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We study the effect of cubic and tidal interactions on the spectrum of gravitational waves emitted in the
inspiral phase of the merger of two nonspinning objects. There are two independent parity-even cubic
interaction terms, which we take to be I1 ¼ Rαβ

μνRμν
ρσRρσ

αβ and G3 ¼ I1 − 2Rα
μ
β
νR

μ
ρ
ν
σR

ρ
α
σ
β. The latter

has vanishing pure graviton amplitudes but modifies mixed scalar/graviton amplitudes which are crucial for
our study. Working in an effective field theory setup, we compute the modifications to the quadrupole
moment due to I1, G3 and tidal interactions, from which we obtain the power of gravitational waves
radiated in the process to first order in the perturbations and leading order in the post-Minkowskian
expansion. The I1 predictions are novel, and we find that our results for G3 are related to the known
quadrupole corrections arising from tidal perturbations, although the physical origin of the G3 coupling is
unrelated to the finite-size effects underlying tidal interactions. We show this by recomputing such tidal
corrections and by presenting an explicit field redefinition. In the post-Newtonian expansion our results are
complete at leading order, which for the gravitational-wave flux is 5PN for G3 and tidal interactions and
6PN for I1. Finally, we compute the corresponding modifications to the waveforms.
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I. INTRODUCTION

The first direct detection of gravitational waves and the
first observation of a binary black hole merger by the
LIGO/Virgo collaboration [1] has opened a new observa-
tional window potentially challenging our understanding
of gravity. Anticipating improved experimental sensitivity
in the future, high-precision theoretical predictions from
general relativity will be required, and in the recent
few years much effort went into developing new theo-
retical tools using traditional and novel approaches. This
includes important calculations of the effective gravita-
tional potential at second [2,3], third [4–7], fourth [8–20],
fifth [21–23] and sixth [24,25] post-Newtonian order (PN),1
as well as in the post-Minkowskian expansion [28–30] and
formal developments in computing classical observables
from scattering amplitudes [31–50]. A related, ambitious

question is whether gravitational waves can, now or in the
near future, provide feasible tests of modifications of
general relativity as implied by string theory or other
extensions of Einstein-Hilbert (EH) gravity. Even if the
experimental precision has not been reached today, one can
entertain this tantalizing possibility.
An effective field theory (EFT) framework for gravity

was advocated in [51], and is ideally suited to study
systematically higher-derivative corrections to the EH
theory. In [52], this approach was followed to compute
the corrections to the gravitational potential between
compact objects and their effective mass and current
quadrupoles due to perturbations quartic in the Riemann
tensor, and the corresponding modifications to the wave-
forms were then analyzed in [53]. Modifications to the
gravitational potential due to cubic interactions in the
Riemann tensor were computed in [54,55] using amplitude
techniques, and the deflection angle and time delay/
advance of massless particles of spin 0,1 and 2 were
derived in [56] for cubic and quartic perturbations in the
Riemann tensor as well as for interactions of the type FFR
[56]. Terms that are quadratic in the Riemann tensor do not
contribute to the classical scattering of particles in four
dimensions [57]. In this paper we wish to describe
dissipative effects in the dynamics of binaries, that is
gravitational-wave radiation, from appropriate five-point
amplitudes with four massive scalars and one radiation
graviton. We perform this study in the presence of cubic
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1For a recent review of the EFTapproach to the binary problem
[26] in the PN expansion see [27].
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modifications to the EH action and tidal effects.
Interestingly, we will see that there is an overlap between
these two types of corrections, which are linked by
appropriate field redefinitions [58,59] which we construct
explicitly. We note however that the physical origin of these
interactions is very different—for instance, I1 and G3

appear in the low-effective action of bosonic strings, or
can be induced by integrating out massive matter [60,61].
In the presence of scalars and restricting our focus to

parity-even interactions, there are two independent cubic
terms: I1 ≔ Rαβ

μνRμν
ρσRρσ

αβ and I2 ≔ Rα
μ
β
νR

μ
ρ
ν
σR

ρ
α
σ
β.

A more natural combination is in fact G3 ≔ I1 − 2I2,
which, as is well known, is topological in six dimensions
[62] and has vanishing graviton amplitudes. In [63], it was
argued from studying the scattering of polarized gravitons
that I1 potentially leads to superluminal effects/causality
violation in the propagation of gravitons for impact
parameter b ≲ α

1
4. Here α ∼ Λ−4 is the coupling constant

of the I1 interaction, andΛ is the cutoff of the theory. In that
paper, α was chosen to be much larger than G2 ∼M−4

Planck.
This allows us to treat the gravitational scattering in a
semiclassical setup, where predictions can be trusted up to
MPlanckð> ΛÞ. Because of these considerations, cubic terms
were not considered in the analysis of [52,53] (while not
conclusively excluding their potential relevance). The issue
of superluminality was reinvestigated in an EFT framework
in [56], where it was found that the I1 interaction leads to a
time advance in the propagation of gravitons (but not
photons and scalars) when b≲ α

1
4. Finally,G3 does not lead

to any time advance/delay for massless particles [56], while
still correcting the gravitational potential [54,55]. An
identical conclusion for the propagation of massless par-
ticles in the background of a black hole was reached in [64],
both for the I1 and G3 interactions.2

In this respect, an important observation was made in
[65], namely that such superluminality effects (and those
observed earlier on in [66–68]) are unresolvable within the
regime of validity of the EFT, and do not lead to violations
of causality. In our setup such violations would indeed
occur at b≲ Λ−1, which is at the boundary of the regime of
validity of our EFT, while the processes we are interested in
only probe the regime where the EFT is valid. Above Λ, the
only known way to restore causality is to introduce an
infinite tower of massive particles [63]. In conclusion, these
observations do not rule out cubic interactions for our EFT
computation, although they may impose constraints on the
cutoff—it needs to be such that possible effects due to the
massive modes, required to ensure causality, cannot be
resolved with current-day experiments. We also note that,
assuming that these interactions can contribute to any
classical gravitational scattering (Λ < MPlanck), then we

have α > G2, independently of precise estimates of the
cutoff Λ.
In the following we work in an effective theory con-

taining cubic and tidal perturbations, and compute a five-
point amplitude with four massive scalars (representing the
black holes) and one radiated soft graviton. From this, one
can in principle extract all radiative multipole moments to
this order, but for the sake of our applications we will only
focus on the quadrupole moment induced by the cubic and
tidal interactions, from which we then derive the corre-
sponding changes to the power radiated by gravitational
waves and to the waveforms. Our results for the quadrupole
correction are exact to leading order in the perturbations
and in the post-Minkowskian expansion. We also take the
post-Newtonian expansion of our results, which are com-
plete at 5PN order for the G3 and tidal interaction
corrections, and at 6PN order for the I1 corrections. We
find that the corrections due to G3 have the same form as
those generated by a particular type of tidal interaction
(although the corresponding coefficients in the EFT action
are independent). We also explain this result by construct-
ing an explicit field redefinition relating the two couplings.
For the PN-expanded result of the tidal corrections to the
mass quadrupole we find agreement with [69–71]. The
remaining tasks consist in using the corrected quadrupole
moment to compute the modifications compared to EH
gravity to the power emitted by the radiated gravitational
waves, and the corresponding corrections to the waveforms
in the stationary phase approximation (SPA).3 Here we
follow closely [53], and also present a comparison with
their result obtained with perturbations that are quartic in
the Riemann tensor.
The rest of the paper is organized as follows. In Sec. II

we introduce the EFTwe are discussing, reviewing some of
the relevant results, including the corrections to the
gravitational potential from cubic [54,55] and tidal inter-
actions [74–76]. Furthermore, we point out the vanishing of
all graviton amplitudes in the pure gravity plus G3 theory,
and explicitly construct a field redefinition that maps G3

into a tidal perturbation. Section III contains the calculation
of the relevant four-scalar, one soft graviton amplitude in
our EFT, from which we extract the perturbations to the
quadrupole moment. In Sec. IV we compute the power
radiated by the gravitational waves, and finally in Sec. V
the corrections to the waveforms in the SPA. In an
Appendix we present some details on the modifications
to the circular orbits due to the perturbations.

II. DESCRIPTION OF THE THEORY

A. The EFT action

We consider an EFT describing EH gravity with higher-
derivative couplings interacting with two massive scalars.

2Note that forG3 the coefficient 2d9 þ d10 in Eq. (2.24) of [64]
vanishes. 3See e.g., [72,73] for details of this approximation.
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Thesemodel spinless heavy objects, and we also include the
leading tidal interactions in our description which describe
finite size effects of the heavy objects. Specifically, the EFT
action we consider is

S ¼ Seff þ Sϕ1ϕ2
þ Stidal; ð2:1Þ

where

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

2

κ2
R −

2

κ2
L6 − � � �

�
ð2:2Þ

is the effective action for gravity, with

L6 ¼
α1
48

I1 þ
α2
24

G3: ð2:3Þ

I1 and G3 are the parity-even cubic couplings defined as

I1 ≔ Rαβ
μνRμν

ρσRρσ
αβ; G3 ≔ I1 − 2I2; ð2:4Þ

with

I2 ≔ Rα
μ
β
νR

μ
ρ
ν
σR

ρ
α
σ
β: ð2:5Þ

The dots in (2.2) stand for higher-derivative interactions that
we will not consider here. The two scalars, with masses m1

and m2, couple to gravity with an action

Sϕ1ϕ2
¼

Z
d4x

ffiffiffiffiffiffi
−g

p 1

2

X
i¼1;2

ð∂μϕi∂μϕi −m2
iϕ

2
i Þ; ð2:6Þ

and in addition we include higher-derivative couplings
describing tidal effects of extended heavy objects,

Stidal¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

4
RμανβRρασβ

×
X
i¼1;2

�
λiϕ

2
i δ

μ
ρδνσþ

ηi
m4

i
∇μ∇νϕi∇ρ∇σϕi

�
þ���: ð2:7Þ

These tidal interactionswere recently studied in [76], and the
dots stand for the (Hilbert) series of higher-dimensional
operators classified in [59,77], which will not play any role
in this work. We now briefly discuss some properties of the
interactions we consider.

B. Cubic interactions

The I1 and G3 interactions naturally arise in the low-
energy effective description of bosonic string theory, whose
terms cubic in the curvature can be obtained by making the
replacement

α1 ¼ α2 → α02e−4Φ ð2:8Þ

in (2.3), where Φ is the dilaton. These interactions are
also produced in the process of integrating out massive

matter [60,61]. In pure gravity only one of them is
independent in four dimensions [78,79], while in the
presence of matter coupled to gravity they become inde-
pendent. For the sake of the computation of the power
radiated by the gravitational waves performed in later
sections we need the correction induced by the cubic
interactions to the gravitational potential. The full 2nd
Post-Minkowskian (PM) computation of this quantity was
performed in [54,55], and expanding their result one
obtains

Vðr⃗; jp⃗jÞ ¼ −
Gm1m2

r
þ 3

8

α1G2

r6
ðm1 þm2Þ3

m1m2

p⃗2

−
3

4

α2G2

r6
m1m2ðm1 þm2Þ

�
1 −

m2
1 þm2

2

2m2
1m

2
2

p⃗2

�

þ � � � ; ð2:9Þ

where the dots indicate higher PN corrections which we do
not consider here. Note that the terms proportional to α1
and α2 are the result of a one-loop computation. In the PN
expansion, the term proportional to α1 (from the I1
interaction) is suppressed by a factor of p⃗2=m2

1;2 compared
to the dominant correction proportional to α2 (from G3).

1. Amplitudes from the G3 interaction

It is well known that, unlike I1, the G3 interaction has a
vanishing three-graviton amplitude and does not contribute
to graviton scattering up to four particles [62,80]—and in
fact to any number of gravitons. This can be understood by
the fact that G3 is topological in six dimensions [62], and
therefore computing tree-level four-dimensional graviton
amplitudes from dimensionally reducing the six-dimen-
sional ones automatically gives zero. Combining this
observation with unitarity techniques leads to

MEHþG3
ðh1;…; hnÞjd<6 ¼ MEHðh1;…; hnÞjd<6; ð2:10Þ

for any n. Hence the G3 interaction does not affect the
perturbative dynamics in theories of pure gravity. However,
if we consider a theory of gravity with matter, e.g., massive
scalars mimicking black holes or neutron stars, the pres-
ence of a G3 coupling alters their dynamics. In particular
the four-point amplitude with two gravitons and two scalars
becomes [54,55]

Mð0Þ
EHþG3

ðϕ1;ϕ2;h
þþ
3 ;hþþ

4 Þ

¼Mð0Þ
EHðϕ1;ϕ2;h

þþ
3 ;hþþ

4 Þþ i
α2
32

�
κ

2

�
2

½34�4ð2m2þ sÞ:

ð2:11Þ

The nontrivial contribution to the scattering amplitude
of two massive scalars and two gravitons from the G3

interactions modifies the classical potential in the two-body
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system, as shown in [54,55]. As we will show below, both
G3 and I1 produce corrections to the quadrupole moment
already at tree level. Specifically we find that the G3

quadrupole correction is dominant in the PN expansion,
which parallels the results found for the corresponding
corrections to the gravitational potential quoted earlier
in (2.9).

2. The G3 interaction as a tidal effect

It is easy to show that the contact term proportional
to ½34�4ð2m2þ sÞ in the amplitude (2.11) is (up to a
numerical coefficient) the amplitude arising from a
particular tidal interactions of the form RμνρσRμνρσm2ϕ2−
∇αRμνρσ∇αRμνρσϕ

2. This suggests that there should
exist a four-dimensional field redefinition mapping the
G3 interaction into a tidal effect, as already noticed in
[58,59].4 In this section we construct this field redefinition
explicitly.
We begin by rewriting G3 in a more convenient form,

making use of two identities in four dimensions [83]:

Rαβ ½αβRμν
μνRρ

ρ� ¼ 0; ð2:12Þ

which translates into

Rα
βRβρ

μνRμν
αρ¼

1

4
R3−2RRα

βRβ
αþ2Rα

βRμ
νRβν

αμ

þ2Rα
βRβ

μRμ
αþ

1

4
RRαβ

μνRμν
αβ; ð2:13Þ

and

Rαβ ½αβRμν
μνRρσ

ρσ� ¼ 0; ð2:14Þ

which, in combination with (2.13), leads to

Rα
μ
β
νR

μ
ρ
ν
σR

ρ
α
σ
β¼

1

2
Rαβ

μνRμν
ρσRρσ

αβ−
5

8
R3

þ9

2
RRα

βRβ
α−

3

8
RRαβ

μνRμν
αβ

−3Rα
βRμ

νRβν
αμ−4Rα

βRβ
μRμ

α: ð2:15Þ

The latter identity implies that, in four dimensions, G3 can
be rewritten as

G3jd¼4 ¼
3

4
RRαβ

μνRμν
αβ þ

5

4
R3 − 9RRα

βRβ
α

− 8Rα
βRβ

μRμ
α þ 6Rα

βRμ
νRβν

αμ

∼
3

4
RRαβ

μνRμν
αβ; ð2:16Þ

where in the second line we have dropped all terms
involving more than one Ricci scalar/tensor. These terms
can be traded, via a further field redefinition, for a contact
term of the form Rμνρσ∂μϕ1∂νϕ2∂ρϕ1∂σϕ2, which only
contributes to quantum corrections to the quadrupole
moment. Thus

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
2

κ2
R−

α2
12κ2

G3

�
þSϕ1;ϕ2

;

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
2

κ2
R−

α2
16κ2

RðRαβμνÞ2þ�� �
�
þSϕ1;ϕ2

→
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
2

κ2
Rþ α2

64
ðRαβμνÞ2

×
X
i¼1;2

ð2m2
iϕ

2
i −∂μϕi∂μϕiÞþOðα22Þ

�
þSϕ1;ϕ2

;

ð2:17Þ

where in the last line we have used the field redefinition

gαβ → gαβ −
α2
32

gαβRμν
ρσRρσ

μν: ð2:18Þ

Finally, integrating by parts and discarding boundary
contributions, we can rewrite the new interaction term in
(2.17) as

ðRαβμνÞ2ð2m2ϕ2 − ∂μϕ∂μϕÞ
¼ RμνρσRμνρσm2ϕ2 −∇αRμνρσ∇αRμνρσϕ

2; ð2:19Þ

where the second term does not give any classical con-
tribution to the scattering amplitude at leading order.
Hence, for the sake of computing classical contributions
to amplitudes, we can replace

Seff →
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
2

κ2
Rþ α2

64
ðRαβμνÞ2

X
i¼1;2

m2
iϕ

2
i þOðα22Þ

�

þSϕ1;ϕ2
; ð2:20Þ

thereby explicitly showing that the G3 interaction can be
absorbed into the first of the two tidal interactions in (2.7).

C. Tidal effects

During the inspiral phase of binary systems involving at
least one extended heavy object like a neutron star,
corrections due to the finite size of the object(s) increase
as the distance between the objects decreases. These effects
can be included systematically using a tidal expansion, i.e.,
a multipole expansion dominated by the mass quadrupole
moment. Finite-size effects are bound to become of ever
increasing importance in the light of future gravitational-
wave experiments, and will likely play a key role in a
deeper understanding of the internal structure of compact

4We also observe that black holes in four dimensions have
nonvanishing Love numbers when higher-derivative interactions
are considered [81,82].
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objects. The computation of tidal effects has been
addressed in the past by a wide variety of methods, recently
including complete PM results [74–76] for the conservative
dynamics.
In order to compute the modifications to the waveform

coming from the tidal interactions in (2.7) we need to
expand the 2PM potential in the conservative Hamiltonian
computed in [74–76] up to Oðp⃗2Þ, with the result

V tidalðr⃗; p⃗Þ ¼ −
3

2

G2

r6
m2

2

m1

�
8

�
1 −

m2
1 þm2

2

2m2
1m

2
2

p⃗2

�
λ1

þ
�
1þ 2m2

1 þ 2m2
2 þ 5m1m2

m2
1m

2
2

p⃗2

�
η1

�

þ 1 ↔ 2þ � � � ; ð2:21Þ

where the dots indicate higher PN terms.

III. QUADRUPOLE MOMENTS IN EFTs
OF GRAVITY

In the PN framework, the conservative and dissipative
dynamics of two objects of massm1 andm2, coupled to the
gravity effective action (2.2), is described by the following
point-particle effective action [26,52]:

Spp¼
Z

dt

�
1

2
μ _⃗r 2−Vðr⃗;p⃗Þþ1

2
Qijðr⃗;p⃗ÞR0i0jþ���

�
; ð3:1Þ

where

μ ≔
m1m2

m1 þm2

ð3:2Þ

is the reduced mass, and r⃗ðtÞ is the relative position of the
two objects. Vðr⃗; p⃗Þ denotes the potential, whose explicit
expression to first order in α1, α2 [54,55], and λ1;2, η1;2
[74–76] is obtained by summing (2.9) and (2.21), and
Qijðr⃗; p⃗Þ is the quadrupole moment, to be computed below.
The dots represent higher-order terms that will be irrelevant
in our analysis. This action can be trusted in the inspiral
phase before the objects reach relativistic velocities.
We now present the computation of the five-point

amplitude ϕ1ϕ2 → ϕ1ϕ2 þ h̄ðkÞ with four scalars and
one radiated soft graviton h̄ðkÞ. Its momentum kμ is on
shell, while the momentum of the graviton exchanged
between the two objects is purely spacelike (corresponding
to an instantaneous interaction), and in our setup is given
by qμ ¼ −pμ

1 − pμ
2 ¼ ð0; q⃗Þ. Furthermore, the energy of the

radiated graviton is such that k0 ≪ jq⃗j, so that kμ can be
ignored for practical purposes, and the radiated graviton
enters the amplitude only through its associated Riemann
curvature tensor R̄αβμν. Finally, because we are only
interested in classical contributions [i.e., Oðℏ0Þ], we keep
only the leading terms in q⃗2.

In the following we first compute fully relativistic
scattering amplitudes and then perform the PN expansion
to extract the correction to the quadrupole term in the
effective action (3.1). In the center-of-mass frame, the
momenta of the particles can be parametrized as

pμ
1 ¼ −

�
E1; p⃗ −

q⃗
2

�
; pμ

4 ¼ −
�
E4;−p⃗þ q⃗

2

�
;

pμ
2 ¼

�
E2; p⃗þ q⃗

2

�
; pμ

3 ¼
�
E3;−p⃗ −

q⃗
2

�
; ð3:3Þ

with p2
1 ¼ p2

2 ¼ m2
1, p

2
3 ¼ p2

4 ¼ m2
2. Furthermore, we have

E1 ¼ E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p⃗2 þ q⃗2=4
q

;

E3 ¼ E4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p⃗2 þ q⃗2=4
q

; ð3:4Þ

where p⃗ · q⃗ ¼ 0 because of momentum conservation. In
our all-outgoing convention for the external lines, the four-
momenta p1 and p4 correspond to the incoming particles,
and hence their energies are negative.

A. The amplitude with cubic interactions

Our next task is to compute the five-point amplitude AO
shown in Fig. 1, with O ¼ I1; I2 (which we can then
combine to obtain AG3

). We first obtain its relativistic
expression, factoring out a single Riemann tensor associ-
ated with the radiated graviton, and then split the Lorentz
indices into time and spatial components and isolate the
terms contracted into R̄0i0j. Upon Fourier transforming to
position space, these components will allow to directly read
off Qij by matching to the Hamiltonian density associated
to the point particle effective action (3.1). The classical
relativistic results are, for I1,

AI1 ¼ iðα1 þ 2α2Þ
�
κ

2

�
2 qμqρ

q2
½m2

1p
ν
3p

σ
3 þm2

2p
ν
1p

σ
1

− 2ðp1 · p3Þpν
1p

σ
3�R̄μνρσ; ð3:5Þ

while, for I2,

FIG. 1. The single diagram contributing to the radiation process
with an insertion of the operators O ¼ I1; I2. All momenta are
treated as outgoing and the radiated graviton is taken to be soft.
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AI2 ¼
i
2
α2

�
κ

2

�
2 qμqρ

q2
ðm2

1p
ν
3p

σ
3 þm2

2p
ν
1p

σ
1ÞR̄μνρσ: ð3:6Þ

Note that the result for the G3 interaction introduced in
(2.3) can be obtained as

AG3
≔ ðAI1 þAI2Þjα1¼0: ð3:7Þ

The terms in the amplitude contributing to the quadrupole
radiation are then

AI1ðqÞ ¼ −iðα1 þ 2α2Þ
�
κ

2

�
2

ðm2
1E

2
4 þm2

2E
2
1

− 2E2
1E

2
4 − 2p⃗2E1E4Þ

qiqj

q⃗2
R̄0i0j þ � � � ; ð3:8Þ

and

AI2ðqÞ¼−i
α2
2

�
κ

2

�
2

ðm2
1E

2
4þm2

2E
2
1Þ
qiqj

q⃗2
R̄0i0jþ��� ;

ð3:9Þ

where we have used that E3 ¼ E4 in order to write the result
as a function of the energies and momenta of the incoming
particles p1 and p4. The dots stand for additional terms
proportional to R̄0ijk and R̄ijkl, which can also be extracted
from our result.

B. The amplitude with tidal effects

A calculation similar to the one outlined in the previous
section (see Fig. 2) leads to the fully relativistic result

AtidalðqÞ ¼ i

�
κ

2

�
2 qμqρ

q2

�
8λ1pν

4p
σ
4 þ 8λ2pν

1p
σ
1

þ 1

2
½ðm2

1 þm2
2 − tÞ2 − 2m2

1m
2
2�

×

�
η2
m4

2

pν
4p

σ
4 þ

η1
m4

1

pν
1p

σ
1

��
R̄μνρσ; ð3:10Þ

which, upon expanding in the spatial and time components,
reads

AtidalðqÞ ¼ −i
�
κ

2

�
2
�
8λ1E2

4 þ 8λ2E2
1

þ ½2ðE1E4 þ p⃗2Þ2 −m2
1m

2
2�

×

�
η2

E2
4

m4
2

þ η1
E2
1

m4
1

��
qiqj

q⃗2
R̄0i0j þ � � � ; ð3:11Þ

where the ellipses stand once again for terms proportional
to R̄0ijk and R̄ijkl, which we will not need in the remainder
of this paper.

C. The quadrupole corrections

Next we extract the corrections to the mass quadrupole
moment Qij from (3.8), (3.9) and (3.11). To do so we
simply match the appropriately normalized and Fourier-
transformed AO, as defined in (3.13) below, to the quadru-
pole contribution in (3.1).5 To begin with, we perform the
relevant Fourier transforms using

Z
dt

Z
d3q
ð2πÞ3

qiqj
jq⃗j2 e

iq⃗·r⃗R̄0i0j

¼ −
3

4π

Z
dt

1

r5

�
xixj −

1

3
r2δij

�
R̄0i0j: ð3:12Þ

Taking into account the nonrelativistic normalization factor
of −i=4E1E4, we arrive at the quadrupolelike terms

Ãquad
O ðrÞ≔−i

Aquad
O ðrÞ
4E1E4

;

¼ 1

2
COðEi;mi; p⃗2Þ

Z
dt

1

r5

�
xixj−

1

3
r2δij

�
R̄0i0j;

ð3:13Þ

where CO are coefficients depending on the energies and
masses as well as p⃗2 of the heavy particles, with

FIG. 2. The two diagrams contributing to the gravitational radiation, where O denotes any of the two tidal interactions in (2.7). An
overall Riemann tensor of the radiated graviton is factored out, so that AO ¼ AO

μνρσR̄μνρσðk → 0Þ.

5For further details on the procedure see for example [26,52].
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CI1ðEi;mi; p⃗2Þ ¼ 3

8π
ðα1 þ 2α2Þ

�
κ

2

�
2

×

�
m2

1

E4

E1

þm2
2

E1

E4

− 2E1E4 − 2p⃗2

�
;

CI2ðEi;mi; p⃗2Þ ¼ 3

16π
α2

�
κ

2

�
2
�
m2

1

E4

E1

þm2
2

E1

E4

�
;

CtidalðEi;mi; p⃗2Þ ¼ 3

8π

�
κ

2

�
2
�
8λ1

E4

E1

þ 8λ2
E1

E4

þ ½2ðE1E4 þ p⃗2Þ2 −m2
1m

2
2�

×

�
η1

E1

E4m4
1

þ η2
E4

E1m4
2

��
: ð3:14Þ

Comparing (3.13) with the Hamiltonian density obtained
from the action (3.1), we conclude that the modifications to
the quadrupole moment arising from the cubic and tidal
couplings are given by

Qij
O ¼ CO

μr5
Qij

N; ð3:15Þ

where we have introduced the leading-order quadrupole
moment in the EH theory for a binary system with masses
m1 and m2,

Qij
N ¼ μ

�
xixj −

1

3
r2δij

�
; ð3:16Þ

with μ being the reduced mass defined in (3.2). Combining
the various correction terms, we arrive at

Qij ¼ Qij
N þQij

I1
þQij

I2
þQij

tidal

¼
�
1þ CI1

μr5
þ CI2

μr5
þ Ctidal

μr5

�
Qij

N: ð3:17Þ

It is interesting to write the three coefficients CI1 , CI2 and
Ctidal in the PN expansion. Keeping terms up to first order
in p⃗2 one has

CPN
I1

¼ −3Gðα1 þ 2α2ÞM
p⃗2

μ
;

CPN
I2

¼ 3Gα2m1m2;

CPN
tidal ¼ 3G

�
8λ1 þ η1 þ

1

2M
ð8ðm1 −m2Þλ1

þ ð3m1 þ 5m2Þη1Þ
p⃗2

μ2

�
m2

m1

þ 1 ↔ 2; ð3:18Þ

where

M ≔ m1 þm2; ð3:19Þ

and, as usual, κ2 ≔ 32πG. For convenience we also quote
the contribution due to the G3 interaction alone—this is
given by

Qij
G3

¼ðQij
I1
þQij

I2
Þjα1¼0 ¼ 3Gα2

M
r5

�
1−

2p⃗2

μ2

�
Qij

N: ð3:20Þ

IV. POWER RADIATED BY THE
GRAVITATIONAL WAVES

We can now compute the power radiated by the
gravitational waves in the approximation of circular orbits.
In the EH theory, the radius of the circular orbit is given by
the well-known formula

rN ¼
�
GM
Ω2

�1
3

: ð4:1Þ

In the presence of the cubic and tidal interactions, this
quantity gets modified as

r∘ ¼ rN þ δr;

δr ¼ Ω3

�
−
α1
2
vþ

�
α2
2
þ 8λ12

��
3

v
þ vð2ν − 1Þ

�

þ η12

�
3

v
þ vðνþ 2Þ

��
þOðg2i Þ; ð4:2Þ

where gi stands for any of the coupling constants of the
cubic and tidal perturbations. We also introduced the
symmetric mass ratio ν defined as

ν ≔
m1m2

M2
; ð4:3Þ

and the parameter

v ≔ rNΩ ¼ ðGMΩÞ13; ð4:4Þ
as well as the following combinations of the couplings

λ12 ≔ μ

�
λ1
m3

1

þ λ2
m3

2

�
; η12 ≔ μ

�
η1
m3

1

þ η2
m3

2

�
: ð4:5Þ

Finally,Ω denotes the angular velocity on the circular orbit,
and the value δr has been computed using (4.2) and (A5),
where the potentials entering (A5) are given in (2.9) and
(2.21). The total energy per unit mass M of the system, to
first order in the couplings, is then given by

EðvÞ ¼ −
1

2
νv2 þ 9

4

v12

ðGMÞ4 νðα2 þ 16λ12 þ 2η12Þ

þ 11

8

v14

ðGMÞ4 ½−να1 þ νð2ν − 1Þðα2 þ 16λ12Þ

þ 4νðνþ 2Þη12�: ð4:6Þ
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The above formula is complete at leading order in all of the
perturbations [that is Oðv12)] and at Oðv14Þ for the α1
correction only. The remaining Oðv14Þ terms have been
obtained from a small-velocity expansion of our 2PM
result, and in order to get a complete result at that
PN order one would need to include also the 3PM
corrections to the potential generated by cubic and tidal
interactions.6 We have also compared the contribution to
the energy from the η1;2 corrections to [71], finding

agreement (after mapping their coefficients μð2ÞA to ours).7

Next, we compute the leading-order gravitational-wave
flux using the quadrupole formula

F ðvÞ ¼ G
5
hQ…ij Q

…iji; ð4:7Þ

using the result of our computation forQij in (3.17). To first
order in the couplings α1 and α2 the flux becomes

F ðvÞ¼G
5
hQ…ij

N Q
…ij

Ni
�
1þ 2

μr5
ðCPN

I1
þCPN

I2
þCPN

tidalÞ
�
þOðα2i Þ;

ð4:8Þ

where the PN-expanded coefficients CPN
O are explicitly

given in (3.18).
Two comments are in order here. First, we note that the

prefactor hQ…ij
NQ
…ij

Ni is evaluated on the radius r∘ of the
circular orbit in the presence of the cubic and tidal
interactions, as given in (4.2). Furthermore, the quantity
p⃗2 ≔ p2

r þ p2
ϕ=r

2 can be obtained using the fact that
pr ¼ 0 on the circular orbit while pϕ ≔ l is a constant,
which can be determined from Hamilton’s equations, with
the result

l ≔
μr2∘Ω

1þ 2μUðr∘Þ
; ð4:9Þ

where r∘ is given in (4.2) and UðrÞ is the part of the
potential proportional to p⃗2, following the conventions of
the Appendix. Using these relations, p⃗2 is reexpressed as a
function of Ω, the masses and the couplings.
Factoring out the standard power radiated by the gravi-

tational wave in EH,

FNðvÞ ≔
G
5
hQ…ij

NQ
…ij

Ni
				
r¼rN

¼ 32

5
Gμ2r4NΩ6 ¼ 32

5

ν2v10

G
;

ð4:10Þ

we can rewrite the expression for the flux as

F ðvÞ¼ 32

5

ν2v10

G

�
1þ v10

ðGMÞ4 ð12α2þ144λ12þ48λ012

þ18η12þ6η012Þþ
v12

ðGMÞ4 ½−8α1þ2ð2ν−7Þα2

þ8ð8ν−7Þλ12þ24λ012þð8νþ31Þη12þ9η012�
�
;

ð4:11Þ

with λ12 and η12 defined in (4.5) and

λ012≔
1

M

�
λ1
m1

þ λ2
m2

�
; η012≔

1

M

�
η1
m1

þ η2
m2

�
: ð4:12Þ

Similarly to (4.6), the first line and the α1 term in the second
line of (4.11) are complete. We also note that the η1;2 part of
the tidal flux is in agreement with [71].

V. WAVEFORMS IN EFT OF GRAVITY

Following [53] we can also compute the correction
induced by the cubic and tidal interactions to the gravita-
tional phase in the saddle point approximation. In
this approach, the waveform in the frequency domain is
written as8

h̃SPAðfÞ ∼ exp

�
i

�
ψfðtfÞ −

π

4

��
; ð5:1Þ

where

ψðtÞ ≔ 2πft − ϕðtÞ: ð5:2Þ

Here ϕðtÞ is the orbital phase, while _ϕðtÞ ¼ πFðtÞ defines
the instantaneous frequency FðtÞ of the gravitational wave.
tf is defined as the time where

_ψðtÞjt¼tf ¼ 0; ð5:3Þ

implying that FðtfÞ ¼ 2f. In the adiabatic approximation,
the work of [72,73] provides explicit formulas for ψSPAðtfÞ
and tf:

ψSPAðtfÞ¼ 2πftref −2ϕref þ
2

G

Z
vref

vf

dvðv3f−v3ÞE
0ðvÞ

F ðvÞ ;

ð5:4Þ

tf ¼ tref þM
Z

vref

vf

dv
E0ðvÞ
F ðvÞ ; ð5:5Þ

where vref ¼ vðtrefÞ and tref are integration constants,
vf ≔ ðπGMfÞ13, and EðvÞ and F ðvÞ were computed to

6Similar considerations apply to our results for the flux in
(4.11).

7For further details on mapping field theory to point-particle
actions see e.g., [36,84]. 8See for example Sec. III F of [73] for a detailed derivation.
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lowest order in the cubic and tidal perturbations in (4.6) and
(4.8), respectively.
We can now compute the correction to ψSPAðtfÞ due to

the presence of the perturbations, expanding the ratio
E0ðvÞ=F ðvÞ at consistent PN order and performing the
integration in (5.4). Doing so we arrive at

ψSPAðtfÞ ¼ ψEH
SPAðtfÞ þ ψ I1þI2

SPA ðtfÞ þ ψ tidal
SPAðtfÞ: ð5:6Þ

Here

ψEH
SPAðtfÞ ¼ 2πft0ref − 2ϕ0

ref þ
3

128νv5f
ð5:7Þ

is the EH contribution, where we have also included the
reference time and phase t0ref and ϕ0

ref , which have been
redefined in order to absorb terms that depend on vref ; and

ψ I1þI2
SPA ðtfÞ ¼ −

3

128νv5f

�
156

α2
ðGMÞ4 v

10
f −

545α1 þ ð665 − 850νÞα2
14ðGMÞ4 v12f

�
;

ψ tidal
SPAðtfÞ ¼ −

3

128νv5f

�
24

v10f
ðGMÞ4 ð8ð12λ12 þ λ012Þ þ 12η12 þ η012Þ

−
10

7

v12f
ðGMÞ4 ½4ðð91 − 170νÞλ12 − 6λ012Þ − 5ð17νþ 37Þη12 − 9η012�

�
; ð5:8Þ

are the new contributions due to cubic and tidal perturba-
tions. Similarly to our comment after (4.6), we note that all
the terms at leading order in velocity in (5.8) are complete,
while the remaining ones would also receive further
modifications from a 3PM computation of the potential
and a 2PM computation of the quadrupole.
Finally, it is interesting to compare our results with those

of [53]. The perturbations considered in that paper have the
form

L8 ¼ β1C2 þ β2CC̃ þ β3C̃
2; ð5:9Þ

where

C ≔ RμνρσRμνρσ; C̃ ≔
1

2
Rμναβϵ

αβ
γδRγδμν: ð5:10Þ

The modifications to ψSPAðtfÞ due to quartic interactions as
found in [53] are [reinstating powers of G in the result
of that paper, and converting their dΛ into our β1 as defined
in (5.9)],

ψquartic
SPA ðtfÞ¼ψEH

SPAðtfÞ

þ 3

128νv5f

��
234240

11
−
522240

11
ν

�
β1

ðGMÞ6v
16
f

�
:

ð5:11Þ

Note the different dependence on vf in the correction terms
in (5.8) and (5.11), which are of Oðv10f Þ and Oðv16f Þ in the
leading cubic and tidal, and quartic cases, respectively, in
order to constrain the coefficients of the higher-dimensional
interactions. Finally, it will be interesting to perform a
comparison of our result in (5.6) to experimental data,
as performed in [53] for the case of quartic perturbations in

the Riemann tensor. A natural extension of our work
is to consider spinning particles, and study the effect
of higher-derivative interactions on the Kerr geometry
from an amplitudes perspective, complementing traditional
approaches [85,86].
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APPENDIX: HAMILTONIANS WITH
MOMENTUM-DEPENDENT POTENTIALS

Consider amomentum-dependentHamiltonian of the form

H ¼ p⃗2

2μ
½1þ 2μUðrÞ� þ VðrÞ; ðA1Þ

where p⃗2 ¼ p2
r þ p2

ϕ

r2 . From Hamilton’s equations we learn
that pϕ ≔ l is constant, as well as _ϕ ¼ l

μr2 ½1þ 2μUðrÞ�. The
latter equation can be used to reexpress l as a function of Ω.
We also have

_r ¼ pr

μ
½1þ 2μUðrÞ�; ðA2Þ

and, for circular orbits, we see thatpr ¼ 0 and hence _pr ¼ 0.
In this case, the Hamilton equation _pr ¼ − ∂H

∂r simplifies to
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V 0ðr∘Þ −
l2

μr3∘
½1þ 2μUðr∘Þ� þ

l2

r2∘
U0ðr∘Þ ¼ 0; ðA3Þ

where r∘ is the radius of the circular orbit. We will also set
Ω ≔ _ϕðr ¼ r∘Þ, or

Ω ≔
l

μr2∘
½1þ 2μUðr∘Þ�: ðA4Þ

Using this to eliminate l in favor of Ω, we finally get

V 0ðr∘Þ −
μr∘Ω2

1þ 2μUðr∘Þ
�
1 −

μr∘U0ðr∘Þ
1þ 2μUðr∘Þ

�
¼ 0: ðA5Þ

This equation determines r∘ as a function ofΩ. In the absence
of a perturbation, we have

ΩN ¼ l
μr2N

; ðA6Þ

where rN is the radius of the circular orbit in the EH theory,
given in (4.1).
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