment

and management can be titrated and personalized based on physiologic state. Because CPX

testing has been established as a valuable technique in assessing patient state for HF, broad-

ening the ability to perform such testing in longitudinal patient management may improve

the quality of care and life for patients with HF. Future studies should verify these prelim-

inary findings in a larger patient population with a wider spectrum of exercises, in both a

clinical environment and normal daily living activities.
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CHAPTER 6

TRACKING CHANGES IN PULMONARY CONGESTION WITH

SEISMOCARDIOGRAM DURING RIGHT HEART CATHETERIZATION WITH

VASODILATOR CHALLENGE IN PATIENTS WITH HEART FAILURE

6.1 Overview

Tracking changes in pulmonary congestion and the consequent proactive readjustment of

treatment plans have shown efficacy in reducing rehospitalization for patients with HF.

However, the cost-prohibitive nature of these sensing systems precludes their usage in

the large patient population affected by HF. In this study, we estimated the changes in

pulmonary artery mean pressure (PAMP) and pulmonary capillary wedge mean pressure

(PCWMP) due to vasodilator infusion during right heart catheterization, using changes in

wearable SCG. We have collected data from 19 subjects with HF, and using a population

regression model estimated the changes in PAMP and PCWMP with the changes in si-

multaneously recorded SCG. The leave-one-subject-out cross-validated result shows good

estimation accuracies for both: an RMSE of 2.6 mmHg and R2 of 0.77 for estimating

changes in PAMP, and an RMSE of 2.2 mmHg and R2 of 0.88 for estimating changes in

PCWMP. The result of this work shows that changes in SCG can be used to track changes

in pulmonary congestion due to vasodilator infusion.

6.2 Introduction

The increased filling pressure of the heart is an early indicator of the onset of worsening HF

[25]. Continuous monitoring of PA pressure using an implantable sensor (CardioMEMS)

to track the increased filling pressure of the heart and adjustments of care (i.e., titration

of medications, early follow-up clinic visits, etc.) have shown efficacy in reducing read-
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mission for patients with HF [19, 128, 129]. CardioMEMS (CardioMEMS HF System,

Abbott, Chicago, IL) is a microelectromechanical system (MEMS) based pressure sensor

that is implanted in the pulmonary artery and which sends the pulmonary artery pressure

once per day to the clinicians [24] and the clinicians can change the course of the treatment

(by titrating medication) based on the pulmonary congestion to keep the pulmonary artery

pressure within a recommended limit [19]. This proactive adjustment of care has been

shown to reduce the HF-related readmission by 33%.

Another recent technologies from Sensible medical (Netanya, Israel), remote dielectric

sensing (ReDS), also tracks the pulmonary congestion (lung fluid content) via measuring

the dielectric properties of the thorax (with the sensor placed on the right mid- thorax)

non-invasively and has shown efficacy in reducing HF-related rehospitalization by 87%

and 79% compared to pre- and post ReDS guided therapy in a clinical study consists of 50

patients with HF[22]. Both of these technologies have shown the importance of tracking

pulmonary congestion (a biomarker for tracking the filling pressure of the heart) as an early

indicator of the worsening HF condition and the efficacy of hemodynamically-guided HF

management system to reduce hospitalization. However, costs related to both the device (>

$25,000 for CardioMEMS and $48,000 for ReDS) make them financially non-accessible

for the large patient population affected with HF in the US, which is roughly 6.2 Million

Americans [130]. For that reason, a low-cost alternative that can track changes in pul-

monary congestion has the potential to help millions of people affected with HF not only

in the US but also in the whole world.

With the advent of MEMS-based sensors and digital health technologies, various wear-

able monitoring systems have been explored by the clinicians and researchers to monitor

cardiovascular health both in healthy individuals and patients with HF. One such method-

ology is Seismocardiogram (SCG), the local vibration of the chest wall due to the cardiac

cycle, which has shown to track cardiac contractility with exercise and physiological pertur-

bation [76, 131, 95]. Recent studies have shown that SCG can be used to classify patients
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with decompensated HF [23, 121]. Based on these results on SCG in tracking hemodynam-

ics for both healthy individuals and patients with HF, we hypothesized that the changes in

pulmonary artery pressure (PAP) and pulmonary capillary wedge pressure (PCWP) could

be tracked with changes in SCG signal.

In the current work, we recorded SCG and ECG signals from patients with HF using

a previously validated custom-built wearable patch during the right heart catheterization

(RHC) [132] procedure, which is a gold standard clinical procedure to measure pulmonary

congestion via measuring pulmonary artery pressure (PAP) and pulmonary capillary wedge

pressure (PCWP). During the RHC procedure, the PAP and PCWP were modulated via

infusing systemic vasodilator, and changes in the mean pressure values were estimated via

tracking the changes in simultaneously recorded SCG signals. We have analyzed various

portions of the SCG signals to understand the important segments that are providing more

relevant information regarding changes in PAP and PCWP.

6.3 Methods

6.3.1 Experimental Protocol

The study was conducted under a protocol reviewed and approved by the University of

California, San Francisco, and the Georgia Institute of Technology Institutional Review

Boards. All patients provided written consent before the procedure. We have conducted

the RHC procedures on a total of 19 patients with HF (14 with HFrEF and 5 with HF-

pEF, four female, age: 55±14, weight: 92±18 kg, height: 175±10 cm, ejection fraction

[EF]: 32±19). All of the patients were recruited from the Catheterization laboratory at the

University of California, San Francisco.

Fig 6.1 (a) illustrates the experimental setup and placement of different sensors on each

patient. Before starting the RHC procedure, the custom-built wearable device was placed

just below the suprasternal notch, and the RHC computer was time-synchronized with the

wearable patch.
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Figure 6.1: (a) Experimental setup with a wearable patch placed on a subject undergoing
right heart catheterization (RHC) procedure, with axes (on the upper-right) showing the
axes of the seismocardiogram (SCG) signal. (b) Representative cardiogenic signals: elec-
trocardiogram (ECG), triaxial SCG (head-to-foot [HtoF], lateral [Lat], and dorsoventral
[DV]), and RHC pressure (RHCP) signal. (c) Wearable patch top, bottom, and inside view
with the bottom view showing the snaps for ECG electrodes.

For beginning the RHC procedure, a local anesthetic agent was administered subcu-

taneously at the access site. To access the venous, an 18-gauge needle was inserted in

the femoral/jugular site, and once the venous access was obtained, an appropirately sized

sheath is placed in the vein and secured. A pulmonary artery swan-ganz catheter [133] was

advanced through the sheath into the vein and guided to the right atrium, right ventricle,

pulmonary artery, and pulmonary capillaries following standard protocol [134]. The blood

pressure values at different intra-cardiac and pulmonary chambers were recorded at the end

of expiration from the RHC computer. When the baseline pressure values were recorded, a

systemic vasodilator (nitroprusside/nitroglycerin) was infused and the RHC pressure values

were again recorded at the end of expiration. When all the pressure values were recorded,

the catheter was taken out from the veins, and subjects were monitored for post-procedure

recovery. The wearable ECG and SCG signals were recorded continuously throughout the
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RHC procedure, and the timestamps from both the RHC and wearable system were used

to extract the specific portions of the wearable signals later in the analysis, to estimate

the changes in PAP and PCWP from the changes in wearable signals. Fig 6.1 (b) shows

the wearable signals with corresponding PAP signal from the RHC computer during the

baseline RHC recording from a representative subject.

6.3.2 Sensing Hardware

RHC pressure values were extracted by the expert RHC clinicians from the RHC Mac-Lab

computer (Mac-Lab Hemodynamic Recording System, GE Healthcare, Chicago, IL, USA).

We collected the wearable ECG and triaxial SCG (axes: head-to-foot (HtoF), dorso-

ventral (DV), and lateral (Lat)), with the same wearable patch described in Chapter 5, as

shown in Fig. 6.1(c). All the ECG and SCG signals were sampled at 1kHz.

6.3.3 Signal Procecssing and Feature Extraction

Fig. 6.2 illustrates the signal processing and feature extraction procedures used for the

wearable signals and the pressure signal from the RHC computer. Both the system were

time-synchronized before the procedure was started. The PA mean pressure (PAMP) and

PCW mean pressure (PCWMP) values for both the baseline (BL) and during vasodilator

infusion (VI) were extracted by the expert clinicians and later used to calculate the changes

in PAMP (δPAMP) and changes in PCWMP (δPCWMP) using the following equations:

δPAMP = PAMPVI − PAMP BL (6.1)

δPCWMP = PCWMPVI − PCWMP BL (6.2)

The PCWMPVI value for one subject was not recorded due to a technical issue in the

Mac-Lab system. For that reason, the δPCWMP value is missing for that subject. In total,
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we had δPAMP values from 19 subjects and δPCWMP values from 18 subjects for this

study protocol.

The synchronized timestamps were used to extract 20 seconds long wearable signals

(ECG and SCG) from both BL and VI state of the protocol when the catheter was at the

pulmonary artery and pulmonary capillaries. The changes in the wearable signals were

analyzed with the δPAMP and δPCWMP values and later used in a population regression

model with cross-validation. The details of the wearable signal processing, feature extrac-

tion, and regression model are given below.

Preprocessing and Noise Reduction

The BL and VI wearable signals were processed (filtering, removal of outliers, and en-

semble averaging) separately and later used to calculate the dynamic time warping (DTW)

distances between the two states. The DTW distances between different portions of the

SCG signals from different axes were used in a regression algorithm to estimate δPAMP

and δPCWMP with leave-one-subject-out (LOSO) cross-validation.

The raw ECG and SCG signals from the wearable patch were digitally filtered (cut-off

frequencies: 0.5–40.0 Hz for the ECG and 1–40 Hz for the SCG signals) to remove out-

of-band noise. We chose these cut-off frequencies to remove out-of-band noise without

distorting the shape of the signals [131]. After the filtering step, we computed a fourth

SCG signal representing the accelerometer magnitude (SCGMag) using the three SCG axes

already obtained (SCGHtoF, SCGLat, SCGDV) according to the following formula:

SCGMag =
√

(SCGHtoF
2 + SCGLat

2 + SCGDV
2) (6.3)

We amplitude normalized the ECG signal (in the 20-second frame) and used the Pan

Tompkins method [135], [136] to detect the R-peaks of the ECG signal. We segmented the

SCG signals (four axes of SCG) into individual heartbeats using the R-peaks of the ECG

signal. We cropped each heartbeat to a duration of 500 ms before and after the R-peak. The
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Figure 6.2: Overview of the method: (a) Wearable ECG and SCG (only showing one axis of the
signal for simplicity) signals were synchronized with the RHCP signal. 20s long signals from both
baseline (BL) and during vasodilator infusion (VI) were extracted when the catheter was recording
pulmonary artery (PA) pressure and in pulmonary capillary wedge (PCW) pressure signals. (b)
The R-peaks of the ECG signal were detected and later used to segment the corresponding SCG
signals into individual heartbeats. Outlier removal and noise reduction steps were performed on the
SCG heartbeats, and features were extracted to be used in the regression algorithm to estimate the
changes in the RHC mean pressure (MP) values (e.g., changes in pulmonary artery mean pressure
[δPAMP], and changes in pulmonary capillary wedge mean pressure [δPCWMP]). The MPBL and
MPVI values were extracted from the RHC Mac-Lab computer and used to calculate the target
variable (δPAMP and δPCWMP). (c) Details on the wearable signal processing: First, the R-peaks
of the ECG signals were detected, and the SCG signals were segmented into individual heartbeats.
Second, SCGBL and SCGVI heartbeats were passed through an outlier removal algorithm (using
principal component analysis [PCA] and Gaussian mixture model [GMM]) and were ensemble-
averaged to have two average SCG heartbeats per axis (one for BL and one for VI). Third, dynamic
time warping (DTW) distances were calculated between the BL and VI heartbeats per axes and used
as features (f) in the regression algorithm.
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500 ms SCG frame before the R peak roughly represents the ventricular diastolic phase, and

the 500 ms SCG frame after the R peak roughly represents the ventricular systolic phase

of the cardiac cycle, as described in Fig. 2.3. We chose the duration of 500 ms before and

after the R-peak based on our previous experience with SCG signals and generic feature

extraction processes [131], as most of the relevant diastolic and systolic cardiac events of

interests (e.g., rapid inflow, atrial systole, isovolumetric contraction, ventricular ejection,

etc.) occur within this time frame, with respect to the corresponding R-peak of ECG. We

chose a constant time window to crop the ECG and SCG signals to have a repeatable and

generic feature extraction process.

Following the heartbeat segmentation of the wearable SCG signals, we removed the

outliers beats from the SCG for the two distribution from the two states (BL and VI) for

each axis and each portion (diastolic and systolic) of the SCG signals separately. For out-

lier removal from a particular distribution, we reduced the dimension of the 500 sample

long SCG heartbeats (for 500 ms long frame with a 1kHz sampling frequency) into three

dimensions by using principal component analysis (PCA) and taking the first three princi-

pal components (PC). This low-level representation of the SCG heartbeats was used in a

Gaussian-mixture model (GMM) to determine the probability that each sample belongs to

a particular distribution (BL or VI) for a particular portion and a particular axis of SCG.

For a particular distribution, the points with the lowest 20% probability were detected as

the outlier for the distribution. The cut-off of 20% was chosen based on the initial anal-

ysis with 10%, 20%, and 30% beats removed as outliers. As most of the power in the

SCG signal stays in the systolic portion of the signal [39], it might end up dominating

the outlier removal in the diastolic portion of the signal. For that reason, the outlier re-

moval was performed separately for the diastolic and systolic portion of the SCG. The

actual SCG heartbeats correspond to the outliers for the distribution were removed and re-

sulted in two separate distribution per axis (SCGBL and SCGVI). The remaining heartbeats

were ensemble-averaged [85] to create two ensemble-averaged heartbeats for BL and VI
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for a particular axis and portion, which were later used to calculate the DTW distances.

The ensemble-averaging step reduced the inherent variabilities and remaining noises in the

SCG heartbeats. Fig. 6.3 shows the ensemble-averaged SCGDV heartbeats from the BL and

VI states and corresponding PAP and PCWP heartbeats.

Dynamic Time Warping and Feature Extraction

To calculate the changes in SCG from BL to VI, we have used dynamic dime warping

(DTW) and compare the DTW distances from different portions of the SCG heartbeats to

the δPAMP and δPCWMP in simple correlation analyses, shown in Fig. 6.4. The DTW is

a time-series analysis method to align signals and find similarities between signals [137].

We have used Euclidean distances as the DTW-based distance calculation between signals

from BL and VI. The DTW distances were calculated from different portions of the SCG

heartbeats: total diastole (-500ms:R-peak), early diastole (-500ms:-200ms), late diastole

(-200ms:R-peak), total systole (R-peak:500ms), early systole (25-150 ms), and late systole

(200-500ms), where negative time means before the R-peak and positive time means after

the R-peak. Early diastole corresponds to the passive ventricular filling, late diastole corre-

sponds to the atrial systole, early systole corresponds to isovolumetric contraction (IVC),

and late systole corresponds to the ventricular ejection phase of the cardiac cycle, as de-

picted in Fig. 2.3. We compared the DTW distances from the different portions of SCG

heartbeats with the target variable in a simple correlation analysis (shown in Fig. 6.4) and

calculated the coefficients of determination (R2) between them to analyze which segments

of the SCG are more relevant to track changes in PAMP and PCWMP. Later, we used the

DTW distances as the features in a regression algorithm to estimate the changes in PAMP

and PCWMP.

86



6.3.4 Regression

Following the feature extraction and simple correlation analysis, a population level re-

gression model with LOSO cross-validation was performed to estimate the δPAMP and

δPCWMP from the DTW distances. We explored different regression algorithms for this

purpose, and from our initial analysis, the Ridge regression model outperformed other re-

gression methods. For that reason, we chose the ridge regression model for detailed anal-

ysis in this work. The Ridge regression method belongs to the class of linear regression

models with l2 regularization where the loss function is the linear least-squares function,

and the regularization is given by the l2-norm [138].

As we have seen in the simple correlation analysis (Fig. 6.4) between the DTW dis-

tances from different portions of the SCG heartbeats and corresponding target variables

(δPAMP and δPCWMP), not all the changes from the different portions of the SCG (i.e.,

DTW distances) are relevant to the changes in the mean pressures (MP). For that reason,

we have performed a feature selection technique using sequential forward selection (SFS)

[139]. We selected the top 5 features as the estimating variables in the regression model.

We used LOSO cross-validation for n subjects. At each fold we trained a Ridge re-

gressor on the selected (using SFS method) DTW distances from n-1 subjects, leaving one

subject out. We then predicted the target variables (δPAMP and δPCWMP) for the left-

out subject, repeating this n-1 more times with a different subject excluded each time. As

a result, we obtained predictions for all subjects. We calculated a root mean squared er-

ror (RMSE) between the estimated target variable (δMPPred) and the ground truth target

variable from the RHC computer (δMPAct):

RMSE =

√√√√1

n

n∑
i=1

(δMP Pred(i) − δMPAct(i))2 (6.4)

where n is the number of subjects. We also performed a simple correlation analysis

and Bland-Altman analysis between the true values and the cross-validated predictions of
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δMP across all subjects. We have performed the Pearson correlation analysis between the

estimated and true δMP to get the statistical significance of prediction and calculated R2

between the true and predicted values. In this work, we considered p-values below 0.05 to

be statistically significant.

6.4 Results & Discussion

6.4.1 Effects of Vasodilator on RHCP and SCG

Fig. 6.3 shows the changes in PAP and PCWP signals and the changes in SCGDV with

vasodilator infusion. One thing to note here is that all the signals shown in the figure are

synchronized with the corresponding R-peak. We can see how the overall mean of the PAP

and PCWP signals are decreased with vasodilator infusion, whereas the systolic portion of

the SCGDV signal is right-shifted with vasodilator. With vasodilator infusion, the PAMP

and PCWMP decrease as well as the preload of the heart (the filling pressure of the heart),

and PEP is inversely correlated with preload [32]. For that reason, with a decrease in

preload, we are observing an increase in PEP, which is as expected. The diastolic portion

of the SCG signal is also changing in morphology; however, the change is not very apparent

compared to the systolic portion of the SCG. From this figure, it is apparent that the changes

in SCG signals (specifically in the systolic portion of the signal) with vasodilators have the

potential to track the changes in PAMP and PCWMP.

6.4.2 Feature Correlation

Fig. 6.4 shows the R2 values between the DTW distances from different portions and axes

of the SCG signals with δPAMP and δPCWMP. In the case of δPAMP, the changes in

SCG during the early systole (IVC period) provide the most relevant information related to

changes in the PAMP, with changes in SCGDV during the IVC period showing the highest

R2 of 0.8 with δPAMP. In the case of δPCWMP, the changes in the SCG during the late

diastole (atrial systole) phase provided the most relevant information related to changes

88



Figure 6.3: Changes in (a) pulmonary artery pressure (PAP), (b) pulmonary capillary wedge
pressure (PCWP), and SCGDV with the infusion of vasodilator for a representative subject,
with brown arrows showing the changes in the respective signals. Time “0” indicates the
location of the corresponding ECG R-peak.

in PCWMP, with changes in SCGMag during the late diastole period showing the highest

R2 of 0.86 with δPCWMP. Overall, the figure is showing that δPAMP is more related to

the changes in the systolic portion (IVC more specifically) of the SCG signal, whereas

δPCWMP is more related to the changes in the late ventricular diastole (i.e., atrial systole)

portion of the SCG. It might be explained with physiological rationale, as the pulmonary

artery is directly connected to the right ventricle, the ventricular systole (contraction) phase

is dominating the changes in PAMP. On the other hand, the pulmonary capillaries are con-

nected to the left atrium and showing more relation with atrial systole. These preliminary

results should be verified with simultaneous imaging modalities, in a large population study
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with diversified subjects with various cardiovascular conditions.

Figure 6.4: Correlation analysis of the target variable (a) δPAMP and (b) δPCWMP with
different DTW distances of corresponding SCG signals, with the colorbar showing the R2
values and the red dotted line indicating the division between ventricular diastole and sys-
tole (i.e., R-peak of corresponding ECG). Total Diastole (-500ms:R-peak), early diastole
(-500ms:-200 ms), late diastole (-200ms:R-peak), total systole (R-peak:500ms), early sys-
tole (25ms:150ms), and late systole (200ms:500ms).

6.4.3 Regression Estimation

Fig 6.5 shows the correlation analysis and Bland-Altman analysis between the actual (mea-

sured) and the estimated δPAMP and δPCWMP values, using the selected five DTW dis-

tances with the labels shown in Fig 6.6. The correlation shows a good estimation accuracy

for both δPAMP and δPCWMP, with RMSE of 2.6 mmHg and an R2 of 0.77 for δPAMP,
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and RMSE of 2.2 mmHg and an R2 of 0.88 for δPCWMP. The Bland-Altman analysis

also shows that the regression model was able to predict very high to a very low value

of changes well with a 95% error of estimation within ±5.2 mmHg for δPAMP and ±4.4

mmHg for δPCWMP. The results are showing that the changes in SCG can be used to track

the changes in PAMP and PCWMP. However, this is a pilot study, and the results from this

initial study should be verified with a large population in a longitudinal study.

Figure 6.5: (a) Correlation analysis for δPAMP predicted vs. δPAMP actual, (b) Bland-
Altman analysis for δPAMP predicted and δPAMP actual, (c) correlation analysis for
δPCWMP predicted vs. δPCWMP actual, and (d) Bland-Altman analysis for δPCWMP
predicted and δPCWMP actual. In the Bland-Altman plots, the black line indicates the
mean, while the blue dashed lines indicate mean ± 1.96× standard deviation (SD)
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6.4.4 Feature Importance

Fig. 6.6 shows the relative weights of the features in the Ridge regression for the estimation

of δPAMP and δPCWMP, with the top feature related to δPAMP being the change SCGDV

during the IVC period and the top feature related to δPCWMP being the change SCGMag

during the atrial systole period. Similar to the results obtained from the individual correla-

tion analysis (in Fig. 6.4) between the target variables with the DTW distances, all the top 5

features for the δPAMP are from the systolic portion of the SCG. In the case of δPCWMP,

three of the top five are from the diastolic portion of the SCG and two are from the systolic

portion of the SCG. Both Fig. 6.4 and Fig. 6.6 are showing the importance of the diastolic

portion of the SCG in estimating δPCWMP. Most of the SCG researches are concentrated

on the systolic portion of the signal [39, 58]. Our results suggest that diastolic portion of

the SCG signal also has the potential to provide relevant information regarding pulmonary

congestion.

Figure 6.6: Relative feature importance ranking (i.e., relative weights) of the features in
the regression algorithm for (a) δPAMP and (b) δPCWMP. Dias: Total Diastole, ED: Early
Diastole, LD: Late Diastole, Sys: Systole, ES: Early Systole, and LS: Late Systole. Time-
length for the segments is explained in Fig. 6.4
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6.5 Conclusion and Future Work

In this work, we have estimated the changes in pulmonary artery mean pressure and pul-

monary capillary wedge mean pressure in patients with HF due to vasodilator infusion with

the changes in simultaneously recorded SCG signal. We have developed a global regression

model for the estimation of δPAMP and δPCWMP using state-of-the-art machine learning

algorithms validated with leave-one-subject-out cross-validation. We have demonstrated

that tracking changes in SCG can track changes in the pulmonary congestion (the filling

pressure of the heart), which has the potential to be used for remote home management for

patients with HF. Overall, this work demonstrates the capability of an unobtrusive wearable

patch to track pulmonary congestion. Success in this regard represents a considerable step

towards the hemodynamically-guided affordable HF management for the mass population

affected by HF.

Though this preliminary study has shown good promise in tracking changes in PAMP

and PCWMP in patients with HF, it has multiple limitations. This preliminary study was

conducted with 19 persons only, including both patients with HFrEF and HFpEF. However,

the pathophysiology of the two HF subgroups may present different relationships between

the changes in SCG with changes in PAMP and PCWMP. Due to the small number of sub-

jects for this preliminary study, we could not analyze the difference. Future studies should

verify the analysis of this preliminary study in a large patient population with HF, with

emphasis on the difference between the HF subgroups. We have estimated the changes in

PAMP and PCWMP only. Future studies should look into changes in other key variables

from RHC procedure, e.g., right atrium pressure, right ventricle pressure, stroke volume,

cardiac output, and cardiac index. In this study, we have considered the change in pul-

monary congestion with vasodilator infusion only. Future study should include other phar-

macological agents, e.g., diuretics, beta-blocker, ace-inhibitors, and verify whether changes

in SCG can be used to track changes due to other pharmacological agents as well. We have
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collected data during the RHC procedure in a controlled clinical environment for acute

changes in pulmonary congestion. To be a reliable sensor for outpatient HF management,

the device and the methods need to be verified with a longitudinal remote home pulmonary

congestion monitoring systems (e.g., CardioMEMS and ReDS). Future studies should also

focus on how the motion artifacts and home data quality may impact estimation accuracy.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions of the Presented Work

Recent work on digital health technologies shows promise in transforming HF management

by taking proactive measures based on the sensing of hemodynamic congestion. These new

technologies have improved the individuals’ quality of life and reduced overall health care

cost by improving the worsening symptoms and decreasing readmission. However, the

cost-prohibitive nature of these digital technologies precludes their usage in the large pa-

tient population affected by HF, both in the US and around the world. To overcome this

limitation and to make these technologies broadly accessible, the work presented in this

dissertation aims to pave the way toward an inexpensive, wearable cardiovascular hemo-

dynamic monitoring system that can provide reliable information to clinicians to remotely

monitor the patient population in a hemodynamically-guided HF management system.

We began this dissertation by comparing different wearable sensing modalities to track

changes in cardiac contractility via estimation of PEP, during baseline and exercise recov-

ery in a healthy population dataset. For the first time, we have presented that a gyroscope-

based SCG sensor provided more relevant information regarding PEP compared to an

accelerometer-based SCG sensor. We further presented our argument on the difficulty of

using these biomedical signals in a population-level model due to the inter-subject variabil-

ity of these signals and how extracting general time, frequency, and amplitude features and

developing advanced machine learning regression models to estimate relevant and reliable

hemodynamic features can be used to overcome these difficulties.

We further validated our custom-built wearable patch to record cardioelectromechan-

ical signals (ECG and SCG) and signal processing and machine learning technologies in
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patients with HF during two clinical gold-standard procedures, which showcases the po-

tential of using this sensing modalities and data analysis algorithm in helping a real-world

patient population. For the first validation, we have validated our sensor and analysis algo-

rithm during the CPX test in patients with HF, which is a gold-standard clinical procedure

to stratify risks associated with HF and facilitate advanced heart therapy recommendations.

Our method was accurate in estimating instantaneous VO2 throughout these procedures and

in predicting the outcome of the CPX test in a separate independent validation set, using

the wearable signals alone. Doing so has opened up newer possibilities in longitudinal

monitoring of cardiopulmonary health in patients with HF in their everyday life conditions

during exercise and daily activities. We further translated these methodologies in track-

ing VO2 in a minimally controlled walking activity, in a healthy population dataset, which

showcases the promise of this methodology in cardiopulmonary health monitoring for both

healthy individuals and patients with HF.

For the second validation study, we have validated our sensor and analysis algorithm

in tracking changes in pulmonary artery pressure and pulmonary capillary wedge pres-

sure during the RHC procedure, which is a gold-standard clinical procedure to moni-

tor pulmonary congestion and increased filling pressure of the heart in patients with HF.

Tracking changes in congestion (via tracking pulmonary artery pressure and lung fluid

content) has already shown efficacy in reducing rehospitalization in patients with HF in

hemodynamically-guided treatment methods using CardioMEMS and ReDS system. Our

result of reliably tracking the changes in pulmonary congestion (via tracking changes in

PAMP and PCWMP) has shown the efficacy of this noninvasive low-cost wearable sen-

sor to monitor the pulmonary congestion in patients with HF in a clinical setting and has

opened the possibility of similar tracking in an outpatient HF management. The possible

outpatient HF management can track the worsening HF condition and help the clinicians to

take proactive measures in remote HF management with the help of the SCG-based sensors.

With all three major contributions of this work, we establish the possibilities of us-
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ing SCG-based wearable sensing, signal processing, and machine learning algorithms to

monitor patients with HF during exercise and daily-life environments. The methodologies

presented here have the potential to yield an accessible and affordable HF management

system that the clinicians and caregivers can leverage for this large patient population.

7.2 Future Directions

Various potential future endeavors can stem from the research presented here. All three

major works presented here were carried out mainly in a controlled laboratory or clini-

cal environment, and a follow-up study was carried out in a minimally controlled outdoor

setting. Future work should take these initial findings to test them in more everyday life

scenarios to quantify if the wearable sensing system and analysis algorithm can be used in

monitoring cardiovascular and pulmonary health in daily living activities (e.g., household

chores, different forms of activities and exercises, etc.), where signal quality and both inter-

and intra-subject variability may pose challenges in using these signals to extract relevant

information from them. This is a necessary step towards true ubiquitous remote home mon-

itoring of the patients with HF. Additionally, most of the patients with HF in this work were

HFrEF. Future work should include more patients with HFpEF, cardiomyopathy, and other

CVDs to analyze how this sensing system and the presented models can generalize in a

diversified data set. Moreover, we have mostly focused on remote monitoring in this work.

The work also has potential application in inpatient decision making using these wearable

sensing modalities. Future work should investigate incorporating these sensing modali-

ties in an intensive care unit (ICU), for inpatient management, and for disease progression

monitoring.

The models and algorithms developed in this works were accurate in tracking changes

in cardiac contractility, oxygen uptake, and changes in pulmonary congestion. Similar

models and algorithm can be extended, perhaps through adding other sensing modalities,

into estimating other key hemodynamic parameters, such as LVET, SV, CO, VE, VCO2,
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pressures in other intra-cardiac and pulmonary chambers.

Though we have shown the accuracy of these sensing systems and advanced machine

learning algorithms in monitoring hemodynamics with patients with HF and healthy sub-

jects only, we can translate a similar approach to extract relevant information for patients

with other chronic conditions, such as tracking cardiotoxicity due to cancer treatments in

cancer survivors and cancer patients undergoing treatments, tracking cardiovascular health

with neurological conditions. Lastly, though these sensing modalities have been researched

and explored for decades, much is still unknown about the origin and pathophysiologically

driven variations of these signals. Future work should investigate inter-subject variability

and effects of different underlying cardiovascular and respiratory conditions on these sig-

nals in a mathematical framework or through finite element method modeling to understand

the changes in the SCG signals we would expect from person to person due to difference

in BMI, gender, and underlying disease conditions. This can, in turn, help us to use this

sensing modality in a population-level model for the large number of patient populations

affected by CVDs and other chronic health conditions.
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