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1 Introduction

Steganography, the science of hiding information within an innocent looking
message, has a long history that can traced back to Ancient Greece. The ad-
vent of the digital age has opened many new opportunities for hiding information
and has led to the formalization of steganography using sound cryptographic
principles. Briefly, the objective is for two legitimate parties, Alice and Bob, to
use an innocent-looking covertext within which they hide a cypher-text, result-
ing in a stegotext. The stegotext is made available to an adversary, the warden
Willie, from which Alice and Bob should hide the presence of the cyphertext,
possibly using a shared secret key.

Quantum steganography is the extension of steganography to the quantum
setting, wherein a quantum protocol (e.g.: a quantum error-correcting code) is
used to hide classical or quantum information. Because of the unique nature of
quantum states & channels [1], quantum steganography can be stronger than
classical steganography.

A lot of effort has been devoted to characterizing how much information
can be embedded into various quantum channels with or without noise. Back
in 2016, Sanguinetti, et al., developed a steganographic protocol to transmit
information privately, by hiding information in the quantum noise of a pho-
tograph [11]. More recently, Li & Liu [12] developed another novel quantum
steganography scheme for color images that outperformed existing protocols in
terms of embedding capacity. Bloch and Tahmasbi have recently developed
and analyzed several quantum steganography protocols [10] that improve on
earlier work, exploiting a concept [8] known in information theory as channel
resolvability.

The central focus of the thesis is to provide a concise background survey
of specific topics from relevant disciplines in classical and quantum information
theory, and to put forth a formulation of the problem concerning the possi-
ble characterization of the steganographic capacity, i.e. the maximum rate of
transmission of information under constraints of secrecy as dictated by steganog-
raphy, for a specific type of quantum channel - channels that are linear, trace-
preserving, positive maps - called the lossy bosonic channel (LBC).

An example to illustrate possible interest in the endeavor to formulate said
problem, as well as to shed light upon why this is worth looking into for society,
is to consider an instance where you have low-power fiber optics cables on which
one party wants to discreetly send information to another party via a channel
that is controlled by a third party.

The outline of the thesis is as follows:

• Section 2 is the literature review in conjunction with required background
to yield a survey of topics required for Section 3.
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• Section 3 presents the aforementioned problem formulation that concerns
the possible characterization of the steganographic capacity.

• Section 4 is the conclusion of the presented background survey and prob-
lem formulation, which is ultimately closed off with a discussion on the
future work that could build off this thesis.

2 Literature review and Background

The problem that is being attempted to be formulated is one that is likely to
be worthy of consideration and important to society, because solving such a
problem would be a significant step towards understanding the limitations con-
cerning the rate of carrying/retrieval of information in lossy bosonic channels.
The characterization of steganographic protocols for LBCs is of high interest to
communication systems researchers in cyber-security. This is because LBCs are
essentially (rather, from a slightly simplistic perspective) the canonical channel
that models common communication channels supporting quantum information.

This section contains an overview of lossy bosonic channels, quantum steganog-
raphy and channel resolvability - all of which are relevant to the problem for-
mulation that follows.

2.1 Lossy Bosonic Channels

2.1.1 Introduction

An important, practically-relevant quantum channel in quantum communica-
tions, is the lossy bosonic channel (LBC). An LBC consists of a collection of
bosonic modes that lose energy en route to the receiver from the transmitter.
This channel can model the communication of photons over a fiber optic ca-
ble, or over free space, owing to the fact that the main source of noise in these
situations is just the loss of photons.

A rigorous discussion of these channels requires the establishment of an
applicable formalism of bosonic systems.

2.1.2 Bosonic Systems

It is of necessity to first consider the notion of a continuous variable system - this
is a quantum system which has an infinite-dimensional Hilbert space described
by observables with continuous eigenspectra1. Because these types of systems
supply the quantum description of the propagating electromagnetic field, they
are relevant for quantum communication.

1The set of possible eigenvalues of an observable is its eigenspectrum.
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Examples of these systems are often represented by N bosonic modes2, corre-
sponding to N quantized radiation modes of the electromagnetic field. One can
think of it corresponding to the situation dealing with N harmonic oscillators.

N bosonic modes are associated with a tensor product [3]: H⊗N =
⊗N

k=1Hk
and corresponding pairs of bosonic field operators, i.e., annihilation and cre-
ation operators, {âk, â†k}Nk=1. For convenience, represent these operators as a

vector b̂ := (â1, â
†
1, · · ·, âN , â

†
N )T , satisfying the commutation relations [b̂ib̂j ] =

Ωij ; (i, j ∈ {1, 2, · · ·, 2N}), where Ωij is the matrix element of the following
symplectic matrix:

Ω :=

N⊗
k=1

ω =

ω . . .

ω

 ; ω =

[
0 1
−1 0

]
(2.1)

One thing to note about this system is that its Hilbert Space is separable and
infinite dimensional. This is owing to the fact that the single-mode Hilbert space
H is spanned by the Fock basis {|n〉∞n=0}, with it being composed of eigenstates
of the number operator n̂ := â†â. Over these states in particular, we have:

â† |n〉 =
√
n+ 1 |n+ 1〉 , n ≥ 0

â |n〉 =
√
n |n− 1〉 , n ≥ 1; â |0〉 = 0, n = 0

These bosonic systems can also be described by another kind of field opera-
tors referred to as the quadrature field operators {q̂k, p̂k}Nk=1, where q̂k := âk+â†k

and p̂k := i
(
â†k − âk

)
. We now note that quadrature operators are observables

with continuous eigenspectra: q̂ |q〉 = q |q〉, p̂ |p〉 = p |p〉. The quadrature eigen-
values therefore can be used as continuous variables to describe the bosonic
system in the phase-space representation.

2.1.3 Bosonic channels

We consider a multimode bosonic system (with N arbitrary modes) as described
in the preceding discussion, whose quantum state is described by an arbitrary
density operator ρ̂ ∈ D(H⊗N ), where D(H⊗N ) denotes the set of all density
operators on H⊗N .

Definition 2.1. N -mode Bosonic Channel : A completely positive, trace -
preserving linear map E : ρ̂→ E(ρ̂) ∈ D(H⊗N )

Because our focus is specifically on lossy bosonic channels (LBCs), we con-
sider the model described by Figure 1.

2While one may note that the mode of a free quantum field is essentially the Fourier mode

expansion of the field φ(~x) =
∫ d3p

(2π)2
√

2ωp

(
a(~p)ei~x·~p + b(~p)†e−i~x·~p

)
, we more generally refer

to any collection of creation/annihilation operators as modes, and classify them as bosonic
(or fermionic) modes based on the obeyed commutation relations.
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Figure 1: A schematic picture of the model of lossy bosonic channel [17]. Each
input mode (left–right line), representing one use of the channel, interacts with
the corresponding environment mode (top–bottom line) through a beam splitter.

2.1.4 Pure-Loss Bosonic Channels (PLBCs)

2.1.4.1 Introduction

We consider a scenario where the sender Alice attempts to transmit M bits
to receiver Bob using n bosonic modes, whereas warden Willie attempts to
detect her transmission attempt. We treat a single spatiotemporal polarization
mode [4, Supplementary Note 1] of the electromagnetic field as the fundamental
transmission unit over the channel.

Each of the 2M possible M -bit messages maps to an n-mode codeword and
their collection forms a codebook. Desirable codebooks ensure that the code-
words, when corrupted by the channel, are distinguishable from one another.
This provides reliability: a guarantee that the probability of Bob’s error in

decoding Alice’s message P(b)
e > δ with arbitrarily small δ > 0 over large n.

Willie’s detector reduces to a binary hypothesis test of Alice’s transmission
state given his observations of the channel. Let PFA denote the probability that
Willie raises a false alarm when Alice does not transmit and PMD denote the
probability that Willie misses the detection of Alice’s transmission. Under the
assumption of equal prior probabilities on Alice’s transmission state, Willie’s
detection error probability is Pwe = PFA+PMD

2 .
Alice desires a reliable signalling scheme that is covert; in other words, en-

sures P(w)
e > 1

2 − ε for an arbitrarily small ε > 0 regardless of Willie’s quantum

measurement choice (as P(w)
e = 1

2 for a random guess).
Given the aforementioned scenario, consider a single-mode lossy bosonic

channel εn̄T
ηb

of transmissivity ηb ∈ (0, 1] and thermal noise mean photon number
per mode n̄T ≥ 0. Willie collects fraction ηw = 1 − ηb of Alice’s photons that
do not reach Bob. For a pure loss bosonic channel (n̄T = 0), the environment
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input is in the vacuum state ρ̂E0 = |0〉 〈0|E , corresponding to the minimum
noise the channel must inject to preserve the Heisenberg inequality of quantum
mechanics. The set-up is described in Fig. 2.

Figure 2: Willie collects fraction ηw = 1 − ηb of Alice’s photons that do not
reach Bob. This lossy–noisy bosonic channel accurately models single-spatial-
mode free space and single-mode fibre optical channels. Alice and Bob share a
secret before the transmission [4].

2.1.4.2 Insufficiency of PLBCs for covert communication

One interesting thing to now note, is the inability to instantiate covert commu-
nication over a channel that lacks excess noise. That is, regardless of Alice’s
strategy, reliable and covert communication over a pure-loss bosonic channel
(n̄T = 0) to Bob is impossible [4, Theorem 1].

Theorem 2.2. Suppose Willie has a pure-loss channel from Alice and is limited
only by the laws of physics in his receiver measurement choice. Then Alice
cannot communicate to Bob reliably and covertly even if Alice and Bob have
access to a pre-shared secret of unbounded size, an unattenuated observation of
the transmission, and a quantum-optimal receiver.

Intuitive explanation

When the noise mean photon number per mode n̄T = 0, i.e. we use a PLBC,
we note that no photons impinge on Willie’s single photon detector3 (SPD)
when Alice is silent. But even on the detection of a single photon or more,
it is apparent that Alice is attempting to transmit information. This means
that Alice is restricted to usage of codewords that are nearly indistinguishable
from vacuum - this coupled with the fact that Willie can detect an attempt

3The detector is utilized by Willie to collect the fraction of Alice’s photons that do not
reach Bob
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to communicate covertly with high probability for large n, simply means that
Alice cannot reliably communicate4 with Bob covertly!

Formal proof

Having gone over an intuitive explanation as to why a PLBC cannot enable
reliable, covert communication between Bob and Alice, we now go over the
formal proof of Theorem 2.2, using the approach and methods detailed in the
supplementary information to [4], which demonstrates that Willie can use an
ideal SPD on each mode of the pure-loss bosonic channel (PLBC) to effectively
discriminate between any non-vacuum state in Alice’s codebook and an arbitrary
n-mode vacuum state.

Proof. Let |k〉 ≡
⊗n

i=1 |ki〉, where k ∈ Nn0 , with N0 being the set of non-
negative integers. Alice sends one of 2M (equally likely) M -bit messages by
choosing an element from an arbitrary codebook {ρ̂An

x , x = 1, · · ·, 2M}, where a

state ρ̂A
n

x = |ψx〉A
nAn 〈ψx| encodes an M-bit message Wx. Note that |ψx〉A

n

=∑
k∈Nn

0
ak(x) |k〉A

n

is a general n-mode pure state.5

Now, let Willie use an ideal SPD (Single Photon Detector) on all the n-
modes. This is represented by a POVM (positive operator-valued measure):{
|0〉 〈0| ,

∑∞
j=1 |j〉 〈j|

}⊗n
.

Additionally, suppose Wu is transmitted - then, the task becomes to distin-
guish between ρ̂W

n

0 = |0〉WnWn |0〉 and ρ̂W
n

1 = ρ̂W
n

u , where ρ̂W
n

u is the output
state of a PLBC with transmissivity ηw corresponding to an input state ρ̂A

n

u .
With the messages being sent equiprobabilistically, we have Willie’s average
error probability to be:

P(w)
e =

1

2M+1

2M∑
u=1

Wn

〈0| ρ̂W
n

u |0〉W
n

(2.2)

Using a lemma proved in [4] [Supplementary Note 3, Lemma 3], we have:

Wn

〈0| ρ̂W
n

u |0〉W
n

=
∑
k∈Nn

0

|ak(u)|2(1− ηw)
∑n

i=1 ki

≤ |a0(u)|2 + (1− |a0(u)|2)(1− ηw)

= 1− ηw(1− |a0(u)|2)

4Here, Willie is assumed to have access/authority to control the environment, and sets it
to a vacuum

5We limit our analysis to pure input states since, by convexity, using mixed states as inputs
can only degrade the performance (since that is equivalent to transmitting a randomly chosen
pure state from an ensemble and discarding the knowledge of that choice).
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Substituting this into equation (2.2) for Willie’s average error probability,
we get:

P(w)
e ≤ 1

2
− ηw

2

1− 1

2M

2M∑
u=1

|a0(u)|2
 (2.3)

From the above inequality, we see that Alice must use a code book with the
following upper bound on the probability of transmitting one or more photons,

such that P(w)
e ≥ 1

2 − ε is ensured:

1

2M

2M∑
u=1

(
1− |a0(u)|2

)
≤ 2ε

ηw
(2.4)

With this result in hand, we move on to show the existence of an interval
(0, ε0 ε0 > 0, such that if some ε ∈ (0, ε0], then Bob’s average decoding error

probability P(b)
e ≥ δ0; δ0 > 0 (hence making covert communication unreliable

over the PLBC).
Denote the event that the transmitted message Wu is decoded by Bob as

Wv 6= Wu, by Eu→v. Given that Wu is transmitted, the decoding error proba-

bility is the probability of the union of events
⋃2M

v 6=u,v=0Eu→v. Let Bob then,
choose a POVM {Λ∗j} that minimizes the average probability of error over n
modes:

P(b)
e = inf

{Λj}

1

2M

2M∑
u=1

P

 2M⋃
v 6=u,v=0

Eu→v

 (2.5)

We will now work with a codebook that meets the necessary condition for covert
communication given by the upper bound on number of photons as previously
derived (2.4). Define the subset of this codebook {ρ̂An

u , u ∈ A}, where A ={
u : 1− |a0(u)|2 ≤ 4ε

ηw

}
. Let us then lower bound (2.5) as below6:

P(b)
e =

1

2M

∑
u∈Ā

P

 2M⋃
v 6=u,v=0

Eu→v

+
1

2M

∑
u∈A

P

 2M⋃
v 6=u,v=0

Eu→v


≥ 1

2M

∑
u∈A

P

 2M⋃
v 6=u,v=0

Eu→v

 (2.6)

Assume |A| to be even WLOG, and split7 A into A(left) and A(right).

6the probabilities in (2.6) are with respect to the POVM {Λ∗j} that minimizes (2.5) over
the entire codebook

7these are two equal-sized non-overlapping subsets
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Let g : A(left) → A(right) be a bijection, so that we can write (2.6) as follows:

P(b)
e ≥

1

2M

∑
u∈A(left)

2

P
(⋃2M

v 6=u,v=0Eu→v

)
2

+
P
(⋃2M

v 6=g(u),v=0Eg(u)→v

)
2


≥ 1

2M

∑
u∈A(left)

2

(P(Eu→g(u))

2
+

P(Eg(u)→u)

2

)
(2.7)

The second lower bound follows from the fact that the events in the latter are
contained in the unions. For convenience, we define the summation term to
be Bob’s average probability of error when Alice only sends messages Wu and
Wg(u), i.e.:

Pe(u) ≡
P(Eu→g(u))

2
+

P(Eg(u)→u)

2
(2.8)

Now, the lower bound on the probability of error in discriminating two received
codewords, can be obtained by lower-bounding the probability of error in dis-
criminating these two codewords before they are sent8. From [4] [Chapter IV.2
(c), Equation (2.34)], we have the the lower bound on the probability of error

in discriminating between
∣∣ψAn

u

〉
and

∣∣∣ψAn

g(u)

〉
to be:

Pe(u) ≥ 1

2

[
1−

√
1− F

(
|ψu〉A

n

,
∣∣ψg(u)

〉An
)]

(2.9)

Here, F (|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2 is the fidelity between the pure states. To lower

bound the RHS of equation (2.9), one can lower bound F
(
|ψu〉A

n

,
∣∣ψg(u)

〉An)
.

Now, an equivalent way of writing the fidelity quantity [19, equation (9.134)],
in conjunction with the triangle inequality (for trace distance), yields:

F
(
|ψu〉A

n

,
∣∣ψg(u)

〉An)
= 1−

(
1

2

∥∥∥ρ̂An

u − ρ̂A
n

g(u)

∥∥∥
1

)2

≥ 1−

∥∥ρ̂An

u − |0〉A
nAn 〈0|

∥∥
1

2
+

∥∥∥ρ̂An

g(u) − |0〉
AnAn 〈0|

∥∥∥
1

2


= 1−

(√
1− |An 〈0|ψu〉An |2 +

√
1− |An

〈
0
∣∣ψg(u)

〉
An |2

)

=⇒ Pe(u) ≥ 1

2

[
1−

(√
1− |An 〈0|ψu〉An |2 +

√
1− |An

〈
0
∣∣ψg(u)

〉
An |2

)]
(2.10)

8this is equivalent to Bob having an unattenuated unity-transmissivity channel from Alice
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Since |An 〈0|ψu〉A
n |2 = |a0(u)|2, 1 − |a0(u)|2 ≤ 4ε

ηw
and 1 − |a0(g(u))|2 ≤ 4ε

ηw
,

we have:

Pe(u) ≥ 1

2
− 2

√
ε

ηw
=⇒ P(b)

e ≥
|A|
2M

(
1

2
− 2

√
ε

ηw

)
(2.11)

Now, restating (2.4),

2ε

ηw
≥ 1

2M

2M∑
u∈Ā

(
1− |a0(u)|2

)
=⇒ 4ε

ηw

2M − |A|
2M

=⇒ |A|
2M
≥ 1

2
(2.12)

From (2.11) and (2.12), we have the positive lower bound on Bob’s probability of

decoding error P(b)
e ≥

1

4
=

√
ε

ηw
for any n and ε ∈ (0, ηw16 ], thus demonstrating

that reliable covert communication over a pure-loss channel is impossible.

2.2 Quantum Steganography

2.2.1 Brief overview of Steganography

The aim in steganography is for two parties to successfully embed information
within an innocent looking message (cover text), without being detected by an
undesired party.

We consider a general model of steganography systems [1]. Alice wishes to
send some data (embedded data E) secretly, to another party Bob, without
being detected by Eve. The message to be sent then, i.e. the stego-data, is
computed using E, a key K, and an innocent looking cover data C. Note that
C itself is computed from environmental data V using an algorithm referred to
as a cover generating algorithm G.

Figure 3: Communication with Classical Steganography [1]
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What makes a communication system (such as that in Figure 3, reproduced
from [1]) steganographic, is a pair of an embedder E and an extractor/decoder
D, such that the following hold:

E(V,E,K) = S; D(S,K) = E

Finally then, note that Eve’s task is to detect usage of steganography by
detecting C or S. The system is perfectly secure if the probability distribution
of S is equal to that of C, i.e. C and S are indistinguishable to Eve.

2.2.2 Comparing Quantum Steganography to Classical Steganogra-
phy

Figure 4: Communication with Quantum Steganography [1]

In the quantum steganography model [1] (Figure 4, reproduced from [1]), all
random variables are replaced by quantum registers, allow Eve to destructively
measure C or S, and add an initialization step for the keys, since K cannot be
cloned owing to the no-cloning theorem.

In this model, the perfect security condition is ρc = ρs, where ρc and ρs are
the density matrices of C and S respectively.

It has been shown that quantum steganography can be strictly more secure
than the classical steganography system [1], since no classical steganography
system can be perfectly secure if its cover data (whose distribution is unknown)
is the result of a measurement[2].

2.2.3 Recent work

Many different models of steganography have been put forth that contain efforts
on characterizing how much information can be embedded into various quantum
channels with/without noise, and to assess how much key is required to achieve
the task. We are interested in the model that [5],[14] considers, which assumes
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that the warden has inaccurate knowledge of what the channel is. Specifically,
we assume that the knowledge of the channel that the warden possesses, is a
degraded version of the real channel - this can be achieved by intentionally
cascading another channel at the transmitter.

Unlike earlier results [14],[5], Tahmasbi and Bloch [10] show that no shared
key is required to run the stego protocol when the channel is noiseless. This is
achieved through the use of a random encoder obtained from privacy amplifi-
cation and source coding with side information techniques. Furthermore, they
relax the assumption on the cover code in [14] that “on a valid codeword in the
QECC, the typical errors all have distinct error syndromes, and act as unitaries
that move the state to a distinct, orthogonal subspace,” by relying on one-shot
coding results.

2.3 Channel Resolvability

2.3.1 Classical Channel resolvability

We first define a few things.

Definition 2.3. Variational Distance: Letting PZ and PZ̃ be probability dis-
tributions on a countably infinite set Z, the variational distance between them
is:

d(PZ , PZ̃) :=
1

2

∑
z∈Z
|PZ(z)− PZ̃(z)|

Definition 2.4. ε−Limit Superior (in probability): For ε ∈ [0, 1],

εp− lim
n→∞

supZn := inf{α : lim
n→∞

inf Pr{Zn > α}}

εp∗ − lim
n→∞

supZn := inf{α : lim
n→∞

sup Pr{Zn > α}}

Definition 2.5. δ− Channel Resolvability : Let δ ∈ [0, 1) be fixed arbitrarily.
A resolvability rate R ≥ 0 is said to be δ−achievable at X if there exists a
deterministic mapping ϕn : {1, · · ·,Mn} → χn satisfying:

lim
n→∞

sup
1

n
logMn ≤ R

lim
n→∞

sup d(PY n , PỸ n) ≤ δ

Where Ỹ n denotes the output via Wn due to the input X̃n = ϕn(UMn). Note
that UMn

denotes a uniform random number of the size Mn, which is a random
variable uniformly distributed over {1, · · ·,Mn}. The δ−channel resolvability
then [18], at X, is:

S(δ|X,W ) := inf{R : R is δ- achievable at X}
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Finding the asymptotically minimum rate of the size of the uniform ran-
dom numbers which can approximate a given target output distribution via a
channel is called the problem of channel resolvability. Another formulation of
the channel resolvability result, in the case of a Discrete Memoryless Channel
(DMC), is presented as Lemma 5 in [20]. However, we will be interested in
channel resolvability results for classical-quantum (cq) channels.

2.3.2 Channel Resolvability result for cq-channels

We now present a lemma [20, Lemma 6] for a cq-channel x→| ρxW , whose usage
we shall note in the problem formulation section as being important in the proof
of a related problem described in [10].

Lemma 2.6. Let W be a message uniformly distributed over M, PX be a
probability distribution over χn and F : M → χn be a random encoder whose
codewords are iid according to a distribution PX . Let ρxW := ρx1

W ⊗ · · ·ρ
xn

W and
φ(s) := log

(∑
x PX(x) Tr

{
(ρ1−s

Wx ρsW)
})

. We then have:

EF

(∥∥∥∥∥ 1

|M|
∑
m∈M

ρ
F (m)
W − ρW

∥∥∥∥∥
1

)
≤ 2
√

2γs+φ(s) +

√
2γν(ρW)

|M|
(2.13)

3 Problem Formulation and discussion

Let W be the classical message with uniform distribution over [[1,M ]], which is
required to be reliably transmitted. To use the channel (trace-preserving com-
pletely positive map) NA→B n times, for running the classical communication
protocol, we look at the classical communication code, (M, ε)CC, where:

1

M

M∑
w=1

tr
(
ΛnN⊗nA→B(f(w))

)
≥ 1− ε

Note that the code consists of:

• Function: f : [[1,M ]] → D(H⊗nA ).9 This is to encode message w into an

input state ρwAn , f(w).

• POVM: Λ = {Λw}w∈[[1,M ]]. This is to decode W.

We note that the cover protocol Pc (inducing the quantum state ρcBn
) is known

to the warden, and that the perceived/assumed channel is in fact N⊗nA→B ◦
M⊗nA→B(f(w)), which is a degraded version compared to just N⊗nA→B(f(w)).

Our overarching objective then is to exploit this gap in the warden’s knowl-
edge of the channel characteristics, and run a stego protocol Pc to induce the
state ρsBn

at the output of N⊗nA→B , such that
∥∥ρcBn

− ρsBn

∥∥
1

is small.

9Here, D(H⊗nA ) denotes the set of density operators on HA.
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Figure 5: Top: Channel structure that exists according to Warden. Bottom:
Actual channel structure [20].

More specifically, let A and B be two multimode bosonic systems, andN⊗nA→B
be a lossy bosonic channel (LBC) [note that it is noisy, and that it is used n
times]. HA and HB here are infinite dimensional Hilbert spaces (i.e. the Hilbert
spaces are associated with the bosonic modes used in communication). Our aim
then, would be to show the existence of a stego protocol that produces ρsBn

satisfying
∥∥ρcBn

− ρsBn

∥∥
1
≤ ζ for any ζ > 0 under certain constraints on ζ.

Now, there exists prior work [10] for a related problem with the same set-
up of the model, except for the fact that systems A and B involved in the
quantum channel NA→B are described by finite-dimensional Hilbert spaces HA
and HB . In this case, the existence of a stego-protocol - which produces ρsBn

satisfying
∥∥ρcBn

− ρsBn

∥∥
1
≤ ζ for any ζ > 0, provided certain constraints on ζ -

is proven in part by utilization of specialized one-shot coding results, as alluded
to in the end of Section 2.2.3. One of the one-shot coding results, which is
an achievability result that states that there exists a classical communication
code for a cq-channel inducing a pre-specified state at the output, utilizes both
quantum channel coding as well as channel resolvability results. Specifically,
Lemma 2.6. from Section 2.3.2. is used in proving this achievability result, and
so we see that channel resolvability is inherently useful in solving such kind of
problems. Therefore, this concept needs to be kept in mind when proceeding
with future work that solves the problem formulated in Section 3 of this paper.

In order to make more progress, it might be worth it to slightly change the
problem. Framing the proposed problem with the addition of an assumption
that the warden does not have access to a shared secret between Alice and Bob
10, and using the model of a single-mode lossy thermal (bosonic) noise channel,
can aid us in getting some parametric constraints.

10While a seemingly restrictive assumption at first glance, it may be so that cost of trans-
mission being detected (or the cost of having a high quality/detection-resistant channel) might
be significantly higher than sharing a secret, so in such situations it may be worth noting this
assumption.
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Let us therefore be more specific with the considered channel model. Con-
sider the channel model for a single mode lossy thermal noise channel (which
happens to be the quantum mechanical description of the transmission of a
single spatiotemporal-polarization mode of the electromagnetic field at a given
transmission wavelength over linear loss and additive Gaussian noise).

Figure 6: Single-mode bosonic channel εn̄B
η modeled by a beam-splitter with

transmissivity η and an environment injecting a thermal state ρ̂n̄B
with mean

photon number n̄B . â, b̂, ŵ, ê label the input/output modal annihilation opera-
tors [19].

To model loss, we take a beam-splitter with transmissivity η. As deducible
from the LBC section (2.1), the relationship between bosonic mode operators

(input/output modal annihilation operators) b̂ =
√
ηâ+

√
1− ηê needs ê to en-

sure that [b̂, b̂†]. Now, Bob captures a fraction η of Alice’s transmitted photons,
while the warden Willie have 1 − η. Noise is modeled here (note the deviation
from the PLBC figure 3 in section 2.1.4.1.) by mode ê being in a zero-mean
thermal state ρ̂n̄B

, with n̄B being the mean photon number per mode injected
by the environment.

If Alice desires to transmit a message x, she modulates an n-mode state ρ̂A
n

x
11 using the shared secret we mentioned in the assumption. Willie then basically
performs a hypothesis test to determine whether Alice transmits anything or
not. When Alice does not transmit any message, Willie observes a product
thermal state ρ̂W

n

0 = ρ̂⊗nηn̄B
, and when Alice does transmit a message, let us say

Willie observes ρ̂W
n

1 state. H0 hypothesis corresponds to no transmission, and
H1 hypothesis corresponds to transmission. Then the probability of Willie’s
detection error 12 is,

P (w)
e =

PFA + PMD

2

where PFA is probability of false alarm and PMD is probability of missed de-
tection.

11May be entangled across n modes.
12We assume equally likely hypotheses.
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The system then, will be said to be covert [15] if for any δP > 0, P
(w)
e ≥ 1

2−δP
for large enough n. This is equivalent to (deducible from the quantum optimal

receiver’s minP
(w)
e yield), i.e. this criterion is satisfied, if

1

4

∥∥∥ρ̂Wn

0 − ρ̂W
n

1

∥∥∥
1
≤ δP

In order obtain a constraint on existing physical parameter(s) due to the
covertness criteria, let us represent this criteria for covertness with a more con-
venient measure such as QRE (quantum relative entropy):

D(ρ̂||σ̂) = Tr[ρ̂ log ρ̂− ρ̂ log σ̂]

It is considered to be more convenient because this measure happens to be
additive over product states. Using Chernoff’s lemma and Pinsker’s inequality,
we can relate it to performance of optimal hypothesis test, so to maintain slightly
higher level of covertness, we set δQRE = 2δ2

P (this is derivable from the fact

that ‖ρ̂− σ̂‖1 ≤
√
D(ρ̂||σ̂). So, recasting the aim with this measure in mind, we

would require our aim to prove the system covertness, given that the criterion
for covertness is if, for any δQRE > 0, D

(
ρ̂W

n

1 ||ρ̂Wn

0

)
≤ δQRE for large enough

n.

Explicitly, [15] shows that the constraint (which manifests onto the transmit-
ted mean photon number per mode n̄S from Alice’s end), owing to this criterion
for this channel model, is:

D
(
ρ̂W

n

1 ||ρ̂W
n

0

)
≤ δQRE =⇒ n̄S ≤

√
2ηn̄B(1 + ηn̄B)

1− η

√
δQRE
n

So we have obtained a constraint that happens to be the converse theorem on
the transmitted mean photon number per mode, for a more restrictive version
13 of the the problem we set out to formulate.

4 Conclusion and Future Work

In this work, a concise survey of the topics of lossy bosonic channels, channel
resolvability, and quantum steganography has been carried out. This has been
followed by a problem formulation with a formally described channel model
that makes progress towards the possibility of establishment of the existence
of a stego protocol in the presented lossy bosonic channel model. With some
additional assumptions to the proposed problem, an approach that is heavily
based on [15] to obtaining the converse theorem for a similar problem is also
presented.

13This is owing to the added assumptions of (1) shared secret between Alice and Bob and
(2) equally likely hypotheses.
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Future work would aim to successfully develop and frame the mathematical
constraints alluded to in the problem formulation without the assumption of a
shared secret in the first place. Additionally, it would frame a tangible theorem
based on the above problem formulation for the described channel model, and
provide the proof for the stego-protocol’s existence given constraints on ζ, that
would proceed similarly in the vein of Theorem 1’s proof in [10].
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