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Abstract: The speech we hear every day is typically “degraded” by competing sounds and the
idiosyncratic vocal characteristics of individual speakers. While the comprehension of “degraded”
speech is normally automatic, it depends on dynamic and adaptive processing across distributed
neural networks. This presents the brain with an immense computational challenge, making de-
graded speech processing vulnerable to a range of brain disorders. Therefore, it is likely to be a
sensitive marker of neural circuit dysfunction and an index of retained neural plasticity. Consid-
ering experimental methods for studying degraded speech and factors that affect its processing
in healthy individuals, we review the evidence for altered degraded speech processing in major
neurodegenerative diseases, traumatic brain injury and stroke. We develop a predictive coding
framework for understanding deficits of degraded speech processing in these disorders, focussing
on the “language-led dementias”—the primary progressive aphasias. We conclude by considering
prospects for using degraded speech as a probe of language network pathophysiology, a diagnostic
tool and a target for therapeutic intervention.

Keywords: degraded speech processing; predictive coding; primary progressive aphasia; Alzheimer’s
disease; Parkinson’s disease; perceptual learning; dementia

1. Introduction

Speech is arguably the most complex of all sensory signals and yet the healthy brain
processes it with an apparent ease that belies the complexities of its neurobiological and
computational underpinnings. Speech signals arrive at the ears with widely varying
acoustic characteristics, reflecting such factors as speech rate, morphology, and in particular,
the presence of competing sounds [1,2]. The clear speech stimuli played to participants in
quiet, controlled laboratory settings are very different to the speech we typically encounter
in daily life, which is usually degraded in some form. Under natural listening conditions,
not only does speech often compete with other sounds, but the acoustic environment is
frequently changing over time, thus speech processing is inherently dynamic. In general,
the processing of degraded speech entails the extraction of an intelligible message (the
“signal”) despite listening conditions that adversely affect the quality of the speech in
some way (the “noise”). These conditions can be broadly conceptualised as relating to
external environmental factors such as background sounds, the vocal idiosyncrasies of
other speakers (such as an unfamiliar accent) [3], or feedback relating to one’s own vocal
productions. Understanding speech under the non-ideal listening conditions of everyday
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life presents a particular challenge to the damaged brain, and might constitute a cognitive
“stress test” that exposes the effects of brain pathology.

Various computational models have been proposed to explain how a speech signal is
normally efficiently disambiguated from auditory “noise”, entailing the extraction of spe-
cific acoustic features, phonemes, words, syntax, and ultimately, meaning [4–8]. Common
to these models is the notion that accurate speech decoding depends on the integration
of “bottom-up” processing of incoming auditory information (e.g., speech sounds) with
“top-down” prior knowledge and contextual information (e.g., stored phonemes derived
from one’s native language). Degraded speech signals are parsed by generic bottom-up
processes that are also engaged by other complex acoustic environments during “auditory
scene analysis” [9], and the high predictability of speech signals recruits top-down pro-
cesses that are relatively speech-specific: these processes normally interact dynamically and
reciprocally to achieve speech recognition [10]. A computationally intensive process of this
kind that depends on coherent and dynamic interactions across multiple neural processing
steps is likely to be highly vulnerable to the disruptive effects of brain pathologies.

1.1. Predictive Coding and Degraded Speech Perception

Predictive coding theory, a current highly influential theory of perception, postulates
that the brain models the causes of sensory input by iteratively comparing top-down
predictions to bottom-up inputs and updating those predictions to reduce the disparity
between prediction and experience (i.e., to minimise prediction error) [11,12]. The brain
achieves this by modelling predictions at lower-level sensory processing stages (“priors”)
via top-down connections from higher-level areas [13]: the modelling involves a weighting
or gain of bottom-up inputs based on their precision (variability) and their expected
precision that informs the confidence of the prediction error. In neuronal terms, this
error is a mismatch between the neural representations of noisy sensory input at each
processing level and the predictions constructed at the processing level above it in the
hierarchy. If the prediction error is significant (above noise), this will cause the brain’s
model to be modified, such that it better predicts sensory input. The computational
implementation of the modification process is difficult to specify in detail a priori; the
associated changes of neural activity at each processing stage are likely to evolve over
time, perhaps accounting for certain apparently contradictory findings in the experimental
neurophysiological literature [14].

According to this predictive coding framework, degraded speech perception depends
on hierarchical reciprocal processing in which each stage passes down predictions, and
prediction errors (i.e., the difference between expected and heard speech) are passed up the
hierarchy [4,15]. Our ability to accurately perceive degraded speech is enhanced by infer-
ring the probability of various possible incoming messages according to context [4,16,17].

1.2. Neuroanatomy of Degraded Speech Processing

From a neuroanatomical perspective, it is well established that the representation and
analysis of intelligible speech occur chiefly in a processing network surrounding primary
auditory cortex in Heschl’s gyrus, with processing “streams” projecting ventrally along
superior temporal gyrus and sulcus (STG/STS) and dorsally to inferior frontal gyrus (IFG)
in the left (dominant) cerebral hemisphere [5,18,19]. Medial temporal lobe structures in the
dominant hemisphere encode and retain verbal information [19–21], and anterior temporal
polar cortex may constitute a semantic hub [22–24]. The reciprocal connections between
association auditory regions and prefrontal cortical areas, in particular IFG [7,25,26], are
essential for the top-down disambiguation of speech signals [27–29].

Broadly similar regions have been consistently identified in neuroimaging studies
of degraded speech processing, including superior temporal sulcus/gyrus (for accent
processing: [30]; altered auditory feedback: [31]; dichotic listening: [32]; noise-vocoded
speech: [33–35]; perceptual restoration: [36]; sinewave speech: [37]; speech-in-noise: [38];
and time-compressed speech [39]) and inferior frontal gyrus (for accent processing: [30];
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noise-vocoded speech: [33–35]; perceptual restoration: [36]) in the dominant hemisphere.
Additional temporo-parietal brain regions are also engaged under challenging listening
conditions [32,40,41]. Therefore, a large fronto-temporo-parietal network consolidates
information across multiple processing levels (acoustic, lexical, syntactic, semantic, articu-
latory) to facilitate the perception of degraded speech signals [42]. Adaptation to degraded
speech may be mediated partly by subcortical striato-thalamic circuitry [27]. The macro-
anatomical and functional organisation of the language network suggests how predictive
coding mechanisms might operate in processing degraded speech (see Figure 1). Cortical
regions involved in “early” analysis of the speech signal, such as STG/STS, communicate
with “higher” regions, such as IFG, that instantiate high-level predictions about degraded
sensory signals. Crucially, however, both “bottom-up” perception and “top-down” pro-
cessing would occur at every stage within the hierarchy, actively updating stored templates
(representations or “priors”) of the auditory environment and generating prediction errors
when the auditory input fails to match the prediction [43].
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Figure 1. A predictive coding model of normal degraded speech processing with major anatom-
ical loci for core speech decoding operations and their connections, informed by evidence in the
healthy brain. Different kinds of degraded speech manipulation are likely to engage these cognitive
operations and connections differentially (see Table 1). Incoming sensory information undergoes
“bottom-up” perceptual analysis chiefly in early auditory areas, while higher level brain regions gen-
erate predictions about the content of the speech signal. Boxes indicate processors that instantiate core
functions; note, however, that processing “levels” are not strictly confined to higher-order predictions
or early sensory input: interactions occur at each level. Arrows indicate connections between levels,
with reciprocal information flow mediating modulatory influences and dynamic updating/perceptual
learning of degraded speech signals. This figure is necessarily an over-simplification; cortical areas
that are likely to have separable functional roles are grouped together for clarity of representation,
and while they are not shown in this figure, intra-areal recurrences and inhibitions alongside other
local circuit effects may also be operating within these regions. aTL, anterior temporal lobe; HG,
Heschl’s gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; STG, superior temporal gyrus;
STS, superior temporal sulcus.



Brain Sci. 2021, 11, 394 4 of 28

Techniques such as electro-encephalography (EEG) and magneto-encephalography
(MEG) have revealed dynamic, oscillatory activity that synchronises neural circuits and
large-scale networks [44]. By delineating feedforward and feedback influences as well as
the rapid changes that attend deviant, incongruous or ambiguous stimuli, such techniques
are well suited to predictive coding applications such as the processing of degraded speech.
Indeed, MEG evidence suggests that induced activity in particular frequency bands may
constitute signatures of underlying neural operations during the predictive decoding of
speech and other sensory signals [45–47]: gamma oscillations (>30 Hz) are modulated as
a function of sensory “surprise” (i.e., prediction error), beta oscillations (12–30 Hz) are
modulated through processing steps downstream from prediction error generation (i.e.,
updating of top-down predictions) and alpha oscillations (8–12 Hz) reflect the precision
of predictions. Past studies conducted with MEG on degraded speech perception have
shown enhanced responses in the auditory cortex (STG) when input becomes intelligible,
but also reduced responses in the context of prior knowledge and perceptual learning (see
Section 2.4), consistent with predictive, top-down modulation from higher-order cortical
areas [48,49].

Accurate and flexible understanding of speech depends critically on the capacity of
speech processing circuitry to respond efficiently, dynamically, and adaptively to diverse
auditory inputs in multiple contexts and environments [50]. Degraded speech processing
is therefore likely to be highly vulnerable to brain diseases that target these networks, as
exemplified by the primary neurodegenerative “nexopathies” that cause dementia [51].
Major dementias strike central auditory and language processing networks relatively se-
lectively, early and saliently (see Hardy and colleagues [52] for a review). It is therefore
plausible that brain diseases should manifest as impairments of degraded speech process-
ing and should have signature profiles of impairment according to the patterns of language
network damage they produce. Indeed, reduced ability to track and understand speech
under varying (non-ideal) listening conditions is a major contributor to the communication
difficulties that people living with dementia experience in their daily lives and is a signif-
icant challenge for the care and management of these patients. Furthermore, the nature
of the speech processing difficulty (as reflected in the symptoms patients describe) varies
between different forms of dementia [52]. However, the processing of degraded speech in
dementias and other brain disorders remains poorly understood and we presently lack a
framework for interpreting and anticipating deficits.

1.3. Scope of This Review

In this review, we consider how and why the processing of degraded speech is affected
in some major acquired brain disorders. Experimentally, many different types of speech
degradation have been employed to study degraded speech processing: we summarise
some of these in Figure 2 and provide a representative review of the literature in Table 1.
We next consider important factors that affect degraded speech processing in healthy
individuals to provide a context for interpreting the effects of brain disease. We then
review the evidence for altered processing of degraded speech in particular acquired brain
disorders (Table 2). We conclude by proposing a predictive coding framework for assessing
and understanding deficits of degraded speech processing in these disorders, implications
for therapy and directions for further work (Figure 3).
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Figure 2. Examples of degraded speech manipulations used experimentally and their acoustic effects on the speech signal.
Broadband time-frequency spectrograms of the same speech token (“tomatoes”), subjected to different forms of speech
degradation (all samples apart from 2B were recorded by a native British speaker with a Standard Southern English
accent; wavefiles of A–G are in Supplementary Material online). (A) Natural speech token. (B) Same speech token spoken
with an American-Californian accent (an accent is a meta-linguistic feature that reveals information about the speaker’s
geographical or socio-cultural background [53]; normal listeners make predictions about speakers’ accents that tend to
facilitate faster accent processing [54]). (C) Speech in multi-talker babble (speech-in-noise can be adaptively adjusted to
find the point at which speech switches from intelligible to unintelligible [55]; background “noise” used experimentally
typically comprises either “energetic” masking (e.g., steady-state white noise) or “informational” masking (e.g., multi-talker
babble, as illustrated here)) [56], (D) Perceptual (or phonemic) restoration (Warren [57] originally observed that when a key
phoneme is artificially excised from a given sentence, control participants are unable to identify the location of the missing
phoneme when “filled-in” with a burst of white noise (bottom panel), but are able to identify the location accurately if the
gap remains silent (top panel), i.e., they perceptually “restore” the excised phoneme). (E) Noise-vocoded speech (vocoding
removes fine spectral detail from speech, whilst preserving temporal cues [58,59]; three bands of modulated noise (i.e., three
“channels”; top panel) are the minimum needed for consistent recognition by normal listeners [59], spectrograms for six
(middle panel) and twelve (bottom panel) channels also shown here). (F) Time-compressed speech (created by artificially
increasing the rate at which a recorded speech stimulus is presented; intelligibility decreases as speech compression rate
increases [60–62]). (G) Sinewave speech (this transformation reduces speech to a series of “whistles” or sinewave tones
that track formant contours [63]). Note that these speech manipulations vary widely in the cognitive process they target,
the degree to which they degrade the speech signal and their ecological resonance (see also Table 1); accented speech
and speech-in-noise or babble are commonly encountered in daily life through exposure to diverse speakers and noisy
environments, perceptual restoration simulates the frequent everyday phenomenon of speech interruption by intermittent
extraneous sounds (e.g., a slamming door), whereas sinewave-speech is a drastic impoverishment of the speech signal that
sounds highly unnatural but becomes intelligible with exposure due to perceptual learning [64].
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Table 1. Summary of major forms of speech degradation with representative experimental studies in healthy listeners.

Degradation Type Study Participants Methodology Major Findings

ACCENTS
Target process: phonemic and

intonational representations
Ecological relevance:

Understanding messages
conveyed via non-canonical

spoken phonemes and
suprasegmental intonation

Bent and Bradlow [65] 65 healthy participants
(age: 19.1)

Participants listened to English sentences
spoken by Chinese, Korean, and English

native speakers.

Non-native listeners found speech from
non-native English speakers as intelligible as

from a native speaker.

Clarke and Garrett [66] 164 healthy participants
(American English)

Participants listened to English sentences
spoken with a Spanish, Chinese, and

English accent.

Processing speed initially slower for accented
speech, but this deficit diminished with exposure.

Floccia, Butler, Goslin
and Ellis [54]

54 healthy participants
(age 19.7; Southern British

English)

Participants had to say if the last word in a
spoken sentence was real or not.

Changing accent caused a delay in word
identification, whether accent change was

regional or foreign.

ALTERED AUDITORY
FEEDBACK

Target process: Influence of
auditory feedback on speech

production
Ecological relevance: Ability to

hear, process, and regulate
speech from own production.

Siegel and Pick [67] 20 healthy participants Participants produced speech whilst hearing
amplified feedback of their own voice.

Participants lowered their voices (displaying the
sidetone amplification effect) in all conditions.

Jones and Munhall [68] 18 healthy participants (age:
22.4; Canadian English)

Participants produced vowels with altered
feedback of F0 shifted up or down. Participants compensated for change in F0.

Donath et al. [69] 22 healthy participants (age:
23; German)

Participants said a nonsense word with
feedback of their frequency randomly

shifting downwards.

Participants adjusted their voice F0 after a set
period of time due to processing the

feedback first.

Stuart et al. [70] 17 healthy participants (age:
32.9; American English)

Participants spoke under DAF at 0, 25, 50, 200
ms at normal and fast rates of speech.

There were more dysfluencies at 200 ms, and
more dysfluencies at the fast rate of speech.

DICHOTIC LISTENING
Target process: Auditory scene

analysis (auditory attention)
Ecological relevance:
Processing of spoken

information with competing
verbal material

Moray [71] Healthy participants, no
other information given

Participants were told to focus on a message
played to one ear, with a competing message

in the other ear.

Participants did not recognize the content in the
unattended message.

Lewis [72] 12 healthy participants
Participants were told to attend to message

presented in one ear, with a competing
message in the other.

Participants could not recall the unattended
message, but semantic similarity affected

reaction times.

Ding and Simon [73] 10 healthy participants
(age 19–25)

Under MEG, participants heard competing
messages in each ear, and asked to attend to

each in turn.

Auditory cortex tracked temporal modulations of
both signals, but was stronger for the

attended one.
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Table 1. Cont.

Degradation Type Study Participants Methodology Major Findings

NOISE-VOCODED SPEECH
Target process: Phonemic

spectral detail
Ecological relevance:

Understanding whisper (similar
quality to speech heard by

cochlear implant users)

Shannon, Zeng, Kamath,
Wygonski and Ekelid [59] 8 healthy participants

Participants listened to and repeated simple
sentences that had been noise-vocoded to

different degrees.

Performance improved with number of channels;
high speech recognition was achieved with only

3 channels.

Davis, Johnsrude,
Hervais-Adelman, Taylor

and McGettigan [58]

12 healthy participants (age
18–25; British English)

Participants listened to and then transcribed
6-channel noise-vocoded sentences.

Participants showed rapid improvement over the
course of 30-sentence exposure.

Scott, Rosen, Lang and
Wise [35]

7 healthy participants
(age 38)

Under PET, participants listened to spoken
sentences that were noise-vocoded to

various degrees.

Selective response to speech intelligibility in left
anterior STS.

PERCEPTUAL
RESTORATION

Target process: Message
interpolation

Ecological relevance:
Understanding messages in
intermittent or varying noise
(e.g., a poor telephone line)

Warren [57] 20 healthy participants
Participants identified where the gap was in
sentences where a phoneme was replaced by

silence/white noise.

Participants were more likely to mislocalize a
missing phoneme that was replaced by noise.

Samuel [74] 20 healthy participants
(English)

Participants heard sentences in which white
noise was either “Added” to or “Replaced” a

phoneme.

Phonemic restoration was more common for
longer words and certain phone classes.

Leonard, Baud, Sjerps
and Chang [43]

5 healthy participants (age
38.6; English/Italian)

Subdural electrode arrays recorded while
participants listened to words with

noise-replaced phonemes.

Electrode responses were comparable to intact
words vs. words with a phoneme replaced.

SINEWAVE SPEECH
Target process: Speech

reconstruction and adaptation
from very impoverished cues

Ecological relevance: Synthetic
model for impoverished speech
signal and perceptual learning

Remez, Rubin, Pisoni
and Carrell [63] 54 control participants

Naïve listeners heard SWS replicas of spoken
sentences and were later asked to transcribe

the sentences.

Most listeners did not initially identify the SWS
as speech, but were able to transcribe them when

told this.

Barker and Cooke [64] 12 control participants Participants were asked to transcribe SWS or
amplitude-comodulated SWS sentences.

Recognition for SWS ranged from 35–90%, and
amplitude-comodulated SWS ranged from

50–95%.

Möttönen, Calvert,
Jääskeläinen, Matthews,
Thesen, Tuomainen and

Sams [37]

21 control participants
(18–36; English)

Participants underwent two fMRI scans: one
before training on SWS, and one

post-training.

Activity in left posterior STS was increased after
SWS training.
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Table 1. Cont.

Degradation Type Study Participants Methodology Major Findings

SPEECH-IN-NOISE
Target process: Auditory scene
analysis (parsing of phonemes

from acoustic background)
Ecological relevance:

Understanding messages in
background noise (e.g., “cocktail

party effect”)

Pichora-Fuller et al. [75]
24 participants in three

groups (age 23.9; 70.4; 75.8;
English)

Participants repeated the last word of
sentences in 8-talker babble. Half had

predictable endings.

Both groups of older listeners derived more
benefit from context than younger listeners.

Parbery-Clark et al. [76]
31 control participants (incl.

16 musicians; age: 23;
English)

Participants were assessed via clinical
measures of speech perception in noise.

Musicians outperformed the non-musicians on
both QuickSIN and HINT.

Anderson et al. [77] 120 control participants
(age 63.9)

Peripheral auditory function, cognitive
ability, speech-in-noise, and life experience

were examined.

Central processing and cognitive function
predicted variance in speech-in-noise perception.

TIME-COMPRESSED
SPEECH

Target process: Phoneme
duration (rate of presentation)

Ecological relevance:
Understanding rapid speech

Dupoux and Green [60] 160 control participants
(English)

Participants transcribed spoken sentence
were compressed to 38% and 45% of their

original durations.

Participants improved over time. This happened
more rapidly for the 45% compressed sentences.

Poldrack et al. [78] 8 control participants (age:
20–29; English)

Participants listened to time-compressed
speech. Brain responses were tracked

using fMRI.

Activity in bilateral IFG and left STG increased
with compression, until speech became

incomprehensible.

Peelle et al. [79] 8 control participants (age:
22.6; English)

Participants listened to sentences
manipulated for complexity and

time-compression in an fMRI study.

Time-compressed sentences recruited AC and
premotor cortex, regardless of complexity.

The table is ordered by type of speech degradation. Information in the Participants column is based on available information from the original papers; age is given as a mean or range and language refers to
participants’ native languages. Abbreviations: AC, anterior cingulate; DAF, delayed auditory feedback; F0, fundamental frequency; fMRI; functional magnetic resonance imaging; HINT, Hearing in Noise Test;
IFG, inferior frontal gyrus; ms, millisecond; QuickSIN, Quick Speech in Noise Test; PET, positron emission tomography; STG, superior temporal gyrus; STS, superior temporal sulcus; SWS, sinewave speech.
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Table 2. Summary of representative studies of degraded speech processing in clinical populations.

Population Study, Degradation Participants Methodology Major Findings

Traumatic brain
injury

Gallun et al. [80]:
Central auditory

processing

36 blast-exposed military
veterans (age: 32.8); 29 controls

(age: 32.1)

Participants went through a battery of standardised
behavioural tests of central auditory function:

temporal pattern perception, GIN, MLD, DDT, SSW,
and QuickSIN.

While no participant performed poorly on all behavioural
testing, performance was impaired in central auditory

processing for the blast-exposed veterans in comparison to
matched-controls.

Saunders et al. [81]:
Central auditory

processing
99 military veterans (age: 34.1)

Participants went through self-reported measures as
well as a battery of standardised behavioural

measures: HINT, NA LiSN-S, ATTR, TCST, and SSW.

Participants in this study showed measurable performance
deficits on speech-in-noise perception, binaural processing,

temporal resolution, and speech segregation.

Gallun et al. [82]:
Central auditory

processing

30 blast-exposed military
veterans, with a least one blast

occurring 10 years prior to study
(age: 37.3); 29 controls (age: 39.2)

Participants went through a battery of standardised
behavioural tests of central auditory function: GIN,

DDT, SSW, FPT, and MLD.

Replicating the findings from Gallun et al., 2012, this study
found that the central auditory processing deficits

persisted in individuals tested an average of more than
7 years after blast exposure.

Papesh et al. [83]:
Central auditory

processing

16 blast-exposed veterans (age
36.9); 13 veteran controls (age 38)
with normal peripheral hearing

Participants competed self-reported measures and
standardised tests of speech-in-noise perception,

DDT, SSW, TCST, plus auditory event-related
potential studies.

Impaired cortical sensory gating was primarily influenced
by a diagnosis of TBI and reduced habituation by a
diagnosis of post-traumatic stress disorder. Cortical

sensory gating and habituation to acoustic startle strongly
predicted degraded speech perception

Stroke aphasia

Bamiou et al. [84]:
Dichotic listening

8 patients with insular strokes
(age: 63); 8 control participants

(age: 63)

Participants heard pairs of spoken digits presented
simultaneously to each ear, and were asked to repeat

all four digits.

Dichotic listening was abnormal in five of the eight stroke
patients.

Dunton et al. [85]:
Accents

16 participants with aphasia
(age: 59); 16 controls (age: 59;

English)

Participants heard English sentences spoken with a
familiar (South-East British England) or unfamiliar

(Nigerian) accent.

Aphasia patients made more errors in comprehending
sentences spoken in an unfamiliar accent vs. a

familiar accent.

Jacks and Haley [86]:
AAF (MAF)

10 aphasia patients (age: 53.1);
10 controls (age: 63.1; English)

Participants produced spoken sentences with no
feedback, DAF, FAF or noise-masked auditory

feedback (MAF).

Speech rate increased under MAF but decreased with DAF
and FAF in most participants with aphasia.

Parkinson’s
disease

Liu et al. [87]: AAF
(MAF and FAF)

12 PD participants (ge: 62.3); 13
control participants (age: 68.7)

Participants sustained a vowel whilst receiving
changes in feedback of loudness (±3/4 dB) or pitch

(±100 cents).

All participants produced compensatory responses to
AAF, but response sizes were larger in PD than controls.

Chen et al. [88]: AAF
(FAF)

15 people with PD (age: 61); 15
control participants (age 61;

Cantonese)

Participants were asked to vocalize a vowel sound
with AAF pitch-shifted upwards or downwards.

PD participants produced larger magnitudes
of compensation.
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Table 2. Cont.

Population Study, Degradation Participants Methodology Major Findings

Alzheimer’s
disease

Gates et al. [89]:
Dichotic digits

17 ADs (age: 84); 64 MCI (age:
82.3); 232 controls (age: 78.8)

Participants listened to 40 numbers presented in
pairs to each ear simultaneously.

AD patients scored the worst in the dichotic digits,
followed by the MCI group and then the controls.

Golden et al. [90]:
Auditory scene

analysis

13 AD participants (age: 66); 17
control participants (age: 68)

In fMRI, participants listened to their own name
interleaved with or superimposed on multi-talker

babble.

Significantly enhanced activation of right supramarginal
gyrus in the AD vs. control group for the cocktail

party effect.

Ranasinghe et al.
[91]: AAF (FAF)

19 AD participants; 16 control
participants

Participants were asked to produce a spoken vowel
in context of AAF, with perturbations of pitch.

AD patients showed enhanced compensatory response
and poorer pitch-response persistence vs. controls.

Primary
progressive

aphasia

Hailstone et al. [92]:
Accents

20 ADs (age: 66.4); 6 nfvPPA
(age: 66); 35 controls (age: 65);

British English

Accent comprehension and accent recognition was
assessed. VBM examined grey matter correlates.

Reduced comprehension for phrases in unfamiliar vs.
familiar accents in AD and for words in nfvPPA; in AD

group, grey matter associations of accent comprehension
and recognition in anterior superior temporal lobe

Cope et al. [93]:
Noise-vocoding

11 nfvPPA (age: 72); 11 control
participants (age: 72)

During MEG, participants listened to vocoded words
presented with written text that

matched/mismatched.

People with nfvPPA compared to controls showed delayed
resolution of predictions in temporal lobe, enhanced

frontal beta power and top-down fronto-temporal
connectivity; precision of predictions correlated with beta

power across groups

Hardy et al. [94]:
SWS

9 nfvPPA (age: 69.6); 10 svPPA
(age: 64.9); 7 lvPPA (age: 66.3);

17 control (age: 67.7)

Participants transcribed SWS of numbers/locations.
VBM examined grey matter correlates in combined

patient cohort.

Variable task performance groups; all showed
spontaneous perceptual learning effects for SWS numbers;

grey matter correlates in a distributed left hemisphere
network extending beyond classical speech-processing

cortices, perceptual learning effect in left inferior
parietal cortex

Information in the Participants column is based on available information from the original papers; age is given as a mean or range and language refers to participants’ native languages. Abbreviations:
AAF, altered auditory feedback; AD, Alzheimer’s disease; ATTR, Adaptive Tests of Temporal Resolution; DAF, delayed auditory feedback; dB, decibels; DDT, Dichotic Digits Test; FAF; frequency altered
feedback; fMRI, functional magnetic resonance imaging; FPT, Frequency Patterns Tests (FPT); GIN, Gaps-In-Noise test; HINT, Hearing in Noise Test; lvPPA, logopenic variant primary progressive aphasia;
MAF, masked/masking auditory feedback; MCI, mild cognitive impairment; MEG, magnetoencephalography; MLD, The Masking Level Difference; NA LiSN-S, North American Listening in Spatialised
Noise-Sentence test; nfvPPA, nonfluent primary progressive aphasia; PD, Parkinson’s disease; PR, perceptual restoration; QuickSIN, Quick Speech in Noise; SSW, Staggered Spondaic Words; SWS, sinewave
speech; svPPA, semantic variant primary progressive aphasia; TBI, traumatic brain injury; TCST, Time Compressed Speech Test; VBM, voxel based morphometry.
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2. Factors Affecting Processing of Degraded Speech in the Healthy Brain
2.1. Healthy Ageing

Healthy ageing importantly influences the perception of degraded speech [52,75,77,95–
97], and an understanding of ageing effects is essential in order to interpret the impact of
brain disorders, particularly those associated with neurodegenerative disease. Ageing may
be associated with functionally significant changes affecting multiple stages of auditory
processing, from cochlea [98], to brainstem [99], to cortex [100]. The reduced efficiency
of processing degraded speech with normal ageing is likely to reflect the interaction of
peripheral and central factors [101] due, for example, to slower processing or reduced
ability to regulate sensory gating [97,102,103].

These alterations in auditory pathway function tend to be amplified by age-related
decline in additional cognitive functions relevant to degraded speech perception. Ageing
affects domains such as episodic memory, working memory, and attention [77,101,104,105].
There is evidence to suggest that older listeners rely more heavily on “top-down” cognitive
mechanisms than younger listeners, compensating for the reduced fidelity of “bottom-up”
auditory signal analysis [100,106–109].

2.2. Cognitive Factors

The auditory system is dynamic and highly integrated with cognitive function more
broadly [77,110]. Executive function is accorded central importance among the general
cognitive capacities that influence the speed and accuracy of degraded speech perception,
interacting with more specific skills such as phonological processing [111]. The engagement
of executive processing networks—including inferior frontal gyrus, inferior parietal lobule,
superior temporal gyrus and insula—during effortful listening is a unifying theme in
neuroimaging studies of degraded speech processing [18]. On the other hand, the ability to
process degraded speech in older adults is not entirely accounted for by general cognitive
capacities [112], implying additional, auditory mechanisms are also involved.

Attention, a key cognitive factor in most sensory predictive coding models, modulates
the intelligibility of degraded speech, and functional magnetic resonance imaging (fMRI)
research suggests that additional frontal cortical regions are recruited when listeners
attend to degraded speech signals [29]. Attention is essential for encoding precision or
gain: the weighting of sensory input by its reliability [113,114]. Verbal auditory working
memory—the “phonological loop”—is integral to degraded speech processing [115–118],
and selective attention importantly interacts with the verbal short term store to sharpen
the precision of perceptual priors held in mind over an interval (for example, during
articulatory rehearsal on phonological discrimination tasks: [119]). Listeners with poorer
auditory working memory capacity have more difficulty understanding speech-in-noise,
even after accounting for age differences and peripheral hearing loss [77,120,121]. While
working memory and attention have been studied more explicitly, it is likely that a number
of cognitive factors interact in processing degraded speech, and that (in the healthy brain)
the usage of these cognitive resources is dynamic and adapts flexibly to a wide variety of
listening conditions [111].

2.3. Experiential Factors

Accumulated experience of speech signals and auditory environments over the course
of the lifetime leads to the development and refinement of internal models that direct
predictions about auditory input, facilitating faster neural encoding and integration [122].
Certain experiential factors, such as musical training, affect the processing of degraded
speech, specifically speech-in-noise [77,123]. Musical training improves a range of basic
auditory skills [124–127] and auditory working memory [128] that are important to speech
encoding and verbal communications such as linguistic pitch pattern processing and
temporal and frequency encoding in auditory brainstem [129–132]. This could explain
findings suggesting that musicians are better at perceiving speech-in-noise (whether white-
noise or babble) than non-musical listeners [76,77,133–136].
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Bilingual speakers have more difficulty perceiving speech-in-noise in their non-native
language than their monolingual counterparts, even when they consider themselves pro-
ficient in their non-native language [137–139], not necessarily in low-context situations
but particularly in high-context [140]. This may be due to over-reliance on bottom-up
processing with reduced integration of semantic and contextual knowledge for the sec-
ond language [141–143], relative to more efficient top-down integration in one’s native
language [139].

2.4. Perceptual Learning

Improved accuracy of degraded speech processing is associated with sustained expo-
sure to the stimulus [1,54,144]: this reflects perceptual learning [145]. Perceptual learning
allows listeners to learn to understand speech that has deviated from expectations [146],
and typically occurs automatically and within a short period of time [49,147,148]. It is
likely to reflect synaptic plasticity at different levels of perceptual analysis [149,150], and (in
predictive coding terms) reflects iterative fine-tuning of the internal model with increased
exposure to the stimulus, leading to error minimisation and improved accuracy of future
predictions about the incoming speech signal (Figure 1; [15]).

Although perceptual learning of degraded speech is strongest and most consistent if
trained and tested with the same single speaker [151–153], with exposure to many individu-
als embodying a similar particular characteristic (e.g., similar accent), the enhanced process-
ing of that characteristic generalises to different speakers [154–157]. Longer training (i.e.,
more exposure to the stimulus) also leads to more stable learning and generalization [158].
Listener factors also affect perceptual learning, including language background [159],
age [160], attentional set [161], and the recruitment of language processes in higher-level
brain regions and connectivity [144]. Perceptual learning of accented speech in non-native
listeners has been associated with improved speech production [162]. Overall, the re-
sults from studies on auditory perceptual learning suggest that it arises from dynamic
interactions between different levels of the auditory processing hierarchy [163].

2.5. Speech Production

The functional consequences of degraded speech processing on communication cannot
be fully appreciated without considering how perceptual alterations influence speech
output. In the healthy brain, there is an intimate interplay between speech input and
output processing, both functionally and neuroanatomically [164,165]: brain disorders
that disturb this interplay are likely to have profound consequences for degraded speech
processing. Speech production relies on feedback and feedforward control [166], and
artificially altering auditory feedback (i.e., causing prediction errors about online feedback
of one’s own speech output) frequently disrupts the speech production process [167] (see
Table 1). “Altered auditory feedback” (AAF) is the collective term for auditory feedback
that is altered or degraded in some manner before being played back to the speaker
in real time [167], and encompasses masking auditory feedback (MAF), intensity-altered
auditory feedback (IAF), delayed auditory feedback (DAF), and frequency-altered feedback
(FAF). Typically, speakers will adjust their speech output automatically in some way to
compensate for the altered feedback. One classical example is the “Lombard effect”,
whereby the talker responds to a loud or otherwise acoustically competing environment
by altering the intensity, pitch, and spectral properties of their voice [168]. Functional
neuroimaging studies show that when auditory feedback is altered, there is an increase
in activation in the superior temporal cortex, extending into posterior-medial auditory
areas [31,169]. This corroborates other work suggesting that this region has a prominent
role in sensorimotor integration and error detection [49,170].

3. Processing of Degraded Speech in Brain Disorders

The various factors that affect the processing of degraded speech in the healthy brain
are all potentially impacted by brain diseases. Brain disorders often affect executive
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function, speech production, perceptual learning and other general cognitive capacities,
with many becoming more frequent with age and their expression may be heavily modified
by life experience.

We now consider some acquired neurological conditions that are associated with
particular profiles of degraded speech processing; key studies are summarised in Table 2.
While this is by no means an exhaustive list, it represents a survey of disorders that have
been most widely studied and illustrates important pathophysiological principles.

3.1. Traumatic Brain Injury

Traumatic brain injury (TBI) refers to any alteration in brain function or structure
caused by an external physical force. It therefore encompasses a wide spectrum of in-
sults, pathological mechanisms and transient and permanent cognitive deficits [171,172].
Individuals with TBI, whether mild or severe, commonly report auditory complaints; blast-
related TBI is associated with hearing loss and tinnitus in as many as 60% of patients [173].
Most data have been amassed for military veterans, and concurrent mental health issues
complicate the picture [174].

People with TBI frequently report difficulties understanding speech under challeng-
ing listening conditions and a variety of central auditory deficits have been documented,
including impaired speech-in-noise perception and dichotic listening [80,81,175,176]; these
deficits may manifest despite normal peripheral hearing (pure tone perception), may follow
mild as well as more severe injuries and may persist for years [81,82]. The culprit lesions in
these cases are likely to be anatomically heterogeneous; blast exposure, for example, poten-
tially damages auditory brainstem and cortices, corpus callosum and frontal cortex, while
the preponderance of abnormal long-latency auditory evoked potentials argues for a corti-
cal substrate [174]. Abnormal sensory gating has been proposed as an electrophysiological
mechanism of impaired degraded speech processing in blast-associated TBI [83].

3.2. Stroke Aphasia

A number of abnormalities of degraded speech processing have been described in
the context of aphasia following stroke. People with different forms of stroke-related
aphasia have difficulties comprehending sentences spoken in an unfamiliar accent [85].
As might be anticipated, the profile is influenced by the type of aphasia (vascular insult)
and the nature of the degraded speech manipulation: individuals with conduction aphasia
and Wernicke’s aphasia show a significantly smaller benefit from DAF than people with
Broca’s aphasia [177,178], while MAF was shown to improve speech rate and reduce
dysfluency prolongations [86]. In patients with insular stroke, five of eight patients showed
an abnormal dichotic digits test [84], and single case studies have demonstrated that
people with stroke-related aphasia may have difficulty perceiving synthetic sentences
with competing messages [179]. Together, these observations suggest that “informational
masking” (Figure 2C) may be particularly disruptive to speech perception in stroke-related
aphasia.

3.3. Parkinson’s Disease

Parkinson’s disease (PD), a neurodegenerative disorder caused primarily by the loss of
dopaminergic neurons from the basal ganglia, is typically led by “extrapyramidal” motor
symptoms including tremor, bradykinesia, and rigidity [180,181]. However, cognitive
deficits are common in PD, with dementia affecting 50% of patients within 10 years of
diagnosis [182]. The majority (70–90%) of individuals with PD also develop motor speech
impairment [183]. Although PD is associated with objective hypophonia, people with
PD overestimate the loudness of their own speech while they are speaking and in play-
back [184], and this is thought to be the mechanism of hypophonia due to impaired vocal
feedback [185]. Responses to AAF paint a complex picture: whereas patients with PD may
fail to modulate their own vocal volume under intensity altered auditory feedback [186],
FAF may elicit significantly larger compensatory responses in people with PD than in
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healthy controls [87,88,180,187,188], while DAF substantially improves speech intelligibil-
ity in some patients with PD [189]. FAF has differential effects according to whether the
fundamental frequency or the first formant of the speech signal is altered [188], and the
response to altered fundamental frequency correlates with voice pitch variability [180],
suggesting that the response to AAF in PD is exquisitely dependent on the nature of the
perturbation and its associated sensorimotor mapping. These effects could be interpreted
as specific deficits in the predictive coding of auditory information, with impaired salience
monitoring as well as over-reliance on sensory priors [190,191].

Taken together, the available evidence points to abnormal auditory-motor integration
in PD that tends to impair the perception of degraded speech and to promote dysfunc-
tional communication under challenging listening conditions. Candidate neuroanatomical
substrates have been identified: enhanced evoked (P2) potentials in response to FAF in
PD relative to healthy controls have been localised to activity in left superior and inferior
frontal gyrus, premotor cortex, inferior parietal lobule, and superior temporal gyrus [180].

3.4. Alzheimer’s Disease

Alzheimer’s disease (AD), the most common form of dementia, is typically consid-
ered to be an amnestic clinical syndrome underpinned by the degeneration of posterior
hippocampus, entorhinal cortex, posterior cingulate, medial and lateral parietal regions
within the so-called “default mode network” [192,193]. People with AD have particular
difficulty with dichotic digit identification tasks [89,194–196]. This is likely to reflect a more
fundamental impairment of auditory scene analysis that also compromises speech-in-noise
and speech-in-babble perception [90,197]. During the perception of their own name over
background babble (the classical “cocktail party effect”), patients with AD were shown
to have abnormally enhanced activation relative to healthy older controls in right supra-
marginal gyrus [90]. Auditory scene analysis deficits are most striking in posterior cortical
atrophy, the variant AD syndrome led by visuo-spatial impairment, further suggesting that
posterior cortical regions within the core temporo-parietal network targeted by AD pathol-
ogy play a critical pathophysiological role [198]. Speech-in-noise processing deficits may
precede the onset of other symptoms in AD and may be a prodromal marker [199–201].

People with AD have difficulty understanding non-native accents [92,202] and sinewave
speech (Figure 2G) [94] relative to healthy older individuals, and this has been linked using
voxel-based morphometry to grey matter loss in left superior temporal cortex. Considered
together with impairments of auditory scene analysis in AD, these findings could be in-
terpreted to signify a fundamental lesion of the neural mechanisms that map degraded
speech signals onto stored “templates” representing canonical auditory objects, such as
phonemes. However, perceptual learning of sinewave speech has been shown to be intact
in AD [94], and the comprehension of sinewave speech improves following the administra-
tion of an acetylcholinesterase inhibitor [203]. People with mild to moderate AD also show
enhanced compensatory responses to FAF compared to age-matched controls [91]: this has
been linked to reduced prefrontal activation and enhanced recruitment of right temporal
cortices [204].
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Figure 3. A simplified model of predictive coding of degraded speech processing in primary pro-
gressive aphasia (PPA), referenced to the healthy brain presented in Figure 1. The three major PPA
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variant syndromes—nonfluent/agrammatic variant PPA (top panel); semantic variant PPA (middle
panel) and logopenic variant PPA (bottom panel)—are each associated with a specific pattern of
regional brain atrophy and/or dysfunction that is critical to the degraded speech processing network,
implying that different PPA subtypes may be associated with specific profiles of degraded speech
processing (see text for details). Boxes indicate processors that instantiate core speech decoding
functions (see Figure 1), and arrows indicate their connections in the predictive coding framework,
with the putative direction of information flow. In the case of nfvPPA, the emboldened descending
arrow from IFG to STG signifies aberrantly increased precision of inflexible top-down priors (after
Cope and Colleagues [93]), to date the most secure evidence for a predictive coding mechanism in the
PPA spectrum; the status of the IPL locus in this syndrome is more tentative. Implicit in the model
is the hypothesis that neurodegenerative pathologies will tend to disrupt stored neural templates
(“priors”) and “prune” projections from heavily involved, higher order association cortical areas
due to neuronal dropout (promoting inflexible top-down predictions), but also degrade the fidelity
of signal traffic through sensory cortices (reducing sensory precision and promoting over-precise
prediction errors) [15]. The relative prominence of these mechanisms will depend on the macro-
network and local neural circuit anatomy of particular neurodegenerative pathologies. Proposed
major loci of disruption caused by each PPA variant are indicated with crosses; dashed arrows arising
from these damaged modules indicate disrupted information flow. aTL, anterior temporal lobe; HG,
Heschl’s gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; lvPPA, logopenic variant
primary progressive aphasia; nfvPPA, non-fluent variant primary progressive aphasia; STG superior
temporal gyrus; STS, superior temporal sulcus; svPPA, semantic variant primary progressive aphasia.

3.5. Primary Progressive Aphasia

Speech and language problems are leading features of the primary progressive
aphasias (PPA). These “language-led dementias” constitute a heterogeneous group of
disorders, comprising three cardinal clinico-anatomical syndromic variants. The nonflu-
ent/agrammatic variant (nfvPPA) is characterised by disrupted speech and connected
language production due to selective degeneration of a peri-Sylvian network centred on
inferior frontal cortex and insula; the phenotype is quite variable between individual
patients [205]. The semantic variant (svPPA) is characterised by the erosion of semantic
memory due to selective degeneration of the semantic appraisal network in the antero-
mesial (and particularly, the dominant) temporal lobe. The logopenic variant (lvPPA) is
the language-led variant of AD and is characterised by anomia and impaired phonological
working memory due to the degeneration of dominant temporo-parietal circuitry over-
lapping the circuits that are targeted in other AD variants [205,206]. All three major PPA
syndromes have been shown to have clinically significant impairments of central auditory
processing affecting speech comprehension [52,207–212]: together, these disorders consti-
tute a paradigm for selective language network vulnerability and the impaired processing
of degraded speech.

While people with AD have relatively greater difficulty processing less familiar non-
native accents, particularly at the level of phrases and sentences, those with nfvPPA show
a more pervasive pattern of impairment affecting more and less familiar accents at the
level of single words [92]. People with nfvPPA and lvPPA show impaired understanding
of sinewave speech relative to healthy controls and people with svPPA [94]. Patients
with svPPA, however, show a significant identification advantage for more predictable
(spoken number) over less predictable (spoken geographical place name) verbal signals
after sinewave transformation, highlighting the important role of “top-down” contextual
integration in degraded speech perception [94]. In this study, all PPA variants were shown
to have intact perceptual learning of sinewave-degraded stimuli [94]. There is also evidence
that at least some people with nfvPPA may be particularly susceptible to the effects of
DAF [213].

The structural and functional neuroanatomy of degraded speech processing has been
addressed in somewhat more detail in PPA than in other brain disorders. Using a MEG
paradigm in which noise-vocoded words were presented to participants alongside written
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text that either matched or mismatched the degraded words, Cope and colleagues [93]
found that atrophy of left inferior frontal cortex in nfvPPA was associated with inflexible
and delayed neural resolution of top-down predictions about incoming degraded speech
signals in the setting of enhanced fronto-temporal coherence (frontal to temporal cortical
connectivity), suggesting that the process of iterative reconciliation of top-down predic-
tions with sensory prediction error takes longer to achieve in nfvPPA. Across the nfvPPA
and healthy control groups, the precision of top-down predictions correlated with the
magnitude of induced beta oscillations while frontal cortical beta power was enhanced
in the nfvPPA group: this is in line with predictive coding accounts according to which
beta band activity reflects the updating of perceptual predictions [47]. In joint voxel-based
morphometric and functional MRI studies of a combined PPA cohort [214,215], Hardy and
colleagues identified a substrate for impaired decoding of spectrally degraded phonemes
in left supramarginal gyrus and posterior superior temporal cortex, most strikingly in
lvPPA relative to healthy older individuals, whereas nfvPPA was associated with reduced
sensitivity to sound stimulation in auditory cortex. Using voxel-based morphometry in
a combined AD and PPA cohort, Hardy and colleagues [94] found that the overall accu-
racy of sine-wave speech identification was associated with grey matter volume in left
temporo-parietal cortices, with grey matter correlates of increased speech predictability in
left inferior frontal gyrus, top-down semantic decoding in left temporal pole and perceptual
learning in left inferolateral post-central cortex. Such studies are beginning to define the
alterations in “bottom-up” and “top-down” network mechanisms that jointly underpin
impaired predictive decoding of degraded speech signals in neurodegenerative disease.

4. A Predictive Coding Model of Degraded Speech Processing in Primary Progressive
Aphasia

Emerging evidence in PPA suggests a framework for applying predictive coding
theory as outlined for the healthy brain (Figure 1) to formulate explicit pathophysiological
hypotheses in these diseases. Such a framework could serve as a model for interpreting
abnormalities of degraded speech processing in a wider range of brain disorders. This
model is outlined in Figure 3.

According to this model, nfvPPA—which affects inferior frontal and more posterior
peri-Sylvian cortices—is associated with a “double-hit” to the degraded speech processing
network. The most clearly established consequence is overly precise, top-down predictions
due to neuronal dysfunction and loss in inferior frontal cortex [93]. The top-down mecha-
nism may be compounded by decreased signal fidelity (precision) due to abnormal auditory
cortical representations [94,214,215]; however, this remains to be corroborated. The clinico-
anatomical heterogeneity of nfvPPA is an important consideration here, implying that the
mechanism may not be uniform between patients.

In svPPA, the primary focus of atrophy in anterior temporal lobe principally affects
the top-down integration of contextual and stored semantic information. This reduces
neural capacity to modify semantic predictions about less predictable verbal signals (i.e.,
priors are inaccurate), in line with experimental observations [94].

In lvPPA, atrophy predominantly involving temporo-parietal cortex is anticipated
to impair phonemic decoding and earlier stages in the representation of acoustic features
in auditory cortex and brainstem due to altered top-down influences from the temporal
parietal junction on auditory cortex and brainstem: this could be via altered precision
weighting of prediction errors conveyed by the auditory efferent pathways, or inaccurate
priors. This formulation has some experimental support [211,215].

5. Therapeutic Approaches

Improved understanding of the pathophysiology of degraded speech processing in
brain disorders is the path to effective therapeutic interventions. Several physiologically
informed therapeutic approaches are in current use or have shown early promise. In a
clinical context, it is important not to overlook ancillary nonverbal strategies to compensate
for reduced capacity to process degraded speech: examples include the minimisation of
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environmental noise, training speakers to face the patient to maximise visual support and
aid speech sound discrimination, and using gestures to support semantic context [216,217].
A related and crucial theme in designing therapies tailored to individuals is to acknowl-
edge the various background factors—whether deleterious or potentially protective—that
influence degraded speech processing (see Section 2).

More specifically, the finding that perceptual learning of degraded speech is retained
in diverse brain disorders including dementias [94] and stroke aphasia [218,219] offers the
exciting prospect of designing training interventions to harness neural plasticity in these
conditions. Thus far, most work in this line has been directed to improving understanding
of challenging speech (in particular, speech-in-noise) in older adults with peripheral hear-
ing loss. Training programmes have targeted different levels of speech analysis—words
and sentences—and different cognitive operations—attentional and perceptuo-motor—and
have shown improved perception of trained stimuli, though this is less consistently ex-
tended to untrained stimuli (the grail of work of this kind: Bieber and Gordon-Salant [220]).
On the other hand, there is some evidence that training on degraded environmental sounds
may generalise to improved perception of degraded speech [221]. Enhanced perceptual
learning through the facilitation of regional neuronal plasticity also provides a rationale
for the transcranial stimulation of key cortical language areas, such as inferior frontal
gyrus [222]. Potentially, a technique such as transcranial temporal interference stimulation
could selectively target deep brain circuitry and feedforward or feedback connections [223]
to probe specific pathophysiological mechanisms of degraded speech processing in partic-
ular brain disorders (see Figure 3).

Other therapeutic approaches have focused on training auditory working memory.
These have yielded mixed results [224], though interestingly, the training of musical
working memory may show a cross over benefit for speech-in-noise recognition [225,226].
A combined auditory cognitive training programme, potentially incorporating musical
skills, may be the most rational strategy [220,227].

Pharmacological approaches are potentially complementary to behavioural interven-
tions or transcranial stimulation. In healthy individuals, dopamine has been shown to
enhance the perception of spectrally shifted noise-vocoded speech [228]. In patients with
AD, acetylcholinesterase inhibition ameliorates the understanding of sinewave speech [203].
Indeed, degraded speech processing might prove to be a rapid and sensitive biomarker of
therapeutic efficacy in brain disorders. At present, the objectives of therapy differ quite
sharply between disorders such as stroke, where there is a prospect of sustained improve-
ment in functional adaptation in at least some patients, and neurodegenerative conditions
such as PPA, where any benefit is ultimately temporary due to the progressive nature of
the underlying pathology. However, it is crucial to develop interventions that enhance
degraded speech processing (and other ecologically relevant aspects of communication)
in neurodegenerative disease, not only to maximise patients’ daily life functioning but
also with a future view to using such techniques adjunctively with disease modifying
therapies as these become available. Ultimately, irrespective of the brain pathology, it will
be essential to determine how far improvements on degraded speech processing tasks
translate to improved communication in daily life.

6. A Critique of the Predictive Coding Paradigm of Degraded Speech Processing

Like any scientific paradigm, predictive coding demands a critical evaluation of
falsifiable hypotheses. The issues in relation to the auditory system have been usefully
reviewed previously in Heilbron and Chait [14]. While it is self-evident that the brain is
engaged in making and evaluating predictions, there are two broad questions here, in
respect of degraded speech processing that could address and direct future experiments.

Firstly, to what extent is the processing of degraded speech generically underpinned by
predictive coding? While the predictive coding paradigm is committed to finding optimal
computational solutions to perceptual perturbations, much natural language use relies on
acoustic or articulatory characteristics that are “sub-optimal” [229]. More fundamentally,
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as the raw material is contributed much to human thought, the combinatorial space of
language is essentially infinite: we routinely produce entirely novel utterances and are
called upon to understand the novel utterances of others, whereas predictive coding rests on
a relatively simple computational “logic” [230]. Identifying the limits of predictive coding
in the face of emergent linguistic combinatorial complexity therefore presents a major
challenge—a challenge encountered even for the combinatorially much more constrained
phenomenon of music [231]. Future experiments will need to define core predictive coding
concepts such as “priors”, “error” and “precision” in terms of degraded speech processing,
as well as disambiguate the roles of semantic and phonological representations, selective
attention and verbal working memory in such processing, ideally by manipulating these
components independently [14,191,232–234].

Secondly, how is the predictive coding of degraded speech instantiated in the brain?
Although macroscopic neural network substrates that could support the required hierar-
chical and reciprocal information exchange have been delineated (Figure 1), the predictive
coding paradigm stipulates quite specifically how key elements such as “prediction gener-
ators” and “error detectors” are organised, both at the level of large-scale networks and
local cortical circuits [14,235]. Neuroimaging techniques such as spectral dynamic causal
modelling, MEG and high-field fMRI constitute particularly powerful and informative
tools with which to interrogate the responsible neural elements and their interplay [14,236]:
such techniques can capture both interactions between macroscopic brain modules and
structure–function relationships at the level of individual cortical laminae, where the core
circuit components of predictive coding are hypothesised to reside.

7. Conclusions and Future Directions

The perception and ultimately understanding of degraded speech relies upon flexible
and dynamic neural interactions across distributed brain networks. These physiological
and anatomical substrates are intrinsically vulnerable to the disruptive effects of brain
disorders, particularly neurodegenerative pathologies that preferentially blight the core
circuitry responsible for representing and decoding speech signals. Predictive coding offers
an intuitive framework within which to consider degraded speech processing, both in
the healthy brain (Figure 1) and in brain disorders (Figure 3). Different forms of speech
signal degradation are likely a priori to engage neural network nodes and connections
differentially and may therefore reveal distinct phenotypes of degraded speech processing
that are specific for particular neuropathological processes. However, this will require
substantiation in future systematic, head-to-head comparisons between paradigms (Table 1,
Figure 2) and pathologies (Table 2, Figure 3). It will be particularly pertinent to design
neuropsychological and neuroimaging experiments to interrogate the basic assumptions of
predictive coding theory, as sketched above.

From a neurobiological perspective, building on the model outlined for PPA in
Figure 3, degraded speech is an attractive candidate probe of pathophysiological mecha-
nisms in brain disease. For example, it has been proposed that lvPPA is associated with the
“blurring” of phonemic representational boundaries [211]: this would predict that phone-
mic restoration (Figure 2) is critically impaired in lvPPA. Further, several lines of evidence
implicate disordered efferent regulation of auditory signal analysis in the pathogenesis of
nfvPPA [93,210]: this could be explored directly by independently varying the precision of
incoming speech signals and central gain (for example, using dichotic listening techniques).
Temporally sensitive neurophysiological and functional neuroimaging techniques such as
EEG and MEG will be required to define the dynamic oscillatory neural mechanisms by
which brain pathologies disrupt degraded speech perception. Proteinopathies are antici-
pated to have separable MEG signatures based on differential patterns of cortical laminar
involvement [237]. By extension from the “lesion studies” of classical neurolinguistics, the
study of clinical disorders may ultimately illuminate the cognitive and neural organisation
of degraded speech processing in the normal brain [93], by pinpointing critical elements
and demonstrating how dissociable processing steps are mutually related.
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From a clinical perspective, the processing of degraded speech (as a sensitive index of
neural circuit integrity) might facilitate the early diagnosis of brain disorders. Neurode-
generative pathologies, in particular, often elude diagnosis in their early stages: degraded
speech stimuli might be adapted to constitute dynamic, physiological “stress tests” to
detect such pathologies. Similar pathophysiological principles should inform the design of
behavioural and pharmacological therapies, such as those that harness neural plasticity:
looking forward, such interventions could be particularly powerful if combined with dis-
ease modifying therapies, as integrated cognitive neurorehabilitation strategies motivated
by neurobiological principles.
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