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SUMMARY 
 
 
 
The brain is a complex self-organizing biophysical system and intrinsically very active. 

How such intrinsic activity organizes the brain in humans is widely being studied during 

resting-state using functional magnetic resonance imaging (rsfMRI) and the functional 

connectivity (FC) metric. FC, calculated as the Pearson correlation between rsfMRI 

timeseries from different brain areas, indicates coherent activity on average over time, 

and can reflect some spatial aspects of the brain’s intrinsic organization. For example, 

based on the FC profile of each area, the cerebral cortex can be parcellated into a few 

resting-state networks (RSNs) or exhibit a few functional connectivity gradients (FCGs). 

Brain is a complex system and exhibits varied dynamic spatiotemporal regimes of 

coherent activity, which are still poorly understood. A subset of such regimes should be 

giving rise to FC, yet they might entail significantly insightful aspects about the brain’s 

self-organizing processes, which cannot be captured by FC. Among such dynamic 

regimes is the quasi-periodic pattern (QPP), obtained by identifying and averaging 

similar ~20s-long segments of rsfMRI timeseries. QPP involves a cycle of activation and 

deactivation of different areas with different timings, such that the overall activity within 

QPP resembles RSNs and FCGs, suggesting QPP might be contributing to FC. 

To robustly detect multiple QPPs, method improvements were implemented and three 

primary QPPs were thoroughly characterized. Within these QPPs activity propagates 

along the functional gradients at the cerebral cortex and most subcortical regions, in a 

well-coordinated way, because of the consistencies and synchronies across all brain 

regions which reasonably accord with the consensus on the structural connections. 

Nuanced timing differences between regions and the closed flow of activity throughout 

the brain suggest drivers for these patterns. When three QPPs are removed from rsfMRI 
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timeseries, FC within and particularly between RSNs remarkably reduces, illustrating 

their dominant contribution. Together, our results suggest a few recurring spatiotemporal 

patterns of intrinsic activity might be dominantly coordinating the functional connections 

across the whole brain and serving self-organization. These intrinsic patterns possibly 

interact with the external tasks, affecting performance, or might provide more sensitive 

biomarkers in certain disorders and diseases. 

 



1 
 

CHAPTER 1: INTRODUCTION 
 
 
 
The brain is a complex self-organizing biophysical system [1-7] and intrinsically very 

active [3-6]. In adult humans, it weighs 2% of body mass, but takes 20% of resting 

energy consumption, with any external task adding up to 5% [5-6]. This extensive level 

of intrinsic activity might serve the purpose of self-organization. One way to study this 

hypothesis is the resting-state paradigm, which is functionally imaging the brain while 

individuals are awake with no task for a few tens of minutes. 

One of the widely used functional imaging modalities of our time is the functional 

magnetic resonance imaging (fMRI), which is non-invasive and covers the whole brain, 

but has its own limitations. Based on the most common image acquisition settings, fMRI 

timeseries are blood oxygenation levels dependent (BOLD) signals, indirect measures of 

the neuronal activity, with response function that is inherently slow and non-trivial to 

interpret due to the complexity of the involved physiology [3,5-6,8]. Despite limitations, 

BOLD timeseries reflects neuronal activity, as vastly supported by other more direct 

neuroimaging modalities [5-6,9-10] or the behavioral correlates which are attributed to 

the brain’s functionality (historically) [6,10-11]. This fact can be utilized particularly if 

infraslow (<0.1Hz) processes across the whole brain (macroscale) are of interest and 

particularly if comparative approaches or metrics are adopted, e.g., difference between 

the resting-state and task paradigms or relative timings between areas. 

The simplest metric of relative timing between brain areas is the Pearson correlation 

between their timeseries, called functional connectivity (FC), which indicates coherent 

activity on average over time [6]. Intrinsic FC between different pairs of areas (FC for 
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brevity) is the most widely used metric to study the intrinsic organization of the human 

brain based on the resting-state BOLD-based fMRI (rsfMRI). 

The most relevant application of FC is the parcellation of the cerebral cortex into a small 

number of macroscale networks, called resting-state networks (RSN) [12,5-7] – the term 

network refers to a set of areas or nodes that are not necessarily adjacent. Each RSN is 

basically comprised of nodes that exhibit similar FC, and also domain-general 

functionality at the behavioral-level; for example, in a wide range of tasks that require 

externally oriented attention, nodes of the task positive network (TPN) activate, while 

nodes of the default mode network (DMN) mostly deactivate [12,5-7]. In contrast, nodes 

of the DMN activate in a wide range of tasks that require internally oriented attention, 

e.g., thinking about self [12,5-7]. 

An equally relevant application of FC is the identification of the macroscale gradients 

(FCGs) across the span of the cerebral cortex [13]. Each FCG is basically the spatial 

axes along which areas exhibit similar FC. For example, in the primary FCG (FCG1) at 

the cerebral cortex, the areas that belong to the unimodal networks of somatomotor 

(SMN) or visual (VN) are located at one end, while the areas that belong to the 

transmodal DMN are located at the other end, showing the unimodal networks are 

similar to one another in terms of FC but maximally dissimilar to the DMN. 

FC and its wide range of application are based on time-averaged coherence and can 

reflect some spatial aspects about the brain’s intrinsic organization. Brain is complex and 

exhibits varied intrinsic dynamic spatiotemporal regimes of coherent activity [3,9-10,14-

15]. A subset of such regimes should be giving rise to the time-averaged coherence 

indicated by FC, yet they might entail significantly insightful aspects about the brain’s 
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self-organizing processes, which cannot be captured by FC, and it might be well 

impactful to characterize them independently. 

Among such intrinsic dynamic spatiotemporal regimes of coherent activity is the quasi-

periodic pattern (QPP) [16-18]. In the rsfMRI timeseries of the rat’s brain, Majeed and 

colleagues [16] observed a lateral to medial propagation of activity in the somatomotor 

areas that seemed to occur quasi-periodically. Subsequently, a simple correlation-based 

method was implemented to identify similar segments of a functional scan and simply 

average them for a representative spatiotemporal template, named quasi-periodic 

pattern or QPP. 

Applying such method in humans, using the rsfMRI timeseries of all brain areas, results 

in a QPP that is ~20-second long, and involves a cycle of activation and deactivation of 

different brain areas with different relative timings [16,18]. For example, the cerebral 

nodes of the TPN exhibit opposite phase relative to the nodes of the DMN, or the medial 

prefrontal cortex exhibit focal propagation of activity [16]. Coherent activity within the 

QPP is overall reminiscent of macroscale RSNs and FCGs, which along its quasi-

periodic recurrence suggests this pattern might be giving rise to FC. 

This thesis is an attempt to better understand QPPs in humans, as recurring 

spatiotemporal patterns of brain’s intrinsic activity that might serve the purpose of self-

organization. The first step towards such understanding, in general, is to detect QPPs 

robustly, and to characterize the activity within these patterns thoroughly. The next step 

can be to show the extent of the contribution of QPPs to FC, the most widely used metric 

reflective of the brain’s intrinsic organization. If QPPs turn out to be the dominant 

contributors to FC, then perhaps they are serving self-organization, and thoroughly 
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characterizing them might be significantly insightful because of the novel aspects they 

might entail, such as nuanced timing differences between areas, which cannot be 

captured by FC. To address the abovementioned steps, this thesis is divided into the 

following parts: improving the detection of QPPs and showing their contribution to FC 

(chapter 2), characterizing the activity within the QPPs (chapter 3), and discussing the 

results (chapter 4). 

Chapter 2. To better understand QPPs, the first step is to robustly detect these patterns. 

Therefore, the opening section of this chapter introduces a few improvements added to 

the method developed by Majeed and colleagues [16]. These improvements ensure the 

same QPP is repeatably detected, and such QPP is highly representative of its 

contributing segments and recur often. The next main section of chapter 2 introduces a 

new method to detect other QPPs, in addition to the primary QPP (QPP1). These 

improvements are applied to rsfMRI scans of ~800 individuals from the Human 

Connectome Project dataset [19] S900. To better understand QPPs, after robustly 

detecting them, the next step can be to show the extent of their contribution to FC, which 

appears in a main section. Given QPPs are macroscale and recurring patterns, they may 

be related to non-neuronal sources of BOLD signal fluctuations, such as slow variations 

in the respiration and heart rate [20-23]. Such non-neuronal sources have widespread 

effects and are inherently repetitive. This relation is essential to inspect for a better 

understanding of QPPs and is addressed in the closing sections of chapter 2. 

Results. QPPs 1 to 3 all involve a ~20-second cycle of activation and deactivation of 

different brain areas such that the RSNs and their relative timing of activity are readily 

observable. However, within each QPP, the constellation of correlation between the 

RSNs is unique. These patterns are equally representative of their contributing 
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segments but progressively recur less often, and each QPP is more often followed by 

other QPPs than itself. QPPs 1 to 3 are dominant contributors to the functional 

connectivity particularly between RSNs, which suggests these intrinsic patterns might be 

serving self-organization. QPPs have a principled timing relation with the slow variation 

in the respiration and heart rate, which suggests a neurophysiological basis for these 

intrinsic patterns. 

Chapter 3. To better understand QPPs, after robustly detecting them and showing their 

dominant contribution to FC, a thorough characterization of the activity they involve is 

necessary. QPPs might entail novel aspects about the brain’s self-organizing processes 

(e.g., driving relation between regions), which cannot be captured by FC. This 

characterization is based on QPPs at the group-level (~800 individuals), in the 

grayordinate (~62K cortical vertices and ~30K subcortical voxels), obtained in chapter 2. 

To summarize the activity within these patterns, the timecourses of each QPP across 

cortical and subcortical areas are clustered and their time of peak activation is 

determined. Our description of activity is divided into seven regions which are the 

cerebral cortex, cerebellum, thalamus, hippocampus, amygdala, brain stem and deep 

brain nuclei, and striatum. For each region, to distinguish different areas and to compare 

the accordance of our results with the literature, an existing parcellation scheme is 

adopted, with priority given to the well-established parcellation schemes based on the 

FC and rsfMRI.  For each region, any consensus on its tract-based connectivity and any 

already-reported FCG are considered as well. 

Results. QPPs 1 to 3 involve well-coordinated propagating activity across the whole 

brain. Within each pattern, at the cerebral cortex, activity propagates along one of the 

cortical FCGs. Coarse summary of the cortical activity accords with the cortical RSNs. 
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Time-locked and consistent with the cortical propagation, all subcortical regions exhibit 

either propagation of activity or simple activity, such that the propagation axes are 

consistent with the cortex and consistent with any already-reported FCG in each region. 

Coarse summary of the subcortical activity mostly matches any consensus about tract-

based connectivity, and to an extent, accords with the FC-based parcellations. Nuanced 

timing differences between brain regions suggest driving mechanism within QPPs. For 

example, the thalamus and brain stem lead the cortex as activity propagates to the 

nodes of DMN within QPP1, or to the nodes of TPN within QPP2. Closed flow of peak 

activity throughout the brain suggest origins for the cycles of QPPs.  

Chapter 4. Our results in chapters 2 and 3 suggest a few recurring spatiotemporal 

patterns of intrinsic activity might be dominantly coordinating the functional connections 

across the whole brain and serving self-organization. QPPs reveal novel specific aspects 

about RSNs and FCGs, as well as the driving relations between regions and the origins 

of QPP cycles, which we discuss in chapter 4. Since our results are mainly based on 

contribution of QPPs to FC and propagation of activity, we also discuss how QPPs relate 

to the already known contributing factors to FC and existing reports of propagation. 
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CHAPTER 2: METHOD IMPROVEMENTS, OTHER QPPS, 
CONTRIBUTION TO FUNCTIONAL CONNECTIVITY, AND 

RELATIONSHIP WITH GLOBAL AND PHYSIOLOGICAL SIGNALS 
 
 
 

2.1 Introduction 

To better understand the quasi-periodic patterns (QPPs) of the brain’s intrinsic activity 

that might serve self-organization, the first step is to robustly detect the QPPs. The next 

step can be to show their contribution to the functional connectivity (FC) between brain 

areas, since it is the most widely used metric reflective of the brain’s intrinsic 

organization. Both steps are addressed in this chapter. While a thorough 

characterization of activity within QPPs is addressed in the next chapter, some basics 

aspects are included in this chapter. While a comprehensive discussion of the results 

appears in chapter 4, some method related topics are discussed in this chapter. 

The current algorithm to detect a QPP [16,18] starts with an initial segment of a 

functional scan, with a present duration (~20s), identifies similar segments to that initial 

segment, based on a sliding correlation approach, replaces the initial segment with the 

average of similar segments and iteratively reidentifies the similar segments till 

convergence (Figure 1). The outputs are a spatiotemporal template, that is the average 

of a set of similar segments, and a sliding correlation timecourse with maxima indicating 

the start of the contributing segments to the output template, i.e., indicating the 

occurrence of the output template. The medians of correlation values at maxima and 

times between successive maxima respectively are referred to as the strength and 

periodicity of the output template. 
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The original method to detect a QPP [16] inspects a limited number of randomly selected 

initial segments and performs a hierarchical clustering of the resulted templates to select 

the QPP. However, inspecting some initial segments may result in a template that has 

low strength or periodicity [18]. Inspecting some other initial segments may result in the 

same template but at different phases [18]. Taken together, the original method might 

not repeatably detect the best pattern which has high strength and periodicity. 

To ensure robust detection of the QPP, a few improvements are implemented. Starting 

from the individual-level analysis, all possible initial segments are inspected and the 

QPP is selected with a customized criterion to have high strength and periodicity [18]. To 

obtain the group-level QPP, first the QPP of each individual is phase-adjusted, such that 

a seed area exhibits activation at the first half of the ~20s cycle. Then the average of the 

phase-adjusted QPPs is correlated with all scans of all individuals for a fine-tuned 

identification of similar segments whose average constitute the group-level QPP. These 

improvements are applied to resting-state functional MRI (rsfMRI) scans of ~800 

individuals from the Human Connectome Project (HCP) dataset [24], ~1hr/individual. 

Thus far, only one QPP has been reported, hereon called QPP1. To examine the 

existence of other QPPs, QPP1 is regressed at the individual-level, residual scans (after 

QPP1 regression) are reanalyzed using the improved method, and QPP2 is detected at 

the individual and group levels. Further, QPPs 1 and 2 are regressed and QPP3 is 

detected in a similar fashion. While QPP4 and above can also be detected, we decided 

to limit the scope of this thesis to the three primary QPPs, as will be discussed. For QPP 

regression, two methods are implemented and the resulting QPPs 2 and 3 are compared 

between methods. Crucially, to examine the existence of QPPs 2 and 3 in the original 
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scans, the average of their contributing segments based on the original scans and the 

residual scans are compared. 

Activity within QPPs 1-3 reminds of the macroscale resting state networks (RSNs) [12]. 

To coarsely characterize, correlation between the RSNs within the ~20s duration of each 

QPP are calculated and differences are compared. As basic metrics of QPPs, their 

strength and periodicity are quantified. Occurrence of QPPs relative to one another 

throughout the rsfMRI timeseries is also characterized. Reproducibility of QPPs across 

different populations is examined by randomly dividing individuals into equal subgroups, 

multiple times, and comparing subgroup QPPs. 

That the activity within QPPs 1-3 is reminiscent of macroscale RSNs, that RSNs are 

obtained based on FC, and that QPPs 1-3 are recurring patterns, together suggest these 

patterns might be giving rise to FC. If QPPs turn to be dominant contributors to FC, first, 

these patterns perhaps serve the brain’ self-organization, and second, a better 

understanding of them is insightful because of the novel aspects they might entail. The 

contribution of QPPs 1-3 to FC is examined by comparing the FC matrices of the original 

scans and the residual scans after regressing these patterns. 

Because QPPs are macroscale and recurring patterns, they might have relationships 

with non-neuronal sources of BOLD signal fluctuations, such as head motion or slow 

variations in the respiration and heart rate, which can influence the whole brain [20] and 

are inherently repetitive. To better understand QPPs, it is essential to inspect such 

relationships. The simplest and most common summary metric of signal fluctuations 

across the whole brain is the global signal (GS), a 1D timeseries obtained by averaging 

all timeseries inside the brain [20]. Since among the contributors to the GS are non-
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neuronal sources of BOLD signal fluctuations (motion and physiological variation), and 

since the GS is a simple and common summary metric, first, the relation between QPPs 

and the GS are inspected. Later, head motion levels are considered. Finally, the relation 

between QPPs and slow variations in the respiration and heart rate are examined. 

To inspect the relationship between QPPs and the GS, as the primary approach, the 

contributing segments of QPPs 1-3, identified based on the scans with GS regression 

(GSR), are averaged over the scans without GSR and the resulted templates are 

compared with QPPs 1-3. As a complementary approach, the scans without GSR are 

reanalyzed to detect QPPG and the relative occurrence of QPPG with other QPPs are 

examined. Suggested by a noticeable individual variability within QPPG, the spatial 

extents (SEs) of strong negative and positive correlation between the DMN and other 

areas within QPPG are quantified. Two subgroups of individuals with the highest 

negative and positive SEs are formed and subgroup QPPGs are obtained. Moreover, the 

contributing timeslots of each subgroup QPPG are averaged over the 1D timeseries of 

GS to obtain a ~20s timecourse for the GS, based on which a novel point about the 

spatiotemporal dynamics of the global activity is specified. As a support for this point, 

relative occurrence of QPPG and the GS fluctuations is examined and the basic metrics 

of QPPG are quantified. To examine the effect of head motion [20], QPPG of two 

subgroups of individuals with the lowest and the highest motion levels are compared. 

To inspect the relationship between QPPs and slow variations in the respiration (RV) 

and heart rate (HV), first, two timeseries for RV and HV are constructed [21-22]. As a 

common approach, estimates of induced fMRI signal fluctuations due to RV and HV are 

regressed from the scans without GSR, QPPG is redetected and SEs are recalculated. 

As a customized approach, the contributing timeslots of all QPPs are averaged over RV 
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and HV timeseries to build ~20s timecourses for the RV and HV, and their timings are 

compared to those of the GS and DMN. 

2.2 Method 

The main algorithm to detect a QPP is correlation-based and iterative, identifies similar 

segments of a functional scan and averages them for a representative spatiotemporal 

template. Its steps are as follows (Figure 1). A segment with a preset duration is initially 

selected. Sliding correlation of this initial segment with the scan is calculated. Local 

maxima above a preset threshold, or maxima for brevity, in the sliding correlation 

timecourse are identified. Segments of the scan starting at these maxima are averaged 

together to create a template. The abovementioned process is then repeated with the 

template in place of the initial segment and the process repeats until negligible change 

between iterations is reached. Output of the algorithm after it converges are (i) a 

template, that is the average of a set of similar segments, and (ii) a sliding correlation 

timecourse with its maxima indicating the start of the contributing segments to the output 

template, in other words, the occurrence of the output template. The median of 

correlation values at maxima and the median of times between successive maxima 

respectively are referred to as the strength and periodicity of the output template. 

2.2.1 Robust detection of QPP 

The original method [16] to detect the QPP involved running the main algorithm for a 

limited number of randomly selected initial segments, using hierarchical clustering on the 

resulted templates, and selecting the template that has the maximum average 

correlation with the rest of the templates in the biggest cluster as the most representative 

template or the QPP. However, inspecting some initial segments may results in a 

template that has a low strength or periodicity [18]. Inspecting some other initial 
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segments may result in the same template but at different phases [18]. Taken together, 

the original method might not reproducibly detect the best pattern. 

To ensure robust detection of QPP, all possible initial segments were inspected [18], 

starting from the individual-level analysis, using a computationally efficient Matlab script, 

in terms of analysis time and memory usage. For each resulted template corresponding 

to each initial segment, the values of its correlation timecourse at supra-threshold local 

maxima were summed and the template with the highest sum was designated as the 

most representative template or the QPP [18] (Figure 2). Selected in this way, the QPP 

is guaranteed to have both high strength and high periodicity relative to other templates. 

 

In order to obtain the group-level QPP by averaging the individual QPPs, the first step is 

to phase-adjust each individual QPP, in other words, to have a spatiotemporal template 

whose timecourse at a certain node starts around zero at timepoint 1 and reaches 

maximum during the first half of the cycle. 

To phase-adjust a QPP, the following steps were implemented (Figure 3). The QPP was 

compared with all other templates, corresponding to all the inspected initial segments. 

Preprocessed & 
concatenated 
scans of each 

individual 

Examining all 
initial segments 
using the main 

algorithm 
(Figure1) 

For each resulted 
template, finding the 
sum of its correlation 

values at supra-
threshold local maxima 

Choosing the template with 
maximum sum as the QPP.  
The QPP would have higher 

strength and periodicity 
compared to other templates 

ΣCmaxim

 

Figure 2 Robust detection of the QPP for an individual. 
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Templates with comparison values greater than 0.88 were kept since they were similar 

to the QPP though they could have different phases. These templates were sorted, in 

descending order, based on their sum of correlation at maxima, the same metric 

previously used to select the QPP. The first template whose left early visual area (left V2 

or parcel 184, the seed for phase-adjustment, which I chose arbitrary, at an early stage 

of my work) had the following conditions was designated as the phase-adjusted QPP: 

timepoint 1 being near-zero, average of the first three timepoints being positive, 

maximum occurring during the first half of the cycle and before minimum. These 

conditions were set based on the abovementioned definition of the phase-adjust. If no 

such template was found, only the last condition was enforced. When comparing the 

QPP with other templates, a fine phase-matching procedure was performed (Figure 3d), 

by time-shifting other templates, a few timepoints forward and backward, and taking the 

maximum Pearson correlation across different time-shifts. When the QPP and other 

templates were compared for all individuals, a bimodal distribution was obtained, and the 

threshold 0.88 used above is the peak of the smaller mode (Figure 3c). 
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(a) Phase-adjusting a QPP 

QPP of individual Keeping similar 
templates with 

comparison values more 
than 0.88 (see part (c)) 

Getting each template’s 
timecourse at parcel 

184 (V2), the seed for 
phase-adjustment 

Sorting those 
similar templates 
based on ΣC

maxima
 

from high to low 

Checking the strict criteria on 
each seed: the first seed 
meeting it belongs to the 

phase-adjusted QPP 

Comparing 
using fine 

phase-matching 
(see part (d)) 

Strict criteria: timepoint 1 having a near-zero 
value, average of the first three timepoints 
being greater than zero, maximum occurring in 
the first half of the cycle and before minimum 

If needed, 
repeating with the 

relaxed criteria 

Relaxed criteria: 
maximum occurring in 
the first half of the cycle 
and before minimum 

V2 

Other templates 
corresponding 
to all inspected 
initial segments 

(b) An example for phase-adjusting 
(c) Comparison values of a QPP with other 
templates per individual for all individuals 

Correlation  

Co
un

t 

Timepoint  

Am
pl

itu
de

 

Template j 
2D array, 
e.g., 360x30 

Flatten to 1D 

Temporal extension 

Each template is the average of its 
contributing segments, e.g., with length 
30 timepoints. For temporal extension, 
segments of length 60, starting 15 
timepoints earlier, are averaged 

Time-shifting & 
keeping central part 

Extended 
Template i, 
2D array 
e.g.,360x60 

Shifted 
Template i 
2D array 
e.g.,360x30 

Time-shifting (e.g., from -7 to 7) 
was done by zero-padding one 
end and deleting the other end. 
the central part (e.g., timepoints 
16 to 45) was kept 

Flatten to 1D 

Pearson correlation 
Finding maximum correlation across 

different shifted versions of Template i 

Template i 
2D array, 
e.g.,360x30 

(d) Comparing two templates by fine phase-matching 

Figure 3 Phase-adjusting a QPP and comparing templates by fine phase-matching. 
(a) Phase-adjusting the QPP of an individual. (b) An example for phase-adjusting. (c) 
Comparing QPP of an individual with other templates corresponding to other 
inspected initial segments results in a bimodal distribution, with lower mode (0.88) 
taken as the threshold in part (a). (d) Comparing templates by fine phase-adjusting. 
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To obtain group QPP, the following steps were implemented (Figure 4). The phase-

adjusted QPP of all pairs of individuals were compared, using the fine phase-matching 

procedure (Figure 3d), and the matrix of inter-individual comparison was constructed. 

The sum of each row of this matrix was calculated, and the individual with the maximum 

sum was designated as the reference individual since he/she was the most similar to 

others. The phase-adjusted QPP of all the individuals were fine phase-matched to that of 

the reference individual and averaged to obtain a prior template. This prior template was 

further correlated with the scans of all the individuals, the supra-threshold maxima in the 

correlation timecourse were identified, and the fine-tuned contributing segments starting 

at maxima were averaged to obtain the group QPP. The last stage was implemented to 

mitigate the imperfections in phase-adjusting the individuals’ QPPs, and to ensure that 

any group QPP is just a simple average of similar segments across the individuals. 

 
Figure 4 Obtaining the group QPP by fine-tuned averaging. 

Phase-adjusted QPP of individual i 

Comparing using fine phase-matching (Figure3) 
and building the matrix of inter-individual 

comparison 
  

Finding the reference individual, who is the most 
similar to others, by summing rows and finding 

maximum 
  

Fine phase-adjusting the phase-adjusted QPPs of 
all individuals to that of the reference individual, 
and averaging them to obtain a prior template 

  

Correlating the prior template with the 
individuals’ scans, and finding the supra-threshold 

local maxima, which would serve as the fine-
tuned contributing segments for the group QPP 

Phase-adjusted QPP of individual j 

This stage was implemented to mitigate the 
imperfections in phase-adjusting the individuals’ 
QPPs, and ensure the group QPP is just a simple 

average of similar segments across individuals 
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2.2.2 Data, preprocessing and free parameters 

Data. Minimally preprocessed grayordinate and FIX de-noised resting-state scans were 

adopted from HCP S900 dataset [24]. Grayordinate includes ~31K surface-based 

cortical vertices per hemisphere and ~30K subcortical voxels and excludes the white-

matter and CSF voxels. All 817 individuals with complete four resting-state fMRI (rsfMRI) 

scans were considered for further analysis, regardless of the head motion levels, since 

head motion does not majorly influence the infraslow (<0.1Hz) quasi-periodic patterns 

[18] (will be shown here as well). Each HCP rsfMRI scan has 1200 timpoints and is 

~15min, fMRI repetition time (TR) or time resolution is 0.72s, and four scans were taken 

in two successive days, with two back-to-back scans around the same time in each day. 

Preprocessing. The timeseries of each cortical vertex and subcortical voxel per scan 

underwent the following additional steps (Figure 5a): demeaning and filtering, nuisance 

regression, and parcellation. 

Preprocessing: demeaning and band pass filtering. After demeaning, a fourth order 

Butterworth filter with 1dB cutoff frequencies of 0.01 and 0.1Hz was applied using Matlab 

fdesign and filtfilt functions. To minimize transient effects, zero pads were inserted at 

both ends, before filtering and removed afterwards. 

Preprocessing: nuisance regression. White matter (WM) and cerebrospinal fluid 

(CSF) signals, which were obtained by demeaning and filtering (0.01-0.1Hz) the 

timeseries that HCP provides, were regressed. Unless noted otherwise, the gray matter 

(GM) signal was also included among the regressors. The GM signal was obtained by 

averaging all the timeseries resulted from the previous step. 
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When the GM signal is also regressed, the nuisance regression is referred to as the 

global signal regression or GSR, the rational is as follows. In the volumetric format, the 

global signal (GS) is the average of all the voxels’ timeseiries that are inside the brain 

mask. Therefore, the GS entails signals from mainly three tissue types, GM, WM, and 

CSF. In the grayordinate format, three separate signals for the GM, WM and CSF are 

available, therefore, we considered three separate nuisance regressors at the same time 

and refer to them as the global signal.  

Note, the GS is strongly correlated with the GM [25] (based on which the GS is viewed 

as a neuronal signal). The GS and GM are weakly and negatively correlated with the 

CSF (Figure 5b) [25] (which is linked to the overall cerebral blood circulation). 

Demeaning & 
bandpass filtering 

(0.01-0.1Hz) 

Regressing 
GM, WM & 
CSF signals 

Concatenating 
all four scans 
per individual 

  

Normalizing the 
zscore of each 

parcel’s timeseries 

Averaging across 
Glasser’s 360 

cortical parcels 
  

Cortical & 
subcortical 
timeseries 

of each scan 

Averaging across 
all gray matter 

(GM) 
Demeaning & 

filtering 0.01-0.1Hz 

White Matter 
(WM) & CSF 

timeseries 
provided by HCP 

Performed unless noted otherwise 

(a) 

(b) 

Figure 5 Further preprocessing performed on the FIX denoised grayordinate rsfMRI 
timeseries of HCP S900 dataset (a). GM and CSF are negatively correlated (b), 
particularly in individuals with stronger GM or higher root mean square (rms) of GM. 
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Considering the GM, WM, CSF as separate regressors does not cause error in our 

codes, despite the slight correlation between each pair. 

In the literature, WM and CSF signals are commonly regressed [23], however, including 

the GS (precisely, sum of all voxels inside the brain, which is strongly correlated with the 

GM) along those nuisance regressors is a controversial practice [20-23]. The 

relationship between QPPs and the GS are elaborately examined in a later section. As 

will be shown, GSR has negligible effect on the QPPs 1-3 obtained post GSR, which 

shows these QPPs are not artifacts of GSR. This also implies the contributing segments 

of these QPPs, on average, have negligible global fluctuations at the first place. 

Preprocessing: parcellation. To decrease the analysis time and memory usage, the 

spatial dimension of rsfMRI timeseries was reduced from ~92K cortical vertices and 

subcortical voxels to 360 cortical parcels of Glasser’s parcellation scheme [26] by 

averaging the timeseries of cortical vertices across each parcel. Each parcel's timeseries 

was then norm zscored - note, Glasser’s scheme is based on the multimodal HCP data 

including rsfMRI. 

Crucially, in detecting a QPP, reducing the spatial dimension by parcellation can be 

considered as a very effective expediting step to identify the contributing segments of 

that QPP. To have a QPP with original spatial resolution in grayordinate (~92K cortical 

vertices and subcortical voxels), or generally in volumetric voxel-space, its contributing 

segments can be averaged in grayordinate or voxel-space (Figure 6). A supporting 

analysis, performed on 35 randomly selected individuals, showed very similar template 

is obtained when using the grayordinate timeseries to identify the contributing segments, 

particularly in the group-level, compared to only using cortical parcels’ timeseries. Note, 
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for this supporting analysis, the two resulting templates, each with a spatial dimension of 

~92K, were compared using the fine phase-matching procedure (Figure 3d). 

 

Preprocessing: concatenating. To detect QPP per individual, four scans of each 

individual were concatenated (4800 timepoints, ~1hr). 

Free parameters. QPPs in healthy adult humans is approximately ~20s long [16,18]. 

Therefore, the duration of QPP was set to 30 timepoints (21.6s) and 4×(1200-

30+1)=4684 initial segments were inspected per individual (Figure 2). Correlation 

threshold for the first iteration of the main algorithm (Figure 1) was set to 0.2 and for the 

rest of iterations was set to 0.3. 

(b) 

(a) 

Figure 6 Obtaining a QPP in grayordinate in addition to parcel-space, either for each 
individual or for group. The contributing segments of the QPP are identified based on 
a parcel-space analysi (only cortical parcels in the current work), while grayordinate 
includes ~92K cortical vertices and subcortical voxels. 

Demeaning, 
filtering, 

regressing 
GM, WM & 
CSF signals 

Cortical & 
subcortical 
timeseries 

  Normalizing 
zscore 

Averaging across 
cortical parcels and 
normalizing zscore 

Averaging the 
contributing segments 

QPP in 
grayordinate 

QPP in 
parcel-space 

Averaging the 
contributing segments 

Averaging the 
contributing segments 

belonging to an individual 

Averaging 
across 

individuals 

Group QPP with a 
distribution of values per 
timepoint per timecourse 

for statistical testing and for group QPP 

per scan per individual across scans or individuals 
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2.2.3 Detecting other QPPs 

Thus far, only one QPP has been reported [16,18], hereon called QPP1, which we 

robustly detected based on the described improvements and the free parameters, at the 

individual and group levels. To examine the existence of other QPPs, QPP1 was 

regressed and residual scans (after QPP1 regression) were reanalyzed (Figure 7). 

 

Two methods for regression was implemented both using GLM. 

First, scan-wise regression (Figure 8a), where QPP1 of each individual was convolved 

with its correlation timecourse to build a regressor for each rsfMRI scan. Since QPP is a 

spatiotemporal pattern and its timecourses are different for each parcel (i.e., spatial 

dimension), convolving each QPP with its correlation timecourse and regressing from 

each scan was done per parcel (i.e., to regress each QPP, each of its 360 timecourses 

was convolved with the correlation timecourse, and was regressed from the 

corresponding parcel’s timeseries). 

Residual scan after 
regressing QPP1 

(/QPP1&QPP2) of each 
individual 

Normalizing zscore 
and concatenating 
scans per individual 

Detecting QPP2 (/QPP3) or phase-adjusting it, 
using the same procedure to robustly detect 
QPP1 (Figure2) or phase-adjust it (Figure3) 

Averaging the contributing segments of the 
original scans, NOT the residual scans, to build 
QPP2 (/QPP3) or its phase-adjusted version 

To build QPP2 and QPP3, averaging segments 
of the original scans or the residual scans 

results in near identical templates. Using the 
original scans is obviously a better choice. 

Phase-adjusted QPP2 
(/QPP3) of individuals 

Fine-tuned averaging 
(Figure4) Group QPP2(/QPP3) 

Figure 7 Detecting QPP2 or QPP3. 
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QPP1’s correlation 
timecourse per scan 

(C1: 1x1200) 

QPP1 
(360x30) Convolving QPP1 per 

parcel with C1, to build a 
regressor for each parcel 

Each scan 
(360x1200) Regressing the 

regressor from the scan, 
per parcel, using GLM 

(a) Scan-wise regression of QPP1 

QPP1 
(360x30) 

Contributing 
segments of QPP1 
(multiple 360x30) 

Flatten to 1D  
to build a regressor 

Correlating QPP1 with the outputted scan to 
find any supra-threshold local maxima, 
repeating the same regression process till all 
local maxima fall below the threshold 

Flatten to 1D 
Regressing 
using GLM 

Replacing the contributing 
segment with the 
reshaped residuals 
(reshaped back to 360x30) 

(b) Segment-wise regression of QPP1 

(c) Regressing QPPs 1 and 2 

QPP1 and C1 Convolving QPP1 with C1 
and QPP2 with C2, both 
per parcel, to build two 
regressors for each parcel 

Each scan 
Regressing the two 
regressors from the scan, 
per parcel, using GLM 

QPP2 and C2 

Scan-wise method 

QPP2: derived by scan-wise 
regression of QPP1 
C2: correlation timecourse of QPP2 
  

Segment-wise 
regression of QPP1 

Segment-wise 
regression of QPP2 

Each scan 

QPP1 
QPP2 

Residual scan 

Segment-wise method 

QPP2: derived by segment-wise 
regression of QPP1 
  

Figure 8 Scan-wise (a) and segment-wise (b) regression of QPP1. Regressing QPPs 
1 and 2 (c). 
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Second, segment-wise regression (Figure 8b), where QPP1 of each individual, a 2D 

array of 360x30, was flattened to a 1D array of 1x10800 and was regressed from each of 

its contributing segments, which were flattened to 1D arrays as well. Each contributing 

segment was then replaced by the reshaped residuals (reshaped back to 2D array of 

360x30). To ensure no supra-threshold maxima exists in the residual scan, QPP1 was 

correlated with the residual scan and was regressed from the segments corresponding 

to any detected supra-threshold maxima. 

After regressing QPP1 of each individual per scan, the residual scans per individual 

were norm zscored and concatenated, QPP2 was robustly detected based on the same 

improved method and free parameters described earlier, first at the individual-level then 

at the group-level (Figure 7). 

QPP1 and QPP2 of individuals were further regressed and the residuals were 

reanalyzed to robustly detect QPP3, using similar method and parameters, for 

individuals and group (Figure 7). In regressing QPP1 and QPP2, the same regression 

method to derive QPP2 was used (Figure 8c). In that, when using the scan-wise method, 

we made two regressors, per parcel, by convolving the QPP1 with its correlation 

timecourse and convolving the QPP2 with its correlation timecourse, and regressed 

them, per parcel, in a single step from the scan. When using the segment-wise 

regression, we regressed QPP1 and QPP2 in two sequential steps. As will be discussed, 

we decided to limit the scope of this thesis to QPPs 1 to 3. 

Crucially, as will be shown, to build QPP2 and QPP3, averaging their contributing 

segments based on the original scans or the residual scans (using either of the 

regression methods) results in near identical templates. In other words, QPP2 and QPP3 
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exist in the original scans, just as QPP1 exists. Using the original scans is a better 

choice, because there would be no concerns about possible distortions due to 

regression. Therefore, we built QPP2 and QPP3 based on the original scans. Moreover, 

as will be shown, QPPs 1-3 are indeed three different templates, and QPPs 2-3 derived 

based on the two regression methods are identical. Note, comparison of any pairs of 

templates, to support the abovementioned statements, was based on the phase-

adjusted version of templates and the fine phase-matching procedure (Figure 3d). Such 

comparisons were performed at the individual-level to obtain a distribution, and 

particularly to have minimum or maximum values, whichever shows the worst case. 

2.2.4 QPPs coarse characteristic, basic metrics, relative occurrence, and 
reproducibility 

Coarse characteristic. All three QPPs involve a 30-timepoint (~20s) cycle of activation 

and deactivation of different brain areas with different timings, such that the overall 

activity within these patterns resembles the macroscale resting state networks (RSNs), 

as will be shown and discussed. Coarse characteristic of a QPP, as we defined, is the 

constellation of correlation between the RSNs within the duration of a QPP. To quantify, 

Yeo’s seven RSNs [12] were adopted. The 30-timepoint timecourses of each group QPP 

were averaged across the parcels belonging to each RSN. This resulted in a 2D array of 

7x30 for each group QPP, for which the 7×7 Pearson correlation matrix was calculated. 

Basic metrics. To obtain a metric to reflect how well a QPP represents its contributing 

segments, the median of the correlation values at the supra-threshold maxima in the 

sliding correlation timecourse of that QPP was calculated, named QPP strength. 

Furthermore, to obtain a metric that shows how often the contributing segments to the 
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QPP occur, the median of the time between successive supra-threshold maxima was 

calculated, named QPP periodicity. 

Relative occurrence. To examine how the QPPs occur relative to one another, in other 

words, how their contributing segments are located in time versus one another, the 

following was implemented. For the contributing segments of QPPi, i=1,2,3, the number 

of the immediately following contributing segments of QPPj, j=1,2,3, were counted. A 

3×3 transition count matrix, showing the counts from QPPi to QPPj, was calculated per 

individual, and averaged across the individuals. The average time between QPPi to 

QPPj was also calculated. 

Reproducibility. To examine whether QPPs are reproducible across different 

population of individuals, for each pattern, the 817 individuals were randomly divided into 

two subgroups of 408 and 409, 100 times, and the subgroup QPPs were compared with 

one another as well as with the main group QPP. 

2.2.5 Contribution of QPPs to functional connectivity 

To better understand QPPs, as intrinsic patterns of brain activity that might serve self-

organization, after robust detection and coarse characterization, the next step can be to 

show the extent of their contribution to functional connectivity (FC), the most widely used 

metric reflective of the brain’s intrinsic organization. To show the contribution of QPPs to 

FC, we compared two FC matrices built based on the original timeseries and the 

residual timeseries after regressing QPPs 1-3. 

To build each FC matrix, the Pearson correlation between all pairs of cortical parcels’ 

timeseries were calculated per individual, and the FC matrices of individuals were 

averaged using Fisher transform. Null distribution for the FC values were built, by phase-
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randomizing [16,18] the original and the residual timeseries and again averaging across 

individuals. Before building each FC matrix, 360 Glasser’s cortical parcels were re-

arranged according to Yeo’s Seven RSNs, e.g., first the parcels that belong to the visual 

network (VN) in the right and left hemispheres were located, then the parcels that belong 

to the somatomotor network (SMN) in the right and left hemispheres, etc. 

2.2.6 QPPs versus global signal and head motion 

Because QPPs are macroscale and recurring patterns, they might have relationships 

with non-neuronal sources of BOLD signal fluctuations, such as head motion or slow 

variations in the respiration and heart rate, which can influence the whole brain [20] and 

are inherently repetitive. To better understand QPPs, it is essential to inspect such 

relationships. The simplest and most common summary metric of signal fluctuations 

across the whole brain (global activity) is the global signal (GS), a 1D timeseries 

obtained by averaging all timeseries inside the brain [20], described in the preprocessing 

section as well. Since non-neuronal sources of signal fluctuations (motion and 

physiological variation) contribute to the GS [20], and since the GS is a simple and 

common metric, we first inspected the relation between QPPs and the GS.  

As the first step, the gray matter (GM) signal was NOT included as a nuisance regressor 

in the preprocessing stage – as noted before, the GS is strongly correlated with the GM. 

The primary approach was to re-average the contributing segments of QPPs 1-3 

(identified earlier based on the GM-Regressed timeseries) using the new timeseries and 

compare the results with QPPs 1-3. 

Additionally, a complementary path was pursued. The new timeseries was reanalyzed to 

detect QPPG of individuals, using the same improved method and free parameters. 
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Occurrence of QPPG relative to other QPPs was examined by simply including it in the 

transition count matrix described earlier, which resulted in a 4x4 matrix showing the 

counts from QPPi to QPPj, i,j=G,1,2,3. 

A very noticeable characteristic within QPPG was the individual variability in the spatial 

extents (SEs) of strong negative and positive correlation between the nodes of the DMN 

and other brain areas. To quantify, the following was implemented (Figure 9). As a 

prominent neuroanatomical region in the Glasser’s scheme that very likely contains the 

nodes of the functional default mode network (DMN), we considered the left posterior 

cingulate cortex (LPCC). Each of 14 parcels of LPCC were taken as a seed, one at a 

time. For each seed, the Pearson correlation between the QPPG’s timecourse at that 

seed with the QPPG’s timecourses at all 360 parcels was calculated. These correlation 

values were summarized in a histogram with bin centers -0.9:0.2:0.9, i.e., 14 histograms 

in total, with bins showing number of parcels or the spatial extent. The histogram with 

the maximum number of parcels in the first bin was selected. For each individual, the 

two SEs were reported according to the first and the last bin of the selected histogram, 

respectively. In case of zero count for the first bin in all 14 histograms, the QPPG’s 

timeseries at all 14 seeds were averaged. One histogram of correlation values with all 

360 parcels was calculated, based on which the two SEs were reported. 

Both SEs are wide-range continuums across individuals. For further understanding, the 

following steps were taken. First, the SEs were correlated with the root mean square 

(rms) of GS, indicative of GS fluctuation level. Note, we use the term rms of GS but in 

fact we included the rms of the cortical signal (CS) here, because this part of the 

analysis is only based on the cortical parcels, and also CS, GM signal, and GS are all 

strongly correlated. 
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Second, the SEs were calculated for QPP1 for comparison, using similar approach. 

Third, two subgroups were formed by including 200 individuals with the highest negative 

and positive SEs (see Figure 17c), named, high anti-correlators and high correlators. 

Subgroup QPPGs were obtained by fine-tuned averaging the individual QPPGs. 

As suggested by the subgroup QPPGs, nodes of the DMN have systematic timing 

difference with other brain areas, which could explain the wide-range continuums of the 

spatial extents. To quantify, timeslots of the GS, a 1D timeseries, were averaged 

according to the contributing timeslots of the QPPG, to obtain a 30-timepoint timecourse 

for the GS. Precisely, the fine-tuned contributing timeslots of each subgroup QPPG were 

considered. Averaging the timeslots of the GS was performed first per individual and 

later across individuals per subgroup, to obtain error bars for each timepoint for the GS 

timecourse. Here again, we used the term GS but in fact we included the cortical signal, 
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Figure 9 Calculating the spatial extents (SEs) of strong negative and positive 
correlation within a QPP 
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specifically the average of all 360 parcels’ timeseries, each of which were norm zscored. 

Similarly, a 30-timepoint timecourse for the DMN was made with error bars per 

subgroup. The difference between peak times of the GS and DMN timecourses were 

compared using dependent t-test. In order to include all 817 individuals, the procedure 

above was repeated per individual QPPG and the difference between peak times of the 

GS and DMN timecourses were calculated. The resulted distribution was compared to a 

zero-mean null distribution using dependent t-test. 

Together, our complementary path in characterizing QPPG resulted in a novel 

suggestion about the spatiotemporal course of the global activity, thus far always 

summarized into a 1D timeseries, or the global signal. As will be shown, QPPG also 

enriches our interpretations regarding the fluctuations of the physiological signals and 

arousal, appearing in the next section and the next chapter, respectively. However, 

these implications depend on a reasonable coincidence of QPPG, i.e., its contributing 

segments, with the fluctuations of GS. To examine such coincidence, the sliding 

correlation timecourse of QPPG was first convolved with the average of QPPG across all 

parcels. The Pearson correlation of the outcome with the GS was then calculated. 

Moreover, basic metrics of QPPG were quantified. 

Finally, since high positive SE within QPPG might have a relationship with the high head 

motion level [20,23], the following approach was taken. Two subgroups of 60 individuals 

with the lowest and the highest head motion levels were formed and the continuums of 

positive and negative SEs within QPPG were qualitatively compared. We further 

selected 12 individuals with the highest positive SE from each subgroup, averaged their 

QPPGs by fine-tuning and qualitatively compared the results with the previously 

obtained subgroup template of 200 high correlators. The most common metric for head 
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motion is based on frame-wise displacement (FD), a timeseries that reflects timepoint-

by-timepoint shifts and rotations. Temporal percentage of FD larger than a threshold and 

average FD were taken as the criteria for subgrouping. 

2.2.7 QPPs versus physiological signals 

QPPs, as macroscale and recurring patterns, might have a relationship with the slow 

physiological sources of BOLD signal fluctuations, the most common being the slow 

variations of the respiration rate and depth and heart rate, which can affect the whole 

brain [20-23] and are repetitive. Although these physiological variations contribute to the 

GS, examined in the previous section, it is essential to directly inspect their relationship 

with QPPs, since physiological and neuronal variations can influence one another.  

To inspect, first, the raw physiological traces were preprocessed and two timeseries for 

the respiratory variation (RV) and heart rate variation (HV) were calculated according to 

the procedure described in appendix A and Figure 10. Briefly, RV at each timepoint was 

calculated as the standard deviation of the respiratory trace within a sliding window of ~ 

two respiratory cycles, taken as 7.2s or 10 timepoints, centered around that timepoint 

[21]. Similarly, HV was calculated as the average of time between successive peaks of 

the cardiac trace within a sliding window of 7.2s [21].  

Note, RV and HV timeseries turn negatively correlated (~-0.4), see Figure 10d for an 

example of timeseries during scan. Increase in RV indicates deeper and more spaced 

breaths and decrease in HV indicates faster heart beats.  

Out of 817 individuals, 487 have acceptable physiological data to be included for further 

analysis. 
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Respiratory trace and respiration variation 
(RV) 

Cardiac trace and heart rate variation (HV) 
(a) 

↓ After manual quality control ↓ 

Figure 10 Calculating timeseries of the respiration variation (RV) and heart rate 
variation (HV). (a) Preprocessing of the respiratory and cardiac traces. (b) Histograms 
of amplitudes in time domain and spectra in frequency domain of the preprocessed 
respiratory (left) and cardiac (right) traces for manual quality control. (c) Histograms of 
standard deviations of RV and HV per scan to identify the outlier scans, for additional 
quality control. (d) Example of RV and HV timeseries which are negatively correlated. 
(e) Respiratory and cardiac response functions (RRF and CRF) that are respectively 
convolved with RV and HV for estimates of fMRI signal fluctuations induced by slow 

physiological variations. RRF=0.6 t
2.1 

exp(-t/1.6)-0.0023 t
3.54 

exp(-t/4.25). CRF=0.6 t
2.7 

exp(-t/1.6)-16/√(18π)exp(-(t-12)
2
/18). 

(b) 

Good quality (G) 

Bad quality (B) 

G G G 

B 
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A common approach to inspect the influence of RV and HV is to convolve these 

timeseries by the respiratory and cardiac response functions (Figure 10e) to obtain 

estimates of induced fMRI signal fluctuations [20-23]. These estimates are further 

regressed from the fMRI timeseries and the metrics of interest are compared before and 

after physio-regression. An optimal lag for each of the two regressors for each brain area 

can be calculated and included as well. This common approach was taken, only QPPG 

was redetected, and the SEs within QPPG were compared. As will appear, such 

approach is not effective enough, particularly when studying the dynamic regimes of 

coherent activity, hence, we did not redetected QPPs 1-3. 

A customized approach was taken to inspect the relationship between all QPPs and 

slow physiological variations. Similar to the previous section on QPPs versus the GS, 

(c)  
RV HV RRF CR

 

(e) 

(d) 

Figure 10 continued 
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30-timepoint timecourses for the RV and HV were obtained, with error bars for each 

timepoint, by averaging the fine-tuned contributing timeslots of (sub)group QPPi 

(i=G,1,2,3), first per individual then across individuals, using WM-CSF-Regressed rsfMRI 

timeseries, without and with physio-regression. The difference between timings of the 

timecourses of the RV, HV, GS, DMN, even SMN and VN were qualitatively compared. 

Before averaging the timeslots, RV and HV timeseries were norm zscored, similar to 

each parcel’s timeseries, to have comparable amplitudes between all the timecourses. 

2.3 Results 

QPPs 1-3 all involve a ~20-second cycle of activation and deactivation of different brain 

areas (Figure 11), such that the RSNs and their relative timing of activity are readily 

observable. However, within each QPP, the constellation of correlation between the 

RSNs is unique (Figure 12). In QPP1, the unimodal networks of SMN and VN are 

correlated with the attention networks of DAN and VAN and together are anticorrelated 

with the networks of DMN, FPN and LN. In QPP2, the unimodal networks are correlated 

with the DMN and together are anticorrelated with the task positive networks of FPN, 

VAN, and DAN, with the DAN exhibiting relatively weaker correlation values with other 

networks (the reason will be evident in the next chapter). In QPP3, the unimodal 

networks are anticorrelated with one another, the VAN and DMN are correlated with the 

SMN, and the DAN and FPN are correlated with the VN.  

Comparing QPPs 1-3 at the individual-level quantitatively verifies that they are indeed 

different patterns, with the median of correlation between pairs of QPPs being less than 

0.2 (Figure 12). 
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Figure 11 QPPs 1-3, each a spatiotemporal pattern, 30-timepoint or ~20s long, 
obtained by averaging a set of similar segments across individuals, shown at a 
subset of timepoints (TR=0.72s). Each pattern involves a cycle of activation and 
deactivation of different areas, such that resting-state networks (RSNs) and their 
relative timing are readily observable. 

1 

9 

15 

21 

30 

QPP1 QPP2 QPP3 
↓Subset of 
timepoints 

*a.u. since QPP is the average of 
segments of norm-zscored timeseries  

Amplitude of QPPs (a.u.)* 

Yeo’s seven RSNs 
Visual (V)  
SomatoMotor (SM) 
Dorsal Attention (DA)  
Ventral Attention (VA)  
Limbic (L) 
FrontoParietal (FP) 
Default Mode (DM) 

Correlation between QPPs 
median, max (817 individuals) 

Figure 12 Constellation of correlation between RSNs is unique for each QPP. 
Quantitative comparison at the individual-level confirms that QPPs 1-3 are indeed 
different patterns. 
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To build QPPs 2 and 3, averaging their contributing segments based on the original scan 

or the residual scan results in near identical templates, regardless of the regression 

method (Figure 13a). This demonstrates that QPP2 and QPP3 exist in the original 

scans, just as QPP1 exists. QPPs 2 and 3 are reasonably robust to the regression 

method (Figure 13b). Further inspection revealed individuals for whom the regression 

method matters, more likely exhibit weaker and less often patterns (average r~0.2, p~0). 

 

QPPs 1-3 are reasonably strong or representative of their contributing segments, with 

the median of correlation being 0.4, 0.38, and 0.37, respectively (Figure 14a). Quasi-

periodic patterns 1-3 are progressively less periodic, with the median of time between 

their successive occurrences being 50, 70, and 90 seconds. Each QPP is more often 

followed by other QPPs than itself (Figure 14b), and expectedly, the more periodic QPP 

more often follows other QPPs. The average time between occurrences of any two 

different QPPs is ~18s (Figure 14c), which is close to but less than the duration of QPPs. 

(a) Correlation between QPPs 2-3 obtained based 
on the original and residual scans by two regression 

(b) Correlation between QPPs 2-3 
obtained by two regression 

 

Figure 13 Existence of QPPs 2 and 3. (a) To build QPPs 2 and 3, averaging their 
contributing segments based on the original scan or the residual scan results in near 
identical templates, regardless of the regression method. These patterns exist just 
like QPP1. (b) QPPs 2-3 are reasonably robust to the regression method. 

Co
un

t 

Co
un

t 



36 
 

 

QPPs are reproducible across different population of individuals. Any two subgroup 

QPPs, based on a random division of individuals, were near identical to one another and 

with the group QPP that included all, with medians being 0.99, 0.96 and 0.90. 

QPPs are dominant contributors to functional connectivity particularly between RSNs 

(Figure 15). Regressing each QPP, progressively reduces the variance in FC, 

 

(b) Transition count (a) QPPs basic metrics  (c) Time (s) 

Figure 14 Basic metrics and relative occurrence of QPPs. (a) QPPs 1-3 are 
reasonably strong but progressively less periodic. (b) Each QPP is more often 
followed by other QPPs than itself, and expectedly, the more periodic QPP more 
often follows other QPPs. (c) Average time between any two different QPPs is ~18s. 

before 

after 

Distribution of 
FC values 

Correlation between RSNs within QPPs (previous figure) 

FC change by regressing QPPs 

Figure 15 QPPs 1-3 are dominant contributors to FC, particularly between RSNs. 
Regressing each QPP, progressively reduces the variance in FC. 
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particularly between RSNs which are anticorrelated within that QPP. Within each RSN, 

particularly in the VN, SMN and DAN, FC between the homologous parcels of two 

hemispheres are the least affected by regressing QPPs, which are macroscale patterns 

(note the parallel bands to the diagonal).The FC distribution after regressing the QPPs is 

still wider from the null distribution made from the phase-randomized timeseries. 

QPPs 1-3 are not artifacts of the global signal (GS) regression (Figure 16), since 

excluding the gray matter signal as a nuisance regressor does not affect these patterns. 

This implies the contributing segments of QPPs 1-3, on average, contain negligible 

levels of GS fluctuations or negligible root mean square (rms) of GS. 

 

Similar to QPPs 1-3, QPPG also involves a ~20s cycle of activation and deactivation of 

different brain areas (Figure 17a,f), however, its contributing segments are interleaved 

with those of other QPPs (Figure 14b-c). Within QPPG, the spatial extents (SEs) of 

strong negative and positive correlation between the DMN and other areas both form 

wide-range continuums across individuals (Figure 17a-c).The SEs are related to the rms 

of GS (Figure 17d), e.g., QPPG of an individual who has higher rms of GS likely entails 

higher positive SE. In contrast, within QPP1, SEs are more homogenous across 

individuals (Figure 17e).  

Figure 16 GSR does not affect QPPs 1-3. Histograms and vertical axes show 
correlation between each QPP and the average of its contributing segments over the 
timeseries from which the gray matter (GM) signal is NOT regressed. Contributing 
segments of each QPP were identified based on the GM-regressed timeseries.  

rms of GS 
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13 
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17 

21 

↓Subset of 
timepoints 

(a) QPPG 
Individual1 Individual2 High anti-correlators High correlators All 817 individuals 

(f) Subgroup QPPGs QPP1 

QPP amplitude (a.u.) 

(d) SEs vs GS 
anti-correlators correlators 

(e) SEs within QPP1 (g) GS and DMN timecourses 

rms of 
 

High anti-correlators 

High correlators 
Individual1 

%
RO

I 

Individual2 

correlation 

(b) Histogram of correlation 
values with DMN within QPPG 

(c) Spatial extents of strong negative and positive correlation (SEs) 

Figure 17 QPPG and the noticeable individual variability in the spatial extents (SEs) 
of strong negative and positive correlation between the DMN and other areas (a-c). 
The SEs are related to the root mean square (rms) of GS (d). In contrast, within 
QPP1, SEs are more homogenous across individuals (e-f). Two subgroup QPPGs, 
each including the individuals with the highest SEs, reveal the DMN lags the GS (f-g). 
This lag ranges from near half a cycle for the high anti-correlators to a few timepoint 
for the high correlators. 

timepoint 
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Two subgroup QPPGs, each including those individuals with the highest negative or 

positive SE, revealed the DMN lags the GS within a QPPG (Figure 17f-g). This lag 

ranges from near half a cycle for the high anti-correlators to a few timepoints for the high 

correlators, with intermediate values for the rest of the individuals. This lag give rise to 

the wide-range continuums of SEs and relates to the rms of GS (r=-0.46, p~0). 

Moreover, for the high correlators, this lag explains a few timepoints that the DMN 

remains active, contrary to the other areas, as the activity levels switch (Figure 17f). 

QPPG with a reversed phase exhibit similar relative timing (not shown). 

QPPG reasonably coincides with the GS fluctuations (Figure 18a) and is even stronger 

and more periodic than QPP1 (Figure 18b-c), particularly when the rms of GS is higher. 

Taken together, the complementary characterization of QPPG, that involves a principled 

timing difference across brain areas and across individuals, offered a novel suggestion 

about the spatiotemporal course of the global activity, thus far only summarized by a 1D 

timeseries, i.e., the global signal. 

 

median:0.4
 

0.4  

45.4s  52.2s  
(b) QPPG correlation timecourse for individual1 

~ for individual2 

(c) 

Figure 18 QPPG occurrence and basic metrics. (a) QPPG reasonably coincides with 
the fluctuations of the GS. (b-c) QPPG is even stronger and more periodic than 
QPP1. (a-c) Particularly when rms of GS is higher. 

rms of GS 

(a) Correlation between GS and QPPG 
convolved by its correlation timecourse 

timepoint 
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Across the two subgroups of individuals with the lowest and the highest head motion 

levels, both negative and positive SEs within QPPG are still wide-range continuums 

(Figure 19). Particularly note, QPPGs of the highest movers can exhibit high negative 

SE or wide-spread anticorrelation. Moreover, regardless of head motion levels, QPPGs 

with high positive SE exhibit dynamics very similar to the high correlators described 

previously (not shown). Therefore, such QPPGs are not artifacts of head motion. 

 

Regressing the estimates of fMRI signal fluctuations induced by physiological variations, 

based on the common approach, slightly decreases high values of positive SE and 

increases low values of negative SE, within QPPG (Figure 20a). Overall, this is in line 

with the consensus that the physiological variation, particularly respiration, increases the 

average of correlated activity across macroscale as reflected in the GS or the FC matrix 

[20-21], and the regression of the corresponding effects increases the average of 

anticorrelated activity as reflected in the FC matrix [20-21].  

(a) (b) 

Figure 19 QPPG versus head motion levels. (a) Temporal percentage of the frame-
wise displacement (FD) larger than 0.2mm and average FD were taken as the criteria 
to identify individuals with the extreme head motion levels. (b) Even across 
individuals with extreme motion, both negative and positive SEs within QPPG are still 
wide-range continuums. 
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QPPG 
high anti-correlators 

QPPG 
high correlators 

(b) WM-CSF-Regressed 

(c) WM-CSF-Physio-Regressed 

(a) 

Figure 20 QPPs versus variations in respiration and heart rate. (a) Within QPPG, 
regressing the physiological variations slightly decreases high values of positive SE 
and increases low values of negative SE. (b) Within QPPG, respiratory variation (RV) 
and global signal (GS) peak at the same time. RV peak around the switching time in 
QPPs 1-3 and dip at the start of the cycle in all QPPs. HV is biphasic and coarsely 
anti-correlated with RV. (c) Described timings remain unchanged by regressing the 
physiological variations. Error bars were all small and not shown. Number of included 
subjects with acceptable physiological data: 478/817, 134/200 high anti-correlators 
and 105/200 high correlators. 
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Based on our customized approach, the respiration variation (RV) and the GS peak at 

the same time, within the QPPGs of both subgroups of high anti-correlators and high 

correlators (Figure 20b), which is in line with the aforementioned consensus. RV peak 

around the switching time in QPPs 1-3 and dip at the beginning of the cycle in all QPPs. 

HV timecourse has a biphasic behavior but roughly negatively correlated with the RV 

timecourse within all QPPs. Note that the relation between HV and RV timecourses are 

similar to the relation between their timeseries. Recall, RV peak indicates deeper and 

more spaced breaths and HV dip indicates faster heart beats.  

Described timings remain unchanged by regressing the effects of RV and HV based on 

the common approach – only the amplitude of a few timecourses are slightly changed 

(Figure 20c).  

Taken together, our results reveal QPPs have a principled relation with the respiration 

and heart rate variations, which suggest a neurophysiological basis for these intrinsic 

patterns that dominantly give rise to functional connectivity. 

2.4 Discussion 

Summary. Several improvements were implemented to ensure robust detection of a 

QPP at the individual and group levels. In addition to the primary QPP, reported thus far 

[16,18], two new QPPs were robustly detected. These three QPPs were characterized in 

terms of correlation between the RSNs within a QPP, basic metrics, relative occurrence 

and reproducibility. Dominant contribution of QPPs 1-3 to the functional connectivity was 

demonstrated. Examination of QPPs 1-3 versus global signal primarily revealed these 

patterns are not artifacts of GSR. QPPG, obtained without GSR, suggested the 

spatiotemporal dynamics of the global activity involves timing difference across areas 
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and across individuals. Examination of all QPPs versus respiration and heart rate 

variations suggested a principled relationship. 

Significance of QPPs 1-3. QPPs 1-3, as simple averages of similar timeslots during the 

resting-state, are dynamic spatiotemporal regimes of coherent activity that dominantly 

give rise to functional connectivity (FC), a metric indicative of time-average coherence 

and reflective of some spatial aspects of the brain’s intrinsic organization. The 

contribution of QPPs 1-3 to FC tells that these intrinsic patterns perhaps serve the 

brain’s self-organization and are worth understanding because of the novel aspects they 

might entail. The contribution of QPPs to FC is a main part of this thesis and will be 

referred to in chapter 4, yet it is worth hinting on one of its significances here.  

QPPs give rise to FC, which is the basis to obtain the cortical RSNs. RSNs and their 

relative timing of activity are observable within QPPs. These statements together imply 

QPPs 1-3 very likely give rise to the RSNs. Borders of the major RSNs, e.g., between 

FPN and DMN or between SMN and DAN, are attainable based on the summary of 

activity of at least two QPPs, e.g., QPPs 1 and 2 or 1 and 3. This point alone significantly 

enriches our insight about RSNs, suggesting they are overlaid snapshots of a few 

patterns, each entailing a handful of nuanced information about relative timings. This 

point can implicate in the parcellations of the subcortical regions with regards to the 

cortical RSNs, as will be discussed in chapter 4. It can also inform the hypotheses about 

task interactions or behavioral correlates given the specific functionality of each RSN 

and it unique timing relative to other RSNs within each QPP. 

QPP4 and above. While only three primary QPPs are addressed in this thesis, QPPs 1-

3 can be regressed and the residuals can be reanalyzed to detect QPP4. The same 
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process can be continued to detect more patterns. A supporting analysis performed on 

35 randomly selected individuals showed QPPs 1-3 on average explain ~25% of the 

variance of the cortical parcels’ timeseries, with a wide range of 5-50% across parcels. 

QPP4 and above progressively explain less variance without a clear cutoff. We decided 

to only focus on QPPs 1-3 because they readily match the first three cortical gradients, 

as will be shown, and their characterization along with QPPG turned extensive enough 

for this thesis. 

Detection method of QPPs. The current method to detect QPPs requires selecting an 

initial segment with a preset duration and choosing a correlation threshold. This method 

was developed near a decade ago as the first attempt to identify similar segments, still, 

as viewed by peers [14,27-28], its main novelty is in place. Taking similar spatiotemporal 

units, averaging them and obtaining a spatiotemporal course, as opposed to, for 

instance, clustering similar spatial units, which are per timepoint, and obtaining spatial 

cluster centroids. Another nuanced novelty of the current method, in our view, is taking 

the sliding window correlation and its local maxima which finds the spatiotemporal units 

with the same phase. To this date, we know of two recent and very different methods 

(unpublished), with minimal requisites, that can detect patterns which are qualitatively 

very similar to QPPs 1-3 and QPPG. As recommended for further research, an optimal 

method to detect QPPs is worth investigating. 

Method improvements and impacts. All parts of the method improvements to obtain a 

group QPP, i.e., inspecting all initial segments per individual, selecting the QPP based 

on a customized criterion, phase adjusting individual QPPs, averaging them and fine-

tuning, might not be necessary if the computation time is crucial. A supporting analysis 

performed on 35 random individuals showed the original method (i.e., concatenating 
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scans of individuals and inspecting a random subset of initial segments) results in a 

similar group QPP compared to our improved method. However, this conclusion is 

based on the exemplary HCP dataset and healthy adults and requires replication in 

other datasets, for instance, clinical conditions with higher heterogeneity across 

individuals. If it is crucial to have a robust and thorough characterization in a large 

dataset using the current QPP detection method, the implemented improvements are 

necessary and sufficient, in our view. 

Duration of QPPs. As simple averages of similar ~20s-long timeslots, all QPPs 

introduced here involve a cycle of activation and deactivation of different brain areas. 

~20s is equivalent to ~0.05Hz, the mid frequency in the BOLD-fMRI-based band of 0.01-

0.1Hz. Neuronal activity in the infraslow band (<1Hz, liberally defined), as recorded by 

more direct neuroimaging modalities than BOLD-fMRI, is widely known to be arrhythmic, 

with 1/f distribution, arising from the collective interactions of the neuronal activity in the 

higher frequency bands [14]. As will be shown and discussed, the closed flow of peak 

activation between brain areas and the involvement of cardinal infraslow oscillators such 

as the thalamocortical unit, offer a novel suggestion that ~0.05Hz rhythms comprised of 

back-to-back ~20s-long cycles might also exist. As recommended for further research, 

this is well worth investigating in a more solid setting, e.g., in an invasive and controlled 

way in non-humans. In sum, in our view, the explanation for the duration of QPPs is an 

open question and very fundamental to address. 

Basic metrics and relative occurrence of QPPs. That all QPPs are reasonably strong, 

with correlation of 0.43 to 0.37 for QPPG to QPP3, is due to the correlation threshold of 

0.3, set when identifying their contributing segments. That QPPs are progressively less 

periodic, with spacing of 45s to 90s for QPPG to QPP3, questions the usage of term 
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“quasi-periodic”. Still, we have chosen to keep this term throughout this thesis, as 

opposed to using a general term, such as “recurring spatiotemporal pattern”. The relative 

occurrence of QPPs was examined in the most elementary way. As will be discussed 

and recommended for further research, it is worth further examining how cycles of QPPs 

might be initiated relative to one another throughout time. 

Significance of QPPG. As a complementary approach, characterization of QPPG 

offered a novel suggestion about the spatiotemporal dynamics of the global activity and 

enriched our interpretations regarding the fluctuations of the physiological signals. As 

appears in the next chapter, characterization of QPPG complements those of other 

QPPs. Similar to other QPPs, QPPG can also be included when forming the hypotheses 

about task interactions or behavioral correlates. 

QPPs and physiology. Principled relation between QPPs and the respiration and heart 

rate variations, suggestive of a neurophysiological basis, is definitely worth investigating. 

Respiratory and cardiac variations reflect systemic physiological status, which can be 

modulated by the autonomous nervous system, one of the links between brain and body. 

Our attempt to better understand QPPs, as the brain’s intrinsic patterns that dominantly 

give rise to rsfMRI-based functional connectivity, particularly between networks, is now 

pointing us to the next level of depth and complexity. 
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CHAPTER 3: COORDINATED ACTIVITY WITHIN QPPS AT 
CORTICAL AND SUBCORTICAL REGIONS 

 
 
 

3.1 Introduction 

To better understand QPPs, as intrinsic recurring spatiotemporal patterns, that dominate 

functional connectivity (FC), it is necessary to thoroughly characterize the activity they 

entail and identify novel aspects they might reveal about the brain’s self-organizing 

processes. Such characterization is addressed in this chapter and is based on QPPs 

robustly detected in the previous chapter at the group-level, 817 individuals, in 

grayordinate, ~92K cortical vertices and subcortical voxels. 

Simple averaging a set of similar ~20s-long segments of the resting-state fMRI (rsfMRI) 

scans across individuals to build each QPP, as will appear, results in a well-coordinated 

cycle of activation and deactivation across the whole brain; each area in each region 

exhibits a specific timing such the overall activity seems consistent and synchronous, 

resembling the resting-state networks (RSNs), functional connectivity gradients (FCGs), 

even, the consensus on the tract-based connections. 

To summarize such well-coordinated activity, the timecourses of each QPP at all the 

cortical vertices and subcortical voxels are clustered and their time of peak activation are 

determined. Our description of activity is divided into seven regions which are the 

cerebral cortex, cerebellum, thalamus, hippocampus, amygdala, brain stem and deep 

brain nuclei, and striatum. For each region, to distinguish different areas and to compare 

the accordance of the results with the literature, an existing parcellation scheme is 

adopted, with priority given to a well-established scheme based on the FC and rsfMRI. 
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Any already-reported FCG for each region or any consensus on its tract-based 

connectivity are considered as well. 

Preprocessing steps, such as band pass filtering or nuisance regression, particularly 

when including the gray matter signal, might distort the relative timing between areas. To 

examine, the average of each QPP’s contributing segments over timeseries that had 

only been demeaned, but not filtered or nuisance regressed, was qualitatively compared 

with that QPP. Particular phase of a QPP cycle might influence the relative timings or 

even our description of the activity. To examine, QPPs with a reversed phase were 

detected and qualitatively compared. 

While a comprehensive discussion of the results appears in the next chapter, some 

method related topics are discussed at the end this chapter. 

3.2 Method 

QPPs 1-3 obtained in the previous chapter at the group-level, 817 individuals and 

1hr/individual, in the grayordinate, ~31K cortical vertices per hemisphere and ~30K 

subcortical voxels, are the basis for characterization in this chapter. As a complementary 

part, QPPG of the two subgroups of 200 individuals is also considered. 

As pointed in the previous chapter, to build QPPs in grayordinate, the contributing 

segments of QPPs were identified by analyzing the cortical parcels’ timeseries but were 

averaged over grayordinate timeseries. This approach dramatically expedites the 

detection process and is based on our supporting analysis that showed analyzing the 

grayordinate timeseries or cortical parcels’ timeseries results in very similar QPPs, 

particularly at the group-level. This supporting analysis also implies cortical events 

dictate the outcome, possibly due to higher signal-to-noise ratio (SNR), and crucially, all 
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the subcortical activities are co-activities locked with the cortical events, as reflected in 

our wordings when describing the results. 

Clustering timecourses for a coarse summary of activity within QPP. To have a 

coarse summary of the activity within each QPP, the timecourses of the cortical vertices 

and subcortical voxels were clustered using the following procedure. Each timecourse 

was compared with all other timecourses, using fine phase-matching, introduced in the 

previous chapter, with ±2 time-shifts, and a comparison matrix between pairs of 

timecourses was built. The upper triangle of the comparison matrix was flattened row-

wise and used as the distance vector for the hierarchical clustering, with the type of 

distance set to “correlation”. For QPPs 1-3, the cut-off was respectively set to 1-0.9=0.1, 

1-0.89=0.11, and 1-0.85=0.15. The clusters with more than four hundred members were 

kept. These choices, although qualitative, resulted in robust clusters with regards to the 

changes described in the supporting analyses at the end of this chapter (clustering is to 

have a coarse summary of the activity and does not influence the core of our results). 

Only the timecourses with reasonable SNR were included, which were those with a 

peak-to-dip amplitude higher than 0.1 for the cortical and 0.05 for subcortical regions. 

Peak times of for a fine summary. To have a fine summary of the activity within each 

QPP, the time of peak activation, or peak time, was determined for the timecourses with 

strong peak-to-dip, as defined in the clustering section. 

Testing significance of timing differences. For each QPP, significance of difference in 

the following timings were tested: peak times of all areas versus the left posterior 

cingulate cortex (LPCC), peak time of each cluster of a QPP versus other clusters, peak 

time and switching time (time of sign switching between activation and deactivation) of 
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each RSN within a QPP versus other RSNs. For these statistical testing, similar to a part 

in the previous chapter, the fine-tuned contributing segments of the group QPP were 

averaged per individual (QPPi, only here and for brevity). 

First, for the QPPi of each individual, the following timecourses were obtained. A 

timecourse for the LPCC, by averaging the QPPi’s timecourses across the cortical 

vertices belonging to the five most central parcels of the Glasser’s neuroanatomical 

posterior cingulate region (shown in the previous chapter). A timecourse for each cluster 

of the group QPP, by averaging the QPPi’s timecourses across all vertices belonging to 

the spatial map of that cluster. A timecourse for each of Yeo’s RSNs [12], by averaging 

the QPPi’s timecourses across the cortical vertices belonging to that RSN. Next, based 

on the QPPi of all individuals, the distribution of peak time of each area was compared 

with the distribution of peak time of the LPCC, using dependent t-test. Similarly, the peak 

times of pairs of the group QPP clusters, and the peak times and sign changing times of 

pairs of RSNs were compared. 

Parcellations, gradients, and tract connections for comparison. Activity within each 

QPP, as a simple average of a set of similar segments of rsfMRI timeseries, can be 

described independent of dividing the brain into regions, parcels, networks or gradients. 

However, to frame our report, we parsed our description into seven regions which are 

the cerebral cortex, cerebellum, thalamus, hippocampus, amygdala, brain stem and 

deep brain nuclei, and striatum. For each region, to distinguish different areas and to 

compare the accordance of the results with the literature, an existing parcellation 

scheme is adopted, with priority given to a well-established scheme based on FC and 

rsfMRI. Any already-reported FCG for each region or any consensus on its tract-based 

connectivity, particularly with the cerebral cortex, are considered as well. 
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Note, FCGs, which qualitatively arise from the activity within QPPs (as introduced and 

will appear), are principle components of the similarity matrix of areas, in terms of their 

FC [13]. As already described, each FCG is an axis along which areas have similar FC. 

FCGs mostly match FC-based parcellation, particularly at the cortex, however, rather 

than parcels and boundaries, they entail gradual and sharp changing values of gradient. 

As an important note, almost all credited reports on subcortical parcellation or FCG, 

which are based on non-invasive fMRI or diffusion tensor imaging in humans, have 

compared their results with the established atlases, which are based on invasive 

techniques such as tract-tracing, mostly in primates. As my personal conclusion, the 

commonality between a few of such reports involves areas for which there is a 

consensus about their cortico-subcortical tract-based connectivity. As a simple tip 

learned in a long and hard way, I decided to directly compare our results with any such 

consensus (as will be described next and repeated in the discussion of this chapter). 

The adopted parcellation schemes, gradient axes, and consensus on the tract-based 

connections are listed below along with brief description (in appendix C, a summary of 

general functionality of each (sub)region is provided). 

Cerebral cortex. Seven RSNs by Yeo and colleagues [12] which are the unimodal 

networks of somatomotor (SMN) and visual (VN), task positive networks (TPN) of dorsal 

attention (DAN), ventral attention (VAN), and executive control or frontoparietal (FPN), 

task-negative or default mode network (DMN), and limbic network (LN). 

First three FCGs by Margulies and colleagues [13] which are as follows. In FCG1, the 

unimodal networks are on one end and the transmodal DMN is on the other end, with 

the TPN situated in between. In FCG2, each of the unimodal networks are on the 
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opposite ends. In FCG3, the unimodal networks and DMN are on one end, and the TPN 

is on the other end. 

Cerebellum. FC-based parcellation scheme by Buckner and colleagues [29], where each 

cerebellar voxel is assigned to one of the Yeo’s seven RSNs, based on its maximal FC 

or coactivity with one of the RSNs. The cerebellar lobules I-VI and crus I, in an orderly 

way, are parcellated as SMN, TPN and DMN, and together are called the primary map of 

RSNs. Crus II and lobules VII-VIII are parcellated as DMN, TPN, and SMN and called 

the secondary map of RSNs. Lobules IX-X are parcellated as SMN, TPN, DMN and LN 

and called tertiary map of RSNs. The VN is minimally represented in the cerebrum.  

Two FCGs by Guell and colleagues [30] which are similar to the cortical FCGs 1 and 3. 

In the cerebellar FCG1, SMN and DMN are at opposite ends, and in the cerebellar 

FCG2, SMN and DMN are on one end, and TPN is on the other end. Note, there are 

contralateral polysynaptic tract connections, from the cortex to the pontine nucleus to the 

cerebellum, and from the cerebellum to the thalamus and to the cortex [29]. 

Thalamus. Tractography-based parcellation scheme by Behrens and colleagues [31], 

and Morel’s atlas [32] (only the mediodorsal nucleus (MD) mask is used here). Unimodal 

parcels and nuclei are located the most postero-laterally. The rest of the thalamus 

includes parcels and nuclei that are mainly connected to and interact with the non-

unimodal cortical areas. FCG has not yet been reported for the thalamus. 

Hippocampus. Multi-modal parcellation by Robinson and colleagues [33], 

cytoarchitectonical subfields in the Anatomy Toolbox by Eickhoff and colleagues [34]. 

Two FCGs by Vos de Wael and colleagues [35], with FCG1 being along the long-axis of 

hippocampus and FCG2 along the short-axis. Many aspects are differentiated along 
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hippocampal long-axis from the microanatomy to function [33-34]. Our examination of 

the hippocampal short-axis is based on the difference between hippocampal subfields. 

Amygdala. Parcellation by Tyszka and Pauli [36] based on a specific registration of T1- 

and T2-weighted structural images using the HCP dataset (see appendix B for the name 

of parcels, some of which we have grouped together to simplify a qualitative 

comparison). FCG has not yet been reported for the amygdala. 

Brain stem and deep brain nuclei. Probabilistic maps of locus coeruleus (LC) by Keren 

and colleagues [37], ventral tegmental area (VTA), substantia nigra pars compacta and 

pars reticulata (SNc and SNr), subthalamic nucleus (STH), globus pallidus external and 

internal (GPe and GPi), hypothalamus (HTH) by Pauli and colleagues [38] using the 

HCP dataset, basal nucleus of Meynert (BNM) by Li and colleagues [39], 

pedunculopontine nucleus (PPN), dorsal raphe (DR), median raphe (MR), 

periaqueductal gray (PAG) by Edlow and colleagues [40] , and nucleus accumbens (NA) 

mask by HCP. For plotting, we sorted theses nuclei based on their neuromodulatory 

neurotrasmitters based on the following order: norepinephrinergic LC, dopaminergic 

VTA, SNc, SNr, acetylcholinergic BNM and PPN, and serotonergic DR and MR. 

Striatum. FC-based parcellation scheme by Choi and colleagues [41], where similar to 

the Buckner’s scheme, each striatal voxel is assigned to one of Yeo’s seven RSNs, 

based on its maximal FC. Two FCGs by Marquand and colleagues [42], where FCG1 is 

along the rostro-caudal axis of the striatum and FCG2 along its medial-lateral axis. Note, 

there are topographical tract connections, along rostro-caudal and medial-lateral axes, 

from the cortex to the striatum. The striatal projections are to other basal ganglia regions 

(GPe/STH, GPi/SNr) then to the thalamus and to the cortex [41-42]. 



54 
 

Correlation map as another summary for QPPG. For each of the two subgroup 

QPPGs, as another summary of activity and particularly to ease the comparison with a 

recent related report, a correlation map was also calculated. The seed timecourse was 

built by averaging all the timecourses of cortical and subcortical regions, which is 

basically equivalent to a timecourse for the global signal (GS). Correlation map was 

based on the Pearson correlation between the seed timecourse and all the timecourses. 

Supporting analyses. To examine the effect of filtering and nuisance regression 

including gray matter signal on various aspects of the activity within QPPs, the average 

of each QPP’s contributing segments over timeseries that had only been demeaned, but 

not filtered or nuisance regressed, was qualitatively compared with that QPP. 

To examine the effect of a certain phase of QPPs on various aspects of the activity 

within these patters, QPPs with a reversed phase were detected and qualitatively 

compared. For such detection, instead of considering the left early visual area (left V2) 

as the seed for phase-adjustment, another area was considered. For QPPs 1 and 3 and 

QPPG, the central LPCC, and for QPP2, a node of the frontoparietal network (FPN) at 

the left supramarginal gyrus (smg). 

3.3 Results 

QPPs involve well-coordinated propagating activity across the whole brain. Within QPPs 

1, 2 and 3, at the cerebral cortex, activity propagates respectively along the cortical 

FCGs 1, 3 and 2. Coarse summary of the cortical activity accords with the cortical RSNs. 

Time-locked and consistent with the cortical propagation, all subcortical regions exhibit 

either propagation of activity or simple activity, such that the propagation axes are 

consistent with the cortex and consistent with any already-reported FCG in each region. 
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Coarse summary of the subcortical activity mostly matches any consensus about tract-

based connectivity, and to an extent, accords with the FC-based parcellations. Nuanced 

timing differences between brain regions and the closed flow of activity throughout the 

brain suggest drivers and origins for QPPs. 

Figure 21 shows QPPs 1-3 at a subset of timepoints, and in another page, with the 

borders of Yeo’s RSNs and Glasser’s multi-modal parcels overlaid. Table 1 lists the 

propagation axes and involved networks and areas in each region. Consistent and 

synchronous flow of peak activity between such areas forms the propagation axes. 

Figures 22, 23 and 24, respectively correspond to QPPs 1, 2 and 3, and show clusters of 

timecourses and map of peak times as summaries of activity along with the existing 

parcellations for comparison.  

Detailed descriptions for each QPP and each region are as follow, with the coarse 

summary of activity appearing first. Note the abovementioned figures and the table along 

the descriptions in general. In the maps of peak times, the non-significant values from 

the LPCC are masked. Described timing difference between QPP clusters and RSNs are 

all significant. 

3.3.1 QPP1 

Cerebral cortex. Within QPP1, the cortical areas that belong to the unimodal RSNs, 

networks of SMN and VN, are correlated with the cortical nodes that belong to the 

attention RSNs, networks of DAN and ventral attention VAN. Together, these cortical 

areas or nodes are anticorrelated with the cortical nodes belong to the networks of DMN, 

FPN and LN. 
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Within QPP1, activity propagates along the cortical FCG1, from the areas of SMN to all 

the nodes of the DMN, with intermediate activity in nodes of the DAN, then the VAN, and 

later the FPN. Based on timepoints 11-18, deactivation initially starts in the lower and 

upper limb areas of SMN, and from there, deactivation spatially expands to the 

surrounding nodes of the DAN, namely, the premotor area (preM), superior parietal lobe 

(SPL) and supplementary motor area (sma). Furthermore, based on timepoints 15-19, or 

the sign-switching timepoints of the central LPCC, activation expands across the 

following nodes from the VAN to FPN to DMN. From the anterior cingulate cortex (ACC) 

to the ventromedial prefrontal cortex (vmPFC), from the anterior insula (aI) to the inferior 

frontal gyrus (ifg), in the lateral prefrontal cortex (LPFC) from the centrally located 

intermediate frontal sulcus (ifs) to the surrounding areas of superior, middle and inferior 

frontal gyri (sfg, mfg and ifg), in the middle temporal lobe (mTL) from posterior to 

anterior, and finally, around the angular gyrus (Ag) and PCC from the surrounding areas 

to the center. 

Clusters of timecourses, with the intermediate location and timing of the transitory areas, 

the map of peak times, with pronounced gradients, and the list of the involved cortical 

networks and areas summarize the described dynamics. 

It is worth highlighting, QPP1 additionally exhibits the following noteworthy features. 

First, although VN (V2, V3, MT, etc) along with the frontal/premotor eye field (FEF/PEF) 

are anticorrelated with nodes of DMN, the primary visual area (V1) exhibits clear 

propagation of activity from anterior to posterior, from the periphery to the center of the 

visual field, or along the already-reported FCG in V1 [43]. Note, the center of the visual 

field in V1 is positively correlated with nodes of DMN, which is in line with [13,43]. 
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Second, nodes of the DAN and VAN, as two components of the task positive network 

(TPN) [12,44], are anticorrelated with nodes of the DMN. However, nodes of the FPN, as 

another component of the TPN [12,44], are positively correlated with nodes of the DMN, 

which is only the case in QPP1. 

Third, the last two clusters of timecourses are fully described in sections related to the 

thalamus and amygdala, with the following two subpoints introducing the cortical share 

of these two clusters. The most noticeable early deactivation in SMN starts medially, in 

the foot and genitalia areas (timepoint 11 and the medial red area in Figure 22a).  

Furthermore, deactivation expands from the mTL towards the superior temporal sulcus 

(STS), with well-known involvement in language [26,45] and also social inferences [45-

46] (timepoints 13-16). This focal propagation is summarized by the progressive time of 

deactivation dip in the first and the last two clusters in Figure 22a (also the map of the 

maximum dip time in Figure 22d). Similar focal trends from a node of DMN towards an 

area mostly recognized as language-related [26] occur in other areas such as area 55b, 

inferior frontal junction (IFJ) posterior to Broca area 44, and superior frontal language 

area (SFL), all on the left hemisphere. 

Finally, about laterality as a neurocognitive feature, the first cluster, which maximally 

overlaps with the DMN, is narrower at the right ifg and mTL, while the second cluster, 

which maximally overlaps with the TPN, together with the transitory clusters are wider at 

the right LPFC and aI, all accord with the consensus [12-13,44-4847] (see appendix C). 

Cerebellum. Cerebellar activity matches the FC-based parcellation by Buckner and 

colleagues [29], such that the cerebellar areas parcellated as the DMN are strongly 

correlated with the cortical nodes of the DMN (also note Figure 22b), etc. As in the 
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cortex, areas that coactivate with the cortical nodes of the DMN and FPN, here on called 

DMN- and FPN-coactive areas, are positively correlated with each other and are 

anticorrelated with DAN-/VAN-coactive areas. Note, DMN-coactive areas are wider at 

the right cerebellar hemisphere (Y=-61,-74), similar to the trend in the left cortical 

hemisphere, matching their tract-based polysynaptic connectivity [48]. 

Time-locked and consistent with the cortex, at the sign-switching timepoints, and around 

crus I/II, activation expands from DAN-/VAN-coactive to FPN-/DMN-coactive areas 

(Figure 21bo, 22a). This axis of activity propagation follows the already-reported 

cerebellar FCG1 [30]. Activity of other cerebellar areas are discussed in the next 

chapter. Interestingly, as indicated by the distribution of peak times in Figure 22c, the 

cerebellum slightly lags the cortex, and such lag is in line with [49]. 

Thalamus. Thalamic areas that are coactive with the cortical SMN and nearby nodes of 

the DAN are mainly located postero-laterally, in line with the consensus about their tract-

based connections [31-32, 50-51]. In the ventral posterior nucleus (VP), the foot area is 

the most lateral [50], perhaps around the red voxels in X=-9,-14 in Figure 22a, since it is 

clustered along the cortical areas of foot and genitalia, together exhibiting the earliest 

deactivation. This is interesting given the reported evidence that thalamic relay neurons 

can initiate an infraslow rhythm (<0.1Hz), i.e., spike bursts which are a-few-tens-of-

seconds apart [52-53], and the consensus that thalamus and cortex closely interact to 

generate the low arousal rhythms (~1-10Hz) [54-55]. Other than the postero-lateral part, 

hereafter broadly referred to as SMN-coactive areas, or for a helpful brevity, the 

unimodal thalamus, a large portion of the thalamus is coactive with the narrow cortical 

transitory clusters located between nodes of the VAN and FPN/DMN, while a small 

portion, medially located, is coactive with the cortical nodes of the FPN/DMN (X=-
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14,Z=11, Figure 22c right histogram). These portions, which are the thalamic areas other 

than the postero-lateral (or unimodal thalamus, from hereon), will be broadly referred to 

as transmodal-coactive areas, or for a helpful brevity, the transmodal thalamus. 

Time-locked and consistent with the cortex, in the thalamus, activity expands from the 

SMN-coactive to the transmodal-coactive areas (Figure 22a). This is novel evidence for 

the existence of a macroscale FCG across the thalamus, in accord with the cortical 

FCG1. As activity expands to the cortical nodes of the FPN/DMN, the transmodal 

thalamus takes a lead by a median of 6 timepoints (4.3s) specifically compared to the 

LPCC (Figure 22c). This can be inferred given that a large portion of the thalamus is 

clustered as transitory, however, a small portion of the thalamus that belongs to the first 

cluster also has slightly earlier peak times compared to the cortical nodes of FPN/DMN 

(Figure 22b). 

Hippocampus. The posterior part of the hippocampus is coactive with the cortical nodes 

of the DMN and its anterior part is coactive with the amygdala. This is in accord with the 

consensus that the hippocampus is a node of DMN and exhibits functional specialization 

along its long axis, with its anterior part closely interacting with the amygdala [33-34]. 

Activity propagates along the hippocampus from posterior to anterior (note progressive 

dip times of the first and the last two clusters in Figure 22a, dip time map in Figure 22d), 

which is also along the already-reported hippocampal FCG1 [35]. The cortical 

parahippocampal area also has a gradient in peak time, such that the part neighboring 

the retrosplenial cortex (RSC) belongs to the transitory clusters. Hippocampal subfields 

exhibit slight differences (not shown), e.g., different shares of clusters with different 

amplitudes, which might be due to the hippocampal FCG2 across the short axis [35]. 
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Amygdala. Propagation of activity towards the amygdala via the posterior part of the 

hippocampus (a DMN node) occurs at the same time that activity propagates from the 

mTL (a DMN node) towards the STS (Figure 22a, first and last two clusters), or along 

area 55b, IFJ and SFL. Deactivation propagates across the amygdala from the center to 

the edges, sequentially sweeping the main parcels [36] (Y=-5 and the gradient of dip 

times in Figure 22d), suggesting FCG across the amygdala that matches a focal cortical 

gradient from mTL towards STS. 

A fundamental point should be made here which requires separation of the timecourses 

in the red cluster in Figure 22a that belong to the amygdala (Am) from those that belong 

to the unimodal thalamus (T1), note the inset related to the red cluster in Figure 22e. 

Using Am and T1 for the moment and ignoring their cortical coactive areas, based on 

our description so far, activity initiates in T1, propagates along FCG1 in different brain 

regions including hippocampus, and terminates in Am, with Am and T1 belonging to the 

same cluster and Am being slightly earlier than T1. Flow of activity cannot be tracked 

between Am and T1, but between their cortical coactive areas which are STS, IFJ, 55b, 

and SFL. Therefore, timings of peak activation in different regions form a closed flow 

within ~20s-long cycle of QPP1 (Figure 22e), suggesting cycles of QPP1 can occur 

back-to-back. This indicates the origin of an infraslow rhythm (~0.05Hz) comprised of 

back-to-back cycles. We will discuss this point in more details and depth in the next 

chapter but close with questions, e.g., is the synchrony between the unimodal thalamus 

and Amygdala or their corresponding cortical areas or any other area critical within a 

cycle and for its continuous occurrence? 

Brainstem and deep brain nuclei. These arousal promoting nuclei primarily coactivate 

with the cortical nodes of the FPN/DMN, noteworthy, their median peak time is 4 
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timepoints (2.9s) before the LPCC (Figure 22c). This suggests a driving influence, but 

the thalamic lead is more pronounced. While difficult to resolve, the probable locations of 

dopaminergic substantial nigra (SN), acetylcholinergic pedunculopontine nucleus (PPN), 

globus pallidus (GP), and hypothalamus (HTH) contain the most voxels with the earliest 

peak times (Figure 22b). The earliest voxels are slightly more on the right side (X=10 vs 

X=-9), in line with their ipsilateral projections to the right cortical hemisphere with a 

stronger role in the tonic alertness [44]. Voxels which are anticorrelated with the 

FPN/DMN are pronouncedly located in the pons, possibly the pontine nucleus, that 

relays the cortical input to the cerebellum. 

Striatum. Striatal areas are mostly coactive with the cortical nodes of the FPN/DMN, 

however, the tail of the caudate and the ventro-lateral striatum are coactive with the 

cortical transitory clusters (transitory-coactive areas). Negligible amplitude in the 

posterior and mid putamen, parcellated as VAN and SMN by Choi and colleagues [41] is 

observed only in QPP1. 

As in the cortex and most other subcortical regions, at the sign-switching timepoints, 

activation expands from the transitory-coactive areas to FPN/DMN-coactive areas, both 

along the caudate and across the coronal planes, or along rostro-caudal and medial-

lateral axes. The axis of propagation is also along the already-reported striatal FCG [42]. 

Voxels with the latest peak times are located in the anterior caudate, Choi’s DMN parcel, 

and more precisely, propagation is from the most rostral/caudal to the rostral areas. 

3.3.2 QPP2 

Cerebral cortex. Within QPP2, the cortical areas belonging to the unimodal RSNs, SMN 

and VN, are correlated with the cortical nodes of the DMN. Together, these cortical 
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areas are anticorrelated with the cortical nodes of the task positive RSNs, FPN, VAN 

and DAN. Within QPP2, activity propagates along the cortical FCG3, from the nodes of 

DAN to the areas of SMN and VN, and from the nodes of DMN to the nodes of FPN, 

then to the nodes of VAN, and finally back to the nodes of DAN.  

Based on timepoints 11-16, deactivation initially starts in the areas of DAN that lie in the 

border with the SMN and VN, and from there deactivation spatially expands to the areas 

of SMN and VN (also note the first and last clusters in Figure 23a). Furthermore, based 

on timepoints 15-19 or the sign-switching timepoints of the central LPCC, the 

intermediate location of the transitory clusters and the obvious gradients in the peak 

time, activity expands across the following nodes, from DMN to FPN then VAN and 

finally to DAN. From vmPFC to anterior ACC (aACC) then to dorsal ACC (dACC), from 

ifg to aI then to mid insula (mI) and finally to inferior preM, in LPFC from the surrounding 

sfg, mfg and frontopolar cortex (FPC) to the centrally located ifs (Figure 23d), from mid-

anterior TL to infero-posterior then posterior TL, from Ag to supramarginal gyrus (smg) 

then area PF and finally to SPL, and lastly, from central PCC to RSC and parieto-

occipital sulcus (POS) then to postero-medial nodes of VAN and DAN. 

It is worth highlighting, QPP2 additionally exhibits the following noteworthy features. 

First, based on our description, activity initiates in areas of the DAN that border the SMN 

and VN (red cluster), propagates along FCG3, and terminates in areas of DAN that lie 

side-by-side with the initiation areas (yellow and orange clusters). Therefore, not only the 

timings of peak activation in different regions again form a closed flow (Figure 23f), 

indicating the origin for an infraslow rhythm, but also, the flow can be clearly tracked or is 

spatially closed. 
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Second and equally important, a few areas outside Yeo’s DAN exhibit the earliest peak 

time (red cluster), i.e., participate in the initiation of the cycle, notably left areas of 55b, 

IFJ, even SFL, and also mid ventral visual stream. 

Third, in the parieto-occipital part of the DAN, there is a rostro-caudal band between 

SMN and VN, maximally distant from PCC and Ag, with a late peak time (Figure 23e, 

yellow band). In the superior parietal lobe (SPL) of the DAN, the initiator areas are 

protruded along this band, wider on the right side. 

Fourth, V1 exhibits a distinct activity compared to other areas of VN, although not 

homogenously as in QPP1. The center of the visual field is positively correlated with 

nodes of FPN. 

Fifth, reflected in the peak time map, medial nodes of FPN or VAN peak sooner than 

lateral nodes. Also, areas of SMN, ventral VN, and auditory network (AN) including 

superior temporal lobe (sTL) peak sooner than medial nodes of DMN. 

Finally, about laterality as a neurocognitive feature, the first cluster, which includes 

nodes of DMN, is narrower in the right ifg and Ag. 

Cerebellum. Cerebellar activity matches Buckner’s parcellation, such that cerebellar 

areas parcellated as the DMN, in addition to a strong correlation with the cortical nodes 

of the DMN, are anticorrelated with the cerebellar areas parcellated as TPN (FPN, VAN 

and DAN) and cortical nodes of TPN. Note, the DMN-coactive areas are wider at the 

right cerebellar hemisphere (Y=-61,-74, Z=-29,-38). At the sign-switching timepoints, and 

around crus I/II, activation expands from DMN-coactive to TPN-coactive areas, or along 

the cerebellar FCG2 [30]. The cerebellum slightly lags the cortex (Figure 23c). 
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Thalamus. Thalamic areas that are coactive with the cortical SMN and VN are mainly 

located postero-laterally, in line with the consensus about their tract-based connections. 

The majority of the remaining thalamus is coactive with nodes of the FPN/VAN, while a 

smaller medial portion is coactive with the narrow transitory areas between the nodes of 

the FPN/VAN and DMN. A very small portion located in the medial part of the 

mediodorsal nucleus (MD), is coactive with nodes of DMN (Y=-11, X=-14 to 10, Z=11, 

right histogram in Figure 23c). Note, the medial part of MD has tract connections with the 

medial PFC and the lateral parts of MD with the lateral PFC [51]. 

Consistent with the cortex, at the sign-switching timepoints, activity expands from the 

medial-MD (coactive with the DMN) to the lateral-MD (coactive with the FPN) and further 

to the antero-lateral areas of the thalamus (note the gradient of peak times in Y=-11, and 

the thalamus-MD timecourses in Figure 23b). This is evidence for existence of another 

macroscale FCG across the thalamus. As in QPP1, and as activity propagates to the 

cortical nodes of the FPN/VAN, the thalamus takes a lead with a median of 6 timepoints 

(4.3s), specifically before the FPN node in the left smg (Figure 23c). 

Hippocampus and amygdala. These regions are coactive with the DMN, yet like the 

SMN, ventral VN and AN, they peak slightly earlier than the DMN (Figure 23c), with 

parts of the amygdala belonging to the initiator cluster (Y=-5). Furthermore, the posterior 

part of the hippocampus slightly lags the anterior (Figure 23g), although not as pbvious 

as in QPP1. This reveals propagation along the long axis, or the hippocampal FCG1, but 

now from anterior to posterior. The cortical parahippocampal area also exhibits a similar 

anterior-posterior lead, such that its border with the RSC belongs to a transitory cluster. 

Different from other subfields, the subiculum, located the most medially, contains a 

range of clusters (not shown), perhaps due to the hippocampal FCG2. 
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Brainstem and deep brain nuclei. These arousal promoting nuclei are now mostly 

coactive with the cortical nodes of the FPN/VAN, and interestingly, during the activation 

regimen, they take a lead with a median of 5 timepoints (3.6s) which is now comparable 

to the lead time of the thalamus (Figure 23c). The earliest voxels are located more 

medially, at the probable space of neuroadrenergic locus coeruleus (LC), seretonergic 

dorsal and medial raphe (DR/MR), dopaminergic ventral tegmental area (VTA), and 

hypothalamus. There are more voxels with strong amplitude on the right side (X=-9 to 

10). Voxels which are anticorrelated with the FPN/VAN are located in the pons (possibly 

pontine nucleus), hypothalamus and nucleus accumbens (NA). 

Striatum. Striatal areas are now mostly coactive with the cortical nodes of the 

FPN/VAN. However, the ventral striatum is coactive with the cortical transitory clusters 

(transitory-coactive areas), and a few ventro-medial voxels are coactive with the cortical 

nodes of DMN (Y=9,15). Consistent with the cortex and most other subcortical regions, 

at the sign-switching timepoints, activity expands from the DMN- or transitory-coactive to 

the FPN/VAN-coactive areas, along both rostro-caudal and medial-lateral axes. The 

propagation axis is again along the striatal FCG, from the most rostral to the most caudal 

areas. During the activation regimen of FPN/VAN, striatum lead with a median of only 3 

timepoints (2.1s), less than the lead times of the thalamus and brain stem nuclei. 

3.3.3 QPP3 

Within QPP3, the cortical areas that belong to the unimodal SMN and VN are 

anticorrelated with one another. The cortical nodes of the VAN and DMN are correlated 

with the cortical areas of SMN, and the cortical nodes of DAN and FPN are correlated 

with the cortical nodes of VN. 
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QPP3 matches the cortical FCG2 and mainly involves a simple cycle of activation and 

deactivation of the cortical areas of SMN, in an anti-correlated fashion with the cortical 

areas of VN. However, as activation levels are switching in the areas of SMN and VN 

and for a short time afterwards, focal propagations occur from the areas of SMN/DMN 

via the nodes of VAN, to the nodes of DAN, later the nodes of FPN, and finally towards 

the nodes of DMN.  

Note the flow of activity across the following nodes. From SMN eye area via 55b to 

PEF/FEF and later to DLPFC/superior-preM, from FPC via ifs to DLPFC (Figure 24d) 

and finally towards ifg, from FPC directly to lateral orbitofrontal cortex (lOFC) (Figure 

24d) and last towards ifg, via mI to aI, via temporo-parieto-occipital junction (TPOJ) to 

MT (timepoint 14) later temporo-occipital junction (TOJ) and finally towards mTL, via 

area PF to inferior parietal lobe (IPL) later smg and finally towards Ag, from SMN foot 

area via mid cingulate cortex (MCC) to dACC, importantly, from PCC directly to RSC 

and POS (timepoint 13). Note, the RSC and POS are coactive with a band in the medial 

VN, near and along its border with the PCC, and activation expands from this band 

towards the medial VN. 

While the nuanced dynamics of the focal propagations are not reflected in the summary 

maps in Figure 24a, some gross noteworthy features are, which are worth highlighting 

here. 

First, nodes of the salience network [47], dACC and aI, are coactive with the VN. 

Second, when activation is switching from the SMN to the VN, earlier activity occurs in 

the well-known motion-vision areas of FEF, MT, even RSC [56], and interestingly, the 

superior colliculus (SC) (X=-4,5). 
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Third, timings of peak activation in different regions again form a closed flow, which is 

evident based on the histogram of peak times (Figure 24c) – clustering parameters can 

be tuned to readily reflect this point (Figure 24f). 

Fourth, in a QPP3 with reversed phase, where the VN is activated first, the direction of 

the focal propagations exactly reverses, i.e., from FPN to DAN and via VAN to 

SMN/DMN, or from POS/RSC/VN-band to PCC. 

Finally, about laterality, the first cluster, which includes nodes of DMN, is wider at left ifg, 

Ag, even PCC and includes left 55b. 

Cerebellar coactivity still matches Buckner’s parcellation, with propagation from FPN to 

DMN after the switching timepoints, a slight lag relative to the cortex, and a wider first 

cluster in the right hemisphere. Interestingly, now the primary SMN map in lobules I-V 

exhibits strong amplitude. Also, the pons, or possibly the pontine nucleus, is 

pronouncedly coactive with the SMN/DMN. 

Postero-lateral and notably medial areas of the thalamus are coactive with the 

SMN/DMN (X=0 to -14), while a small area, located even more postero-laterally, is 

coactive with the VN (X=-14, Z=11).  

Hippocampus, amygdala and posterior putamen are mostly coactive with the 

SMN/DMN, however similar to SMN, with overall earlier peak times compared to the 

DMN (also note scattered red voxels in with earlier dip times). A Few voxels in the 

anterior caudate are coactive with the cortical areas mediating the late focal 

propagations. 
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3.3.4 QPPG 

Within QPPG, activity propagates along the cortical FCG1, from the areas of SMN to 

the nodes of DMN, particularly obvious in the high anti-correlator subgroup (Figure 25, 

note the shift in the average peak time of timecourses in the first cluster, the transitory 

green and yellow clusters and the second cluster, also note the gradient of peak times). 

Propagation along FCG1 occurs within QPP1 and QPPG. As shown in the previous 

chapter, the contributing segments to these two patterns are statistically interleaved. 

Moreover, within QPP1, the respiration variation (RV) peaks around the switching time of 

areas belonging to the SMN and DMN, while within QPPG, the RV peaks around the 

same time with all areas but the nodes of DMN, i.e., the RV peaks at the same time of 

the global signal (GS). Also, laterality, as a neurocognitive feature, is less pronounced in 

QPPG (not shown). Together, these statements can imply two different 

neurophysiological patterns give rise to the cortical FCG1, one being more neuronal 

(QPP1), the other being more physiological, or in other words, both non-neuronal and 

neuronal (QPPG). 

Cerebellar coactivity still matches Buckner’s parcellation, specifically around crus I/II 

(the primary and secondary maps of the DMN) and lobule IX/X (the tertiary map of the 

DMN), with a slight lag relative to the cortex, which is particularly obvious in the high 

anti-correlator subgroups. 

The MD nucleus of the thalamus, particularly the medial part, and other arousal 

promoting nuclei in the brain stem and deep brain, particularly the BNM, SN, and NA 

are anticorrelated with the global activity or the GS, an indicator of low arousal [28,57]. 

This anticorrelation is in line with a recent report [28] which only involved MD and BNM.  
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Importantly, this trend is more spread and obvious in the high anti-correlator subgroup, 

where earlier activity in other nuclei such as LC, DR, and VTA compared to BNM, SN 

and NA are also evident. It is worth emphasizing, BNM, SN, and NA are strongly 

correlated with the DMN. Interestingly, the thalamus, the brain stem and deep brain 

nuclei, and the striatum, all slightly lag the cortex. This could be in line with the reported 

cortical lead during sleep [58]. 

Anterior hippocampus and amygdala, interestingly, are no more coactive with the 

DMN but with all other areas including the SMN, i.e., they are coactive with the GS. 

Importantly, anterior hippocampus and amygdala exhibit a relatively earlier peak/dip time 

compared to the GS (red cluster), i.e., they initiate the cycle. This can be in line with the 

reports on the global activity locked with the hippocampal sharp-wave ripples (SWR) 

[4,59]. Additionally, the posterior part of the hippocampus exhibits the same peak/dip 

time as the GS. The last two points together indicate an anterior to posterior flow of 

activity along the hippocampus. This can be again contrasted with QPP1, with a similar 

cortical flow but reversed hippocampal flow. 

As a final note, based on our description of QPPG, activity initiates in the anterior 

hippocampus and amygdala propagates along FCG1 across the cortex, but terminates 

in the DMN. Therefore, the flow of activity is not closed within QPPG, which can be 

viewed as another difference with QPP1. 

3.3.5 Supporting analyses 

Patterns obtained based on the timeseries with no filtering or nuisance regression (not 

shown), qualitatively have all the main characteristics reported here for QPPs 1-3, such 

as coordinated propagations in all regions along FCGs, proving our results are not 
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artifacts of preprocessing. Patterns with a reverse phase (not shown) exhibit all the main 

characteristics, such as coordinated propagations in all regions along FCGs, nuanced 

driving relation between regions and closed flow of activity, proving our results do not 

depend on a particular phase of the cycle. 

3.4 Discussion 

Summary and significance. QPPs involve coordinated propagating activity along the 

functional gradients at the cerebral cortex and most subcortical regions, matching the 

consensus on tract-based connectivity. Nuanced timing differences between regions and 

the closed flow of activity throughout the brain suggest drivers and origins for these 

patterns. The characteristics of these patterns are not artifacts of filtering, nuisance 

regression, or a particular phase.  

Our thorough characterization of the activity within QPPs, as recurring patterns that 

dominate the intrinsic functional connectivity, has revealed a handful of novel aspects 

about the brain’s self-organization, and we will discuss the more important and more 

specific aspects in the next chapter.  In what follows, method related aspects of the 

results of this chapter are discussed. 

QPPs reflect neuronal activity. QPPs 1-3 reflect neuronal activity for the following 

reasons. First, these patterns qualitatively give rise to the cortical RSNs, each of which is 

shown to have a domain-general functionality in a wide range of tasks (see appendix D) 

or behavioral-level correlates, paradigms that are attributed to the functionality of the 

brain [3,12-13]. Moreover, evidence for the RSNs exists based on more direct 

neuroimaging modalities, such as electroencephalography (EEG) [60-63], 

electrocorticography (ECoG) [64-66] or magnetoencephalography (MEG) [67], even 



81 
 

based on microanatomical constraints, such as categories of gene expression [68] and 

cyto-/myelo-architecture [69-71], or baseline metabolism rates [72-74]. 

Second, QPPs 1-3 involve a handful of nuanced neuronal features, the most 

pronounced being the laterality, e.g., within these patterns, the cluster of areas 

belonging to DMN are wider in the left cortical hemisphere, while those belonging to TPN 

are wider in the right, both being functionally relevant. Laterality exist elsewhere as well, 

such as left areas of 55b, IFJ, and SFL that are involved in language, or the area in the 

mid ventral visual stream that possibly has a microanatomical correspondence [75]. 

Another exemplary neuronal feature is the focal cortical gradients, with functional or 

microanatomical correlates, such as along V1, across TL [76], or in the PPL (note the 

axes of division from 7 to 17 RSNs as speculated by Yeo and colleagues). 

Third and equally important, coactivity between the subcortical and cortical areas mostly 

matches the consensus about their tract-based connectivity. Laterality in the cerebellum 

matches its contralateral polysynaptic connections with the cerebrum. The postero-

lateral areas of the thalamus are coactive with the cortical areas of SMN and VN, or the 

most medial areas in the MD nucleus are coactive with the medial PFC. Propagation 

along rostral-caudal and medial-lateral axes in the striatum matches its topographical 

tract connections with the cerebrum. Laterality in the brain stem matches its ipsilateral 

connections with the cerebrum. Additionally, propagation along the hippocampus 

matches the axis of its functional and microanatomical differentiation. 

Finally, QPPs 1-3 are not affected by nuisance regression including the gray matter 

signal, and their contributing segments are interleaved with those of QPPG, which might 

be more physiological than neuronal. 
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The following points about non-neuronal confounds are noteworthy. First, although the 

CSF signal is regressed, the residuals seems to have remained in the borders between 

the ventricles and almost all the subcortical regions. In Figure 21 and Figure 25, note the 

caudate bordering the lateral ventricles, the medial thalamus and the hypothalamus 

surrounding the third ventricle, the brain stem nuclei or the cerebellar lobule X 

neighboring the fourth ventricle, and the hippocampus and amygdala along the temporal 

horns of the lateral ventricles which not easily observable. 

Since the CSF signal is negatively correlated with the global signal (GS), as mentioned 

in the previous chapter, and the GS is negligible within QPPs 1-3, likely the CSF signal 

should be small within these patterns, which can easily be inspected in future. 

Regardless, it is unlikely that the CSF residuals, in the borders with the ventricles, 

affects the trends of activity across all areas in the subcortical regions within QPPs 1-3, 

because these trends can be neuronally supported as mentioned above. Within QPPG, 

CSF residuals are larger, and the subcortical trends should be viewed with more caution. 

Second, the hemodynamic response function (HRF) is variable across brain areas, and 

our results is centered around timing differences between areas, mostly between time of 

peak activations but also based on times of sign switching or dip of deactivation. 

Therefore, as will be recommended for further research, it is necessary to examine 

datasets without HRF confound, which are based on more direct neuroimaging 

modalities, such as ECoG or MEG in humans (limited to cortical areas), or invasive 

recordings in non-humans (can include subcortical areas). 

Finally, although QPPs reflect neuronal activity, as just discussed, likely they have 

neurophysiological basis, as argued in the previous chapter. Therefore, certain aspects 



83 
 

of systemic physiological fluctuations that include non-neuronal sources, might be 

inherent part of these patterns. As recommended for further research, all parts of our 

results, including possible neurophysiological basis of QPPs, need stronger 

characterizations, e.g., invasive recordings in non-humans in controlled settings. 

Conquering the dominance of QPPs in the cerebral cortex. Brain is a complex 

system and exhibits varied dynamics regimes of coherent activity. In the rsfMRI 

timeseries, along QPPs, very likely, fast focal spatiotemporal patterns exist, linearly 

superimposed or non-linearly interactive. Systematically addressing the dominance of 

QPPs, which might have neurophysiological basis, by temporarily regressing them, can 

possibly enhance the detectability of the minor patterns, which might have more 

neuronal basis. 

Explained variability in subcortical regions. As pointed earlier, if the input for the 

QPP analysis includes timeseries of the cortical and subcortical regions, the output 

would be dictated by the cortical events and the subcortical activity would basically be 

coactivity locked with those cortical events. The variability explained in each subcortical 

region by such coactivity can easily be inspected in future. As recommended for further 

research, existence of independent recurring patterns in each subcortical region can be 

explored, by considering the timeseries of only that region for the QPP analysis. 

Medulla. Since the medulla contains nuclei for respiration control [77-78] and all QPPs 

have a principled relation with the respiration variation, the medulla’s activity, which is 

observed in all QPPs, can be easily included in our future reports. 

Propagation speed. Speed of propagation can be calculated for the cortex based on 

the geodesic distances (i.e., distance across the 2D surface of the cortical sheet) and for 
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the subcortical regions based on the Euclidean distances (i.e., distance in 3D space). A 

unit of distance might be taken to obtain a speed map, since qualitatively propagation 

speed does not seem constant. Quantifying the propagation speed is the first step for 

speculating (even examining) the possible mechanisms for propagation of activity. 

Significance of timings in QPPs. For all QPPs, we have only tested significance of 

difference for the peak times between all areas and LPCC, between pairs of clusters or 

pairs of RSNs, with all qualitative differences being quantitatively significant. 

Comprehensive significance testing can be easily performed in future. For each QPP, 

timecourses per cluster per subregion can be calculated and significance of differences 

in the times of peak, dip and switching between any pair can be tested. By subregion, 

we are referring to the anatomically separated areas per each of the seven regions, e.g., 

in the cortex, having subregions of the lateral PFC, or aI/dACC, or in the cerebellum 

having subregions of the crus I/II or lobules IX/X.  

Furthermore, significance testing can easily be done for the patterns obtained without 

filtering and nuisance regression or the patterns with a reverse phase. 

Significance of amplitudes in QPPs. To visualize QPPs in grayordinates, no threshold 

for amplitude was considered, unlike the report by Majeed and colleagues. Our 

approach can reveal the continuous trends more clearly, i.e., weak amplitudes that get 

stronger within the duration of the patterns. What amplitude is significant was examined 

based on two approaches. First, randomly selected segments, equal to the number of 

the contributing segments of each QPP, were averaged, repeated multiple times. In all 

cases, the 30-timepoint timecourses of all areas, had almost zero peak-to-dip amplitudes 

(<10-4). Second, the distribution of the peak-to-dip amplitude of all timecourses for each 
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QPP was examined. All distributions were bimodal with the lower mode being ~0.05 and 

mostly corresponding to the subcortical areas. For clustering and finding peak times, we 

considered only those timecourses with peak-to-dip amplitude above 0.05 for the 

subcortical areas but above 0.1 for the cortical areas. The latter threshold was more a 

qualitative choice and does not influence any piece of the results. 

QPP4 and above. Although out of the scope of this thesis, qualitative inspection of 

QPPs 4 to 7 based on a random subset of individuals revealed these patterns still 

involve propagation. However, constellation of correlation between nodes of RSNs or the 

axes of macroscale and focal propagations are unique to each pattern. 

Minimum group size. Main characteristics of QPPs, including propagations across the 

cortex and subcortical regions, are easily observable based on ~20 individuals of the 

HCP dataset with 1hr resting-state scan per individual and an exemplary quality. We did 

not easily observed propagation at the individual-level, based on a few individuals we 

randomly inspected. However, this needs to be quantitatively examined as a future work. 
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CHAPTER 4: DISCUSSION 
 
 
 

4.1 Introduction 

To better understand QPPs, as recurring patterns of brain’s intrinsic activity that might 

serve self-organization, we have improved the detection method of QPPs, showed the 

extent of their contribution to the functional connectivity (FC), and thoroughly 

characterized them.  

QPPs involve coordinated propagating activity along the functional gradients at the 

cerebral cortex and most subcortical regions, mainly matching the consensus about the 

tract-based connectivity. Nuanced timing differences between regions and the closed 

flow of activity throughout the brain suggest drivers and origins for these patterns. QPPs 

dominantly contribute to the FC between brain areas, within and particularly between the 

resting-state networks (RSNs). These patterns reflect neuronal activity and are not 

artifacts of preprocessing such as global signal regression or filtering. Due to a principled 

timing relation with the slow variations in respiration and heart rate, QPPs might have a 

neurophysiological basis. Overall, our results suggest a few recurring spatiotemporal 

patterns of intrinsic activity might be dominantly coordinating the whole-brain functional 

connections, serving the purpose of self-organization. 

Furthermore, QPPs reveal novel specific aspects about RSNs and FC gradients (FCGs), 

and also about the driving relations between regions and the origins of QPP cycles. We 

start this chapter by discussing such aspects. Since our results are mainly based on 

contribution to FC and propagation of activity, we further discuss how QPPs relate to the 

already known contributing factors to FC and existing reports of propagation of activity. 
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4.2 Functional networks and gradients 

The first novel specific aspect revealed by QPPs is related to the RSNs and FCGs. The 

discussion ahead is separated for the cerebral cortex and the subcortical regions, since 

QPPs are dictated by the cortical events, as pointed in the previous chapter. 

Cerebral cortex. QPPs give rise to the FC between cortical areas, the FC between 

areas is the basis to obtain the macroscale cortical RSNs, and these RSNs are 

observable within QPPs. Therefore, QPPs very likely give rise to the macroscale cortical 

RSNs, which can be quantitatively shown by analyzing the residuals after regressing 

these patterns and using the same clustering algorithm. Importantly, the borders of the 

major cortical RSNs, e.g., between FPN and DMN or between SMN and DAN, are 

attainable based on the summary of at least two QPPs, e.g., QPPs 1 and 2 or 1 and 3.  

This point significantly enriches our insight about the macroscale cortical RSNs, 

suggesting they are overlaid snapshots of a few dominant coordinated propagating 

patterns across the whole brain, with each pattern representing a certain set of 

segments and entailing a handful of nuanced information. Furthermore, this point 

implicates in the macroscale parcellations of the subcortical regions with regards to the 

macroscale cortical RSNs, as discussed next. It can also inform the hypotheses about 

functionality served by QPPs, their task interactions or behavioral correlates, as will be 

recommended for further research. 

It is worth rewording, the same cortical areas that exhibit gradual change in one QPP 

(e.g., gradual shift in peak times), can exhibit a very sharp change in another QPP. 

Constrained by the same macroscale anatomical architecture, different macroscale 

functionalities can be expressed by the differential activity of the same areas. 
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QPPs give rise to FC, FC is used to obtain the macroscale cortical FC gradients (FCGs), 

and these cortical FCGs are swept within QPPs. Therefore, QPPs very likely give rise to 

the macroscale cortical FCGs as well, which can be shown quantitatively. This point is 

also significantly insightful, suggesting each macroscale cortical FCG is a snapshot of a 

coordinated propagating pattern across the whole brain that represents a certain set of 

segments and entails nuanced information. Recall, macroscale FCGs and RSNs match 

one another, one entailing gradual or sharp changing values and the other parcels and 

borders. Note, similar to QPPs, at least two FCGs are required to obtain the borders of 

the major RSNs (FCGs 1 and 2 or 2 and 3).  

Subcortical regions. Our discussion in the subcortical regions first starts by the 

thalamus and later the argument is generalized to other subcortical regions. 

In QPPs 1-2, activity propagates along the cortical, cerebellar, hippocampal and striatal 

FCGs, and these four FCGs have already been reported. The propagation of activity in 

the thalamus, from the posterolateral unimodal to the remaining transmodal areas in 

QPP1, and from the medial mediodorsal nucleus (MD) to the lateral MD and later to the 

anterolateral transmodal areas in QPP2 are novel suggestions for two thalamic FCGs. 

Existing studies on the thalamic FC alone are either inconsistent, particularly with 

regards to the FC with the cortical RSNs (RSN-based parcellation), or do not readily 

match the tractography-based connectivity [79-81]. Since QPPs likely give rise to the 

cortical RSNs, they can offer insight about RSN-based parcellation of the thalamus - 

Regarding what follows, have in mind, each QPP is an average of certain segments of 

rsfMRI timeseries, and borders of all cortical RSNs are not attainable within one QPP. 
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Although the unimodal thalamic areas are coactive with the unimodal cortical areas 

within all QPPs, a given transmodal thalamic voxel is not necessarily coactive with a 

given cortical vertex, when considering all QPPs. In other words, RSN-based parcels in 

the transmodal thalamus change between QPPs. Thankfully, consistent rules exist. For 

example, a large portion of the transmodal thalamus is coactive with the transitory areas 

extending across the borders of the trasnsmodal cortical RSNs in QPPs 1-2. Another 

example is the most medial MD that is coactive with the DMN within all QPPs, perhaps 

due to its known tract connection to the medial prefrontal cortex. 

Taken together, to obtain clear RSN-based parcellation in the thalamus, it might be 

essential to (i) consider only certain segments of rsfMRI timeseries at a time, even 

further averaging them, as opposed to the common practice of including the whole 

timeseries, (ii) expect a few parcellation schemes for the transmodal thalamus not just 

one, and (iii) credit the borders of RSNs as much as the RSNs themselves. 

Similar to the thalamus, for other subcortical regions, QPPs offer insight about the RSN-

based parcellation (i.e., coactivity map), given the inconsistent related literature. 

Brainstem and deep brain nuclei are coactive with the FPN/DMN in QPP1 and the 

FPN/ventral attention network (VAN) in QPP2, with some voxels coactive with the 

transitory areas in both QPPs. See [82-84] for examples of inconsistent related reports. 

Amygdala is coactive with the superior temporal sulcus (STS) and anterior hippocampus 

in QPP1 and the DMN, superior temporal lobe (sTL) and hippocampus in QPPs 2-3. See 

[85-86] for examples of inconsistent reports. 
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Coactivity of the lobules I-V and VIII-X of the cerebellum and the striatum with the 

cortical RSNs changes between QPPs, respectively see [30] and [42,87] for the 

discussion on inconsistencies. Qualitatively, all QPPs are required to obtain the borders 

suggested by Bucker’s and Choi’s schemes for these regions. 

In sum, in most subcortical regions, for a clear RSN-based parcellation, considering 

certain segments of rsfMRI timeseries at a time, expecting a few parcellations schemes 

and not just one, and equally crediting the cortical RSN borders might be essential. 

It is worth emphasizing, similar to the cortical FCGs, QPPs likely give rise to the 

cerebellar, striatal and hippocampal FCGs, which can be examined quantitatively. 

4.3 Drivers and origins 

Other novel specific aspects revealed by QPPs are about the driving relations between 

brain regions and that peak activities form closed flows indicating the origins of infraslow 

rhythms. These suggestions are perhaps the main benefit of a propagating pattern. 

Driving relation between brain regions. As the starting clarification, in healthy humans 

and with non-invasive functional imaging, any claim about the driving relation between 

brain regions is unavoidably based on temporal precedence with a weak basis [90]. A 

strong claim requires invasive and comprehensive characterizations of causal 

relationships, mostly in non-humans, based on extensive and non-trivial procedures. 

Moreover, we have used the term “propagation” for temporal precedence within each 

brain region and the term “drive” for between regions (see appendix C for another 

clarification about these two terms). 
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As the summary of results, in all QPPs, the cerebellum lags the cerebral cortex, in other 

words, the cerebellum is driven by the cortex. The transmodal thalamus and the brain 

stem and deep brain nuclei take lead as activity propagates to the cortical nodes of 

FPN/DMN in QPP1 and FPN/VAN in QPP2, in other words and in brief, the thalamus 

and brain stem drive the cortex in the switching phase of the TPN and DMN in QPPs 1 

and 2 (medians: 4.3s and 4.3s for the thalamus, 2.9s and 3.6s for the brain stem, in 

QPPs 1 and 2, respectively). The striatum is in synch with the cortical FPN/DMN in 

QPP1 but take a slight lead (median: 2.1s) relative to the cortical FPN/VAN in QPP. 

That the cerebellum is driven by the cortex in all QPPs, and that QPPs organize the 

brain, together, can imply the cerebellar organization is influenced by that of the cortex. 

Through intrinsic recurrence over time, such cortical influence can form and refine the 

functional connections that underlie the known cerebellar role in skilled motor and 

cognitive executions [29-30,48-49] (see appendix D for a summary of functionality of 

brain regions and cortical RSNs). 

That the thalamus and brain stem drive the cortex when the TPN and DMN are 

switching, first, reveals a specific key role for the thalamus in switching the focus of 

attention between externally oriented and internally oriented, in line with its general role 

in attention control [50-51,88]. Second, the brain stem, that can promote arousal and 

reinforce attentiveness [84,89], has a secondary role relative to the thalamus in such 

attentional switching, due to a shorter lead time, even in QPP2. 

Two points are noteworthy. Intrinsic activation of the DMN is not always associated with 

a subjective report of internally oriented attention or other cognitive processes attributed 

to the DMN [91]. However, intrinsic activation, specifically as part of a well-coordinated 
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pattern, can always be viewed as serving the brain’s self-organization, e.g., by activating 

the functional connections that underlie meaningful processes for the future tasks, based 

on the aggregate of the previous experiences with similar tasks. 

Furthermore, switching phase of TPN-DMN is a simplified and common statement, and 

the dynamics of switching are still not well studied (see the latest citations of [47]). 

Based on QPPs 1and 2, we are referring to the timepoints when the activation is 

expanding from the VAN to FPN/DMN in QPP1 and from the DMN to FPN/VAN in 

QPP2. Qualitatively, the cortical nodes of FPN, or the executive control network [44], are 

the commonality between these two QPPs. This point is worth inspecting in future. For 

instance, examining whether the common cortical areas belong to one of the two 

subnetworks of FPN (one involved in the initiation of new strategies and the other in 

task-maintenance). Moreover, such inspection informs the interpretation of the activity 

and timings in the striatum as well, because of similar qualitative commonality between 

QPPs 1 and 2 regarding the executive control network, and given the known 

involvement of the striatum (or basal ganglia in general) in the motor and cognitive 

executions [41-42,87]. 

As the closing highlight, despite a weak basis for our claim about the driving relations, 

there is higher confidence in our results, compared to similar non-invasive reports in 

humans (elaborated with citation in the last section), because of inclusion of all regions 

in the brain. For example, the driving relation between two regions is not attributable to a 

third region which was not included because of the imaging limitations. It is worth 

emphasizing, our claim about driving relation is at the macroscale and infraslow band 

(<0.1Hz), indicates average of similar segments, and does not include possible indirect 

influences between regions that can result in similar outcomes. As will be recommended 
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for further research, it is easily possible that activities outside of QPPs, e.g., which are 

focal fast, play a role as drivers within the cycles of these patterns. 

Origins. Having all regions of the brain with peak activities that form closed flows within 

the ~20s-long cycles of QPPs 1-3 indicates infraslow rhythms of ~0.05Hz comprised of 

back-to-back cycles can exist.  

As the essential starting clarifications, note the following. Although the phase of the QPP 

cycles are adjustable, we have described the activity as being initiated or terminated in 

certain regions/areas. Terms “initiation” and “termination” are adopted from the reports 

on the propagating activity. They are meaningless for a rhythm which is ongoing and is 

absolutely robust to the external perturbations. If a cycle is totally suppressed due to 

external perturbations, there is a need for an initiation mechanism to resume the rhythm. 

If a region/area is a cardinal oscillator, e.g., based on its cell properties in certain 

conditions like the thalamocortical units, it can be recognized as the initiator of the cycle 

and the phase of the cycle can be set accordingly. For brevity in what follows, we have 

considered regions/areas of initiation and termination as the initiators, even if the 

termination region/area might just contribute to the conditions required for the oscillation 

of the initiation region/area.  

As the final clarification, ~0.05Hz is the mid frequency of 0.01-0.1Hz, the widely used 

range for filtering the inherently slow BOLD-based fMRI timeseries. Such range (0.01-

0.1Hz) belongs to the infraslow band, the most liberally taken as the frequency band less 

than 1Hz, in studies which are based on more direct neuro-imaging modalities than 

BOLD-based fMRI. The closest neighbors of infraslow band (<1Hz) are the delta band 

(~1-4Hz) and the well-known slow waves (~1Hz). 
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Neuronal activity in the infraslow band, as recorded by more direct neuroimaging 

modalities, is widely known to be arrhythmic, because of no apparent “bump” in the 

power spectrum but 1/f distribution [5] – the neuronal basis of this band is supported by 

various evidences such as attenuation by the onset of a task as recorded by ECoG 

[5,64] or attenuation by neuro-blockers as recorded by EEG [92]. Moreover, the 

infraslow activity is widely thought to only arise from the collective interaction of faster 

rhythms, with a body of evidence solely showing the amplitude of the faster rhythms 

fluctuates infraslowly [5,9,60-63] – even slower rhythms with a spectral “bump” (~1-

10Hz) are also known to arise from faster rhythms, even further modulating those faster 

rhythms, giving rise to the complexities in the generation of all neuronal rhythms 

regardless of the frequency [5]. Despite of the prevailing perspective about the origin of 

the infraslow activity, Hughes and colleagues [52] have shown, ex-vivo, that the thalamic 

relay cells can generate an infraslow rhythm (<0.1Hz), specifically, spike bursts which 

are a-few-tens-of-seconds apart, given the right excitability, with an astrocytic-dependent 

mechanism – it is known that the thalamic cells can also generate slower rhythms (~1-

10Hz) in the low arousal states and, in-vivo, the thalamus closely interacts with the 

cortex in this regard, to the extent that the thalamocortical units are viewed as cardinal 

oscillators [54-55]. Taken together, just like all other slower bands, the neural activity in 

the infraslow band arises from the interaction of the faster bands but also can possibly 

be generated by the thalamocortical units. 

As the summary of results, in QPPs 1-3, the unimodal thalamus, anterior hippocampus 

and amygdala are the subcortical initiators of the cycle. This is because each QPP 

begins by the activation of the cortical areas of SMN. In QPP1, the most postero-lateral 

part of the unimodal thalamus along two other abovementioned regions are slightly 

earlier than the SMN. In QPPs 2-3, all three regions are roughly in synch with the SMN.  
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Moreover, the prominent cortical initiators of the cycle in QPP1 are areas of foot and 

genitalia, STS, inferior frontal junction (IFJ), left superior frontal language area (SFL), 

even left 55, and in QPP2 are the DAN borders with the unimodal networks (SMN/VN), 

and notably left areas of 55b, IFJ, even SFL, and mid ventral visual stream. 

Finally, by considering the subcortical and cortical initiators together and keeping 

minimal details for our discussion ahead, the closed flows can be summarized as 

follows. In QPP1, activity propagates from the initiators to the SMN, and from the SMN 

to the DMN, and via the posterior hippocampus back to the initiators, with the flow not 

trackable between the subcortical initiators (the amygdala and thalamus) but along the 

narrow-spread cortical initiators. In QPP2, activity propagates from the initiators to the 

SMN/VN and DMN (including the posterior hippocampus), and from the DMN back to the 

initiators, with the flow clearly trackable across the wide-spread cortical initiators. In 

QPP3, activity focally propagates from the initiators that include the SMN to the VN and 

trends back towards the initiators, with the trackability of the flow needing further work. 

That the unimodal thalamus is a subcortical initiator in QPPs 1-3 (particularly QPP1), in 

synch with the cortical SMN (likely topographically), can ensure resuming a cycle of 

each QPP, if perturbed. One known condition to us is the right excitability of the 

thalamocortical units to initiate a cycle. Excitability can possibly be set by the amygdala, 

another subcortical initiator, via modulating the autonomous nervous system (ANS) [85-

86,93-94], or it can be set by any other region, such as the anterior insula, a cortical 

modulator of ANS [47], the neuromodulatory brain stem nuclei [84,89], or possibly the 

synchronous activity of a few critical regions. We sum by sculpted questions that require 

extensive invasive approaches in non-humans to address. Is the synchrony between the 

unimodal thalamus and a few other areas critical for a cycle to be initiated? Once a cycle 
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is initiated, to what extent it is robust to the perturbations so that the flow of activity can 

close and lead to the next cycle? Since the contributing segments of QPPs 1-3 are 

interleaved, should we even expect a back-to-back occurrence? 

4.4 Known contributors to functional connectivity and QPPs in comparison 

The most known contributor to the intrinsic FC between areas is perhaps connectedness 

via myelinated tracts that collectively form the white matter 3,6-7,95-101]. For instance, 

homologous areas between the two cortical hemispheres, particularly in the unimodal 

networks, tend to exhibit positive FC, because of the direct commissural tract between 

them. On the other hand, the complex combination of the local mesoscale oscillations 

and macroscale connectomics can result in two areas exhibiting negative FC. 

Another contributor to FC, which has recently been established, is the geodesic distance 

between area (distance across the 2D surface of the cortical sheet, and not the 

Euclidean distance in 3D space). For instance, the cortical areas maximally distant from 

the unimodal networks exhibit positive FC and form the default mode network [13]. 

Other known contributors to the FC between areas are common subcortical inputs 

[7,95,101] or similar responses to the physiological fluctuations [3,6,9,15,21-22,101-

102]. Note, fast focal regimes of activity, which are not necessarily bilateral, or generally 

speaking, not necessarily as constraint by the macroscale anatomical architecture, likely 

exist (examples can be propagating activities in various contexts, mentioned in the next 

section, or the varied dynamic regimes of coherent activity, mentioned in the 

introduction). If often and strong enough they can contribute to FC. 

Finally, and perhaps the least established contributor to FC is recurring propagating 

patterns of activity that results in systematic timing difference between areas [16,103-
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105], also see [9,15]. For instance, according to our QPPs, two areas exhibit 

positive/negative FC if their locations correspond to the same/opposite phase of a 

propagating pattern, or two areas may exhibit no FC while they have a systematic lag. 

It is crucial to note all of these contributing factors are undoubtedly interrelated. For 

example, with the evolution being accountable, during the embryonic phase in humans, 

tract-connections forms between the cortical areas which have maximal geodesic 

distance from the unimodal areas [7]. As another example, homologous areas in the 

unimodal networks, which are connected via commissural tracts, more often receive 

common subcortical inputs or have similar response to the physiological fluctuations. 

QPPs, as the propagating pattern that contribute to FC, match the consensus on tract-

based connectivity both between cortical areas, e.g., the coarse symmetry between 

hemispheres, and between cortical and subcortical areas, as elaborated previously. 

QPPs are about propagation of activity along the cortical sheet, such that areas at varied 

geodesic distances experience varied phases of the same cycle of these recurring 

patterns. Within QPPs, the driving influence of the subcortical areas are coarsely 

symmetric between hemispheres, so is the lagged activity in the corresponding cortical 

areas. Taken together, QPPs as contributors to the intrinsic FC between areas, are in 

interrelated with other known contributors (i.e., QPPs match other contributors and might 

reinforce them). 

4.5 Existing reports on propagation, mechanisms and our report in 
comparison 

Propagation of activity has been reported in a range of species (e.g., humans, monkeys 

or mice) (see [106] unless otherwise noted), and arousal states (awake intrinsic/task-

evoked/epileptic, sleep or anesthetized) based on varied modalities (e.g., EEG and 
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ECoG, fMRI [16-17,103-105,107], voltage sensitive dyes [108-109] or genetically 

encoded calcium imaging [110-113] mostly simultaneous with local field potential 

recordings or hemoglobin imaging, even modelling [114]) at multiple spatial scales (e.g., 

between cortical lobes, within cortical unimodal areas, or along hippocampus), frequency 

bands (e.g., alpha (~10Hz), theta (~4-10Hz), delta (~1-4Hz), slow (~1Hz) and infraslow 

(<~0.1Hz)) and speeds (~1-10m/s (myelinated tracts of white matter) or ~0.1-1m/s 

(unmyelinated horizontal collaterals of cortical layers)). 

Note, the term “propagation” unanimously refers to the systematic phase shifts or timing 

difference between the activity of different areas which collectively form either a simple 

travelling wave (planar/radial/spiral) or any spatiotemporal pattern [106]. By the term 

“activity”, we broadly refer to the rhythmic synchronies within a population of neurons 

which induce signal fluctuations in common frequency bands and modalities [106,114]. 

For the mechanisms of propagation, limited candidates have been proposed which 

include myelinated tracts for speeds ~1-10m/s, unmyelinated collaterals for speeds 0.1-

1m/s, subcortical-mediators particularly thalamo-cortical interactions [104,106,113], and 

additionally for the infraslow band, astrocytic-mediators [116] (also see [17,113]) and 

hemodynamic waves [117]. 

The most relevant reports of propagation to our work are those based on rsfMRI in 

humans. Majeed and colleagues 2011 report [16] of QPP1, the foundation of our work, 

matches our results regarding the focal propagations specifically in the medial PFC, from 

the mid cingulate cortex to ACC. 

Hindriks and colleagues 2019 report [105] of propagation from the task positive network 

(TPN) to the default mode network (DMN) and from the anterior primary visual (V1) to 
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the posterior V1 is another match to part of our results. Their argument that RSNs 

possibly arise from propagating patterns is quantitatively illustrated by us. 

Mitra and colleagues reports of the lag threads since 2014 in varied settings [103-

104,113], although far most  inspirational and seminal for us, do not closely match our 

results primarily due to the following reasons – note, lag threads are principle 

components of a delay matrix, in which each entry is the interpolated maximum of cross-

covariance between timeseries of a pair of voxels. RSNs are shown to arise from one-

directional motifs which are common among a few reproducible lag threads, no RSN 

leads or lags the other, and the range of lags in the threads are ~±1 second, however, 

with multiple neighboring maxima and minima across the cortex. 

Compared to Mitra and colleagues, RSNs are readily observable within QPPs and they 

clearly exhibit lead/lag relationships. Compared to all other reports on propagation, the 

extent of coordination across the whole brain, accordance with the consensus on tract-

based connectivity, and novel nuanced information within QPPs constitute the 

uniqueness of our report. Additionally, the quantitative demonstration of contribution of 

QPPs to functional connectivity between area and examination of these pattern versus 

the global signal and particularly the physiological signals are other unique aspects of 

our report. 
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CHAPTER 5: CONCLUDING REMARKS 
 
 
 
This thesis aimed a better understanding of QPPs in humans, as recurring 

spatiotemporal patterns of brain’s intrinsic activity that might serve self-organization. As 

the first step, several method improvements were implemented to robustly detect the 

QPPs. The next step was to demonstrate the contribution of these patterns to the 

functional connectivity between brain areas, as the most widely used metric of intrinsic 

organization. As a necessary step, the activity within QPPs were thoroughly 

characterized, and the novel aspects they reveal about the brain’s self-organization, 

were identified and discussed. 

QPPs involve coordinated propagating activity along the functional gradients at the 

cerebral cortex and most subcortical regions, mainly matching the consensus about the 

tract-based connectivity. Nuanced timing differences between regions and the closed 

flow of activity throughout the brain suggest drivers and origins for these patterns. QPPs 

dominantly contribute to the functional connectivity between brain areas. These patterns 

are not artifacts of preprocessing such as filtering or global signal regression. QPPs 

reflect neuronal activity, however, due to a principled timing relation with the slow 

variations in the respiration and heart rate, these patterns might have a 

neurophysiological basis. Together, our results suggest a few recurring spatiotemporal 

patterns of intrinsic activity can dominantly coordinate the functional connections across 

the whole brain and serve self-organization. 

The following paths are recommended for further research. 
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Optimal detection method. The current method to detect QPPs requires selecting an 

initial segment with a preset duration and choosing a correlation threshold. This method 

was developed near a decade ago, as the first attempt to identify similar recurring 

segments. To this date, we know of two recent and very different methods 

(unpublished), with minimal requisites, that can detect patterns which are qualitatively 

very similar to QPPs 1-3 and QPPG. An optimal method to detect QPPs and the extent 

of our results that can be replicated are worth investigating. 

Conquering the dominance of QPPs in the cerebral cortex. Brain is a complex 

system and exhibits varied dynamics regimes of coherent activity. In the rsfMRI 

timeseries, along QPPs, very likely, fast focal spatiotemporal patterns exist, linearly 

superimposed or non-linearly interactive. Examples of such spatiotemporal patterns can 

be fast focal propagating activity in varied contexts, reviewed in the last section of the 

discussion chapter. Systematically addressing the dominance of QPPs, which might be 

neurophysiological patterns, by temporarily regressing them, has the potential to 

enhance the detectability of the minor patterns, which might be more neuronal, or even 

might play a role as drivers within the cycles of QPPs or as initiators of the cycles. 

Independent subcortical patterns. When the input for the QPP analysis includes 

timeseries of the cortical and subcortical regions, the output would be dictated by the 

cortical events and the subcortical activity would basically be coactivity locked with those 

cortical events. Existence of independent recurring patterns in each subcortical region 

can be explored, by considering the timeseries of only that region for the QPP analysis, 

as also reported by Majeed and colleagues [16]. Optimal order for such exploration 

might be thalamus, hippocampus/amygdala, and basal ganglia. Furthermore, if a 

neuronally meaningful independent pattern is detected for a subcortical region, coactivity 
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of other regions, including the cerebral cortex, can be easily explored. The transition 

matrix between independent patterns of different regions can also be easily examined. 

Invasive examinations of propagation and possible mechanisms, drivers, origins 

and neurophysiological basis. Our report is solely based on a non-invasive indirect 

and inherently slow imaging modality. Our characterizations, although very likely 

reflective of neuronal activity to our best of knowledge, are still only based on relative 

timings and have a weak basis. Strengthening the basis requires invasive and 

comprehensive examination of causal relationships between brain areas in rodents or 

primates, based on more direct and faster neuroimaging modalities, perhaps combined 

with fMRI for whole brain coverage, in controlled settings, even by using various 

interventions (e.g., electrical stimulation or pharmaceutical agents), e.g., to test driving 

relations. However, such examinations are inherently extensive and can become non-

trivial. Additionally, since the ultimate goal is to understand our own brain, in health and 

disease, lessons learned from stronger characterizations in non-humans can inform our 

further investigations in humans. These two avenues complement each other and should 

be paved in parallel. 

Served purpose and task interaction. What purposes are served by QPPs? This 

question has the ultimate importance, in my view. QPPs should be functionally 

organizing the brain, at a domain-general level, i.e., with a wide range of behavioral-level 

manifestations. What purposes are served by the brain itself at a general level to our 

best of knowledge? What are the primary functionalities of each brain region at a general 

level to our best of knowledge? How might the specific activity within each QPP between 

the brain regions serve the purposes the that are to be served by the brain as a whole, 

given the primary functionality of each region? Our best of speculations about these 
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questions can form hypotheses to be tested about possible purposes served by QPPs. 

Regarding testing such hypotheses, interaction of these intrinsic patterns with task-

evoked activations should be very insightful, primarily because of the reduced variability 

across individuals and the quantifiable behavioral-level manifestation of the brain 

activity. How might the activity within QPPs change as a task starts, continues and 

ends? What features of QPPs can predict task performance, at different stages of a 

task? To what extent these questions can offer insight into purposes served by QPPs? 

Clinical alteration and behavioral correlates. Intrinsic functional connectivity (FC) is 

widely used as a biomarker in psychiatric disorders and neurological diseases or as a 

predictor of cognitive and psychological traits and states in healthy populations. As 

dominant contributors to FC, QPPs entail nuanced information, e.g., relative timings 

between important areas and multiple patterns, which could be more sensitive metrics 

and cannot be extracted from the FC alone. How various features of QPPs alter in the 

common clinical conditions or correlate with the behavioral measures are promising 

avenues to pursue. 
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APPENDIX A: RV AND HV TIMESERIES 
 
 
 
Preprocessing the physiological traces (Figure 10). Both physiological traces were 

despiked using Matlab medfilt1 and amplitude clipped to -2.5 to +3.5 standard deviation 

from mean to remove outliers not fixed by despiking. Further, traces were band pass 

filtered, using fourth order Butterworth with 1dB cutoff frequencies of 0.01 and 1 Hz for 

respiratory and 0.6 and 3 Hz for cardiac, along with Matlab fdesign and filtfilt functions 

and zeros pads, inserted at both ends before filtering and removed afterwards to 

minimize transient effects. Amplitudes of the traces were rescaled to 0–100. Traces per 

scan per individual were visually inspected based on histograms of amplitudes in time 

and spectrums in frequency domain (Figure 10b) and only the good quality scans were 

selected for further processing. 

RV timeseries. RV was calculated as the standard deviation of the respiratory trace 

within a sliding window of 7.2s (10 timepoints), ~ two respiratory cycles, centered around 

each timepoint of the fMRI scan. Respiratory traces might have short belt detachments 

or other problems that cause large changes in RV. To identify unacceptable scans, the 

standard deviation of RV (std RV) for all scans and all individuals were calculated. Only 

individuals whose std RV for all four scans were within three standard deviations above 

the median were included. 

HV timeseries. HV was calculated as the average of time between successive peaks of 

the cardiac trace within a sliding window of 7.2s centered around each timepoint of the 

fMRI scan. For peak detection, Matlab findpeaks function was used with the minimum 

peak distance set to the temporal value that corresponded to the two-thirds of the largest 

peak in the frequency domain (Figure 10a showcases the effectiveness of this simple 
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method). Based on the histogram of the standard deviation of HV (std HV), only 

individuals whose std HV for all four scans were within three standard deviations above 

the median were included.   
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APPENDIX B: AMYGDALA PARCELS 
 
 
 
Amygdala parcels by Tyszka and Pauli 2016 [36] include deep or basolateral group 

(lateral (La), basolateral (BL), accessory basal (BM), paralaminar (BLV)), superficial or 

corticomedial group (corticomedial nucleus (CMN), periamygdaloid cortex (ATA)), 

remaining nuclei (central nucleus (CEN), anterior amygdaloid area (AAA), intercalated 

nuclei (AMY)), and transition areas (amygdalostriatal transition area (ASTA)). 

To simplify the qualitative comparison between amygdala parcels and summary of 

activity within QPPs in Figures 22 to 24, we named La as parcel1, LB as parcel2, BM as 

parcel3, BLV as parcel4, but grouped CMN and CEN as parcel5, and ATA, AAA, AMY 

and ASTA as parcel6. 
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APPENDIX C: NOTIONS OF DRIVE AND PROPAGATION 
 
 
 
Regarding usage of terms “drive” and “propagation”, both of which based on temporal 

precedence, the following provides a further clarification. 

Particularly applicable to the cortex and thalamus but generalizable to any two or more 

regions, assume regions C and T each have only three areas with two pairs of areas 

bidirectionally connected with different latencies, meaning C1<=>C2<->C3 and 

T1<∙∙>T2<∙>T3. Further assume C1 and T1 are directly connected with negligible 

latency. However, C2 and T2 have complicated connections with any possible latency, 

likewise C3 and T3. 

We see C1 precedes C2, and C2 precedes C3, or C1→C2→C3. We also see 

T1→T2→T3. Further, we find C1 and T1 are synchronous, likewise C2 and T2, however 

T3 precedes C3. Based on all the connections between areas and regions, we can say 

“C1 and T1 together drive C2 and T2” and “C2 and T2 together drive C3 and T3 with T3 

also driving C3”. We have chosen to say “activity propagates along C, activity 

propagates along T consistent and time-locked with C, and as activity propagates to C3, 

T3 takes a lead”. 
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APPENDIX D: GENERAL FUNCTIONALITY OF NETWORKS AND 
REGIONS 

 
 
 
The following provides my personal summary of the domain-general functionality of each 

transmodal cortical RSN and an overall functionality of each subcortical region. 

The DMN is involved in a range of tasks that require internally oriented attention or rely 

on the internal integrated representations, e.g., thinking about self, social inferences, 

semantic processing and language [3,7,12-13,45,91,118]. The TPN is involved in a 

range of tasks that require externally oriented attention, and is comprised of the DAN, 

VAN and FPN [44,47]. The DAN is involved in top-down attention, VAN in bottom-up 

attention, and FPN, or the executive control network, is involved in the initiation of new 

strategies and task-maintenance [44]. The FPN includes lateral prefrontal areas involved 

in the working memory [119] and is known to be human-specific [7,120]. The limbic 

network (LN) is involved in motivations and regulation of emotions [47,87]. 

About laterality, as a neurocognitive feature, the DMN nodes are wider on the left cortical 

hemisphere, while TPN nodes, particularly FPN and VAN, are wider on the right [44]. 

The cerebellum is involved in skilled executions, motor and cognitive [29-30,48]. 

The striatum, as part of basal ganglia (BG), is involved in motivated, goal-directed 

executions, motor and cognitive [42,87,119,121]. 

Both the cerebellum and striatum (via other parts of BG) project to the thalamus, not 

directly to the cortex – and both are known to play role in the procedural non-declarative 

memories [122]. 
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The thalamus relays the sensory inputs to the primary unimodal cortex and is involved in 

both fast and sustained control of attention in almost all cognitive processes 50-51,88]. 

Close interaction of the thalamus and cortex can generate rhythms of low arousal (~1-

10Hz) [54-55] even infraslow (<0.1Hz) [52-53] - thalamocortical units are cardinal 

oscillators. 

The hippocampus is involved in encoding and retrieval of the navigational, episodic 

(self/internally oriented), and declarative memories, interacts with the LN and amygdala, 

and can generate unique rhythms such as sharp-wave ripples [4,122-125]. 

The amygdala is involved in emotions, particularly the fast fear responses, by 

modulating the autonomous nervous system (ANS), and is also involved in the memory 

consolidation [85,123,126-127]. 

The Brain stem and deep brain nuclei are involved in tonic and phasic modulation of 

arousal and attentiveness, modulation of ANS and a host of homeostatic regulations 

[84,89,128]. 
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