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SUMMARY

Quantum computers are domain specific accelerators that can provide large speed

up for important problems. Quantum computers with few tens of qubits have already

been demonstrated and machines with 100+ qubits are expected soon, these machines

face significant reliability and scalability challenges. Due to limited and unreliable qubits,

these machines are operated in the Noisy Intermediate Scale Quantum (NISQ) mode of

computing. The computation on a NISQ machine can produce incorrect output. There-

fore, in the NISQ mode, a program is run thousands of times, and the output log is ana-

lyzed to infer the correct output. However, the error rates on current quantum hardware

are such that the likelihood of obtaining the right answer is still quite small for NISQ

machines, and this problem only becomes worse for programs with a large number of

instructions. This dissertation shows how the reliability of near-term quantum comput-

ers can be improved by developing software techniques.

Our first work exploits the variability in qubit error rates to steer more operations to-

wards qubits with lower error rates and avoid error-prone qubits. We observe variation

in the error rates of different physical qubits and links. This can impact the decisions for

qubit movement and qubit allocation. Our experiments on the IBM quantum computer

show that the device level variability in error rates has a significant impact on the ap-

plication fidelity, and by carefully mapping the quantum program on physical devices,

we can improve the application fidelity. To that end, we present Variation-Aware Qubit

Movement (VQM) and Variation-Aware Qubit Allocation (VQA), compiler policies that

optimize the movement and allocation by accounting device characterization.

In the second work, we show that on the NISQ hardware, correlated errors produce

incorrect answers more frequently than the correct answer. This severely impairs the

utility of near-term quantum computers as the correct answer may not be distinguished

from the incorrect outcomes. Current NISQ compiler policies (including the work on
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variation-aware mapping) exacerbate the problem of correlated errors as they are de-

signed to find one best mapping and use that mapping for all the trials. Using IBM

Quantum Computer, we show that "one mapping for all trials" policy increases the cor-

related errors. If the mapping becomes susceptible to a particular form of error, then all

the trials will get subjected to the similar error, which can cause the same wrong answer

to appear as the output for a significant fraction of the trials. To mitigate the vulner-

ability to such correlated errors, we propose an Ensemble of Diverse Mappings (EDM).

EDM uses diversity in qubit allocation to run copies of an input program with a diverse

set of qubit mappings, thus steering the trials towards making different mistakes. The

proposed EDM amplifies the correct answer and suppresses the incorrect answers by

combining the output probability distributions of the diverse ensembles.

The third work in this thesis develops program transformation to mitigate state-

dependent bias in qubit measurement errors. Qubit measurement is typically the most

error-prone operation on the commercially available quantum computers. On the IBM

quantum computer, measurement errors show state-dependent bias. For example, qubit

in a state-1 is more prone to measurement error than state-0. To mitigate this measure-

ment bias and improve measurement fidelity, we propose Invert-and-Measure, which

transforms the program data from a vulnerable state to a robust state at runtime and

then performs the measurement in the stronger state. We propose two designs for Invert-

and-Measure. First, Static Invert-and-Measure (SIM), which executes two instances of

the program, one with standard measurements and the other with inverted measure-

ments and combines the results. Second, Adaptive Invert and Measure (AIM), which

learns the bias of different states using runtime profiling and produces targeted inver-

sions to increase the likelihood of obtaining the correct answer.



CHAPTER 1

INTRODUCTION

1.1 Motivation

Current microprocessors can perform a computational task million times faster than

the early microprocessors designed in the 1970s. This enormous improvement in per-

formance was possible due to advances in semiconductor technology and intelligent

system design. The innovations in semiconductor technology doubled the number of

transistors on a microprocessor chip every two years. Intel-4004, an early micropro-

cessor, used 2,300 transistors. In comparison, the recently launched IBM Power-10 has

18 billion transistors. Computer designers and architects used this growing number of

transistors to maximize the performance of the processors.

To minimize the time to solve a computational problem, we can (1) Decrease the

time required for a single computational operation. (2) Perform operations in paral-

lel. (3) Reduce the number of total operations. Computer architects leveraged shrink-

ing transistor feature size with aggressive pipelining to reduce the latency of operations.

Furthermore, using efficient microarchitectural designs, architects leveraged instruction-

level and memory-level parallelism to reduce time to solution. The growing number of

transistors also enabled packing more cores to run multiple tasks concurrently. Using

hardware and software techniques, designers have pushed the performance of existing

high-performance computing systems beyond petaFLOPS.

Summit, one of the largest supercomputers, can perform 1017 operations every sec-

ond using more than 200,000 cores and two petabytes of DRAM [1]. Although impres-

sive, many computational problems are still beyond the capabilities of supercomput-

ers like Summit. For example, to find prime-factors of a 1000-bit number, we will need
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about 10150 steps in the worst-case. Even when we use all the Summit cores, the time

required to factor will be more than the age of the Universe. The high computational

complexity is not unique to the prime factorization. There are numerous real-world

problems, which require exponentially scaling time. Unfortunately, such problems do

not become tractable by reducing the instruction latency or exposing more parallelism

at the hardware-level. This limitation is fundamental. As the order of the total number

of steps required to solve any computational problem is independent of the computer’s

design and only depends on the algorithm. Quantum computers promise to solve prob-

lems that are beyond the capabilities of conventional computers.

Quantum computer uses properties of quantum bits (qubits) to solve problems that

are hard to solve on conventional computers. Qubit device properties enable efficient

quantum algorithms. For example, Shor’s algorithm on a quantum computer can fac-

tor a 1000-bit number within one day. Furthermore, quantum computers can efficiently

simulate molecules and materials. Simulation of molecules is at the core of many im-

portant applications – from discovering new medicines to building efficient solar panels

and manufacturing environment-friendly fertilizers. Unfortunately, simulating a molecule

on a conventional digital computer requires exponentially scaling memory and time.

Quantum computer using qubits’ innate ability to manipulate quantum states provides

an efficient way to simulate quantum systems and speed up problems beyond conven-

tional computers’ reach.

Quantum computers are domain-specific accelerators. Like conventional acceler-

ators and co-processors, we need a host processor and software layers to execute an

application on the quantum computer. In this thesis, we focus on building system soft-

ware for existing and near-term superconducting quantum computers. In the last two

decades, quantum computing has moved from theoretical ideas to realizable systems

(albeit at a small scale). The last three years represent significant milestones in quantum

computing as Google and IBM demonstrate quantum computers with 50 plus qubits [2,
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3], and IBM gave access to their quantum hardware via a cloud service. These prototype

quantum computers provide an opportunity to understand the challenges in building

practical quantum computing systems and use these insights to improve the design of

future quantum computers.

Quantum hardware is unreliable, as qubit devices are fickle and encounter errors.

Qubits are used to represent and manipulate a large state space using quantum super-

position. Unfortunately, quantum superposition can be easily perturbed, resulting in

an erroneous quantum state. Qubits can be protected against errors using Quantum

Error Correction Codes (QEC). Unfortunately, QEC requires significant overheads, typi-

cally incurring 10-100 physical qubits to encode one fault-tolerant qubit. Existing and

near-term quantum computers with tens to hundreds of qubits may not have the ca-

pacity to utilize QEC due to the limited number of qubits. Such quantum computers

with 10 to 1000 noisy qubits are termed as Noisy Intermediate Scale Quantum comput-

ers (NISQ) [4]. Even though NISQ machines lack fault-tolerance, they can still provide

benefits for a class of quantum applications [5].

The NISQ machines can produce an incorrect output as the computation is sub-

jected to errors. Therefore, to infer the correct answer, the program is run thousands of

times on the NISQ machine to produce a probability distribution of the possible output

states. However, NISQ machines are significantly limited due to hardware errors. On the

IBM quantum computers, the average operational error rate is more than 0.1%. The high

operational error rate limits the number of error-free operations we can perform before

error corrupts the program state and produces incorrect output with high probability.

To leverage the near-term quantum computers with hundreds of qubits, it is essential to

mitigate hardware errors.
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1.2 Thesis Statement

The limited reliability of quantum hardware poses a significant challenge in leveraging

near-term quantum computers. By understanding the nature of hardware errors on a

quantum computer, we can design software techniques to mitigate hardware errors.

1.3 Thesis Contributions

The Quantum compiler decomposes the quantum functions into a sequence of quan-

tum operations. Compilers aim to minimize the number of operations to improve pro-

gram reliability. In addition to improving decomposition, this thesis demonstrates soft-

ware techniques to mitigate errors by leveraging the noise characteristics of quantum

hardware. This thesis makes the following contributions.

1.3.1 Variability-Aware Compiler Policies to mitigate hardware errors

The hardware error rates have high variability on existing quantum computers as some

qubit devices are more likely to encounter errors. In the NISQ model, to ensure correct-

ness, all the computations are necessary to be error-free. Thus high error rate on a few

qubits can significantly degrade the application fidelity. Mapping more operations on

reliable qubits substantially improve the application fidelity. However, mapping opera-

tions on the physical qubit devices is challenging due to hardware constraints.

Quantum computers use entanglement to generate correlated states. The creation

of an entangled state is a fundamental building block of all quantum algorithms. A two-

qubit operation can generate an entangled pair of qubits. However, to execute a two-

qubit operation on the hardware, input quantum states must be located on the qubit

devices that are connected via a physical link. Unfortunately, on most quantum hard-

ware platforms, qubit devices have only nearest neighbor connectivity, and entangling

two non-neighboring qubits is not natively supported by the hardware. However, by
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using data movement (known as SWAP) operations in software, qubit variables can be

moved from a device to another such that any two-qubit variables can be entangled.

SWAPs are unreliable, and inserting SWAPs increases the likelihood of errors. The

number of SWAPs can be minimized by finding the best possible qubit allocation (map-

ping of program variables to hardware qubits) and sequence of SWAPs (routing qubits

from one location to another for entanglement). Thus, researchers are designing com-

pilers for SWAP minimization. Unfortunately, the SWAP minimization policy does not

always demonstrate increased program reliability with decreasing SWAPs on real quan-

tum hardware.

SWAP minimization policies assume that all physical links have an identical failure

rate. On the contrary, a significant variation exists in the error rates among qubits and

physical links. Our experiments on IBM quantum computers show worst-case error rate

can be up to 5x higher than the average error rate. We exploit this non-uniformity in the

device error rate to improve application reliability. We propose variation-aware qubit

movement and allocation policies that optimize the movement and allocation of qubits

to avoid unreliable qubits and links and guide more operations toward reliable qubits

and links.

Our evaluations on the IBM machine demonstrate up to 1.9 times improvement in

application reliability. Moreover, variability in the error rate is not limited to IBM ma-

chines. The characterization of Google’s 53-qubit machine also demonstrates significant

variability in errors. This variability results from fabrication defects and drifts in oper-

ating conditions, and it cannot be eliminated by better device engineering alone. To

improve application reliability, we need consolidated system-level efforts.

1.3.2 Diversifying Quantum Programs for Robust Inference

NISQ computers can produce incorrect output, as the computation is subjected to er-

rors. The applications on a NISQ machine attempt to estimate the correct output by run-

5



ning the same program thousands of times and logging the output. If the error rates are

low and the errors are not correlated, the correct answer can be inferred as the one ap-

pearing with the highest frequency. Unfortunately, quantum computers are subjected to

correlated errors, which can cause an incorrect answer to appear more frequently than

the correct answer.

We observe that recent work on qubit mapping (including work on variation-aware

mapping [6]) attempts to obtain the best possible qubit allocation and uses it for all the

trials. This approach significantly increases the vulnerability to correlated errors—if the

mapping becomes susceptible to a particular form of error, all the trials will be subjected

to the same error, which can cause the same wrong answer to appear as the output for a

significant fraction of the trials.

To mitigate vulnerability to such correlated errors, we proposed a compiler trans-

formation that leverages the concept of diversity using Ensemble of Diverse Mappings

(EDM). EDM introduces diversity in qubit allocation to run copies of an input program

with a diverse set of mappings, thus steering the trials toward making different mis-

takes. By combining the output probability distributions of the diverse ensemble, EDM

amplifies the correct answer and suppresses the incorrect ones. Experiments with the

IBM-Melbourne (14-qubit) machine show that EDM improves the relative strength of

the correct answer by up to 2.3 times.

1.3.3 Program Transformations for Mitigating Quantum Measurement Errors

Near-term quantum computers may not have enough quantum bits (qubits) to enable

fault-tolerant hardware using quantum error correction, and on such NISQ computers,

mitigating hardware errors is a primary challenge in enabling quantum speedup. On

current IBM quantum hardware, qubit measurement is the most error-prone operation;

it has an average measurement error rate of 4 to 8%. Moreover, near-term quantum

algorithms that can solve hard optimization and chemistry problems are significantly
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vulnerable to measurement errors.

On IBM quantum hardware, some quantum states are more vulnerable to measure-

ment errors than others because of repeatable data-dependent measurement bias; the

error rate for measurement changes depending on the state being measured. For exam-

ple, measuring an all-zero state ("00000") on IBM’s five-qubit machine has a fidelity of

84%, but this fidelity drops to 62% while measuring an all-one state ("11111").

We developed a compilation technique that transforms the data from a vulnerable

state to a stronger state and then performs the measurement. For example, when state

"11111" is measured, inverting and measuring ("11111" −→ "00000") improves the fidelity

from 62% to 78%. Moreover, to handle arbitrary bias, we designed an adaptive transfor-

mation that learns the error rate for different states using runtime profiling and pro-

duces targeted inversions to increase the likelihood of obtaining the correct answer.

The proposed compiler transformation improved reliability (the odds of finding error-

free output) three times on IBM quantum hardware. The proposed ideas are not limited

to IBM hardware, as a 53-qubit Google machine reported bias in measurement errors

(up to 10 times difference in error rate for measuring state "0"v s."1") [7], which can be

exploited to mitigate measurement errors.
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CHAPTER 2

BACKGROUND

This chapter will discuss the key primitives for gate based quantum computers, pro-

gramming model and system architecture of near-term quantum computers.

2.1 Quantum Computing Primitives

In this section, we will discuss the fundamental properties of qubits, quantum gates,

and qubit measurements.

2.1.1 Quantum Bits

Conventional computers use binary data representation to store and process informa-

tion. In contrast, a quantum computer represents data using quantum bits (qubits). To

understand the difference between a digital bit and a quantum bit, consider a sphere

shown in the Figure 2.1. To represent a state of digital bit on this sphere, we can pick any

two points on the sphere. For example, the north pole and the south pole on the sphere

can represent "1" and "0" respectively. Whereas, the state of a qubit can be viewed as

an arbitrary point on the sphere. In the Figure 2.1(a), state of qubit ψ is represented as

vector |ψ〉. This vector |ψ〉 represents a state of single qubit, is a linear superposition

of two basis states |0〉 and |1〉, which are orthogonal vectors such that |ψ〉 =α |0〉+β |1〉,
where α and β are complex numbers. Similarly, the state of two qubits would require

four complex numbers as this state φ would be superposition of four orthogonal basis

vectors |φ〉 = a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉 and the state of N qubits would be a super-

position of 2N basis states - |000..0n〉 to |111..1n〉 represented as a complex vector with

2N elements. This ability to represent exponentially scaling state with linearly increas-

ing qubits enables a quantum computer’s computational power. In quantum programs,
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Figure 2.1: (a) Bloch Sphere representation of qubit state (b) Quantum measurement
operation

a collection of N qubits can be used as a qubit register, which can be of arbitrary size

and, we can perform bitwise qubit operations on the qubit registers.

2.1.2 Quantum Measurement

Measurement operation reads the state of the qubit and yields a binary result with the

probability depending on the state of the qubit. As shown in Figure 2.1(b), when a qubit

with |ψ〉 is measured, it produces "|0〉" with probability of |α|2 and "|1〉" with probability

of |β|2. Similarly, reading n-qubit state outputs 2n basis states( 000..0n to 111..1n) with

probabilities corresponding to the collective state.

The measurement of qubit provides partial information. The actual state is a prob-

ability distribution, and a qubit measurement is analogous to one sample drawn from

this distribution. Moreover, during the process of qubit measurement, the state evolves

randomly and losses the original information. Thus to estimate a quantum state, we

have to prepare the identical state and measure it repeatedly.
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Figure 2.2: (a) Single qubit gate rotates the state vector (b) Sequence of single qubit gate
can perform any desired transformation

2.1.3 Quantum Gates

A quantum gate is used to manipulate the qubit state. Ideally, any arbitrary unitary op-

erator can be used as a quantum gate. This unitary is not constrained in size and can

be applied on an arbitrarily large number of qubits. However, most quantum hardware

platforms support single-qubit and two-qubit gates. Fortunately, we can emulate larger

unitary operations using a sequence of the single-qubit and two-qubit gates.

A single-qubit gate rotates the qubit state on the Bloch sphere as shown in the Fig-

ure 2.2(a). Theoretically, any arbitrary rotation is possible. However, six single-qubit

gates: X, Y, Z, H, T, S are most commonly used in quantum algorithms. X-gate rotates

the quantum state, |ψ〉 by 1800 about X-axis such that the probability amplitudes α and

β are fliped. On the other hand, Z-gate rotates the state vector around the Z-axis by 180o ;

this results in inversion of phase, as shown in the Figure 2.2(b). Hadamard (H) gate ro-

tates the state by 90o along both the X and Z axis. When applied to a qubit in |0〉 state,

the H gate produces a state with an equal superposition of |0〉 and |1〉. The T-gate and

S-gate introduce phase by rotating state about Z-axis by π
4 and π

2 , respectively.

It is possible to perform multi-qubit operations. For example, quantum gate which

operates on two physical qubits (two-qubit gate) can be used to create a correlated or

entangled quantum state. Most quantum computers support Controlled-NOT (CNOT)

operation. CNOT operation is performed on two qubits. The inputs of CNOT gate are

termed control qubit and target qubit. CNOT inverts the state of the target qubit based

on the value of the control qubit and does not change the value of the control qubit. For

mathematical notation and more details on the type of quantum gates, refer Appendix A.
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Figure 2.3: a) Quantum program represented as a circuit (b) Quantum program de-
scribed using quantum assembly (qasm) language.

2.2 Quantum Circuits

Quantum circuits can describe and visualize quantum programs. Quantum circuits

are a sequence of quantum gates applied on the qubit registers, as shown in the Fig-

ure 2.3(a). A practical quantum circuit has four components - Qubit Register, Gate Op-

erations, Measurement Operations, and Classical Registers. The sequence of gate op-

erations evolves the collective qubit state of the qubit register in time. The measure-

ment operation generates a binary string upon measurement, and a classical register is

used to store the output. To estimate the output, a quantum circuit is executed multiple

times, and the output binary string is logged for every trial. Quantum circuits can also

be visualized using the quantum assembly (qasm) program as show in the Figure 2.3.

The Quantum circuit representation does not support loops, and operations from

left to right represent qubit evolution in time. Moreover, existing quantum computers

do not support conditional instructions at runtime. However, existing quantum devel-

opment libraries mix high-level host languages (such as python) and domain-specific

syntax to synthesize quantum circuits at compile time. Note that quantum programs

are statically compiled to generate quantum executable circuits that are fully unrolled.

On a quantum computer, copying a qubit is not allowed, and measurement destroys
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the state of the qubit state. These constraints can be effectively represented in the form

of a quantum circuit where the total number of qubits is fixed, and once measured, the

qubit variable collapses to the classical bit. In this dissertation, we will use the term

quantum program and circuit interchangeably.

2.3 Organization of Quantum Computer

Quantum computers are domain-specific accelerators, which can speed up a class of

problems by enabling efficient algorithms. Like any other accelerator, quantum com-

puters are connected to a traditional host computer that offloads quantum executable

onto the quantum computer. As shown in the Figure 2.4(a), a quantum computer has

two components: qubits and control computers. Qubits hold the quantum state, and

the control computer manipulates the qubit state by performing quantum gates. In a

quantum program, the state of a physical qubit is treated as a quantum variable, and a

sequence of quantum operations are used to evolve the quantum state. At the end of the

quantum program, the qubits are read by the control computer, and the output is sent

back to the host machine.

Figure 2.4(b) shows a simplified computing stack for quantum computers. A quan-

tum program is compiled for a specific target device. The compiler converts the se-

quence of operations described in the program into low-level gate pulses. The control

computer applies theses gate pulses to perform quantum operations. In this thesis, we

will focus on compiler techniques, which transforms the original program to mitigate
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hardware errors. Appendix B summarizes the typical organization and architecture of

existing quantum computers.

2.4 Hardware Errors on Quantum Computers

In this section, we will discuss challenges in running quantum algorithms to solve prac-

tical problems. Quantum states are fundamentally fickle as the quantum effects are ob-

servable only at extremely low energy levels, and even a small noise in the system can

disrupt the expected behavior of qubits. During the execution of the quantum program,

qubits can encounter Coherence-errors, Gate-errors, and State Preparation and Mea-

surement (SPAM) errors.

2.4.1 Coherence Errors

Coherence errors result from a natural tendency of qubit devices to attain the lowest

possible energy state. Coherence errors are analogous to retention errors in conven-

tional systems. However, conventional computers are only subjected to bit-flip errors,

whereas quantum computers can experience bit-flip, phase flip errors, amplitude damp-

ing, and small rotational errors. The coherence times for current quantum computers

are short. For example, on IBM quantum computers, T1 coherence time is about 75µS.

2.4.2 Gate Errors

Quantum operations or gates manipulate the state of a qubit. Unfortunately, quantum

gates are not perfect as performing operations on qubits can result in undesired state

changes. For example, on an IBM quantum computer, a single qubit gate that is used to

manipulate the state of an individual qubit can encounter an error with a probability of

0.1% such that there is about one in thousand chance that a single-qubit gate operation

would produce an undesired state change. Whereas, a two-qubit gate that entangles the

state of two quantum bits show an average error rate of 4% on IBM quantum comput-
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ers. The two-qubit operational errors are one of the most dominant forms of errors on

quantum computers as they limit the number of operations we can perform before a

program encounters an error.

2.4.3 SPAM Errors

Current quantum computers are susceptible to State Preparation and Measurement (SPAM)

Errors. For instance, on IBM machine, all qubits are initialized to "|0〉" state at the be-

ginning of the program. Unfortunately, there is a small chance that a qubit may not be

correctly initialized. This is known as the state preparation error. Similarly, reading the

state of a qubit can be erroneous. Qubit is a superposition of two basis states:|0〉 and |1〉.
When measured, qubit produces a binary output: either 1 or 0, depending on the degree

of superposition. Unfortunately, the process of measurement is erroneous as sensing

the state of the qubit is challenging due to the extremely low energy associated with the

qubit. On IBM machines, the average qubit measurement error rate is 5% to 8%, whereas

the worst-case measurement error rate can be up to 30%.

2.5 Quantum Error Correction

One of the most significant challenges towards building a scalable quantum computer is

the fundamentally fickle states of the qubits. The state of a qubit is analog in nature, and

even a small perturbation can modify this state. Fortunately, enabling fault-tolerance

in quantum computers is possible using quantum error correction (QEC). The funda-

mental idea behind QEC is if error modes are limited, then using redundancy in infor-

mation encoding, we can detect and correct the qubit errors. By generating a correlated

entangled state and continuously evolving it, we can create a logical qubit that effec-

tively restricts qubit errors to behave as bit-flip errors or phase flip-errors rather than

arbitrary errors. Such phase-flip and bit-flip errors can be detected and corrected using

ideas similar to classical error correction.
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Figure 2.5: Iterative Computing Models for NISQ.

QEC utilizes redundancy in encoding quantum information. For instance, a QEC

uses 10 to 100 noisy physical qubits to construct one fault-tolerant logical qubit. The

logical qubit can tolerate high operational and decoherence errors by continuously de-

tecting and correcting errors. QEC dominates the tasks that the control processor has

to carry-out as QEC protocols execute operations on all qubits at all times. Further-

more, QEC adds extra-steps to ensure fault-tolerance for logical operations. The quan-

tum computing model that assumes fault-tolerance is known as Fault-Tolerant Quan-

tum Computers (FTQC). Building programmable FTQC quantum systems is an open

problem.

2.6 Near-term Quantum Computers

Near-term quantum computers with 100 to 1000 qubits do not have enough qubits to

leverage QEC completely to achieve fault-tolerance. Such quantum computers with a

noisy and limited number of qubits are termed as Noisy Intermediate Scale Quantum

(NISQ) computers [4]. Many applications highlighted by Morello [5] can still be viable

with such NISQ computers by relying on application properties to perform useful work.

Figure 2.5 describes a general computing model for the NISQ. In this model, the given

program is run multiple times, and the output of each trial is stored in the output log. As

long as the correct results appear with non-negligible probability, we can infer the cor-

rect results by analyzing the output log. Quantum application domains such as quan-

tum chemistry simulations and optimization can leverage algorithmic error-resilience
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and utilize NISQ machines. By mitigating errors on the hardware, these applications

can outperform the existing conventional computers.

Designing NISQ machines to suppress noise is of paramount importance as the reli-

ability of the NISQ machines directly correlates to their usefulness. This thesis focuses

on compiler policies that can improve the reliability of existing and near-term quantum

computers operated in NISQ mode.
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CHAPTER 3

VARIABILITY-AWARE COMPILER POLICIES TO MITIGATE HARDWARE ERRORS

3.1 Introduction

Quantum entanglement is essential for enabling quantum advantage. An entangled

qubit state is generated by coupling a pair of qubits using a two-qubit operation. On

a superconducting quantum hardware, we can entangle only the qubits that are con-

nected via a physical link. Existing commercial quantum computers are designed using

networks that offer limited link connectivity, only to a few of the neighboring qubits, and

this connectivity dictates the qubits that can be entangled.

For example, Figure 3.1(a) shows a hypothetical quantum computer with five qubits

where circular nodes represent the qubits and edges represent the coupling links be-

tween qubits. A pair of qubits can only be entangled if there exists a coupling link be-

tween them. Fortunately, quantum computers provide a SWAP instruction that can ex-

change the state of two neighboring qubits. For example, we want to entangle data qubit

Q1 and data qubit Q3 which are initially residing at physical qubit-A, and physical qubit-

C respectively. We can perform this operation in two steps: first swap the data between

qubit-A and qubit-B such that Q1 and Q2 interchanges positions. Next, entangle qubit

data Q1 and Q3. In quantum programs, a large number of SWAP instructions are inserted

to move data so that entanglement between arbitrary qubits can be performed.

The Qubit-Movement policy deals with the problem of selecting a route to move the

state of one qubit to another. For example, in Figure 3.1(a), we may choose the route A-

B-C for going from A to C, as doing so would minimize the number of SWAP operations.

The Qubit-Allocation policy deals with the problem of mapping of program qubits to the

physical qubits. For example, in Figure 3.1(a), if we want to map three program qubits
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(a)

Possible Mappings
Q1, Q2, Q3   A, B, C
Q1, Q2, Q3  B, C, D
Q1, Q2, Q3  C, D, E
Q1, Q2, Q3  D, E, A

Map Q1, Q2, Q3 
A, B, C, D, E

(c)(b)

Path

A-B-C
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#SWAP
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qreg Q1,Q2,Q3;

Cx(Q1,Q3); 

Cx(Q3,Q2);

Cx(Q1,Q3);
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Figure 3.1: (a) A hypothetical quantum computer with five-qubits – the number on the
edge denotes the success probability when that edge is used (b) Variation-Aware Qubit
Mapping (VQM) can use more SWAP instructions and yet have higher probability of suc-
cess (c) Variation-Aware Qubit Allocation (VQA) selects the mapping that improves over-
all system reliability.

to five physical qubits, we would choose any of three connected qubits (for example, Q1

maps to A, Q2 maps to B, and Q3 maps to C), as placing qubits nearby results in effi-

cient movement. Prior studies [8, 9, 10] have proposed qubit allocation policies based

on minimizing the number of SWAPs. These studies assume uniformity in the cost of

performing SWAPs. However, in reality, we expect variation in the behavior of different

qubits and links, and optimizing for a uniform behavior may not result in the best policy

when device variation is taken into account.

To understand the degree of variation in the error-rates of different qubits and links,

we analyze the publicly-available characterization data for the IBM-Q20 (20 qubits) ma-

chine. Such a characterization is performed for the IBM-Q20 several times a day, and

we analyze the data for 52 days. We present the statistics of coherence time for all the 20

qubits, the error rate in performing single-qubit operations, and the error-rate in per-

forming two-qubit operations across different qubits. For all these metrics we observe

significant variation in the behavior of different qubits and links – in essence, qubits and

links are not created equal. For example, our detailed analysis for the links connecting

different qubits show that the error rates can vary by as much as 7x across different links

in the system. Such variation can have a significant impact on the overall system relia-

bility (Section 3.3).
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To analyze the impact of variation on the overall system reliability, we use the Prob-

ability of Successful Trial (PST) metric. The PST metric indicates the probability that the

program finished successfully without any error. As IBM-Q20 is not open to the pub-

lic, we build a reliability evaluation infrastructure to compute the PST for the IBM-Q20

machine using the machine configuration and error rates based on the characterization

data. Our evaluations show that the device variation has a significant impact on the

system reliability. To improve system reliability, we should steer more instructions and

movement to strong qubits and links, and fewer instructions and movement on weaker

qubits and links. We propose such Variation-Aware policies to exploit the variation in

the behavior of qubits and links, assuming error-rates are known at compile time (Sec-

tion 3.4).

We propose Variation-Aware Qubit Movement (VQM) policy that routes the qubit

from source to destination based on minimizing the probability of failure. For exam-

ple, in Figure 3.1, the success probability of each link is denoted as a weight of the edge.

Let us assume, we want to entangle data qubit Q1 and data qubit Q3. A conventional

variation-unaware policy will use a path that minimizes the number of SWAP instruc-

tions, taking the path A-B-C, resulting in an overall probability of success of 42% for

these operations. With VQM, we would take the route A-E-D-C, even though this route

has more SWAP instructions, since it has an overall probability of success of 56.7%, as

shown in Figure 3.1(b). VQM shows a significant improvement in PST (Section 3.5).

We also propose Variation-Aware Qubit Allocation (VQA) policy that performs the

mapping of program-qubit to physical-qubit with the aim of improving the overall sys-

tem reliability. For example, in Figure 3.1(c), we want to allocate three program qubits to

5 physical qubits. A conventional mapping policy can choose any of the listed mapping

possibilities as they all would have similar cost in terms of SWAP operations. However,

with VQA, we would use the mapping D, E, A, as this mapping uses the strongest links,

and would improve the overall system reliability. We extend prior proposals for Qubit-
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Allocation with VQA and show that VQA+VQM can improve the PST of the IBM-Q20 by

up to 1.7x (Section 3.6).

In addition to the simulation-based studies for IBM-Q20, we evaluate our proposed

policies on a real quantum machine (IBM-Q5) and demonstrate that our policies con-

tinue to provide a significant improvement on the system reliability even in a realistic

setting. VQM+VQA improves the PST of the IBM-Q5 by up to 1.9x (and average 1.36x)

(Section 3.7).

We also perform a case study, where we analyze programs that require less than

half the available qubits, and we have an option of either executing two copies of the

program concurrently (to increase the rate of trials) or executing only one copy but

map the work on strongest qubits and links (to improve the PST of the given trial). We

demonstrate that, in certain cases, having one strong copy has better overall perfor-

mance (successful trials per unit time) than having two concurrently running copies.

Thus, variation-awareness can enable intelligent partitioning for NISQ machines (Sec-

tion 3.8).

3.2 Data Movement on Quantum Computers

On IBM quantum machines, two-qubit operations are performed using a coupling-link

that connects two qubits. For practical reasons, superconducting quantum comput-

ers do not allow all-to-all connectivity between the qubits and use a restricted network

(such as Mesh) that allows connectivity between only the neighboring qubits. The net-

work structures impose constraints on which qubits can be entangled. Fortunately,

there are SWAP operations that can move the qubit from one location to another and

enables entanglement of any two arbitrary qubits. Even if the quantum machine does

not provide a native SWAP instruction, it can be accomplished using three CNOT gates.

Ideally, we want to engineer quantum computer where each qubit is connected to

every other qubit and such unrestricted connectivity would allow any two arbitrary qubits
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Figure 3.2: (a) Layout of a 6-qubit quantum computer, (b)-(e) are possible routes from A
to F. Note that options (b)(c)(d) have an identical number of swaps and (e) incur higher
swaps. An intelligent policy would choose one from (b)(c)(d).

to get entangled. Unfortunately, such an organization would require O(N 2) links, which

is impractical even for the 49-72 qubit machines that are available today. The links in

a quantum machine are not just wires, but resonators that operate at a dedicated fre-

quency, and having a large number of such circuits operate reliably on the chip is a dif-

ficult task. Therefore, almost all qubit machines use a Mesh network (or a variant that

allows diagonal connections). Such networks restrict that the movement of qubits can

occur only between neighboring qubits. For example, for the hypothetical 6-qubit ma-

chine shown in Figure 3.2(a) there is no direct connection between qubits A and F. The

communication between these qubits must happen via intermediate qubits. Such re-

strictions give rise to the two sub-problems: (a) Qubit-Movement policy, and (b) Qubit-

Allocation policy.

Qubit-Movement Policy: This policy decides the route that should be used while mov-

ing the data from one location on the chip to another. Given that such movement is

done using SWAP instructions between neighboring qubits, it is reasonable to select the

route that minimizes the number of SWAP instructions. Figure 3.2(b)-(e) shows the four

possible routes from A to F. The first three (b)-(d) requires only 3 SWAP operations, while

(e) requires 4 SWAP operations. The policy may arbitrarily pick one of the routes from

(b)-(d).

Qubit-Allocation Policy: This policy decides the initial mapping of program qubits to

the data qubits. For example, it is preferred that qubits that communicate frequently

be placed near each other. For example, if we wanted to place 4 qubits on the machine
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shown in Figure 3.2(a), we would not keep these qubits on the four corners, and in-

stead we will try to use the middle two qubits (D and E), as doing so would minimize

the SWAPs, required for communication. In fact, recent studies [8, 9, 10] have proposed

such allocation policies based on minimizing the number of SWAPs.

In this work, we use the compiler developed by Zulehner et al. [9] as the baseline for

both Qubit-Allocation and Qubit-Movement. Our baseline compiler compiles the quan-

tum program for given connectivity to generate the instruction schedule (with addi-

tional extra swaps) and initial program-qubit to physical-qubit mapping. It is designed

to minimize the number SWAPs by using a greedy search algorithm. Baseline policy for

Qubit-Movement and Qubit-Allocation assume uniform cost (specifically reliability im-

pact) in performing SWAP operations. However, in reality, there can be significant vari-

ation in reliability of qubits and the links. Policies that take this variation into account

can provide better overall system behavior (performance, reliability etc.) To enable such

variation-aware policies, we first analyze the publicly available characterization data for

the IBM-Q20 machine as IBM-Q20 has the most number of qubits for which characteri-

zation data is publicly available.

3.3 Error Characteristics of IBM Quantum Computers

Qubits are fickle as even a small perturbation in the environment can change the state of

a qubit. The error rate for a qubit can be defined as the probability of undesired change

in the qubit state. Errors in quantum computers can be classified into two categories:

retention-errors or operational-errors. Performing operations on qubits can also affect

their state incorrectly due to errors, as quantum operations are not perfect. For exam-

ple, an instruction that rotates the state by some desired angle can introduce extra er-

roneous rotation. Operational error-rate is defined as the probability of introducing an

error while performing the operation [11]. For publicly available quantum-computers

from IBM, the single-qubit instruction error-rates are of the order of 10−3, whereas for
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two-qubit instructions, such as CNOT, it is 10−2. A typical quantum program contains

a significant number of two-qubit operations, and given the error-rate of two-qubit op-

erations are an order of magnitude higher than for the single-qubit operations, the two-

qubit operations usually dominate the overall error rate. On all superconducting quan-

tum computers, the error-rates significantly vary across physical qubit devices. To un-

derstand and quantify the variation in the error-rates of different qubits and links, we

analyze characterization data for the IBM-Q20 (20-qubit) machine. IBMQ API provides

access to qubit device error rates [12]. We monitored the twenty qubit IBM system for 52

days (between 01/20/2018 to 03/30/2018) and gathered more than 100 different charac-

terization reports. The characterization reports consist of error-rate for all single-qubit

operations, two-qubit operations (link errors), and measurement operations. IBM ma-

chines are calibrated (one or more times) every day and error-reports are updated after

each calibration cycle.

3.3.1 Distribution of Coherence Times

Both T1 and T2 coherence time of a qubit depends on several design, manufacturing

and experimental parameters. Due to process variation, biasing and temperature drifts

the coherence time can vary significantly. Figure 3.3 shows the T1 and T2 distribution

of IBM-Q20. The data is collected for all 20 qubits over 100 observations (so a total of

2000 data points are plotted in the graph). The mean and standard deviation for T1-

Coherence time are 80.32µS and 35.23µS respectively. The mean and standard deviation

for T2-Coherence time are 42.13µS and 13.34µS respectively.

3.3.2 Error-Rate for Single-Qubit Operations

Single qubit operations rotate the quantum state from one point to other on a state-

sphere. On IBM machine, it is performed by applying a microwave signal with a set

duration and frequency on the qubit device. Unfortunately, qubit devices are highly
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Figure 3.3: Distribution of (a) T1 Coherence time (b) T2 Coherence time for all 20 qubits
with 100 samples per qubit.

non-linear and a small perturbation or experimental conditions can cause drift in de-

vice characteristics. This can cause variation in the robustness of the quantum oper-

ations. Figure 3.4 shows the distribution of error-rate for single-qubit operations. The

data shows a large fraction of the error-rate below 1%. Single-qubit operations are more

robust than two-qubit operations.

3.3.3 Error-Rate of Two-Qubit Operations

Two-qubit operations are essential to entangle quantum states and move the state of

the qubits. In IBM quantum computers, two-qubit operations are performed by apply-

ing microwave pulses on target devices, control qubit devices as well as on the coupling

link that connects the two. Similar to single-qubit operations, two-qubit operations suf-

fer from variation in error-rate i.e. there is a fraction of coupling links significantly un-

reliable than most of the links. We analyze the reliability of two-qubit operations for

the IBM quantum computer. Figure 3.5 shows the distribution of the error-rate of two-

qubit operations for the 20 qubit machine. It consists of data from 76 coupling links col-
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Figure 3.4: Distribution of the error-rates of single-qubit operation for all 20 qubits with
100 samples per qubit.

lected over 100 calibration cycles. The mean two-qubit error-rate is 4.3% and standard-

deviation is 3.02%.
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Figure 3.5: Distribution of the error-rates of two-qubit operations for all 76 links of IBM-
Q20. The data consists of 100 observations for per link (so a total of 7600 datapoints).

3.3.4 Temporal Variation in Two-Qubit Gate Errors

Error-rate of a link can change with time. IBMQ-20 are frequently re-calibrated to ensure

that the characterization is reliable. However, a qubit and the associated coupling links
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can change their behavior across two different calibration cycles. For example, a qubit

pair with a low error rate on one day can have opposite behavior on the other. This might

result from tuning parameters, drifts, and other experimental factors. Figure 3.6 shows a

time-series of error-rate for three coupling-links. From this data, we observe that error-

rate of the links tend to retain their mean error characteristics and stronger links tend to

remain strong.
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Figure 3.6: Temporal variation in error rate of two-qubit operations for three links. For
most periods, the strong link tends to remain strong and the weak tends to remain weak.

3.3.5 Spatial Variation in Two-Qubit Gate Errors

Figure 3.7 shows the layout of the IBM-Q20 qubit computer. Circular nodes represent

the qubits and the edges represent a coupling link that is used for performing a two-

qubit operation between a pair of qubits. The weight on the edge shows the failure rate

of the link and indicates the average probability of failure of the link. For example, the

link between Q14 and Q18 has the highest probability of failure (0.15) and there are sev-

eral links with a probability of failure as low as 0.02. Thus, there is a variation of 7.5x

between the failure rate of the strongest links versus the weakest link.

We observe a significant variation in coherence times, and error-rate of single-qubit

and two-qubit operations. Given that the data for this variation can be obtained using

characterization (which is performed periodically), we can use the variation data and

develop variation-aware compiler policies.
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Figure 3.7: Layout of IBM-Q20, each edge represents a possible 2-qubit operation. The
label on the edge represent the average probability of failure on that link when an op-
eration is performed. The best link(s) have an error-rate of 0.02 and the worst link has
0.15, so a difference in strength of 7.5x.

3.4 Evaluation Methodology

This section defines figure-of-merit for system-level reliability, benchmarks, and evalu-

ation infrastructure to estimate the effectiveness of proposed variation-aware policies.

3.4.1 Figure-of-Merit for System-Level Reliability

In an iterative model of computing for NISQ programs, the trial contributes to useful

information if the trail can be executed without errors. In fact, if the workload can be

executed with only a small probability of error, then we may not need a large number of

trials to converge on the correct solution. To quantify the overall system reliability, we

use the Probability of Successful Trial (PST) metric as the primary figure-of-merit. PST

can be computed as the ratio of successful trials to the total number of trials performed.

3.4.2 Benchmarks

For our evaluations, we use micro-benchmarks used by the prior studies on quantum

compilers and qubit allocation [9, 8] and small kernels demonstrated with IBM quan-

tum computers [12]. These micro-benchmarks are scaled down version of larger quan-
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tum applications and subroutines. Table 5.3 show the seven benchmarks used in our

study, their description, number of quantum instruction performed, and the number

of qubits and the SWAP operations. We choose workloads with diverse qubit entangle-

ment patterns. For example, Quantum Fourier Transform (qft) requires almost all to all

entanglement whereas Bernstein-Vazirani (bv) requires one qubit entangled with rest of

the other qubits. Whereas, rnd-SD and rnd-LD have random sequence of CNOTs.

Table 3.1: Benchmark Characteristics

NISQ Benchmark Num Total SWAP

Workload Description Qubits Inst Inst

alu Quantum adder [9] 10 299 19

bv-16 Bernstein Vazirani [13] 16 66 7

bv-20 Bernstein Vazirani [13] 20 90 10

qft-12 Quantum Fourier Trans. 12 344 35

qft-14 Quantum Fourier Trans. 14 550 53

rnd-SD Rand benchmark with 20 100 24

short distance communication

rnd-LD Rand benchmark 20 100 35

long distance communication

3.4.3 Evaluation Infrastructure

We perform our studies using the variation data from the IBM-Q20 machine. Unfor-

tunately, the access to IBM-Q20 was not publicly available. Therefore, for our system

reliability evaluations, we built a Monte-Carlo based fault-injection simulator using the

architecture-level model for the IBM-Q20 machine. We use the iterative model for NISQ

where the same workload is executed a large number of times, and the output is ana-

lyzed. Figure 3.8 shows an overview of our fault-injection simulator.

The simulator accepts the (a) NISQ program (b) layout, configuration, and error rate,

and (c) management policies. The simulator injects errors based on the error rate of the

given qubit and link and then tracks if the program completed without an error. We use

the IBM-Q20 characterization data to estimate the probability of failure for two-qubit,
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single-qubit, and measurement operations. We perform 1 million trials for each work-

load to get PST estimates for the NISQ application by modeling errors as uncorrelated

events with independent probability across trials.

NISQ 
Benchmark 
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Aware 

Compiler

Perform N trials

Monte Carlo 
Simulator
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Simulator

IBM Q20 Error Config
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Total Trials(N)
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Successful trials(st)
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Figure 3.8: Monte-Carlo fault-injection simulator for estimating system level reliability
of quantum computers.

Note that the compilation and mapping policies can be evaluated by using first-order

simulators to gain insights. Nonetheless, in addition to simulation-based evaluations,

we also analyze the effectiveness of our proposal on a real quantum machine, albeit at

a smaller scale, using the IBM-Q5 machine and IBMQ-14. In Section 3.7, we demon-

strate that our proposal is effective even in a realistic setting and provides a significant

improvement in PST for real systems.

3.4.4 Layout and Error-Rate Parameters

The layout configuration specifies the number of qubits and their connectivity. For our

studies, we use the IBM-Q20 layout and error-rate collected from IBM-Q20 over 52 days

as is. The error-rate parameters describe the error rates for single-qubit, two-qubit and

measurement operations. We model the errors in quantum operations as independent

trials. We also model the coherence errors for all qubits. For the error-rate of IBM-Q20,

the gate errors have a domination impact on the overall system reliability and the impact

of coherence errors is negligible (e.g., for bv-20, the gate errors are 16x more likely to

cause system failures than the coherence errors).
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3.4.5 Baseline for Qubit Movement and Allocation

We use a baseline mapping policy proposed by Zulehner et al. [9] that seeks to minimize

the number of SWAP operations. The steps for the baseline scheme are as follows:

1. Initialize an unweighted graph (G) that represents qubits as set of nodes (V) and

links as edges (E).

2. Compute distance matrix for minimum number of SWAPs required to entangle

any two qubits in G.

3. Partition the input program in layers such that each layer consists of independent

operations that can be executed in parallel while respecting data dependencies.

For example, an input program is partitioned into L, which is a set of n layers,

L = {l0, .., li , li+1, .., ln−1} where n equals the depth of the program.

4. Iterate through all the layers to find the map mi between program qubit and phys-

ical qubit for each layer li such that all the CNOTs in the layer can be performed

with available physical connectivity.

5. Find optimal set of swap operations (Si−→i+1) for each pair of layers li and li+1

that transforms the map mi to mi+1. To search for the optimal set of SWAPs in

an exponentially scaling search space, authors propose to use A* search that using

cost function and heuristics based on the number of hops or Manhattan distance.

Note that the baseline tries to reduce the cost of SWAPs by implicitly assuming a

uniform cost for all SWAP operations.
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3.5 Variation-Aware Qubit Movement

3.5.1 The Problem of Qubit-Movement

The Qubit-Movement policy is responsible for deciding the route to take while moving

qubit data from one device to another.1 Such a policy can consider all possible routes

and pick the one that requires the fewest number of SWAP instructions. Fortunately,

most of the designs for quantum computers use a mesh-like network, so all the choices

that go either in the X direction or Y direction towards the destination will have identical

Manhattan distance, and hence the identical number of SWAP instructions. For exam-

ple, for the 6-qubit quantum computer shown in Figure 3.9, if we want to go from phys-

ical qubit A to physical qubit F, all three routes (A-B-C-F, A-D-E-F, A-D-C-F) have iden-

tical hop counts (3), and the Qubit-Movement policy can choose any of these routes. It

may consider making the Qubit-Movement decision simple by first going in the "X" di-

mension and then going in the "Y" dimension (or vice versa) – while such a policy would

ensure the shortest route (minimum number of SWAP instructions), such a policy would

exclude the selection of path A-D-C-F.

D EA

B C F

Q3

Q1

D EA

B C F

Q3

Q1
0.80.8

0.8 0.8

0.8 0.8

0.9

Figure 3.9: A 6-qubit quantum computer, weight indicates probability of success of each
link. To move Q1 (at A) to Q3 (at F), a variation-aware policy would use route A-D-C-F
as it maximizes the probability of success of the movement.

1Qubit-Movement policy is analogous to network-routing algorithms, which decide the path followed
by a packet from the source to destination within a network. Similar to how network-routing algo-
rithms try to minimize the "hop count", Qubit-Movement policies try to minimize the number of SWAPs.
Network-routing algorithms make localized decisions at each node, so they must be designed carefully to
avoid deadlocks. However, Qubit-Movement is orchestrated globally by the compiler, with the knowledge
of the usage of all links, so it is easy to avoid schedules that cause deadlocks.
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3.5.2 "Variation-Awareness" in Qubit-Movement

Given that there is variation in the error-rates of different links, policies (such as X-first or

Y-first) that choose one choice among the list of shortest routes will not always provide

the best overall system reliability. For example, the number on each link in Figure 3.9

shows the probability of success of the link. Route A-D-F would maximize the probabil-

ity of success of the overall movement from A to F, and a variation-aware policy would

choose such a route.

3.5.3 Design for Variation-Aware Qubit-Movement

We propose Variation-Aware Qubit Movement (VQM) that seeks to perform Qubit-Movement

while taking into account the variation in the per-link error rates. VQM selects the paths

with the highest reliability for the data movement and actively tries to avoid paths that

have poor reliability. Existing mapping policies such as the baseline policy [9] find the

optimal path to entangle qubits by formulating a state-space search problem that uses

the cost function that is based on the number of inserted SWAPs. Whereas, in VQM,

we change the cost function from the number of SWAPs to the overall failure rate in-

curred by moving the qubit from source to destination. Our variation-aware mapper

determines the set of SWAP instructions that minimizes the probability of failure. In

case of no variation in error-rates, our policy selects the path with the minimum num-

ber of swaps to minimize the probability of failure (identical as a baseline). However, for

non-uniform link-errors, VQM picks a path that has the highest reliability. Thus, VQM

leverages the locality preserving traits of baseline while using a variation-aware heuris-

tic. Algorithm 1 describes the steps for VQM.

For implementing VQM, we assume that the characterization data of the error rates

for different links are available and that this characterization data remains valid during

the execution. VQM compiles the application and tries to select the route that tries to
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Algorithm 1 Variation-aware qubit movement algorithm

1. Initialize weighted graph (H) with N qubits as vertices (V ), links as edges
(E) with weights (W ) that represent a failure rate of the links, compute
distance matrix (D) using Dijkstra’s algorithm that holds pairwise short-
est distance. Each element in D is the minimum cost for the most reli-
able path to entangle two qubits on H .

2. Using W, compute the node strength or weighted degree (di ) of each
qubit (vi ) such that di =

∑N
j wi j

3. Break the input circuit into layers (li = (l0, l1, ...ln)) similar to baseline.

4. Find program-qubit to physical-qubit map mi for each layer li such that
physical qubits with higher node strengths are prioritized during the
mapping process.

5. Find optimal set of swap operations that transforms the map mi to mi+1.
The optimal set of SWAPs minimize the probability of error by choosing
most reliable paths using D. To choose the optimal set of SWAP, we use
A* search proposed by the baseline with a reliability-aware cost function
and with an additional heuristic Maximum Additional Hop (MAH).

maximize system reliability.2 For selecting the route, VQM simply forms a cost graph

where each link has a probability of success, and the overall probability of success of a

route is computed as the product of the probability of success of the individual links.

VQM selects the route that maximizes the probability of success for the overall route.

VQM can select a longer path over the shortest path if the longer path has higher re-

liability. This will result in an extra number of SWAPs. Furthermore, more qubits get

displaced due to a longer chain of SWAPs. The displaced qubits may cause additional

set SWAPs for future CNOT operations. We use a parameter that limits the extra SWAP

instructions using Maximum Additional Hop (MAH). VQM with such limitations will se-

lect the path with the lowest cost, such that the extra hops do not exceed MAH.

2In conventional computer systems, applications may be compiled once, and run unchanged for sev-
eral years. However, it is reasonable in NISQ domain to assume that each time the workload is scheduled,
it gets recompiled by the runtime system (using the latest characterization data) and then repeated trials
are performed with the updated executable.
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3.5.4 Impact of VQM on System Reliability

Figure 3.10 shows the Relative-PST for our seven benchmarks when compiled with VQM

and the constrained version of VQM (MAH=4). All benchmarks see a significant im-

provement in the PST with VQM. Benchmarks such asqft,rnd-LD require long-distance

entanglement and a considerable number of SWAPs (limited locality), therefore they see

higher improvement in PST compared to other benchmarks.
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Figure 3.10: Impact of VQM on the Probability of Successful Trials (PST). Note that re-
ported PST numbers are normalized to PST of the baseline policy that selects the short-
est route.

We also observe that the hop-limited policy has similar improvement to an uncon-

strained policy that does not put any limit on the increased hop count. This is especially

true for workloads that have locality as the limited hops preserve the locality by restrict-

ing the qubit path among active qubits.
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3.6 Variation Aware Allocation

The Qubit-Allocation policy is responsible for assigning the program qubits to the phys-

ical qubits.

3.6.1 "Variation-Awareness" in Qubit-Allocation

Baseline qubit allocation is oblivious to the variation in the link reliability. It uses an

allocation that minimizes the number of SWAPs. For example, if we want to allocate 2

qubits on the machine in Figure 3.13(a), the baseline policy may pick any two neighbor-

ing qubits, including D and A, which are connected by the weakest link. If the allocation

policy was aware of the variation, it would pick D and C, which are connected by the

strongest link. We propose such a Variation-Aware Qubit Allocation (VQA) policy.

3.6.2 Design of Variation-Aware Qubit-Allocation

The baseline policy starts with carefully selected initial mapping and then tries to con-

verge to a configuration that has a minimum number of SWAPs. However, doing so does

not take into account the variation in the link-errors of the qubits. VQA, on the other

hand, maps the frequently used qubits to the qubits with most reliable link to improve

reliability and preserve the locality. VQA achieves this by starting with the most reliable

initial mapping and restricting frequently used pair of qubits to most reliable links. VQA

estimates the most frequently entangled qubits by analyzing the first-N instruction in

the program and tracking the number of CNOT operations between each of possible

pair of qubits. The steps for VQA are shown in Algorithm 2.

Furthermore, when mapping less number of qubits than the available qubits, base-

line exposes all the qubits to the mapping process which can sometimes result in the

mapping of frequently used qubits to weak qubits. VQA prevents such undesirable as-

signments by selecting the strongest (sub-graph) and restricting the qubit mapping that
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Algorithm 2 Variation-aware qubit allocation algorithm

1. Find the sub-graph (SGk ) with k-nodes that has highest aggregate node
strength (ANS). AN S =

∑k
i di where di =

∑N
j wi j .

2. Find qubit activity by calculating the number of CNOTs per qubit for first
t layers.

3. Map program qubit to physical qubit mapping mi prioritize the map-
ping of qubits with high activity to SGk such that top K active qubits are
mapped to SGk .

4. Use baseline algorithm to find SWAPs between layer li and li+1.

maximizes the overall system reliability. VQA computes the strongest set of sub-graphs

by using K-core algorithm that recursively prunes nodes with degrees less than k [14].

3.6.3 Impact of VQA on System Reliability

By using VQA, we ensure the mapping of program qubits with high activity (total num-

ber of CNOT operations) to the set of physical qubits with the higher node strength. This

improves the reliability for workloads that have repeated entanglement operations be-

tween few select pairs of qubits. We implement VQA in conjunction with the variation-

aware movement. Figure 3.11 shows the relative-PST for the micro-benchmarks nor-

malized to the baseline, VQM, and VQM+VQA. Our evaluations show that VQM+VQA

can provide up to 1.7x improvement in PST. Note that, for all the benchmarks, the com-

bination of VQM+VQA provides higher PST than the VQM scheme standalone.

3.6.4 Improvement Relative to Native IBM Compiler

We use a state-of-the-art baseline policy that tries to minimize the number of SWAP in-

structions. Our baseline is stronger than an alternative policy that uses randomized as-

signment, such as the native compiler from IBM. Figure 3.11 compares the PST for IBM’s

native compiler with our baseline and the proposed policies. As the IBM native compiler

performs randomized initial mapping, we evaluate 32 configurations (each over 10000
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Figure 3.11: PST for VQA and VQM+VQA normalized the baseline policy (variation un-
aware). We also compare the normalized PST of the native compiler of IBM.

trials) and report the average and the min-max (using the error-bars) PST. Note that our

baseline policy has 4x higher PST than the IBM native compiler. Whereas, VQA+VQM

improve PST up to 7x over the IBM compiler.

3.6.5 Effectiveness to Per-Day Variation

We perform our evaluations using average behavior of the link/qubit based on char-

acterization data across 52 days. The behavior of the qubit and links can vary over

time, and with it the benefit of our scheme. To analyze this, we evaluated bv-16 with

per-period characterization data across the 52 days. Figure 3.12 shows the improve-

ment in PST for bv-16 benchmark for each day (the dotted line denotes the average).

VQA+VQM provides larger PST improvement on days with higher variability and smaller

on days with lower variability.

3.6.6 Sensitivity to Scaling of Error Rates

As technology improves, we can expect the error rates to reduce, however the variation

may still persist even at lower error rates, meaning our proposal can still be effective.
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Figure 3.12: Relative improvement in PST for bv-16 benchmark evaluated with error-
configs collected over 52 days.

We evaluate bv-16 benchmark with 10x lower average error rate (standard deviation

reducing proportionally or by half as much). As shown in Table 3.2, VQM+VQA provides

significant benefits that increases with increased relative variation.

Table 3.2: Sensitivity of VQA+VQM with Error Scaling.
Benchmark Average Error Covariation Relative PST

Name Error-Rate of Error Rate Benefit(VQA+VQM)

bv-16 1x Cov-Base 1.43x

bv-16 10x lower Cov-Base 2.02x

bv-16 10x lower 2*Cov-Base 2.59x

3.7 Evaluation on Real System: IBM-Q5

Access to IBM-Q20 is not publicly available, so we evaluated our policies for IBM-Q20

using a simulator. We demonstrate the usefulness of our ideas for real quantum systems

by performing experiments on the IBM-Q5 machine. For IBM-Q5, the average two-qubit

error rate is 4.2%, and the worst link-error is 12%. We use the error configuration of IBM-

Q5 to compile the benchmarks that are suitable for IBM-Q5. A compiled program with

the baseline policy and with VQA+VQM are then executed on a IBM-Q5 machine and

the output is logged. We run each experiment with 4096 trials and analyze the output

log to compute the PST for each program and policy. Table 3.3 shows the PST of the

baseline and (VQA+VQM). Our proposal improves the PST for IBM-Q5 machine by up to
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1.9x improvement (average 1.36x).

Table 3.3: PST for Baseline and Proposed Policies on IBM-Q5.
Benchmark PST PST Relative

Name (Baseline) (VQA+VQM) Benefit in PST

bv-3 0.31 0.38 1.22x

bv-4 0.21 0.23 1.09x

TriSwap 0.13 0.25 1.90x

GHZ-3 0.57 0.77 1.35x

GeoMean 0.26 0.36 1.36x

3.8 Partitioning Quantum Computer

We have explored the variation-aware policies for Qubit-Movement and Qubit-Allocation.

This concept can be used to provide insights into other design trade-offs that may come

in NISQ systems. We do a case study for a scenario, where the workload requires half

or fewer qubits than what is physically available, and the computer can be partitioned

to run multiple copies of the same workload (to provide more trials per unit time). We

analyze whether it makes sense to partition the NISQ computer in such scenarios.

3.8.1 Two Weak-Copies versus One Strong-Copy

When the number of program qubits are less than or equal to half of the physical qubits,

we can run two copies of the same program. In an ideal world, the simultaneously run-

ning two copies can provide twice as many number of error-free trials per unit time.

However, for a quantum computer with variation, running two copies restricts the pro-

gram qubit to physical qubit mappings. For example, running a single copy provides

an opportunity to choose the strongest set of qubits and links in a given quantum com-

puter, whereas, running two copies would constrain us to also use weaker set of qubits

and links. Thus, the single copy would try to maximize the PST for a given trial, even if

it means sacrificing the increased trials per unit time that would be possible with two
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copies. Whereas, having two-copies provides more trials per unit time at the expense

of PST for each trial. On a given NISQ with variable reliability, should we run two weak

copies or run one strong copy of the program?

Map Q1X, Q2X, Q3X A, B, C
Map Q1Y, Q2Y, Q3Y D, E, F
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Figure 3.13: (a) NISQ with six qubits using mesh connectivity. A CNOT reliability is re-
ported on the top of each link. (b) Mapping policy that runs two copies of a NISQ pro-
gram (c) Mapping policy that runs one copy using the strongest links.

For a hypothetical machine with six physical qubits with a mesh-layout as shown

in the Figure 3.13(a). The edge-weights in the graph show the strength of the coupling

links. For a quantum program with three program qubits as shown in the Figure 3.13(a),

we can either run two copies by partitioning the quantum computer or run just one

copy. Figure 3.13(b), shows two copies of a program: Copy-X and Copy-Y running on

a quantum computer. The success probability of individual copy can be calculated by

multiplying all the success probabilities of operations in the program. For example, Fig-

ure 3.13(b) shows the PST for Copy-X and Copy-Y to be 0.32 and 0.12 respectively. Thus,

running two copies does not increase the rate at which successful trials can be done by

2x, instead in our case it is only 37.5% (0.44/0.32).
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For the example program, if we choose to run a single copy, we can intelligently select

the strongest subset of qubits and links to improve the overall reliability. Figure 3.13(c)

shows one such example whereby choosing to run just one strong copy can improve the

cumulative PST. When running two copies, the constraints on connectivity restricts the

use of link CD which is one of the strongest links. When running two copies, program-

mer has to resort to the weaker links. Whereas, when running a single copy, we can pick

most reliable links and achieve better PST as shown in the Figure 3.13(b).

3.8.2 Benchmark-Based Evaluation
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Figure 3.14: Successful Trials per Unit Time (STPT) when running two-copies versus one
strong copy.

We extend our evaluation infrastructure to support two copies of the same workload.

For the two-copy mode, we explore all possible partitions and select the best. Note that

besides the number of copies, movement and the mapping algorithm used for both of

the policies are identical. The only difference is the available number of qubits. For the

evaluation in this section, we use the figure of merit as Number of Success Trials Per Unit

Time (STPT), as it captures both the PST and the increased rate of trials with two copies.

We modify these benchmarks to use only 10 qubits. Figure 3.14 shows the STPT of the

single strong-copy and two-copies, both normalized to the STPT of the two copies. For
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this study, we selected the three workloads that can operate with ten qubits. We observe

that sometimes two-copy is better (bv-10) and sometimes one strong-copy is better

(qft-10). For NISQ applications, we can estimate which solution is likely to perform

better for the workload and use that solution. Thus, our variation-aware policies may

be useful in enabling Adaptive Partitioning for NISQ machines, where the decision be-

tween one strong copy versus two-copies can be based on STPT.

3.9 Summary

In this work, we study the policies for Qubit-Allocation and Qubit-Movement for cur-

rent quantum computers. Our experiments on IBM quantum computer show a large

variability in the error rates of different qubits and links.The variability in errors signifi-

cantly impact the probability of success. We show that prior studies that try to minimize

data movement (number of SWAPs) may not maximize application reliability. We pro-

pose Variation-Aware Qubit Movement policy that exploits the variation in error rates by

trying to pick a route that has the lowest probability of failure. Furthermore, we develop

Variation-Aware Qubit Allocation policy that exploits the variation in error rates by al-

locating program qubits to physical qubits such that the use of links and qubits with

high error rates gets minimized. We show that our policies provide significant improve-

ment both in simulated setting and on real IBM quantum computers. Moreover, our

insights can also help in understanding the resource sharing and partitioning problems

in the near-term quantum computers, such as deciding between running one strong-

copy versus two concurrent copies of NISQ program.
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CHAPTER 4

DIVERSIFYING QUANTUM PROGRAMS FOR ROBUST INFERENCE

4.1 Introduction

The NISQ machines can produce an incorrect output as the computation is subjected

to errors. Therefore, to infer the correct answer, the program is run thousands of the

times on the NISQ machine to produce a probability distribution of the possible output

states. This distribution is analyzed to infer the correct answer, for example, by selecting

the most frequently occurring output. Consider the Bernstein-Vazirani (BV) algorithm

that allows the program to infer the hidden key in a single shot. On an idealized ma-

chine, this program will provide the correct answer with a probability of 1, as shown in

Figure 4.1(a). However, if we execute BV on a NISQ machine, then we will get the cor-

rect answer for some trials and wrong answer for others. Figure 4.1(b) shows the output

distribution for BV, where the correct answer occurs with 30% probability and the most

dominant incorrect answer occurs with 25% probability. The correct answer can be in-

ferred by selecting the most frequent output. Unfortunately, the NISQ machine can have

correlated errors that cause the same incorrect answer to appear with a high frequency.

Inferring the correct answer can become challenging in such scenarios. For example,

consider Figure 4.1(c), where the correct answer still occurs with 30% probability, but

one of the incorrect answers occurs with 35% probability. We observe that the task of in-

ferring the correct answer can be achieved via two means: increasing the probability of

the correct answer or by reducing the probability of the dominant wrong answer. Recent

work on qubit allocation policies (swap minimizing or variation-aware) have focused on

the former, whereas, in this work, we focus on the latter.

Qubit allocation policies deal with the problem of assigning the program qubits to
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machine providing a correct answer (c) NISQ machine providing a wrong answer.

the physical qubits (qubit assignment) and moving the qubit from source to destina-

tion for performing two-qubit operations (qubit routing). Qubit allocation policies have

a significant impact on the reliability of the NISQ machine as these policies can deter-

mine the number of operations required to execute a given program. Routing of the

qubit from source to destination is typically accomplished by inserting additional SWAP

instruction that can swap two neighboring qubits. Recently proposed qubit mapping

policies try to minimize the number of SWAP instructions. Recent studies have also in-

vestigated variation-aware qubit mapping policies that try to use the strongest qubits

and links (the ones with lowest error rates) to perform the computation. All of the prior

proposals on intelligent qubit mapping (both SWAP minimizing and variation-aware)

try to determine the best mapping and use that mapping for running all of the trials on

the NISQ machine. Unfortunately, such an approach also makes the application vul-

nerable to correlated errors – if the computation is subjected to a particular error, the

computation for all of the trials will continue to be performed on the same set of qubits

and links, causing the same erroneous output to occur for a large number of trials.

To mitigate the vulnerability to such correlated errors, this work leverages the con-
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Figure 4.2: Bernstein-Vazirani using (a) Single best mapping (b) Ensemble of Diverse
Mappings (EDM), running two allocations and merging the outputs (EDM infers correct
answer even if both mappings have a dominant incorrect answer).

cept of diversity,1 and proposes Ensemble of Diverse Mappings (EDM). EDM is based on

the insight that rather than having all the trials be subjected to the same sources of er-

rors, split the trials into multiple groups, and have a different mapping for each group

so that the trials in each group get subjected to different sources or errors and hence dif-

ferent incorrect outputs. For example, consider the scenario as shown in Figure 4.2(a)

where the baseline performs N trials using the best mapping and still obtains an incor-

rect output. EDM splits the N trials into two groups and uses a different mapping (best

and the second-best) for these groups. Even though both of these groups individually

produce an incorrect answer with the highest probability, these incorrect answers are

different – so when we merge the output distributions, the incorrect outputs end up

getting attenuated, and the correct answer ends up getting accentuated. Even though

the two groups individually failed to produce the correct answer, the diversity in EDM

allows the ensemble to infer the correct answer. While we explain EDM with two map-

pings, EDM can be implemented with more than two mappings. For our studies, we use

1We note that when a team is formed with members of very similar skills and backgrounds, then all
the members may share the same blind-spot and the team overall becomes vulnerable to that blind-spot.
Whereas, when teams are formed with members of a diverse set of skills and backgrounds, then each
member may have a different blind-spot, which may not be present in the other team members, making
the overall group more resilient to such blind-spots.
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EDM with four mappings, with each mapping used for one-quarter of the trials.

4.2 Motivation

4.2.1 Variation-Aware Qubit Mapping

The different qubits and links of a NISQ machines can have widely varying error rates

as not all qubits have the same level of vulnerability to errors, and this variation in er-

ror rates has a large impact on the reliability of NISQ applications [15, 16, 17, 18]. For

example, if we can map a program on the most reliable qubit, then the probability of

errors can be reduced significantly (up to 10x). Especially for a class of NISQ programs

that use less than available physical qubits, a programmer can choose the most reliable

qubits to improve the reliability. Moreover, we can extend the idea of variation-aware

allocation to qubit movement. For example, SWAP operations are unreliable and show

significant variation in reliability (up to 20x on IBM-Q14), by using quantum links with

high reliability and avoiding links with low reliability the system can reduce the impact

of noise on NISQ machines. This makes the overall system reliability be dictated less by

the worst-case qubits and links, and more by the average-case qubits and links.

To enable variation-aware techniques, we need error characterization data that de-

scribes the error rates for all the qubits and the links on a quantum computer. Fortu-

nately, the error rates can be evaluated using randomized bench-marking and gate to-

mography. For IBM machines the error rates are evaluated after every calibration cycle,

and the error characterization data is available to the programmer using IBM’s qiskit API.

However, the estimated error rates are not constant as qubits are non-linear devices that

can have time-varying deviations due to drift and changing operating conditions. Our

experimental evaluations show the relative reliability of collection of qubits and quan-

tum links to largely have repeatable behavior. To estimate the reliability of the circuit

in a variation-aware manner, prior works have used the Estimated Probability of Suc-

cess (ESP) metric [18]. ESP for an executable can be computed by taking a product of
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all the gate success rates (g s) and measurement success rates (ms). The gate success

rate is the probability of performing a gate without any error, which is calculated using

the gate error rate (g e ). The measurement success rate (ms) captures the probability

of performing all measurements without any error. ESP is given by the equation below.

Variation-aware mapping scheme tries to find the mapping that has the highest ESP. We

use a variation-aware mapping policy as our baseline.

ESP =
Ng ates∏

i=1
g s

i ∗
Nmeas∏

j=0
ms

i

g s
i = (1− g e

i ), ms
i = (1−me

i )

4.2.2 The Inference Problem for NISQ

A NISQ machine is subjected to errors. Therefore, to infer the right answer, the given

program is run for thousands of trials, and the output of each trial is logged. In the

end, we get an output probability distribution that is influenced by both correct and

incorrect answers. The task of inferring the correct answer becomes challenging at high

error rates. For example, if the error rate is small, then the correct answer would appear

with the highest frequency. As qubit error rate increases, the likelihood of correct answer

decreases significantly such that the incorrect answers may be produced as frequently

as correct answers.

We can improve the inference quality of the NISQ machine by either increasing the

frequency of the correct answer or by reducing the occurrence of the most common

wrong answer. Existing mapping policies focus only on the first option and try to per-

form the computation using the strongest qubits and links. Therefore, they run all the

trials using the mapping that maximizes the probability of getting the correct answer.
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4.2.3 The Challenge: Correlated Errors

We observe that even with the mapping that maximizes the ESP, NISQ machines can fail

to provide the correct answer as the most frequently occurring outcome. In such cases, a

particular incorrect answer dominates the correct answer. The wrong answer occurring

with a high frequency happens because the computation gets subjected to similar types

of error repeatedly leading the same wrong outcome. Thus, quantum computers can

have correlated errors. Current approach to performing all the trials with a single map-

ping policy makes the application vulnerable to correlated errors – if the computation

is subjected to a particular error, the computation for all of the trials will continue to be

performed on the same set of qubits and links, causing the same erroneous output to

occur for large number of the trials. Correlated errors is a real problem on IBM quantum

machines, for example, recent study reports the correlated nature of SPAM errors [19].

In this work we develop solutions for addressing the correlation in the incorrect answer.

We provide the characterization for correlated errors next.

4.3 Experimental Methodology

In this section, we briefly describe the benchmarks, system configuration, and the met-

rics used in our work.

4.3.1 Benchmarks

Existing quantum computers such as publicly available IBM fourteen qubit machine

are severely limited due to noise. Due to low coherence and high gate error rates it can

execute circuits with small number of qubits for short duration (low depth). Table 4.1

describe benchmarks and total number of single qubit gate operations (SG), CNOT op-

erations (CX), and measurement operations (M) for the respective benchmarks.
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Greycode Decoder: Grey code decoder decodes a binary string to a grey code string us-

ing a reversible circuit. For this benchmark, number of two qubit and measurement

operations scale linearly with number of qubits. We use six bit circuit described in Rev-

Lib [20]. The greycode benchmark is used to understand the effects of correlated errors

on shallow circuit that measure qubits in standard basis. Moreover, greycode has iden-

tical number of measurement and two-qubit gates, which is useful to understand if the

correlation in errors stem from measurement or two qubit operations.

Bernstein-Vazirani (BV): BV finds a n-bit binary secret encoded in the quantum ora-

cle by querying the oracle once. On execution, BV outputs a binary string correspond-

ing to the secret key. For BV, number of two qubit and single qubit gates scale linearly

with number of qubits. BV is sensitive to phase and T2 errors as it measures qubits in

Hadamard basis. We use two instances of BV to understand if SWAPs can cause corre-

lated errors as BV-7 has one additional SWAP operation compared to BV-6.

Quantum Approximate Optimization Algorithm: QAOA is a generalized algorithm that

can be used to solve combinatorial optimization problems. We use QAOA to solve the

max-cut problem, which tries to partition an input graph into two subsets (S1,S2) of

nodes to maximize the number of edges between the first (S1) and the second(S2) subset.

Note that QAOA-5, QAOA-6, QAOA-7 do not require any SWAP operations. For QAOA,

number of two qubit gates scale super linearly with number of qubits. Whereas number

of single qubit operations scale quadratically. QAOA is believed to be robust against

certain class of two and single qubit errors.

Reversible circuits: We use three reversible circuits (Fredkin gate, two bit adder, and 2:4

decoder) to understand how correlated errors would affect the reliability of short width

circuits. For instance, all reversible circuits use three to four qubits, but it contains more

than 10 two-qubit gates. For these circuits, T1 decoherence might be the dominant error

mechanism and such workloads can provide insights into how decoherence can cause

correlated errors.
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Table 4.1 shows the characteristics of the benchmarks used in our study. The terms

"SG", "CX" and "M" respectively denote the number of single-qubit, two-qubit, and

measurement operations in the workload. Workload evaluation on existing quantum

computers is severely limited due to high error rates, which limits the length of the pro-

grams that can be run reliably on the current machines. Therefore, similar to prior stud-

ies [16, 15, 18, 21] we perform our experiments on small benchmarks.

Table 4.1: Benchmark Characteristics

Benchmark Benchmark Output Number

Name Description of Gates

Greycode Greycode decoder output: 001000 SG: 13, CX: 5, M: 6

bv-6 Bernstein-Vazirani key: 110011 SG: 13, CX: 7, M: 5

bv-7 Bernstein-Vazirani key: 1101011 SG: 13, CX: 11, M: 6

qaoa-5 max-cut 5 node graph cut: 10101 SG: 24, CX: 8, M: 5

qaoa-6 max-cut 6 node graph cut: 101010 SG: 30, CX: 10, M: 6

qaoa-7 max-cut 8 node graph cut: 10101010 SG: 36, CX: 12, M:7

Fredkin Fredkin gate output:110 SG: 26, CX: 13, M:3

adder 1bit adder output:011 SG: 12, CX: 15, M:3

Decode-24 2:4 Decoder output: 100000 SG:119, CX:71, M:6

4.3.2 System Configuration

For all our evaluations, we use publicly available IBM quantum computer with fourteen

qubits ibmq-16-melbourne [12]. For clarity we refer ibmq-16-melbourne as IBMQ-14.

Moreover, for all the evaluations, we use a variation-aware mapping policy [15] as the

baseline. As the error-characteristics of the NISQ machine can change dramatically be-

tween two calibrations, to guarantee statistical significance, we always execute baseline

and the proposed policy for 16 thousand trials within a short succession of each other

in each round. We repeat 10 such rounds and report the improvement for the median

round.
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4.3.3 Figure-of-Merit for Reliability

The goal of running the workload on a NISQ machine is to be able to infer the correct

answer. This can be achieved by either increasing the probability of the correct answer

or by suppressing the strongest sets of wrong answer or both. We need reliability metrics

that account for both effects and has an intuitive implication on what it would mean to

the ability to infer the correct answer on the NISQ machine.

The metric commonly used to indicate the reliability of a NISQ machine is the Prob-

ability of Successful Trial (PST). PST is calculated by computing the ratio of a number of

error-free trials to the total number of trials. PST is a good metric to compare two de-

sign points, for example comparing an ion-trap machine with a superconducting ma-

chine [22]. Moreover, recent papers on noise adaptive and variation-aware qubit map-

ping polices also use similar metrics to capture the reliability of applications [15, 16, 18].

PST = Number of Trials with Correct Solution

Total Number of Trials

Unfortunately, PST does not always indicate the ability to infer the output of a NISQ

machine correctly. For example, with PST=0.2 we can have reliable inference if all incor-

rect answers occur with less than 0.2 probability. However, another system with PST=0.2

will be unable to infer the correct output if one of the wrong answers is more dominant,

say, for example, it occurs with 30% probability. To account for the magnitude of both

the correct and the incorrect answers, we define a metric, Inference Strength (IST). IST is

a ratio of the frequency of correct output to the frequency of the most commonly occur-

ring erroneous output.

I ST = Probability of Correct Solution

Probability of Strongest Incorrect Solution
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If IST exceeds 1, the system will be able to correctly infer the output, whereas if IST is

significantly lower than 1, then the wrong answer(s) would mask out the correct answer.

As our objective is to improve the ability to infer the correct answer on a NISQ machine,

we use IST as the primary figure of merit in our evaluations.

4.3.4 Limitations of Evaluation on IBMQ-14

Running a large instance of the benchmark has two problems: first, large instances of

benchmarks require significantly more operations. For example, in theory, BV has lin-

early increasing CNOT cost, but in reality, it requires a number of CNOT operations that

scale super-linearly due to extra SWAPs. This problem is severe on IBMQ-14 machine

due to unidirectional and limited connectivity. The second problem arises due to vari-

ability on IBMQ-14 machine. For small benchmarks we can pick the strongest set of

qubits, but for larger ones we have to include even the weak qubits. During our evalua-

tions, we could avoid two consistently weak qubits on IBMQ-14(Qubit-12 and Qubit-11

with readout error of 15% and 30%). If we include weak qubits, the PST drops by 3x.

To avoid experimental inconsistencies, we focus on small instances of NISQ algo-

rithms such as BV, and QAOA as these low depth circuits promise linear scaling of gates

with the number of qubits. Whereas, for sensitivity, we use reversible circuits that scale

polynomially with the width of the circuit. Note that the circuits such as adder, decoder,

Fredkin gates may not be representative of NISQ applications as they require 100s of

two-qubit operations even for 3 to 4 qubit circuits as shown in Table 4.1. But these long

benchmarks can provide insights on how output distribution changes due to T1 errors

vs Measurement errors.

4.4 Correlated Errors on NISQ

In this section, we analyze the correlation in errors on IBM’s fourteen qubit machine

(IBMQ-14) and study how the correlated errors produce incorrect answers such that the
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Figure 4.3: Output probability distribution for Bernstein-Vazirani (BV-6) with 6-bit hid-
den key executed on the IBM-Q14 machine (note that the states are sorted by the fre-
quency of occurrence, from the highest to the lowest).

frequency of some incorrect answers is more than the correct answers.

4.4.1 Impact of Noise on Application Reliability

IBMQ-14 suffers from high measurement and gate error-rates. To understand the nature

of errors and the impact on the system reliability, we execute the Bernstein-Vazirani (BV)

benchmark with a 6-bit secret key. We perform each experiment for 16 thousand trials.

Figure 4.3 shows the probability distribution for the different outcomes, with the out-

comes arranged from the highest frequency of occurrence to the lowest. Notice that due

to high error rates, the probability of getting the correct answer is fairly low (2.8%) and

the output log consists all 64 possible outcomes (63 incorrect answers plus one correct

answer). Furthermore, some of the incorrect outputs occur with almost 1.5x the fre-

quency of the correct answer. We observe that the relative strength of the correct answer

(probability normalized to the most frequent incorrect answer) is only 68%, and there-

fore, inferring the correct answer is not straightforward. In the Appendix-A, we describe

how correlated errors can degrade quality of inference in NISQ model.

4.4.2 Correlation in Errors

To test if using the same set of qubits cause correlated errors, we execute two sets of

experiments. The first set containing eight runs using the best mapping and the second

53



set contains eight runs with different mappings (top-8 mappings).

BV-6 with Single Best Mapping: We run eight copies of BV-6 with single best mapping

that maximizes the reliability. To understand if the trials with single mapping produce

similar incorrect answers, we measure the divergence or dissimilarity between the out-

put probability distribution using the KL-divergence. KL-divergence estimates the dis-

tance between the pair of probability distributions. If KL-divergence is close to zero,

then the output distributions are similar. Figure 4.4 shows the heat map (darker shades

are close to zero, indicating similarity) that illustrates the pairwise divergence between

output probability distribution of BV-6 runs. All non-diagonal elements (di j ) represent

the divergence between the output of i th and j th run when BV-6 is executed with the sin-

gle best mapping. Note that the pairwise KL-divergence between all the runs are close

to zero. Thus with identical mapping, NISQ programs tend to produce similar incorrect

outputs.
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Figure 4.4: (a) Divergence between output of eight BV-6 runs with the strongest map-
ping. Dark squares indicate a value close to zero (indicating that the distributions are
close to identical). (b) Pairwise divergence for the output of eight copies of BV-6 that are
run with eight different mappings (light colors indicate divergent distributions).

BV-6 with Diverse Mappings: In the second experiment, we run BV-6 benchmark with

eight completely different mappings and estimate the divergence between output prob-

ability distributions. Figure 4.4 shows a heat-map corresponding to the pairwise KL
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divergence for the eight copies of BV-6. We observe significant dissimilarity between

all the eight copies of BV-6 such that average KL-divergence between two copies is 0.5,

which is significantly higher as compared to eight runs of single best copy with average

KL-divergence of 0.03. Furthermore, the most frequently occurring incorrect answers

show a large variation across eight copies of BV-6. Thus by introducing diversity in the

qubit mapping, we can enable diversity in the output probability distribution. Note that

all the mappings used were within 10% of the ESP of best mapping and the executed

identical number of gates.

4.5 Analyzing Correlation in Errors via Buckets-and-Balls Analysis

To understand the impact of correlated errors on the inference quality of a NISQ ma-

chine, we use buckets and balls analysis.

4.5.1 Execution on NISQ as Buckets-and-Balls

The output of NISQ programs can be analyzed as buckets and ball problem. On NISQ

machines, running a program that outputs m-bit string for N trials is equivalent to throw-

ing N balls at the M buckets where M = 2m . In this experiment, we have two types of

buckets: green bucket that represents the correct answer and red buckets that represent

all possible incorrect answers. We don’t know the green bucket, but we can guess it by

throwing a large number of balls and tracking the bucket with the most number of balls.

4.5.2 Analytical Model for Uncorrelated Errors

For N balls and M buckets, if Ps is the probability of the ball landing in a green bucket

then (1 − Ps) is the probability of the ball landing in the any of the M − 1 red buck-

ets as shown in Figure 4.5(a). With no correlation, the likelihood of ball landing in

any of the M − 1 red buckets would be identical. For large N, number of balls in the

green bucket (correct answer) would approach expected value of a Bernoulli trial: N Ps
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whereas number of balls in red bucket that has highest occupancy would be at the most

N Pe +2∗p
(N ∗Pe ∗ (1−Pe )) (with 95% confidence), where Pe = 1−Ps

M−1 .

We use an analytical model (confirmed with Monte Carlo simulator) to understand

how IST changes with Ps and M . For instance, Figure 4.6 describes the relationship

between IST and Ps for M=64 buckets. The uncorrelated error model suggests that even

with Ps=2%, we can distinguish the green bucket from rest as IST>1. Unfortunately, on

real quantum computers, this model does not hold. Figure 4.6 show experimental Ps

and IST data (blue dots) for three 6-bit applications (QAOA-6, BV-7, Grey-code) for 120

experiments executed on IBM-Q14 quantum computer. The experimental data show

significantly smaller IST compared to the uncorrelated model for an identical Ps . To

understand the mismatch, let’s change our model and account for correlated errors.

4.5.3 Analytical Model for Correlated Errors

Correlated errors break the assumption that all incorrect answers are equally likely. To

account for correlated errors, let’s introduce a Demon in our model. This Demon biases

errors such that k outcomes out of 2m −1 incorrect outputs are more likely than the rest

of the 2m −k −1 outputs. These k more likely incorrect answers can be represented as

purple buckets.
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As shown in Figure 4.5(b) correlation-factor (Qcor ) determines what fraction of balls

land in the k purple buckets after demon intercepts. The probability of balls hitting

in the purple buckets is (1−Ps)∗ (Qcor ) and probability of ball hitting in any of the k

purple bucket is (1−Ps )∗(Qcor )
k . Figure 4.6 shows the result of the Monte Carlo simulation

displaying the relationship between IST and Ps for M = 64, and k = log (M) = 6 and

range of Qcor . For simplicity, we assume that k scales with O(log (M)) as the correlation

among errors tend to be local.
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Figure 4.6: Inference Strength (IST) vs Probability of Successful Trial (PST) for Buckets
and ball model and experimental data for 120 runs (each run was evaluated with 8192
trials) of QAOA-6, BV-6, and greycode-decoder on IBMQ-14 machine.

To understand the impact of correlated errors on reliability, we compute PST frontier

Using Monte Carlo simulations. PST Frontier is the minimum PST required to infer the

correct answer from given output distribution (PST at which IST=1). For the model with

no correlation, PST frontier is at 1.8%, that means for 6-bit application with PST>1.8%,

we can always deduce the correct answer. The PST Frontier shifts right to 3.6% with

correlated errors that have weak correlation (Qcor=10%). Moreover, it shifts even further

at 8% for strong correlation model (Qcor=50%).
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Unfortunately, there is no simple way of deducing the correlation-factor on the real

machine as it depends on the device characteristics and the type of application that

we are running. High PST frontier degrades the effectiveness of NISQ applications like

QAOA. For example, our experiments show that QAOA-6 with baseline policy consis-

tently fails to meet PST Frontier criteria as it has a median PST of 2.5% and IST of 0.78

on IBMQ-14 for 30 experimental runs.

4.6 Ensemble of Diverse Mappings

To mitigate the correlated errors on NISQ machines, we propose Ensemble of Diverse

Mapping (EDM). In this section, we will discuss design and reliability improvement pro-

vided by the EDM.

4.6.1 Motivation

Variation-aware qubit allocation improves the reliability of NISQ machines [16, 15, 6,

18]. However, running a NISQ application with just one mapping can increase its vul-

nerability to correlated errors. Running the program with single mapping multiple times

produces incorrect outcomes with correlated errors. To mitigate the correlation, we

need to introduce diversity in the program. One way to introduce variety in the pro-

gram is by running the input program using a diverse set of qubit devices rather than

being restricted to always using the same program assignment for all of the trials.

To test if the diverse mappings provide better reliability, we use BV-6 benchmark.

Similar to the previous experiment, we use eight different logical to physical mappings

(A,B,C,D,E,F,G,H) to run BV-6 on IBMQ-14 each for 16,384 trials. Figure 4.7 shows

the IST for BV-6 with different mappings. IST captures the relative strength of the correct

answer compared to the incorrect answer. When we use different mappings, we can

expect variation in the reliability of individual qubit assignments. For example, Mapping

C produces the output probability distribution with highest IST as compared to the other
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mappings. However, no single mapping has the IST exceeding 1. IST greater than one

means the correct answer occurs with the highest frequency. To test if an ensemble of

mapping can improve the IST, we execute the BV-6 for 4096 trials with mappings A, B,

C, and D and merge the output probability distributions to generate EDM. We use 4096

trials each to match the number of trials in the baseline that runs with the single best

solution.
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Figure 4.7: IST for BV-6 executed with the eight different mappings (A-H) on IBMQ-
14 and the Ensemble of Mappings (EDM: A+B+C+D). Note that, none of the individual
mappings have an IST ≥ 1, but the EDM has IST of about 1.2.

Figure 4.7 shows the IST of 1.2 for BV-6 when executed with an ensemble of qubit

assignments. The Ensemble of mapping improves the IST as incorrect answers get av-

eraged out when we merge output probability distributions that are not similar. Use

of Ensembles is one of the proven machine learning techniques that can improve the

accuracy and robustness of classification tasks [23].

EDM is inspired by the principle of maximum entropy that suggests the probability

distribution, which best represents the current state of knowledge is the one with largest

entropy [24]. By using diverse mappings, EDM tries to avoid the repeated incorrect an-

swers such that the incorrect results are spread across multiple outcomes.
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generate K executable (3) Run the trials for each executable (4) merge the output proba-
bility distributions to create the combined output for the ensemble.

4.6.2 EDM: Overview and Design

Our proposed Ensemble of Diverse Mapping (EDM) enables diversity in the output dis-

tributions by using an ensemble of qubit mappings. Figure 4.8 provides an overview of

EDM. EDM contains four steps. In the first step, a compiler generates the best initial

mapping and SWAP schedule for a given input program using coupling map (network

topology) of a quantum computer and the error rate characterization data. In the sec-

ond step, we use the initial mapping, and find all the isomorphic sub-graphs for the

given quantum computer, and rank the sub-graphs as per the Estimated Success Prob-

ability (ESP). EDM picks the top "k" sub-graphs based on the ESP. In the third step, we

re-compile the program by using the ensemble of initial mappings (M1, M2, ..., Mn) to

produce an ensemble of executable (E1,E2, ...,En), and run all executable on a NISQ

machine as shown in the Figure 4.8, to produce set of output probability distributions

(O1,O2, ...On). Finally, we merge the probability distributions of all the members in the

Ensemble to generate the final result.

For the first step, EDM can use any variation-aware quantum compiler. In this work,

we use variation-aware qubit mapper that uses A* search with reliability-aware heuris-

tics proposed by [9, 15]. Furthermore, we use ESP as a cost function to select the strongest

mapping on IBMQ-14 [18]. ESP incorporates measurement and single qubit gate errors.

We also use benchmark specific heuristics to ensure optimal mapping. For example, a

path graph satisfies the CNOT constraints for QAOA such that no SWAPs are required

to perform QAOA. We verify the cost of all the mappings by using a brute force search
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Figure 4.9: Improvement in IST with EDM, compared to single-best mapping. EDM has
significantly higher IST compared to the best single mapping (both: that is estimated at
compile time and the one that is observed at runtime).

to check the optimally of the mapping. For BV and QAOA, our compiler produces an

optimal mapping.

To generate the Ensemble of initial qubit assignments, we need to ensure that the se-

lected mapping has high reliability. When assigning program qubits to physical qubits,

two major factors impact the output reliability: measurement errors and two-qubit gate

errors. To leverage the mapping produced by the variation-aware mapper, we use graph

isomerism to transfer the mapping from one set of qubits to another set of qubits. We

search for all isomorphic sub-graphs, on the IBMQ-14 coupling graph using VF2 algo-

rithm [25]. Once we have the list of all isomorphic graphs, we compute ESP and select

the sub-graphs with highest ESP.

For the final step of producing the combined probability distribution, we use a sim-

ple average to merge the probability distributions of all of the members in the Ensemble.

4.6.3 Why Select the Top-K Mappings?

Variation aware allocation policies use compile-time information to estimate reliability

by using metrics such as ESP. However, maximizing the ESP at compile time may not al-

ways result in maximizing the PST at runtime, as the behavior of the devices can change
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unpredictably at runtime. Figure 4.10 shows ESP and the corresponding PST after eval-

uation for eight maps used for BV-6. There is a good correlation between ESP and PST.

However, this correlation is not perfect. For example, Map-A is estimated to be the best

mapping at compile-time; yet, at runtime, Map-C has the highest PST. Moreover, pick-

ing mapping with highest ESP cannot guarantee the highest IST. As error calibration

data used to estimate ESP is not perfect due to temporal variations in qubit reliability

and error-rates can change substantially due to cross-talk. Nonetheless, there is a good

correlation between mappings that are good at compile time with the mappings that

produce the highest PST at the runtime. Hence, we use the top K mappings to generate

our Ensemble for EDM.
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Figure 4.10: Comparing estimated reliability (ESP) at compile-time and observed relia-
bility (PST) at run-time for BV-6 with eight different qubit mappings.

Our evaluations also show a weak correlation between PST and IST. For example, a

slight improvement in PST for a given mapping does not result in increase in IST as the

probability of the wrong answer can increase as well. Our analysis encountered several

cases where a mapping with the highest ESP had lower IST compared to other mappings.

We could form an ensemble of mappings that is estimated to produce the highest IST,

however, to keep the design simple, we select the top K mappings that are deemed to

have the highest PST for forming EDM. 2

2In extreme cases, the noise profile of the machine can change quickly, and cause the output distri-
bution to be close to uniform. We can identify such cases by computing the relative standard deviation
(σ/µ) of the probability distribution, comparing it with that of the uniform distribution, and discarding
the results if the distance is quite small. We found such a strategy to be quite useful under such cases of
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4.6.4 Impact of EDM on Inference Strength

EDM is designed to mitigate the correlation in errors and improve the IST such that the

frequency of individual incorrect answer reduces by spreading the mistakes. Figure 4.9

shows the improvement in IST for QAOA and BV. We compare EDM against two dif-

ferent mappings: single best mapping at compile time that is estimated using ESP and

single best mapping post-execution which is evaluated after running an ensemble of

mappings. For example, as shown in the Figure 4.10, we estimated Map-A as the most

reliable mapping based on its ESP. However, after running BV-6 with other mappings,

we may realize that Map-C has the highest PST. To understand if the benefits of using

Ensemble are due to diversity in the mappings or because of uncertainty in ESP, we also

compare EDM with another baseline, single best mapping post execution, which repre-

sents the best mapping encountered at runtime. For example, this would be Map-C, as

shown in the Figure 4.10.

The ensemble of mappings not only outperforms the best-estimated mapping at

the compile time but also beats the best-single mapping encountered at runtime. This

suggests that uncertainty in ESP is not a key reason behind the success of EDM. As for

QAOA-5, the estimated best mapping at compile time is identical to the mapping at run-

time, and even then EDM outperforms the baselines. EDM increases the entropy of out-

put distribution such that, for the resulting output probability distributions, errors are

spread across multiple possible incorrect answers.

4.6.5 Impact of Ensemble Size

There is an inherent trade-off in ensembles selection. By increasing the size of Ensem-

ble, we can introduce more diversity, but at the same time, we expose the program to

relatively unreliable qubits. Finding the right size of an ensemble is especially crucial

for the IBM machine, as it shows high variability in error rates. Our default implementa-

extreme noise.
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tion of EDM uses four mappings in the Ensemble. The number of ensembles is dictated

by our ability to find the initial mapping that has similar SWAP cost and the ESP. EDM

finds the graphs that are isomorphic to the initial mapping produced by the baseline.

For IBMQ-14 due to limited connectivity, and high variability3 in error rate, we observe

that number of strong ensembles are limited two to four.
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Figure 4.11: Sensitivity of EDM to the number of members in the Ensemble. With in-
creasing ensemble, computation gets mapped to weaker qubits. Hence the benefit of
EDM with larger ensemble size starts to reduce.

We evaluate the sensitivity of EDM to the number of members in the Ensemble. We

form Ensemble with two mappings (EDM-2), four mappings (EDM-4, default), and six

mappings (EDM-6) and run the workloads with the differently sized ensembles. Fig-

ure 4.11 shows the IST of the EDM with varying ensemble sizes. We observe that with

only two members in the Ensemble, we do not add enough diversity, and in fact, the

other copy can reduce the overall PST slightly for some cases and reduce the IST com-

pared to even the baseline (BV-7 and QAOA-5). When the Ensemble contains four mem-

bers, there is a good balance between the increase in diversity and the loss of PST. Overall

we see significant improvement in IST. When the Ensemble contains six members, the

mapping is forced to choose qubits that may have significantly lower reliability than the

best qubits, and the overall degradation of PST is significantly greater than the gain from

combining the diverse outputs. Therefore, in our experiments, we use a default size of

3IBM-Q14 machine has two significantly noisy qubits Q12 and Q11 with readout error-rates up to 30%,
we avoid using these qubits, which puts more constraints on finding a right isomorphic subgraph
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4 members in the Ensemble to balance both the increase is diversity and the pitfall of

being forced to use more unreliable qubits for computation.

Note that the best number of ensembles will depend on the machine and the corre-

lation in errors on that machine. So, there is no single best number of members in EDM

that will always work well across variety of machines. We would recommend that users

of EDM perform sensitivity while deciding the ensemble size.

4.7 Weighted EDM

One of the limitations of our proposed implementation of EDM is that the members of

the ensemble are based on prioritizing the maximization of ESP rather than maximizing

the diversity in forming the ensemble. Therefore, outputs of some of the mappings can

have a similar output probability distribution if mappings in an ensemble have a com-

mon set of qubits. Unfortunately, on existing IBM machine, due to a large variation in

error rates, a small number of qubits finding two sub-graphs that use a completely dif-

ferent set of qubits but have comparable ESPs is challenging. The effectiveness of EDM

stems from the diverse set of outputs, and even a few unique qubit mappings can pro-

duce diverse incorrect answers. For example, in the case of BV-6, all the eight mappings

had two to three common qubits. However, the diversity of the output was significant as

illustrated by the Figure 4.4(b). Moreover, for all eight mappings, the common qubits are

the qubits that are less likely to get errors. It might be possible to have enough diversity

with few common qubits between two mappings in an ensemble.

4.7.1 Design of Weighted EDM

To maximize the diversity without deteriorating the reliability, we propose Weighted En-

semble of Diverse Mappings (WEDM). Weighted EDM uses runtime information to max-

imize the diversity in the output probability distributions. In essence, it is risky to im-

prove diversity at compile time by picking mapping with lower ESP. Whereas, we can
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solve this problem more efficiently at runtime. For instance, we can evaluate the di-

versity in the probability distributions and then perform scaling operation to increase

the diversity. In contrast to EDM where we merge output probability distributions with

identical weights, WEDM uses weighted average such that the weight is proportional to

the cumulative mutual entropy of the output as shown in the Figure 4.12.
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Figure 4.12: Design of Weighted EDM (WEDM).

The cumulative entropy of the output represents the uniqueness of the output prob-

ability distribution. For example, if we have four member ensemble with A, B, C, and

D, we would calculate the KL-divergence of A with B, C, and D respectively and average

these three values. The output of A will receive this weight before getting merged with

the aggregated output distribution. A similar process will be repeated for B, C, and D.

For weighted EDM (WEDM), we use symmetric KL divergence (SDK L) to compute

resultant output probability distribution (OW EDM ) that is a weighted sum of ensemble

output probability distributions (Oi ). For N ensembles, the output probability distribu-

tion (OW EDM ) and normalized ensemble weights (W ) are evaluated as follows:

OW EDM =
i=N∑
i=0

Wi ∗Oi (4.1)
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Wi =
j=N∑
j=0

SDK L(Oi ,O j ) & Wi = Wi∑i=N
i=0 Wi

(4.2)

4.7.2 Impact of WEDM on Inference Strength

Figure 4.13 shows the improvements in IST with EDM and WEDM. WEDM improves the

IST by up to 2.3x over the estimated single best mapping such that the correct answer

has 1.73x higher likelihood compared to the incorrect answer. Both WEDM and EDM

not only outperformed the estimated best mapping at compile time, but also showed

improvements even over the single best mapping that we would have picked if we knew

the behavior at runtime. With WEDM, all the workloads enter a regime where the cor-

rect answer has the highest frequency of occurrence. Thus achieving our goal of having

higher confidence in the inference for NISQ.
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Figure 4.13: IST improvement with EDM and Weighted EDM (WEDM) over the base-
line which uses the single best allocation for all of the trials. EDM and WEDM provide
significant improvement in system reliability.

Using ensembles, we improve the IST but we can degrade the PST slightly as we use

mappings that are not the most optimal when running EDM and WEDM. In both EDM

and WEDM, at the end of the execution, we combine output probability distributions

such that each entry in the distribution is averaged. The PST of an ensemble is bounded
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by the best and worst mapping in an ensemble. As we scale the workload, small im-

provements in PST or degradation does not change the effectiveness of NISQ applica-

tions. Whereas, improving the IST can correlate with the ability of the NISQ machine to

infer the correct answer.

4.8 Summary

The arrival of quantum computers with dozens of qubits will enable a better under-

standing of the impact of qubit errors on applications. This can help us in developing

efficient solutions to mitigate errors. In NISQ computing model, the program is run

thousands of times, and the output log is used to infer the outcome. The ability to infer

the correct outcome depends on both the probability of the correct outcome and the

probability of the most-frequently occurring incorrect outcome. We focus on the latter

to improve the ability to infer the correct answer on NISQ machines.

Existing qubit allocation schemes search for one best mapping, and this mapping is

used for all the trials. Unfortunately, such a method is vulnerable to correlated errors.

The correlation in errors causes a few wrong answers to repeat for a large number of tri-

als. To mitigate correlated errors, we leverage the principle of diversity, and propose an

Ensemble of Diverse Mappings (EDM). With EDM, the total number of trials are divided

into multiple groups and a different mapping is applied to each group. To keep the im-

plementation of EDM simple, we use the top-4 mappings produced by the underlying

mapping policy. We show that with EDM, the magnitude of the dominant wrong answer

decreases and the reliability of the NISQ system increases by up to 1.6x.

EDM merges the probability distributions generated by each of the mappings using

an equal weight. We make an observation that the runs that have similar output have

less information than the runs that have different outputs. Based on this insight, we

propose Weighted Ensemble of Diverse Mappings (WEDM) that scales the output distri-

butions generated by each of the mappings with ensemble weights. WEDM improves
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reliability by up to 2.3x.

The key idea in our paper is to have multiple versions of the same quantum program,

each tailored for a diverse set of mistakes. In this work, we specifically use mapping poli-

cies to create such diverse programs. However, there are other sources of program trans-

formations that can provide diversity as well. Exploring such diversification of quantum

programs using alternative transformations is a part of our future work.
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CHAPTER 5

PROGRAM TRANSFORMATIONS TO MITIGATE MEASUREMENT ERRORS

5.1 Introduction

A program running on a NISQ machine can encounter an error due to coherence, gate

operation, or due to measurement at the end of the computation. Measurement is typ-

ically the most error-prone operation on the current quantum computers. For exam-

ple, on the IBM machine, the average error rate for readout (measurement operation)

is 6%-8% with the worst-case error rates for the readout ranging from 25%-30%. Read-

ing a qubit is fundamentally challenging as qubits are extremely low energy devices and

during a process of readout, qubit devices interact with the noise of the measurement

circuitry. Thus, even if a quantum machine performs all the computation without en-

countering an error, in the end, the measurement operation can still result in an erro-

neous output. The goal of this paper is to improve the reliability of near-term quantum

computers by mitigating the impact of measurement errors.

Measurement operations are designed to collapse the qubit in a state of superposi-

tion into a classical binary state, 0 or 1. Thus, a measurement error manifests itself as

either a "1" being read as a "0" or vice versa. In this work, we observe that measurement

errors do not affect all states equally. For example, on IBM machines, measurement er-

rors have state-dependent bias such that the state "1" is erroneously read "0" (1 → 0)

more frequently as compared to state "0" measured as the state "1" (0 → 1). While mea-

suring a collective state of N qubits, we would expect to encounter more errors for states

that have a large number of ones. We can exploit this bias to mitigate the impact of

measurement errors.

To show the state dependent bias in measurement errors we conduct a simple ex-
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PST of measuring “00000” 0.84

(a) (b) (c)

“11111” 0.78PST of measuring “11111” 0.62 PST of inv & meas

Figure 5.1: Probability of successfully measuring a state (a) All-zero state "00000" (b) All-
ones state "11111" (c) Measuring the All-ones state by first inverting the state and then
performing the measurement (expected output "00000").

periment. We initialize the IBM-Q5 (five qubit) machine into an all-zero state (00000)

and measure the state. This experiment was repeated for one thousand trials. The ex-

periment is deemed to give the right output if we obtain the 00000 state and incorrect if

it gave any of the other 31 possible values. Figure 5.1(a) shows the probability of obtain-

ing the correct answer and the probability of obtaining a few of the dominant incorrect

states. We note that the probability of successful measurement for the all-zero state

is 84%. Conversely, if we initialized the machine in an all-ones (11111) state, then the

probability of successful measurement drops to 62%, as shown in Figure 5.1(b). Thus,

reading a state of "1" is usually more error-prone than reading a "0" state.

We also conducted an exhaustive experiment will all 32 states ("00000" to "11111")

and observed that the probability of successful measurement shows a strong inverse

correlation with the Hamming Weight (number of ones) of the state being measured.

So, states with higher number of ones are more susceptible to measurement errors than

the states with fewer ones. Furthermore, this state-dependent bias is observed even for

qubits in the state of superposition. For example, a GHZ state is an equal superposition

of all-one and all zero state, when measured it is expected to produce the all-zero state

and the all-one state with 50% probability each. We observe that on IBM-Q5, the all-

zero state was four times as likely as the all-ones state. We note that our experiments

with all three publicly available IBM machines (two 5-qubit machines and one 14-qubit

machine) show such state-dependent bias in measurement errors.
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The key insight is to exploit the state dependent bias to reduce the impact of mea-

surement errors. For example, if we are likely to read a vulnerable state (high Hamming

Weight), then we can transform it into a stronger state (low Hamming Weight) by in-

verting qubits before the measurement, performing the measurement, and inverting

the measured result. We refer to such a method of conditionally converting the state

to obtain lower measurement errors as Invert-And-Measure. For example, reconsider

the example of Figure 5.1(b) where we read the all-one state. Instead, if we inverted the

state (by using an additional "X" gate at each of the qubits)1 before the measurement

and then we perform the measurement, then the probability of successful measurement

increases from 62% to 78%, as shown in Figure 5.1(c). Note that the measurement pro-

duces a complementary state (all-zeros on correct output) and we must invert this out-

put to get the desired results. Unfortunately, prior to measurement, we do not know the

Hamming Weight of the system (and hence we do not know if the system is in a weak

state or strong state). Always using inversion before measurement can degrade relia-

bility if the system was already in the strong state. We design two practical policies for

Invert-and-Measure.

5.2 Qubit Measurement Errors

Measurement is the most error-prone operation in current quantum computers. Ta-

ble 5.1 shows the minimum, average, and maximum error-rates for the measurement

operation (readout operation in IBM terminology) for the three IBM machines that we

use in our evaluations. We note that the average error rate for measurement operation

in the range of 4%-8% and as high as 31%. The high rate of measurement errors can

reduce the application level reliability, especially for low depth programs.

1Note that Invert-and-Measure increases the overall gate count due to the addition of the X gate. Fortu-
nately, single qubit gates (such as the X gate) have a low error rate of approximately 0.1%, which is almost
100x smaller than the error rate of the measurement operations. Therefore, the vulnerability due to the
extra X gate itself does not have a significant impact on the overall system reliability.
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Table 5.1: Error Rates of Measurement Operation

Machine Error Rate

Name Min Mean Max

ibmqx2 (IBM-Q5A) 1.20% 3.8% 12.8%

ibmqx4 (IBM-Q5B) 3.4% 8.2% 20.7%

ibmq-melbourne (IBM-Q14) 2.2% 8.12% 31%

5.2.1 Impact of Measurement Errors on NISQ Applications

Errors can cause the NISQ machine to produce an erroneous output. Figure ?? (b) shows

the distribution of output for a Bernstein-Vazirani (BV) kernel storing 2-bit key "01". On

an idealized, error-free machine, we would get the secret key with 100% probability. Er-

rors can cause the trial to produce incorrect output, and we should see a distribution

of all possible outputs. For example, in Figure ??(c) shows a case where the correct out-

put occurs with 50% probability, and each of the incorrect output occurs with no more

than 25% probability. Thus, we can correctly infer the key, even in the presence of er-

rors. Now, lets say we stored a different key ("11"), as shown in Figure ??(d). The correct

output occurs with 30% probability, and one of the incorrect outputs occurs with 35%

probability. In such cases, we will not be able to infer the correct key by analyzing the

log. This can especially happen if certain states are more vulnerable to measurement

errors, causing a bias in output to go from the correct output to incorrect output.

5.3 Bias in Measurement Errors

This section provides characterization data for measurement errors, in particular high-

lighting the data pattern dependence of measurement errors and the correlation with

the Hamming Weight (the number of 1s in the pattern).
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5.3.1 Data Dependent Bias

Qubit devices have a natural tendency to relax to the low energy state (0) from the high

energy state (1). This creates a data dependent bias in measurements as qubit which al-

ready in State 0 is less likely to change its state due to natural relaxation process as com-

pared to the qubit in State 1. For example, our evaluations on IBM quantum computers

show that a qubit in an excited state is more likely to encounter an error as compared to

the qubit in a low energy state. To understand the data-dependent bias in measurement

errors, we generate all the 32 possible states (00000 to 11111) and measure each state

16 thousand times. We compute the Probability of Successful Measurement (PSM) as the

ratio of correct output to the number of trials. Figure 5.2 show the relative PSM for all 32

basis states on IBM’s five qubitibmqx2 machine. Note that the x-axis is in the ascend-

ing order of Hamming Weight. We calculate relative PSM by dividing the PSM of each

basis state with the highest PSM. For ibmqx2, state "00000" is the strongest basis state,

whereas states "11111" is the weakest state with relative PSM of 0.38, with the relative

PST reducing with increasing Hamming Weight.
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Figure 5.2: Probability of Successful Measurement foribmqx2basis states (X-axis shows
five bit basis states in ascending order of hamming weights).

With unbiased measurements, PSM for all the basis states should be similar. How-

ever, our evaluations suggest that the probability of successful measurement is inversely

proportional to the Hamming weight of basis states (Correlation coefficient = 0.93). Thus,

larger the Hamming weight higher the probability of measurement error.
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To understand the impact of the size of the quantum computer, we run similar exper-

iments with 10-bit basis states onibmq-melbourne for 150 thousand trials. Figure 5.3

show the relative PSM for all 1024 basis categorized as per the Hamming Weight of the

basis state. The data again shows a strong inverse correlation between the measurement

strength and the Hamming Weight.
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Figure 5.3: Probability of successful measurement for the ibmq-melbournemachine.
The data is averaged over all the basis states with the identical Hamming Weight.

5.3.2 Impact of Bias on Superposition of States

Thus far, we have measured the vulnerability of measurement errors to states that do not

have any superposition. However, measurement errors can have data dependent bias

even for qubits that have superposition. To understand how state dependent measure-

ment bias affects the superposition of states, we create the Greenberger-Horne-Zeilinger

(GHZ) state, which is an equal superposition of basis-states "00000" and "11111" (GHZ-5

= 1p
2

(|00000〉+ |11111〉)).

If the GHZ-5 state is prepared and measured on a quantum computer with no errors,

the output will be either "00000" or "11111" with 0.5 probability respectively. However,

when prepared and measured on the IBM machine, the probability of measuring state

"00000" and state "11111" are unequal. As shown in the Figure 5.4, PSM degrades from

0.5 to 0.4 for state "00000" and from 0.5 to 0.1 for sate "11111". Our experiments sug-
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gest that measurement bias extends to the superposition of basis states. Note that GHZ

states are considered to be the maximally entangled state; thus measurement bias af-

fects qubits that are in superposition and entanglement.
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5.3.3 Impact of Bias on NISQ Applications

State-dependent bias in the measurement errors produces non-uniformity in the mea-

surement strength of basis states. The skew in measurement strength degrades the reli-

ability of NISQ machines. For example, if the desired or optimal answer is a weak basis

state, then the probability of measuring the answer drops significantly. Furthermore,

weak states are often incorrectly measured as strong states. To understand this masking

effect, we execute an instance of QAOA on the ibmq-melbourne machine. We use

QAOA to solve the max-cut problem for five input graphs (Graph-A to Graph-E) such

that each graph consists of six nodes and the desired output (the partition that maxi-

mizes the cost function) is in the increasing order of Hamming Weight, as shown in the

Table 5.2. We execute each graph for 32 thousand trials. All five graphs use an identical

number of gates and the optimal mapping (aware of variation in error rates of different

qubits).

Table 5.2 also shows the Probability of Successful Trials (PST), Inference Strength

(IST) and the rank of the correct answer for the five graphs. We observe that PST is

inversely correlated to the Hamming Weight. As for input graphs A and B, the PST is 2x

76



Table 5.2: Impact of measurement bias on QAOA

Input Optimal Hamming Metric

Graph Output Weight PST RS Rank

Graph-A 010000 1 6.5% 1.3 1

Graph-B 010100 2 5.5% 1.01 1

Graph-C 101001 3 5.0% 0.70 7

Graph-D 101011 4 1.9% 0.59 14

Graph-E 110110 4 1.5% 0.23 24

higher as compared input graph D and E. Thus, state-dependent measurement bias can

significantly deteriorate the reliability of the application.

The bias in measurement has a significant impact on the Inference Strength (IST)

and Rank of correct answer as well. IST drops significantly for the input graphs E and

F. When the expected output is a weak state (Hamming Weight= 3 or 4) the incorrect

answers have a higher frequency of occurrence compared to the correct answer.

To understand how measurement bias impacts the ability to infer the optimal an-

swer, we use the rank of the correct answer. For A and B the correct answer appears with

the highest frequency, whereas, for D and E (high Hamming Weight) the incorrect an-

swers mask the correct answers as the correct output corresponds to a weak basis state.

5.4 Evaluation Methodology

We perform our evaluations using publicly accessible IBM machines. We use key ker-

nels that are typically used for evaluating the performance of NISQ machine. Finally,

we discuss several figure-of-merits that are appropriate for assessing the reliability of a

NISQ machine.

5.4.1 NISQ Benchmarks

Developing applications for near-term quantum computers is an open problem [4, 5].

Quantum Approximate Optimization Algorithm (QAOA) [26] has emerged as an appeal-
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ing use for NISQ machines as it can be used to solve discrete optimization problems. We

use QAOA as one of the kernels for our evaluation. The other kernel we use is Bernstein-

Vazirani (BV)[13] where a secret key is stored and the kernel allows the inference of the

key. Note that both bv and qaoa produce a binary string as the solution. For example,

the output of QAOA when solving a max-cut problem represents a partition that maxi-

mizes the cost function. Whereas, BV is an oracle that finds a secret key and outputs a

binary string corresponding to the secret key. On an ideal quantum computer (with no

qubit errors), these applications will produce correct output with certainty. In the case

of BV, the correct output is produced with the probability of one, whereas in the case

of QAOA, the correct output string has the highest frequency of occurrence. Note that

QAOA solves an optimization problem – solutions produced with QAOA can be used to

calculate the cost function, and the answer corresponding to optimal value among all

the tested solution can be used as the good enough solution. Table 5.3 shows the differ-

ent configuration of BV and QAOA used in our study.

Table 5.3: Benchmark Characteristics

Benchmark Problem/Algorithm Output

bv-4A 4 bit Bernstein-Vazirani Secret: 0111

bv-4B 4 bit Bernstein-Vazirani Secret: 1111

bv-6 6-bit Bernstein-Vazirani Secret: 011111

bv-7 7-bit Bernstein-Vazirani Secret: 0111111

qaoa-4A max-cut for 4 node graph Output cut: 0101

qaoa-4B max-cut for 4 node graph Output cut: 0111

qaoa-6 max-cut for 6 node graph Output cut: 101011

qaoa-8 max-cut for 8 node graph Output cut: 10101101

5.4.2 Reliability Metrics

Our goal is to improve the reliability of NISQ machines. While PST has been commonly

used at the metric to denote the system level reliability, we discuss two additional met-

rics that can provide further insight into assessing the reliability of NISQ machines, de-
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pending on the application.

Probability of Successful trial (PST):

PST has been used to evaluate the reliability of NISQ applications [22]. To calculate PST,

a NISQ program is run multiple times, and the output of each trial is logged. PST is eval-

uated by computing the ratio of a number of error-free trials to the total number of trials.

PST can be evaluated for a class of problems that have known correct solution. Note that

by only knowing the PST, we do not know if the execution will lead to a successful out-

come or not. For example, a PST of 20% may be sufficient if all other incorrect answers

appear with less than 20% but insufficient otherwise.

PST = Number of Trials with Correct Solution

Total Number of Trials

Inference Strength (IST):

When running a NISQ application, we need to consider the frequency of error-free out-

comes along with the erroneous outcome, as incorrect outputs can mask the error-free

outputs. Thus, suppressing erroneous trials is essential to determine the error-free an-

swer from the erroneous ones. To quantify this, we propose Inference Strength (IST),

which is the ratio of the frequency of error-free output to the number of most frequently

occurring erroneous output. RS can easily capture the cases where the incorrect an-

swer can dominate the correct answer. For example, the correct answer appears with

the highest frequency in the output log only if RS exceeds 1.

I ST = Probability of Correct Solution

Probability of Strongest Incorrect Solution
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Rank of Correct Answer:

For discrete optimization problems, such as QAOA, we get a solution from the NISQ ma-

chine, and we would compute the cost associated with the solution. However, instead

of only testing the most frequently occurring solution on the NISQ machine, we could

also test "top K" answers for possible solution (note that, if the quantum speedup is 2N

the such a solution will have a speedup of 2N /K , which is still substantial for small K).

To compute the rank of the correct solution, we sort the output log in descending order

using frequency of occurrence and use the rank of Correct Answer as a metric to capture

the effectiveness of the NISQ machine.

Rank = Rank of Correct Answer based on Frequency

5.4.3 Machine Configuration and Parameters

Table 5.4: Quantum Machines

Platform ibmqx2 ibmqx4 ibmq-melbourne

Number of Qubits 5 5 14

For our evaluations, we use the publicly available quantum cloud service from IBM [12].

We conduct our experiments on three quantum machines, as shown in the Table 5.4. We

use multiple machines to understand the machine specific and general measurement

bias. We evaluate all the benchmarks using the most optimal qubit allocation for both

the baseline experiments and for proposed bias mitigation techniques. We use hand-

crafted allocations that are cognizant of underlying noise and variation in the error rate.

When running the benchmarks, we ensure that the identical program (number of gates,

and position of qubits) are performed for the baseline and proposed policy. Moreover,

we run each benchmark for more than 32,000 trials and ensure that the baseline and the
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Figure 5.5: Static Invert-and-Measure (SIM): Split trials into standard-mode and
inverted-mode, and merge results

proposed policy are evaluated in the same calibration window such that the evaluations

for the baseline and proposed policy are executed in intertwined batches.

5.5 Exploiting Bias Using Inversion

Our characterization data shows that there is a significant bias in the measurement er-

rors, and these errors tend to show a strong correlation with the Hamming Weight of the

output being measured. We could exploit this bias to reduce the impact of measurement

errors on the NISQ machines.

5.5.1 Invert-and-Measure: The Basic Concept

If we could guess the state being measured, and if it was a state that is highly vulnerable

to measurement errors, then we could instead perform the measurement in an inverted

mode. In the inverted mode, the qubits would first be inverted (using the X gate), and

then the measurement is performed. The measurement would give an output comple-

mentary to what is expected; however, we can perform inversion on the measured out-

put to get the desired state. We exploit this insight in our proposal, Invert-and-Measure.

For example, if we were reading an all-ones state (highly error-prone) then inverting the

state will allow us to perform our measurement in the all-zeros state (less error-prone).
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Figure 5.6: Output of QAOA on the IBM-Q14 machine using the (a) Baseline policy (b)
Static Invert and Measure (SIM)

Performing all the measurement in an inverted form is not always beneficial. In fact,

it can lead to more errors. For example, if we were reading a strong state and we inverted

and measured, then we would increase the error rate of the system. Therefore, inverted

measurement makes sense if we know the state we are reading. Applying an inverted

measurement thus faces a practical challenge as we do not know the state we are mea-

suring before performing the measurement. We propose Static Invert-and-Measure that

avoids the reliance on knowing which state is being measured.

5.5.2 Static Invert-and-Measure

Rather than performing all of the trials in the same measurement mode, our Static Invert-

and-Measure (SIM) policy divides the trials into multiple groups and performs a differ-

ent measurement mode on each group. The simplest form of SIM is to have two mea-

surement modes: standard and inverted, and use each measurement mode for half the

trials, as shown in Figure 5.5(a). Note that for measurements performed in the inverted

mode, we flip the measured results to get the expected output. The distribution obtained

from both modes of measurement is then combined to obtain an aggregate distribution

over all the trials. As SIM divides the measurements into groups, the system may per-

form only half of the measurements in the vulnerable state and the other half in the

stronger state so that the errors can get averaged out.

We explain the operation and effectiveness of SIM with an example, as shown in Fig-
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ure 5.5(b). Consider a QAOA application that produces a 3-bit output. The expected

output of QAOA on an ideal quantum computer is "101". If we run the application on

a NISQ machine, we can get different output in different trials. The PST is 0.35, and

the incorrect answer "001" (with lower Hamming Weight) is measured more frequently

as compared to the correct answer A . Whereas, for the inverted measurements, our

expected measurement would be "010" (with high probability) B . We can flip the mea-

surements obtained in an inverted mode to obtain the desired probability distribution

for the inverted mode C . Combining the distributions from the standard mode and

inverted mode produces the correct answer with the highest probability (PST=0.55), as

shown in D . Thus, SIM limits the vulnerability of measurement errors to bias towards

only one group and averaging the results from different measurement mode can im-

prove the overall reliability of the system.
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Figure 5.7: SIM with four inversion-Strings: all-zeros, all-ones, even-bits-1, and odd-
bits-1. Averaging over four modes increases the likelihood of getting a stronger state.

5.5.3 Generalizing SIM to Multiple Modes

The basic insight in SIM is to transform a state being measured into another state which

might be less vulnerable to measurement errors. This is achieved by inverting the mea-

surement for some of the trials. We can generalize this concept of measuring in a differ-

ent basis as having an Inversion-String that is applied to the set of qubits being measured
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before doing the measurement. In standard mode, the Inversion-String is all zeros, so

no inversion is applied, and the state is read as is. In the inverted mode, the Inversion-

String is all ones, so all the qubits are inverted before performing the measurement. For

an N-qubit machine, there are 2N possible Inversion-Strings. In fact, if we divide all the

trials into 2N groups, and applied a unique Inversion-String to each of the group, then

we would get an average value of measurement error, regardless of the state being mea-

sured.

Applying all possible Inversion-Strings may not be a viable option, especially for a

machine with dozens of qubits, given that the number of Inversion-Strings grows expo-

nentially with the number of qubits. However, even if we choose a handful of Inversion-

String, we can still average out the measurement errors on those measurement modes.

For example, the SIM policy described earlier had two Inversion-Strings (all-zeros and

all-ones) and is optimized for cases where the state being measured is either very low

Hamming Weight or very high Hamming Weight. We could add additional measurement

modes which are designed for states that may have moderate Hamming Weight. For ex-

ample, we could add an Inversion-String that has an alternating string of 1s and 0s. So,

our policy may have four Inversion-Strings altogether: all-ones, all-zeros, even-bits-one,

and odd-bits-one. Such a design with four Inversion-Strings is shown in Figure 5.7.

We find that such an implementation of SIM with four Inversion-Strings is effective

at providing measurement errors close to average, without requiring us to know the state

that is being measured and without knowing the machine characteristics (which states

are vulnerable and which are not vulnerable). For our experiments with SIM, we split the

trials into four equal groups. We use the four Inversion-Strings: no inversion (00000..0n

), full inversion (11111..1n), even qubit inversion (10101..1n ), and odd qubit inversion

(01010..0n). Using these inversion strings, we generate four copies of a program and run

each copy for an equal number of trials. For partial and fully inverted copies we perform

post-measurement flips and combine all the outputs.
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Figure 5.8: Output of QAOA on the IBM-Q14 machine using the (a) Baseline policy (b)
Static Invert and Measure Policy (SIM)

5.5.4 Impact of SIM on Reliability of QAOA

To understand the effectiveness of SIM, we use QAOA to find the max-cut for the input

graph-D (output string: 101011). We run the application on IBM-Q14 for 16384 trials

in the baseline configuration. The output of QAOA with the baseline policy is shown in

the Figure 5.8(a). The baseline PST is only 1.9% and the Relative Strength is 0.59. With

the baseline policy, a significant number of incorrect answers are generated, especially

incorrect answers tend to have low Hamming Weight. The baseline produces thirteen

incorrect outcomes with a higher frequency of occurrence than the correct answer, such

that the Rank of the correct answer is fourteen.

To improve reliability, we run QAOA with SIM. We prepare, four copies of the exe-

cutable such that first copy uses non-inverted measurements, second and third copy

uses alternating partial inversions, and the fourth copy uses fully inverted measure-

ments. We run each copy for 4096 trials and combine all four distributions after post-

correcting the outputs. Figure 5.8(b) shows the distribution of outputs produced by SIM.

SIM improves PST by 10% and the IST by 23%. The Rank of the correct answer improves

from 14 to 6. Thus, SIM can mask out a significant number of incorrect outputs by aver-

aging out the measurements over a larger number of measurement modes.
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5.5.5 Impact of SIM on PST

We conduct our experiments on three IBM machines: ibmqx2,ibmqx4,ibmq-melbourne.

Figure 5.9 shows the PST of the system with SIM, normalized to the PST of the baseline

machine. We observe that across all three machines, SIM improves PST. SIM can im-

prove PST by as much as 2X for ibmqx4. SIM provides an improvement in other relia-

bility metrics (such as Relative Strength and Rank) as well; however, we report results on

those metrics in Evaluation Section.
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Figure 5.9: Impact of SIM on PST of the three machines.

5.6 Adaptive Invert-and-Measure

With SIM, we perform measurement in four different modes with the expectation that

these inversion strings will average out the errors, and overall reliability of system will

be dictated by the average error-rate for measurement rather than the worst-case error

rate for the measurements. We do this because we do not know the state being mea-

sured. However, if we had a way of predicting (using profile information or a few "ca-

nary" trials) the state being measured, then we would use an Inversion-String that maps

the given state to the strongest state. For example, if the strongest state is all-zeros, then

the Inversion-String will be the same as the state being measured. This would ensure
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that the system always perceives the error rate corresponding to the state with the min-

imum measurement error rate.

While running a few "canary" trials to estimate the likely output looks like a promis-

ing option, however, the success of getting the right answer with a non-negligible prob-

ability again depends on the measurement error rate for the state being measured. If

the state that we are interested in measuring is a highly error-prone state, then even in

the canary trials we would encounter an error and get the wrong output. Therefore, we

need both the profile information of the application as well as the profile information

of the machine to make use of the canary trials. Unfortunately, the measurement error

does not have a perfect correlation with the Hamming Weight, and for some machines

(e.g.ibmqx4) this correlation is weak.

5.6.1 Arbitrary Measurement Bias and Impact

On ibmqx2 and ibmq-melbourne measurement strength of the basis state is in-

versely proportional to its Hamming Weight. However, not all quantum computers have

measurement strengths that scale predictably with Hamming Weight. For example, on

ibmqx4, IBM’s five-qubit quantum machine, we observe an arbitrary measurement

bias such that measurement strength is not strongly correlated with the Hamming weight

of the basis state. Figure 5.10 show the relative measurement strength for all 32 basis

states on IBM’s five-qubit machine. The data shows that the strength of the measure-

ment is not monotonically decreasing with the Hamming Weight of the basis state. To

test if the bias is repeatable, we evaluated the measurement strength of different five-

qubit basis states for 35 days over 100 calibration cycles. We observe a repeatable bias in

the measurement strength of basis states.

The natural state-dependent bias, variability, and machine-specific errors can col-

lectively produce an arbitrary bias. Also, measurement errors can have a significant im-

pact on the reliability of the NISQ machine. For example, we execute 32 instances of
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Figure 5.10: (a) Probability of Successful Measurement (PSM) for ibmqx4 states (b)
Probability of Successful Trial (PST) for BV for different desired output states.

BV-4 (each for 24 thousand trials) on ibmqx4 such that each instance outputs 5-bit ba-

sis state (4-bit secret key and 1-bit ancillary qubit). The PST for the experiments with 32

different keys is shown in Figure 5.10(b). The x-axis is the secret input key, and the states

are arranged in the increasing order of the Hamming Weight. We can observe a positive

correlation between the PST and the measurement strength as weak basis states have

significantly lower PST as compared to the stronger states.
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Figure 5.11: Design of Adaptive Invert-and-Measure.

5.6.2 Design of Adaptive Invert-and-Measure

To adapt to any arbitrary bias in the measurement, we propose Adaptive Invert and Mea-

sure (AIM). AIM uses run-time profiling to build the measurement strength curve for a
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given quantum computer and uses targeted inversions. Figure 5.11 shows an overview of

AIM. AIM contains three parts: (1) generating machine profile for measurement strength,

(2) generating likely outputs for the application using canary trials, and (3) running

the application with tailored Inversion-Strings that map the likely output states to the

strongest state of the machine. We describe these steps below.

Generating Measurement Strength Function:

For a small machine (such as IBM-Q5) we can build an Approximate Measurement Strength

Function (AMSF) by measuring the probability of successful measurement for each of

the possible states. However, for a larger machine (such as IBM-Q14), evaluating all

possible measurement states is not a viable option due to the exponential growth in the

number of states. For IBM-Q5, we use a brute-force approach (similar to Figure 5.10(a)).

Whereas, for IBM-Q14, when run QAOA-8, we use a divide-and-conquer approach, where

we learn the AMSF using one window of 4-qubits at a time (sliding window).

Generating Candidates for Likely Output:

AIM performs canary trials using the four Inversion-Strings used in SIM to produce an

output distribution that removes global bias. However, note that a state that is low

strength may appear with low probability in this distribution simply due to measure-

ment errors. Therefore, we scale the output distribution with an inverse value of mea-

surement strength (for example, if the measurement strength of state X is 0.1 and state Y

is 0.2, but both occur with same frequency, then we scale the likelihood of X by a factor

of two compared to Y).

We denote Li as the likelihood that the measured basis state i is correct. Li is defined

by Equation 1.

Li = Probability of occurrence of state i in output

Measurement strength of the state i
(5.1)
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We sort and select top "k" strings with the highest L value. These "k" strings or the

strings within one or two hamming distance are the most likely to be the correct output.

Generating Inversion-Strings for Execution:

When the likely outputs are available, we use the Inversion-String that can map them

to the strongest state. For simplicity, if the strongest state is an all-zero state, then the

Inversion-String is the same as the predicted output. We run the execution for a given

number of trials with this tailored Inversion-String. We do this for all of the "k" predicted

outputs (we use K=4 in our study). For our evaluations, if we have N number of trials in

the baseline, we use 25% of the trials as canary trials to generate the possible outputs for

the application. For the remaining 75% of the trials, we use the tailored Inversion-String

to perform the experiments. The total number of trials of the application remains the

same for the baseline and AIM.
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Figure 5.12: Bernstein-Vazirani for all possible keys using: Baseline, SIM, and AIM. Note
that, with AIM the PST remains high for all possible states (and is close to the maximum,
except for the all-zero state).

5.6.3 Estimating Measurement Strength Function

Measurement Strength Function (MSF) encapsulates the measurement strength of each

basis state on a quantum computer. It is crucial to learn MSF, for detecting the measure-
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ment bias and and correct it using Adaptive Invert and Measure (AIM). To evaluate the

MSF, we can prepare each basis state and measure the state multiple times to estimate

it’s measurement strength function. However, the evaluation of absolute measurement

strength is expensive. Because the number of basis states scales exponentially with the

number of qubits. To mitigate this challenge, we propose two techniques:

Measuring equal Superposition of N qubits: To avoid the cost of preparing every ba-

sis state, we can prepare a quantum state with equal superposition of N-qubit state and

measure this state repeatedly. By measuring the equal superposition of basis states, we

can estimate the relative measurement strength of the basis states. By using technique

we achieve highly accurate valley curve with about 1% mean squared error rate. How-

ever, even with superposition, we don’t really solve the exponential scaling problem. For

example, for 30 qubit machine, there are billion possible states just to mitigate the sam-

pling error, we will require number of trials that also scale exponentially with Number

of qubits.

Q1 Q2 Q3

Q12 Q11Q13

Q1 Q2 Q3

Q12 Q11Q13

Q5

Q9

Q5

Q9

(a)

(b)

Moving Window

Figure 5.13: (a) Moving window characterization to estimate MSF (b)Comparison be-
tween MSF estimates with IID and Bayesian reconstruction

Moving Window Characterization: To enable evaluation of MSF with linearly scaling

number of trials, we propose approximate windowed characterization technique (AWCT).

AWCT uses divide an conquer approach by partitioning the N qubit in smaller groups

with m qubits and perform characterization of "m" qubits at a time using uniform su-

perposition. When characterizing N qubit machine, AWCT characterizes fraction of "m"
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qubits at a time and moves to next set of m qubits until we characterized all the N qubits.

With AWCT, the number of trials required to estimate the relative strengths of the basis

states scale with O(2m) rather than O(2N ). AWCT can be used in two modes: overlapping

window. Figure 5.13 measurement errors on 14 qubit machine, using three techniques

– baseline, overlapping window and,We can combine all the local characterizations to

generate one global characterization using an analytically model described in .

5.6.4 Impact of AIM on Reliability of BV-5 Benchmark

Both SIM and AIM try to transform the state being measured into another state using

Inversion-Strings. SIM does so without any knowledge of the application and the sys-

tem characteristics using statically selected strings. AIM performs system and appli-

cation profile to generate specialized Inversion-Strings to get the strongest state for the

measurement. Figure fig:bvall shows the PST of BV for the baseline, SIM, and AIM on the

ibmqx4 machine. We experiment with all possible basis states. We note that the PST

with the baseline and SIM are quite variable and the fidelity depends on the states, with

some states having quite low fidelity. With AIM, the PST remains rather stable across all

the possible states. Compared to the baseline and SIM, AIM continues to have a consis-

tently high PST, with the exception of state all-zeros (the all-zero state is the strongest, so

the baseline has the highest PST). Thus, AIM not only improves the PST but also makes

the system have less dependence on the values used by the applications.

5.7 Evaluations

We defined three reliability metrics as the figure-of-merit for our evaluations: Probabil-

ity of Successful Trial (PST), Relative Strength, and the Rank of the correct answer. We

provide the effectiveness of SIM and AIM on these three metrics, on the three machines

that we used in our study.
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Figure 5.14: Probability of Successful Trial (PST) for SIM and AIM, normalized to the
baseline. SIM improves PST by up-to 2X, whereas AIM improves PST by up-to 3X.

5.7.1 Impact on Relative Strength

Table 5.5 shows the Relative Strength (ratio of the frequency of the correct output to the

frequency of the strongest incorrect output) of the baseline, SIM, and AIM. For ibmqx2,

SIM improves the relative strength by 1.2x and AIM improves it by 1.56x. For ibmqx4,

SIM improves the relative strength by 3.4x and AIM improves it by 7.2x. Foribmq-melbourne,

SIM improves the relative strength by 1.9x and AIM improves it by 2.8x. We note that

for ibmqx4, SIM improves the relative strength from 0.46 to 2.85 (6.2x) and AIM im-

proves the relative strength to 10.38 (22.5x improvement). The relative strength of more

than 1 means that the correct answer appears with the highest frequency. If the relative

strength is less than 1, then the state will not have the top-most Rank. We analyze the

Rank of correct answer next.

5.7.2 Impact on Rank of Correct Answer

Table 5.6 shows the Rank of the correct answer for the baseline, SIM, and AIM for the

three machines that we evaluate. SIM and AIM substantial improvement in the rank of

the correct answer, especially for the larger workloads such as QAOA-8 and BV-9. For

small workloads such as BV-4, an incorrect answer is second or third with a baseline

policy and with AIM and SIM it jumps to the most frequent answer. For ibmqx4, both
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Table 5.5: Relative Strength for Baseline, SIM, and AIM

Benchmark Platform Baseline SIM AIM

BV-4A ibmqx2 1.22 1.12 1.3

BV-4B ibmqx2 0.9 1.25 1.8

QAOA-4A ibmqx2 0.73 0.86 1.2

QAOA-4B ibmqx2 0.72 0.96 1.12

BV-4A ibmqx4 0.46 2.85 10.38

BV-4B ibmqx4 4.8 6.4 5.7

QAOA-4A ibmqx4 0.82 1.94 2.03

QAOA-4B ibmqx4 0.72 2.67 1.98

BV-6 ibmq-melbourne 0.70 0.93 1.02

BV-7 ibmq-melbourne 0.62 0.84 1.09

QAOA-6 ibmq-melbourne 0.23 0.72 0.86

QAOA-8 ibmq-melbourne 0.18 0.36 0.78

Table 5.6: Rank of Correct Answer

Benchmark Platform Baseline SIM AIM

BV-4A ibmqx2 1 1 1

BV-4B ibmqx2 2 1 1

QAOA-4A ibmqx2 3 2 1

QAOA-4B ibmqx2 4 2 2

BV-4A ibmqx4 3 1 1

BV-4B ibmqx4 1 1 1

QAOA-4A ibmqx4 3 1 1

QAOA-4B ibmqx4 4 1 1

BV-7 ibmq-melbourne 8 4 1

BV-9 ibmq-melbourne 7 3 1

QAOA-6 ibmq-melbourne 14 6 2

QAOA-8 ibmq-melbourne 38 9 4
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SIM and AIM obtain the highest rank. For ibmq-melbourne, the rank of the 8-bit

QAOA improves from 38 to 9 with SIM, and 4 with AIM.

5.7.3 Impact of SIM and AIM on PST

Figure 5.14 shows the Probability of Successful Trial (PST) of SIM and AIM, normalized

to the baseline. For ibmqx2, SIM improves the PST by 22% (up-to 30%) and AIM im-

proves it by 40% (up-to 56%). For ibmqx4, SIM improves the PST by 74% (up-to 85%)

and AIM improves it by 290% (up-to 329%). For ibmq-melbourne, SIM improves the

PST by 16% (up-to 20%) and AIM improves it by 27% (up-to 36%). Both SIM and AIM

are simple techniques that improve the reliability of the NISQ machines by mitigating

measurement errors.

5.8 Summary

In this work, we focus on mitigating measurement errors, which tend to have the high-

est error-rate on current machines. We observe that there is state-dependent bias in

measurement errors, with some states experiencing significantly higher error rates com-

pared to the other states. Furthermore, the disparity between the measurement strength

of basis states can significantly affect the reliability of NISQ applications, especially while

measuring states with a high Hamming Weight.

We propose to exploit the bias in measurement errors to improve the overall system

reliability. For example, while measuring a state which is highly susceptible to measure-

ment errors, we invert the state of the qubits and perform measurement in the inverted

mode. To avoid the reliance on a-priori knowing the state being measured, we propose

Static Invert-and-Measure (SIM), which splits the trials into multiple groups and applied

a different inversion string to each group. SIM obtains measurement errors close to the

average and improves the application reliability by up-to 2X.

If we could predict the state that is being measured, and the error rate profile of the
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machine, then we can proactively map the predicted state to the strongest state using

a specifically designed inversion string. We use this insight to propose Adaptive Invert-

and-Measure (AIM). AIM estimates the measurement strength function of the machine

for each state. AIM also conducts a few "canary" trials to learn the likely outcomes for

the given application and uses the inversion string that maps the predicted output to

the strongest state before performing the measurement. Our evaluations, using three

IBM machines (ibmqx2, ibmqx2, ibmqx14), shows that AIM improves the reliability of

the system by up to 3X.
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CHAPTER 6

RELATED WORK SURVEY

In this chapter, we will survey the related work in the broad area of quantum computer

architecture and compilers. Although the primary focus of this dissertation is on de-

signing compiler policies for near-term quantum computers, we would like to provide

context to help understand how the field of quantum computing and quantum com-

puter architecture has moved from early abstract ideas to concrete system design. To

that end, we will divide this survey in two parts. First part will focus on organization of

quantum Computing systems and in the later part we will focus on Quantum Software

Systems for Near-term Quantum Computers.

6.1 Hardware Architecture of Quantum Computers

The quantum hardware architecture focuses on: (1) Qubit Device Architecture (2) Con-

trol Computer Microarchitecture (3) Quantum System Organization. In this chapter we

will focus on Microarchitecture and Systems Organization, topic relevant to this thesis.

To understand how qubit device architecture evolved please refer to recent survey on

quantum hardware and qubit technologies [22, 27, 28, 29] .

In the three decades, the experimental quantum computers have greatly improved

the quality and number of qubit devices, which significantly affected the Microarchitec-

ture and System Organization research in traditional systems communities. Initially the

field of Quantum computing was discussed as a purely theoretical and gradually it has

started to focus on engineering and systems challenges. Early work focused on the un-

derstanding capabilities of the quantum computing model [30, 31, 32, 33, 34]. However,

with the proposal of Peter Shor’s polynomial integer factorization algorithm [35], gener-

ated significant interest in understanding the system level challenges in building quan-
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tum computers to access the threat of quantum computers to encryption systems. At the

similar time, experimentalists demonstrated first physical implementations of quantum

bits using a variety of devices – trapped ions, for example, were the devices originally de-

veloped for building precise atomic clocks, Monroe with his fellow researchers at NIST

demonstrated universal two-qubit CNOT gate using trapped ions qubits [36] based on

schema presented by Cirac et al. [37], Whereas bouchiat et al. demonstrated early su-

perconducting qubits [38]. Subsequently, numerous experimental and theoretical ideas

proposed to use solid-state devices, neutral atoms, ions, and molecules as qubits [39,

36].

In 2000, David DiVincenzo, proposed a concrete criteria to evaluate the scalability

of qubit technology. At the same time, many classical computer architects focused on

developing system organization, microarchitecture, the hardware-software interface for

quantum computers. Early works in quantum system architecture provided a blueprint

for quantum systems by defining ISA, and microarchitectural primitives [40, 41, 42, 43].

The primary focus for these papers was to create system abstractions for large scale sys-

tems and understand bottlenecks in building and scaling the quantum computers. In

the subsequent sections we will review related work in the area of qu

6.1.1 System Organization for Quantum Computers

Although quantum computers have significantly different physical constraints compared

conventional co-processor. The general idea and research methodology developed by

traditional computer architects can be usesd expose and exploit trade-offs in designing

quantum systems and optimize required resources for computing.

Quantum System Organization focuses on design of control computer architecture

and HW/SW interface. Initial papers in quantum systems used abstract models of con-

trol processor, and the majority of the articles focused on tradeoffs in organizing quan-

tum memory, compute, and interconnects [44, 45, 46, 47, 48]. Work in [40] and [49]
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quantified the overhead of error correction for the ion-trap computers and proposed a

framework to understand hardware constraints on the system reliability. These were

one of the first papers that took a system design perspective towards understanding

the overheads of enabling fault-tolerance in quantum computers. Followup research

highlighted the impact of quantum error correction on the design of microarchitecture

and proposed solutions to optimize for area and performance overheads. For instance,

Thakkar et al. [44] focused on the organization of compute qubits and memory qubits.

The authors observed the temporal locality and reuse patterns in the typical large scale

quantum algorithms and proposed a trade-off between reliability and latency to opti-

mize the area and execution time. Researchers have also proposed distributed SIMD

architectures and associated scheduling policies to support quantum operations on a

distributed ion-trap quantum substrate [50]. Besides ion-trap technology, architects

have also analyzed the architectural trade-offs in other quantum technologies such as

eSHe qubits and silicon qubits [51, 52]. For large scale systems, Jones et al. provided

an abstraction of quantum computing stack that describes the functional components

in scalable fault-tolerant quantum computers and provides an insight into resources re-

quired to build a large-scale fault-tolerant quantum computer [42]. Whereas, authors

in [53, 54], estimated the computational resources required to perform error decoding.

Moreover, they highlighted the architectural challenge of performing low-latency error

decoding and emphasized the limited scalability of minimum weight perfect matching

decoder on Intel CPU due to large working set size. Several recent works highlight the

engineering challenges in building solid-state quantum computers [55, 56]. Tannu et

al. focused on building organizational and microarchitectural challenges in building

large scale fault-tolerant quantum computers, and proposed an effective use of ther-

mal hierarchy and a microarchitecture that uses specialized hardware units to minimize

software bloat [57].
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6.1.2 Micro-architecture for Near-term Quantum Computers

Recent experimental breakthroughs have encouraged physicists and system architects

to focus on small-scale quantum system designs. To that end, several ideas on archi-

tecting near-term control computers for superconducting qubit systems have been pro-

posed. For example, Ofek et al. [58] used an FPGA based control that can provide real-

time feedback to tune superconducting qubits. Recently. Fu et al. [59] proposed a spe-

cific microarchitecture to control more than ten superconducting qubit devices. In this

work authors, make use of microcode to trigger instruction specific wave-forms. Fol-

lowup work by Fu et al. [60] developed a microarchitecture to support control flow and

conditional execution to scale the current experiments. In case of ion-trap quantum

computers, experimentalists have been using semi-customized FPGA based control frame-

works such ARTIQ.

Cryogenic control hardware is essential to scale the superconducting quantum com-

puter beyond 100 qubits. Several researchers are developing insights into using conven-

tional off-the-shelf hardware at cryogenic temperatures (4K to 77K). For example, Con-

way et al. [61] and Homulle et al. [62] characterized the functionality of CMOS based

FPGAs at 4K. Followup work by Homulle et al. [63] also characterized the performance,

failure modes, and power dissipation of Altera and Xilinx FPGAs built with 28nm pro-

cess technology at 4K temperature. On the other hand, several groups are focusing on

Josephson junction technology that can be used to construct a multiplexing scheme to

control qubits [64].

6.2 Software Architecture for Quantum Computer

Early quantum quantum software work focused quantum programming languages, cir-

cuit synthesis, resource estimation and quantum simulation. The primary objective was

to understand the resources required to support large scale quantum algorithms such as
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Shor’s Algorithm, Ground State Estimation. The early work in focused on unique chal-

lenges (no cloning, destructive measurement) of quantum computing paradigm. Work

by Salinger

6.2.1 Quantum Circuit Synthesis and Compilation

The development of compilation tool-chain and resource estimation tools made quan-

tum architecture research accessible to systems community. For example, ScaffCC –

high-level programming language and llvm based compiler tool-chain enabled compi-

lation of large-scale quantum applications [65]. Whereas, Suchara et al. developed a

resource estimation tools to evaluate the number of qubits and execution-time required

to run a full-scale quantum application such as Shor’s algorithm [66]. Research in quan-

tum compilers can be categorized into two broad categories front-end and back-end

compilers. Front-end of quantum compilers design interfaces to build quantum pro-

grams that can be either simulated on quantum simulators or run on existing and near-

term quantum substrates. For example, IBM’s QISKit frame-work uses python based

front-end to develop quantum programs and execute on IBM machine [67]. Moreover,

there are programming languages, and APIs can be used for developing and simulating

quantum programs [67, 68, 69, 70].

The back-end of quantum compiler performs circuit synthesis and qubit allocation,

and optimize quantum programs to improve performance. Quantum circuit synthesis

focus on a decomposition of general unitary operation, where complex fault-tolerant

instruction is translated into the sequence of simpler instructions that can be performed

within a fault-tolerance protocol. Several works focus on generating efficient instruction

sequences [71, 72, 73, 74, 75]. All quantum circuits are required to be reversible. Back-

end of a compiler can synthesize common circuits such as bit-wise logical operations,

adders, multipliers that satisfy constrain of reversibility [76, 77].
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6.2.2 Qubit Mapping

Quantum compiler maps the qubit variables used in the program on the physical qubits

of the quantum hardware. This task is known as qubit allocation, transpilation, or quan-

tum circuit layout synthesis in the literature. The primary objective of program mapping

is to enable all the logical two qubit operations in the program by satisfy qubit connec-

tivity constraints. Typically compiler achieves this goal by inserting extra SWAP oper-

ations, reversing CNOT gate direction using additional Hadamard gates, or perform-

ing non-neighbouring CNOTs. In this process, without changing the semantics of input

program. This problem was described by Maslov et al. [77] for early NMR and Ion Trap

quantum computers. Furthermore, Moslov et al. provide an excellent theoretical anal-

ysis and heuristic solution for general qubit mapping problem and show that the qubit

mapping is an NP-Complete problem. Recently, Zulehner et al. focused on the qubit

mapping problem for IBM NISQ computers. Zulehner et al. posed the mapping prob-

lem as a search problem and developed A* search based solution [9].Subsequent work

provide heuristic solutions for mapping problems [10, 78, 79, 80, 81]. Whereas, Sirachi

et al. use dynamic programming to minimize the gate depth and number of gates [8].

Furthermore, researchers have also focused on formal approach to solve this problem

using general temporal planning frameworks using constraint programming [82]. Fur-

thermore Wille et al. use SMT solver to reduce additional SWAP cost [WilleSMT].
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6.2.3 Variability-Aware Qubit Mapping

Our work on variability-aware and noise-aware ideas are on of the first ideas that ex-

poses the high variability in errors and study its impact on the application fidelity. The

philosophy behind the variation-aware and noise adaptive qubit allocation is that the

distribution of errors across qubits is unequal, with some qubits being more susceptible

to errors than others, so application reliability can be improved by performing compu-

tation on the strongest set of qubits and links [15, 6]. Subsequent work by Murli et al.

show similar approach, which uses device characterization data to mitigate the hard-

ware errors using noise-aware qubit mapping. They use Z3 SMT solver to search optimal

solution for small instances of the problems running on IBM quantum computers [16].

In the subsequent work, Murli et. al demonstrate the ideas can be used for Ion-Trap

platforms using different technology specific tradeoffs [21]. Whereas, Nishio et al. [18]

use beam search to find set of SWAP gates to maximize the application fidelity.

6.2.4 Low-Level Pulse Compilation

Superconducting quantum computers utilize microwave control pulses to perform quan-

tum gates the state of quantum bit devices. Typically a quantum program is compiled

to produce a sequence hardware supported gates in the form of symbolic executable,

which is converted into a sequence of physical microwave pulses, using pulse templates

to substituting a gate operation with a microwave pulse. Although this design is prac-

tical and efficient, it masks certain optimization opportunities that can be leveraged by

breaking the abstractions. Several recent compiler strategies advocate synthesizing code

block using custom pulses to leverage opportunities in fusing gates to reduce total ex-

ecution time [83, 84, 85, 86]. Furthermore, IBM’s open pulse environment makes such

optimization possible on existing superconducting hardware platforms [87].
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6.2.5 Software for Noise Mitigation

With the growing number of qubits, quantum software can play an important role in im-

proving the reliability of near-term quantum applications [88, 89, 90]. To that end, the-

orists have proposed application specific techniques [91, 92, 93, 94, 95, 96, 97] for error

mitigation. Another promising area to mitigate errors is by the use of low-cost detection

codes [98]. Recent work on IBM and Rigeti hardware demonstrates the effectiveness of

Dynamical Decoupling in suppressing coherence errors for two-qubit experiments [99].

Furthermore, Strikis et al. [100] proposed an error mitigation strategy that inserts an ex-

tra gate before and after each operation to reduce both active and idle errors. They pro-

pose a learning scheme to identify the type of extra gates for effective error mitigation.

Similarly, Zlokapa et al. [101] propose to train a deep neural network to learn the noise

characteristics of a 5-qubit machine and use this network to identify the best Dynamical

Decoupling sequence for the quantum circuit.

6.3 Commercial Software Development Tools

Most quantum computing vendors have released software frameworks that enable end-

to-end development and deployment of applications. Many of the too-chains use host

language that works as a wrapper around low-level machine instruction languages. IBM

Qiskit, uses python as a host language, whereas a low level openqasm is used as the em-

bedded domain specific language to support quantum operations [67]. On the other

hand, Xanadu’s PennyLane focuses on facilitating aspects of development of (quantum)

machine learning algorithms as a python package [102], whereas Microsoft’s Quantum

Development Kit focuses on resource estimation for fault-tolerant quantum comput-

ers [68], using a domain specific language (called Q#).
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CHAPTER 7

CONCLUSION

We are witnessing an exciting time in quantum computing. Quantum hardware plat-

forms are showing steady increase in the number of qubits and their computational ca-

pabilities. Furthermore, there is a growing interest in using quantum hardware to solve

practical problems. Unfortunately, with the existing scale of quantum hardware, we can

not enable fault-tolerance. As near-term quantum computers are expected to be noisy,

mitigating qubit errors will be a primary challenge in enabling quantum speedup for

practical problems. To that end, we focus on developing software techniques to sup-

press hardware errors on near-term quantum computers. We propose compiler policies

that use device-level noise characterization to improve application fidelity.

In Chapter 3, we show that worst-case operational error rates can be up to ten times

higher than the best device error rates on IBM quantum computers. The worst-case

qubit device significantly reduces the application fidelity. To improve the application

fidelity, our compiler exploits the variability in error rates when mapping program pro-

grams on quantum hardware such that it assigns more operations on reliable qubits and

avoid unreliable qubits and coupling links. We build a variability-aware compiler pol-

icy that maps the program variables and inserts data movement operations to maximize

the application fidelity. Furthermore, we develop a simple yet powerful experimental

methodology for evaluating and optimizing the application reliability. Our evaluations

on IBM quantum computers show up to three times improvement in the reliability of

quantum benchmarks over baseline policy that does not account variability.

We also show how the variability in error rate can impact resource partitioning prob-

lems and create counter intuitive scenarios when partitioning the quantum hardware.

The variability in errors result from fabrication defects and drift in operating conditions
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and cannot be eliminated by better device engineering alone. By using hardware noise

characterization data, we can build software to mitigate the impact of hardware errors.

Programs executed on near-term NISQ machines can produce erroneous answers

due to device errors. To infer the correct answer, a quantum program is executed for a

large number of trials, and the output of the program is logged for each trial. At the end

of all trials, we infer the correct answer by selecting output with the highest frequency.

Our ASPLOS-2019 paper (Chapter 3) and many subsequent works have developed com-

pilation strategies to maximize the probability of a correct answer. These strategies ex-

ploit the variability in qubit errors to map programs on the most reliable set of qubits.

All the prior compilers search a single best program mapping and advocate using it for

all the trials.

In chapter 4, we challenge the policy of “one mapping for all trials" as we observe

selecting one mapping for all trials results in correlated errors. The correlated errors

produce select few incorrect answers more frequently, resulting in incorrect answers

appearing with the highest frequency and masking the correct answer. We propose a

new figure of merit for NISQ systems - Inference Strength that quantitatively captures

the ability to infer correct answers on NISQ machines. In our paper, we propose com-

piler strategies that bolster Inference Strength in addition to Probability of Success. We

propose Ensemble of Diverse Mappings (EDM) to tolerate correlated errors. Rather than

using a single mapping for all the trials, EDM splits the execution trials into groups and

uses a diverse mapping to each group. Moreover, we extend EDM to Weighted Ensem-

ble of Diverse Mappings (WEDM) that places different weights to the output produced

by each mapping, to maximize diversity in errors. A key enabler for an ensemble of di-

versified programs is the model of computing, where a program is repeatedly executed

for a large number of trials. We advocate the execution of functionally identical but

structurally different programs for different trials. Furthermore, we can generalize the

idea of program diversification by introducing diversification at different levels – from
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algorithms to low-level control pulses, introducing diversity can make programs robust

against errors.

In Chapter 5, we focus on mitigating measurement errors on quantum computers.

Measurement errors are the most dominant errors on both most commercially available

quantum computers. On publicly available IBMQ computers, the worst-case measure-

ment error rate can be up to 30%. Moreover, potential near-term quantum algorithms

are significantly vulnerable to measurement error. On IBM quantum computers, mea-

surement errors show a significant bias depending on the state being measured, with

some states significantly more error-prone than other states. For example, on the IBMQ-

14 machine, measuring all one state is about 2.5x times more error-prone than measur-

ing all-zero state. The bias is caused by the natural tendency of qubits to relax to low

energy or zero states.

We propose techniques to exploit state-dependent bias to mitigate measurement er-

rors. We propose Static Invert-and-Measure (SIM) that splits the trials into standard-

mode and inverted-mode measurement and merge the results to mitigate bias in mea-

surement. We propose Adaptive Invert-and-Measure (AIM) that tailors the inversion

profile to suit the machine characteristics and maps the likely solutions to be read in the

strong state. Reducing measurement errors is challenging as measurement exposes oth-

erwise well-isolated qubit to the noisy measurement circuitry. Data from recent quan-

tum hardware suggest that measurement errors can be even worse for large scale super-

conducting quantum computers. We demonstrate a directional bias in measurement

errors and use intelligent flip-and-measure techniques to exploit this bias and mitigate

measurement errors.

In the near-term, software techniques can significantly improve quantum comput-

ers’ reliability and utility by using the noise charismatics of quantum hardware.
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APPENDIX A

QUBIT STATES AND QUANTUM GATES

In this thesis, we focus on gate based quantum computers. Gate based model performs

computations using quantum register (collection of qubits), and evolves the collective

state of the quantum register using quantum gates.

Single Qubit State: Quantum computation leverages superposition and entanglement

to enable quantum speedup. A state of a qubit (|ψ〉) is a vector in a Hilbert space that

is represented as a linear superposition of two basis states |0〉 and |1〉 as shown in the

equation A.1. Qubit Measurement is used to measure/read the state of the qubit. Note

that |0〉 and |1〉 are termed as basis vectors, and alternatively |ψ〉 can be represented as

the column vector (A.2). When qubit is measured, it produces binary output (1 or 0) with

probability depending on the state of the qubit. For example,when measured, qubit with

state |ψ〉 produces "|0〉" with probability of α2 and "|1〉" with probability of β2.

Qubit state

|ψ〉 =α |0〉+β |1〉 , wher e |0〉 =

1

0

and |1〉 =

0

1

 (A.1)

|ψ〉 =

α
β

 , wher e α,β ∈C, |α|2 +|β|2 = 1 (A.2)

Single Qubit Gates: Quantum gates are unitary operators. When quantum gate is oper-

ated upon a qubit, it’s state vector rotates on the Bloch sphere. Equation A.3 and A.4

show typical single qubit gates used in quantum programs.Whereas, equations A.5 -

A.10, illustrate how different gates can be used to manipulate the qubit state.
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Single Qubit Gates

X =

0 1

1 0

 , H = 1p
2

1 1

1 −1

 , Z =

1 0

0 −1

 (A.3)

T =

1 0

0 e i π4

 , S = 1p
2

1 0

1 i

 , Rθ =

1 0

0 e iθ

 (A.4)

Single Qubit Gate Examples

X

(A.5)

X |ψ〉 =

0 1

1 0

∗

α
β

=

β
α

=β |0〉+α |1〉 (A.6)

Z

(A.7)

Z |ψ〉 =

1 0

0 −1

∗

α
β

=

 α

−β

=α |0〉−β |1〉 (A.8)

H

(A.9)

H |ψ〉 =

 1p
2

1p
2

1p
2

− 1p
2

∗

1

0

= 1p
2

1

1

= 1p
2
|0〉+ 1p

2
|1〉 (A.10)
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Two Qubit State: A state of the pair of qubits can be represented using four basis vec-

tors as shown in equation A.11, which uses a tensor product to represent the two qubit

state as a vector in Hilbert space .When the two qubits are measured, the output |00〉,
represents the scenario when both qubits read "0", is produced with probability |a0|2.

Similarly the output |01〉, |10〉, |11〉 are produced with probability |a1|2,|a2|2,|a3|2.

Two Qubit State

i f |φ〉 =α |0〉+β |1〉 , and |ψ〉 = γ |0〉+δ |1〉 (A.11)

|φ〉⊗ |ψ〉 = (α |0〉+β |1〉)⊗ (γ |0〉+δ |1〉) (A.12)

|φ〉⊗ |ψ〉 = (αγ |00〉+βγ |01〉+αδ |10〉+δβ |11〉 (A.13)

αγ−→ a0,αδ−→ a1,βγ−→ a2,βδ−→ a3

|φ〉⊗ |ψ〉 = a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉

|φ〉⊗ |ψ〉 =



a0

a1

a2

a3


(A.14)

To represent, a collective state of N qubits will require 2N complex numbers.
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Two Qubit Gates

cnot (|φ〉⊗ |ψ〉) =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





a0

a1

a2

a3


=



a0

a1

a3

a2


(A.15)

(A.16)

sw ap(|φ〉⊗ |ψ〉) =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





a0

a1

a2

a3


=



a0

a2

a1

a3



This two qubit state shown in equation A.13, is separable as the collective state can

be written as a product of states |ψ〉 and |φ〉. If we perform a cnot operation between

two qubits with states |ψ〉 and |φ〉, then the collective output state of two qubits can be

represented as shown in the equation (A.15) where a target input (|φ〉) is flipped when

control input (|ψ〉) is one.

112



APPENDIX B

QUANTUM COMPUTER ORGANIZATION

B.1 Organization of Quantum Computer
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Figure B.1: (a) Quantum co-processor consists of qubits and control computer. Qubits
store the information.(b) Quantum computing stack

Quantum computers are the co-processors that accelerate a class of fundamentally

hard problems. On a conceptual level, a quantum co-processor is connected to a con-

ventional computer or host machine, just as a graphical processing unit or any other

co-processor. Quantum computer is constructed by connecting quantum bits (qubits)

to a control computer as shown in the Figure 2.4. In a quantum computer, the state of

qubits is used to represent information, whereas a control computer executes opera-

tions to manipulate the qubit states. State of a qubit is described as a mathematical ab-

straction just as conventional/classical bit. For example, if the digital bit is represented

as two points on a sphere, say north pole or south pole, a state of the qubit is any point

on the sphere. The analog nature (superposition of states) of the qubits is leveraged to

build efficient algorithms. On a physical-level, qubits can be realized using photons,

trapped-ions, or superconducting solid-state circuits. Typically, the control computer

manipulates the state of qubits via sending technology-specific signals to qubit device.

For example, ion-trap qubits use laser pulses, whereas superconducting qubits are ma-

nipulated with the microwave pulses.
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The quantum computer is kept inside a cryogenic refrigerator with multiple ther-

mal domains. We envision that a 77K domain can holds cryogenic DRAM that keeps

the instruction and data of the quantum application. Whereas 4K domain holds a con-

trol processor. A 20 mK domain contains the quantum substrate. In future systems,

DRAM can be used to contain the working instruction set of the quantum application

as the instruction footprint for quantum algorithms is typically large (10s GB) [71, 103].

Conventional memories such as DRAM are empirically found to continue operating at

77K [104].

20 mK

0.1 K

4 K

77K

Host

Quantum Substrate
(Superconducting Qubit)

Control Processor
(Josephson Junction Logic)

300 K

Memory
(Cryo-CMOS)

High Density 
Superconducting 

Control Wires

Low density metal 
Interconnects

Figure B.2: Organization of a scalable quantum computer.

B.2 How to execute a Quantum Program?

Quantum computers execute a program by transforming a quantum program into qubit-

technology specific control signals. For example, on an IBM’s quantum computer, a

programmer writes a quantum program using quantum assembly language (QASM),

that describes the sequence of instructions performed on each qubit. The program is

compiled on a host machine to generate: mapping between program qubits and physi-

cal qubit devices, and the instruction schedule to satisfy the data dependence and ma-

chine specific instruction ordering constraints. In the next step, the compiled program

is loaded on the control computer. On an IBM machine, control computer executes
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the instruction by sending an instruction specific microwave pulse to every qubit via a

coaxial cable. At the end of every quantum program, qubit states are measured, and the

output of measurement is sent to host.
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APPENDIX C

SIMILARITY METRICS FOR EVALUATING APPLICATION FIDELITY

C.1 A Primer on KL-Divergence

NISQ machines can produce a probability distribution over all the possible outputs. For

our study, we are interested in measuring the similarity (or dissimilarity) of two prob-

ability distributions. The Kullback-Leibler divergence (or KL-divergence) is a measure

of how one probability distribution is different from another probability distribution.

We use the KL-divergence to analyze the diversity in output distributions generated by

different mappings. We also used symmetric KL-divergence to estimate the weights for

merging the outputs of different mappings in the WEDM design. In this Appendix, we

will discuss a few illustrative examples. For example, if we have two discrete probability

distributions P and Q defined over a state of N values, the KL divergence between P and

Q, denoted as DK L(P ||Q), is shown by Equation C.1.

DK L(P ||Q) =
N∑

i=1
Pi log

Pi

Qi
(C.1)

For example, consider the two distributions P and Q over four values (0-3), as shown

in Table C.1.

Table C.1: Example Probability Distributions
Distribution 0 1 2 3

P(x) 0.2 0.3 0.4 0.1

Q(x) 0.25 0.25 0.25 0.25
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Then, DK L(P ||Q) and DK L(Q||P ) can be calculated as follows:

DK L(P ||Q) = 0.2 · ln(
0.2

0.25
)+0.3 · ln(

0.3

0.25
)

+0.4 · ln(
0.4

0.25
)+0.1 · ln(

0.1

0.25
) = 0.046

(C.2)

DK L(Q||P ) = 0.25 · ln(
0.25

0.2
)+0.25 · ln(

0.25

0.3
)

+0.25 · ln(
0.25

0.4
)+0.25 · ln(

0.25

0.1
) = 0.052

(C.3)

Thus, KL divergence may not be symmetric and can not qualify as a distance metric.

However, it can be symmetrised to enable symmetric KL divergence (SDK L) such that

SDK L(P,Q) = SDK L(Q,P ).

SDK L(P,Q) = DK L(Q||P )+DK L(P ||Q) (C.4)

117



REFERENCES

[1] J. Hines, “Stepping up to summit,” Computing in science & engineering, vol. 20,
no. 2, pp. 78–82, 2018.

[2] S. K. Moore, IBM Edges Closer to Quantum Supremacy with 50-Qubit Processor,
https://spectrum.ieee.org/tech-talk/computing/hardware/
ibm- edges- closer- to- quantum- supremacy- with- 50qubit-
processor, [Online; accessed 3-April-2018], 2017.

[3] O. of the Director of National Intelligence, IARPA Quantum Computer Science
Program (2010) Broad Agency Announcement IARPA-BAA-10-02.Available from:
https://www.fbo.gov/index?s=opportunity&mode=form&tab=
core&id=637e87ac1274d030ce2ab69339ccf93c, [Online; accessed 3-
April-2017], 2010.

[4] J. Preskill, “Quantum computing in the nisq era and beyond,” arXiv preprint arXiv:1801.00862,
2018.

[5] A. Morello and D. Reilly, “What would you do with 1000 qubits?” Quantum Sci-
ence and Technology, vol. 3, no. 3, p. 030 201, 2018.

[6] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case for variability-
aware policies for nisq-era quantum computers,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ACM, 2019, pp. 987–999.

[7] B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T. S. Humble, R. Biswas, E. G. Rieffel,
A. Ho, and S. Mandrà, “Establishing the quantum supremacy frontier with a 281
pflop/s simulation,” arXiv preprint arXiv:1905.00444, 2019.

[8] M. Siraichi, V. F. Dos Santos, S. Collange, and F. M. Q. Pereira, “Qubit allocation,”
in CGO 2018-IEEE/ACM International Symposium on Code Generation and Opti-
mization, 2018, pp. 1–12.

[9] A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum circuits to
the ibm qx architectures,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018, IEEE, 2018, pp. 1135–1138.

[10] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum circuits for in-
teraction distance in linear nearest neighbor architectures,” in Proceedings of the
50th Annual Design Automation Conference, ACM, 2013, p. 41.

118

https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-edges-closer-to-quantum-supremacy-with-50qubit-processor
https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-edges-closer-to-quantum-supremacy-with-50qubit-processor
https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-edges-closer-to-quantum-supremacy-with-50qubit-processor
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=637e87ac1274d030ce2ab69339ccf93c
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=637e87ac1274d030ce2ab69339ccf93c


[11] E. Knill, D Leibfried, R Reichle, J Britton, R. Blakestad, J. Jost, C Langer, R Ozeri,
S. Seidelin, and D. J. Wineland, “Randomized benchmarking of quantum gates,”
Physical Review A, vol. 77, no. 1, p. 012 307, 2008.

[12] I. B. M. Corporation, Universal Quantum Computer Development at IBM:http:
//research.ibm.com/ibm-q/research/, [Online; accessed 3-April-
2017], 2017.

[13] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weak-
nesses of quantum computing,” SIAM journal on Computing, vol. 26, no. 5, pp. 1510–
1523, 1997.

[14] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decomposition of
networks,” arXiv preprint cs/0310049, 2003.

[15] S. S. Tannu and M. K. Qureshi, “A case for variability-aware policies for nisq-era
quantum computers,” arXiv preprint arXiv:1805.10224, 2018.

[16] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi, “Noise-adaptive
compiler mappings for noisy intermediate-scale quantum computers,” arXiv preprint
arXiv:1901.11054, 2019.

[17] W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang, “Qubit allocation for
noisy intermediate-scale quantum computers,” arXiv preprint arXiv:1810.08291,
2018.

[18] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. Van Meter, “Extracting success from
ibm’s 20-qubit machines using error-aware compilation,” arXiv preprint arXiv:1903.10963,
2019.

[19] M. Sun and M. R. Geller, Efficient characterization of correlated spam errors, 2019.
eprint: arXiv:1810.10523.

[20] A. Parent, M. Roetteler, K. M. Svore, and K. M. Svore, “Revs: A tool for space-
optimized reversible synthesis,” in Proceedings of the 9th International Confer-
ence on Reversible Computation (RC 2017), 2017, pp. 90–101.

[21] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete,
“Full-stack, real-system quantum computer studies: Architectural comparisons
and design insights,” in Proceedings of the 46th International Symposium on Com-
puter Architecture, ACM, 2019, pp. 527–540.

[22] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K.
Wright, and C. Monroe, “Experimental comparison of two quantum computing

119

http://research.ibm.com/ibm-q/research/
http://research.ibm.com/ibm-q/research/
arXiv:1810.10523


architectures,” Proceedings of the National Academy of Sciences, vol. 114, no. 13,
pp. 3305–3310, 2017.

[23] T. G. Dietterich, “Ensemble methods in machine learning,” in International work-
shop on multiple classifier systems, Springer, 2000, pp. 1–15.

[24] E. T. Jaynes, “Foundations of probability theory and statistical mechanics,” in
Delaware seminar in the foundations of physics, Springer, 1967, pp. 77–101.

[25] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph isomorphism
algorithm for matching large graphs,” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 10, pp. 1367–1372, 2004.

[26] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[27] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A
quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews,
vol. 6, no. 2, p. 021 318, 2019.

[28] M. Saffman, “Quantum computing with neutral atoms,” National Science Review,
vol. 6, no. 1, pp. 24–25, 2019.

[29] K. R. Brown, J. Kim, and C. Monroe, “Co-designing a scalable quantum com-
puter with trapped atomic ions,” npj Quantum Information, vol. 2, no. 1, pp. 1–
10, 2016.

[30] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys, vol. 21,
no. 6/7, 1982.

[31] S. Lloyd, “Universal quantum simulators,” Science, pp. 1073–1078, 1996.

[32] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,”
Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, vol. 439, no. 1907, pp. 553–558, 1992.

[33] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal on
computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[34] A. Berthiaume and G. Brassard, “The quantum challenge to structural complex-
ity theory.,” in Computational Complexity Conference, Citeseer, 1992, pp. 132–
137.

[35] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

120



[36] C. Monroe, D. Meekhof, B. King, W. M. Itano, and D. J. Wineland, “Demonstra-
tion of a fundamental quantum logic gate,” Physical review letters, vol. 75, no. 25,
p. 4714, 1995.

[37] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Physical
review letters, vol. 74, no. 20, p. 4091, 1995.

[38] V. Bouchiat, D Vion, P. Joyez, D Esteve, and M. Devoret, “Quantum coherence
with a single cooper pair,” Physica Scripta, vol. 1998, no. T76, p. 165, 1998.

[39] L. M. Vandersypen and I. L. Chuang, “Nmr techniques for quantum control and
computation,” Reviews of modern physics, vol. 76, no. 4, p. 1037, 2005.

[40] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation framework and
instruction set architecture for ion-trap based quantum micro-architectures,” in
Proceedings of the 32nd Annual International Symposium on Computer Architec-
ture, ser. ISCA ’05, Washington, DC, USA: IEEE Computer Society, 2005, pp. 186–
196, ISBN: 0-7695-2270-X.

[41] R. Van Meter and C. Horsman, “A blueprint for building a quantum computer,”
Commun. ACM, vol. 56, no. 10, pp. 84–93, Oct. 2013.

[42] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y.
Yamamoto, “Layered architecture for quantum computing,” Physical Review X,
vol. 2, no. 3, p. 031 007, 2012.

[43] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov, “A layered soft-
ware architecture for quantum computing design tools,” Computer, vol. 39, no. 1,
pp. 74–83, 2006.

[44] D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong, “Quantum
memory hierarchies: Efficient designs to match available parallelism in quantum
computing,” in ACM SIGARCH Computer Architecture News, IEEE Computer So-
ciety, vol. 34, 2006, pp. 378–390.

[45] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz, “Building quantum wires:
The long and the short of it,” in Computer Architecture, 2003. Proceedings. 30th
Annual International Symposium on, IEEE, 2003, pp. 374–385.

[46] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access memory,”
Physical review letters, vol. 100, no. 16, p. 160 501, 2008.

[47] R. V. Meter and M. Oskin, “Architectural implications of quantum computing
technologies,” J. Emerg. Technol. Comput. Syst., vol. 2, no. 1, pp. 31–63, Jan. 2006.

121



[48] N. Isailovic, M. Whitney, Y. Patel, and J. Kubiatowicz, “Running a quantum cir-
cuit at the speed of data,” in ACM SIGARCH Computer Architecture News, IEEE
Computer Society, vol. 36, 2008, pp. 177–188.

[49] M. Oskin, F. T. Chong, and I. L. Chuang, “A practical architecture for reliable
quantum computers,” Computer, vol. 35, no. 1, pp. 79–87, 2002.

[50] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown, D. Franklin,
F. T. Chong, and M. Martonosi, “Compiler management of communication and
parallelism for quantum computation,” in ACM SIGARCH Computer Architecture
News, ACM, vol. 43, 2015, pp. 445–456.

[51] E. Chi, S. A. Lyon, and M. Martonosi, “Tailoring quantum architectures to imple-
mentation style: A quantum computer for mobile and persistent qubits,” SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 198–209, Jun. 2007.

[52] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong, I. L. Chuang,
and J. Kubiatowicz, “Toward a scalable, silicon-based quantum computing ar-
chitecture,” IEEE Journal of selected topics in quantum electronics, vol. 9, no. 6,
pp. 1552–1569, 2003.

[53] S. J. Devitt, A. G. Fowler, T. Tilma, W. J. Munro, and K. Nemoto, “Classical process-
ing requirements for a topological quantum computing system,” International
Journal of Quantum Information, vol. 8, no. 01n02, pp. 121–147, 2010.

[54] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, “Towards practical classical
processing for the surface code,” Physical review letters, vol. 108, no. 18, p. 180 501,
2012.

[55] C. G. Almudever, L Lao, X. Fu, N Khammassi, I. Ashraf, D. Iorga, S Varsamopou-
los, C Eichler, A Wallraff, L Geck, et al., “The engineering challenges in quantum
computing,” in 2017 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), IEEE, 2017, pp. 836–845.

[56] X. Fu, L Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R Versluis, E. Charbon,
and K. Bertels, “A heterogeneous quantum computer architecture,” in Proceed-
ings of the ACM International Conference on Computing Frontiers, ACM, 2016,
pp. 323–330.

[57] S. S. Tannu, Z. A. Myers, P. J. Nair, D. M. Carmean, and M. K. Qureshi, “Taming the
instruction bandwidth of quantum computers via hardware-managed error cor-
rection,” in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17, Cambridge, Massachusetts: ACM, 2017,
pp. 679–691, ISBN: 978-1-4503-4952-9.

122



[58] N Ofek, A Petrenko, Y Liu, B Vlastakis, L Sun, Z Leghtas, R Heeres, K. Sliwa, M
Mirrahimi, L Jiang, et al., “Demonstrating real-time feedback that enhances the
performance of measurement sequence with cat states in a cavity,” in APS Meet-
ing Abstracts, 2015.

[59] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Ver-
meulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. Di-
Carlo, and K. Bertels, “An experimental microarchitecture for a superconducting
quantum processor,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17, Cambridge, Massachusetts:
ACM, 2017, pp. 813–825, ISBN: 978-1-4503-4952-9.

[60] X Fu, L Riesebos, M. Rol, J van Straten, J van Someren, N Khammassi, I Ashraf, R.
Vermeulen, V Newsum, K. Loh, et al., “Eqasm: An executable quantum instruc-
tion set architecture,” arXiv preprint arXiv:1808.02449, 2018.

[61] I. Conway Lamb, J. Colless, J. Hornibrook, S. Pauka, S. Waddy, M. Frechtling, and
D. Reilly, “An fpga-based instrumentation platform for use at deep cryogenic
temperatures,” Review of Scientific Instruments, vol. 87, no. 1, p. 014 701, 2016.

[62] H. Homulle, S. Visser, and E. Charbon, “A cryogenic 1 gsa/s, soft-core fpga adc for
quantum computing applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 63, no. 11, pp. 1854–1865, 2016.

[63] H. Homulle and E. Charbon, “Performance characterization of altera and xil-
inx 28 nm fpgas at cryogenic temperatures,” in Field Programmable Technology
(ICFPT), 2017 International Conference on, IEEE, 2017, pp. 25–31.

[64] O Naaman, J. Strong, D. Ferguson, J Egan, N Bailey, and R. Hinkey, “Josephson
junction microwave modulators for qubit control,” Journal of Applied Physics,
vol. 121, no. 7, p. 073 904, 2017.

[65] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi,
“Scaffcc: Scalable compilation and analysis of quantum programs,” Parallel Com-
puting, vol. 45, pp. 2–17, 2015.

[66] M. Suchara, A. Faruque, C.-Y. Lai, G. Paz, F. T. Chong, and J. Kubiatowicz, “Com-
paring the overhead of topological and concatenated quantum error correction,”
arXiv preprint arXiv:1312.2316, 2013.

[67] I. B. M. Corporation, Quantum Software Development Kit for writing quantum
computing experiments, programs, and applications,https://github.com/
QISKit/qiskit-sdk-py#license, [Online; accessed 3-April-2018], 2017.

123

https://github.com/QISKit/qiskit-sdk-py##license
https://github.com/QISKit/qiskit-sdk-py##license


[68] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov,
M. Mykhailova, A. Paz, and M. Roetteler, “Q#: Enabling scalable quantum com-
puting and development with a high-level dsl,” in Proceedings of the Real World
Domain Specific Languages Workshop 2018, ACM, 2018, p. 7.

[69] D. S. Steiger, T. Häner, and M. Troyer, “Projectq: An open source software frame-
work for quantum computing,” Quantum, vol. 2, p. 49, 2018.

[70] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages and com-
piler design for realistic quantum hardware,” Nature, vol. 549, no. 7671, p. 180,
2017.

[71] D. Kudrow, K. Bier, Z. Deng, D. Franklin, and F. T. Chong, “Dynamic machine-
code generation for quantum rotations,” GSWC 2013, p. 23, 2013.

[72] V. Kliuchnikov, D. Maslov, and M. Mosca, “Practical approximation of single-
qubit unitaries by single-qubit quantum clifford and t circuits,” IEEE Transac-
tions on Computers, vol. 65, no. 1, pp. 161–172, 2016.

[73] ——, “Fast and efficient exact synthesis of single qubit unitaries generated by
clifford and t gates,” arXiv preprint arXiv:1206.5236, 2012.

[74] A. Bocharov, Y. Gurevich, and K. M. Svore, “Efficient decomposition of single-
qubit gates into v basis circuits,” Physical Review A, vol. 88, no. 1, p. 012 313, 2013.

[75] P. Selinger, “Efficient clifford+ t approximation of single-qubit operators,” arXiv
preprint arXiv:1212.6253, 2012.

[76] A. Parent, M. Roetteler, K. M. Svore, and K. M. Svore, “Revs: A tool for space-
optimized reversible synthesis,” in Proceedings of the 9th International Confer-
ence on Reversible Computation (RC 2017), 2017, pp. 90–101.

[77] D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement: Optimiz-
ing qubit-to-qubit interactions through mapping quantum circuits into a phys-
ical experiment,” in Proceedings of the 44th annual Design Automation Confer-
ence, ACM, 2007, pp. 962–965.

[78] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah,
“On the qubit routing problem,” arXiv preprint arXiv:1902.08091, 2019.

[79] G. G. Guerreschi and J. Park, “Two-step approach to scheduling quantum cir-
cuits,” Quantum Science and Technology, 2018.

124



[80] K. E. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank, “Compar-
ing and integrating constraint programming and temporal planning for quan-
tum circuit compilation,” arXiv preprint arXiv:1803.06775, 2018.

[81] A. Zulehner, H. Bauer, and R. Wille, “Evaluating the flexibility of a* for map-
ping quantum circuits,” in International Conference on Reversible Computation,
Springer, 2019, pp. 171–190.

[82] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum circuits to re-
alistic hardware architectures using temporal planners,” Quantum Science and
Technology, vol. 3, no. 2, p. 025 004, 2018.

[83] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi, D. I. Schuster, H.
Hoffmann, and F. T. Chong, “Partial compilation of variational algorithms for
noisy intermediate-scale quantum machines,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2019, pp. 266–
278.

[84] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Optimized quan-
tum compilation for near-term algorithms with openpulse,” arXiv preprint arXiv:2004.11205,
2020.

[85] Y. Shi, P. Gokhale, P. Murali, J. M. Baker, C. Duckering, Y. Ding, N. C. Brown, C.
Chamberland, A. Javadi-Abhari, A. W. Cross, et al., “Resource-efficient quantum
computing by breaking abstractions,” Proceedings of the IEEE, 2020.

[86] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann, and F. T. Chong,
“Optimized compilation of aggregated instructions for realistic quantum com-
puters,” in Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2019, pp. 1031–
1044.

[87] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen, J. M. Chow,
A. D. Córcoles, D. Egger, S. Filipp, et al., “Qiskit backend specifications for open-
qasm and openpulse experiments,” arXiv preprint arXiv:1809.03452, 2018.

[88] M. Martonosi and M. Roetteler, “Next steps in quantum computing: Computer
science’s role,” arXiv preprint arXiv:1903.10541, 2019.

[89] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages and com-
piler design for realistic quantum hardware,” Nature, vol. 549, no. 7671, p. 180,
2017.

125



[90] E. National Academies of Sciences and Medicine, Quantum Computing: Progress
and Prospects, E. Grumbling and M. Horowitz, Eds. Washington, DC: The Na-
tional Academies Press, 2019, ISBN: 978-0-309-47969-1.

[91] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quan-
tum circuits,” Physical review letters, vol. 119, no. 18, p. 180 509, 2017.

[92] T. Tsunoda, A. Patterson, X. Yuan, S. Endo, J. Rahamim, P. Spring, M. Esposito,
S. Jebari, K. Ratter, S. Sosnina, et al., “Implementing the variational quantum
eigensolver with native 2-qubit interaction and error mitigation,” Bulletin of the
American Physical Society, 2019.

[93] S. Endo, S. C. Benjamin, and Y. Li, “Practical quantum error mitigation for near-
future applications,” Physical Review X, vol. 8, no. 3, p. 031 027, 2018.

[94] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gam-
betta, “Error mitigation extends the computational reach of a noisy quantum
processor,” Nature, vol. 567, no. 7749, p. 491, 2019.
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