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SUMMARY 

Ever since Darwin’s qualitative theory of the origin of species, there is growing demand 

for quantitative methods to study mechanisms underlying the speciation process. One key 

component towards new species formation is reproductive isolation. Reproductive 

isolation can be either pre-mating (e.g. mating behavior difference) or post-mating (e.g. 

Dobzhansky-Muller sites). In this thesis, I will present novel quantitative methods 

developed to study two aspects of reproductive isolation: mating rituals difference in Lake 

Malawi cichlids and genetic incompatibilities by selfish genetic elements in C. elegans. In 

chapter 2, I will talk about cichlids bower behaviors where male fishes construct bowers to 

attract female mates by manipulating sand with their mouths thousands of times over the 

course of many days. Variations in bower type (‘pits’ and ‘castles’) is one mechanism to 

create nonrandom mating and maintain a large number of cichlids species in Lake Malawi. 

To enable quantitative comparisons of these behaviors in different species, an automatic 

behavior quantification pipeline was built. Specifically, pixel-based Hidden Markov 

Modeling was combined with density-based spatiotemporal clustering for action detection. 

Each action video clip was then classified into ten categories using a 3D Residual Network 

(3D ResNet). These ten categories distinguish spitting, scooping, fin swipes and spawning. 

I showed that this approach is accurate (> 76% accuracy) in distinguishing fish behaviors 

and animal intent can be determined from these clips, as spits and scoops performed during 

bower construction are classified independently from spits and scoops performed during 

feeding. I applied this approach to >700 hours of video recordings taken from seven 

independent trials encompassing multiple species and hybrid crosses, collectively 
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containing hundreds of thousands of independent behavioral events. In chapter 3, I use 

quantitative methods to measure fitness combined with population modeling to study the 

evolutionary origin of selfish genetic elements and their ability to spread in populations. 

Previous research found that a toxin-antidote element called peel-zeel is under balancing 

selection. Here, I explore different models that could cause balancing selection on this 

locus, which make different predictions on the fitness effect of the peel-zeel locus in 

hermaphrodites. However, pair-wise competition assays showed the loss of the toxin gene 

peel-1 decreased fitness of hermaphrodites, contradicting my expectation that peel-1 will 

decrease animal fitness due to its toxicity. This fitness advantage is independent of the 

antidote gene zeel-1.  This work showed that toxin-antidote systems can spread through 

populations independent of their selfish effects and suggests linked variants for dauer 

pheromone response could be responsible for the balancing selection. Finally, in chapter 4, 

I use simulation methods to study the effect of toxin-antidote elements on linked and 

unlinked genetic variation in the case of admixture. While both simulation and calculation 

showed toxin-antidote elements are able to quickly spread in a population without toxin-

antidote element, the evolution trajectories of the rest of the genome depends on the initial 

frequency of the toxin-antidote haplotype in the admixed population. Using calculations 

and simulations, I showed that unlinked neutral genetic variants will increase their 

frequency when the initial frequency of peel-zeel is higher than 1/3 and decrease when the 

initial frequency of peel-zeel is lower than 1/3. My doctoral thesis with many quantitative 

methods will advance our understanding of the genetic basis of species evolution and 

evolutional dynamics of selfish genetic elements.   
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CHAPTER 1. INTRODUCTION 

Darwin’s famous book ‘On the Origin of Species’ in 1859 inspired the research projects of 

evolutionary biology for more than one hundred years. Despite little molecular or genetic 

understanding of heritability, Darwin’s view of speciation is still impacting how we 

interpret the speciation process. In his view, new species are formed in the same process 

as natural selection for a particular trait. Natural selection is a gradual process that happens 

in the population and the long-term differentiation eventually leads to new species. This 

qualitative description was further advanced by Fisher, Haldane, Wright and many others 

in the 1930s who developed population genetics models to understand the genetic 

mechanisms underlying the speciation process (Mayr and Provine, 1998). Another 

important researcher in this period is Theodosius Dobzhansky. He found that there was far 

more genetic variability in the field than expected and argued selection was able to drive 

differentiation among populations (Dobzhansky and Queal, 1938). These population 

genetics models and other ecological genetics research together improves our 

understanding of the speciation process. Now speciation is considered a continuous 

complex process that unify both ‘microevolution’ and ‘macroevolution’. Both ecological 

features (niche differentiation, population migration) and genetic features (drifting, 

mutation, recombination, genetic incompatibility, etc.) should be taken into account. These 

two features often act synergistically to create new species. For example, niche 

differentiation can accelerate the evolution of reproduction isolation and reproductive 

isolation can further boost niche differentiation. One route to better understand this process 

requires us to pinpoint the specific genes responsible for the reproductive isolation. In order 
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to do so, quantitative comparisons of different phenotypes are required. After identifying 

the gene, we need to figure out the physiological and/or genomic change following the 

mutation of that gene to understand if niche differentiation is further accelerated by 

reproductive isolation. To achieve this goal, accurate simulation and fitness assays can help 

either predict or compare the effect of a specific gene mutation. To motivate the study of 

reproductive isolation, this chapter gives an introduction to the relationship between 

reproductive isolation and speciation, what roles selfish genetic elements play and the 

motivations to use cichlids and C. elegans as model in the study of speciation.  

1.1 Process of speciation 

Speciation is caused by reduced gene flow between populations (Endler, 1977, Wu, 2001). 

There are many geographical isolations to reduce gene flow between populations. And 

these different modes are often classified by the extent of geographical separation and gene 

flow reduction. The most extreme separation and most common is allopatric speciation 

where two populations are strictly separated by geographical barriers and no gene flow 

exists between the isolated populations (Lande, 1980). Darwin’s Galápagos finch is a 

classic example for it. All the finches are descendent of a common ancestor about two 

million years ago (Lamichhaney et al., 2015). Gene flow is not only restricted between the 

islands and the mainland, but also restricted between the islands. On the other side of the 

spectrum is sympatric speciation. Sympatric speciation happens when a new species 

evolves from the ancestral species while both continue to inhabit the same geographic 

region. In this case, gene flow is almost unrestricted and there is no obvious niche 

differentiation (Smith, 1966). Studies of the crater Lake Apoyo suggest that cichlids went 

through sympatric speciation (Barluenga et al., 2006). In a young and small volcanic lake 
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in Nicaragua, phylogeographic and population-genetic studies showed that this lake is 

seeded by a single ancestor Amphilophus citrinellus. A new species Amphilophus zaliosus 

was evolved from the ancestral species in this small lake. These two species are 

sympatrically distributed. Thus, it is concluded that only sympatric speciation can account 

for the evolution of the new species. In the middle of allopatric and sympatric speciation 

is parapatric speciation where there is still gene flow between nascent species while being 

geographically separated. It is very difficult to observe in nature because patterns of 

parapatric speciation can be explained by an alternative mode of speciation.  

1.1.1 Reproductive isolation 

After persistent reduced gene flow between populations, RI (reproductive isolation) marks 

the formation of a new species. RI means the two population can no longer exchange 

genetic materials. The Mechanisms of RI include pre-mating isolation and post-mating 

isolation (Wu and Palopoli, 1994). In pre-mating isolation, the two species have evolved 

new phenotypes with respect to behaviors and ecological niches they occupy. Mating 

preference behavior can lead to assortative mating and finally speciation. For example, it 

was found that two butterfly species Heliconius melpomene and Heliconius cydno have 

evolved different color pattern mimicry. Experiments in the laboratory environment 

showed that these two species have preference for color pattern when they choose mates: 

animals with the same color patterns tends to mate with each other than those with different 

color patterns (Jiggins et al., 2001). As a result, assortative mating reduces the gene flow 

between the two species, creating a pre-mating isolation.  
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For post-mating isolation, if mating occurs between two species, the progenies are inviable 

or sterile. One commonly used model to understand is the two-locus Dobzhansky-Muller 

model (Johnson, 2000). They reasoned that a single gene is not able to induce 

incompatibility because of the inherent fitness loss. Thus, a model of two genes interaction 

induced incompatibility is proposed. In this model, two populations evolved mutations on 

different genes. The interaction of the two mutations, when animals of the two species 

cross, creates the hybrid incompatibility. Dobzhansky-Muller type incompatibility could 

have arisen due to random genetic drifting. More importantly, it builds a link between 

natural selection and speciation. When animals adapt to the local environment, different 

mutations could have been fixed in different populations and eventually lead to 

Dobzhansky-Muller type reproductive isolation. 

An example of a Dobzhansky-Muller incompatibility was found in hybrids between D. 

melanogaster and D. simulans (Presgraves et al., 2003). Researches showed that the D. 

simulans gene Nup96 is incompatible with one or more genes on the D. melanogaster X 

chromosome. Nup96 encodes a subunit of nuclear-pore complex with orthologs in yeast, 

worm and humans. It is responsible for the selective control of materials transferred 

between nuclear and cytoplasm of cells expressing it.  

1.2 The role of selfish genetic elements in speciation 

Selfish genetic elements, also referred to as selfish genes, are genetic segments that gain a 

transmission advantage over other genetic elements of an individual’s genome (Hurst and 

Werren, 2001, Austin et al., 2009). They can be neutral or harmful to the organisms 

carrying them. There are many mechanisms used by selfish genetic elements: Homing 
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endonucleases, transposons, B-chromosomes and postsegregation distorters. For 

postsegregation distorters, there are two types of them based on the location of action: 

nuclear and cytoplasmic. Both types of postsegregation distorters are able to kill embryos 

that do not inherit any copies of it. Medea (maternal effect dominant embryonic arrest) is 

a classic example that is identified in flour beetles Tribolium (Beeman et al., 1992). Two 

alleles of Medea were reported. One that has a maternal effect toxin as well as a linked 

antidote. The other wild-type allele does not have these two elements. All the progenies of 

a heterozygous female will get a ‘toxin’ expressed from Medea. Progenies that carry Medea 

will have an ‘antidote’ expressed in the embryos while those don’t carry it will be killed. 

In this way, Medea can quickly spread in a population. The speed of spread is frequency-

dependent and is positively correctly with its frequency in the population (Wade and 

Beeman, 1994). The fast speed to reach fixation makes identification of these 

postsegregation distorters difficult since they only show their effect in hybrids. 

Nevertheless, postsegregation distorters have also been identified other eukaryote 

organisms including vertebrates(Keller and Ross, 1998) (Seidel et al., 2008) (Ben-David 

et al., 2017) (Noble et al., 2020) (Ben-David et al., 2020). For example, scat (severe 

combined anemia and thrombocytopenia) was found in mice and acts in a maternal fashion 

(Hurst, 1993).  

Selfish genetic elements induced genetic conflict is not rare in creating hybrid 

incompatibility. One example is D. pseudoobscura which has two subspecies (Wang et al., 

1997, Machado et al., 2002). Hybrid males between the two subspecies suffers from 

segregation distortion such that they only yield females. This is because one of the parental 

species have both the X-linked distorter gene and suppressor while the other species has 
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none of these. Hybrid males have the distorter genes expressed and those sperms carrying 

the Y chromosome are killed. More molecular genetics studies have identified several other 

sites responsible for hybrid sterility and hybrid segregation distortion. By comparing the 

genetic architecture of both phenotypes, a partially overlapped pattern is observed. These 

findings have led to the idea that hybrid incompatibilities may be the outcome of arm-race 

between selfish genetic elements and their suppressors in the genome (Werren, 2011).  

1.3 Using model organisms to study speciation 

In theory, evolution of new species can be studied in any animal. It is also advantageous to 

study a diverse range of organisms such that mechanisms and/or theories can be 

generalized instead of being specific to a particular species. Each organism has its unique 

strengths and weaknesses. For example, Drosophila species are widely used for speciation 

studies owing to its rapid life cycle, relatively simple genetics with few chromosomes and 

easy to raise in a laboratory environment. Across my thesis research, two organisms are 

used. I will introduce the unique properties of these two organisms that make them great 

systems to study long-term evolution.  

1.3.1 Use of cichlids to study pre-mating isolation 

Cichlid fishes are famous for its great amount of species in the world. While they are 

distributed worldwide, they are most diverse in Africa and South America. In east Africa, 

there are more than 2,000 phenotypically diverse species that evolved in the past ~10 

million years. Most cichlids species can be found at relatively shallow depth such as river 

and lakes (Keenleyside, 1991). Very few of them can be found at saltwater habitats. The 

lake that has most species is Lake Malawi. It is estimated that Lake Malawi have between 
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700 to 1000 endemic species and all these species are evolved in the last million years 

(Kocher, 2004). Most of the species come from a single haplochromine lineage colonizing 

the lake between 1-5 million years ago (Loh et al., 2013). Different species in Malawi 

exhibit various phenotypes including color patterning, morphology, jaw shape and 

behavior. This rapid speciation process is called adaptive radiation and has attracted 

attention of many researchers. Phylogeny studies based on mitochondria and nuclear DNA 

have found that riverine cichlids have hybridization events with the lake species many 

times in history and contributed to the genetic diversity in the lake (Joyce et al., 2011). By 

sequencing a large number of species in the lake, genetic change including gene 

duplication, non-coding genomic elements divergence and transposable element insertions 

have been identified to be the genetic materials for evolution to act on (Brawand et al., 

2014). However, the causal genetic and molecular changes that cause a particular 

phenotype remain largely unexplored. The low genetic diversity between different species 

make genetic mapping for a particular phenotype between species possible (The average 

sequence divergence between different species pairs is 0.1%-0.25%).   

Besides many other phenotypical differences such as craniofacial and brain patterning, 

there are two types of dwelling environment: rock and sand (Sylvester et al., 2010, 

Sylvester et al., 2013, Fraser et al., 2009). In each of the rock and sand group, there are 

more than 200 species. Among the sand group, there are two major types of bower building 

exist among these species. They are mounds (‘castles’) and depressions (‘pits’). Male 

cichlids construct these very large courtship structures by transferring sand for several 

days. A ‘castle’ male is unlikely to mate with a ‘pits’ female and vice versa. This behavior 

difference then creates a pre-mating isolation and will reduce gene flow between ‘castles’ 
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and ‘pits’ animals. Comparative genome analysis showed that these two behaviors have 

evolved multiple times over the evolution of Lake Malawi species. When hybrid animal 

between ‘castles’ and ‘pits’ are created, they show an interesting behavior that is first 

marked by a ‘pit’ and then followed by a ‘castle’. This sequential expression of behaviors 

offers a unique opportunity to look into the genetics underlaying behavior evolution. When 

hybrid animals transit form ‘pit’ to ‘castle’, expression also transit from ‘pit’ alleles to the 

‘castle’ alleles for genes that are highly enriched for neurodevelopment and neural 

plasticity genes. Even though the specific genes governing behavior changes have not been 

identified, cis-regulatory evolution seems to be important for the behavior differences.  

The diverse behavior differences in Lake Malawi cichlids offer a unique opportunity to 

study the genetic basis of behavior evolution. At the same time, the unique properties of 

Lake Malawi cichlids also challenge current genotyping and phenotyping techniques. 

Compared with the research community for the model organism zebrafish, number of 

groups to research cichlids is smaller. A result of this smaller community is a not well 

annotated genome and little knowledge to the specific genes. Similar to many other natural 

behaviors, cichlids bower behaviors can only be expressed in a natural environment and 

has to be expressed in a very long term. This creates a challenge on methods both to keep 

track of the behaviors and compare the behavior differences between different animals.  

1.3.2 Use of Caenorhabditis to genetic basis of long-term evolution 

While cichlids are a great vertebrate model to study speciation, C. elegans and other 

Caenorhabditis nematode species have grown as a population model to study long-term 

evolution. To date, more than 25,000 species have been identified within nematodes and it 
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has been speculated that there could be more than 100 million species (Blaxter, 2003). The 

Caenorhabditis genus belongs to a group of primarily bacterivorous nematodes called 

rhabditids. In the Caenorhabditis genus, the C. elegans species is the most famous among 

genetics researchers due to the work of Sidney Brenner. C. elegans is famous for its 

transparent body, short lifespan and invariant cell lineage (Hobert and Loria, 2005, Chalfie 

et al., 1981, Hsin and Kenyon, 1999). A large community has built tools and reagents that 

allow for powerful genetic analysis techniques that can be used to study a trait of interest. 

It was the first multicellular organism with a whole genome sequence, and information 

about the expression and function is updated on a daily basis to a shared knowledge 

database WormBase (Harris et al., 2010).  

While historically used for genetic analysis, recent work has developed C. elegans as a 

model organism for the study of evolution. Because of self-fertilization, genetic changes 

to the individuals of C. elegans are trackable such that long-term experimental evolution 

can be used to study the genetic basis of selection. Its short growing time enables a short 

turnaround time for many experiments. For example, a short 10 generation fitness 

competition study can be done within a month, whereas this may take 2 or 3 years for an 

vertebrate animal (Zhao et al., 2018). Also because of its genetic tractability, mapping of 

the genetic basis of trait variation is possible in C. elegans. The past decade has seen loci 

accounting for life-history differences, pathogen susceptibility and behavior differences 

identified (Andersen et al., 2014, Bendesky et al., 2012, Large et al., 2016, Reddy et al., 

2009, Lee et al., 2017, McGrath et al., 2009). These genetic mechanisms help us understand 

the evolutionary forces that have shaped the C. elegans genome. Genetic mapping in 

related species C. remanei (Reynolds and Phillips, 2013, Jovelin et al., 2003, O’Connor et 
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al., 2019) and C. briggsae (Bi et al., 2015, Ren et al., 2018, Inoue et al., 2007) has identified 

additional variants for lifespan, stress response, chemosensory behaviors and hybrid 

incompatibility.  

One conclusion from these studies is the importance of balancing selection in C. elegans.  

Within C. elegans wild strains, long term balancing selection is able to maintain ancient 

genetic diversity despite self-fertilization induced effective population size reduction. One 

of the first reported locus that is under balancing selection is glc-1 (Ghosh et al., 2012). 

glc-1 encodes the alpha-subunit of a glutamate-gated chloride channel that was identified 

for avermectins resistance. Avermectins are a family of drugs and pesticides that are widely 

used to treat parasitic worms and insect pests.  There are two major haplotypes of glc-1 

that segregate among the wild isolates of C. elegans. One haplotype contains a four-amino-

acid deletion in the ligand binding domain of GLC-1 that is responsible for the resistance 

differences to both synthesized avermectins and avermectin-producing bacterium 

Streptomyces avermitilis. This resistance incurs a fitness advantage when anthelmintics 

such as avermectins are applied in the field or they encounter avermectin-producing 

bacteria in the wild. It is believed that these two haplotypes have been segreaging in the 

population for 7.6 million generations. There is then a hypothesis that glc-1 loss of function 

might impose a fitness loss to the animals in environments that lack avermectins such that 

these two alleles are under balancing selection. A second reported locus under balancing 

selection involves a toxin-antidote system that acts as a paternal effect postsegregation 

distorter. One haplotype contains both the toxin gene peel-1 and the antidote zeel-1 in close 

linkage. Offspring of heterozygous animals that lack the zeel-1 antidote die, which should 

result in the spread of peel-zeel. It is unknown why both haplotypes persist in the population, 
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however, population genetics suggest that they diverged approximately 8 million 

generations ago (Seidel et al., 2008).  A third characterized locus under balancing selection 

involves two chemoreceptors srx-43 and srx-44. These two chemoreceptors sense a 

component of pheromone, called icas#9 (Greene et al., 2016a, Greene et al., 2016b). This 

locus affects the foraging behavior in response to icas#9 due to differences in expression 

level of srx-43 and expression pattern of srx-44.  

Besides these specific examples, resequencing studies also support the importance of 

balancing selection in C. elegans populations. Besides the laboratory strain N2, the Hawaii 

strain CB4856 is another widely used strain because it is one of the wild strains that have 

most genetic differences compared with N2. A draft genome of the CB4856 strain was 

created by a combination of short-read and long-read sequencing. Comparison between the 

N2 genome and CB4856 genome has identified highly divergent regions that are enriched 

for F-box, MATH, BATH, seven-transmembrane G-coupled receptors, and nuclear 

hormone receptors (Thompson et al., 2015). A comprehensive genome-wide comparison 

of all 609 wild C. elegans strains isolated worldwide also showed that genetic variations 

are enriched in punctuated hyper-divergent regions. These hyper-divergent regions only 

cover 20% of the genome while including most of the genetic variation in C. elegans (Lee 

et al., 2020). Also, these regions show strong signature of balancing selection. Seven-

transmembrane receptor class genes such as G-protein coupled receptors are enriched in 

the hyper-divergent regions, implying ancient genetic variation for environment sensing 

and responding are actively maintained in the population. 

While there are many benefits to use C. elegans to study speciation, there are a few 

obstacles for us to fully understand its evolutionary history. One major challenge is that we 
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don’t have a lot of knowledge about its ecology. C. elegans are mostly found in 

anthropogenic habitats where recent human migration is believed to contribute to the 

signatures of selective sweeps in the genome. The natural habitat for C. elegans is not well 

known. Extensive sampling in Hawaii islands has discovered the most genetic diversity in 

this species, raising a promising hypothesis that C. elegans are originated from the Hawaii 

islands. Another challenge is a lack of quantitative methods to measure the fitness of a 

allele in a specific environment and predict its evolutionary dynamics considering the 

idiosyncratic features of the special androdioecy reproductive system.  

1.4 Aims 

In this thesis, I seek to advance the quantitative methods in the study of species evolution 

by looking into two systems. The first is Lake Malawi cichlid fishes and the second is C. 

elegans (Caenorhabditis elegans). In cichlids, species show different social behaviors 

(York et al., 2015). Researching the genetic basis requires a quantitative comparison 

between the different behaviors. However, this is not easy because these natural behaviors 

are expressed over very long timescales and they only happen in a familiar environment to 

the animals. In C. elegans, long-term evolutionary forces like balancing selection are able 

to maintain variations for many generations. However, balancing selection for selfish 

genetic elements contradicts our expectation for genic drive. To solve the puzzle, 

quantitative modeling and competition assays to directly measure the fitness effect of these 

selfish genetic elements are necessary. Finally, the conflict between selfish genetic 

elements and the rest of the genome is an important factor leading to speciation (Austin et 

al., 2009). The dynamics of selfish genetic elements are often studied while ignoring the 

dynamics of the rest of the genome. Thus, sophisticated simulations are necessary to 
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understand the dynamics of the whole genome. In this thesis, I want to directly address 

these challenges. 
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CHAPTER 2. AUTOMATIC CLASSIFICATION OF CICHLID 

BEHAVIORS USING 3D CONVOLUTIONAL RESIDUAL 

NETWORKS 

2.1 Introduction 

Animals respond to and interact with their environment using a rich repertoire of behavioral 

actions. A major challenge for neuroscientists is to understand how neural circuits 

coordinate these behaviors in response to sensory and internal stimuli. Automated 

identification and classification of behavioral actions will aid in this task, as most neural 

responses are stochastic, requiring a large number of replicates to accurately estimate 

relationships with complex behaviors (Egnor and Branson, 2016). Additionally, many 

behaviors are executed over long timescales through the accumulated actions of thousands 

of individual decisions (e.g. foraging, construction, and social behaviors), making manual 

analysis of the full course of behavior entirely impractical (Russell et al., 2017, Mouritsen, 

2018, Tucker, 1981). One common approach is to manually observe snapshots of long-

term behaviors over extended periods of time. This method is labor intensive and thus can 

severely limit the total number of animals that can be measured in a single study. 

Furthermore, it cannot provide a complete and detailed quantitative description of the full 

behavioral trajectory. An alternative approach is to design abbreviated assays that elicit the 

behavior of interest during a short period of time. One issue, however, is that many natural 

behaviors may be expressed differently over short timescales, and/or in 

unnatural/unfamiliar environments. Recently, deep learning approaches have 

revolutionized our ability to automatically analyze video and image data (Nath et al., 2019, 



 15 

Mathis et al., 2018, Weissbrod et al., 2013, Wild et al., 2018). Convolutional Neural 

Networks (CNNs) can be applied to images for the purpose of object detection, identifying 

all animals within an individual frame (Girshick, 2015, Ren et al., 2015, Redmon et al., 

2016, Pereira et al., 2019). CNNs can also identify body parts, such as eyes, legs, or wings, 

allowing for the determination of an animal’s posture at any specific time (Graving et al., 

2019, Pereira et al., 2019, Kain et al., 2013, Petrou and Webb, 2012, Gunel et al., 2019, 

Andriluka et al., 2018, Nath et al., 2019). Although position and pose alone are not 

sufficient for defining animal behavior, postural time series can be used to define some 

behavioral actions. Such analysis has, for example, been used to quantitatively describe 

different types of stereotyped movements in Drosophila flies, such as different locomotor 

and grooming behaviors (Berman et al., 2014). Similar approaches have also been used 

successfully on other species (Stephens et al., 2008). It remains challenging, however, to 

translate changes in position and posture into complex behaviors that are characterized by 

an animal’s interaction with the environment. For example, many goal-directed behaviors 

involve significant manipulation of the physical environment in ways that are essential for 

survival or reproductive success, such as mice digging burrows, birds building nests, 

spiders weaving webs, and bowerbirds or cichlid fishes constructing courtship bowers 

(Hansell, 2000, Benjamin and Zschokke, 2000, Vollrath, 1992, Collias and Collias, 2014, 

Dawkins, 1982, MeKaye, 2001). In such cases, information about changes to the physical 

environment itself is essential to fully describe the behavior. 

One possible solution for analysis of these types of behaviors is to train a deep learning 

network that takes videos in as input, and then outputs a prediction for the corresponding 

behavior type. For example, 3D Residual Networks (3D ResNets) have been successfully 
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used to classify human behaviors, distinguishing between hundreds of different action 

classes (Hara et al., 2018, Qiu et al., 2017). These deep-learning networks use 3D kernels 

with the ability to extract spatiotemporal features directly from videos. Videos are fed into 

these networks raw, without any individual body posture information beyond what can be 

learned from the training data. One major benefit of these 3D networks, when compared to 

networks that process each frame individually, is that they can integrate spatial and 

temporal information to recognize changes in the animal’s environment that might indicate 

a particular behavior (e.g. digging, feeding, or construction behaviors). However, a 

significant challenge in applying action recognition to large videos is detecting actions of 

interest in a time and space frame, which is known as shot transition detection. This 

requires splitting large (up to 10 hours long) videos into small enough temporal units such 

that each unit contains only one action of interest and excludes as much irrelevant 

information as possible.  

In this paper, we describe an approach for analyzing construction, feeding, and mating 

behaviors from hundreds of hours of videos of Lake Malawi cichlids behaving freely in 

naturalistic and social home tank environments. Lake Malawi is the most species-rich 

freshwater lake on Earth, and it contains 700-1,000 cichlid species that have rapidly 

evolved in the past 1-2 million years (Brawand et al., 2014). Approximately 200 of these 

species express long-term bower construction behaviors, in which males manipulate sand 

to create large courtship structures, or bowers, to attract female mates (York et al., 2015) 

(Figure 2.1A). Males construct pits and castles over the course of many days and make 

thousands of decisions about where to scoop up and then spit out mouthfuls of sand. Bower 
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construction is therefore a useful model for understanding how goal-directed behaviors are 

executed over long time periods in dynamic environments. 

In order to measure bower construction, we first develop an action detection algorithm that 

uses Hidden Markov Models (HMMs) and density-based spatial clustering to identify 

regions of the video where the fish has manipulated sand using its mouth, fins, or other 

parts of its body. Then, after generating small video clips that encompass these events, we 

use a 3D ResNet to classify each sand disturbance event into one of ten action categories. 

We demonstrate that this approach can be used to quickly, accurately, and automatically 

identify hundreds of thousands of behaviors across hundreds of hours of video. Through 

this approach, we measure the times and locations of construction, mating, and feeding 

behaviors expressed over the course of many days in three different species and one hybrid 

cross. 

2.2 Results 

2.2.1 Collection of video recordings of male cichlid fish constructing bowers 

If provided access to an appropriate type of sand and gravid females, Lake Malawi male 

cichlids will typically construct species-typical bower structures in standard aquarium 

tanks within 1-2 weeks (York et al., 2015) (Figure 2.1B). After testing sand from different 

suppliers, we found that males construct most vigorously with a sand mixture composed 

of black and white grains. Only half of each home tank was accessible for top-down video 

recording, due to physical constraints such as support beams and water supply/drain lines. 

In order to restrict sand manipulation behaviors to the video-accessible region of each tank, 

we placed a custom-built acrylic tray containing sand directly within the video camera field 



 18 

of view. We then introduced a single male individual to four female individuals (Figure 

2.1C). For each trial, we collected ten hours of video daily for approximately ten 

consecutive days, resulting in the collection of ~100 hours of video per trial. We analyzed 

two types of trials: construction trials, in which males constructed bowers in the presence 

of four females, and control trials, in which tanks were empty, or tanks contained four 

females but no male. We analyzed eight construction trials, encompassing three different 

species and one F1 hybrid cross: pit-digger Copadichromis virginalis, CV, n=1; castle-

builder Mchenga conophoros, MC, n=3; pit-digger Tramitichromis intermedius, TI, n=2; 

and pit-castle hybrid MCxCV F1, n=2. Visual inspection confirmed that each male built a 

species-typical bower. We also analyzed three empty tank control trials, and five female 

only control trials. Table 2.1 summarizes all trials that were analyzed in this paper. 

To initially analyze these videos, we first focused on a single MC trial, identifying three 

days when castle building occurred. A trained observer manually annotated all spit and 

scoop events for a single hour on each day. In total, 1,104 spit events and 1,575 scoop 

events were observed (there is not a 1:1 correspondence between spit and scoop events 

because males sometimes scoop sand from multiple locations before performing a single 

spit) (Figure 2.2). Analysis of these three hours of videos required 36 hours of human time, 

or a 12:1 ratio of human time to video time. Full analysis of a single trial would require 

1,200 hours of human time, or approximately 30 weeks of full-time work dedicated to 

manual annotation. Automated analysis of these videos was thus necessary for the full 

characterization of bower construction even in this limited set of trials, let alone any larger 

scale investigation of bower behavior. 

2.2.2 Automatic identification of sand disturbance events 
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In the process of manually annotating these videos, we noticed that spit and scoop events 

resulted in an enduring and visually apparent spatial rearrangement of the black and white 

grains of sand. Scoop and spit events were associated with a permanent transition between 

pixel values. We tested whether events could be identified despite the frequent occurrences 

of fish swimming over by inspecting local regions in which a large number of pixels 

underwent permanent transitions. We observed temporary changes in pixel values when 

fish or shadows occluded the sand and permanent changes in pixel values at the locations 

of sand disturbance events (Figure 2.3A-F). Consistent with this, we plotted the greyscale 

value of every pixel over entire 10-hour videos and found that individual pixel values were, 

in general, fixed around a specific mean value for extended periods of time, but showed 

small oscillations and large but temporary deviations about this value across video frames 

(Figure 2.3G, H). In addition, we identified permanent transitions in pixel value, in which 

the mean grayscale value of a single pixel would change to, and retain, a new value.  

In order to automatically identify permanent transitions in pixel color, we used an HMM 

to calculate a hidden state for each pixel that represented its current color. In general, the 

HMM partitioned each pixel into a small set of values (~10-50) over the course of each 10 

hour video (Figure 2.3G, H). In testing the speed and accuracy of the HMM on raw data, 

we observed that large temporary deviations greatly impacted the accuracy of the HMM 

calls, potentially due to their violation of the assumption of a Gaussian distribution. 

Therefore, these large deviations were excluded using a rolling mean filter. We also found 

a speed/resolution tradeoff to the frame rate. Since we wanted to perform this analysis for 

the entire 1296x972 video, we needed to analyze over one million pixels through time. We 

found that one frame per second, sampled from the 30 frames per second in the raw video, 
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was a reasonable tradeoff – an entire video could be analyzed in approximately two hours 

on a 24-core machine. After setting appropriate parameters, manual inspection of the HMM 

fits showed reasonable agreement with our expectations: enduring transitions in pixel 

values were associated with sand disturbance by fish, and three orders of magnitude more 

of these transitions were detected in tanks with fish versus empty tanks (Figure 2.3I). In 

addition to identifying when and where a sand disturbance occurs, this approach also 

allowed us to create background images that excluded fish and shadows from each frame 

(Figure 2.3J).  

2.2.3 Clustering of HMM changes to detect sand disturbance events 

When a fish scoops up or spits out sand, HMM transitions occur in hundreds to thousands 

of nearby pixels. In order to group individual pixel transitions together, we applied density-

based spatial clustering to the x, y, and time coordinate of each individual HMM transition 

(Ester et al., 1996) (Figure 2.4A). To find the best parameters, we used exploratory data 

analysis and parameter grid search (Figure 2.5). This approach allowed us to determine the 

spatial and temporal location of thousands of individual fish-mediated sand disturbances 

on each day of each bower trial. We also calculated distributions for the width, height, 

temporal span, and number of HMM transitions for every cluster (Figure 2.6). These data 

further demonstrated that clusters were associated with the presence of fish, as empty tanks 

showed a minimal number of clusters (Figure 2.4B). Inspection of a subset of these clusters 

confirmed that the clusters were associated with regions of sand that were undergoing 

lasting change (Figure 2.4C). 
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To further validate these clusters, we generated 200x200 pixel, four second video clips for 

a randomly sampled subset of clusters centered over their mean spatial and temporal 

position (~2,000 per trial for seven of the eight bower construction trials). Manual review 

of these video clips revealed that the majority (>90%, 13,288/14,234 analyzed events) of 

clusters were true sand change events caused by fish behaviors, with the remaining portion 

including reflections of events in the glass, shadows caused by stationary or slow-moving 

fish, or small bits of food, feces, or other debris settling on the sand surface.  

To ensure this procedure recovered most sand disturbance events, we leveraged our 

manually annotated spit/scoop dataset (Figure 2.2) and performed HMM and density-based 

spatial clustering. For each event, the spatial and temporal center of the event was 

compared. The differences in time between human annotations and machine annotations 

follow a gaussian distribution (Figure 2.7A). 95.6% (725/758) human annotations have at 

least one machine annotation in the (-1s, +1s) interval. Of these 725 events, 93.7% 

(679/725) also had a machine annotation event within 70 pixels (approximately 3.5 cm), 

which is ~ 1/3 of the oval fish length (Figure 2.7B). By these criteria, 89.6% (679/758) of 

human annotated events can be retrieved by the automated machine HMM/clustering 

process. 

2.2.4 Automatic classification of cichlid behaviors with 3D residual networks 

On average, ~1,000 clusters were identified in each hour of video (Figure 2.4B). We aimed 

to automatically identify the subset of these events corresponding to bower construction 

behaviors in each video. However, scooping and spitting sand during bower construction 

represents only a subset of behaviors that cause sand change in our paradigm. For example, 
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feeding behaviors performed by both males and females also involve scooping and spitting 

sand, and are expressed frequently throughout trials. Quivering and spawning behavior, in 

which a male rapidly circles and displays his fins for a gravid female, are less frequent but 

also cause significant sand change. Identifying bower construction behaviors therefore 

requires identifying other behaviors that cause sand change. To achieve this, we turned to 

a deep learning approach and assessed whether 3D Residual Networks (3D ResNets), 

which have been recently shown to accurately classify human actions from video data (Qiu 

et al., 2017), could accurately distinguish fish behaviors that cause sand change in our 

paradigm.  

To create a training set for the 3D ResNet, we first generated a video clip for each cluster 

based on its location in space and time. This process narrowed down each event to a four 

second, 200x200 pixel video clip from the original 1080p video. To create a training set 

for the 3D ResNet, a trained observer manually classified 14,172 of these video clips 

(~2,000 per trial) into one of ten categories (bower scoop, bower spit, bower multiple, feed 

scoop, feed spit, feed multiple, drop sand, quivering, other, and shadow/reflection). 

Feeding was the most frequently observed behavior, accounting for nearly half of all clips 

(47.0%, 6,659/14,172 annotated clips; feeding scoops, 15.2%; feeding spits, 11.6%; 

multiple feeding events, 20.2%). Bower construction behaviors were the next most 

common (19.5%; bower scoops, 9.4%; bower spits, 8.1%; multiple bower construction 

events, 1.9%). Quivering and spawning events were the least frequently observed, 

accounting for just 2.6% of all clips. The remainder of sand change events were annotated 

as either sand dropping behavior (5.6%), “other” behaviors (e.g. brushing the sand surface 

with the fins or the body; 18.7%), or shadows/reflections (6.6%) (Figure 2.8).  
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A 3D ResNet was then trained on 80% (~11,200 clips) of the data, and the remaining 20% 

of the data was reserved for validation (2,752 clips) (Table 2.2 and Figure 2.9A, B). To 

place the ResNet predictions in the context of human performance, we also measured the 

accuracy of a previously naive human observer that underwent 12 hours of training and 

then manually annotated a test set of 3,039 clips from three trials and all ten behavior 

categories (Table 2.3). The 3D ResNet achieved ~76% accuracy on the validation set, 

which was better than the accuracy of the newly trained human observer (~73.9% accuracy, 

2,246/3,039 clips). Confidence for 3D ResNet predictions on the validation set ranged from 

22.1-100%, and confidence tended to be greater for correct predictions (mean confidence 

92.93±0.279%) than for incorrect predictions (mean confidence 78.28±0.074%) (Figure 

2.10A, C). We found an imbalance in the distribution of incorrect predictions across 

categories (Table 2.2). For some categories, such as “build multiple”, “feed multiple”, and 

“fish other”, video clips could contain behaviors that also fit into other categories. For 

example, a “feed multiple” clip by definition contains multiple feeding scoop and/or 

feeding spit events, a “bower multiple” clip contains multiple bower scoops and/or bower 

spits, and a “fish other” clip may contain a bower scoop and a fin swipe (or some other 

combination of behaviors). We found that erroneous “within building” category 

predictions for build multiple, “within feeding” predictions for feed multiple, and “fish 

other” predictions accounted for ~82% of all incorrect predictions. We further found that 

the area under the Precision Recall Curve was 0.91 (Figure 2.10B). By setting a confidence 

threshold of 90%, most (~62%) incorrect predictions were excluded while most (70%) 

correct predictions were included. At the same time, ~86% of correct bower scoop 

predictions and ~88% of correct bower spit predictions were included. 69% of all 
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predictions were above the 90% confidence threshold, and overall accuracy for these high-

confidence predictions was ~87% (Figure 2.10C).  

We tested how many annotated clips are required to achieve a similar accuracy by inputting 

5-50% of the original labeled clips into the training dataset. A similar accuracy was 

achieved using just 50% of the clips, but a significant decrease in accuracy (75% to 62%) 

was observed when the number of training clips was decreased from 50% to 30% of the 

original set (Figure 2.9B).   

Since there was an uneven distribution of the different sand perturbation events, we were 

curious if our model might be biased towards the more frequent events and show a lower 

accuracy than a training set with equal distribution of different events. To test this 

hypothesis, we built a model from an equal sampling of all ten categories. First, we created 

an ‘equal sampling’ set where each category in the training dataset has the same number 

of clips. Because the category ‘build multiple’ has the least number of clips (277 clips out 

of 14172 annotated video clips), for each category, we used 220 clips for training and 50 

clips for validation. As a ‘random sampling’ control, we randomly sampled an equal 

number of clips for training and validation as the uniform set. Specifically, there are 2200 

randomly sampled clips for training and 500 for testing. Overall, the accuracy was 

comparable, although we did note some large differences in accuracy based upon category 

(Figure 2.10F). For example, build multiple, a very rare category, was much less accurate 

in the randomly sampled set (18% vs. 75%). When we compared the overall accuracy of 

each model, we noted that the higher performing model depended on the validation set. 

When an equal sampling of validation clips was used, the ‘equal sampling’ model 
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performed better (64.0% to 60.5%).  When a random sampling of validation clips was used, 

the ‘random sampling’ method was more accurate (62.2% to 57.7%). 

The spatiotemporal dimension of each video clip is a very important hyperparameter to 

tune to achieve the best classification accuracy. The spatial scale is optimal when the whole 

behavior is captured, and when irrelevant pixels are excluded from the frame as much as 

possible. The same is true for temporal scale. Therefore, we decided to test the amount of 

spatial and temporal data necessary to accurately classify each clip. We found that the 

classification accuracy initially increased with frame size and peaked at 120x120 pixels 

per frame (Figure 2.10D). The accuracy decreased from 76% to 74% when the entire 

200x200 pixels frame was used as input. This decrease in accuracy further affirmed our 

choice to crop the clips before feeding them to the ResNet, as it eliminates information 

unrelated to action in the frame. Next, we tested the relationship between the number of 

frames per clip and the classification accuracy. We tuned two parameters, including the 

total number of frames sampled (n=16, 32, 48) and the interval between each sampled 

frame (i=0, 1, 2, 3, 4). Classification accuracy steadily increased from 67% (n=16) to 72% 

(n=48) when more frames were used. When the total number of frames was fixed, accuracy 

was greater when the sampling interval (i) was larger (Figure 2.10E). 

2.2.5 Distinguishing between feeding and bower construction events 

The differences between construction behaviors and feeding behaviors are subtle and are 

often indistinguishable to inexperienced observers (Table 2.3). Feeding and construction 

both involve scooping sand into the mouth, swimming, and then spitting sand from the 

mouth. Feeding behaviors are also typically performed more frequently relative to bower 
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construction (Figure 2.8). We were therefore concerned that the 3D ResNet would be 

unable to accurately distinguish between feeding versus construction behaviors, which 

would prevent accurate measurement of spatial patterns associated with bower construction.  

Much to our surprise, the ResNet reliably distinguished between feeding and construction 

events; for construction and feeding scoops and spits, the model achieved F1 scores of 0.74, 

0.86, 0.72, and 0.73 (for build scoops, build spits, feeding scoop, and feeding spits, 

respectively), with balanced precision and recall scores. These F1 scores were comparable 

to the overall averaged F1 score (or accuracy) of the model, 0.76. Remarkably, the model 

outperformed a newly trained human observer in distinguishing between construction and 

feeding: the average F1 score for the model across these categories was 0.76, while the 

newly trained observer’s average F1 score was 0.71. The difference in performance was 

further evident when we quantified the proportion of build-feed false positives (build 

scoops mis-classified as feed scoops, build spits mis-classified as feed spits, and vice versa); 

these erroneous predictions were 2.5x more frequent in the newly trained observer’s 

annotations compared to the model’s (201/1,469 predictions in these categories, or 13.7% 

for the human; 68/1,211 predictions in these categories, or 5.6% for the model). Differences 

in the spatial position and relative timing were readily observed among bower construction, 

feeding, and spawning events (Figure 2.9C, D).  

2.2.6 Accuracy of model on new trials 

The trained model showed high validation accuracy on the seven trials. However, our 

ultimate goal is to measure bower construction in hundreds of independent trials. To that 

end, we tested how generalizable this model is when applied to previously unobserved 
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individuals. To test this, we retrained models using six of the seven trials and tested their 

ability to classify video clips from the remaining trial. In all seven cases, we saw a 

significant drop in accuracy, from 76% to between 48% and 62% depending on the trial 

(Figure 2.11). We could, however, recapture much of this accuracy loss by including a 

small subset of videos from the excluded trial (~100-400), suggesting that including a 

limited number of labeled videos from new trials could dramatically increase the accuracy. 

Interestingly, trials that had the largest imbalance in the frequency of different categories 

compared to the mean also showed the largest decrease in accuracy (Figure 2.12). 

 

Figure 2.1 Measurement of Lake Malawi cichlid bower behaviors in laboratory.  

Approximately 200 species of Lake Malawi cichlids exhibit bower behaviors. In these 

species, sociosexual cues trigger reproductive adult males to construct large courtship 

structures by manipulating sand with their mouths. The geometric structure of the bower 

is species-specific. A. Example of a castle structure built in Lake Malawi. B. Example of a 

castle structure built in a standard aquatics facility aquarium. C. Top down view of acrylic 

tray used to constrain bower building to a third of the tank. Video recordings using this 

view were used to characterize bower building behaviors throughout this paper. Scale bar 

is 10cm. Photo credit to Dr. Ad Konings (A).  
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Figure 2.2 Example images on three different days during bower building by a 

Mchenga conophoros male. 

Top panel shows a top down view with all building scoops (red) and building spits (blue) 

during a one hour period identified by manual inspection. Bottom panel shows same 

images without scoops and spit events. A castle bower is being built on the middle left 

portion of the tray. Scale bar is 10cm. 
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Figure 2.3 Automated detection of sand change from video data. 

The sand in this behavioral paradigm is composed of black and white grains (e.g. as seen 

in panel A), and therefore sand manipulation events during bower construction cause 

permanent rearrangement of the black and white grains at specific locations. We aimed to 

detect these events by processing whole video frames (A, with turquoise box indicating an 

example region of interest. Scale bar is 10cm) sampled once per second, and tracking the 

values of individual pixels throughout whole trials. Fish swimming over sand cause 

transient changes in pixel values (e.g. B-F, black arrows indicate an example location of a 
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fish swimming over the sand; the bottom row depicts a zoomed in 20x20 pixel view of a 

location that the fish swims over, sampled from representative frames across four seconds). 

In contrast, sand manipulation behaviors cause enduring changes in pixel values (e.g. B-F, 

turquoise arrow indicate an example location of a fish scooping sand. Scale bar is 2cm; the 

middle row contains a zoomed in 20x20 pixel view of a location where the fish scoops 

sand). We used a custom Hidden Markov Model to identify all enduring state changes for 

each pixel throughout entire videos (G, green line indicates HMM-predicted state, orange 

line indicates raw grayscale pixel value, and blue lines indicate transient fluctuations 

beyond the pixel’s typical range of values likely caused by fish swimming or shadows). 

Because fish swim over the sand frequently, a large number of transient changes are 

ignored (e.g. pixel value fluctuations indicated by blue arrows in panel H), while enduring 

changes are identified (e.g. pixel value change indicated by green arrow in Panel H). I. 

Number of HMM transitions identified per hour based upon trial type. “Feeding only” are 

trials containing four females. “Build trial” contain four females and one male that builds 

a bower. The box plot shows quartiles of the dataset while the whiskers show the rest of 

the distribution unless the point is an outlier. J. The HMM could be used to calculate a 

background image at a given timepoint, resulting in removal of the fish and the associated 

shadow from the image. Scale bar is 1cm. 
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Figure 2.4 Clustering HMM events identifies sand disturbance events. 

A. Example of clusters identified in a 60 second period. HMM transitions are color coded 

based upon their cluster membership. Scale bar is 10cm. B. Number of clusters identified 

per hour based upon trial type. “Feeding only” are trials containing four females. “Build 

trial” contain four females and one male that builds a bower. The box plot shows quartiles 

of the dataset while the whiskers show the rest of the distribution unless the point is an 

outlier. C. Before and after images (20 seconds) for eight example clusters. Left and middle 

panel show raw grayscale images. Right panel shows heatmap displaying pixel value 

differences in the left and middle frame. Yellow indicates large changes. Blue indicates no 

change. Scale bar is 1cm. 
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Figure 2.5 HMM pixel distance exploratory analysis and parameter search for 

DBSCAN 

A. HMM+ pixels sorted by distance from n-th nearest neighbor. This plot was used to 

visualize the distribution of n-th nearest neighbor distances across HMM+ pixels. The knee 

point of the k-dist graph was used to estimate the optimal values for parameter eps to be 

20-30. B. Number of identified clusters under different values for minPts and eps. This plot 

shows the number of identified clusters from segment of video data using different values 

for minPts and eps. Red boxes indicate values at which trained observers reviewed video 

clips of sand change clusters to identify optimal values for minPts and eps. See methods 

for further details. 
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Figure 2.6 Violin plots showing distribution of cluster features. 

Dashed lines within the violins indicate the 1st quartile, median, and 3rd quartile values. 

A. Distribution of cluster sizes, using number of HMM transitions assigned to each cluster. 

B. Distribution of width and heights of each cluster. C. Distribution of time-length of each 

cluster. Since HMM transitions were only calculated at one second intervals, the number 

time-length must be an integer number. 
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Figure 2.7 Spatial and temporal difference between human defined center and 

machine defined center. 

A. The distribution of time differences between human defined center and machine defined 

center. B. The distribution of distance between human defined center and machine defined 

center. 
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Figure 2.8 Distribution of different sand perturbation events. 

A human observer manually classified 14,234 video clips into one of ten categories. Bower 

events are scoops, spits, or multiple scoop/spit events associated with bower construction. 

Feeding events are scoops, spits, or multiple scoop/spit events associated with feeding 

behaviors. Spawning events involve male fish quivering to attract females. Other events 

include sand perturbations caused by fins or the body, reflections of events in the aquarium 

glass, or sand dropped from above. 

 

 



 36 

 

Figure 2.9 Automated classification of sand disturbance events using a 3D residual 

network. 
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A. Schematic of 3D residual network. B. Validation accuracy of machine-learning labels 

as a function of number of videos used to train the model. C. Spatial position of four 

categories of sand manipulation events over ten days of building by a Mchenga 

conophoros. A castle structure was built in the top middle of the field-of-view. Scale bar is 

10cm. D. Raster plot of time of each sand disturbance event by classification. C and D 

show that building events occur at different spatial and temporal positions than feeding 

events. 

 

Figure 2.10 Ablation studies and performance analysis for the 3D ResNet. 

A. Number of predictions in validation set by confidence. B. Precision Recall Curve for 

the action classifier. C Accuracy (mean ± standard error) of predictions grouped by 
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confidence scores. D. Model validation accuracy by frame size used for training. E. Model 

validation accuracy by total number of frames used for training. F. Per category accuracy 

by data sampling method. 

 

Figure 2.11 Application of the model on new trials. 

Accuracy of model to trials using 0, 100, 400, or 800 training videos. We restricted training 

data for one of the seven and then tested the accuracy of the model on video clips specific 

to that trial. Models that used zero video clips for training showed a decrease in accuracy. 
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Figure 2.12 Relationship between category distribution difference and the 3D 

ResNet performance. 

A. Category distribution difference for each trial versus distribution of all other trials. B. 

Test trial accuracy versus its distribution difference from the training dataset. For each trial, 

the sum of absolute per category difference (from panel A) is used as x-axis and its 

accuracy when used as test dataset while the rest 6 trials as training dataset is used as the 

y-axis. A 90% confidence interval is shown as shaded blue.    
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Table 2.1 Summary of video recordings used in this report. 

SpeciesA Type n Bower Shape Training set Description 

- Empty 3 - No No fish in tank 

CV Feeding only 2 - No Four female fish 

MC Feeding only 2 - No Four female fish 

TI Feeding only 1 - No Four female fish 

CV Building 1 Pit Yes One male and four 

female fish.  

MC Building 3 Castle YesB One male and four 

female fish. 

TI Building 2 Pit Yes One male and four 

female fish. 

MC/CV 

F1 

Building 2 Pit/CastleC Yes One male and four 

female fish. 

A CV is Copachromis virganialis; MC = Mchenga conophoros; TI = Tramitichromis 

intermedius 

B Only two of the three MC trials was manually labeled for training 
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C F1 hybrids display codominant phenotype. Males initially build a pit structure and then 

transition to build a castle structure nearby the original pit. 

Table 2.2 Confusion matrix for sand disturbance events classified with a 3D residual 

network 

 Predicted Label 

L

a

b

e

l 

Category b f p t b m s x o d Total Percent Acc 

Build scoop (b) 187 25 1 0 2 1 0 0 26 2 244 9% 77% 

Feed scoop (f) 23 303 0 3 0 48 0 1 28 0 406 15% 75% 

Build spit (p) 1 0 194 5 6 1 1 0 10 2 220 8% 88% 

Feed spit (t) 1 6 15 225 0 38 2 1 27 26 341 12% 66% 

Build mult (b) 8 0 9 0 29 1 1 0 7 0 55 2% 53% 

Feed mult (m) 16 73 4 22 2 402 0 0 17 1 537 20 75% 

Spawn (s) 0 0 0 0 1 0 56 0 15 1 73 3% 77% 

Shadow/Reflect(x) 0 0 1 1 0 1 0 169 11 1 184 7% 92% 

Other (o) 26 26 4 10 10 11 8 9 388 20 512 19% 76% 

Sand drop (d) 1 0 1 12 0 1 0 2 14 149 180 7% 83% 

Total 263 433 229 278 50 504 68 182 543 202 2752 100% 76% 
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Table 2.3 Confusion matrix for sand disturbance events classified by a newly-

trained human observer. 

 Newly-trained label 

l

a

b

e

l 

Category b f p t b m s x o d Tota

l 

Perce

nt 

Acc 

Build scoop (b) 277 63 88 14 3 4 0 1 15 0 465 15.3% 59.6% 

Feed scoop (f) 58 356 5 20 1 7 0 2 8 2 459 15.1% 77.6% 

Build spit (p) 3 0 196 16 3 4 0 3 4 1 230 7.6% 85.2% 

Feed spit (t) 3 4 64 209 0 6 1 0 2 26 315 10.4% 66.3% 

Build mult (b) 4 0 10 3 12 4 0 1 6 0 40 1.3% 30.0% 

Feed mult (m) 14 43 8 34 36 498 0 2 7 2 644 21.2% 77.3% 

Spawn (s) 0 0 0 0 0 0 66 1 10 0 77 2.5% 85.7% 

Shadow/Reflect (x) 0 1 1 3 0 0 0 219 6 1 231 7.6% 94.8% 

Other (o) 19 15 5 11 2 5 3 13 273 2 348 11.5% 78.4% 

Sand drop (d) 0 0 67 10 0 1 1 0 11 140 230 7.6% 60.9% 

Total 378 482 444 320 57 529 71 242 342 174 3039 100.0

% 

73.9% 
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Discussion 

Automated classification of behavior is an important goal for many areas of basic, applied, 

and translational research. Advances in hardware have made collection of large amounts 

of video data cost effective, either using small, battery-operated cameras (e.g. Go Pro), 

mobile phones, or small microcomputers (e.g. Raspberry Pi). The small size and 

inexpensive nature of these hardware systems makes it possible to collect large volumes of 

data from many individuals. For example, here we collected hundreds of hours of video 

from seven home tanks in standard aquatics housing facilities. Inexpensive cloud data 

storage systems additionally allowed for the transfer and archiving of this data. We used 

Dropbox to store all video data for these experiments, and our long-term goal is to collect 

data from hundreds of trials in many species. 

In this paradigm, our recording system collects >300 gigabytes of video data for each 

behavioral trial. A major challenge is thus designing a pipeline to identify behaviors of 

interest through large amounts of background noise. Here we demonstrate one possible 

solution that involves first identifying environmental disturbances and then classifying the 

behavioral causes of those disturbances. This approach is rooted in two main advances: 

first, an action detection algorithm for identifying times and locations of sand disturbances, 

allowing small video clips containing behaviors of interest to be generated on a large scale; 

and second, custom-trained 3D Residual Networks to classify each clip into one of ten 

possible categories. 

For action detection, we tailored an HMM to recognize permanent changes in pixel color 

that occur whenever fish alter the sand. The core approach involves identification of lasting 
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changes in the sand, which manifest as permanent changes in pixel color within specific 

subfields of view. This approach may be useful for studying many other animal behaviors 

that are defined by manipulation of the environment, such as nest construction, burrow 

digging, or web weaving. Many animals also disturb the environment as they forage and 

feed, for example they may disturb or dig through ground substrate or ingest physical 

components of the environment such as leaves, fruits, berries, or algae. Thus, this approach 

may facilitate measurement of many behaviors in more complex and naturalistic 

environments. One limitation to this approach is that individual pixels must be focused on 

a specific region of the background. In our paradigm, we accomplished this by fixing the 

camera, but slightly moving cameras could also be used if an accurate means of registration 

is available to align frames at different time points. 

Following identification of sand disturbance events, we used action recognition to classify 

events into ethologically meaningful behavioral categories.  Previous machine learning 

strategies have relied on positional tracking and/or pose estimation data to classify animal 

behaviors (Hong et al., 2015, Anderson and Perona, 2014, Robie et al., 2017). In contrast, 

our paradigm was poorly suited to these methods, due to a lack of conspicuous stereotypical 

joint movement from top-down video, and to an abundance of stereotypical interactions 

between subjects and their environment which were critical for defining the behaviors of 

interest. We found that a 3D ResNet classified video clips of animal behavior into ten 

categories more accurately than a newly trained human observer, demonstrating that these 

networks can effectively quantify many different behaviors of interest from large volumes 

of raw video data. This result suggests that 3D ResNets may be a powerful tool for 

measuring animal behavior in naturalistic settings and may drastically increase the scale of 
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experimental designs in systems that, historically, have been constrained by the amount of 

human observation time required to measure behaviors of interest. 

Feeding and construction behaviors have different underlying goals and are critical for 

survival and reproduction in the wild, but their physical execution is often indistinguishable 

to inexperienced observers. Separating these behaviors is critically important in our 

paradigm, where there is a high risk that decisions to scoop and spit during bower 

construction will be undetectable through a high volume of feeding actions. Remarkably, 

the 3D ResNet was able to distinguish between feeding and construction behaviors more 

accurately than a newly trained human observer. The ability to accurately identify subtle 

differences in behavior may have important implications for better understanding the 

progression of neurological diseases characterized by subtle changes in locomotor function 

over extended periods of time, or monitoring efficacy of different treatment strategies for 

improving locomotor function. 

Striking differences in the relative spatial positions and timing of predicted feeding versus 

construction behaviors were readily apparent across whole trials. For example, in castle-

building MC males, bower spits were more spatially concentrated than bower scoops, 

feeding spits, and feeding scoops, consistent with the idea that castle construction is driven 

by scooping sand from dispersed locations and spitting into a concentrated region. 

Similarly, feeding behaviors and bower construction behaviors were expressed daily but at 

different times, whereas spawning events occurred infrequently in punctuated bursts. These 

data show that our system can be used to map tens of thousands of behavioral events in 

time and space, allowing future studies to unravel how these different complex behaviors 

are expressed in dynamic environments over extended time periods. It will be important to 
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place these sand manipulation events with information about the actual structure being built 

by the fish. Development of an approach to characterize the shape of the bower at any given 

time will be necessary for connecting building behaviors with the structure.  

The 3D ResNet accurately classified behaviors across three different species and one 

interspecies hybrid cross that all differ in morphology and color patterning. For example, 

Copadichromis virginalis males exhibit black body coloration, yellow heads and dorsal fins, 

and narrower jaws relative to Tramitichromis intermedius males, which exhibit yellow and 

red body coloration, blue heads, and a relatively wide jaw apparatus. Bower construction 

in particular has evolved in hundreds of species, and the evolution of feeding morphology 

and behavior is thought to be central to the explosive radiation of cichlids into thousands 

of species. Our results suggest that our system will likely be effective for measuring natural 

variation in these behaviors among hundreds of species. Lake Malawi cichlids can also be 

hybridized across species boundaries, enabling powerful genetic mapping approaches (e.g. 

quantitative trait loci mapping) to be applied in subsequent hybrid generations to identify 

genetic variants that influence complex traits. Our data shows that our system is effective 

for phenotyping hybrid individuals, allowing future studies to identify specific regions of 

the genome that are responsible for pit vs. castle building. Lastly, high prediction accuracy 

for quivering, a conserved and stereotyped sexual behavior expressed by many fish, 

supports that action recognition may be useful for analyzing mating behaviors in many fish 

species. More broadly, our results suggest that 3D ResNets may be effective tools for 

measuring complex behaviors in other systems even when individuals vary substantially in 

physical traits. 

2.3 Materials and Methods  
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2.3.1 Animals and husbandry 

2.3.1.1 Subjects 

Lake Malawi bower-building species (Copadichromis virginalis, Tramitichromis 

intermedius, Mchenga conophoros) derived from wild-caught stock populations, as well as 

genetically hybrid individuals derived from two of these species (described below), were 

housed in social communities (20-30 individuals) in 190 liter glass aquaria (90.2 cm long 

x 44.8 cm wide x 41.9 cm tall) into adulthood (>180 days). Aquaria were maintained under 

conditions reflective of the Lake Malawi environment: pH=8.2, 26.7ºC water, and a 12 

h:12 h light:dark cycle with 60-minute transitional dim light periods. Fish were fed twice 

daily with dried spirulina flakes (Pentair Aquatic Eco-Systems). 

2.3.1.2 In vitro hybridization 

Reproductively active males and females were visually identified based on abdominal 

distension (females), nuptial coloration (males), and expression of classic courtship 

behaviors (e.g. chasing/leading and quivering). A hybrid cross was created between 

Mchenga conophoros (female) and Copadichromis virginalis (male). To cross-fertilize, a 

petri dish was filled with water from the home tank, and eggs were collected into the dish 

by applying gentle pressure between the pectoral region and the anal pore of the female. 

Eggs remained fully submerged while the male’s sperm was extracted into the same dish 

by applying gentle pressure to both sides of the abdomen. The mixture was immediately 

and gently agitated and then eggs were gently rinsed twice with fresh aquarium water to 

reduce polyspermy. Eggs were transferred into a beaker containing a fresh oxygen tube, 

fresh aquarium water, and a drop of methylene blue to minimize risk of fungal infection. 
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Water replacement was performed at least once daily until hatching (approximately 5-6 

days post-fertilization).  

2.3.2 Behavioral trials 

Bower building occurs for multiple days. Animal care guidelines required that testing over 

such extended time periods had to be done in the home tank (as opposed to external testing 

arenas). In our facilities, home tanks are supported on tank racks with built-in piping and 

support beams that partially occlude top-down fields of view (FOVs). Additionally, all 

tanks have a central support crossbeam that partially occludes top-down FOVs. We found 

that a ~36 cm diameter sand tray placed on one half of the home tank provided a sufficient 

volume of sand for males to construct bowers, and was small enough to fit into an 

unobstructed top-down FOV. We designed a custom acrylic platform to surround the sand 

tray to prevent subjects from spitting sand over the edge of the tray onto the bottom of the 

aquarium. Thus, in this design, subject males and females could freely enter and exit the 

sand tray region throughout the trial.  

For all behavioral experiments, a single reproductive adult male and four reproductive adult 

stimulus females of the same species or hybrid background were introduced into designated 

home tanks equipped with additional LED strip lighting (10 h:14 h light:dark cycle synced 

with full lights on), and a custom-designed hollow acrylic case (43.1 cm long x 43.1 cm 

wide x 10.2 cm tall, with a 35.6 cm diameter circular opening) surrounding a circular plastic 

tray (35.6 cm diameter x 6.4 cm deep, and elevated 3.8 cm above the aquarium bottom) 

filled with sand (Carib Sea; ACS00222). Sand trays were positioned approximately 30 cm 

directly below a custom-designed transparent acrylic tank cover (38.1 cm long x 38.1 cm 
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wide x 4.4 cm tall) that contacted the water surface to eliminate rippling for top-down video 

recordings. Subjects and stimulus females were allowed to freely interact throughout the 

entirety of the recording trial.  

2.3.3 Recording and monitoring hardware 

We used a Raspberry Pi 3 Model B (RASPBERRYPI3-MODB-1GB; Raspberry Pi 

Foundation) connected a Raspberry Pi camera v2 (RPI 8MP CAMERA BOARD; 

Raspberry Pi Foundation) and a 1 TB external hard drive (WDBUZG0010BBK-WESN; 

Western Digital) to collect video clips for each trial. Data was stored locally on the hard 

drive until the end of the trial and then transferred to Dropbox through an Ethernet 

connection for analysis. The Raspberry Pi camera was placed approximately 58 cm above 

the sand tray. 

2.3.4 Data collection and analysis software 

2.3.4.1 Video Collection 

Upon start of a trial, an automated recording protocol was initiated collecting RGB video 

data during full light hours (08:00 to 18:00 EST) for 7-10 days. h264-encoded videos were 

collected at a 30 frame per second frame rate and a resolution of 1296x972 using custom 

Python scripts that used the picamera package (https://picamera.readthedocs.io). h264 

videos were encoded into mp4 videos using ffmpeg (https://www.ffmpeg.org/). Data was 

transferred to a laboratory Dropbox account using rclone (https://rclone.org/). 

2.3.4.2 Identification of HMM state changes 
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All code for running action detection is available on github at https://github.com/ptmcgrat/ 

CichlidActionDetection. This repository included code that accomplishes the following: 

(i) uses a Hidden Markov Model (HMM) algorithm to detect changes in pixel values 

through time by sampling one frame per second, (ii) uses a density-based clustering 

algorithm to identify clusters of HMM+ pixels, or putative sand change events, and (iii) 

creates video clips and frames for manual labeling and machine learning classification. 

To calculate HMM-predicted pixel values, we used the opencv and numpy packages for 

Python to decompress color mp4 videos into gray scale numpy arrays (0-255) to access 

data for each pixel across the entire video. To filter out short-term changes caused by fish, 

we calculated two rolling mean values for each pixel across a 120 second window either 

before and after each time point. Pixel values that were 7.5 units above or below either 

rolling mean value were removed and then interpolated using the ‘numpy’ package. 

Enduring changes in pixel values were identified using the ‘hmmlearn’ package for Python. 

Initial testing indicated that the time to calculate the HMM for the entire video would be 

on the order of days. Since the time to calculate the HMM states is on the order of O(N2), 

where N is the number of hidden states, we performed two additional pre-processing states 

to reduce the number of hidden states for each pixel. First, we only considered mean state 

values (i.e 0,2,..252,254). Second, since each pixel did not explore the entire range of 

possible values, we also calculated the values for each pixel that were found 10 or more 

times in the entire video. By using these heuristics, we could reduce the number of states 

to ~10-20.  
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We also found that changes in lighting over the course of the day created small changes in 

mean pixel value that resulted in HMM state transitions. To limit the number of these small 

HMM changes, we also prevented transitions less than 4 units by modifying the transition 

probability matrix.  

2.3.4.3 Clustering of HMM state changes together into sand-manipulation events 

In order to group HMM state changes together that were caused by the same fish-mediated 

event, we used density-based spatial clustering of applications with noise (DBSCAN) 

within the Python package ‘scikit-learn’ to identify clusters of HMM change in the 

presence of noise. DBSCAN analyzes the region surrounding each HMM pixel in time and 

space, determines if the neighboring region contains a minimal number of HMM+ pixels 

using a KD-tree, expands on dense groups of points, and repeats. DBSCAN parameters 

were set based on the observed size of sand change events and based on a k-dist graph. 

This enabled us to identify spatiotemporal clusters of HMM+ pixels, representing putative 

sand change events. Detailed discussion of different aspects of clustering follows.  

Occasionally there were large changes in lighting that resulted in state changes for the 

majority of pixels. We filtered out HMM+ changes from times when 1% or more of the 

pixels changed. 

Parameters for density-based clustering 

minPts: observers reviewed several hundred putative sand perturbance events and 

estimated the minimum size of a true sand change cluster to be 10 pixels x 10 pixels x 3 

frames, and HMM+ pixels change to cover at least 15% of the putative sand change region. 
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Based on these estimates we calculated the range for the minimum number of pixels in a 

sand change event to be between 50-250 pixels. For this paper we used 90 points for the 

minPts parameter. 

eps: For a given k we defined a function k-dist from the database D into the non-negative 

real numbers, mapping each point to the distance from its k-th nearest neighbor. After 

sorting the points in the database in descending order based on their k-dist values, the graph 

of this function suggested a density distribution in the database. This graph is called the 

sorted k-dist graph, as described previously (Ester et al., 1996). We then fit a nearest 

neighbor tree to all points and used the k neighbors query to find the minPtsth nearest 

neighbor for each point, and the k-dist graphs for minPts = 200. We found that most of the 

points were close to each other; and most points had at least 200 points within 40 units.  

We used the knee point of the first k-dist graph (at minPts = 200; Figure S2) to estimate 

the optimal values for eps to be 20-30. We then ran DBSCAN on a grid of parameters and 

quantified the number of clusters labeled under each set of parameters. Three observers 

then annotated three sets of clips corresponding to minPts and eps values (Figure S2). After 

comprehensive review, we found the eps = 18 and minPts = 90 to best reflect true sand 

change clusters.  

Nearest Neighbor KD-tree treeR/neighborR and leaf size 

treeR and neighborR are equivalent parameters for constructing KD-trees (Pedregosa et al., 

2011). Within a radius around each point, all distances between this point and other points 

are calculated. DBSCAN queries the distances within eps (eps=18 in our analysis) for each 
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point, so the treeR/neighborR ≥ eps. We set this parameter to 22 to prepare the distance 

matrix for DBSCAN with eps <= 22.  

leaf_size: this parameter is a threshold below which the calculation switches from 

traversing tree to brute-force. For small data sets (N less than 30 or so), brute force 

algorithms can be more efficient than a tree-based approach. Changing leaf_size will not 

affect the results of a query, but can significantly impact the speed of a query and the 

memory required to store the constructed tree as seen in (Pedregosa et al., 2011) and here: 

https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-

python/#Scaling-with-Leaf-Size. We set leaf_size above minPts 90 (leaf_size=190). 

Timescale: 

Since DBSCAN uses one radius to search clusters in all dimensions, we scaled the time 

dimension so that the temporal lengths of events were similar in magnitude to their spatial 

width, such that events were, in general, roughly spherical in 3D. By manually reviewing 

hundreds of events, we determined that the duration of sand change events was < 5 seconds, 

and the spatial widths were typically < 50 pixels. Based on this, the time dimension (on 

frame/second) was scaled by 10x. 

 

2.3.5 Creation of video clips for each cluster 

Finally, to create video clips for machine learning, we used the “opencv” package for 

Python to create small video clips around the center of each cluster. The width, height and 

length of these videos were 200 pixels, 200 pixels, and 120 frames (4 seconds, respectively. 
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For manual labeling, we also included cluster information on the pixels that underwent 

HMM transitions during the 4 second time window. 

2.3.6 Machine Learning 

2.3.6.1 Behavioral definitions for manual annotation 

The following 10 categories were used to categorize each of the manually-labeled video 

clips. 

Bower scoop: subject male collects sand into its mouth during bower construction. 

Bower spit: subject male expels sand from its mouth during bower construction.  

Bower multiple: multiple bower scoops and/or spits are expressed by the subject male 

within the same video clip. 

Feeding scoop: fish collects sand into its mouth during feeding.  

Feeding spit: fish expels sand into its mouth during feeding.  

Feeding multiple: multiple feeding scoops and/or spits are expressed by a fish within the 

same video clip. 

Spawn/quiver: the subject male rapidly vibrates his body left to right while simultaneously 

circling, often but not necessarily with a female in frame. The male’s body is typically 

arched left to right, with his anal fin (egg spots) displayed directly in front of the female. 

The female may also be present and circling in immediate proximity with the male. 



 55 

Sand dropping: A fish expels or releases sand from the mouth either while high in the water 

(after which the sand sprinkles down through the water before settling), or release of sand 

upon initiation of a rapid burst of swimming (typically chasing or being chased). A rarer 

subset of sand dropping events includes filtering sand through the operculum while 

swimming, typically during feeding.  

Other: Changes to the sand caused by any other fish activity not described above, often as 

a result of swiping of the fin or rubbing of the ventral surface of the body along the sand 

during performance of other behaviors. More rare cases included instances in which two 

fish both perform behaviors in the same clip but the sand change was designated as a single 

cluster.  

Shadow/reflection 

Other changes that are not caused by fish manipulating or changing sand, most commonly 

reflections of activity in the aquarium glass and shadows cast by a stationary or very slow-

moving fish, or in rare instances food, feces, or other debris settling on the sand surface. 

All labeled data can be found at: 

https://data.mendeley.com/datasets/3hspb73m79/draft?a=b72c1f6d-505a-431a-ba3d-

824cd148c01e 

2.3.7 Deep learning of cichlid behaviors 

All code for running behavior classification of available on github at 

https://github.com/ptmcgrat/CichlidActionRecognition. A trained observer manually 
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classified 14,234 video clips randomly selected from representative days across seven 

trials, spanning seven subjects, three species, and one hybrid cross. Each clip was classified 

into one of the ten categories listed above. We randomly selected 80% of manually 

annotated clips for training an 18 convolutional layer 3D ResNet, and the remaining 20% 

of clips were used for validation. Briefly, 3D ResNets are 3D convolutional neural 

networks (CNNs) that incorporate features of Residual Networks (ResNets), in which 

signals are bypassed across convolutional layers during training. This approach allows 3D 

ResNets to be deeper and more accurate than traditional 3D CNNs for action classification 

tasks. For training, validation, and prediction we used a 18- layer Resnet3D model as 

previously described (Qiu et al., 2017). The architecture, including the shape of each layer, 

of the neural network is shown in Figure 5A. Each ResNet Block consists of 2 

convolutional layers, each has a kernel size of 3x3x3. The first convolutional layer has a 

kernel size of 7x7x7. ReLu is used as the activation function across the neural network. 

Prior to training, each video clip was randomly cropped at a 120x120 frame. Each training 

video clip was also randomly cropped temporally down to 96 continuous frames. Random 

horizontal and vertical flip, at a rate of 0.5, was also used for data augmentation. Finally, 

each channel was then normalized based on the mean value for that channel. Validation 

and test video clips were always cropped in the center spatially and temporally. For 

training, stochastic gradient descent was used to optimize the parameters of the neural 

network. Specifically, the learning rate was set to 0.1 (and set to decrease after 10 

consecutive epochs of no change in validation loss), momentum was set to 0.9, dampening 

was set to 0.9, and weight decay was set to 1.0x10-5. The network was only initialized at 

the start and was trained for 100 epochs with a batch size of 8 per epoch. The final accuracy 
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is calculated as the average the last five epochs when the accuracy reached plateau by visual 

inspection. 

2.3.8  Testing model generalizability 

In order to test the generalizability of the learned model, we used 6 out of the 7 projects for 

training/validation and the other one for testing. We tested all 7 combinations of these 7 

projects. Sample split, network architecture and data augmentation were the same as above 

and test accuracy is calculated as the average the last five epochs when the test accuracy 

reached plateau. In order to test if label some of the test video clips could help the model 

to generalize to the new dataset, we randomly put 100,400,800 randomly selected test clips 

in training and the remaining test clips in test. After this, the new training/validation dataset 

went through the data augmentation and network computation. The new test accuracy is 

calculated on the remaining test video clips.  

To figure out why accuracy decrease in test trial, we compared the distribution of the 

categories for each test trial and the that of the training trials. For each trial, we first 

calculated the percentage for each category. This distribution is subtracted by that of the 

training trials to get the distribution difference. Finally, the accuracy when this trial is used 

as test dataset is regressed on the sum of absolute per category difference. The p value is 

calculated from Pearson’s Correlation Coefficient. 
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CHAPTER 3. PEEL-1/ZEEL-1 IS AN UNSELFISH SELFISH 

GENETIC ELEMENT 

3.1 Introduction 

Selfish genetic elements are genetic elements that can enhance their own transmission at 

the expense of other genetic elements in the genome. For example, transposable elements 

represent one class of selfish genetic elements that can drive their own replication in the 

genome, often at the expense of the fitness of the organism. Conflict of transmission 

patterns between selfish genetic elements and the rest of the genome could drive speciation 

events. It has been speculated that P-element-mediated hybrid dysgenesis is thought to 

create reproductive isolation between different species of Drosophila melanogaster 

(Ginzburg et al., 1984). The hybrid progenies of crosses between males that have the P-

elements and females without those elements suffer from gonadal dysfunction and elevated 

deleterious mutation rates. Cytoplasmic incompatibility induced by Wolbachia infection is 

another kind of selfish genetic element that also contribute to speciation. The cytoplasmic 

incompatibility can be shown by the death of embryos sired by an infected father (Werren, 

1997). Study of the Wolbachia infected species Drosophila recens and uninfected sister 

species Drosophila subquinaria showed that reproductive isolation is caused by 

cytoplasmic incompatibility (Shoemaker et al., 1999).  

Not only are selfish genetic elements important to evolution of new species, they are also 

now being hijacked by bioengineers to cure human diseases. Transposable elements, such 

as Piggybac, have been used to induce pluripotent stem cells (Rajabpour et al., 2014). 
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Inspired by toxin-antidote elements and homing nuclease, genetically engineered malaria 

resistant mosquitos are designed to carry selfish genetic elements in close linkage with the 

genetic modification in order to spread quickly in wild populations (Champer et al., 2020, 

Windbichler et al., 2011). Despite their importance in speciation and human health, the 

evolutionary forces that act on these selfish genetic elements are not fully understood.  

Toxin-antidote elements (TAs) are a special type of selfish genetic elements. They are 

typically composed of two closely linked genes that express toxin and antidotes, 

respectively. Based on which parent deliver the toxin, toxin-antidote elements can be 

further classified as paternal effect and maternal effect TAs. In most cases, the toxin gene 

and the antidote gene are closely linked on the same chromosome. When animal carrying 

the toxin-antidote element crosses with the animal without these elements, a quarter of the 

F2 will be killed because all of F2s will get the toxin from the heterozygous parents while 

a quarter of the progenies will not get the antidote expressing in the zygote. In this way, 

the frequency of TA in F2s is higher than 50%. Due to the strong genic drive, toxin-antidote 

elements can spread in a population even if it imposes a fitness cost to the animals carrying 

it (Wade and Beeman, 1994). One challenge to understand the evolutionary force acting 

on toxin-antidote elements is a lack of quantitative methods to compare the fitness effect 

of toxin-antidote elements in different environments. Studies in bacteria often use fitness-

related phenotypes such as stress tolerance, persistence or biofilm formation 

(Muthuramalingam et al., 2019, Goormaghtigh et al., 2018). These phenotypes, even 

though closely linked to fitness, only account for part of the factors leading to fitness 

change. Recently, competition assays were also used to systematically study the fitness 

effect of all 13 toxin-antidote elements in Pseudomonas putida (Rosendahl et al., 2020). 
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Deletion of all these toxin-antidote elements did not appreciably reduce the fitness of 

bacteria cells. These results in bacteria, even though helpful to understand the selection of 

TA in bacteria, are not directly transferable to other eukaryotic systems because 

prokaryotes use different developmental pathways and reproductive system. Also, toxin-

antidote element in bacteria does not function in a transgenerational approach like that in 

eukaryotes. Thus, study of toxin-antidote elements in a eukaryotic model will help us fully 

understand the spread of these elements.  

Finding a toxin-antidote element in multicellular organisms is not easy. This is because 

most animals are dioecious, where generation of offspring requires separate males and 

females. In these kinds of systems, toxin-antidote elements are expected to quickly fix in a 

population. Thus, toxin-antidote elements can only be revealed by interspecific crosses or 

crosses between distant population. For example, Medea was found by crossing animals 

from different continents: one from Asia (Singapore) and the other one in North America 

(United States) (Beeman et al., 1992). 

Caenorhabditis have become a promising model for the identification and study of toxin-

antidote elements identified.  The first pair of toxin-antidote identified in C. elegans is a 

pair of paternal effect toxin antidote elements: peel-1 (paternal effect epistatic embryonic 

lethal) and zeel-1 (zygotic eistatic embryonic lethal). peel-zeel were first reported in 2008 

as an unexpected finding in the process of generating RILs (recombinant inbred lines) 

(Seidel et al., 2008). peel-1 encodes a toxin that is delivered via sperm specific vesicles 

and zeel-1 encodes an antidote that is transiently expressed in the embryo (Seidel et al., 

2011). PEEL-1 and ZEEL-1 are both transmembrane proteins. Without ZEEL-1, PEEL-1 

can stop embryo development from the embryonic two-fold stage. Though the detailed 
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molecular mechanism of peel-1 toxicity remains unclear, peel-zeel has been developed as 

a reagent for many applications such as making integrated transgenic animals (Frøkjær-

Jensen et al., 2012, Muñoz-Jiménez et al., 2017, Joseph et al., 2018).  

A second example of a toxin-antidote element identified in C. elegans is a pair of maternal 

effect toxin-antidote genes: pha-1 and sup-35 (Ben-David et al., 2017). pha-1 was 

originally identified as an essential devolopment gene in genetic screens (Kuzmanov et al., 

2014). Howerver, work by Ben-David and colleagues demonstrated that pha-1 encodes a 

zygotic antidote, without which animals will show developental defects induced by the 

maternal effect toxin gene sup-35.  

Recently studies have expaned analysis of TAs in a second species of Caenorhabditis: 

Caenorhabditis tropicalis. C. tropicalis also reproduces primarily as a hermaphrodite, 

although the evolution of this mating system was unique to C. elegans. Work by two groups 

have identified at least five more TAs (Noble et al., 2020, Ben-David et al., 2020). These 

are maternal effect TAs and most of them do not kill embryos but instead cause larval arrest 

or developmental delay.  

One interesting phenomenon that was observed in these toxin-antidote elements in both 

species is the large amount of genetic diversity between the TA haplotype and the 

corresponding non-TA haplotype. For example, across all 330 unique wild isolates of C. 

elegans sampled around the world, there are two major haplotypes at the peel-zeel loci: the 

Bristol haplotype and the Hawaii haplotype. The Bristol haplotype has the functional peel-

1 and zeel-1 while the Hawaii haplotype has these two genes deleted (Figure 3.2A and B). 

In the genomic region close to peel-zeel, the average divergence between the two 
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haplotypes in the coding region is 5%, which is 50 times higher than the genome wide 

average (Seidel et al., 2008). Population genetics analysis identifies a strong signature of 

balancing selection by analyzing the protein sequence of the nearby gene srbc-64. Among 

all the wild isolates identified so far, 465 wild isolates encompassing 185 distinct isotypes 

have the Bristol haplotype and 301 wild isolates encompassing 145 distinct isotypes have 

the Hawaii haplotype (Figure 3.2B). These two haplotypes are distributed worldwide and 

can be found as close as in a single orchard (Richaud et al., 2018). The high divergence 

implies the two haplotypes diverged roughly 8 million generations ago, possibly before the 

evolution of androdioecy (males and self-fertilizing hermaphrodites). However, the long 

history does not agree with the expectation of genic drive where the driver Bristol 

haplotype can be quickly fixed within outcrossing populations. Even if the idiosyncratic 

features of Caenorhabditis androdioecy were taken into account in simulations, self-

fertilization would only slow down the fixation of TA elements (Noble et al., 2020). For 

pha-1/sup-35, there is also high genetic divergence between the alleles with and without 

the pha-1/sup-35. The haplotype without pha-1/sup-35 has a 20kb deletion relative to the 

haplotype with pha-1/sup-35. There is also a large inversion in this region (Ben-David et 

al., 2017). Studies in C. tropicalis have found antagonizing TAs, where two toxin-antidote 

elements are found as pairs on the same chromosome (Ben-David et al., 2020). Simulations 

in one study have shown antagonizing TAs impose a strong heterozygote advantage such 

that these two toxin-antidote elements are under balancing selection. Whereas the other 

research simulating the same scenario with antagonizing TAs showed positive-frequency 

dependent selection which bias the fixation of the most frequency toxin-antidote element 

in the population (Noble et al., 2020). These inconsistencies of simulations are not only 
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caused by different simulation programs, but also by the fact that little is known about the 

evolution of toxin-antidote elements by the whole research community. In this chapter, we 

seek to understand why peel-zeel is under balancing selection. 

There are many mechanisms that two alleles/haplotypes can be balancing selected in the 

population including negative frequency-dependent selection, spatial or temporal habitat 

heterogeneity, and heterozygote advantage (Brisson, 2018). Negative frequency-dependent 

selection happens when the relative fitness of a variant increase as its frequency decrease 

in the population. Spatial or temporal habitat heterogeneity happens when the fitness of the 

variant depends on the habitat (Levene, 1953, Ravigné et al., 2004). This often happens 

when the variant is responsible for environment sensing and responding. In addition to 

these traditional models, theoretical analysis specific to TAs also showed a stable 

equilibrium point between the two haplotypes when the TAs induce a female fecundity loss 

(Wade and Beeman, 1994).   

In this chapter, we developed and tested different models by which this genetic element 

could be under balancing selection. We used a family-based population genetic method to 

estimate how much fitness loss has to be incurred by the peel-zeel element in order to reach 

an equilibrium in an androdioecy population. We showed that a high outcrossing rate was 

required to maintain peel-zeel in a population. The amount of fitness loss depended on the 

outcrossing rate. Second, while the outcrossing rate is variable across different strains and 

geographical locations, we set out to test if there is any fitness loss associated with the peel-

zeel region using quantitative pairwise competition assays. To our surprise, the Bristol 

haplotype actually has a relatively higher fitness and fecundity than the Hawaii haplotype. 

We further found that this elevated fitness and fecundity was caused by the toxin gene peel-



 64 

1 which acts in a zeel-1 independent manner. Finally, we tested if linked variants of peel-

zeel have functions over environment sensing. While we found a dauer pheromone 

response difference for linked variants, two candidate genes srbc-64 and ugt-31 are not 

responsible for the phenotypic change. These results suggested that toxin-antidote elements 

can spread through the population independent of their selfish effects. Toxin-antidote 

elements can also provide fitness benefits, either during their initial evolution or after being 

coopted by the animals following their spread in the population. Linked variants for dauer 

pheromone response could be responsible for the balancing selection. 

3.2 Results  

3.2.1 Equilibrium of peel-zeel requires high outcrossing rate and a cost to hermaphrodite 

fitness 

By delivering toxin to the sperm and killing the zygote that does not carry the antidote, 

the Bristol haplotype is able to eliminate the Hawaii haplotype in about 100 generations 

(Wade and Beeman, 1994). This genic drive, similar to positive selection, is expected to 

reduce local genetic diversity and skew the site frequency spectrum to rare. This 

expectation does not agree with the observed high genetic diversity between these two 

haplotypes which are predicted to have diverged 8 million generations ago (Seidel et al., 

2008). Allele frequencies in this region show strong signature of balancing selection 

using the Tajima’s D test. In order to explore how balancing selection could act on this 

locus, we considered three models by which peel-zeel can be under balancing selection. 

For the first two models, we assumed that since peel-1 codes for a toxic protein, the peel-

zeel haplotype would incur a fitness cost to the hermaphroditic animals carrying it due to 
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an inability of the antidote to completely counteract the toxin. For the first model, genic 

drive would be counteracted by the fitness cost such that an equilibrium point exists for 

peel-zeel in a single population (Figure 3.1A). In the second model, we considered how 

different environments could induce different outcrossing rate and fitness cost for the 

peel-zeel locus. It is known that environmental factors influence the rate that males are 

generated, and different environments could have differences in the number of unique 

animals that colonize a rotting fruit or other material. Therefore, it is reasonable to think 

that outcrossing rate could vary. In this way, some environments could have peel-zeel 

fixed while others have peel-zeel purged (Figure 3.1B). Finally, the hyper-divergent 

region around peel-zeel contains several other genes important to the lifestyle of animals. 

We hypothesized linked genetic polymorphism is driving the evolution of this haplotype, 

such that peel-zeel can be under balancing selection (Figure 3.1C).  

To find a theoretical estimate of how much fitness cost is necessary to maintain both 

haplotypes in a single population, we adopted a family-based population genetics model 

(Wade and Beeman, 1994) (Table 3.1 and Figure 3.2D). This model was originally used 

to model Medea in flour beetles. Parameter h was used to model the dominance of the 

fecundity cost and parameter t was used model the lethality. To adapt this model to the 

unique mating system in C. elegans and further advance the model, we made three 

changes. First, C. elegans has a different reproductive system. While males can still cross 

with hermaphrodites to create outcrossing progenies, hermaphrodites themselves were 

able to self-fertilize. Thus, we expanded the table by adding three self-fertilization 

families and an additional parameter k was used to model the outcrossing rate. Second, 

we changed the offspring fitness in some families to mimic paternal effect lethality. 
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Third, we modeled hermaphrodite fitness cost instead of female fecundity loss to directly 

account for both fecundity loss and/or slower growth rate that affect transmission 

probability. We only modeled hermaphrodite fitness cost (parameter s) because 

hermaphrodite expresses toxins in its germline, and we can directly measure 

hermaphrodite fitness in the laboratory using pairwise competition assays. Fitness cost 

for hermaphrodites in outcrossing might be different from that in self-fertilization, thus 

we used s’ to denote fitness cost in self-fertilization. To simplify calculation and 

simulation, we assume equal s and s’ in the following analysis.  

To understand how fitness cost affects the dynamics of peel-zeel, we calculated the 

frequencies of peel-zeel in a population for each generation using Table 3.1 under 

different fitness cost (Figure 3.2D). When we set fitness cost s to 0.5, a fully outcrossing 

population started with either 95% peel-zeel (10% heterozygotes and 90% Bristol 

homozygotes) or 5% peel-zeel (10% heterozygotes and 90% Hawaii homozygotes) 

converged to 80% in the population in about 40 generations (Figure 3.2E). This agreed 

with the calculation that there was always a convergent equilibrium point at (2-s)/2 

(Wade and Beeman, 1994). When there was no fitness cost (s=0), peel-zeel will be fixed 

in the population in about 100 generations due to its genic drive.  

To understand how outcrossing rate affect the dynamics of peel-zeel, we calculated the 

frequencies of peel-zeel under different outcrossing rates. The outcomes (fixed, purged or 

balanced) of peel-zeel depends on a complex interaction between fitness cost and 

outcrossing rate. peel-zeel can either be balanced or purged in the population with a 

fitness cost s > 0.25 (Figure 3.2F). When outcrossing rate is high, genic drive is able to 
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counteract the fitness cost and thus these two haplotypes can be balanced. The 

outcrossing rate in this case only changed the speed to reach equilibrium, with a lower 

outcrossing rate slows down the speed to equilibrium. On the other hand, when s < 0.25, 

changing the outcrossing rate can fix, eliminate, or balance peel-zeel (Figure 3.2G). peel-

zeel (s=0.05) can be balanced when the outcrossing rate was high (k=1), whereas it will 

be eliminated in the population when outcrossing rate was low (k=0.8). When the 

outcrossing rate was intermediate (k=0.9), peel-zeel will reach fixation in around 80 

generations. There are two reasons to explain this phenomenon. First, the equilibrium 

frequency (2-s)/2 was negatively correlated with parameter s such that a lower s 

increased the equilibrium frequency. Second, when peel-zeel is at very high frequency 

(close to 1), almost all the Hawaii haplotypes were in heterozygotes. While the 

individuals that outcross can keep Hawaii and Bristol haplotypes in an equilibrium 

frequency, individuals that self-fertilize can drive Bristol haplotype to an even higher 

frequency. This is because the frequency of Bristol haplotype in the progeny of 

heterozygotes is 2/3. When s is small, this increased frequency by selfing heterozygotes 

can overcome the reduced fitness for Bristol homozygotes such that Bristol allele will get 

fixed in the population.   

These results showed a complex interaction between outcrossing rate and fitness cost in 

determining the evolutional dynamics of peel-zeel. To find the parameter space where 

peel-1/zeel-1 can be balanced, fixed or purged from the population, we did a grid search 

and found the parameter space was divided to three parts. (Figure 3.2H). In general, a 

high outcrossing rate is required for peel-zeel reach an equilibrium point. When the 

outcrossing rate is lower than 0.7, the peel-zeel loci will either get fixed (small s) or 
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purged (large s) from the population regardless of the degree of hermaphrodite fitness 

cost. In a fully outcrossing population, the peel-zeel loci can be balanced whenever s > 0. 

The parameter space for peel-zeel to reach equilibrium is even smaller when the 

parameter h, the dominance of peel-zeel in its effect on animal fitness, is higher (Figure 

3.3). When the fitness effect is close to additive (h=0.4), fitness cost has to be between 0 

and 0.2.  

C. elegans in the wild has a outcrossing rate close to 1% (Barrière and Félix, 2005). At 

this outcrossing rate, genic drive is small. Thus, peel-zeel will be fixed if s < 0.0005 and 

purged if s > 0.0005 (Figure 3.2H). Model 1 can be rejected by this result because 

equilibrium point in a population can neither be established in a population with very low 

outcrossing rate. If some populations have outcrossing rate even lower, almost any fitness 

cost to peel-zeel will get it purged from the population. This result favors model 2 where 

peel-zeel can dominant some populations but not others because fitness cost is likely to 

be environment dependent. In summary, these results showed that fitness cost and genic 

drive can generate an equilibrium frequency for peel-zeel. However, reaching this 

equilibrium requires a high outcrossing rate that is unlikely the case for C. elegans.  

3.2.2 Linked variants of peel-zeel region increased hermaphrodite fitness  

We need data about the fitness cost of peel-zeel locus in hermaphrodite animals to test 

model 2 and model 3. For model 2, we predict that peel-zeel should carry a fitness cost on 

the animals. For the third model, we predict that closely linked genetic variants would 

encode functional variation that could be under balancing selection. To test this hypothesis, 

we leveraged a previously-constructed nearly isogenic line (NIL) QX1198 that carries the 
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Hawaii haplotype (140-370kb) of peel-zeel in the N2 background. The fitness of N2 can 

then be compared directly to the NIL strain using a previously described pairwise 

competition assay (Large et al., 2016). Specifically, QX1198 was competed against 

PTM229, a N2 strain that also contains a silent mutation in the dpy-10 gene. This silent 

mutation is neutral and provides a common genetic variant for assaying the relative 

proportion of each strain using digital droplet PCR. Contrary to model 2, the strain 

PTM229 has a higher fitness than QX1198, with a relative fitness (w) of 1.18 (1.15-1.21, 

95% CI) (Figure 3.4A). The fitness difference is similar to that of the positive control strain 

CX12311 (w = 1.19±0.09, 95% CI). CX12311 was a near isogenic line that carries 

ancestral npr-1 and glb-5 alleles and was shown previously to have a significant fitness 

effect in laboratory environment (Zhao et al., 2018).  

To understand the physiological change that was responsible for the fitness difference, we 

measured two metrics that were directly linked to fitness: fecundity and growth rate. We 

found QX1198 has both reduced fecundity and slower growth rate. Specifically, N2 

hermaphrodites on average lay 351 eggs (337-366, 95% CI) throughout lifetime while 

QX1198 lay 321 eggs (312-331, 95% CI), 9% lower than that of N2 (Figure 3.4B). After 

growing 72 hours at 20°C, N2 animals were 9% larger in length than QX1198 (Figure 

3.4C).  

With linked genetic variants change phenotypes affecting fitness, balancing selection can 

act on these additional variants. Thus, this result is consistent with the third model. While 

we detected an increased fitness for the Bristol allele in the laboratory conditions, its fitness 

effect can be negative in some natural conditions. We have previously shown animals adapt 
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to the unique laboratory environment using a set of genetic changes (Large et al., 2016) 

(Zhao et al., 2018). Fitness effect of linked genetic variants could also change by different 

environments. 

The consequence of this increased fitness on the dynamics of peel-zeel, on top of the gene 

selection, was an accelerated rate to fixation (Figure 3.4D). The difference in time for peel-

zeel with and without increase fitness (s=-0.18) to reach 50% of the population from a 

starting frequency of 5% is small in a fully outcrossing population (21 vs 23 generations). 

This is because genic drive dominants the dynamic in a population with high outcrossing 

rate. The time difference, however, is large (23 vs 44 generations) when the population 

only has intermediate outcrossing rate (k = 0.5). In summary, these results showed linked 

variants of peel-zeel had a positive fitness effect in laboratory environment and this positive 

fitness will accelerate the fixation of peel-zeel in a population. 

3.2.3 peel-1 incurs a direct fitness advantage  

Besides peel-zeel polymorphism, the NIL strain had a large introgression that might have 

other polymorphisms influencing fitness. To directly test the fitness effect of peel-zeel, we 

used CRISPR/Cas9 to make a peel-1 knockout strain (Figure 3.5A). This mutation created 

a frameshift at the 44th amino acid of peel-1 gene and this frameshift generated a stop codon 

at the 46th amino acid of peel-1. We confirmed this was an loss of function allele by 

crossing peel-1-/- with the Hawaii strain CB4856 and demonstrating that there was no 

embryo lethality (0%) in F2, whereas N2 crossed with CB4856 yields 24.5% embryo 

lethality as expected (Figure 3.5B). We then used this strain to compete with N2, either 

with the dpy-10 barcode on N2 or on peel-1-/- strain. Both reciprocal competition assays 
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showed that the functional peel-1 gene has a small but significant relative fitness advantage 

of 1.06 (1.04-1.07, 95% CI) over peel-1-/- animals (Figure 3.5C). This fitness difference 

accounts for 32% of the fitness difference between NIL strain QX1198 and N2.  

To find the physiological change responsible for the fitness difference, we assayed the 

brood size and growth rate for peel-1-/-. We found peel-1-/- hermaphrodites lay 331 (321-

340, 95% CI) eggs through lifespan (Figure 3.5D). This is 6% lower than N2. After 

growing at 20°C for 72 hours, N2 grows 7% faster than peel-1-/- (Figure 3.5E). These 

results showed functional peel-1, even though acting as a toxin, was favored in a population 

than the loss-of-function allele in laboratory environment. This added fitness could help 

peel-zeel to spread in the population when their frequency was low and genic drive small. 

When the starting percentage of peel-zeel was 1% in a population with high outcrossing 

rate (k = 0.7), it took a neutral peel-zeel 150 generations to reach 40% (Figure 3.6). On the 

other hand, with a beneficial peel-zeel (s = 0.06 and h = 0), it only took 100 generations to 

reach 40%. This difference was even stronger in a population with lower outcrossing rate 

(k = 0.7). It took a neutral peel-zeel ~340 generations to reach 40% whereas it only took a 

beneficial peel-zeel (s = 0.06 and h = 0) ~80 generations to reach 40%. These results 

showed that the fitness advantage of peel-zeel is able to help its spread in the population 

where their initial frequency is low.  

In the Bristol haplotype, peel-1 is expressed in the sperm and delivered to the embryo. The 

ability to kill embryo depends on the presence of zeel-1 that is transiently expressed in the 

embryo (Seidel et al., 2011). We hypothesized the fitness advantage of peel-1 is also zeel-

1 dependent since these two genes act closely together. To test this hypothesis, we used 

CRISPR-Cas9 to introduce a stop codon into zeel-1 in the peel-1-/- background. When we 



 72 

compete this double loss-of-function against peel-1 single loss-of-function either directly 

or use N2 as a shared control, we found no fitness differences between them (Figure 3.5F). 

This result suggests the fitness advantage conferred by peel-1 is zeel-1 independent. 

3.2.4 srbc-64 and ugt-31 are not responsible for the fitness difference 

With peel-zeel only accounts for 32% of the fitness difference for the NIL strain, we 

hypothesized additional polymorphisms in the hyper-divergent region might contribute to 

the rest of the fitness difference. In the hyper-divergent region of the Hawaii haplotype, 

peel-1 and zeel-1 were deleted. Four other protein coding genes were either partially (nekl-

1) or entirely (srbc-64, ugt-31, Y39G10AR.16) included in the hyper-divergent region 

(Figure 3.8A). srbc-64, ugt-31 and Y39G10AR.16 have amino acid identity less than 95% 

while nekl-1 have amino acid identity greater than 99%. srbc-64 was shown previously to 

be a G protein-coupled receptor that regulates dauer larval development (Kim et al., 2009). 

Dauer larvae were central to the C. elegans lifestyle (Fielenbach and Antebi, 2008). Also, 

previous genome wide studies of high Tajima’ D region showed an enrichment for 

chemoreceptor genes (Greene et al., 2016b). We believe it was a very promising candidate 

gene for the fitness difference. ugt-31 is a less explored gene and it is predicted to have 

UDP-glycosyltransferase activity (Kim et al., 2018). Human UDP-glucuronosyltransferase 

(UGT) play a key role in the removal of non-polar drugs. The major detoxification organ 

liver have abundant UGT proteins expressing (Rowland et al., 2013). Previously, we 

performed RNA-seq on N2-CB4856 hybrid F1s and ugt-31 has shown significant allele 

specific expression difference (Figure 3.7A). Across the SNPs on the exons of ugt-31, the 

expression of Bristol allele is about twice as much as the Hawaii allele, implying cis-

regulatory elements difference between the Bristol and Hawaii alleles of ugt-31. Hybrid F1 
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RNA-seq also showed allele specific expression for Y39G10AR.16. Across the SNPs on 

the exons, the expression of the Bristol allele is about 8 times more than that of Hawaii 

allele (Figure 3.7B). However, this gene has no predicted homology in vertebrate 

genomes. For this reason, we excluded this gene from further analysis. Based on this 

information, we decided to focus on srbc-64 and ugt-31 to test its fitness effect.  

Using CRISPR/Cas9, we introduced stop codons to both haplotypes of srbc-64 and ugt-31 

(Figure 3.8B, C). Pairwise competition assays showed that srbc-64 or ugt-31 loss-of-

function in the Bristol haplotype does not change animal fitness significantly (Figure 

3.8C). This is also the case in the Hawaii haplotype. We further confirmed this result by 

competing single gene loss-of-function in both haplotypes. If a certain gene was 

responsible for the fitness difference between these two haplotypes, creating loss-of-

function mutants in both haplotypes for the same gene should be able to eliminate the 

fitness difference. Again, we did not see a significant fitness change, confirming that there 

was no fitness difference between the two alleles of srbc-64 or ugt-31. In summary, these 

results showed that srbc-64 or ugt-31 do not contribute to the fitness difference between 

the Bristol and Hawaii haplotypes.  

Two very promising candidate genes srbc-64 and ugt-31 did not contribute to the fitness 

difference between the two haplotypes was quite unexpected, especially consider srbc-64 

was shown previously to have a strong effect in dauer pheromone. Dauer pheromone 

response has been shown previously to have a strong effect on animal fitness (Greene et 

al., 2016a, Large et al., 2016). To test if the fitness difference between N2 and NIL strain 

QX1198 was also attributable to dauer pheromone response difference, we tested N2, 

QX1198 (peel-zeel NIL) and MT13649 (nurf-1) to three synthesized components of the 
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dauer pheromone cocktail, ωC3 (ascr#5), C6-MK (ascr#2), and ΔC9 (ascr#3) (Butcher et 

al., 2007, Butcher et al., 2008). MT13649 animals has been shown previously to have 

defects in entering dauer in response to C6-MK and ΔC9 but not to ωC3 and was used as 

a control strain (Large et al., 2016). Similar to MT13649 (nurf-1), QX1198 animals entered 

dauer in response to ωC3 but were resistant to enter dauer in the presence of C6-MK and 

ΔC9 (Figure 3.9A). This dauer pheromone response difference was also very similar to 

the reported phenotype of srbc-64 (Tm1946) mutant (Kim et al., 2009). This result then 

created a paradox. If srbc-64 was responsible for the dauer pheromone response difference, 

why deleting srbc-64 in the Bristol haplotype did not change animal fitness? We first 

hypothesized our CRISPR stop codon mutant did not create a loss-of-function allele for 

srbc-64. To test this hypothesis, we put N2, srbc-64(kah190), which was srbc-64 CRISPR 

mutant, and QX1198 in 1500nM C6-MK plates. While QX1198 still showed reduced dauer 

percentage on the assay plates (30.8%%±11.7%, 95% CI) than N2 (72.3%±4.3%, 95% CI), 

there is not a significant change for srbc-64 CRISPR mutant in Bristol allele(72%%±7.8%, 

95% CI) (Figure 3.9B). This is also the case for Hawaii allele (Figure 3.9C). As a control, 

we also compared C6-MK response of srbc-64 (Tm1946) allele that has the second exon 

and flanking introns deleted and was previously shown to be defective in C6-MK response 

(Kim et al., 2009). To our surprise, dauer formation was again not affected by this allele 

(Figure 3.9D). This means in our experiment system, srbc-64 was not responsible for dauer 

pheromone response. To find the gene that was responsible for the pheromone response 

difference between QX1198 and N2, we tested ugt-31, peel-1 and zeel-1 CRISPR mutants. 

None of these show a significant difference (Figure 3.9B, C, D, E). In summary, these 
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results showed the NIL strain QX1198 contains polymorphism for dauer pheromone 

response and the polymorphism was not in srbc-64, ugt-31, peel-1 or zeel-1. 

 

Table 3.1 Family based population dynamics model of peel-zeel 

Family 

Mating 
types 

Frequency 
hermaphrodite 

fitness 
Offspring genotype 

Sire Dam PP P+ ++ 
1 PP PP XppXppk 1-s 1     
2 P+ PP Xp+Xppk 1-s 0.5 0.5   
3 ++ PP X++Xppk 1-s   1   
4 PP P+ XppXp+k 1-hs 0.5 0.5   
5 P+ P+ Xp+Xp+k 1-hs 0.25 0.5 0.25(1-t) 
6 ++ P+ X++Xp+k 1-hs   0.5 0.5 
7 PP ++ XppX++k 1   1   
8 P+ ++ Xp+X++k 1   0.5 0.5(1-t) 
9 ++ ++ X++X++k 1     1 
10 PP selfing Xpp(1-k) 1-s’ 1     
11 P+ selfing Xp+(1-k) 1-h’s’ 0.25 0.5 0.25(1-t) 
12 ++ selfing X++(1-k) 1     1 

Symbol P in Genotype denotes the paternal effect toxin-antidote system while ‘+’ denotes 

the haplotype without the toxin-antidote. Symbol X denotes the ratio of a certain genotype 

in a population. The parameter k specifies the outcrossing rate. When k = 1, there is 

completely outcrossing, and partial outcrossing is given by 0<k<1. The parameter s is the 

degree peel-zeel reduce hermaphrodite fitness in outcrossing. Parameter s’ denotes the 

fitness cost in self-fertilization. Dominance of the fitness cost is defined by h. The 

parameter t is modeling the paternal effect lethality. In the peel-zeel case, t is known to be 

close to 1. 
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Figure 3.1 Hypothesized models for balancing selection of peel-zeel 

A. The genic drive is counteracted by a reduced fitness in the population. B. Outcrossing 

rate and fitness cost is different to each niche, such that peel-zeel can be fixed in some 

locations while purged in others. C. Another linked mutation of peel-zeel drive balancing 

selection. 
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Figure 3.2 peel-zeel can be balanced in a population if they incur fitness cost to the 

animals carrying it.  

A. A schematic graph showing the peel-zeel locus and the two major haplotypes. Two 

major haplotypes exist in C. elegans wild isolates genomes: the Bristol haplotype (yellow) 

and the Hawaii haplotype (blue). There is a divergent region (red line) that marks more 

than 5% divergence in the protein coding regions. It covers the full coding region of srbc-

64 and part of nekl-1. peel-1 (yellow circle) is 2.5kb from zeel-1 (yellow star) on the Bristol 
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haplotype and is deleted on the Hawaii haplotype. B. Schematic of the phylogeny of the 

peel-zeel locus (regenerated from (Seidel et al., 2008)). Two major branches distinguish 

these two haplotypes and the number of wild isolates and isotypes are labeled on each 

branch. Scale bar is 5 mutations for the srbc-64 gene. C. A model for driver activity of 

peel-zeel. In the self-fertilization progenies of a F1 hybrid between Bristol haplotype and 

Hawaii haplotype, progenies on the bottom left corner were killed because toxin PEEL-1 

(yellow circle) is expressed in the germline and deposited into sperms, whereas antidote 

ZEEL-1 (yellow star) is expressed zygotically and moved to cell membrane. D. Schematic 

of the modeling. E. Model predicts an equilibrium frequency for peel-zeel if they incur 

fitness disadvantage to the animals carrying it. Without fitness disadvantage (blue curve, 

s=0, h=0), peel-zeel will be fixed in a fully outcrossing population in about 100 generations. 

With fitness disadvantage (yellow and green curve, s=0.5, h=0), peel-zeel frequency will 

converge to an equilibrium point at 80% regardless of its starting frequency in the 

population. F. Outcrossing rate only affect the rate of spread for peel-zeel when its fitness 

disadvantage is high. In highly outcrossing populations (k = 1 or k= 0.9), peel-zeel reaches 

the same equilibrium frequency when it imposes strong fitness disadvantage to the animals 

carrying it (s = 0.75, h = 0). G. Outcrossing rate affect both the rate of spread and the 

outcome for peel-zeel when its fitness disadvantage is low. When outcrossing rate is high 

(k=1), peel-zeel can be balanced in a population (blue curve, s=0.05, h=0). When 

outcrossing rate is intermediate, peel-zeel will be fixed in the population whereas in a 

population with low outcrossing rate, peel-zeel will be eliminated from the population. G. 

peel-zeel can be balanced in the highly outcrossing population when it imposes fitness 

disadvantage to the animals carrying it. In the heatmap, each block is showing the 
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percentage of Bristol haplotype in the population after evolving 1,000 generations given 

the combination of two parameters, outcrossing rate k and fitness disadvantage s. 

 

 

Figure 3.3 Increasing fitness dominance parameter h decreases parameter space for 

peel-zeel to be balanced. 

A. Parameter space for peel-zeel to be balanced. Combination of two parameters, 

outcrossing rate k and fitness disadvantage s, determines whether peel-zeel can be balanced 

(blue dots) or fixed or eliminated (red dots) in the population (h=0.2). B. Parameter space 

for peel-zeel to be balanced. Combination of two parameters, outcrossing rate k and fitness 

disadvantage s, determines whether peel-zeel can be balanced (blue dots) or fixed or 

eliminated (red dots) in the population (h=0.4). 



 80 

 

Figure 3.4 The peel-zeel is linked to genetic variation that increases laboratory 

fitness in hermaphrodites. 

A. Competition assay showing the relative fitness of PTM229 to strains on the x-axis. 

PTM229 has the barcoded allele of dpy-10. This barcode allele does not change fitness and 

can be used as a marker to distinguish the two strains in the competition assay. CX12311 
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has ancestral alleles of npr-1 and glb-5 introgressed from Hawaii genome (blue box). This 

strain has been shown previously to be less fit than N2 in laboratory conditions. QX1198 

has a 140kb-370kb Hawaii genome introgression (blue box) in an otherwise N2 genome, 

covering the hyper-divergent region (40kb, red box) between Bristol haplotype and Hawaii 

haplotype. Positive values indicate PTM229 is more fit; negative values indicate strain on 

the x-axis is more fit. The box plot shows quartiles of the dataset while the whiskers show 

the rest of the distribution unless the point is an outlier. ***p<0.001 by two-tailed t-test 

with equal variance. B. Total number of eggs laid by each animal of N2 and NIL strain 

QX1198. The box plot shows quartiles of the dataset while the whiskers show the rest of 

the distribution unless the point is an outlier. ***p<0.001 by two-tailed t-test. C. Growth 

analysis of NIL strain QX1198. Animals’ size was normalized to the average size of N2 

when grow at 20°C for 72 hours. The box plot shows quartiles of the dataset while the 

whiskers show the rest of the distribution unless the point is an outlier. ***p<0.001 by two-

tailed t-test. D. Modeling peel-zeel dynamics in a population when linked variants are 

beneficial. The population is started with 10% peel-zeel heterozygotes and 90% non-peel-

zeel homozygotes. Note that linked beneficial variants (s=-0.18, h=0) only slightly 

accelerated fixation rate of peel-zeel in a fully outcrossing population (k=1, blue curve vs 

yellow curve), whereas fixation rate is greatly accelerated in a partial outcrossing 

population (k=0.5, green curve vs red curve).   
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Figure 3.5 Loss of the toxin gene peel-1 decreased laboratory fitness in 

hermaphrodites. 
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A. Schematic of the peel-1 loss-of-function allele created by CRISPR/Cas9. GGG(marked 

in red) is used as the PAM site and two additional nucleotides (marked in yellow) is inserted 

into the third exon of peel-1 gene through homologous recombination. This insertion 

creates a frameshift and a stop codon (marked by *) is introduced two amino acids 3’ to 

the insertion site. The resulting protein sequence is 46 amino acids long. (peel-1 is 174 

amino acids long). The green numbers denote the amino acid position of the peel-1 protein 

sequence. B. Percentage of dead embryos from selfing N2(yellow line)xCB4856(blue line) 

F1 and PTM377(peel-1 mutant, yellow line with red block)xCB4856(blue line) F1. N2 has 

the Bristol haplotype and CB4856 has the Hawaii haplotype of peel-zeel. The box plot 

shows quartiles of proportions of embryos that fail to hatch while the whiskers show the 

rest of the distribution unless the point is an outlier. C. Competition assay showing the 

relative fitness between pairs of strains in laboratory environment. PTM229 has the 

barcoded allele of dpy-10 (green box). This barcode allele does not change fitness and can 

be used as a marker to distinguish the two strains in the competition assay. CX12311 has 

ancestral alleles of npr-1 and glb-5 introgressed from Hawaii genome (blue box). This 

strain has been shown previously to be less fit than N2 in laboratory conditions. PTM377 

has the peel-1 CRISPR mutant in the N2 background. PTM409 has both the dpy-10 barcode 

and peel-1 mutant. Positive values indicate Strain 1 is more fit; negative values indicate 

Strain 2 is more fit. The box plot shows quartiles of the dataset while the whiskers show 

the rest of the distribution unless the point is an outlier. ***p<0.001, *p<0.05 by two-tailed 

t-test with equal variance. D. Total number of eggs laid by each animal of N2 and PTM377 

(peel-1). The box plot shows quartiles of the dataset while the whiskers show the rest of 

the distribution unless the point is an outlier. ***p<0.001 by two-tailed t-test. E. Growth 
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analysis of NIL strain PTM377 (peel-1). Animals’ size was normalized to the average size 

of N2 when grow at 20°C for 72 hours. The box plot shows quartiles of the dataset while 

the whiskers show the rest of the distribution unless the point is an outlier. *p<0.05 by two-

tailed t-test. F. Competition assay showing the relative fitness between pairs of strains in 

laboratory environment. PTM229 has the barcoded allele of dpy-10 (green box). This 

barcode allele does not change fitness and can be used as a marker to distinguish the two 

strains in the competition assay. PTM377 has the peel-1 CRISPR mutant in the N2 

background. PTM409 has both the dpy-10 barcode and peel-1 mutant. PTM550 has both 

peel-1 and zeel-1 CRISPR mutant in the N2 background. Positive values indicate Strain 1 

is more fit; negative values indicate Strain 2 is more fit. The box plot shows quartiles of 

the dataset while the whiskers show the rest of the distribution unless the point is an outlier. 

*p<0.05 by two-tailed t-test. n.s. not significant.  
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Figure 3.6 Fitness advantage of peel-zeel accelerates transmission when starting 

frequency is low. 

y-axis is the percentage of peel-zeel in a population at a particular generation in the x-axis. 

Outcrossing rate is modeled by parameter k and fitness advantage is modeled by parameter 

s. In this simulation, dominance parameter h=0 and the population is initiated with 1% 

peel-zeel. 
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Figure 3.7 F1 hybrid RNA-seq reveals allele specific expression for ugt-31 and 

Y39G10AR.16.  

A. Allele specific expression for ugt-31. Above the box shows the ugt-31 gene structure. It 

aligns with the x-axis of the plot in the box. y-axis shows the number of allele specific 

reads at a particular single nucleotide variant (SNV). Red dots denote N2 specific reads 

and blue dots denote Hawaii strain CB4856 specific reads. B. Allele specific expression 

for Y39G10AR.16. Above the box shows the Y39G10AR.16 gene structure. It aligns with 

the x-axis of the plot in the box. y-axis shows the number of allele specific reads at a 

particular single nucleotide variant (SNV). Red dots denote N2 specific reads and blue dots 

denote Hawaii strain CB4856 specific reads.  
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Figure 3.8 srbc-64 or ugt-31 does not change laboratory fitness in hermaphrodites. 
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A. A schematic graph showing the peel-zeel locus. There is a divergent region (red line) 

that marks more than 5% divergence in the protein coding regions. It covers the full coding 

region of srbc-64 and part of nekl-1. B. Schematic of the srbc-64 loss-of-function allele 

created by CRISPR/Cas9. TGG (marked in red) is used as the PAM site and two 

nucleotides (marked in yellow) is replaced in the first exon of srbc-64 gene through 

homologous recombination. Amino acid This mutation creates a stop codon (marked by *). 

The resulting protein sequence is 37 amino acids long (srbc-64 is 289 amino acids long). 

This mutation is introduced to Bristol haplotype and Hawaii haplotype independently. C. 

Schematic of the ugt-31 loss-of-function allele created by CRISPR/Cas9. Ccc (marked in 

red) is used as the PAM site and three nucleotides (marked in yellow) is replaced in the 

first exon of ugt-31 gene through homologous recombination. This mutation creates a stop 

codon (marked by *). The resulting protein sequence is 15 amino acids long (ugt-31 is 521 

amino acids long). This mutation is introduced to Bristol haplotype and Hawaii haplotype 

independently. D. Competition assay showing the relative fitness between pairs of strains 

in laboratory environment. PTM229 has the barcoded allele of dpy-10 (green box) in an 

otherwise N2 background. This barcode allele does not change fitness and can be used as 

a marker to distinguish the two strains in the competition assay. Blue box denotes 

introgression from the Hawaii haplotype. Red box denotes CRISPR mutant. Note that 

PTM574 and PTM568 have srbc-64 or ugt-31 mutated in the Hawaii haplotype, whereas 

PTM571 and PTM572 have srbc-64 or ugt-31 mutated in the Bristol haplotype. Positive 

values indicate Strain 1 is more fit; negative values indicate Strain 2 is more fit. The box 

plot shows quartiles of the dataset while the whiskers show the rest of the distribution 
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unless the point is an outlier. ***p<0.001, *p<0.05 by two-tailed t-test with equal variance. 

n.s. not significant. 
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Figure 3.9 srbc-64, ugt-31, peel-1 and zeel-1 are not responsible for the dauer 

pheromone response difference between N2 and QX1198. 
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A. Dauer formation of the N2, QX1198 (peel-zeel NIL strain) and MT13649 (nurf-1) in 

response to synthesized pheromone components. y-axis indicates the percentage of animals 

that enter dauer in response to the pheromone concentrations listed on the x-axis. The box 

plot shows quartiles of the dataset while the whiskers show the rest of the distribution 

unless the point is an outlier. ***p<0.001, *p<0.05 by two-tailed t-test with equal variance. 

n.s. not significant. B. Dauer formation of the N2, QX1198 (peel-zeel NIL strain) and srbc-

64(kah190) and ugt-31(kah-189) in response to 1500 nM C6-MK. srbc-64(kah190) and 

ugt-31(kah-189) are CRISPR mutants created in N2. y-axis indicates the percentage of 

animals that enter dauer. The box plot shows quartiles of the dataset while the whiskers 

show the rest of the distribution unless the point is an outlier. ***p<0.001, *p<0.05 by two-

tailed t-test with equal variance. n.s. not significant. C. Dauer formation of the N2, 

MT13649 (nurf-1), QX1198 (peel-zeel NIL strain), PTM574 (srbc-64) and PTM568(ugt-

31) in response to 1500 nM C6-MK. Yellow box denotes the genotype is Bristol like 

whereas blue box denotes the genotype is Hawaii like. Red box denotes a mutation in that 

gene. y-axis indicates the percentage of animals that enter dauer. The box plot shows 

quartiles of the dataset while the whiskers show the rest of the distribution unless the point 

is an outlier. ***p<0.001 by two-tailed t-test with equal variance. n.s. not significant. D. 

Dauer formation of the N2, QX1198 (peel-zeel NIL strain) and srbc-64(Tm1946) in 

response to 1500 nM C6-MK. y-axis indicates the percentage of animals that enter dauer. 

The box plot shows quartiles of the dataset while the whiskers show the rest of the 

distribution unless the point is an outlier. **p<0.01 by two-tailed t-test with equal variance. 

n.s. not significant. E. Dauer formation of the N2, QX1198 (peel-zeel NIL strain), 

PTM377(peel-1 CRISPR mutant) and PTM549(peel-1,zeel-1 double CRISPR mutant). 
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Yellow box denotes the genotype is Bristol like whereas blue box denotes the genotype is 

Hawaii like. Red box denotes a mutation in that gene. y-axis indicates the percentage of 

animals that enter dauer. The box plot shows quartiles of the dataset while the whiskers 

show the rest of the distribution unless the point is an outlier. ***p<0.001 by two-tailed t-

test with equal variance. n.s. not significant. 

3.3 Discussions 

In this study, we tested three models that can induce balancing selection on peel-zeel. While 

quantitative modeling clearly rules out model 1, model 2 and model 3 cannot be completely 

rejected. Existing evidence that also support model 2 is that wild strains of C. elegans differ 

in their male competence and this difference has a genetic basis (Gimond et al., 2018). 

Outcrossing rate in the wild is determined by male mating ability. As a result, a variation 

of outcrossing rate in different environments is expected. Also, when animals adapt to new 

environments, males in a population increased from 1% to 40% (Anderson et al., 2010). 

As C. elegans in the wild has a boom-and-burst lifestyle, adapting to new environment 

should not be uncommon. If peel-zeel incurs a fitness cost to animals in the wild, this 

variation in outcrossing rate alone is able to fix peel-zeel in some populations and purge 

them from others. One caveat here is the assumption that the fitness effect of peel-zeel will 

change in wild environments. To completely reject model 2, we need to confirm there is 

also a fitness advantage for peel-zeel in natural environments. Evidence supporting model 

3 is that linked variants of peel-zeel changed animal fitness. This suggests balancing 

selection can act on these linked variants. Simulations in chapter 4 showed that peel-zeel 

will act like a neutral genetic variant when outcrossing rate is 1%. So balancing selection 

does not have to counteract the genic drive in C. elegans, though it might have to interact 



 93 

with the fitness effect of peel-zeel. At the same time, model 2 and model 3 are not 

completely exclusive. For example, if animals in a particular environment has very low 

outcrossing rate, a fitness cost to the animals expressing peel-zeel as well as a lower fitness 

for linked variants on the Bristol haplotype, then both model 2 and model 3 predicts fixation 

for the Hawaii haplotype.  

A toxic gene incurs a fitness advantage to the animal is quite unexpected. We don’t know 

yet if this advantage is acquired during their initial evolution or being coopted by the 

animals following their initial spread. Different time points of this gained fitness advantage 

can affect how we interpret the evolution origin and dynamics of peel-zeel. When the toxin-

antidote element first evolves from its precursor in a population, its frequency is very low. 

The family-based population genetics model shows that the genic drive is negligible when 

toxin-antidote element is rare in the population (rate of spread is on the order of p^2). We 

have shown that this added fitness advantage can greatly accelerate its fixation in the 

population. Thus, a toxin-antidote element with a fitness advantage will be ‘selected’ 

among those without fitness advantage. On the other hand, if this fitness advantage is 

gained after it spread in the population, this fitness advantage will eliminate those ‘cheaters’ 

who only express the antidote and have the toxin eliminated from the genome.  

peel-1 functions independent of zeel-1 implies other molecular pathways are used by peel-

1. C. elegans follow metapopulation dynamics where competition between groups is a 

major evolutionary force. If a population has peel-zeel segregating, some of the progenies 

will be killed either at the embryonic stage or larval stage. As a result, this population will 

grow slower than a population without peel-zeel segregating. competition between groups 

will then tend to eliminate peel-zeel, creating a conflict between peel-zeel and the rest of 
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the genome. peel-1, however, seems to corporate with other genomic elements to improve 

its fitness. What are the evolutionary force generating the corporation between peel-1 and 

the rest of the genome is an interesting question to explore in chapter 4.  

 

3.4 Materials and Methods 

3.4.1 Strains used in this chapter 

 

Table 3.2 strains  

Strain Genotype Comments 

N2 Wild type reference Isolated in Bristol, UK 

CB4856 Wild isolate Isolated from Honolulu, Hawaii 

QX1198 qqIr5[niDf9,CB4856>N2] 
I. 

qqIr5 contains a 140-370kb introgression from 
CB4856 into N2. 

CX12311 kyIR1[CB4856>N2] V; 
qgIR1 [CB4856>N2] X 

kyIR1 (V, CB4856>N2) is an introgression of 
the region surrounding glb-5 from CB4856 into 
N2 qgIR1 (X, CB4856>N2) is an introgression 
of the region surrounding npr-1 from CB4856 
into N2. Left breakpoint between 4,753,766 
and 4,762,579. Right breakpoint between 
4,882,488 and 4,885,498 

PTM229 dpy-10 (kah82) II dpy-10 Thr 90: acc -> act. 
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Table 3.2 Continued 

PTM377 peel-1 (kah126) I Original peel-1 sequence: 
ATCTGCCTGAAAATGTATGGGTAAAT 

Mutated peel-1 sequence: 
ATCTGCCTGAAAATGAGTATGGGTAAAT 

PTM409 peel-1(kah126) I; dpy-10 
(kah82) II 

PTM377 crossed with PTM229 to create this 
strain. 

PTM550 zeel-1(kah181) I;peel-
1(kah126) I 

zeel-1(kah181) was created by CRISPR/Cas9 

original zeel-1 sequence: 
gccagaccttgaggaggcaaatggtaa 

Mutated zeel-1 sequence: 
gccagaccttgagTAAgcaaatggtaa 

PTM568 ugt-31(kah187) I, 
qqIr5[niDf9,CB4856>N2] 
I. 

ugt-31 mutant created using CRISPR/Cas9 in 
the QX1198 background.  

Original ugt-31 sequence: 
ggcctccgagcccctgaacatt 

Mutated ugt-31 sequence: 
ggcctccgagTAActgaacatt 

PTM570 ugt-31(kah189) I ugt-31 mutant created using CRISPR/Cas9 in 
the N2 background. 

Original ugt-31 sequence: 
ggcctccgagcccctgaacatt 

Mutated ugt-31 sequence: 
ggcctccgagTAActgaacatt 

Another name: N2-49-13 

PTM571 ugt-31(kah189) I, dpy-10 
(kah82) II 

PTM570 crossed with PTM229. Progenies 
screened for both ugt-31 and dpy-10. 

Another name: N2-49-13-10b 
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Table 3.2 Continued 

PTM572 srbc-64(kah 190) I, dpy-
10(kah82) II 

srbc-64 mutant created using CRISPR/Cas9 in 
the N2 background. 

Original srbc-64 sequence: 
gaaacggatcgcatggaaat 

Mutated srbc-64 sequence: 
gaaacggatctaatggaaat 

This strain is then crossed with PTM229 to get 

dpy-10 barcode. 

Another name: N2-48-99-10b 

PTM573 qqIr5[niDf9,CB4856>N2] 
I, dpy-10(kah82) II 

QX1198 crossed with PTM229 to introduce the 
dpy-10 barcode.  

Another name: QX1198-10-b 

PTM574 srbc-64(kah 191) I, 
qqIr5[niDf9,CB4856>N2] 
I 

srbc-64 mutant created using CRISPR/Cas9 in 
the QX1198 background. 

Original srbc-64 sequence: 
gaaacggatcgcatggaaat 

Mutated srbc-64 sequence: 
gaaacggatctaatggaaat 

Another name: QX1198-51-67 

 

3.4.2 Population dynamics prediction 

All codes to change population dynamics parameters and then plot the trajectories were 

stored at https://github.com/LijiangLong/Individual_based_simulation. 

 

3.4.3 Competition assay to measure organism fitness 
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All pairwise competition assays were done on the 9cm NGM plates. These plates were 

seeded with OP50 bacteria and stored at 4°C until one day before using them. At the 

beginning of the experiment, 10 L4 worms of each strain were transferred onto the same 

plate. This plate was then incubated at 20°C for 5 days until a 1cm´1cm agar was 

transferred onto a new 9cm NGM plate. The old plate was then washed with 1ml M9 buffer 

to collect the worms and stored in -80°C for future use. After this point, the plates were 

transferred every three days for a total of 7 transfers. The genomic DNA of 1st, 3rd, 5th and 

7th transfer were isolated using Zymo 96-well DNA isolation kit (cat # D4071). Isolated 

genomic DNA were fragmentated using EcoRI-HF by incubation at 37°C for 4 hours. 

These fragmentated DNA were purified using Zymo 96-well DNA purification kit (cat # 

D4024) using provided protocol. After purification, DNA concentrations were measured 

using Qubit DNA HS assay and adjusted to 1ng/uL. To be able to distinguish those two 

strains on a plate, a Taqman probe was designed for the genetic marker on one of the strains 

using the online tool. After this, the DNA and Taqman probe were mixed with the digital 

plate PCR (ddPCR) mix and went through standard ddPCR procedure. The fractions of 

each strain were quantified using the BioRad QX200 machine with standard absolute 

quantification protocol. After we get the sequential fraction of each strain, a linear 

regression is applied to fit this data using the following equation with the assumption of 

one generation per transfer. 

log$

𝑝(𝑎)!
𝑝(𝑎)"

− 𝑝(𝑎)!

1 − 𝑝(𝑎)!
+ = (𝑙𝑜𝑔(

𝑊##
𝑊$$

))𝑡 

3.4.4 Fecundity assay   
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All fecundity assays were done at 20°C on 3cm NGM plate. These plates were seeded with 

50ul OP50 bacteria with OD600 of 2.0. The plates were allowed to try overnight and then 

transferred to cold room until one day before use. At the beginning of the assay, six fourth 

larval stage (L4) worms were transferred to each assay plate. The worms were allowed to 

grow 24 hours before they are transferred onto a new plate. Number of eggs laid were 

counted using a standard dissecting microscope. This process is repeated every 12 hours 

thereafter until 100 hours or there is no egg on the new plate. The fecundity is then 

calculated by first summing over the different time points and then divided by the total 

number of worms in a single assay plate. 

3.4.5 Growth rate assay 

Each assay plate is a standard NGM plate seeded with OP50 bacteria. At the beginning of 

the assay, 10-20 adult worms were transferred onto the assay plate to lay eggs. After 2 

hours, they were transferred out of the plate. The eggs were allowed to grow for 72 hours 

at 20°C. The assay plate is then mounted on a video tracking camera and was recorded for 

one minute. This video clip was then analysed using a customized MATLAB script that 

keeps track of each animal and calculate the average size of each worm. The average size 

from each plate was then normalized by the average size of three N2 plates.  

3.4.6 Creating CB4856 and N2 hybrid F1s 

10 CB4856 males and 20 N2 (fog-2) hermaphrodites were transferred onto each standard 

3cm NGM plate seeded with OP50 bacteria. A total of 6 replicates were created. These 

animals were allowed to mate overnight. Then these N2 (fog-2) hermaphrodites were 

transferred onto a new NGM plate to lay eggs for 3 hours until they were transferred out 
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of the plate in order to synchronize the progenies. After 60 hours at 20°C, the worms on 

each assay plate were washed off into a 1.5mL Eppendorf tube using M9 buffer. Finally, 

1mL Trizol was added and the tube was kept in -80°C until RNA were extracted.  

3.4.7 RNA extraction using Trizol 

Prior to RNA extraction, working space was cleaned and then the tubes were freeze and 

thaw using liquid nitrogen for 6 times. When Trizol was completely thawed, 200 µL 

chloroform were added into each tube. After mixing through gentle inverting, the tubes 

were incubated on ice for 5 minutes. Then the tubes were centrifuged at 12,000 g for 15 

minutes at 4°C. The upper aqueous phase were transferred into a new Rnase-free tube and 

500 µL isopropanol were added. After mixing through gentle inverting, the tubes were 

incubated on ice for 15 minutes. This was followed by 12,000 g centrifuge for 10 minutes 

at 4°C. Finally, the RNA pellets were washed twice with 1 mL cold 75% ethanol and then 

resuspended in 20 µL RNase-free water.  

3.4.8 Allele specific expression analysis 

RNA libraries were created using Illumina TruSeq Standard mRNA kit (20020595) 

following its standard protocol. These libraries were sequenced using an Illumina NextSeq 

500 Platform. The codes used to analyse the sequencing reads were available at 

https://github.com/LijiangLong/RNASeq_Nematode. The reads were first quality 

controlled using FastQC. In order to distinguish N2 and CB4856 allele specific reads and 

avoid bias introduced by genome alignment, the reads were mapped both to N2 genome 
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and CB4856 genome separately using bwa. For each sample, two bam files were created 

corresponding to using either N2 or CB4856 as the reference genome.  

The number of reads for each allele were then counted at each SNP position. Specifically, 

the number of N2 specific reads were counted from the N2 genome mapped bam file and 

the number of CB4856 specific reads were counted from the BC4856 genome mapped bam 

file. After this, a customized python script was used to plot the gene and the allele specific 

expression level on each SNP.  

3.4.9 CRISPR/Cas9 enabled genome editing 

CRISPR/Cas9 was used following a previously published co-conversion method to edit the 

target gene and dpy-10 gene at the same time (Arribere et al., 2014).   

3.4.10 Synthetic pheromone response assay 

For every 250ml NGM solution, 0.25ml 5mg/ml Cholesterol, 0.75g NaCl and 5.5g Noble 

agar are added in a 1L flask and total volume is adjusted to 250ml by water. After 

sterilization, NGM solution is cooled down to 60°C while stirring. 0.25 mL 1M CaCl2, 

0.25 mL1M MgSO4, and 6.25 mL 1M KPO4 pH 6.0 (freshly prepared = 1.32 mL 1M 

K2HPO4 + 8.68 mL KH2PO4) are added to the flask along with the desired amount of 

synthetic pheromone. NGM solution is then pour into separate 3cm plates. These plates are 

allowed to cool down at 20°C for one hour and then they were wrapped with parafilm and 

stored at 4°C. At storage, they are not allowed to stay on top of one another to avoid uneven 

water evaporation. OP50 are heat killed and are also stored at 4°C one day before use. L4 

hermaphrodites of each strain are picked one day before use. On the first day of the assay, 
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assay plates are first dried with lid open for one hour. 50µl OP50 are added to the center of 

plate and allow to dry for another 30min. 6 hermaphrodites of each strain are transferred 

to the assay plate to lay eggs for 3 hours at 25°C. These assay plates are then allowed to 

grow another 72 hours until the number of dauer animals are scored.  
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CHAPTER 4. SELFISH OR UNSELFISH IS INITIAL 

FREQUENCY DEPENDENT 

4.1 Introduction 

In chapter 3, we identified two ways that peel-zeel can spread in a population: selfish gene 

drive and fitness benefits to the hermaphrodites carrying it. C. elegans in the wild has a 

boom-and-burst lifestyle (Frézal and Félix, 2015). Usually, a population is founded by less 

than ten animals and the population grows several generations, up to 10,000 animals, until 

food resources are depleted in that habitat. Dauers, a special non-feeding stage, are 

developed and attach to other animals in order to get transferred to other locations. While 

most fail, the ones successfully find a new habitat will start another cycle. Consider the 

two haplotypes of peel-zeel are distributed globally and can be sampled from a single 

orchard, it is very likely a new population can be formed by an admixture of peel-zeel and 

non-peel-zeel animals. Also, migration between established populations is also common in 

C. elegans (Barrière and Félix, 2005). This will also likely to bring peel-zeel animals to 

non-peel-zeel populations. In the new admixture population, peel-zeel has a different 

transmission pattern than the rest of the genome because of its selfish nature. What will 

happen to the rest of genome is not explored yet. Answer this question will not only help 

us understand the evolutionary force that has shaped C. elegans genome, but also answer 

a broader question about selfish genetic elements: is the transmission of selfish genetic 

elements always at the cost of other genetic elements in the genome?  
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Evolutionary forces that can change the frequency of a variant include mutation, natural 

selection, gene flow, genetic drift and genetic hitchhiking. New mutations give rise to the 

genetic materials for phenotypical variations and thus selection can act on them. Gene flow 

between population or sometimes between species can also give organisms the genetic 

materials to adapt to local environment (Jones et al., 2018). Due to the limited size of 

populations, neutral genetic variants do not always stay in the population. Instead, genetic 

drifting will change allele frequencies until that allele is either fixed or purged from the 

population, especially in a small population. Finally, natural selection or being linked to 

variants under natural selection (genetic draft or hitchhike) will deviate the variant from 

drifting.  

To understand the evolutionary force on the linked and unlinked variants of toxin-antidote 

elements, one approach is to have experimental populations in the laboratory and keep 

track of all the allele frequencies of all genetic variants. However, this approach is time-

consuming and may not reflect what will happen in the field. Laboratory animals often 

adapt to the unique environment in the laboratory (Zhao et al., 2018, Large et al., 2016, 

McGrath et al., 2009). These adaptive changes may have a complex epistatic interaction 

with the selfish genetic element and other genome regions, such that the dynamics in the 

laboratory might not predict that in the field. Also, in order to study the evolution of other 

genetic elements, there has to be neutral genetic differences between the animals carrying 

or not carrying the toxin-antidote element in order to keep track and compare the dynamics. 

This is difficult because of two reasons. First, while there are many ways to introduce 

mutations into the genome, it remains difficult to test if a mutation is truly neutral. Even if 

the mutation is mapped to a non-coding region, it may or may not influence the expression 
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of another gene, thus affecting the fitness of the organism. Recently, a pairwise competition 

assay was developed in order to assay the fitness impact of any variant (Large et al., 2016). 

Such experiments, though accurate, take months of work to eventually confirm if a variant 

is truly neutral. Second, it is expensive to keep track of multiple genetic variants in a 

population. Traditional methods such as PCR or restriction enzyme enabled counting is 

qualitative. Quantitative methods such as digital PCR, however, remains low throughput. 

High throughput quantitative methods such as while genome sequencing is expensive to 

both prepare the libraries and get the libraries sequenced. In summary, evaluating the 

dynamics of both selfish genetic elements and other genomic elements is not practical in 

laboratory populations.  

Another way to predict study evolution is through modeling and simulation. The dynamics 

of toxin-antidote elements have been well studied using a family based population genetics 

model (Wade and Beeman, 1994). In this model, only the toxin-antidote elements dynamics 

is modeled. Both linked and unlinked genetic variants are difficult to model because 

linkage has to be considered. This then requires expanding the model to a much more 

complex one that is hard to get analytical solutions and useful conclusions.   

Recently, population simulation tools such as SLiM (Selection on linked mutations) are 

emerging as a powerful and efficient tool to predict evolutionary dynamics of toxin-

antidote elements (Haller and Messer, 2019). Researches in Caenorhabditis species have 

identified five maternal effect toxin-antidote elements in C. tropicalis, one in C. briggsae 

and one in C. elegans. These elements appear as pairs on the same chromosome, and thus 

are called antagonizing toxin-antidote elements (Ben-David et al., 2020). In order to study 

the dynamics of these unique antagonizing elements, they used SLiM to simulate the 
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evolution and found that there is a strong heterozygous advantage for antagonizing toxin-

antidote elements such that they can be balancing selected in the population. This matched 

the theoretical prediction and implies a genetic barrier between animals having 

antagonizing toxin-antidote elements. SLiM has also been used in other studies for selfish 

genetic elements, showing great promise to study both toxin-antidote element and other 

genetic elements at the same time (Champer et al., 2019, Champer et al., 2020).  

In this study, we used SLiM to simulate a scenario where homozygous animals carry the 

toxin-antidote element are mixed with homozygous animals without the toxin-antidote 

element. In order to keep track of the genome, neutral genetic markers are added and 

tracked through several generation. We found that the fitness of those neutral genetic 

markers is initial frequency dependent. A low starting frequency of toxin-antidote elements 

in the population will reduce the fitness of neutral genetic markers. My results suggest that 

the transmission conflict between toxin-antidote element and the rest of the genome is 

initial frequency dependent. When we want to introduce genetically modified mosquitos 

into the wild, we might want to start with very low frequency such that the genetic diversity 

of wild strains is not impacted.  

4.2 Results and Discussion 

4.2.1 Toxin-antidote elements reduce fitness for unlinked genomic elements 

One quarter of the progeny from two hybrid parents will be killed or have dramatically 

reduced fitness (Figure 4.1A). This creates a strong gene selection for the toxin-antidote 

elements and these elements can be fixed in around 100 generations in a fully outcrossing 

population (Figure 4.1 C). To understand the dynamics of both toxin-antidote elements 
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and the rest of the genome, we simulated an admixture process using software SLiM 

(Figure 4.1B). A group of homozygous toxin-antidote animals were mixed with another 

group of homozygous non-toxin-antidote animals to create a new group of animals and 

SLiM is simulating the evolution of this new population for 200 generations. To keep track 

of both toxin-antidote elements and the other genomic elements, we placed the toxin-

antidote element at the left tip of the chromosome (position 1 in a 10,000 bp chromosome) 

and added five neutral genetic markers that were 1kb, 2kb, 3kb, 5kb and 10kb away from 

the Toxin-antidote element respectively. In our simulations, recombination rate is set to 10-

4 per base pair per generation, meaning that these five neutral markers are 9, 16, 23, 32, 43 

cM away from the toxin-antidote element respectively. Over 200 generations, no new 

mutations were allowed such that we can accurately keep track of those neutral genetic 

markers. To prove that we have correctly modeled the behavior of toxin-antidote elements, 

we compared the dynamics of the toxin-antidote element either using SLiM simulations 

(population size 10,000) or using a family based population genetic model (Wade and 

Beeman, 1994). Both are started with 5% toxin-antidote homozygotes and 95% non-toxin-

antidote homozygotes. These two curves highly overlap, confirming we had the correct 

simulation (Figure 4.1C). While the toxin-antidote element drives to fixation, neutral 

genetic markers originally associated with toxin-antidote element also change their 

frequency in the population (Figure 4.1D, E). Depending on the distance to the toxin-

antidote element, markers have different dynamics. The marker at 1kb increased its 

frequency from 5% to 13% after 200 generations because of genetic hitchhiking. The 

marker at 2kb did not change its frequency, whereas marker at 3kb, 5kb and 10kb all 

decreased their frequency in the population significantly (5% to 3%). The decrease of 
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frequency is progressive (Figure 4.1F), depending on linkage to the toxin-antidote element. 

The average frequency for most distant marker at 10kb was 4.9% at 8th generation, 4.3% 

at 32nd generation and 2.9% at 128th generation.  

These decreased frequency for neutral genetic markers can be contrasted with a different 

simulation where the toxin-antidote element was replaced by a mutation with a fitness 

advantage (w = 1.3) (Figure 4.2). The trajectories of the toxin-antidote element and the 

beneficial mutant were quite similar, both increasing from 5% to 90% in ~50 generations 

(Figure 4.2A). However, closely linked neutral marker (1kb) to the beneficial mutant 

increased from 5% to 27%, much higher than that with the toxin-antidote element (Figure 

4.2B, C). The rest of the genome for the beneficial mutant also increase frequencies for the 

first 20 generations until the linkages were broken by recombination. The marker that is 

most distant to the beneficial mutant (10kb) still increased from 5% to 10%. While genetic 

hitchhiking can explain all the increased frequencies, it remains elusive why unlinked 

markers for toxin-antidote element decreased frequency. 

While SLiM was powerful and well accepted in the community for evolution simulation, 

there could still be bugs in the code. That could lead to the unexpected decrease of 

frequency for neutral variants. To make sure the observed pattern is not due to errors in the 

codes, we built a customized python script to mimic the evolution of toxin-antidote element 

and the rest of the genome. This code was less than 100 lines long because very simple and 

few rules were enforced. These rules included Wright-Fisher model, toxin-antidote induced 

progeny kill and recombination between TA element and another marker on the genome. 

Using this script, we were able to replicate what has been observed in SLiM simulations 

(Figure 4.3A). Because this script took more time, we used parallel computing for small 
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populations (N = 8000) while the SLiM was simulating a larger population (N = 10,000). 

These simulations were more variable but followed similar trajectories. The rest of the 

genome were simulated by a marker that had varying genetic distance (10cM, 20cM, 30cM, 

40cM and 50cM) to the TA element. After simulating 100 generations, the frequency of 

partially linked marker (10cM) was higher than its initial frequency (13% vs 5%) (Figure 

4.3B). For the makers that were 20cM and further away from the TA element, the medium 

frequencies were always lower than their initial frequency. Again, these results confirmed 

the simulations generated by SLiM and showed unlinked loci to toxin-antidote element 

was selected against in the population. 

 

4.2.2 Self-fertilization exaggerates toxin-antidote induced negative fitness to unlinked 

genomic elements 

To better understand how simulation parameters such as population size and outcrossing 

rate affect the dynamics of neutral genetic markers, we tuned these two parameters and 

looked at the frequency of the marker that is 10kb (43cM) away from the toxin-antidote 

element. When population size was reduced to 100, 96 out of 100 simulation had the 

marker eliminated from the population at 200 generations (Figure 4.4A). 53 out of 100 

simulations had the marker eliminated when population size was 1,000, whereas this only 

happen once when the population size was 10,000. When the population size is small, the 

less frequent allele is likely to loss in the population due to genetic drifting.  

Outcrossing rate was another important factor that controls the gene selection for the toxin 

antidote elements. To understand how outcrossing rate affect toxin-antidote elements and 
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other neutral genetic markers, we simulated four populations with different outcrossing 

rate (100%, 10%, 1% and 0.1%). For the toxin-antidote element, decreasing the outcrossing 

rate reduced the genic drive (Figure 4.4B). In a fully outcrossing population, almost all 

(99/100) simulations had the toxin-antidote elements fixed in the population. The 

probability of fixation was reduced to zero when outcrossing rate is 1%. In this case, toxin-

antidote behaved like a neutral variant and drifting in the population. On the other hand, 

the frequency of neutral genetic marker (10kb, 43cM) decreased most (5% to 0.7%) when 

outcrossing rate was 10% (Figure 4.4C). When outcrossing rate was 1% where the toxin-

antidote element was acting neutral, marker frequency also decreased from 5% to 2.2%. 

This suggests that reduced fitness for unlinked genetic elements were independent of toxin-

antidote dynamics. In summary, these results showed that unlinked genetic elements were 

more likely to be eliminated in population with smaller population size and lower 

outcrossing rate. 

4.2.3 Allele frequency in dead embryos is not always its frequency in the population 

To understand the mechanisms underlying the decreased frequency for unlinked genomic 

elements, we calculated the frequencies of toxin-antidote and other genomic elements in 

the first three generations (Figure 4.5A). Unlinked genomic elements were represented by 

a second chromosome that freely recombines with the toxin-antidote chromosome. For 

simplicity, we called this chromosome either ‘TA unlinked chromosome’ or ‘nonTA 

unlinked chromosome’ depending on where it was in the first generation. After fully 

outcrossing, animals heterozygous for both the TA chromosome and the marker 

chromosome were generated and had a frequency of 2pq in the population. In the third 

generation, sperm either with or without toxin were generated by the parents and animals 
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without the TA chromosome would be killed as they lack the antidote. We noticed that in 

the dead embryos, the frequency of the TA unlinked chromosome was (1+p)/4 instead of 

its original frequency p in the population. Because of this inequity, the frequency of the 

TA unlinked chromosome in the surviving animals in the third generation is lower than p 

if p < 1/3 and larger than p is p > 1/3 (Figure 4.5B). This result suggests a diverging point 

at 1/3 and predicts that when toxin-antidote animals started with a frequency higher than 

1/3, unlinked genomic elements will have increased fitness. 

4.2.4 Unlinked genetic elements to toxin-antidote elements have higher fitness if they 

dominant the population in the first generation 

To validate our prediction, we used SLiM to simulate varying starting frequencies of toxin-

antidote element and looked at the frequency of unlinked genetic elements after 200 

generations (Figure 4). In the simulation, population size is set to 1,000 and outcrossing 

rate is 10%. We noticed that unlinked genetic elements decrease frequency when initial TA 

elements were less than 1/3 and increase frequency when TA elements were more frequent 

than 1/3. Specifically, when TA elements started at 10%, marker (10kb) decreased from 

10% to 4%. On the other hand, marker increased from 50% to 59.5%, 70% to 69.7% and 

90% to 93.9%. The smaller gap at 90% than 50% can be explained by the smaller gap 

between survived unlinked chromosome and p when p is 90% than p is 50% (Figure 4.5B). 

These patterns can be contrasted with a population without the toxin-antidote element. In 

this case, marker frequency is usually drifting. When markers start at 10%, 25 out of those 

100 simulations have the neutral marker eliminated from the population. Because toxin-

antidote elements reduced neutral marker fitness, 68 out of those 100 simulations have the 

neutral marker eliminated. On the other hand, when neutral marker started at 70% without 
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toxin-antidote element, only 1 of the 100 simulations had the marker fixed in the 

population. Because toxin-antidote element increased marker fitness, 9 of the simulations 

had the marker fixed. These results confirmed our prediction for the dynamics of genomic 

elements and suggests the fitness of other genomic elements are initial frequency 

dependent.  
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Figure 4.1 Effect of toxin-antidote element on other genetic variation. 

A. Schematic of a paternal-effect toxin antidote element. One haplotype (yellow) has 

both the toxin gene (yellow circle) and the antidote gene (yellow star) while the other 
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haplotype (blue) has neither of them. In the self-fertilization progenies of a F1 hybrid 

between these two haplotypes, progenies on the bottom left corner were killed because 

toxin is expressed in the germline and deposited into sperms, whereas the antidote is 

expressed zygotically. B. Schematic of the simulation using SLiM. Chromosomes 

(yellow and blue line) of 10 kb are simulated. At position 1 (black triangle) of the 

chromosome with toxin-antidote system (yellow line), there is a toxin-antidote element. 

Five neutral genetic variants (blue triangle) are introduced at position 1kb, 2kb, 3kb, 5kb, 

10kb of the chromosome as genetic marker. Green arrows mark the simulation process. 

In the first generation, p toxin-antidote element homozygotes (upper left, yellow lines in 

circle) are mixed with (1-p) homozygotes without toxin-antidote element (upper right, 

blue lines in circle). This new population then propagates for another 200 generations 

with a fixed population size. C. Dynamics of the toxin-antidote system in a fully 

outcrossing population using either a population dynamics model (Blue line) or with 

SLiM simulation (population size 10,000, Yellow line). The population is initiated with 

5% toxin-antidote homozygotes and 95% homozygotes without toxin-antidote. y-axis 

shows the percentage of the toxin-antidote element in the population at a particular 

generation on the x-axis. D. Dynamics of the neutral genetic markers at different 

positions relative to the toxin-antidote system (see also B) using SLiM simulation 

(population size 10,000). The population is initiated with 5% toxin-antidote homozygotes 

and 95% homozygotes without toxin-antidote. y-axis shows the percentage of the marker 

in the population at a particular generation on the x-axis. Gray dotted line shows their 

initial frequency in the population at 5%. The frequencies of these neutral genetic 

markers are recorded at generation 2,4,8,16,32,64,128 and 200 for each simulation (black 
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arrowhead and orange dotted line, see also E and F). E. Neutral genetic marker 

frequencies after evolving 200 generations with an initial frequency at 5% (n=100) using 

SLiM simulation (population size 10,000). The box plot shows quartiles of the dataset 

while the whiskers show the rest of the distribution unless the point is an outlier. *** p< 

0.001 with two-tailed one sample t-test comparing to the initial frequency at 5%.n.s not 

significant. F. Genetic marker (10kb) frequencies after evolving a number of generations 

on the x-axis.The box plot shows quartiles of the dataset while the whiskers show the rest 

of the distribution unless the point is an outlier. 
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Figure 4.2 Effect of beneficial allele on other genetic variation 

A. Dynamics of a beneficial allele in a fully outcrossing population using SLiM 

(population size 10,000). B. Dynamics of the neutral genetic markers at different 

positions relative to the beneficial allele using SLiM simulation (population size 10,000). 

The population is initiated with 5% toxin-antidote homozygotes and 95% homozygotes 

without toxin-antidote. y-axis shows the percentage of the marker in the population at a 

particular generation on the x-axis. Gray dotted line shows their initial frequency in the 

population at 5%. The frequencies of these neutral genetic markers are recorded at 
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generation 200 for each simulation. The box plot shows quartiles of the dataset while the 

whiskers show the rest of the distribution unless the point is an outlier. 

 

 

Figure 4.3 Customized python script replicates SLiM simulation results. 

A. Dynamics of the toxin-antidote system in a fully outcrossing population using either a 

customized python script (population size 8,000, gray lines) or with SLiM simulation 

(population size 10,000, Yellow line). y-axis shows the percentage of the toxin-antidote 

element in the population at a particular generation on the x-axis. B. Frequencies of 

neutral markers after 100 generations using the customized python script. y-axis shows 

the percentage of neutral genetic marker in the population (n=100 for each marker).  5% 

toxin-antidote homozygotes are mixed with 95% homozygotes without toxin-antidote in 

generation 1 following the simulation scheme shown in Figure 4.1. x-axis shows the 

genetic distance of the neutral marker to the toxin-antidote element. This population is 

fixed with a population size of 8,000 and is evolved 100 generations. The box plot shows 

quartiles of the dataset while the whiskers show the rest of the distribution unless the 
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point is an outlier. *** p< 0.001 with two-tailed one sample t-test comparing to the initial 

frequency at 5%.  

 

Figure 4.4 Smaller population size and lower outcrossing rate is more likely to 

eliminate neutral genetic markers. 

A. The frequencies of the neutral genetic marker (10kb, 43cM from the toxin-antidote 

element) after evolving 200 generations with a fixed population size on the x-axis (100 

replicates, outcrossing rate 100%). In SLiM simulations, 5% toxin-antidote homozygotes 

are mixed with 95% homozygotes without toxin-antidote in generation 1. The box plot 

shows quartiles of the dataset while the whiskers show the rest of the distribution unless 

the point is an outlier. B. The frequencies of toxin-antidote element after evolving 200 

generations with different outcrossing rate on the x-axis (100 replicates, population size 



 118 

10,000). The box plot shows quartiles of the dataset while the whiskers show the rest of 

the distribution unless the point is an outlier. C. The frequencies of the neutral genetic 

marker (10kb, 43cM from the toxin-antidote element) after evolving 200 generations with 

different outcrossing rate on the x-axis (100 replicates, population size 10,000). In SLiM 

simulations, 5% toxin-antidote homozygotes are mixed with 95% homozygotes without 

toxin-antidote in generation 1. The box plot shows quartiles of the dataset while the 

whiskers show the rest of the distribution unless the point is an outlier. 
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Figure 4.5 The frequency of unlinked polymorphisms to toxin-antidote element in 

the dead embryos is not its frequency in the population. 

A. Schematic of the first three generations of the population. The population is initiated 

with p diploid individuals who have the chromosomes (yellow lines) carrying the toxin 

(circle) and the antidote (star) at the first generation. These individuals also carry another 

pair of neutral effect chromosome (yellow lines with pointed ends). In this population, 
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there are 1-p diploid individuals carrying the non-toxin-antidote chromosomes (blue 

lines). These non-toxin-antidote individuals also carry another neutral effect chromosome 

(blue lines with pointed ends). These neutral effect chromosomes serve as marker for 

unlinked polymorphisms. In the third generation, a Punnett square of the genotypes 

possible in this generation is shown. Sperms with toxin (in black box) and without toxin 

are combining freely with oocytes to create F2s. Embryos created by a sperm carrying 

toxicity and homozygous for the non-toxin-antidote chromosome is dead (red circles) and 

eliminated from the population. The frequency of each genotype is shown above or 

beside each circle. Finally, the frequency of unlinked chromosome in the dead embryos is 

shown at the bottom right corner. B. Frequency of toxin-antidote unlinked chromosome 

in the survived animals of generation 3. y-axis is the frequency of survived animals 

corresponding to different starting frequency p.  
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Figure 4.6 The fitness of unlinked genetic elements of toxin-antidote element is 

initial-frequency dependent. 

The percentage of genetic marker in the population after evolving 200 generations in the 

population with different starting frequency with (yellow) or without(blue) the toxin-

antidote element(n=100 replicates for each starting frequency). The y-axis shows the 

percentage of the neutral genetic marker in the population following the simulation 

scheme in Figure 4.1 by SLiM. The population size is 1000 and outcrossing rate is 10%. 

This genetic marker is 10kb away from the toxin-antidote element. The percentage of 

homozygous toxin-antidote and neutral marker in the first generation is shown on the x-

axis. The number of simulations that fix or eliminate the marker in the population is 

shown at the bottom. The box plot shows quartiles of the dataset while the whiskers show 
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the rest of the distribution unless the point is an outlier. *** p< 0.001, * p< 0.05, n.s. not 

significant by two-tailed one sample t-test comparing to the initial frequency respectively.  

4.3 Methods 

4.3.1 SLiM simulations 

Scripts for the SLiM simulations are available at GitHub: 

https://github.com/LijiangLong/Individual_based_simulation 
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CHAPTER 5. CONCLUSIONS AND FUTURE STUDIES 

My doctoral dissertation includes designing and implementation of novel quantitative 

methods to study the evolution of speciation. These quantitative methods are useful in large 

scale behavior comparative analysis, mapping the genetic basis of fitness change and 

predicting genome evolution. 

The work in chapter 2 built a pipeline that is able to automatically detect actions of interest 

and then classify different actions. Having ten categories in the classification output 

enabled us to compare the spatial and temporal patterns of different behaviors. For 

example, in a top-down view, having building scoops in the center and building spits 

surrounding them means the fish is building a ‘pit’ bower. On the other hand, having 

building spits in the center and building scoops surrounding them means the fish is building 

a ‘castle’ bower. I showed that feeding behaviors and bower construction behaviors were 

expressed throughout the day but at different times, whereas spawning events occurred 

infrequently in punctuated bursts. These data showed this pipeline can be used to map long 

term behavioral events in time and space both accurately and with a high recall rate, 

allowing future studies to unravel the genetic basis of complex behaviors. There are many 

directions to further extend this work. One of the most important directions is to enable 

this classification network on animals/environments it has not been trained on. In theory, 

neural networks are similar to other supervised learning techniques where the ability to 

generalize is often times impaired by ‘dataset shift’, namely the joint distribution of inputs 

and outputs differ between the training and test stages. There are two components to the 

joint distribution difference: 1. Concept shift 𝑃"%#&'(𝑦|𝑥) 	≠ 	𝑃"()"(𝑦|𝑥)	2. Covariate shift 
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𝑃"%#&'(𝑥) 	≠ 	𝑃"()"(𝑥). Both might decrease the performance when we want to use the same 

model in the test dataset. Concept shift should be small in our dataset because no matter 

which animal the model is looking at, the action of the fish given the video clip is very 

clear. There might be concept shift to categories like ‘no fish other’ because lighting is 

different and caused different reflections. On the other hand, there could be a strong 

covariate shift because different fish have different distribution of actions. Even the same 

fish could do epochs of feeding and building in a single day. To solve the ‘dataset shift’ 

problem, I showed in chapter 2 that label additional video clips for the new animals will 

increase accuracy. However, this step will take a lot of time and thus is not suitable for 

large scale behavior study. A future direction could then be applying other machine 

learning techniques to reduce the ‘dataset shift’. One potential approach is to use domain 

adversarial training. In this approach, there is an additional classifier to the neutral network. 

This new classifier is designed to tell if a video clip is from the training dataset or a new 

dataset. The 3D ResNet then tries to fool this new classifier. In this way, the 3D ResNet is 

forced to learn dataset invariant features. This approach, if properly implemented, is able 

to streamline the computational pipeline and further boost its capacity and power in 

behavior studies.  

Chapter 3 is about identifying the genetic variant responsible for balancing selection 

signature around the toxin-antidote element in C. elegans. Even though the exact 

polymorphism/mechanism is not fully identified, an unexpected fitness effect was found 

for the paternal effect toxin-antidote element peel-zeel. In standard laboratory conditions, 

loss of peel-1 decreases animal fitness through reduced fecundity and growth rate. Having 

a positive fitness while producing a toxic protein is unexpected. To my knowledge, this is 
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the first reported toxin-antidote system that impose a beneficial fitness by itself (Rosendahl 

et al., 2020). This fitness advantage is independent of the antidote gene zeel-1, raising a 

question about the molecular signaling pathways leading to the increased fitness. Even 

though expression pattern analysis of peel-1 shows that it is predominantly expressing in 

the germline, it still remains elusive whether peel-1 can be expressed in other tissues. Thus, 

whether peel-1 functions transgenerational remains an interesting question to ask in future 

researches. Second, the peel-zeel fitness only explains part of the fitness difference between 

the NIL strain QX1198 and N2, raising another question about what polymorphisms 

accounting for the rest of the fitness difference are. One potential clue is the fact that this  

NIL strain shows defective response to dauer pheromone components that is not 

attributable to a well-known chemoreceptor gene srbc-64. Since the NIL strain QX1198 

contains a large introgression encompassing tens of genes, a finer genetic mapping strategy 

is required to find the exact polymorphism accounting for these phenotypical differences. 

These studies will help us to better understand the evolutionary force that has shaped the 

C. elegans genome at this locus. The positive fitness incurred by the toxin also gives one 

example on the destinations of toxin-antidote elements that might be introduced to the field 

artificially.  

Finally, in chapter 4, I used simulations to understand the dynamics of other genomic 

elements when individuals carrying and not carrying toxin-antidote system are admixed. 

Calculations of genotype frequency in the first three generations showed that the frequency 

of unlinked genomic elements of the toxin-antidote element in the survived embryos is not 

its frequency in the population. It also predicts a diverging point at 1/3, above which 
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unlinked genomic elements will increase their frequency in the population. This effect is 

replicated using two independent simulation tools: SLiM and a customized python script.  

Selfish genetic elements are sometimes defined as ‘genetic segments that can enhance their 

own transmission at the expense of other genes in the genome’ (Ågren and Clark, 2018). 

Here I show toxin-antidote elements can enhance their transmission at the benefit of other 

genes in the genome. The simulation results also showed that if there’s any fixed change 

between the two ancestral populations, toxin-antidote elements will eliminate them or push 

them to fixation. Thus toxin-antidote elements can reduce genetic diversity for unlinked 

genomic elements. This relates back to the original intention of this chapter which is to 

answer an unresolved question in chapter 3: why does peel-zeel region show strong 

signature of balancing selection? Results in this chapter led us to a promising hypothesis: 

the high divergence observed is not just by long-term balancing selection. It is also caused 

by reduced genetic diversity in the rest of the genome. To test this hypothesis, more work 

needs to be done. For example, simulations following the special lifestyle of C. elegans 

will help to mimic what happened in the wild. A colony of C. elegans in the field is often 

found by only 3-5 animals and group selection is extensive (Richaud et al., 2018). Frequent 

admixture between population with and without toxin-antidote elements happens in the 

wild. Whether these frequent admixtures can reduce genomic variance remains an 

interesting and important question to answer.  

My doctoral thesis research demonstrates that quantitative methods are useful to study the 

genetic basis of long-term evolution. Comparative behavior studies are enabled by 

combining a set of machine learning and deep learning techniques. Identification of the 

causal genetic variants for fitness change is empowered by targeted genome editing with 
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CRISPR/Cas9 and quantitative competition experiments. And predication the conflicted 

evolution of toxin-antidote elements and other genomic elements is supported by 

quantitative modeling and simulation.   
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