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Abstract

This thesis investigates the application of function approximation techniques for com-

putationally demanding problems in finance. We focus on the use of Chebyshev inter-

polation and its multivariate extensions. The main contribution of this thesis is the

development of a new pricing method for path-dependent options. In each step of the

dynamic programming time-stepping we approximate the value function with Chebyshev

polynomials. A key advantage of this approach is that it allows us to shift all model-

dependent computations into a pre-computation step. For each time step the method

delivers a closed form approximation of the price function along with the options’ delta

and gamma. We provide a theoretical error analysis and find conditions that imply ex-

plicit error bounds. Numerical experiments confirm the fast convergence of prices and

sensitivities. We use the new method to calculate credit exposures of European and

path-dependent options for pricing and risk management. The simple structure of the

Chebyshev interpolation allows for a highly efficient evaluation of the exposures. We

validate the accuracy of the computed exposure profiles numerically for different equity

products and a Bermudan swaption. Benchmarking against the least-squares Monte

Carlo approach shows that our method delivers a higher accuracy in a faster runtime.

We extend the method to efficiently price early-exercise options depending on several

risk-factors. As an example, we consider the pricing of callable bonds in a hybrid two-

factor model. We develop an efficient and stable calibration routine for the model based

on our new pricing method. Moreover, we consider the pricing of early-exercise basket

options in a multivariate Black-Scholes model. We propose a numerical smoothing in

the dynamic programming time-stepping using the smoothing property of a Gaussian

kernel. An extensive numerical convergence analysis confirms the efficiency.

3



Acknowledgments

First and foremost, I would like to thank my supervisor Kathrin Glau for her vigorous

support during the last four years. Her own passion and commitment for research as

well as her scientific curiosity and creativity have driven this thesis forward. Throughout

my studies, she has always given me the opportunity to develop my own ideas, valued

my contributions and our fruitful discussions have been a great help for me. Without

her guidance and support this thesis would not have been possible. Furthermore, I

would like to thank my other co-authors Paul Herold, Dilip B. Madan, Mirco Mahlstedt

and Ricardo Pachon for their good collaboration as well as their extensive feedback and

interesting inputs.

I thank all the members of the chair of M13 at the Technical University of Munich,

especially my former PhD colleagues, for making the first one and half years of my

PhD such a positive experience. My deep gratitude goes to the management board of

the KPMG Center of Excellence in Risk Management for financing my PhD position

in Munich. The possibility to do a three months industry placement at KPMG to gain

insight into consulting is gratefully acknowledged. In this context, I would like to thank

Franz Lorenz for his great supervision throughout this time.

I am very grateful for the financial support from the School of Mathematical Sciences for

the second part of my studies at Queen Mary University of London. I thank my former

and current fellow PhD students who gave me a warm welcome and made my time in

London such an enjoyable and amazing experience. Many thanks to Wolfram Just for

becoming my second supervisor and to Alexander Gnedin for his help and support as the

head of our research group. My deep gratitude goes to Mikhail Soloveitchik for giving

me the opportunity to apply my university research to a real-world problem during

an industry placement at HSBC. Moreover, a big thank you to Linus Wunderlich and

Domagoj Demeterfi for proof reading chapters of this thesis.

Furthermore, I thank my parents for their constant support and encouragement through-

out my entire studies. Most of all, I would like to thank Annkatrin for her love and

support during these intense years.

4



Table of Contents

1 Introduction 13

2 Chebyshev interpolation in finance 23

2.1 Chebyshev polynomial interpolation . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Chebyshev points and Chebyshev polynomials . . . . . . . . . . . 27

2.1.3 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Multivariate extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Tensor based Chebyshev interpolation . . . . . . . . . . . . . . . . 42

2.2.2 Complexity reduction for polynomial interpolation . . . . . . . . . 45

2.3 Application of Chebyshev in finance . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Fundamentals of option pricing . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Analyticity of parametric option prices . . . . . . . . . . . . . . . . 53

2.3.3 Chebyshev interpolation in option pricing . . . . . . . . . . . . . . 56

2.4 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.2 Interpolation domain . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.3 Algorithmic structure . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 The dynamic Chebyshev method 75

3.1 A new pricing algorithm for path-dependent options . . . . . . . . . . . . 76

3.1.1 American options, optimal stopping and dynamic programming . . 78

3.1.2 A dynamic pricing algorithm using Chebyshev interpolation . . . . 80

3.1.3 Pricing of the American put . . . . . . . . . . . . . . . . . . . . . . 82

3.1.4 A dynamic Chebyshev algorithm with splitting . . . . . . . . . . . 86

3.2 Theoretical error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.1 Error analysis for analytic value functions . . . . . . . . . . . . . . 90

5



3.2.2 Error analysis for piecewise analytic value functions . . . . . . . . 97

3.3 Computation of generalized moments . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 Analytic expressions for the generalized moments . . . . . . . . . . 103

3.3.2 Numerical integration for the generalized moments . . . . . . . . . 107

3.4 The dynamic Chebyshev method in practice . . . . . . . . . . . . . . . . . 110

3.4.1 Implementation of the method . . . . . . . . . . . . . . . . . . . . 110

3.4.2 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . 116

3.4.3 Expected convergence behaviour . . . . . . . . . . . . . . . . . . . 117

3.5 Empirical error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.1 Convergence for analytic value functions . . . . . . . . . . . . . . . 119

3.5.2 Convergence for differentiable value functions . . . . . . . . . . . . 120

3.5.3 Convergence for a bivariate barrier option . . . . . . . . . . . . . . 121

3.5.4 Convergence for piecewise analytic functions . . . . . . . . . . . . 122

3.6 Benchmarking of the method . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.6.1 The Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . 125

3.6.2 The CEV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.6.3 Pre-computation step: Analytic formula vs. Simulation . . . . . . 130

3.7 Extension of the method and outlook . . . . . . . . . . . . . . . . . . . . . 132

4 Efficient computation of credit exposure 137

4.1 Credit exposure for pricing and risk management . . . . . . . . . . . . . . 138

4.2 A static Chebyshev approach for exposure calculate . . . . . . . . . . . . 142

4.3 A dynamic approach for exposure calculation . . . . . . . . . . . . . . . . 144

4.4 Credit exposure of equity options . . . . . . . . . . . . . . . . . . . . . . . 151

4.4.1 Description of the experiments . . . . . . . . . . . . . . . . . . . . 151

4.4.2 European option in the Black-Scholes model . . . . . . . . . . . . . 153

4.4.3 Barrier option in the Black-Scholes model . . . . . . . . . . . . . . 156

4.4.4 Bermudan option in the Merton jump-diffusion model . . . . . . . 159

4.5 Credit exposure of Bermudan swaptions . . . . . . . . . . . . . . . . . . . 161

4.5.1 Interest rate derivatives: Swaps and swaptions . . . . . . . . . . . 162

4.5.2 Pricing of Bermudan swaptions . . . . . . . . . . . . . . . . . . . . 163

4.5.3 Bermudan swaption in the Hull-White model . . . . . . . . . . . . 165

4.5.4 Summary of the experiments . . . . . . . . . . . . . . . . . . . . . 167

4.6 Empirical investigation of exposure profiles . . . . . . . . . . . . . . . . . 168

4.6.1 Credit exposure of Barrier options . . . . . . . . . . . . . . . . . . 169

4.6.2 Credit exposure of Bermudan options . . . . . . . . . . . . . . . . 172

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6



5 Multivariate early-exercise options 178

5.1 A multivariate dynamic Chebyshev algorithm . . . . . . . . . . . . . . . . 179

5.1.1 Independent risk-factors . . . . . . . . . . . . . . . . . . . . . . . . 179

5.1.2 Extension to the multivariate Black-Scholes model . . . . . . . . . 182

5.1.3 A first numerical experiment . . . . . . . . . . . . . . . . . . . . . 188

5.1.4 Omit calculation of coefficients . . . . . . . . . . . . . . . . . . . . 189

5.2 Pricing of callable bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.2.1 Callable defaultable bonds . . . . . . . . . . . . . . . . . . . . . . . 194

5.2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.2.3 A new pricing algorithm for callable bonds . . . . . . . . . . . . . 200

5.2.4 Calibration of the rate/credit model . . . . . . . . . . . . . . . . . 208

5.2.5 Empirical investigation of the algorithm . . . . . . . . . . . . . . . 215

5.3 Pricing basket options using quadrature . . . . . . . . . . . . . . . . . . . 223

5.3.1 Dynamic Chebyshev for quadrature . . . . . . . . . . . . . . . . . 225

5.3.2 Chebyshev quadrature for basket options . . . . . . . . . . . . . . 231

5.3.3 Numerical investigation of the method . . . . . . . . . . . . . . . . 235

5.3.4 Merits and limitations of the quadrature approaches . . . . . . . . 243

5.4 Smoothing in a dynamic framework . . . . . . . . . . . . . . . . . . . . . 247

5.4.1 Basket options with short maturities . . . . . . . . . . . . . . . . . 247

5.4.2 Numerical smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.4.3 Numerical investigation for Bermudan basket options . . . . . . . 252

5.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Appendix A Chebyshev algorithm for the implied volatility 262

Appendix B Multivariate generalized moments 268

References 272

7



List of Figures

1.1 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Polynomial interpolation of the Runge function . . . . . . . . . . . . . . . 25

2.2 Chebyshev polynomials and Chebyshev points . . . . . . . . . . . . . . . . 29

2.3 Chebyshev points for n = 1, . . . , 8 . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Polynomial interpolation of the Runge function using Chebyshev points . 33

2.5 Moneyness and time-scaled volatility of options on four different indices . 65

2.6 Splitting of the normalized call price . . . . . . . . . . . . . . . . . . . . . 66

2.7 The four different interpolation areas of the Chebyshev method . . . . . . 68

2.8 Domain of the Chebyshev interpolation and domain of Li . . . . . . . . . 71

3.1 Error decay DC method for a barrier option (BS model) . . . . . . . . . . 120

3.2 Error decay of the DC method for a Bermudan option (BS, Merton model)121

3.3 Error decay of the DC method for a 2d barrier option (BS model) . . . . 123

3.4 Error decay of the DC method (splitting) for a Bermudan option (BS,

Merton model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Error decay of the DC method (splitting) for a Bermudan option (BS model)124

3.6 Price and error surface of the DC method (BS model) . . . . . . . . . . . 126

3.7 Comparison of the DC method with the LSM algorithm (BS model) . . . 126

3.8 Runtime of the DC method and the LSM algorithm (BS model) . . . . . . 128

3.9 Price and error surface of the DC method (CEV model) . . . . . . . . . . 129

3.10 Comparison of the DC method with the LSM algorithm (CEV model) . . 129

3.11 Runtime of the DC method and the LSM algorithm (CEV model) . . . . 130

3.12 Performance of the DC method with the LSM algorithm (CEV model) . . 132

3.13 Error decay of the DC method (splitting at srike) for a Bermudan option

(BS model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.1 EE and PFE of a European option (BS model) . . . . . . . . . . . . . . . 155

4.2 EE and PFE of a European option (BS model) – relative error . . . . . . 155

4.3 EE and PFE of a barrier option (BS model) . . . . . . . . . . . . . . . . . 158

8



4.4 EE and PFE of a barrier option (BS model) – relative error . . . . . . . . 158

4.5 EE and PFE of a Bermudan option (Merton model) . . . . . . . . . . . . 160

4.6 EE and PFE of a Bermudan option (Merton model) – relative error . . . 160

4.7 EE and PFE of a Bermudan swaption (Hull-White model) . . . . . . . . . 166

4.8 EE and PFE of a Bermudan swaption (Hull-White model) – relative error 167

4.9 EE and PFE of a barrier option (BS, Merton, CEV model) . . . . . . . . 170

4.10 EE and PFE of a barrier option and a European option (BS, Merton,

CEV model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.11 EE and PFE of a European option (BS, Merton, CEV model) . . . . . . . 173

4.12 EE and PFE of a Bermudan option (BS, Merton, CEV model) . . . . . . 173

4.13 EE and PFE of a Bermudan and a European option (BS, Merton, CEV

model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.14 EE and PFE of Bermudan options with different timesteps (BS model) . . 175

5.1 Error decay bivariate DC method and comparison with LSM (BS model) 190

5.2 Comparison bivariate DC method with and without coefficients . . . . . . 193

5.3 Volume of US corporate bond issues from 1996 to 2019 . . . . . . . . . . . 195

5.4 EOC of the DC method for a callable bond (zero corr., no recovery) . . . 219

5.5 EOC of the DC method for a callable bond (positive corr., no recovery) . 220

5.6 EOC of the DC method for a callable bond (zero corr., with recovery) . . 220

5.7 EOC of the DC method for a callable bond (positive corr., with recovery) 221

5.8 Pricing error of the DC method for callable bonds with varying strikes . . 221

5.9 Delta w.r.t. the interest rate curve of the DC method for callable bonds . 222

5.10 Delta w.r.t. the credit curve of the DC method for callable bonds . . . . . 223

5.11 Comparison of quadrature methods for a call option (BS model) . . . . . 229

5.12 Effect of a smooth integrand on the convergence of the DC quadrature . . 230

5.13 Error decay of GH, DC and CC quadrature for a 2d basket call . . . . . . 237

5.14 Comparison of DC quadrature and MC simulation for a 2d basket call . . 238

5.15 Comparison of GH, DC and CC quadrature to COS method for a 2d

basket call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5.16 Comparison of DC, CC and GH quadrature for a 3d basket option . . . . 242

5.17 Comparison of DC, CC and GH quadrature for a 5d basket option . . . . 243

5.18 Error decay of GH quadrature for basket call with d = 10 . . . . . . . . . 246

5.19 Error decay of DC, CC and GH quadrature for basket call with T = 0.02 248

5.20 Error decay of DC, CC and GH quadrature for basket put with T = 0.02 248

5.21 Error decay of DC method with numerical smoothing for a 2d basket option254

5.22 Error decay of DC method with numerical smoothing for a 3d basket option255

5.23 Error decay of DC method with numerical smoothing for a 4d basket option255

9



5.24 Comparison of DC method with numerical smoothing to COS method and

LSM for a 2d basket option . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.1 Definition of the splitting points using the tangent line . . . . . . . . . . . 265

10



List of Tables

2-A Rank k and grid sizes N1, N2 of the low rank Chebyshev interpolation in

the different areas for three different levels of pre-specified accuracy. . . . 69

2-B Interpolation error and runtimes on domain D1. . . . . . . . . . . . . . . . 72

2-C Interpolation error and runtimes on domain D2. . . . . . . . . . . . . . . . 72

2-D Interpolation error and runtimes for S&P 500 market data. . . . . . . . . 73

3-A Comparison of the DC method with the LSM algorithm (BS model) . . . 127

3-B Comparison of the DC method with the LSM algorithm (CEV model) . . 130

4-A EE and PFE of a European option (BS model) – reference values . . . . . 155

4-B EE and PFE of a European option (BS model) – relative error . . . . . . 156

4-C EE and PFE of a European option (BS model) – runtimes . . . . . . . . . 156

4-D EE and PFE of a barrier option (BS model) – reference values . . . . . . 157

4-E EE and PFE of a barrier option (BS model) – relative error . . . . . . . . 158

4-F EE and PFE of a barrier option (BS model) – runtimes . . . . . . . . . . 159

4-G EE and PFE of a Bermudan option (Merton model) – reference values . . 160

4-H EE and PFE of a Bermudan option (Merton model) – relative error . . . 161

4-I EE and PFE of a Bermudan option (Merton model) – runtimes . . . . . . 161

4-J EE and PFE of a Bermudan swaption (Hull-White model) – reference values166

4-K EE and PFE of a Bermudan swaption (Hull-White model) – relative error 167

4-L EE and PFE of a Bermudan swaption (Hull-White model) – runtimes . . 168

4-M EE and PFE of a barrier option and a European option (BS, Merton,

CEV model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4-N EE and PFE of a Bermudan and a European option (BS, Merton, CEV

model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5-A Exercise dates and strike prices of callable bond . . . . . . . . . . . . . . . 215

5-B Discount factors and CDS par rates used for model calibration . . . . . . 216

5-C Reference prices non-callable and callable bond . . . . . . . . . . . . . . . 217

5-D Pricing error of the bivariate DC method for callable bonds . . . . . . . . 218

11



5-E Runtimes of the bivariate DC method for callable bonds . . . . . . . . . . 219

5-F Error of the 2d COS method for a European basket call option . . . . . . 239

5-G Error of GH, DC and CC quadrature for a basket call with smoothing the

payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

5-H Low-rank structure of a basket option on 8 assets after smoothing (using

DC quadrature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5-I Low-rank structure of a basket option on 8 assets after smoothing (using

GH quadrature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5-J Low-rank structure of a basket option on 10 assets after smoothing (using

GH quadrature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5-K Error of 2d COS method for a Bermudan basket put . . . . . . . . . . . . 256

12



Chapter 1

Introduction

At the heart of modern mathematical finance stands the pricing of financial derivatives

that depend on the price of one or more underlyings. The most important class of

derivatives that are investigated in mathematical finance are option contracts. In the

simplest case, the price of an option can be calculated as its discounted expected payoff at

maturity under the so called pricing measure Q also known as the risk-neutral measure.

The resulting pricing approach is often called risk-neutral valuation and was introduced

by [33], see also [14] for more details. The core of computational finance is the numerical

computation of such option prices if there is no analytic solution. See for instance [115]

and [101] for an introduction to computational finance. The complexity of this task is

determined by the type of option that is priced and the stochastic model used for the

underlying risk factors. The price of a European vanilla call or put option depends only

on the distribution of the underlying at maturity whereas path-dependent options such

as early-exercise and barrier option depend on the distribution of the underlying over

the option’s lifetime. An American option is an option that gives the option holder

the right to exercise his right at any time point until the maturity of the option. The

majority of stock options traded in the market are of American type whereas equity index

options are often European options, see for example [72]. The early exercise feature

makes the valuation of the option more challenging. More exotic financial products

require usually also more complex stochastic models that capture relevant additional risks

such as stochastic volatility, jumps or stochastic interest rates. Further computational

complexity occurs for products on more than one underlying such as basket options or

call options on the maximum of different assets. We refer to [136] for a more practical

introduction to option pricing and to [14] as well as [41] for a comprehensive overview on

the mathematical theory behind option pricing. The first and main step in computational

finance is to find efficient numerical methods that compute the price of a given option

13



Chapter 1. Introduction 14

in a suitable stochastic model. Here, efficiency refers to the accuracy of the resulting

option price in comparison to the runtime spent on its computation. In a second step,

one is often also interested in the sensitivities of the option price, i.e. how does the

value of the option change for a small change in the value of the underlying. There

are two main applications for numerical option pricing methods, on the one side the

trading and hedging of options and on the other side the risk management of a portfolio

of derivative contracts. See [96] for an interesting comparison of these two worlds of

quantitative finance. For many years, trading was the most important application of new

option pricing methods. However, in recent years, there has been a shift from trading

to risk management in quantitative finance. Driven by new regulatory requirements,

the risk management of large trading books of derivatives has become more and more

computationally demanding. In the following, we will briefly discuss how option pricing

differs between trading and risk management.

Option pricing in trading and risk management

For trading, the price of an (exotic) product has to be computed in order to sell it to a

counterparty. First, the relevant risk factors are identified for the specific product and

a suitable stochastic model is chosen. The critical part is then the calibration of the

model to market data in order to make sure that the price of the exotic product is free

of arbitrage. Calibration means that the model parameters are optimized such that the

model prices match the prices of derivatives traded in the market. For equity models, the

prices of vanilla call and put options for different maturities and strikes can be observed

and are used for the calibration. For credit derivatives, the spreads of credit default

swaps (CDS) are a common market instrument used for calibration. This calibration

can be computationally demanding, especially if the model depends on large number of

model parameters. The same set of simple financial instruments (e.g. vanilla options,

CDS instruments) is priced many times for different model parameters until the optimal

parameters are found. Once this calibration is performed, the price of the exotic product

can be computed. See for example [113] for the calibration of different equity models

and [21] for the calibration of interest rate and credit models.

The complexity of the model calibration is thus closely related to the complexity of

the model itself. For equities, the famous model of [15] has only one parameter, the

volatility, that cannot directly be observed in the market. The volatility is therefore

computed implicitly from option prices observed in the market, this is called the Black-

Scholes implied volatility. In contrast to the model assumptions, different options on the

same underlying have different implied volatilities, an effect known as smile. This means

that the Black-Scholes model can only be calibrated to one option but not to a whole
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surface, i.e all options on the same underlying that differ only in strike and maturity. Over

the years, different models have been developed that tackle this problem. This includes

local volatility models such as the constant elasticity of variance model presented in [114]

or Dupire’s local volatility model presented in [39]. Other examples are the stochastic

volatility model of [69] and models with jumps such as [94], Lévy models such as the

CGMY model of [29] or a combination of jumps and stochastic volatility such as the

model of [8].

This model price calculated under the risk-neutral measure is however not the price

for which an exotic product can be sold. Additional valuation adjustments have to be

added (or subtracted) from the model price to obtain the final market price. For a OTC

(over-the-counter) trade between two counterpartys, credit risk plays an important role

and the model price is reduced by a bivariate counterparty credit valuation adjustment

(CVA), see [64] for an overview on counterparty credit risk. For example, an option from

a bank with a good credit score is more valuable than the same option from a bank with

a bad credit score. The CVA accounts for this difference in prices. It is usually computed

by simulating the value of the derivative over the options lifetime and multiplying the

calculated exposure by the probability that the counterparty defaults. Calculating this

exposure is computationally demanding since it requires the valuation of the option at

different time points in the future. Similar calculation occur in the computation of other

valuation adjustment such as margin valuation adjustment (MVA) or funding valuation

adjustment (FVA). We refer to [63] for an overview on valuation adjustments.

In risk management, one wants quantify the market risk and counterparty credit risk

on the level of a portfolio or trading book at a future time point or over a certain time

horizon. In this context, the focus shifts from calibration to market instruments to a

scenario simulation based approach. Frequently, a portfolio of derivatives is evaluated for

a large number of risk scenarios, simulated under the real-world (or physical) measure P.

This means that the same type of option has to be repeatedly priced for different input

values. Different risk metrics can then be extracted from the empirical distribution

of the portfolio values. Here, one is typically not only interested in the mean of the

distribution but also in tail measures. The size of the portfolio as well as the number

of risk factors make risk management computationally very demanding. We refer to [1]

for an overview on option pricing from a (market) risk management perspective. Recent

regulatory requirements such as the fundamental review of the trading book (FRTB) put

additional pressure on banks and demand a higher number of calculations. As stated

in [2]: “Efficiencies are always welcome, but especially now in view of the significantly

higher computational capacity and storage needs of FRTB (such as a tenfold increase

in the number of P&L vector calculations over an entire portfolio, and the demands of
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desk-level reporting)”. In order to cope with this demand, banks need either to increase

the computational power or employ more efficient numerical pricers.

Both perspectives, trading and risk management, justify the need for efficient numeri-

cal pricing methods. Starting with one-dimensional European options different numerical

pricing methods have been developed. They can be roughly divided into (binomial) tree

methods, PDE methods, Fourier type methods and simulation based methods. See for

example [115], [136] and [101] for more details on these methods. Many of the developed

methods have been extended or modified in order to price path-dependent options or

options on more than one asset. Each of the different classes has its merits and demer-

its and their is clearly no method that always outperform the others. For most of the

method holds that they focus on calculating one price of a specific product in a specific

class of models rather than on repeated calls of the same numerical pricing routine.

For calculating one price of univariate option, the differences in runtimes between

different methods are usually small. However, if the same option is priced many times

for varying starting values the efficiency of the methods differs a lot. For example, if the

expected exposure of a trade is calculated the same product is usually priced for 50,000 or

more simulation paths at up to 50 time steps yielding 2.5 million calls of the same pricing

routine. Here, it is desirable that the pricing method is able to deliver accurate option

prices on an interval of input factors without re-running all computations. Function

approximation methods can help to tackle this problem by providing an approximation

of the option price as a function of its input factors.

In this thesis, we will introduce a new pricing approach for path-dependent options

based on a function approximation method, the Chebyshev polynomial interpolation. We

will show that the new method is well-suited for the calculation of an option’s exposure

since it delivers an approximation of the option price and its sensitivities over the option’s

lifetime. We will then extend the presented pricing method to multivariate options.

Multivariate early-exercise options

A large class of option pricing problems are essentially multidimensional pricing prob-

lems. This is the case for options on multiple underylings such as basket, spread or

rainbow options as well as options that depend on more than one risk factor. Examples

are equity basket options on several stocks, stochastic volatility and stochastic interest

rates in stock price models, credit derivatives with interest rate and default risk or foreign

exchange (FX) options with a stochastic FX rate and stochastic interest rates in both

currencies. While some basket option pricing problems can be truly high-dimensional,

the majority of the problems is in up to five dimensions. Typically the different risk fac-
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tors are modelled using either a (geometric) Brownian motion or an Ornstein-Uhlenbeck

process and thus, they are conditionally normally or log-normally distributed. For many

products it is important that one accounts for correlation between the different risk

factors and if the option has an additional early-exercise feature, the pricing of such

options becomes challenging. Especially, if one is interested in the expected exposure

of multivariate options and the same product has to be priced for a high number of

simulated scenarios. As an example, [119] show the importance of stochastic volatility

and stochastic interest rates for the pricing and risk management of FX derivatives and

they obtain a model with four risk factors.

Most standard pricing methods such as PDE methods or Fourier methods can be

extended into multivariate dimensions. A straightforward extension leads however to

an exponential grows of the number of nodal values, often referred to as the curse of

dimensionality. For example, doubling the number of grid points from 50 to 100 is often

still easy to handle, in three dimensions the step from 503 to 1003 is an increase of factor

eight and leads to one million points which makes a method often infeasible. Obtaining

accurate results can therefore require long runtimes, especially if the option is early-

exercisable. Thus, it is crucial to ensure a fast convergence and a low number of nodal

points per dimension. In contrast, simulation based methods do not suffer from the curse

of dimensionality. They are usually simple and can provide fast results if accuracy is not

critical. However, they come with a slow convergence and achieving a higher accuracy

requires an infeasible number of simulations. Additionally, they introduce a simulation

noise and this makes the calculation of sensitivities unstable. These drawbacks are only

justifiable if the dimension is very high and no other method is available.

In this thesis, we want to close this gap and provide a new pricing method for mul-

tivariate early-exercise options. Exploring the beneficial properties of Chebyshev in-

terpolation and combining it with a numerical smoothing approach leads to fast error

decay and an efficient pricing method. We will focus on two main pricing problems

in different asset classes. First, we consider the pricing of credit derivatives with an

early-exercise feature in a two-factor interest rate/credit model driven by two correlated

Ornstein-Uhlenbeck processes. Here, the main computational challenge is the calibration

of the two-factor model to credit spreads obtained form CDS instruments. Due to the

correlation, the pricing of such a CDS is a bivariate pricing problem itself and is signifi-

cantly more challenging than a calibration in a one-dimensional short rate model. The

second problem that we consider is the pricing of basket options on up to five assets in

a multivariate Black-Scholes model assuming a positive correlation between the assets.

Here, we combine our pricing method with a smoothing concept in order to reduce the

computational complexity.
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Function approximation methods in finance

Function approximation methods are a large class of approximation methods that ap-

proximate a function f : Rd → R by a weighted sum of basis functions

f(x) ≈
∑

j
wjϕj(x) for x ∈ X ⊂ Rd

for basis functions ϕj : X → R. We write x to indicate that d might be bigger than

1 and we write x if d = 1. The function f might be explicitly or implicitly given and

the approximation domain X can be compact or unbounded. This framework is very

general and includes a simple polynomial interpolation of an univariate function as well

as a high-dimensional deep neural network. Closely related to the approximation of a

function is the numerical integration of a function f . We can approximate the integral

of f as ∫
Rd
f(x)dx ≈

∑
j
wj

∫
X
ϕj(x)dx.

If the integral of the basis function are known or can be efficiently calculated, this can be

an efficient quadrature approach. Similarly, we can use function approximation methods

to compute integrals with respect to a probability density function.

In this thesis, we exploit Chebyshev polynomial interpolation in order to obtain

efficient methods for the pricing of path-dependent options. The use of polynomials and

the Chebyshev series is not new and has already been investigated in different papers.

In the following, we present a short literature overview.

[88] propose to use polynomial basis function in a least-square regression in their pric-

ing algorithm for American option. The fitted polynomials are then used to approximate

the optimal early-exercise policy. [124] compares the performance of different families

of polynomials that can be used in the algorithm. [43] proposed a new pricing method

for European options based on a Fourier cosine expansion and extended the approach

to path-dependent options in [44]. More precisely, the density of the underlying is ap-

proximated by its (truncated) Fourier cosine expansion and the series coefficients can be

approximated using the characteristic function. The smoothness of the density function

yields a fast convergence of the series coefficietns. It remains to compute integrals of the

payoff funciton times the cosine basis function of the series. For standard option payoffs,

these integrals are available in closed form. As pointed out in [101], the cosine series

is equivalent to a Chebyshev series under the correct variable transformation. See also

[46] for a discussion on the connection between a Chebyshev series and a Fourier series.

Overall, it is the pricing method that is the closest to our new approach.
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Related to the COS method of [43] is the pricing method of [103] that is based on

Chebyshev quadrature and an efficient splitting of the domain. This paper uses algorithm

of the chebfun Matlab toolbox, available online at www.chebfun.org. The same toolbox

has also been exploited for option pricing in [31], who propose to use the Legendre

series for the pricing and hedging of options. Moreover, [28] and [98] develop an efficient

numerical PDE solver using Chebyshev polynomials for the pricing PDE of European

and early-exercise options.

A general framework for the approximation of option prices using Chebyshev poly-

nomials has been introduced in [49]. They investigate the smoothness of option prices

as a function of their parameters and they show that for a large class of models and

payoffs, this function is infinitely often continuously differentiable and has an extension

into the complex domain. This theoretical investigation motivates them to interpolate

option prices in their parameters to speed-up recurrent pricing tasks. The analyticity of

the option price ensures an exponential convergence for Chebyshev polynomial interpo-

lation. The proposed approach has been extended to high-dimensional problems in [57].

We present this static Chebyshev approach in more details in Section 2.3 and discuss

how it is related to our new pricing method for path-dependent options.

Outline of the thesis

The thesis is divided into a preliminary chapter about Chebyshev polynomial interpo-

lation and its application in finance, a chapter about a new dynamic pricing algorithm

using Chebyshev interpolation and two chapters about the application of this algorithms

for credit exposure calculation and to multivariate option pricing. We visualized the

structure in Figure 1.1. In the following, we describe the chapters in more detail and

highlight the main contributions.

Chapter 2 is the preliminary chapter of Chebyshev interpolation and we explain why

we have specifically chosen Chebyshev interpolation as function approximation technique.

We provide theoretical convergence results, discuss the smoothness of option prices and

present promising numerical results. More precisely, in Section 2.1 we introduce the

univariate Chebyshev polynomial interpolation and present the relevant convergence

results. In Section 2.2, we discuss several possibilities for a multivariate Chebyshev

interpolation, including convergence results and possible ways to tackle the curse of

dimensionality. Section 2.3 deals with the application of Chebyshev interpolation in

finance. We give a brief introduction to the mathematical theory behind option pricing

and summarize the most import types of asset price models. We analyse the smoothness

of option prices as a function of different parameters and show that this function is often

analytic, i.e. it is infinitely often continuously differentiable and can be locally written
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as a power series. Then we introduce the Chebyshev interpolation for parametric option

pricing idea proposed by [49] in order to speed-up recurrent pricing tasks. This method

results in a two steps approach consisting of an offline-phase or pre-computation step

where prices are computed at the set of nodal points and an online phase where the

Chebyshev interpolant is evaluated instead of the original pricer. We refer to this method

also as the static Chebyshev method.

We investigate a particular application of the Chebyshev interpolation in finance in

Section 2.4. There, we introduce a new numerical approximation method for the Black-

Scholes implied volatility. The presented method has been published in a joint paper

”The Chebyshev method for the implied volatility” ([56]) with co-authors Kathrin Glau,

Paul Herold and Dilip B. Madan. The implied volatility is the inverse of the call price

function and itself also an analytic. It is one of the most important quantities in finance

and needs to be computed frequently for a large set of different input parameters. Since

there is no closed form solution, it is an ideal application for a (bivariate) Chebyshev

interpolation. We select a suitable interpolation domain based on market data and

interpolate on this domain using a domain splitting and appropriate transformations.

The resulting method is tested against two benchmark methods. We show that our

method is able to cover all options observed in the market and improves the efficiency

of state-of-the art benchmark methods.

Chapter 3 is the core of this thesis and contains the introduction of our new dynamic

pricing method for path-dependent options using Chebyshev interpolation. This chapter

is based on the paper ”A new approach for American option pricing: The dynamic

Chebyshev method” ([59]) published together with co-authors Kathrin Glau and Mirco

Mahlstedt. The main idea of the dynamic Chebyshev method has also been presented

in the PhD thesis ”Complexity Reduction for Option Pricing” of Mirco Mahlstedt. The

proposed method is a novel pricing approach in a dynamic programming framework

that includes the pricing of early-exercise options as well as discretely monitored barrier

options. We provide a theoretical error analysis of the new method and discuss several

aspects regarding the implementation. An empirical convergence analysis is conducted

as well as a first performance comparison to a benchmark approach. We present the

approach in a fairly general set-up and then tailor it to different applications in Chapter

4 and Chapter 5.

More precisely, in Chapter 4, we investigate the numerical calculation of credit ex-

posures for CVA and for counterparty credit risk management. The chapter is based

on the paper ”Speed-up credit exposure calculations for pricing and risk management”

([61]) with Kathrin Glau and Ricardo Pachon and on a previous version of the paper

named ”Fast Calculation of Credit Exposures for Barrier and Bermudan options us-
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ing Chebyshev interpolation” ([60]). The computational intensive problem fits well into

our dynamic framework and we can apply our new dynamic pricing method. We show

that our new dynamic Chebyshev method delivers a closed form approximation over the

option’s lifetime. The simple polynomial structure of the approximation allows for an ef-

ficient evaluation of credit exposure. We provide different numerical examples for equity

options (European, early-exercise, barrier) and a Bermudan interest rate swaption. Our

investigation shows that the new approach combines the accuracy of a full re-evaluation

with the speed of a simple least-squares Monte Carlo approximation. We conclude the

chapter with a discussion of the economic consequences of using an accurate numerical

pricing routine instead of a simple approximation.

In Chapter 5 we consider the pricing of multivariate early-exercise options where the

underlying is conditionally normally distributed. We start with a general multivariate

dynamic pricing algorithm and provide a first numerical example. Then, we investigate

in detail the pricing of a callable bond (bond with embedded early-exercise call option)

in a two-factor model with stochastic interest rates and stochastic default intensity.

We explain how our pricing method can be used for the calibration of the two-factor

model to credit spreads. An extensive numerical investigation shows the efficiency and

the stability of the resulting calibration and pricing approach. In the last part of the

chapter, we consider a basket option in a multivariate Black-Scholes model. We present

the smoothing concept for European basket options of [11]. Empirically, we show that

the dynamic Chebyshev method can be turned into an efficient quadrature method for

basket options using this smoothing. Then we extend this approach to early-exercise

options and we propose a new type of numerical smoothing. We conclude the chapter

with a numerical convergence analysis of the resulting pricing method. We observe a fast

error decay and an efficiency gain compared to a least-squares Monte Carlo approach.
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Chebyshev interpolation in finance Implied volatility

A dynamic pricing method

Credit exposure calculation Multivariate option pricing

Figure 1.1: Structure of the thesis.



Chapter 2

Chebyshev interpolation in

finance

In this chapter, we discuss Chebyshev interpolation as a form of function approximation

and its application in finance. We start with the univariate Chebyshev interpolation and

discuss how it can be extended to higher dimensions. Then we give a brief overview on

parametric problems in option pricing and investigate the smoothness of pricing func-

tions. We discuss the application of Chebyshev interpolation in this context and provide

a larger numerical example, the computation of the Black-Scholes implied volatility using

a bivariate Chebyshev interpolation.

2.1 Chebyshev polynomial interpolation

This section deals with the univariate Chebyshev polynomial interpolation. We introduce

the important definitions and concepts regarding polynomial interpolation in Chebyshev

points that are relevant for the remaining chapters of this thesis. The first aim of this

section is to be the reference point whenever one of the basic definitions in polynomial

interpolation is needed. The second, more general aim of this section (and essentially

this chapter) is to provide a justification why we have specifically chosen Chebyshev

interpolation as a function approximation technique.

2.1.1 Polynomial interpolation

The main idea behind polynomial interpolation is the approximation of a function using

polynomials that is exact at a set of nodal points. Let x0, . . . , xn be a set of n+1 distinct

points in the interval [−1, 1] and let fj := f(xj), j = 0, . . . , n be the values of a function

23
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f : [−1, 1]→ R. Then there exists an unique polynomial pn of degree n that interpolates

these function values, i.e. pn(xj) = fj for all j = 0, . . . , n.

The interpolant pn of f can be written as a linear combination of basis functions that

span the vector space of all polynomials up to degree n. This means pn can be written

as

pn(x) =

n∑
j=0

wjφj(x) for x ∈ [−1, 1] (2.1)

for weights wj and polynomial basis functions φj : [−1, 1] → R. Different choices of

basis functions are possible and we will later see that some choices are better suited

than others. A simple and very convenient way to express the polynomial interpolant

of a function f is via the Lagrange interpolation formula. For any set of distinct points

x0, . . . , xn we can write

pn(x) =

n∑
j=0

fjlj(x) with lj(x) =

∏
k 6=j(x− xk)∏
k 6=j(xj − xk)

. (2.2)

The basis function lj is the j-th Lagrange polynomial with lj(xk) = 1 if j = k and 0

otherwise, see Chapter 5 in [129]. This formula is a special case of (2.1) and it is of

particular use because it is the same for any set of nodal points and the weights are

exactly the function values fj = f(xj). We will later see that this is the right form to

investigate the stability of polynomial interpolations.

The crucial question is if the polynomial interpolant pn is a good approximation for

the function f and if the approximation error ‖f−pn‖∞ in the maximum norm converges

for n → ∞. Note that the convergence of the interpolation depends only on the set of

(nodal) points x0, . . . , xn and is independent of the choice of basis functions φj . For

computational purposes however, the right choice of basis functions is critical since it

influences the speed and the stability of the evaluation of pn.

First, we would like to know which functions can be approximated using polynomials.

The following well-known theorem of Karl Weierstraß shows that any continuous function

f on [−1, 1] can be approximated by polynomials with arbitrary accuracy.

Theorem 1 (Weierstrass approximation theorem). Let f : [−1, 1]→ R be a continuous

function and let ε > 0 be arbitrary. Then there exists a polynomial p such that

‖f − p‖∞ := max
x∈[−1,1]

|f(x)− p(x)| < ε. (2.3)
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Proof. See Theorem 6.1 in [129].

This theorems proves that any continuous function can be approximated by poly-

nomials but it does not answer the question how to find such a polynomial. Ideally,

we would like to find a sequence or a scheme of nodal points x0, . . . , xn such that the

interpolant in these points pn of a function f converges towards f for all continuous

functions. Unfortunately, as pointed out in [128], ”no polynomial interpolation scheme,

no matter how the points are distributed, will converge for all such functions”.

Even for smooth functions, polynomial interpolation does not necessarily converge.

A straightforward approach for choosing interpolation points are equidistant points

xk = −1 + 2k/n, k = 0, . . . , n. The famous example of [110] shows that polynomial

interpolation of a function f can be unstable even though f is an analytic function. We

consider the Runge function

f(x) =
1

1 + 25x2
for x ∈ [−1, 1], (2.4)

which is bounded by 1 and strictly positive. Figure 2.1 shows the function and its

polynomial interpolation in 11 (left plot) and 23 (right plot) equidistant points. We

observe that close to the end points −1 and 1 the interpolation is not stable and it does

not converge. In the left plot we observe that the maximal value of the interpolant is 2

and in the right plot it is already 120.
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Figure 2.1: Polynomial interpolation of the Runge function on [−1, 1] using 11 (left plot)
and 23 (right plot) equidistant points.

From these results, one could naively conclude that polynomial interpolation is not

a good idea in general. See the discussions around this topic in [128] and [129]. This is

however not the case, and there are sets of nodal points which yield convergence for a

large class of continuous functions. One set that has particularly promising properties

are the Chebyshev points which guarantee convergence for all Lipschitz-continuous func-

tions. We will introduce these points in the next section. Before we do so, we briefly
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discuss two fundamental concepts in polynomial approximation theory: Best polynomial

approximation and the Lebesgue constant.

Best approximation is for a given continuous function the polynomial of a certain

degree that has the minimal approximation error in the maximum norm. In the litera-

ture, it is therefore also called minimax approximation. We define the vector space of all

continuous functions f : [−1, 1]→ R as C([−1, 1]) and the vector space of all polynomials

of degree n ∈ N as

Pn :=
{
p ∈ C([−1, 1]) : p is polynomial of degree n

}
. (2.5)

This allows us to define the best approximation in the vector space Pn equipped with

the maximum norm.

Definition 1 (Best approximation). Let f ∈ C([−1, 1]). The best polynomial approxi-

mation of degree n of f is defined as the polynomial p? ∈ Pn such that

‖f − p?‖∞ ≤ ‖f − p‖∞ (2.6)

for all p ∈ Pn.

As shown in Theorem 10.1 of [129], this best approximation p? is unique and the ap-

proximation error oscillates. In the 1930s, the Russian mathematician Evgeny Yakovle-

vich Remez proposed an algorithm for computing such a best approximation, the Remez

algorithm. More recently, [105] introduced an optimized version of the algorithm. The-

oretically, this is a very interesting concept, however, in many examples polynomial

interpolation in Chebyshev points is almost as good as the best approximation and

considerably more practical. For instance, for an analytic function the Chebyshev inter-

polation and the best approximation have the same error bound up to a factor of 2. See

[129] for more details on this comparison.

In the previous Runge example we have seen that the maximal value of the polynomial

interpolant pn can be much higher than the maximum of f and might increase in n.

A suitable polynomial interpolation should ensure that the norm of ‖pn‖∞ does not

explode in relation to ‖f‖∞. For a given set of nodal points x0, . . . , xn, the polynomial

interpolation in these points is a linear operator In : C([−1, 1]) → Pn with In(f) = pn.

We are interested in the operator norm of In which is in the context of polynomial

interpolation the so-called Lebesgue constant Λ. Consider the Lagrange form (2.2), then

we obtain

‖In(f)‖∞ = ‖pn‖∞ = max
x∈[−1,1]

∣∣∣ n∑
j=0

f(xj)lj(x)
∣∣∣ ≤ ‖f‖∞ max

x∈[−1,1]

n∑
j=0

|lj(x)|



Chapter 2. Chebyshev interpolation in finance 27

and the Lebesgue constant is defined as

Λn := max
x∈[−1,1]

n∑
j=0

|lj(x)|. (2.7)

This means that ‖pn‖∞ ≤ Λn‖f‖∞ and the Lebesgue constant measures the stability of

the interpolation. Moreover, the Lebesgue constant can be used to characterize interpo-

lation points that are almost optimal. The following theorem uses the Lebesgue constant

to measure which polynomial interpolations are close to the best approximation. These

interpolations are called near-best approximations.

Theorem 2 (Near-best approximation). Let f ∈ C([−1, 1]) and let Λn be the Lebesgue

constant of a polynomial interpolation operator In. For pn = In(f) holds

‖f − pn‖∞ ≤ (1 + Λn)‖f − p?‖∞, (2.8)

where p? ∈ Pn is the best polynomial approximation of f .

Proof. See Theorem 15.1 in [129].

The smaller the Lebesgue constant, the closer is a polynomial interpolation to the

best approximation for a given degree n. The Lebesgue constant can be small but it will

grow at least logarithmically in n for any set of interpolation points. More precisely, [22]

shows that

Λn >
2

π
log(n+ 1) + 0.52125 (2.9)

for the Lebesgue constant of any polynomial interpolation. For polynomial interpolation

in equidistant points we obtain from [129]:

Λn >
2n−2

n2
and Λn ∼

2n+1

en log(n)
, for n→∞. (2.10)

We observe that the Lebesgue constant for equidistant points grows exponentially in n.

This is the theoretical explanation of the Runge example and shows why equidistant

points are not a suitable set of interpolation points. In contrast, in the next section we

will see that the Lebesgue constant of Chebyshev points is close to the lower bound (2.9).

2.1.2 Chebyshev points and Chebyshev polynomials

In this section, we introduce the Chebyshev points as well as the Chebyshev polynomials

and we discuss their promising properties.
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We follow Chapter 1.5 of [46] and consider the following problem. Find the polynomial

pn ∈ Pn with leading coefficient 1 such that ‖pn‖∞ is minimized. This is essentially a

minimax problem as studied for the best approximation (2.6) with f = 0. The solution

to this problem will oscillate between the maximum M and the minimum −M at n+ 1

points. As stated in [46], the trigonometric functions cos(θ), sin(θ) fulfil such criteria and

cos(θ) 7→ cos(nθ) is a polynomial of degree n. This motivates the following definition of

the Chebyshev polynomials.

Definition 2 (Chebyshev polynomials). The function Tn : [−1, 1]→ R with

Tn(x) = cos(nθ), for cos(θ) = x (2.11)

is the n-th Chebyshev polynomial.

The letter T comes from the different transliterations of the name of the Russian

mathematician Pafnuty Chebyshev such as Tchebychev (in French) and Tschebyschow

(in German). The Chebyshev polynomials can also be defined via recursion as

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1, (2.12)

with T0(x) = 1 and T1(x) = x. The equivalence of the two definitions follows directly

from the cosine identity

cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(θ) cos(nθ)

and cos(θ) = x. From the definition (2.12) we immediatly see that Tn(x) is a polynomial

of degree n in x with leading coefficient 2n−1 for n ≥ 1. From [46] follows that pn(x) =

2−(n−1)Tn(x) is the minimax -polynomial for degree n with leading coefficient 1 that

minimizes ‖pn‖∞. The extrema of Tn and thus pn are the (n+ 1) Chebyshev points (of

the second kind) and are given by

xk = cos(kπ/n), k = 0, . . . , n. (2.13)

Closely related are the roots of Tn, the Chebyshev points of the first kind, given by

xk = cos
(2k + 1

2n
π
)
, k = 0, . . . , n− 1.

In this thesis, we will only use the points defined in (2.13) and simply refer to them as

Chebyshev points. Figure 2.2 shows the Chebyshev polynomials T1, . . . , Tn for n = 6 with

the corresponding Chebyshev points as the extrema. Figure 2.3 shows the (n+ 1) points

for different values of n. The Chebyshev points are not equidistantly distributed but

clustered at the end points −1 and 1. Due to this clustering the polynomial interpolation
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in the Chebyshev points becomes stable. Moreover, we observe that the points are

not nested, however, the (n + 1) points x0, . . . , xn are included in the (2n + 1) points

x0, . . . , x2n. In the remaining part of the section we discuss different properties of the

Chebyshev points and the Chebyshev polynomials.
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Figure 2.2: Chebyshev polynomials T1, . . . , T6 and the corresponding Chebyshev points.
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Figure 2.3: Chebyshev points xk = cos(kπ/n), k = 0, . . . , n for different levels of n =
1, . . . , 8.
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Orthogonality of Chebyshev polynomials

The Chebyshev polynomials T0, . . . , Tn form an orthogonal basis of the vector space Pn
with respect to the weight function

w(x) =
1√

1− x2
for x ∈ [−1, 1]. (2.14)

Consider the inner product associated with this weight function

(f, g)w :=

∫ 1

−1
w(x)f(x)g(x)dx for f, g ∈ C([−1, 1]).

For the Chebyshev polynomials holds

(Tj , Tk)w = 0 if j 6= k,

see [129]. An appropriate scaling then turns the Chebyshev polynomials into an orthonor-

mal basis. The Chebyshev polynomials are a special case of the Jacobi polynomials P
(α,β)
n

that are orthogonal with respect to the general weight function w(x) = (1−x)α(1 +x)β.

Orthogonal polynomials and their properties have been extensively studied in the litera-

ture, see e.g. [132] for an earlier reference and [52] for a more recent reference. Note that

in the literature sometimes all orthogonal polynomials are called Chebyshev polynomials.

Chebyshev series and Chebyshev interpolation

The question arises under which condition we can write a function f ∈ C([−1, 1]) as an

(infinite) sum of Chebyshev polynomials. From [129] we obtain the following result.

Theorem 3 (Chebyshev series). Let f ∈ C([−1, 1]) be Lipschitz continuous. Then f

has a unique representation as an absolutely and uniformly convergent Chebyshev series

f(x) =

∞∑
k=0

akTk(x) with ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx (2.15)

and the coefficient a0 is multiplied by 1/2.

Proof. See Theorem 3.1 of [129].

We recall that a function f ∈ C([−1, 1]) is Lipschitz continuous if there exists a

constant L > 0 such that

|f(x)− f(y)| ≤ L|x− y| ∀ x, y ∈ [−1, 1].
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The theorem is based on the orthogonality of the Chebyshev polynomials and can be

motivated in the following way. We multiply f by the polynomial Tk and integrate over

[−1, 1] using the weight function as defined in (2.14). Then we obtain∫ 1

−1

f(x)Tk(x)√
1− x2

dx =
∞∑
j=0

aj

∫ 1

−1

Tj(x)Tk(x)√
1− x2

dx =
∞∑
j=0

aj(Tj , Tk)w = ak(Tk, Tk)w = ak
π

2
.

Since the Chebyshev series is absolutely convergent, |ak| converges towards 0. The

truncation of the series is then a promising candidate for a polynomial approximation

(of degree n) of f , i.e.

f(x) ≈ fn(x) =
n∑
k=0

akTk(x) x ∈ [−1, 1].

In fact, this expansion is the continuous least-squares approximation of the function f

in a weighted L2 norm. The following least-squares measure is minimized by fn

S =

∫ 1

−1
w(x)(f(x)− pn(x))2dx for pn ∈ Pn

see equation (42) and (43) in [46]. This property is again based on the orthogonality of

Chebyshev polynomials. In a similar way we can also write the polynomial interpolation

of a (Lipschitz) continuous function f as a weighted sum of Chebyshev polynomials.

Proposition 1 (Chebyshev interpolation). Let f ∈ C([−1, 1]) be Lipschitz continuous.

The polynomial interpolation of degree n of f in the (n + 1) Chebyshev points xk =

cos(kπ/n), k = 0, . . . , n can be written as

pn(x) =

n∑
j=0

′′
cjTj(x) with cj =

2

n

n∑
k=0

′′
f(xk)Tj(xk) (2.16)

where the two primes indicate that the first and the last summand is multiplied by 1/2.

Proof. See the derivation of equation (51) in [46].

For notational convenience we sometimes shift the two primes of the interpolant to

the coefficients and obtain the slightly modified formula

pn(x) =
n∑
j=0

cjTj(x) with cj =
210<j<n

n

n∑
k=0

′′
f(xk)Tj(xk). (2.17)

Using only the first interpolation coefficients in (2.16) leads to a good fit in a discrete
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least-squares metric. More precisely, the expansion

pn(x) =
n∑
j=0

′′
cjTj(x) with cj =

2

n

N∑
k=0

′′
f(xk)Tj(xk) (2.18)

for n ≤ N minimizes the discrete L2 measure

S =
N∑
k=0

′′
(f(xk)− p(xk))2 for p ∈ Pn.

See [46] for more details. We have seen that the Chebyshev series is connected to a

continuous least-squares fit and the Chebyshev interpolation to a discrete least-squares

fit. Thereore, the coefficients of the Chebyshev interpolant can be seen as a discretized

version of the coefficients of the Chebyshev series. Moreover, each cj can be written as

a series of coefficients ak, see [129].

Lebesgue constant and stability

For the Chebyshev points the Lebesgue constant as defined in (2.7) is bounded by

Λn ≤
2

π
log(n+ 1) + 1 and Λn ∼

2

π
log(n), n→∞, (2.19)

see Theorem 15.2 in [129]. We directly see that the Lebesgue constant grows significantly

slower than the Lebesgue constant of the polynomial interpolation in equidistant points

(2.10). In fact, comparison to the lower bound (2.9) reveals that the Chebyshev points

are almost optimal interpolation nodes. The only difference compared to the lower bound

is the added constant that is independent of the number of points n.

We consider again the Runge example and interpolate the Runge function (2.4) in

the Chebyshev nodes. Figure 2.4 shows the resulting interpolant for 11 (left plot) and 23

(right plot) points. Here, the interpolation does converge and there are no instabilities

as for the interpolation in equidistant points, compare Figure 2.1.

Evaluation of Chebyshev interpolations

From a computational point of view it is essential that the interpolation (2.16) can be

evaluated efficiently. Here, efficiency means that the evaluation of the interpolant can be

implemented in a way that is fast and at the same time numerically stable. We illustrate

this problem with a small example of a polynomial of degree 4

p4(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0.
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Figure 2.4: Polynomial interpolation of the Runge function on [−1, 1] using 11 (left plot)
and 23 (right plot) Chebyshev points.

A straightforward evaluation would require 2n− 1 multiplications, i.e. n− 1 to compute

x2, . . . , xn and n multiplications with the coefficients. For n = 4, we have 7 multiplica-

tions. If we write the same polynomial slightly differently

p4(x) = a0 + x
(
a1 + x

(
a2 + x(a3 + xa4)

))
we only need 4 multiplications. In its general form for a polynomial of degree n this

method is called Horner’s scheme. For the Chebyshev interpolation we do not use the

monomials x, x2, . . . , xn and a direct application of Horner’s scheme is not possible. A

generalization of this idea is provided in [32] for polynomials φn that satisfy the recurrence

relation

φn+1(x) + αnφn(x) + βnφn−1(x) = 0.

This is the case for the Chebyshev polynomials, see equation (2.12). From [46] we obtain

the recursion

bk(x) = 2xbk+1(x)− bk+2(x) + cj k ≤ n

with starting values bn+1(x) = bn+2(x) = 0

and thus

n∑
j=0

cjTj(x) =
1

2

(
c0 + b0(x)− b2(x)

)
. (2.20)

This algorithm is often called Clenshaw’s algorithm. As for Horner’s scheme, the evalu-

ation requires only n multiplications and Section 3.13 in [46] shows that this method ”is

perfectly stable, the local rounding errors are not amplified, and the upper bound to the

error cannot exceed the arithmetic sum of the individual local rounding errors”.
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Chebyshev interpolation on a general interval

So far we have only considered the standard Chebyshev interpolation on the interval

[−1, 1]. In most applications we will encounter problems on a general interval [a, b] ⊂ R.

In this case, we can use linear transformations and transform the interval [a, b] to [−1, 1].

In order to do so, we define the linear transformation τ as

τ[a,b] : [−1, 1]→ [a, b] with τ[a,b](z) = a+ 0.5(b− a)(z + 1) (2.21)

and its inverse

τ−1
[a,b] : [a, b]→ [−1, 1] with τ[a,b](x) = −1 + 2

(x− a)

(b− a)
. (2.22)

Assume f ∈ C([a, b]), then we can define a function f̃ ∈ C([−1, 1]) by f̃(z) = f(τ[a,b](z)).

For the coefficients of the Chebyshev interpolation p̃n of f̃ holds

cj =
2

n

n∑
k=0

′′
f̃(zk)Tj(zk) =

2

n

n∑
k=0

′′
f(τ[a,b](zk))Tj(zk) =

2

n

n∑
k=0

′′
f(xk)Tj(zk)

for Chebyshev points zk = cos(kπ/n), k = 0, . . . , n and transformed nodal points xk =

τ[a,b](zk). The function f at x ∈ [a, b] is then interpolated by

f(x) = f̃(τ−1
[a,b](x)) ≈ p̃n(τ−1

[a,b](x)) =
n∑
j=0

cjTj(τ
−1
[a,b](x)) =

n∑
j=0

cjpj(x) =: In(f)(x)

for the transformed Chebyshev polynomials pj(x) = Tj(τ
−1
[a,b](x))1[a,b](x).

The chebfun software project

A very useful software package for function approximation using Chebyshev is the chebfun

toolbox for Matlab that is based on [9]. This toolbox can be found at www.chebfun.org

and its functionality is described in detail in [37]. The package provides a good start-

ing point for exploring Chebyshev interpolation and covers a wide range of different

applications including approximation, quadrature, root-finding and solving differential

equations. We refer to their web page for a list of different examples. Moreover, the

package offers extensions to two dimensions (chebfun2 ) and three dimensions (chebfun3 ).

For the majority of the experiments of this thesis we used our own implementation of

the univariate Chebyshev interpolation rather than the chebfun package(s). This allowed

us to tailor our implementation to the applications relevant for us and obtain the best

performance. We use however the bivariate extension of the chebfun package and we will

briefly introduce it at a later point.
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2.1.3 Convergence results

In this section, we provide convergence results for the polynomial interpolation in Cheby-

shev points. Generally speaking, the convergence of polynomial interpolations depends

on the smoothness of the approximated function. For this purpose smoothness is mea-

sured in the number of derivatives of the function that exits. A special emphasis is put

on functions that are infinitely often continuously differentiable and can be analytically

continued into the complex plane. A generic approach to obtain convergence results for

any set of interpolation points is to prove results for the best approximation and then

use (2.8) and the Lebesgue constant. For the Chebyshev points it is however possible to

prove the convergence results directly.

First, we establish a result that links the approximation error to the coefficients of

the Chebyshev series.

Proposition 2. Let f ∈ C([−1, 1]) be a Lipschitz continuous function, with Cheby-

shev series f(x) =
∑

k akTk(x). For the truncation of the series fn and the polynomial

interpolation in (n+ 1) Chebyshev points pn holds

‖f − fn‖∞ ≤
∞∑

k=n+1

|ak| and ‖f − pn‖∞ ≤ 2

∞∑
k=n+1

|ak|. (2.23)

Proof. The first results follows immediately from

f(x)− fn(x) =

∞∑
k=0

akTk(x)−
n∑
k=0

akTk(x) =

∞∑
k=n+1

akTk(x)

and |Tk(x)| ≤ 1. The second result is based on the aliasing formula for the Chebyshev

coefficients

ck = ak + (ak+2n + ak+4n + . . .) + (a−k+2n + a−k+4n + . . .) for 1 ≤ k ≤ n− 1,

see Theorem 4.1 and Theorem 4.2 of [129] for more details.

The proposition shows that the approximation error of the truncated series and the

interpolation error are exactly the same up to a factor 2. From now on we will only focus

on the latter one. In order to obtain convergence results we need to study the decay of

the coefficients |ak| depending on the smoothness of the function f . First we introduce

the concept of a Bernstein ellipse, see Chapter 8 of [129].

Definition 3 (Bernstein ellipse). For % > 1 a Bernstein ellipse B([−1, 1], %) is defined

as the open region in the complex domain which is bounded by an ellipse with foci ±1
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and semiminor axis b% and semimajor axis a%, given by

a% =
%+ %−1

2
and b% =

%− %−1

2
,

with a% + b% = %.

The following theorem shows that the coefficients of the Chebyshev series of a Lips-

chitz continuous function decays exponentially fast if the function has an analytic con-

tinuation to the complex plane. This decay is determined by the size % of the Bernstein

ellipse on which the function has an analytic extension. This result for the coefficients

together with the equation (2.23) shows that the error of the Chebyshev interpolation

converges exponentially fast. From [129] we obtain the following result.

Theorem 4. Let f ∈ C([−1, 1]) be an analytic function that can be analytically extended

to a Bernstein ellipse B([−1, 1], %) for % > 1 and assume supx∈B([−1,1],%) |f(x)| ≤ V for a

constant V > 0. Then the coefficients of the Chebyshev series of f satisfy |a0| ≤ V and

|ak| ≤ 2V %−k for k ≥ 1.

The approximation error of the Chebyshev polynomial interpolation pn satisfies

‖f − pn‖∞ ≤ 4V
%−n

%− 1
. (2.24)

Proof. See Theorem 8.1 (for the first part) and Theorem 8.2 (for the second part) in

[129].

The assumption of analyticity can be too strong in some applications of interest. If

we relax this assumption and consider the larger class of differentiable functions we still

obtain algebraic convergence. The convergence rate for a function f will then depend

on the number of derivatives fp := dpf
dxp that are available. For a p-times continuously

differentiable function the interpolation error decays with n−p. From [129] we obtain the

following result.

Theorem 5. Let f ∈ C([−1, 1]) and p ≥ 0. Assume f and its derivatives up to fp−1

are absolutely continuous and fp is of bounded variation V . Then we obtain for the

coefficients of the Chebyshev series of f that

|ak| ≤
2V

π(k − p)p+1
.
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Furthermore, for the interpolation error of pn holds

‖f − pn‖∞ ≤
4V

πp(n− p)p
. (2.25)

Proof. The proof follows from Theorem 7.1 and Theorem 7.2 of [129].

Note that a function is of bounded variation if the L1 norm of its derivative is finite.

A function is absolutely continuous if it can be written as the integral of its derivative,

i.e. f : [−1, 1]→ R is absolutely continuous if

f(x) = f(−1) +

∫ x

−1
f
′
(y)dy.

Derivative of the Chebyshev interpolant

Since the Chebyshev interpolant is a polynomial it is continuously differentiable. Based

on the recurrence relation (2.12) we obtain the following result.

Proposition 3. The derivative of the n-th Chebyshev polynomial Tn is a polynomial of

degree n− 1 and can be written as a sum of Chebyshev polynomials given by

T ′n(x) = 2n
n−1∑
j=0

′
Tj(x)1(n+j) mod 2=1.

Let pn(x) =
∑n

j=0wjTj(x) be a weighted sum of Chebyshev polynomials. The derivative

of pn is then given by

p′n(x) =
n−1∑
j=0

′
w̃jTj(x) with w̃j = 2

n∑
k=j+1

kwk1(k+j) mod 2=1,

where
∑ ′

indicates that the first term is multiplied with 1/2.

Proof. First we show that for the derivative of Tn, n ≥ 1 holds

dTn
dx

(x) = 2n

n−1∑
k=0

′
Tk(x)1(n−1+k) mod 2=0.

For n = 1 we use that T1(x) = x and T ′1(x) = 1 = T0(x), we obtain

dT1

dx
(x) = 2

0∑
k=0

′
Tk(x)1(0+k) mod 2=0 = 2

1

2
T0(x)10 mod 2=0 = T0(x).
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Assume the formula holds for j = 0, . . . , n. From [93] we obtain the identity

2Tn(x) =
1

n+ 1
T ′n+1(x)− 1

n− 1
T ′n−1(x) n > 1.

This yields

T ′n+1(x) = 2(n+ 1)Tn(x) +
(n+ 1)

(n− 1)
T ′n−1(x)

= 2(n+ 1)Tn(x) +
(n+ 1)

(n− 1)
2(n− 1)

n−2∑
j=0

′
Tj(x)1(n−2+j) mod 2=0

= 2(n+ 1)
(
Tn(x)1(n+n) mod 2=0 +

n−2∑
j=0

′
Tj(x)1(n+j) mod 2=0

)
= 2(n+ 1)

n∑
j=0

′
Tj(x)1(n+j) mod 2=0.

We used that (n+j) mod 2 = (n+j−2) mod 2 and 1(n+n−1) mod 2=0 = 0. This proves the

first part of the preposition. Moreover, the result yields for the derivative of a weighted

sum of Chebyshev polynomials pn

p′n(x) =

n∑
j=0

wjT
′
j(x) =

n∑
j=0

wj2j

j−1∑
k=0

′
Tk(x)1(j−1+k) mod 2=0

=

n∑
j=0

j−1∑
k=0

′
wj2jTk(x)1(j−1+k) mod 2=0

=
n∑
j=1

j−1∑
k=0

′
wj2jTk(x)1(j−1+k) mod 2=0

=
n−1∑
k=0

′
n∑

j=k+1

wj2jTk(x)1(j−1+k) mod 2=0

=

n−1∑
k=0

′
Tk(x)(

n∑
j=k+1

wj2j1(j−1+k) mod 2=0︸ ︷︷ ︸
=:w̃k

)

where
∑ ′

indicates that the first term is multiplied with 1/2 if k = 0. This was our

claim.

More generally, if we have a Chebyshev interpolation In(f)(x) =
∑n

j=0 cjpj(x) on an
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interval X with pj(x) = Tj(τ
−1
X (x)), its derivative is given by

d

dx
In(f)(x) =

N∑
j=0

cj
dTj

dτ−1
X (x)

dτ−1
X

dx
(x) =

dτ−1
X

dx
(x)

n−1∑
j=0

c̃jpj(x)

where we used the chain rule and Proposition 3. The coefficients c̃j are given by

c̃j = 2

n∑
k=j+1

′
kck1(k+j) mod 2=1.

The question arises if the derivative of the Chebyshev interpolant of a function f is also

a good approximation for the derivative of f . For the convergence analysis we define a

Sobolev space using a weighted L2 norm, see [125]. For f ∈ C([−1, 1]) we define the

norm

||f ||2L2
T

=
1

π

1∫
−1

w(x)f(x)dx (2.26)

for the Chebyshev weight function w(x) as defined in (2.14). For s ∈ N, we define the

Sobolev space

W s
T =

{
f : [−1, 1]→ R : ||f ||2W s

T
:=

s∑
k=0

∣∣∣∣∣∣∣∣dkfdxk
∣∣∣∣∣∣∣∣2
L2
T

<∞

}
. (2.27)

For functions in W s
T we obtain a similar convergence results for the Chebyshev interpo-

lation as in Theorem 5. Moreover, the derivatives of the Chebyshev interpolant approxi-

mate the derivatives of the function. From Corollary 4.3 in [125] we obtain the following

result.

Theorem 6. Let f ∈ C([−1, 1]) be in W s
T for some s ∈ N with s ≥ 1 and let pn be the

Chebyshev interpolant of f . For any σ with 0 ≤ 2σ ≤ s, we obtain

||f − pn||Wσ
T
≤ Cs||f ||W s

T
n−s+2σ. (2.28)

This result means that we ”loose” two orders of convergence for every derivative we

want to approximate simultaneously. Note that for σ = 0 we have a classical convergence

result of the Chebyshev interpolation in a (weighted) L2-norm. A similar result for the

approximation in the Sobolev norm can be obtained in the case of an analytic function.

Essentially, the term n−s is in this case replaced by a term that decreases exponentially

fast. From [125] we obtain the following result.

Theorem 7. Let f ∈ C([−1, 1]) be an analytic function that can be analytically extended
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to a Bernstein ellipse B([−1, 1], %) for % > 1 and assume supx∈B([−1,1],%) |f(x)| ≤ V for

a constant V > 0. Then we obtain for the polynomial approximation pn in the Sobolev

norm for σ ≥ 0,

‖f − pn‖Wσ
T
≤ Cσ

V

sinh(%)
n2σ%−n

for some constant Cσ > 0.

In fact, the derivative of the Chebyshev interpolation does not only converge to the

derivative of the function in the L2 norm but also in the stronger L∞ norm. From [129]

we obtain a convergence result similar to Theorem 4 for the derivatives.

Theorem 8. Let f ∈ C([−1, 1]) be an analytic function that can be analytically extended

to the closure of a Bernstein ellipse B([−1, 1], %) for % > 1. For each integer s, the sth

derivatives of the Chebyshev projections fn and interpolations pn of f satisfy

‖f s − fsn‖∞ = O(%−n) and ‖fs − psn‖∞ = O(%−n)

for n→∞.

Proof. See Theorem 21.1 in [129].

2.2 Multivariate extensions

The fundamental idea of approximating a function using polynomials such that the

resulting approximation is exact at a set of interpolation points can be extend to higher

dimensions. In a multivariate set-up however, it is less obvious how we can find a unique

interpolation of degree n given a set of distinct nodal points. The first question that

arises is how we define the degree of a multivariate polynomial xk11 x
k2
2 . . . xkdd or written

in a simpler form xk with k = (k1, k2, . . . , kd). Standard choices are the maximum norm

‖k‖∞ = max1≤i≤d ki and the sum k1 + k2 + . . .+ kd, i.e. the 1-norm of k. The first one

leads to the so-called tensor product (TP) and the second one to the total degree (TD)

space of polynomials. The two choices lead to very different types of approximations

and both have their merits and demerits.

Any univariate set of interpolation nodes and basis functions can be used to generate

a tensor product interpolation in d dimensions. Let f ∈ C([−1, 1]d) be the vector space

of continuous functions f : [−1, 1]d → R. Then we can write the interpolation of f as

In(f)(x) =
∑
‖j‖∞≤n

cjϕj(x) =
n∑

j1=0

. . .
n∑

jd=0

cj1,...,jd

d∏
i=1

ϕji(xi) (2.29)
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for one-dimensional basis functions ϕ0, ϕ1, . . . , ϕn. This isotropic interpolation can be

generalized to an anisotropic one, i.e. the tensor product of univariate interpolations of

different degrees. For n ∈ Nd we write

In(f)(x) =
∑

0≤j≤n
cjϕj(x) =

n1∑
j1=0

. . .

nd∑
jd=0

cj1,...,jd

d∏
i=1

ϕji(xi)

where 0 ≤ j ≤ n is a componentwise comparison. In both cases we need (n1+1) · · · (nd+

1) points and the coefficients cj build a d-variate tensor in Rn1×...×nd . This approach

is straightforward and yields a unique interpolation polynomial for every set of distinct

univariate nodal points. The drawback is that the number of nodal points and poly-

nomials grows exponentially in the dimension d. Even for a moderately low number of

points n the total number of points can be infeasibly high. This is often called the curse

of dimensionality and makes the method impractical for some applications. Sometimes,

it is however possible to compress the large tensor into a low-rank tensor.

In contrast, the interpolation of bounded total degree of a function f ∈ C([−1, 1]d)

is given by

ITDn (f)(x) =
∑
‖j‖1≤n

cjϕj(x) (2.30)

for x ∈ [−1, 1]d. The number of points grows significantly slower in d and this can

make the interpolation more attractive for higher dimensions. The choice of a set of

nodal points that guarantee a unique interpolation polynomial in the total degree is

challenging. In two dimensions, the so-called (bivariate) Padua points introduced in [27]

are a suitable choice and extensions of these points to three dimensions and the general

d-dimensional case have been made, ses [18] and the references therein. All these sets of

nodal points have in common that they are subsets of tensor product Chebyshev grids

chosen in a meaningful way. The underlying idea is that the approximation using a

smaller but carefully selected grid can achieve almost the same accuracy as a full tensor

grid. A comparison of different methods for multivariate function approximation and

quadrature is provided in [130].

In this section we will discuss the tensor product interpolation and provide con-

vergence results. We briefly introduce low-rank tensor approximation and provide an

overview on sparse grids.
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2.2.1 Tensor based Chebyshev interpolation

The tensor based Chebyshev interpolation (or tensor product) is the straightforward

extension of the univariate polynomial interpolation to higher dimensions. For the in-

terpolation of a d-variate function, a grid of (n + 1)d points is used and the resulting

interpolant is a polynomial of degree n in each dimension. For n ∈ Nd, the tensor grid

of Chebyshev points are given by

xk = (xk1 , . . . , xkd) with xki = cos(kiπ/ni) for 0 ≤ ki ≤ ni, i = 1, . . . , d.

The corresponding multivariate Chebyshev polynomials are defined as products of the

one-dimensional Chebyshev polynomials, i.e.

Tj(x) :=

d∏
i=1

Tji(xi) for x ∈ [−1, 1]d.

Now we are in a position to define the multivariate Chebyshev interpolation.

Definition 4 (Multivariate Chebyshev interpolation). The multivariate Chebyshev poly-

nomial interpolation of a function f ∈ C([−1, 1]d) for degree n ∈ Nd is given by

In(f)(x) :=
∑

0≤j≤n
cjTj(x) =

n1∑
j1=0

. . .

nd∑
jd=0

cj1,...,jd

d∏
i=1

Tji(xi) (2.31)

with coefficients

cj =
( d∏
i=1

210<ji<ni

ni

) ∑
0≤k≤n

′′
f(xk)Tj(xk)

=
( d∏
i=1

210<ji<ni

ni

) n1∑
k1=0

′′
. . .

nd∑
kd=0

′′
f(xk1 , . . . , xkd)

d∏
i=1

Tji(xki).

Here In(f) can be seen as an operator from the space of continuous functions on

[−1, 1]d to the space of all polynomials of degree n. The Chebyshev interpolation on

[−1, 1]d can then be extended to any hyperrectangular

X = [x1, x1]× . . .× [xd, xd] ⊂ Rd

using the linear transformations (2.21) and (2.22) in each dimension.
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Convergence results

For the error analysis of the tensor based interpolation we need to generalize the concept

of a Bernstein ellipse. The following definition is based on [58].

Definition 5 (Generalized Bernstein ellipse). Let % ∈ (1,∞)d and X ⊂ Rd a hyperrect-

angle given by X = [x1, x1] × . . . × [xd, xd]. The generalized Bernstein ellipse is defined

by

B(X , %) := B([x1, x1], %1)× . . .× B([xd, xd], %d)

where B([xi, xi], %i) are the transformations of the Bernstein ellipses B([−1, 1], %i) for

i = 1, . . . , d.

Using this definition we are in a position to extend the convergence results of (2.24) for

univariate analytic functions to the multivariate case. From [58] we obtain the following

error bound.

Theorem 9. Let f ∈ C(X ) for a hyperrectangle X ⊂ Rd. Assume f has an ana-

lytic extension to some generalized Bernstein ellipse B(X ,%) for some % ∈ (1,∞)d and

supx∈B(X ,%) |f(x)| ≤ V for some V > 0. Then we obtain for the approximation error of

the multivariate Chebyshev interpolation f̂ := In(f) for n ∈ Nd

‖f − f̂‖∞ ≤ min{α(%,n, d, V ), β(%,n, d, V )} =: εint(%,n, d, V ) (2.32)

with error bounds

α(%,n, d) = min
σ∈Sd

d∑
i=1

(
4V

%−niσ(i)

%i − 1
+

d∑
k=2

4V
%−nkσ(k)

%σ(i) − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− %−1
σ(j))

)
(2.33)

β(%,n, d) = 2(d/2)+1 · V ·

(
d∑
i=1

%−2ni
i

d∏
j=1

1

1− %−2
j

)−1/2

(2.34)

where Sd is the symmetric group of d elements.

As pointed out in [58], it depends on the specific specification of n and % which of

the two error bounds is actually sharper. From the theorem follows the more general

results

‖f − f̂‖∞ ≤ C%−n with % = min
1≤i≤d

%i, n = min
1≤i≤d

ni (2.35)

for a constant C > 0. Assuming that all ni’s are the same, the error decays in the d-th

root of the total number of points (n + 1)d. This is called the curse of dimensionality.

In order to maintain the same convergence as in the univariate case, the total number
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of points increases exponentially in the dimension. Similar results can be obtained for

polynomial interpolation of differentiable functions.

Interpolation with distortion

In many practical applications we would like to approximate functions that we do not

know analytically. Instead, we need to calculate the nodal values f(xk) of the multi-

variate Chebyshev interpolation numerically. Typical examples are situations where f is

the solution of a PDE or a conditional expectation of a stochastic process. The function

values at the nodal points are then computed via numerical quadrature, finite differences

or Monte Carlo simulation. All these numerical routines introduce an additional error

and result in distorted values f̂(xk) ≈ f(xk). This distortion error affects then the

overall quality of the interpolation.

Depending on the numerical technique used to compute f̂(xk), it is often possible to

bound the maximal distortion error. On the other hand, Monte Carlo simulation means

that the distortion error becomes a random variable. In both cases, the distortion value

will influence the overall error and the maximal achievable accuracy. In the context of

option pricing this idea of interpolation with distortion error has been investigated in [49].

The following proposition provides a convergence result if the distortion is deterministic

and can be bounded by a constant.

Proposition 4. Let f ∈ C(X ) for a hyperrectangle X ⊂ Rd be a real-valued function

with an analytic extension to some generalized Bernstein ellipse B(X , %) for % ∈ (1,∞)d

with supx∈B(X ,%) |f(x)| ≤ B. Assume distorted values f ε(xk) = f(xk) + ε(xk) with

|ε(xk)| ≤ ε at all nodes xk. Then

max
x∈X

∣∣f(x)− In(f ε)(x)
∣∣ ≤ εint(%,n, d, B) + εΛn.

with εint(%,n, d, B) := min{α(%,n, d), β(%,n, d)} for α, β as defined in (2.33) and (2.34)

and Lebesgue constant Λn ≤
∏d
i=1

(
2
π log(ni + 1) + 1

)
.

Proof. Using the linearity of the interpolation operator we obtain for the Chebyshev

interpolation of f ε with f ε(xk) = f(xk) + ε(xk) that

In(f ε)(x) = In(f)(x) + In(ε)(x).

The tensor-based multivariate Chebyshev interpolation In(ε) can be written in Lagrange
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form

In(ε)(x) =
∑

0≤j≤n
ε(xj)λj(x) with λj(x) =

d∏
i=1

`ji(τ
−1
[xi,xi]

(xi))

where `ji(z) =
∏
k 6=ji

z−zk
zji−zk

is the ji−th Lagrange polynomial. This yields

max
x∈X
|In(ε)(x)| = max

x∈X

∣∣∣ ∑
0≤j≤n

ε(j)λj(x)
∣∣∣ ≤ εmax

x∈X

∑
0≤j≤n

|λj(x)| =: εΛn.

The term Λn is the Lebesgue constant of the (multivariate) Chebyshev nodes which is

given by

Λn = max
x∈X

∑
0≤j≤n

∣∣λj(x)
∣∣ = max

x∈X

∑
0≤j≤n

d∏
i=1

∣∣`ji(xi)∣∣ =

d∏
i=1

max
xi∈[xi,xi]

ni∑
ji=0

∣∣∣`ji(τ−1
[xi,xi]

(xi)
)∣∣∣.

Since maxxi∈[xi,xi]

∑ni
ji=0 |`ji(τ

−1
[xi,xi]

(xi))| = maxz∈[−1,1]

∑ni
ji=0 |`ji(z)| = Λni , which is the

Lebesgue constant of the univariate Chebyshev interpolation, we have Λn =
∏d
i=1 Λni .

From (2.19) we obtain for the univariate Chebyshev interpolation Λn ≤ 2
π log(n+ 1) + 1

and hence

Λn ≤
d∏
i=1

( 2

π
log(ni + 1) + 1

)
. (2.36)

For the distorted Chebyshev interpolation holds

∣∣f(x)− In(f ε)(x)
∣∣ ≤ |f(x)− In(f)(x)

∣∣+ |In(ε)(x)
∣∣.

Therefore, the proposition follows directly from (2.36) and Theorem 9.

A more general version of this result can be found in [49, Theorem 2.5] and includes

also the case of a stochastic distortion error. Here, we observe again how critical the

Lebesgue constant is for a stable and accurate interpolation. It ensures that a small

distortion can not lead to a large interpolation error even for a high number of nodal

points.

2.2.2 Complexity reduction for polynomial interpolation

The presented tensor product Chebyshev interpolation suffers from the curse of dimen-

sionality. From the error bound (2.35) follows that the error decay is of order O(%−
d√n)

in the total number of points n. This tensor product interpolation will only be efficient

if the function is smooth enough and % is large and thus n remains small. If the function



Chapter 2. Chebyshev interpolation in finance 46

is not smooth enough or the dimension becomes too high, a full tensor approach is no

longer feasible. There are three main challenges for the full tensor Chebyshev interpo-

lation: The computation of the nodal values f(xk), the storage of the coefficients and

the evaluation of the interpolant. Depending on the application, just one or all of them

can be a limitation for the applicability of the Chebyshev interpolation in multivariate

dimensions.

In this section we present concepts how the different challenges of multivariate inter-

polation can be tackled. We start with a bivariate Chebyshev interpolation and discuss

the application of a singular value decomposition (SVD) and the implementation of the

chebfun2 package. Then we briefly discuss low-rank tensor compression in high dimen-

sions and a tensor completion algorithm.

Bivariate Chebyshev, SVD and chebfun2

In two dimensions, the Chebyshev interpolation can be written in form of matrix mul-

tiplications. Let f : [−1, 1]2 → R be a continuous function. The bivariate Chebyshev

interpolation of f can be written as

In(f)(x, y) =
(
T0(x), . . . , Tn(x)

)
c0,0 . . . c0,n

...
...

cn,0 . . . cn,n



T0(y)

...

Tn(y)

 =: T1(x)CT2(y).

The matrix of coefficients C ∈ Rn×n grows quadratically in the number of points n. The

matrix admits the singular value decomposition C = UDV T for a diagonal matrix of

singular values D = diag(d1, . . . , dk) and two orthogonal matrices U, V . Using only the

k biggest singular values results in a rank k approximation of the function f , i.e.

In(f)(x, y) ≈
k∑
j=1

dj

( n∑
i1=0

Ui1,kTi1(x)
)( n∑

i2=0

V T
k,i2Ti2(y)

)
.

This means that the full tensor is approximated by k products of one-dimensional Cheby-

shev interpolations that require 2nk entries in total plus k singular values d1, . . . , dk. If

the singular values decay fast, this can reduce the storage significantly. Moreover, the

evaluation of the interpolant becomes more efficient. The chosen rank k using the sin-

gular value decomposition is optimal in a (discrete) L2-sense. The drawback of this

approach is that its effort is O(n3) and the full tensor of coefficients has to be computed

first. This means that the number of function evaluations is still (n + 1)2, see [127] for

more details. This approach is therefore only of interest if we can use an offline-online

decomposition and shift the singular value decomposition into the offline step.



Chapter 2. Chebyshev interpolation in finance 47

[127] propose to use a Gaussian elimination with complete pivoting instead that

results in a near optimal rank k and requires only O(k2n+ k3) operations. The idea of

their algorithm is the following: Find (x0, y0) that maximizes |f | and construct a rank 1

approximation of f by

f1(x, y) :=
1

f(x0, y0)
f(x0, y)f(x, y0) ≈ d1c1(y)r1(x)

where c1 is a Chebyshev interpolation of the slice y 7→ f(x0, y) and r1 is the Chebyshev

interpolation of x 7→ f(x, y0). The weight d1 is called the pivot value. Repeat this

procedure for the residuum f − f1 and obtain a new rank 2 approximation of f . The

algorithm stops if f − fk is small enough, e.g. close to machine precision. The resulting

approximation is then given by

f(x, y) ≈
k∑
j=1

djcj(y)rj(x)

where rj(x) and cj(y) are univariate Chebyshev interpolations of degree n. We refer to

[127] for more details on the implementation. The resulting algorithm in the Matlab

package chebfun2 avoids the computation of a full tensor first and needs often only a

small number of function evaluations.

Low rank tensor compression

Next we want to extend the rank k approximation of the full tensor product interpolation

to the multivariate cases. Instead of a singular value decomposition of the coefficient

matrix we need to find a method to decompose and compress a tensor of coefficients

C ∈ Rn1×...×nd . Different low rank tensor compression techniques have been developed

for this tasked, we refer to [62] for a literature overview. We will focus on one of them

and briefly introduce the tensor train (TT) format of [102]. The idea is to write every

entry of a larger tensor in d dimension as a product of d matrices of smaller size. A

tensor C ∈ Rn1×...×nd in the tensor train format can be written as

C(i1, i2, . . . , id) = G1(i1)G2(i2) . . . Gd(id) with Gµ(iµ) ∈ Rrµ−1×rµ

with conditions r0 = rd = 1. The matrices Gµ(iµ) form essentially three dimensional

arrays of size rµ−1 × nµ × rµ for every µ = 1, . . . , d. The effort for compressing a full

tensor into the TT-format is of order O(dnr3) for the maximal rank r = max0≤µ≤d rµ and

hence, scales linearly in the dimension and in the number of points n. It reduces storage

requirements significantly if the rank r is small in comparison to n and in high dimensions

d. Standard linear algebra operations such as vector times matrix operations can be
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efficiently done using this format. We again refer to [102] for a detailed investigation

of the TT-format and a discussion of the implementation of the tensor compression in

Matlab.

Similarly to the singular value decomposition, the full tensor has to be computed first

before it can be compressed into a low-rank structure. This limits the applicability of the

compression format in high dimensions significantly. Fortunately, there exists different

completion algorithms that construct an approximation of a high-dimensional tensor in

a low-rank format by using only relatively few entries. For the tensor train format,

[123] presents a tensor completion algorithm based on Riemannian optimization. Given

a set of indices of the tensor and a fixed maximal rank the algorithm finds the optimal

low-rank tensor. Usually, the (optimal) rank of a full tensor is unknown and has to be

found adaptively, see [123] for more details. The rank adaptive completion algorithm

comes with the drawback of a large computational overhead. Therefore, especially in

medium high dimension, it is not always faster than working with the full tensor. This

computational bottleneck vanishes if the completion can be done in an offline step.

[57] combine a multivariate Chebyshev interpolation with low-rank tensor compres-

sion and a tensor completion algorithm. They show numerically that the tensor of

Chebyshev coefficients admits a low-rank structure for analytic functions. A similar ap-

proach has also been investigated in the master thesis [137] who uses the hierarchical

Tucker decomposition of [84] and the black box approximation technique of [5] instead.

Alternatives for multivariate interpolation

In the introduction of this section, we briefly mentioned the idea of polynomial interpo-

lation using the total degree. Exploring the same idea, sparse grids are a popular choice

for multivariate interpolation. Sparse grids refers to methods that combine tensor prod-

uct interpolations of smaller order to obtain an interpolation polynomial with bounded

total degree. By combining only the tensor products that contribute most to the overall

error, the approaches aim to overcome the curse of dimensionality. Sparse grids were

introduced in [139] and the idea of combining tensor product interpolation goes back

to [120]. There are two main types of sparse grids, either they are based on local basis

functions such as piecewise linear (or piecewise quadratic) functions or on global polyno-

mials. The combination of Smolyak’s sparse grid algorithm with Chebyshev polynomial

interpolation was proposed in [7]. On comprehensive introduction to sparse grids using

local basis functions is given in [23]. Sparse grids can be further improved by using

adaptive sparse grids algorithm. This is especially interesting for anisotropic problems.

A common alternative to interpolation approaches are multivariate function approx-
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imations using least-squares fitting. A large number of nodal points is generated and

then the coefficients of a multivariate polynomial of form (2.29) or (2.30) is fitted by

minimizing the least-squares error. The resulting approximation polynomial of degree

n is then optimal in a discrete (and possibly weighted) L2-norm. The nodal points can

either be sampled randomly which adds simulation noise or in a deterministic way ac-

cording to an appropriate sampling algorithm. A design of determinsitic nodal points is

for example provided in [141] and [18]. In their approaches, the number of points needs

to scale quadratically in the number of polynomials to ensure optimal convergence. For

our purposes this makes these types of approaches often infeasible.

We refer again to [130] for a comparison of different methods for multivariate func-

tion approximation and quadrature. The author suggests that neither the tensor product

nor the total degree is optimal. The first one oversamples and uses too many polyno-

mials whereas the latter one undersamples and uses too few polynomials. Based on

these findings [131] suggests to use an Euclidean degree polynomial, i.e. to define the

approximation using the Euclidean norm

IECn (f)(x) =
∑
‖j‖2≤n

cjϕj(x).

For analytic functions, this approximation can achieve a better accuracy than the total

degree while using at the same time less polynomials than the full tensor product. The

results are so far however theoretical and finding an appropriate set of interpolation

points is an open research question.

2.3 Application of Chebyshev in finance

In this section, we investigate how Chebyshev interpolation can be used in finance in

order to speed-up option pricer. The idea behind this section was first introduced in [49]

and has also been investigated in [47] as well as in [91] and in [107]. We will investigate

option prices as functions of their model and payoff parameters. Then we show how

we can use Chebyshev interpolation in order to explore the smoothness of this function.

Before we can introduce the general concept of parametric option pricing we start with

a short review of the fundamentals of option pricing.

2.3.1 Fundamentals of option pricing

In this section we want to introduce the main concepts of option pricing in mathematical

finance. In order to keep this introduction brief we focus on equity options and ignore

for the moment other asset classes such as interest rate, fixed income, foreign exchange
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and commodities. While there are asset class specific differences, many of the introduced

concepts for equity options are also relevant for other products. A more detailed overview

and a discussion of the stochastic calculus behind mathematical finance can for example

be found in [14] or [41].

The two most common option types are a call and a put option. A call option gives

the holder of the option the right to buy a stock S at a future time point T for a fixed

price K. The option holder will only use this exercise right if the price of the stock a

time point T indicated as ST is higher than the strike. In this case, the option is worth

ST −K to him and otherwise the value is zero for the option holder. The resulting payoff

can be written as (S −K)+ := max{S −K, 0}. The put option is similar, but here the

option holder has the right to sell the stock for the fixed price K. It is common practice

that the stock itself is not physically purchased and the option holder only receives the

payoff. The basic question of mathematical finance is: What is the fair value of a call

option?

The standard approach in the valuation of options is to define a market and model

the price of the stock as a stochastic process (St)t≥0 given an initial stock price S0. Once

such a model is defined one can calculate the price of the option. The most important

model is the Black-Scholes or Black-Scholes-Merton model introduced by [15] and [95].

They assume that there is a bank account with a fixed interest r ≥ 0 at which all market

participants can borrow or invest money. This process is modelled by the equation

dBt = rBtdt with B0 = 1

and has the explicit solution Bt = exp(rt). It can be used to estimate today’s value

of a future cash-flow. The stock price process is modelled by the stochastic differential

equation (SDE)

dSt
St

= µdt+ σdWt with S0 = s0 (2.37)

for a drift µ ≥ 0, a volatility σ > 0 and Wt is a Brownian motion under a probability

measure P. This means Wt is a stochastic process starting at 0 that has normally

distributed increments Wt−Ws ∼ N (0, t− s) for t ≥ s. The SDE (2.37) has the explicit

solution

St = S0 exp
(
(µ− 0.5σ2)t+ σWt

)
. (2.38)

The price of a call option in such a stock price model can be calculated as the discounted

expected payoff e−rTE[(ST − K)+]. Here, the expectation is however not calculated
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under P but under an equivalent measure Q for which the discounted stock price process

is a martingale. The measure Q is called the pricing or equivalent martingale measure

and we call this pricing formula risk-neutral valuation. See [14] for more details and a

discussion of the underlying idea of no arbitrage. In the Black-Scholes model, the price

of a call option is given by

CBS(S,K, σ, r, T ) = SΦ(d1)− e−rTKΦ(d2)

d1 =
log(S/K) + (r + 0.5σ2)T

σ
√
T

, and d2 = d1 − σ
√
T ,

where Φ is the cumulative distribution function of a standard normally distributed vari-

able. Equivalently, the call price is characterized as a solution of the so-called Black-

Scholes PDE. We refer again to [14] for more details.

The Black-Scholes model is widely seen as the starting point of modern option pric-

ing theory and thus the core of modern mathematical finance. Numerous papers have

investigated if the model actually holds in reality and what the models shortcomings

are. This analysis can be done from two different perspectives. The first approach is to

investigate the time series of daily log returns log(St+1/St) over a longer time period.

The Black-Scholes model predicts that log(St+1/St) is normally distributed, but unfor-

tunately, the empirical distribution does not confirm these claims. For example, returns

are not symmetric and large losses (negative returns) occur significantly more often then

theoretically predicted. The true distribution of the log returns has fatter tails than

a normal distribution. Moreover, one typically observes periods of lower and periods

of higher volatility (so-called volatility cluster) which is not consisted with a constant

parameter σ.

The second approach is to investigate option prices observed in the market. Assume

we observe the price of a call option Ĉ and the option’s strike K, maturity T , initial

stock price S0 and the risk-free interest rate r. Then there is one unique σ such that

CBS(S0,K, T, r, σ) = Ĉ. This is called the market implied volatility and plays a crucial

role in finance. Its computation will be discussed in detail in Section 2.4. Taking two

options on the same underlying that differ only in their maturity we expect to obtain

the same implied volatility. In practice, this is not the case and their seems to be a

time-dependence in the volatility. Unfortunately, even if we compare options with the

same maturity and different strikes we observe different levels of implied volatility. This

effect is often called the implied volatility smile, see [39]. Sometimes it is also called skew

to indicate that the different volatilities across strikes are not symmetric.

Since the early seventies different types of stock price models have been developed
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that tackle this problem. We will give a short overview and refer to some of the most

relevant papers. A more comprehensive overview and more detailed explanations can be

found in many standard textbooks on option pricing, see for example [101], [41] and [51].

• Generalized Black-Scholes: The simplest modification is to make the parame-

ters and especially the volatility in the Black-Scholes model time dependent. This

allows for a consistent evaluation of several options with the same strike but dif-

ferent maturities.

• Local volatility models: The next logical extension is to make the volatility

function dependent on the price of the underlying stock. This leads to the class of

so-called local volatility models where the stock price is modelled by

dSt
St

= rtdt+ σ(t, St)dWt

for a volatility function σ. One example is the constant elasticity of variance (CEV)

model that sets σ(t, St) = σS
(β−2)/2
t a parameter β and the stock price is modelled

by

dSt
St

= rdt+ σS
(β−2)/2
t dWt. (2.39)

For β = 2 we obtain again the standard Black-Scholes model whereas from market

data one typically obtains a β < 2. See [114] for more details.

The most important example of a local volatility model is the Dupire model intro-

duced by [39]. This model can be perfectly calibrated to the option prices observed

in the market at a fixed time point. However, the model is not able to capture the

time dynamics of the volatility surface as stated in [67].

• Stochastic volatility models: A different approach towards the modelling of

stock price and volatilities was introduced by [69]. In this paper, the author sug-

gests to make the volatility stochastic and introduces a second Brownian motion.

The model is described by the two SDEs

dSt
St

= rdt+
√
vtdW

1
t

dvt = κ(θ − vt)dt+ γ
√
vtdW

2
t

(2.40)

where dW 1
t dW 2

t = %dt. The resulting process for the variance vt is mean-reverting

with speed of mean-reversion κ, long-term mean θ and volatility of volatility γ.

The introduction of stochastic volatility results in a more realistic behaviour of
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the stock price process and reproduces better the empirically observed volatility

clusters. In contrast to Dupire’s model, the Heston model cannot be perfectly

calibrated to the option price surface. A better fit can be achieved by the SABR

model introduced in [67]. For more details on stochastic volatility models and the

calibration to the volatility surface we refer to [51].

• Models with jumps: As mentioned above, large negative returns occur empir-

ically significantly more often then theoretically predicted if we assume that the

underlying risk factor is essentially a diffusion process. Even with stochastic volatil-

ity the tails of the resulting distribution are not fat enough. This can be changed

if jumps are added to the model. [94] suggests to use a Poisson process in order to

model jumps. The resulting SDE for the stock price process is given by

dSt
St

= (r − λE[eJ − 1])dt+ σdWt + (eJ − 1)dXP
t

under the pricing measure Q, see [101]. The process XP
t is a Poisson process with

intensity λ > 0 and jump size J normally distributed with mean α and volatility β.

A large class of jump models are given by Lévy models that include jump-diffusion

models and pure jump models that do not rely on a Brownian motion. See [41] for

a detailed introduction to option pricing with jump processes.

• More complex models: The above mentioned extension and variations can be

further combined to obtain more promising properties. The most relevant examples

are the model of [8] that combines Merton’s jump diffusion model with a stochastic

volatility and the class of local stochastic volatility models. Other extension are for

instance obtained by a combination of stochastic volatility with stochastic interest

rates.

Note that the increasing complexity of the model also makes the computation of option

prices more complicated. Typically extensions loose the advantage of a closed form

solution that the Black-Scholes model admits. Instead, one has to use a numerical pricing

routine to either compute the expectation of the payoff or solve the corresponding PDE.

The more complex the model becomes, the more difficult it is to calculate accurate option

prices in a short runtime. An overview on numerical methods for option pricing can for

example be found in [54], [115] or [101].

2.3.2 Analyticity of parametric option prices

In this section, we look at parametric option prices and investigate their properties.

With parametric option prices we refer to the function that maps certain parameters
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(e.g. payoff and model parameters) to the corresponding option price, i.e.

Price : P 3 p = (p1,p2) 7→ Pricep = E[gp1(Xp2)] for P ⊂ RD

for a European option depending on a d-dimensional risk factor Xp2 . This notation

was introduced in [49]. A simple example would be the price of a call option in the

Black-Scholes model given by

P 3 (S0,K, r, T, σ) 7→ E
[
e−rT

(
S0e

(r−0.5σ2)T+σWT −K
)+]

with P ⊂ [0,∞)5.

In this example we know that the call payoff has a kink and is not differentiable with

respect to S0. However, the call option price is differentiable and the first two derivatives

with respect to S0 (i.e. Delta and Gamma) exists. The Gaussian kernel in the model

smoothes the kink. This is the motivation to investigate the smoothness of option prices

as a function of the parameters more systematically. A suitable way of doing so is by

investigating a Fourier type formulation of the option price, see [49].

The idea of using the fast Fourier transform (FFT) for option pricing has been in-

troduced in [30]. Since then, a variety of numerical approaches that rely on the Fourier

transform have been developed. They all have in common that the characteristic func-

tion of the underlying is required in closed form which is the case for many popular asset

price models. The Fourier pricing formula which we will use in this section is based

on [40]. The idea behind their Fourier pricing formula is the application of Parseval’s

theorem for the Fourier transform, see [138], which yields the following expression

E[g(X)] =

∫
R
g(x)f(x)dx =

1

2π

∫
R
ĝ(−z)ϕ(z)dz

where ĝ is the Fourier transform of g given by

ĝ(z) =

∫
R
g(x)eizxdx

and ϕ is the characteristic function of the random variable X, i.e. the Fourier transform

of the density f of X, given by

ϕ(z) = E[eizX ] =

∫
R
f(x)eizxdx.

For this formula to hold we require that the payoff and the characteristic function fulfil

some integrability conditions. A standard call option payoff as a function of the log-

asset price is however not integrable and Parseval’s theorem cannot be applied directly.

A straightforward solution is to multiply g with an exponential damping factor exp(αx)
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for an appropriate α ∈ R.

For the multivariate case we follow [50] and [49]. Let P = P1 × P2 ⊂ RD be the

hyperrectangular parameter domain with P1 ⊂ RD1 , P2 ⊂ RD2 and α ∈ Rd the damping

weight. Let Rd 3 z 7→ ϕp2(z) be the characteristic function of the risk factors Xp2 . Note

that we consider two different dimensions, the dimension of the underlying asset price

process d and the dimension of the parameter space D. For the Fourier pricing formula

we assume the following integrability condition

x 7→ e〈α,x〉gp1(x) ∈ L1(Rd) for all p1 ∈ P1. (Int)

Moreover, we impose the exponential moment condition

E
[
e−〈α,X

p2 〉] <∞ for all p2 ∈ P2. (Exp)

Now we are in the position to introduce the Fourier pricing formula.

Proposition 5 (Fourier pricing formula). Let P = P1×P2 ⊂ RD be a hyperrectangular

and α ∈ Rd such that (Int) and (Exp) hold. Assume z 7→ ĝp1(−z− iα)ϕp2(z+ iα) is in

L1(Rd) for all p = (p1,p2) ∈ P. Then we obtain

Pricep = E
[
gp1(Xp2)

]
=

1

(2π)d

∫
Rd
ĝp1(−z − iα)ϕp2(z + iα)dz. (2.41)

Proof. The proposition follows from Theorem 3.2 in [40].

For numerical purposes one can slightly modify the formula and integrate only over

the real part of the integrand. From [50] we obtain∫
Rd
ĝp1(−z − iα)ϕp2(z + iα)dz = 2

∫
R+×Rd−1

<
(
ĝp1(−z − iα)ϕp2(z + iα)

)
dz. (2.42)

This integrand can now be truncated and then computed using a numerical quadrature

technique. In this section, we use (2.41) to analyse the analyticity of parametric option

prices. Following [49] we introduce two additional conditions on the Fourier transform

of the payoff and the characteristic function. First, for the payoff we impose

∀ z ∈ Rd p1 7→ ĝp1(−z − iα) is analytic in B(P1, %1), for %1 ∈ (1,∞)D1

and ∃ c1, c2 > 0 s.t. sup
p1∈B(P1,%1)

|ĝp1(−z − iα)| ≤ c1e
c2|z| for all z ∈ Rd (Ana1)
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and for the characteristic function we impose

∀ z ∈ Rd p2 7→ ϕp2(z + iα) is analytic in B(P2, %2), for %2 ∈ (1,∞)D2 and

∃ c1, c2 > 0, β ∈ (1, 2] s.t. sup
p2∈B(P2,%2)

|ϕp2(z + iα)| ≤ c1e
−c2|z|β for all z ∈ Rd.

(Ana2)

This allows us to introduce the following theorem on the analyticity of option prices.

Theorem 10 (Analyticity of parametric option prices). Let P = P1 × P2 ⊂ RD be a

hyperrectangle, α ∈ RD and % = (%1, %2) ∈ (1,∞)D such that the conditions (Int) and

(Exp) as well as (Ana1) and (Ana2) hold. Then the function P 3 p 7→ Pricep has an

analytic extension to the Bernstein ellipse B(P, %).

Proof. See the proof of Theorem 3.2 in [49].

The structure of conditions allows us to investigate payoff functions and models sep-

arately. The conditions (Int) and (Ana1) are satisfied for most standard payoff functions

such as of calls, puts and digitals as a function of the log-asset price or strike. For exam-

ple, if we choose α < −1, the Fourier transform of the call option payoff g(x) = (ex−K)+

is given by

ĝ(z) =
Kiz+1+α

(iz + α)(iz + 1 + α)
for z ∈ R.

The corresponding conditions on the characteristic function (Exp) and (Ana2) hold in

a large class of asset price models and for most parameters. We refer to [48] (an earlier

and longer version of [49]) and the references therein as well as [47] and [107] for different

examples of payoffs and models. As an example, the price of a call or put option in the

Black-Scholes model is analytic for the parameters (S0,K, r, T, σ) ∈ (0,∞)5.

2.3.3 Chebyshev interpolation in option pricing

So far, we have seen that option prices are in many cases analytic functions of their

parameters. This means we can interpolate them using only a few Chebyshev nodal

points. Following [49] we obtain the following Chebyshev interpolation of the option

price

Pricep ≈
∑

j
cjTj(p)

using the multivariate Chebyshev interpolation as introduced in Section 2.2.1. From the

convergence results for the (tensor based) Chebyshev interpolation we conclude that the
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approximation error should theoretically decay (sub)exponentially fast. This means we

can use Chebyshev interpolation to approximate the price function using an existing nu-

merical pricing routine and then evaluate the interpolation instead of calling the original

pricing routine. The resulting method looks as follows:

• Problem: Existing pricer Pricep for parameters p ∈ RD should be approximated

using Chebyshev interpolation.

• Interpolation domain: Fix a hyperrectangular interpolation domain

P := [p
1
, p1]× . . .× [p

D
, pD] ⊂ RD

and N = (N1, . . . , ND) ∈ ND. Compute nodal points pk = τP(zk) for the multi-

variate Chebyshev points zk = (zk1 , . . . , zkD) with zki = cos(kiπ/Ni), i = 0, . . . , Ni.

• Set-up interpolation: Calculate prices at the Chebyshev nodes Pricepk for all pk.

Compute and store Chebyshev coefficients

cj =
D∏
i=1

(210<ji<Ni

Ni

)∑
k
PricepkTj(zk)

=

D∏
i=1

(210<ji<Ni

Ni

) N1∑
k1=0

. . .

ND∑
kD=0

Pricepk
D∏
i=1

Tji(zki).

• Pricing : For p ∈ P, the option price can be computed as

Pricep ≈
∑
j

cjpj(p) =

N1∑
j1=0

. . .

ND∑
jD=0

c(j1,...,jd)

D∏
i=1

Tji(τ
−1
[p
i
,pi]

(pi)).

The second and the third step can be seen as the offline phase and the fourth step, the

actual pricing, as the online phase of the approach. Only the coefficients cj and the

lower and upper bounds of the domain have to be stored after the offline phase. The

presented framework is very general and can be applied to options that are not in the

scope of the theoretical analysis in the previous section.

When analysing the accuracy of the Chebyshev interpolation one has to take into

account that a numerical pricing routine is used in order to compute Pricepk . The

overall error will therefore depend on the error between the true values Pricepk and

the computed values P̂ rice
pk

, the so-called distortion error. We cannot expect the

Chebyshev method to be more accurate than the reference pricer. The distortion error

can be either deterministic and bounded in absolute terms or the error can be stochastic
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and we know its distribution. The first one occurs when a method such as a PDE solver

or a numerical quadrature is used and the second one occurs if the values at the nodal

points are calculated via Monte Carlo simulation.

Let εk = Pricepk − ̂Pricepk be the error at the grid points. As in [49] we assume

that either |εk| ≤ ε or that εk is normally distributed with N (0, σk,M ). Here M is the

number of simulations of the corresponding Monte Carlo simulation. We define the error

bound

ε?(N) :=

ε√2 log
(
2
∏D
i=1(Ni + 1)

)
maxk σk,M .

From [49] we obtain the following convergence results for expected error in the maxi-

mum norm for analytic option prices with distortion at the nodal points. The following

theorem can be seen as an extension of Proposition 4.

Theorem 11. Let P ⊂ RD a hyperrectengular. Assume P 3 p 7→ Pricep has an

analytic extension to some generalized Bernstein ellipse B(P, %), % ∈ (1,∞)D and the

price function is bounded on this ellipse. Assume that |εk| ≤ ε or εk ∼ N (0, σk,M ).

Then we have

E
[

max
p∈P

∣∣∣Pricep −∑
j

cjpj(p)
∣∣∣] ≤ C%−N + ΛNε

?(N), (2.43)

for C > 0, N = miniNi and ΛN is the Lebesgue constant of the multivariate Chebyshev

interpolation.

Proof. See Theorem 2.5 of [49].

The first part of the error bound is the classical Chebyshev interpolation error and

the second term is the distortion error. In the deterministic case we observe directly

that the overall error level cannot be better than the maximal error at the nodal points

multiplied by the Lebesgue constant. From the analyticity it follows that all derivatives

exist and the error results of the Chebyshev interpolation yield that the derivative of

the interpolant converges against the derivative of the option price. From a practical

perspective, this means that the Chebyshev method delivers the option’s sensitivities,

i.e. the Greeks such as Delta, Gamma and Vega as well when we interpolate in the initial

stock price or the volatility.



Chapter 2. Chebyshev interpolation in finance 59

Advantages of Chebyshev for parametric option pricing

The use of Chebyshev interpolation for parametric option pricing can yield significant

performance improvements since the evaluation of a Chebyshev interpolant is often sig-

nificantly faster than calling a pricer. Note that with ”pricer” we refer to a numerical

pricing routine such as a PDE solver, a numerical quadrature or a Monte Carlo simu-

lation. The presented type of approximation becomes interesting when the same pricer

has to be called for a large number of different input parameters.

Moreover, the approach admits a useful offline/online decomposition: The Chebyshev

interpolation can be prepared in an offline step and only the coefficients are stored. In

the online step, a real-time evaluation of option prices is possible instead of the slow

evaluation of the original pricer. The slower the original pricer is, the higher is the

possible gain in efficiency in the online step. See the numerical experiments in [49] and

[91] for a detailed investigation of the potential of Chebyshev interpolation for parametric

option pricing.

The merits of the presented approach are that it can be integrated into an existing

pricing library, it is a very simple approach to speed-up calculations, polynomials are

well understood numerical objects and an extensive error analysis as well as convergence

results are available.

Interesting applications of Chebyshev interpolation are for example the calibration of

options to market data, credit exposure calculations and more general risk management

of trading books. Moreover, there are further applications of Chebyshev interpolation

in option pricing that go beyond a straightforward interpolation in parameters. These

approaches are still able to exploit many of the promising properties of Chebyshev in-

terpolation and deliver good results. A first application of Chebyshev interpolation is

the approximation of the implied volatility, the inverse of the call option price function,

in Section 2.4. A second application and core of the thesis is then the use of Cheby-

shev interpolation in a dynamic programming framework and its possible applications

and extensions. We call the approach of [49] the static Chebyshev method and the new

approach the dynamic Chebyshev method.

Example: Calibration to spread options

In [55], we present an example of a possible application of Chebyshev in finance, the

calibration of spread options. This example uses the chebfun3 package and has been

uploded to www.chebfun.org. In this toy example, we look at the calibration of the

correlation parameter in a bivariate Black-Scholes model to a set of spread options on two

underlyings. For the calibration, the distance between the market prices and model prices
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for different strikes and maturities has to be minimized over the correlation parameter

%. The numerical optimization requires repeated calls of the pricer for each of the option

and different values of %. The nature of the task makes it an interesting application

of Chebyshev interpolation, since speed is crucial but at the same time the parameter

fitting should also be accurate.

Our idea is to interpolate the price of the spread option as a function of the strike K,

the maturity T and the correlation % using Chebyshev interpolation and chebfun3. As

mentioned earlier, in chebfun3 the curse of dimensionality of a full tensor based interpo-

lation is avoided by using low-rank approximations. We show that the evaluation of the

resulting interpolation is significantly faster than the original pricer. In our example, the

pricing using the Chebyshev interpolant was more than 250 times faster with a maximal

pricing error of 0.03%. This gain in speed is then explored in the calibration routine.

Challenges and limitations of Chebyshev in finance

The main challenge for the presented static Chebyshev method is the dimensionality

of the problem, i.e. the number of parameters in which we want to interpolate. Note

that this definition of dimensionality might differ from the dimensionality of the un-

derlying stochastic process. In the previous example, we considered a bivariate model

but our interpolation was in three different parameters. In this section, we have there-

fore used the notation d for the number of assets and D for the dimensionality of the

interpolation. A straightforward application of tensor based interpolation leads to an

exponential increase of the number of nodal points in the dimension. As mentioned ear-

lier, this curse of dimensionality can be tackled by techniques such as sparse grids and

low-rank approximations, see [57] for an application of the latter. However, even with

these dimension reduction techniques, high dimensional interpolations are challenging.

Similarly, the size of the interpolation domain has a significant impact on the number of

nodal points. Especially in multivariate dimensions, a careful choice of the interpolation

domain is crucial. In some applications it is better to split a larger domain into several

subdomains.

The second major limitation of the static Chebyshev method is that it still requires

repeated calls of a pricer in order to compute the values at the Chebyshev nodes. It is

therefore only beneficial when the number of option prices that have to be calculated are

an order of magnitude higher than the number of nodal points or if one can really explore

the offline/online decomposition. Another limitation of the Chebyshev interpolation is

that it is not shape preserving, i.e. the interpolant does not inherit the properties of the

(pricing) function. For example, if we interpolate a monotonically increasing function,

the interpolant might not be monotonically increasing. One can modify the Chebyshev
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interpolation to be shape-preserving, see [26], but this comes at additional computational

costs. However, the fast convergence in the maximum norm guarantees that the static

Chebyshev method is almost shape preserving. This is sufficient for most practical

applications.

2.4 Implied volatility

In this section, we consider one particular application of Chebyshev interpolation in

finance, the efficient computation of the so-called Black-Scholes implied volatility. This

problem is highly relevant for practitioners but is also interesting from an academic

perspective.

This section is based on joint work with Kathrin Glau, Paul Herold and Dilip B.

Madan and the presented results have been published in our paper ”The Chebyshev method

for the implied volatility”. The paper builds in parts on the master thesis of [68]. The

results that are discussed in this section are only the ones to which the author has con-

tributed.

2.4.1 Motivation

The Black-Scholes implied volatility is one of the most important quantities in finance.

The one parameter in the Black-Scholes model that cannot be observed using market

data is the volatility of the underlying asset process. The Black-Scholes call price func-

tion is strictly monotone increasing in volatility and [92] show that under no-arbitrage

assumptions there exists always a unique (positive) volatility such that the model price

equals the observed market price. This unique volatility is called the Black-Scholes

implied volatility.

The implied volatility can be seen as a universal language in the daily business of

trading, hedging, model calibration and more generally in risk management. Usually,

option prices are quoted in terms of implied volatilities instead of absolute prices. For

high frequency trading in particular, very accurate real-time evaluations of the implied

volatility are required for large data sets. As stated in [10] and [111] in practice, often

millions of option prices have to be inverted in real-time for instance by large data

providers. For more details on the use of the implied volatility we refer to [56] and the

references therein.

Unfortunately, the solution of this inverse problem is not available in an explicit

form and thus a numerical approximation method is required. Due to importance of

the implied volatility in the financial industry an efficient numerical solution is crucial.
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From a practitioner’s perspective a suitable numerical method needs to fulfil the following

requirements

• large domain of input variables, i.e. options with very low or high volatilities as

well as options with moneyness varying from far out of the money to deep in the

money,

• high efficiency for a given requirement in terms of accuracy and speed.

Moreover, it is desirable if the method additionally delivers

• real-time evaluations of the implied volatility even for very large data sets,

• closed-form solutions with accessible derivatives,

• easy implementation and maintenance.

Due to the high relevance of the implied volatility and the different computational chal-

lenges arising in the computation, the problem is an ideal candidate to show the potential

of Chebyshev polynomial interpolation in finance.

In the last 40 years, different methods have been introduced to tackle this problem

in the academic literature. The proposed methods can be divided into two main classes,

iterative root-finders and non-iterative approximation methods. In the Black-Scholes

model, the implied volatility depends on the observable parameters S0, K, T , r and the

option premium C. It can be calculated as the root of the function

σ 7→ CBS(S0,K, T, r, σ)− CMkt

where CBS(S0,K, T, r, σ) is the model price of a call option in the Black-Scholes model

and CMkt is the observed market price for a pair of strike K and maturity T . The implied

volatility can thus be calculated using a (classical) numerical root finder. [92] provide a

possible starting value which ensures that the Newton-Raphson root-finding algorithm

will always converge and return the correct implied volatility. This straightforward

approach is simple and easy to implement. However, for some parameter constellations

the number of iterative steps increases significantly and the method becomes slow. Other

root-finders such as a Brent-Dekker algorithm or a bisection are also possible but typically

less efficient.

The second class of non-iterative methods aim to approximate the implied volatility

as a functions of the parameters S0, K, T , r and the premium C. The computational

effort to approximate a function depending on five variables is challenging. Fortunately,
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we can reduce the dimensionality as stated in [75] amongst others by normalizing the

call price

c =
C(S0,K, T, r, σ)√

S0e−rTK
.

The normalized call price c is a bivariate function given by

c(x, v) = e
x
2 Φ
(x
v

+
v

2

)
− e−

x
2 Φ
(x
v
− v

2

)
with (2.44)

x = log(S0e
rT /K) = rT + log(S0/K)

v = σ
√
T

where x measures the moneyness (the option is out of the money if x < 0, at the money

if x ≈ 0 and in the money if x > 0) and v corresponds to the time-scaled volatility.

Furthermore, call prices of in the money options can be expressed by those of out of the

money options, namely

c(−x, v) = c(x, v) + e−
x
2 − e

x
2 . (2.45)

Hence the parameter domain can be reduced to x ≤ 0 and consequently the call price is

normalized to values in [0, 1]. To calculate the implied volatility σ for a call price C it is

thus sufficient to solve Equation (2.44) for v using the normalized call price c. Overall,

the approximation of the implied volatility v(x, c) becomes a bivariate (interpolation)

problem in the moneyness x and the normalized call price c.

Examples of such non-iterative approaches are the rational approximation methods

of [86] and [111]. These methods can be very fast but unfortunately the domain for

which they set up the approximation is very restrictive and excludes option prices that

occur in practice.

More recently, [75] proposed a more sophisticated method that combines the two

types of approaches. [75] explores the limit behaviour of the call price function and uses

rational approximation for the initial guess and then two iterative steps of Householder’s

method to achieve a very high accuracy. For a more detailed literature review we refer

again to [56] and the references therein.

We propose a new method for the implied volatility using bivariate Chebyshev in-

terpolation. The efficiency of such an approach depends critically on the choice of the

interpolation domain. As pointed out in [68] and [56], a straightforward implementa-

tion of the Chebyshev interpolation might yield poor results if the chosen domain is too
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large. On the other hand, a small domain makes the method impractical because not

all parameter constellations occurring in the market are covered. We can overcome this

challenge by splitting a sufficiently larg domain into subdomains and apply suitable scal-

ing functions. This approach is motivated by the choice of the approximation domains

in [75].

In the following, we will first show that the domain proposed by [86] is too restrictive

and then fix a suitable interpolation domain for our approximation method. Then we

will tailor the bivariate Chebyshev interpolation to the problem and explain the algo-

rithmic structure of the presented approach. We conclude the section with a numerical

comparison of the new approach and two benchmark methods, a Newton-Raphson root

finder and the method of [75].

2.4.2 Interpolation domain

In this section, we define a suitable interpolation domain for our method based on market

data. Then we introduce a splitting of the domain resulting in four subdomains which

allow for a better interpolation. For more details we refer to [68].

Choice of the interpolation domain

To find an appropriate interpolation domain, we investigate option data of the DAX,

the EURO STOXX 50, the Standard & Poor’s 500 (S&P 500) and the VIX index from

Thomson Reuters Eikon. For all options with non-zero trading volume we compute the

forward moneyness x and the time-scaled volatility σ
√
T . As a comparison, we check

if the resulting parameters are covered by the domain of Li. Figure 2.5 illustrates the

option parameters for all four indices. For all four indices we observe that a relevant part

of the options is not covered by the domain of Li. We observe moneyness between −1.5

and 2 as well as time-scaled volatilities up to 1. In different markets or under different

market conditions one can expect to observe even more extreme option parameters. For

example volatilities become considerably higher during a financial crisis. This motivates

us to set up a Chebyshev interpolation of the implied volatility on a significantly larger

domain which covers all relevant option data.

Domain splitting and scaling

To derive an approximation of the implied volatility on a sufficiently large domain,

we further inspect the normalized call price. The implied volatility is not analytic at

c(x) = 0 and c(x) = e
x
2 . Therefore the maximal possible interval needs to be restricted

to 0 < vmin(x) < vmax(x) < ∞ with corresponding call prices 0 < cmin < cmax < e
x
2 .

This assumption is not restrictive if the chosen vmin is small enough. Extending the
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Figure 2.5: Moneyness x and time-scaled volatility σ
√
T of options on four different

indices. We only considered options with positive trading volume.

domain towards the maximal interval decreases the rate of convergence. To reduce this

impact, we exploit the limit behaviour of the normalized call price. Figure 2.6 shows for

a fixed moneyness x the normalized call price as a function of the time-scaled volatility.

We observe that the call price is flat for very low as well as very high volatilities and

almost linear around the point of inflection. This motivates us to split the domain into

three parts depending on the call price

D1 := [cmin(x), c1(x)], D2 := [c1(x), c2(x)], D3 := [c2(x), cmax(x)] (2.46)

with corresponding volatilities 0 < vmin(x) < v1(x) < v2(x) < vmax(x), i.e. cmin(x) =

c(vmin(x), x) and so on. The idea of splitting the domain is based on the method of [75].

For each domain we will tailor a bivariate Chebyshev interpolation. Where call

prices are flat its inverse becomes very steep. Hence, a direct polynomial interpolation

is not well-suited. Fortunately, by exploiting the asymptotic behaviour of the call price

function, we resolve the problem. On each interval, we define a scaling function φi,x :

Di → [−1, 1] for i ∈ {1, 2, 3} which transforms the call price to [−1, 1] for each x ∈
[xmin, xmax]. For the resulting functions ṽ : [−1, 1]2 → R, (c̃, x̃) 7→ v(c, x) with x =

ϕ−1(x̃) and c = φ−1
i,x (c̃) for i ∈ {1, 2, 3} where ϕ is the linear scaling as defined in

(2.22). For a given call price c and moneyness x ≤ 0 the implied volatility can then be

approximated by

v(c, x) ≈ IN
i
1,N

i
2

i (φi,x(c), ϕ(x)) where i satisfies c ∈ Di
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Figure 2.6: Splitting of the normalized call price (c) depending on the time-scaled volatil-
ity (v) and its inversion for x = −5 into three parts.

where I
N i

1,N
i
2

i is the bivariate Chebyshev interpolation of degree (N i
1, N

i
2) on domain

i = 1, 2, 3. The derivation of the scaling functions φi,x and the domains Di can be found

in the Appendix A.

Error analysis

The following theorem is the theoretical foundation of the high efficiency of the proposed

approximation method. Thanks to the analyticity of the Black-Scholes call price and

the scaling functions, we gather that the implied volatility function is analytic. We

know that for such a function the convergence of the bivariate Chebyshev interpolation

is sub-exponential in the number of nodal points.

Theorem 12. Let φ−1
i (c̃, x̃) be analytically continuable to some open region around

[−1, 1]2 and let 0 < φ−1
i ([−1, 1], x) < e

x
2 for each x ∈ [−1, 1]. Then there exist constants

ρ1, ρ2 > 1, V > 0 such that ṽ(c̃, x̃) := v(φ−1
i (c̃, x̃), φ−1

x (x̃)) is analytic and for its bivariate

Chebshev interpolation I
N i

1,N
i
2

i (c̃, x̃) :=
∑N i

1
j=0

∑N i
2

k=0 ajkTj(c̃)Tk(x̃) holds

max
(c̃,x̃)∈[−1,1]2

|ṽ(c̃, x̃)− IN
i
1,N

i
2

i (c̃, x̃)| ≤ 4V

(
ρ
−2N i

1
1 + ρ

−2N i
2

2

(1− ρ−2
1 )(1− ρ−2

2 )

) 1
2

.

Proof. The proof of the theorem can be found in [68].

From the analyticity of the implied volatility function follows that it is infinitely often

continuously differentiable in each area and in this case the Chebyshev interpolation also

approximates all derivatives, see Theorem 8. This can be exploited when the implied

volatility is used in a gradient-based optimization routine.
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We can enhance the efficiency even further by exploiting the low-rank structure of

the bivariate functions. To do so, in our implementation we use the chebfun2 algorithm

based on [127], see Section 2.2.2 for a brief description of the chebfun2 algorithm.

2.4.3 Algorithmic structure

In this section, we discuss the algorithmic structure of our method and provide details

on the implementation. The algorithms are listed as pseudocode in the Appendix A.

As a starting point for the approximation of the implied volatility function, we split

the interpolation domain into four different areas, see Figure 2.7. For each area, we

approximate the implied volatility by a separate bivariate Chebyshev interpolation using

the corresponding scaling function φi,x in c. For the sake of a lucid presentation, we list

the different areas and transformations below. A list of all functions required for the

implementation are listed as pseudocode in Algorithm 8 in the appendix.

Area I: For x ∈ [−5,−0.0348] and c ∈ [cmin(x), c1(x)] we have

φ1,x(c) := 2
φ̃1(c)− φ̃1(cmin(x))

1− φ̃1(cmin(x))
− 1.

Area I’: For x ∈ [−0.0348, 0] and c ∈ [cmin(x), c1(x)] we again use transformation

φ1,x(c).

Area II: For x ∈ [−5, 0] and c ∈ [c1(x), c2(x)] we have

φ2,x(c) := 2
c− c1(x)

c2(x)− c1(x)
− 1.

Area III: For x ∈ [−5, 0] and c ∈ [c1(x), cmax(x)] we have

φ3,x(c) :=
2φ̃3(c)

φ̃3(cmax(x))
− 1.

The call prices cmin(x), c1(x), c2(x) and cmax(x) correspond to the volatilities

vmin(x) = 0.001− 0.03x, v1(x) = 0.25− 0.4x, v2(x) = 2− 0.4x, vmax(x) = 6.

Moreover, we replace the boundary call prices c1(x), c2(x) and cmax(x) by univariate

interpolations to reduce the runtime further. The evaluation of cmin(x), however, is done

directly, since for low volatilities the call price is hard to approximate. For this step we
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Figure 2.7: The four different interpolation areas of the Chebyshev method.

can use the implementation of the call price function provided in [75], which is of very

high precision.

Online/offline decomposition

Our method can be split into an offline phase that has only to be done once and an

online phase.

• offline-phase (preparation):

In each area, we compute the implied volatilities on an N ×N grid of Chebyshev

points. Then we apply the chebfun2 algorithm with pre-specified accuracy and

obtain a low-rank approximation. For the calculation of the implied volatility at

the grid points one can either use Jäckel’s method (see Appendix A, Algorithm 9)

or an iterative root finder (see Algorithm 10). For example the bisection method

is well suited to compute very accurate implied volatilities at the nodal points. We

were able to reach an accuracy in the region of 10−13 with this approach.

• online-phase (real-time evaluation):

In the online phase implied volatilities are computed from real-time data, contain-

ing a vector of call prices C ∈ Rn and the corresponding strikes K ∈ Rn, spot

prices S0 ∈ Rn, maturities T ∈ Rn and interest rates r ∈ Rn. Algorithm 11 in

Appendix A provides a pseudocode version for the online step.

– Normalization: We calculate the normalized call price c and the forward

moneyness x from the data. Option prices with x > 0 need to be transformed

to prices with moneyness −x by Formula (2.45).

– Splitting : For each pair (x, c), we need to find the corresponding area. As the
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computation of cmin(x) requires the most computational effort, we proceed as

follows. First, we compute cmax(x) and check if c ≤ cmax(x). Next, we check

if c < c2(x) and eventually c < c1(x). Only in the latter case, do we compute

cmin(x) and check whether c ≥ cmin(x).

– Transformation: We compute the transformed call prices φi,x(c) and money-

ness φx(x) with the respective transformations.

– Evaluation: We evaluate the bivariate Chebyshev interpolations provided in

the offline-phase at the transformed call prices and moneyness to obtain the

time-scaled implied volatility.

The runtime of the online-phase is primarily determined by the splitting and the eva-

lutation-phase. The evaluation of the bivariate interpolations can be done in different

ways and can be performed in very few computational steps depending on the required

accuracy.

In the offline phase, the chebfun2 algorithm returns in each area a chebfun2-object

which is a Chebyshev interpolant in low rank form IN1,N2 =
∑k

j=1 djcj(y)rj(x) where

rj(x) and cj(y) are univariate Chebyshev interpolations of size N1 and N2. One can now

either store the four chebfun2-objects directly and use them in the online evaluation (as

presented in Algorithm 11) or one can extract the coefficients and evaluate the low rank

approximation manually. The first choice is simpler and for many applications sufficient,

the latter can be slightly faster when it is implemented in an efficient way. For the second

choice one can use Clenshaw’s algorithm to evaluate the polynomials cj and rj .

Depending on the application, one can use different accuracies in the offline phase.

Table 2.4.3 displays the ranks k and the grid sizes N1, N2 of the low rank interpolation

operator for the three specified accuracies 10−6 (low accuracy), 10−9 (medium accuracy)

and 10−12 (high accuracy). As expected, the ranks and grid sizes are higher for a higher

accuracy. Moreover, we observe that we need more interpolation nodes in Area I and

Area I’ to obtain the same level of accuracy as in Area II and Area III.

Area low accuracy medium accuracy high accuracy

Area I k = 10, N1 = 25, N2 = 36 k = 16, N1 = 46, N2 = 79 k = 22, N1 = 67, N2 = 122

Area I’ k = 9, N1 = 27, N2 = 18 k = 16, N1 = 51, N2 = 39 k = 23, N1 = 77, N2 = 57

Area II k = 6, N1 = 21, N2 = 20 k = 11, N1 = 36, N2 = 33 k = 14, N1 = 51, N2 = 47

Area III k = 5, N1 = 11, N2 = 9 k = 7, N1 = 17, N2 = 14 k = 9, N1 = 23, N2 = 19

Table 2-A: Rank k and grid sizes N1, N2 of the low rank Chebyshev interpolation in the

different areas for three different levels of pre-specified accuracy.
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2.4.4 Numerical Results

In this section we present a numerical investigation of the Chebyshev method for the

implied volatility. We compare our approximation method to

• the method of [75],

• the approximation formula given in [86],

• the approximation formula given in [86] with the proposed polishing of two Newton-

Raphson iterations,

• the Newton-Raphson algorithm with the starting point given in [92]. The algorithm

terminates if |vn − vn−1| < 10−6.

In order to do so, we first choose a domain D1 on which all methods can be applied

and compare the resulting errors and runtimes. On the complete domain D2, we compare

the proposed method to the [75] method and the Newton-Raphson algorithm as those

are the only ones that can also be applied on this set. Finally, we include actual market

data. All codes are written in Matlab R2014a and the experiments are run on a computer

with Intel Xeon CPU with 3.10 GHz with 20 MB SmartCache. We refer to [56] for a

more detailed presentation of the results and some additional plots.

Comparison on Domain D1

The domain on which all methods work is the domain of [86] bounded below by vmin(x),

i.e.

D1 :=
{
− 0.5 ≤ x ≤ 0.5, 0 ≤ v ≤ 1,max

( |x|
2
, vmin(−|x|)

)
≤ v
}

See Figure 2.8 for a comparison of the domain of [86] and the domain of the Chebyshev

method. On D1 we compute normalized call prices on a 1000×1000-grid of equidistantly

distributed points, see [68]. We compare the runtimes and errors in the time-scaled

volatilities ∆v := |v − vimp| and the repricing errors ∆c := |c(x, v) − c(x, vimp)| of the

methods.
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Figure 2.8: Domain D2 of the Chebyshev interpolation (red), domain of Li (yellow) and

domain D1 as the intersection of both.

Table 2-B shows the maximal and the mean error in terms of the time-scaled volatil-

ities and the normalized call prices as well as the runtime as a proportion of the runtime

of the Newton-Raphson method, which takes 1.45s. For the Chebyshev method, the

runtime measures the time of the online phase. The [75] method comes with a solution

close to machine precision for all input parameters and thus qualifies as our reference

method in the offline-phase of the Chebyshev approximation. Also the Newton-Raphson

algorithm reaches very high precision. The approximation of [86], however, is not able

to reach the same range of precision. As Table 2-B shows, the mean error of σ is a factor

1010 higher than Jäckel’s approximation. The proposed modification of [86] with two

additional Newton-Raphson steps reduces the error. However, for low volatilities the

effect is rather small and the maximal error is still in the region of 10−5, see Table 2-B.

For the Chebyshev method, the error is determined by the pre-specified accuracy and the

maximal error is close to the mean error. When comparing the runtimes, approximation

formula given in [86] is the fastest. It comes, however, with the lowest precision of a

maximal error in σ of 3.26 ·10−3. For a higher precision in the range of 10−5, the Cheby-

shev method with low accuracy turns out to be faster than the approximation formula

given in [86] with two steps Newton-Raphson. Comparing the mean, the same holds for

the Chebyshev method with medium accuracy. For very high precisions the Chebyshev

method with high accuracy is faster than the Newton-Raphson approach. Compared to

Jäckel’s method, the Chebyshev approach is two times faster but with a maximal error

of 10−11 instead of 10−14.
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Method max |∆σ| mean |∆σ| max |∆c| mean |∆c| runtime

Jäckel 2.80 · 10−14 4.57 · 10−16 1.67 · 10−15 9.99 · 10−17 1.39

Li 3.26 · 10−3 3.42 · 10−4 2.15 · 10−4 9.43 · 10−5 0.12

Li with 2 steps of Newton-Raphson 2.02 · 10−5 6.12 · 10−9 1.10 · 10−6 3.89 · 10−10 0.63

Newton-Raphson 2.05 · 10−10 6.32 · 10−14 2.91 · 10−11 1.00 · 10−14 1

Chebyshev method (low accuracy) 1.52 · 10−5 1.40 · 10−6 4.91 · 10−6 3.94 · 10−7 0.40

Chebyshev method (medium accuracy) 3.20 · 10−8 2.17 · 10−9 3.52 · 10−9 5.92 · 10−10 0.55

Chebyshev method (high accuracy) 4.88 · 10−11 4.78 · 10−12 1.51 · 10−11 1.41 · 10−12 0.67

Table 2-B: Interpolation error and runtimes on domain D1.

Method max |∆σ| mean |∆σ| max |∆c| mean |∆c| runtime

Jäckel 5.30 · 10−13 5.35 · 10−15 2.55 · 10−15 7.10 · 10−17 0.52

Newton-Raphson 8.34 · 10−8 6.64 · 10−12 1.94 · 10−11 1.28 · 10−15 1

Chebyshev method (low accuracy) 2.55 · 10−5 1.85 · 10−6 4.63 · 10−6 1.42 · 10−7 0.14

Chebyshev method (medium accuracy) 4.42 · 10−8 2.38 · 10−9 4.02 · 10−9 1.36 · 10−10 0.16

Chebyshev method (high accuracy) 1.66 · 10−10 1.32 · 10−11 1.52 · 10−11 4.83 · 10−13 0.20

Table 2-C: Interpolation error and runtimes on domain D2.

Comparison on Domain D2

Next, we compare the Chebyshev method on the large domainD2 to the Newton-Raphson

approach and the algorithm of Jäckel. The errors and runtimes are again computed on a

1000×1000 grid. Table 2-C shows the maximal and the mean error as well as the runtimes

scaled as in the previous experiment. Here, the Newton-Raphson method takes 4.29s.

To reach a medium accuracy in the maximal error in the range of 10−8, the Chebyshev

method is more than six times faster than the Newton-Raphson approach. Moreover, the

Chebyshev method is able to reach higher accuracies of 10−10 and still needs only 20%

of the runtime of Newton-Raphson. Jäckel’s method reaches very high precisions and

is faster than Newton-Raphson. Compared the Jäckel method, the Chebyshev method

allows us to pre-specify accuracies and reduce the runtimes significantly. For example, if

accuracies in the region of 10−8 are sufficient, the Chebyshev method is more than three

times faster than Jäckel’s approach.

Comparison for market data

In Section 2.4.2 we investigated market data of options and concluded that a significant

part of the options is not covered by the domain of [86]. This was the motivation to

consider a much larger interpolation domain for the Chebyshev method. An empirical

investigation confirms that all the options shown in Figure 2.5 lie within our domain.
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Method max |∆σ| mean |∆σ| max |∆c| mean |∆c| runtime

Jäckel 8.05 · 10−16 1.40 · 10−16 2.11 · 10−15 2.43 · 10−16 0.89

Newton-Raphson 1.78 · 10−10 2.91 · 10−12 7.72 · 10−12 2.22 · 10−13 1

Chebyshev method (low) 1.57 · 10−5 2.95 · 10−6 4.44 · 10−6 4.78 · 10−7 0.37

Chebyshev method (medium) 4.19 · 10−8 3.87 · 10−9 3.45 · 10−9 3.98 · 10−10 0.48

Chebyshev method (high) 1.73 · 10−11 2.21 · 10−12 2.70 · 10−12 2.91 · 10−13 0.58

Table 2-D: Interpolation error and runtimes for S&P 500 market data.

Next, we compare the Chebyshev method on this market data to the Newton-Raphson

approach and the algorithm of Jäckel. The errors and runtimes are computed for options

on the S&P 500 index traded on 7/17/2017 (Source Thomson Reuters Eikon). We use

the same options as for Figure 2.5. To obtain more reliable results for the runtime

comparison we compute the implied volatilities of the options 5,000 times.

Table 2-D shows the maximal and the mean error as well as the runtimes scaled as

in the previous two experiments. Here, the Newton-Raphson method takes 5.72s. The

Chebyshev method is the fastest of the three methods and reaches the target accuracies.

The method is about twice as fast as the Newton-Raphson approach for similar accu-

racies. Again, Jäckel’s method reaches very high precisions but it is significantly slower

than the Chebyshev method.

Besides the observed gain in efficiency, the Chebyshev method enjoys conceptual ad-

vantages. It delivers a closed-form approximation in a simple and easy to use polynomial

structure.

2.4.5 Conclusion

The example of the implied volatility shows the potential of Chebyshev interpolation for

problems in financial engineering. The approximation of the implied volatility is a very

specific example but many of observed the conceptual advantages can also be exploited

in other applications. This includes

• Closed form approximation formula: The Chebyshev interpolation has a simple

polynomial structure and can be evaluated efficiently. This structure can be further

explored to express derivatives in a closed form.

• Error analysis: A theoretical error analysis is available for the Chebyshev interpo-

lation and shows (sub)exponential convergence for the implied volatility. Here, we

used that the price of a European call is an analytic function of the model parame-

ters in the Black-Scholes. A fast convergence guarantees that we can approximate
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the function with a low number of nodal points.

• Easy Implementation: Once the interpolation operator is set up in an offline phase,

the polynomial structure of the approximation formula leads to a simple code. This

facilitates the transfer of the code to other systems and programming languages as

part of the maintenance. The method only requires the coefficients of the Cheby-

shev interpolation to be stored.

• Splitting : For a larger interpolation domain an appropriate splitting of the domain

can significantly reduce the number of nodal points and thus increase the efficiency

of the approximation.

The presented Chebyshev method for the implied volatility enjoys a high flexibility and

the approach can be transferred to similar problems. For example, [56] exploit the

method to approximate the implied volatility in the Laplace option pricing model of

[90].
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The dynamic Chebyshev method

In Chapter 2 we have seen that Chebyshev interpolation is an efficient function approx-

imation method that can be explored for static problems in option pricing. It performs

very well for the approximation of European option prices and can also be used for the

approximation of the implied volatility function. In this chapter we investigate path-

dependent options where the resulting pricing problem is dynamic. The most import

examples are early-exercise options such as American options and Bermudan options.

For both option types holds that their value can be calculated as an optimal stopping

problem. In contrast to a European option in the Black-Scholes model, there is no ex-

plicit solution to this problem. In lack of explicit solutions, different numerical methods

haven been developed to tackle this problem.

The early-exercise feature poses an additional numerical challenge when pricing these

types of option. For example, a straightforward Monte Carlo simulation is not suitable

to price an American put option in the Black-Scholes model. Over the past forty years

different approaches have been developed that tackle this problem.

One of the first algorithms to compute American put option prices in the Black-

Scholes model has been proposed by [19]. In this approach, the related partial differential

inequality is solved by a finite difference scheme. A rich literature further developing the

PDE approach has accrued since, including methods for jump models ([85], [70]), exten-

sions to two dimensions ([66]) and combinations with complexity reduction techniques

([65]). Besides PDE based methods a variety of other approaches has been introduced,

many of which trace back to the solution of the optimal stopping problem by the dynamic

programming principle, see e.g. [106]. For Fourier based solution schemes we refer to

[89], [44]. Simulation based approaches are of fundamental importance, the most promi-

nent representative of this group is the least-squares Monte Carlo (LSM) approach of

75



Chapter 3. The dynamic Chebyshev method 76

[88], we refer to [54] and [83] for an overview of different Monte-Carlo methods.

Typically, Fourier and PDE methods are highly accurate, compared to simulation,

however, they are less flexible towards changes in the model and particularly in the

dimensionality. In order to reconcile the advantages of the PDE and Fourier approach

with the flexibility of Monte Carlo simulation, we propose a new approach based on

Chebyshev interpolation.

In this chapter we will first formulate the pricing problem as a general dynamic pro-

gramming problem. Then we introduce our new method and provide a first modification

that incorporates a domain splitting in the state space. We investigate both approaches

numerically and provide convergence results if the pricing problem is analytic or piece-

wise analytic. We discuss the implementation of the method and conduct an empirical

convergence analysis. We conclude the chapter with a benchmark test and an outline of

different extensions of the method.

This chapter is based on a research collaboration with Kathrin Glau and Mirco Mahlst-

edt. In parts, the results of this chapter are published in our joint paper ”A new approach

for American option pricing: The Dynamic Chebyshev method”, see [59]. Moreover, a

previous version of the presented method is also included in the PhD thesis ”Complexity

Reduction for Option Pricing” of [91]. The results that are discussed in this chapter are

only the ones to which the author has contributed.

3.1 A new pricing algorithm for path-dependent options

In this section, we introduce a new pricing method for path-dependent options. The

most important example of this type are American options, i.e. options that can be

exercised at any time point until maturity. Like most approaches, we discretize the

continuous time problem of pricing an American option and then solve it. Hence, we

actually compute the price of a Bermudan option. It is well known that the Bermudan

price converges towards the American option price. Therefore, a Bermudan option with

a high number of exercise rights or an extrapolation technique can be used to obtain the

American option price, see [53]. The pricing of Bermudan options is similar to the pricing

of discretely monitored barrier options as for example stated in [44]. Our proposed new

approach will be general enough to cover this pricing problem as well.

We consider a general dynamic programming time-stepping in discrete time for a

Markov process Xt and value function Vt. We propose to approximate the value func-

tion in every time step using Chebyshev interpolation, i.e. Vt ≈
∑

j c
t
jpj . The choice of

Chebyshev polynomials is motivated by the promising properties of Chebyshev interpo-
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lation such as

• The vector of coefficients (ct+1
j )j=0,...,N is explicitly given as a linear combination

of the values Vt(xk) at the Chebyshev grid points xk. The pricing is then done on

a discrete grid of Chebyshev points x = xk.

• Exponential convergence of the interpolation for analytic functions and polynomial

convergence of differential functions depending on the order.

• The interpolation can be implemented in a numerically stable way.

See Chapter 2 for more details on Chebyshev interpolation. The computation of the

continuation value at a single time step coincides with the pricing of a European op-

tion. In Section 2.3 we have seen that the interpolation of European option prices using

Chebyshev interpolation shows to be highly promising and exponential convergence is

established for a large set of models and option types. Moreover, the approximation of

the value function with Chebyshev polynomials has already proven to be beneficial for

optimal control problems in economics, see [78] and [26].

The key advantage of our approach for American option pricing is that it collects

all model-dependent computations in generalized conditional moments Γj,k. If there is

no closed-form solution, their calculation can be shifted into an offline phase prior to

the time-stepping. Depending on the underlying model a suitable numerical technique

such as Monte Carlo, PDE and Fourier transform methods can be chosen, which reveals

the high flexibility of the approach. Once the generalized conditional moments Γj,k

are computed, the backward induction is solved on a discrete Chebyshev grid. This

avoids any computations of conditional expectations during the time-stepping. For each

time step the method delivers a closed form approximation of the price function x 7→∑
ctjTj(x) along with the option’s Delta and Gamma. Since the family of generalized

conditional moments Γj,k are independent of the value function, they can be used to

generate multiple outputs including the option prices for different strikes, maturities and

different payoff profiles. We will later explore this structure in the context of credit

exposure calculation for pricing and risk-management.

The offline-online decomposition separates model and payoff yielding a modular de-

sign. We exploit this structure for a thorough error analysis and find conditions that

imply explicit error bounds. They reflect the modularity by decomposing into a part

stemming from the Chebyshev interpolation, from the time-stepping and from the of-

fline computation. Under smoothness conditions the asymptotic convergence behaviour

is deduced.
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3.1.1 American options, optimal stopping and dynamic programming

We follow the comprehensive summary of [99] and start with an American put option

in the Black-Scholes stock price model. Let (Ω,F , (Ft)t≥0,Q) be a filtered probability

space where Q is the risk-neutral pricing measure. Assume a bank account paying a

continuously compounded risk-free interest rate r ≥ 0 that is modeled by

dBt = rBtdt, with B0 = 1.

Moreover, assume a risky asset, i.e. a stock, St which is modeled by the following SDE

dSt = St
(
rdt+ σdWt

)
, S0 > 0

for a volatility σ > 0 and Wt is a Brownian motion under Q. The value of the American

put option is given by the following theorem.

Theorem 13. The arbitrage-free value of an American put option with strike K and

maturity T in the Black-Scholes model is given by

V (s, t) = sup
τ∈Tt,T

E
[
e−r(τ−t)(K − Sτ )+

∣∣St = s
]

for s ∈ (0,∞) and t ∈ [0, T ]. The set Tt,T refers to all stopping times with respect to the

filtration (Ft)t≥0 that have values in [t, T ].

Proof. See Theorem 3.1 and Remark 3.3 of [99] and the further references therein.

The theorem formalizes the intuitive idea that the holder of an American (put) option

will maximize his expect return by finding the optimal exercise point until the maturity

T . Closely related to the American option is the pricing problem of a Bermudan option.

A Bermudan option is an option that can only be exercised at a set of (finitely many)

time points before the maturity T . It can be seen as the discrete-time analogy of the

continuous time problem of pricing an American option. In the following, we will focus

on the pricing of Bermudan options. For numerical methods it is more convenient to

work in discrete time instead of continuous time.

We start with a more general optimal stopping problem following [106]. Let the

stochastic process X = (Xt)t≤T be a Markov process with state space Rd defined on

the filtered probability space (Ω,F , (Ft)t≥0,P). Let g : [0, T ]× Rd → R be a continuous

function with E
[
sup0≤t≤T |g(t,Xt)|

]
<∞. Then

V (t, x) := sup
t≤τ≤T

E [g(τ,Xτ )|Xt = x] for all (t, x) ∈ [0, T ]× Rd
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over all stopping times τ , see (2.2.2′) in [106]. In discrete time, the optimal stopping

problems can be solved with dynamic programming. Namely, with time stepping t =

t0 < . . . < tnT = T the solution of the optimal stopping problem can be calculated via

backward induction

VT (x) = g(T,x)

Vtu(x) = max
(
g(tu,x),E[Vtu+1(Xtu+1)|Xtu = x]

)
.

Note that n refers to the number of time steps between t and T . For notational con-

venience, we indicate the value function at each time step with subscript tu to directly

refer to the time step tu. For a detailed overview of optimal control problems in discrete

time we refer to [106].

If we ignore the early-exercise possibility and set g(tu, x) = 0 for tu < T the problem

boils down to the pricing of a European option. Moreover, discretely monitored barrier

options can be priced via backward induction, see for example [44]. We consider an up-

and-out call option with strike K and barrier B in the Black-Scholes model and assume

that the barrier is discretely monitored at dates t = t0 < . . . < tnT = T . If the stock

price is above the barrier at any of the monitoring days the option is knocked out and

has zero value. The idea of barrier options is to make plain vanilla European call or put

options cheaper by introducing the knock-out barrier. The value of such an option can

be computed via backward induction

VT (S) = g(T, S) = (S −K)+1(0,B](S)

Vtu(S) = e−r(tu+1−tu)E[Vtu+1(Stu+1)|Stu = S]1(0,B](S).

An efficient numerical pricing algorithm for early-exercise option is thus also a good

candidate for the pricing of barrier options. This motivates us to define a slightly more

general dynamic programming problem that includes American, Bermudan, European

and barrier options.

Definition 6. Let X = (Xt)t≤T a Markov process with state space Rd. For a continuous

function g : [0, T ] × Rd −→ R with E
[
sup0≤t≤T |g(t,Xt)|

]
< ∞ we define the general

Dynamic Programming Problem (DPP) with value function Vt as

VT (x) = g(T,x) (3.1)

Vtu(x) = f
(
g(tu,x),E[Vtu+1(Xtu+1)|Xtu = x]

)
, (3.2)

where 0 = t0 < . . . < tn = T and f : R × R → R is Lipschitz continuous with constant

Lf .
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Similar to the previous section, we write variables in bold to indicate that their are

multivariate vectors and not scalars. We will introduce our new numerical method for

this general dynamic programming problem.

3.1.2 A dynamic pricing algorithm using Chebyshev interpolation

In this section, we introduce a new pricing method based on Chebyshev polynomial

interpolation. Consider the time step in the backward induction as defined in (3.2),

Vt(x) = f (g(t, x),E[Vt+1(Xt+1)|Xt = x]) ,

with time steps tu < tu+1 < . . . < T and payoff function g. The computational challenge

is to compute E[Vtu+1(Xtu+1)|Xtu = x] for for all time steps tu and all states x, where

Vtu+1 depends on all previous time steps.

The general idea of our approach is to approximate the value function in each time

step by Chebyshev polynomial interpolation. For the moment we assume thatXt is a one-

dimensional process. We express the value function Vtu+1 as a finite sum of Chebyshev

polynomials Tj times coefficients cu+1
j . In this case, the conditional expectations become

E[Vt+1(Xt+1)|Xt = x] ≈
∑

ct+1
j E[Tj(Xt+1)|Xt = x] =

∑
ct+1
j Γj,k,

with generalized moments Γj,k := E[Tj(Xt+1)|Xt = x]. Due to the linearity of the

expectations we only have to compute conditional expectations of Chebyshev polynomials

instead of conditional expectations of the value function Vtu+1 . In order to compute the

coefficients in each time step we require the function values at the Chebyshev points.

This allows us to solve the backward induction on a discretized grid.

In the general d-dimensional set-up, we start the pricing algorithm by fixing a (hy-

per)rectangular domain

X = [x1, x1]× . . .× [xd, xd] ⊂ Rd.

We start at T = tnT and apply a Chebyshev interpolation to the function g(T, x), i.e.

for x ∈ X ,

VT (x) = g(T,x) ≈
∑

j
cj(T )pj(x) =: V̂T (x), x ∈ X

where pj are the multivariate (transformed) Chebyshev polynomials for multi-index j =

(j1, . . . , jd) with 0 ≤ ji ≤ Ni for Chebyshev degree Ni and i = 1, . . . , d. At the first time

step tnT−1, the derivation of the conditional expectation E[g(tnT , XtnT
)|XtnT−1 = x] is
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replaced by E[
∑

j cj(tnT )pj(XtnT
)|XtnT−1 = x] yielding

VtnT−1(x) = f
(
g(tnT−1,x),E[VtnT (XtnT

)|XtnT−1 = x]
)

≈ f
(
g(tnT−1,x),E

[∑
x
cj(tnT )pj(Xtn)

∣∣∣Xtn−1 = x
])

= f
(
g(tn−1,x),

∑
j
cj(tnT )E

[
pj(XtnT

)
∣∣∣XtnT−1 = x

])
.

At time step tn−1, the value function Vtn−1 needs only to be evaluated at the specific

Chebyshev nodes. Hence, denoting with xk = (xk1 , . . . , xkd) the Chebyshev nodes, it

suffices to evaluate

Vtn−1(xk) ≈ f
(
g(tn−1,xk),

∑
j
cj(tn)E

[
pj(Xtn)

∣∣∣Xtn−1 = xk

])
=: V̂tn−1(xk). (3.3)

A linear transformation of the nodal values V̂tn−1(xk) yields the Chebyshev coefficients

according to Definition 4 which determines the Chebyshev interpolation V̂tn−1 . We apply

this procedure iteratively as described in detail in Algorithm 1.

The stochastic part is gathered in the expectations of the Chebyshev polynomials

conditioned on the Chebyshev nodes, i.e. Γj,k(tu) = E[pj(Xtu+1)|Xtu = xk]. Moreover,

if an equidistant time stepping is applied the computation can be further simplified. If

for the underlying stochastic process

Γj,k(tu) = E[pj(Xtu+1)|Xtu = xk] = E[pj(Xt1)|Xt0 = xk] =: Γj,k (3.4)

for u = 0, . . . , n− 1, then the conditional expectations need to be computed only for one

time step, see Algorithm 2. One can pre-compute these conditional expectations and

thus the method allows for an offline/online decomposition.

If the value function x 7→ Vtu(x) is analytic, the Chebyshev interpolation converges

exponentially fast. We will see that a European and a discretely monitored basket option

fall into this category. For analytic value functions we can hope for a fast convergence

of the method due to the promising properties of the static Chebyshev interpolation.

Unfortunately, the American put does not fall into the category of option prices with

analytic value functions. We can still apply the new pricing algorithm and use more

nodal points or we have to modify the pricing algorithm. We will discuss both ideas in

the next section.
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Algorithm 1 Dynamic Chebyshev algorithm

Require: N ∈ ND, X = [x1, x1]× . . .× [xd, xd], 0 = t0, . . . , tn = T
1: Define Chebyshev points zk = (zk1 , . . . , zkD) and nodal points xk = τX (zk), 0 ≤
ki ≤ Ni for i = 1, . . . , d

2: Pre-computation step:
3: For all j,k and all tu, u = 0, . . . , n− 1
4: Compute Γj,k(tu) = E[pj(Xtu+1)|Xtu = xk]

5: Time T
6: V̂T (xk) = g(T,xk), derive

7: cj(T ) = DN (j)
∑
k

′′
V̂T (xk)Tj(zk) with DN (j) =

∏d
i=1

(
2
10<ji<Ni

Ni

)
8: Obtain Chebyshev interpolation V̂T (x) =

∑
j cj(T )pj(x) of VT (x)

9: Iterative time stepping from tu+1 → tu, u = n− 1, . . . , 1
10: Given Chebyshev interpolation of V̂tu+1(x) =

∑
j cj(tu+1)pj(x)

11: Derivation of V̂tu(xk) at the nodal points
12: V̂tu(xk) = f(g(tu,xk),

∑
j cj(tu+1)Γj,k(tu))

13: Derive cj(tu) = DN (j)
∑
k

′′
V̂tu(xk)Tj(zk)

14: Obtain Chebyshev interpolation V̂tu(x) =
∑
j cj(tu)pj(x) of Vtt(x)

15: Deriving the solution at t = 0
16: V̂0(x) =

∑
j cj(0)pj(x)

Algorithm 2 Simplified Dynamic Chebyshev algorithm

Require: Time steps 0 = t1, . . . , tn = T with ∆t := tu − tu−1

1: Replace in Algorithm 1 Lines 2-4 with:

2: Pre-computation step:
3: Compute Γj,k = E[pj(X∆t)|X0 = xk] for all polynomials pj and all nodal points
xk

3.1.3 Pricing of the American put

We recall the dynamic programming problem of an American put for the log stock price

Xt with St = eXt in the Black-Scholes model

VT (x) = (K − ex)+

Vtu(x) = max
{

(K − ex)+, e−r(tu+1−tu)E[Vtu+1(Xtu+1)|Xtu = x]
}
.

Obviously, the payoff function x 7→ (K − ex)+ has a kink at x = log(K) and is thus not

differentiable on R. However, this is not a significant limitation since we know that the

conditional expectation

R 3 x 7→ e−r(tn−tn−1)E
[
(K − eXT )+|Xtn−1 = x

]
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is an analytic function and equals to the Black-Scholes price of an European option. In

the pricing algorithm one can therefore simply start at tn−1 and calculate the conditional

expectation at the nodal points explicitly. We refer to this idea as ”smoothing the payoff”

and discuss the underlying principle in more detail in Section 3.4.1.

The computational challenge of pricing an American put via backward induction is

taking the maximum in every time step. We know that the maximum function is not

continuous and the mapping x 7→ Vtu(x) does not have an analytic extension into the

complex domain. We will discuss the properties of the American put option price in

more detail and provide two possible solutions.

In continuous time, the price of an American put is given by the optimal stopping

problem

Vt(x) = sup
τ∈Tt,T

E
[
e−r(τ−t)(K − eXτ )+

∣∣Xt = x
]
.

For every t ∈ [0, T ] we can define two sets

Ct =
{
x ∈ R

∣∣Vt(x) > (K − ex)+
}

and Et =
{
x ∈ R

∣∣Vt(x) = (K − ex)+
}
.

From the properties of the American put option follows that there is an unique b?t ∈ R
such that Et = (−∞, b?t ] and Ct = (b?t ,∞). We call Ct the continuation region, Et the

exercise region and b?t the optimal exercise boundary. One can show that t 7→ b?t is a

nondecreasing and continuous function on [0, T ) with limt→T b
?
t = log(K), see [99] and

Chapter 25 in [106].

Exploiting the optimal exercise boundary, we obtain from [99] the following repre-

sentation of the American put option price

Vt(x) = E
[
e−r(T−t)(K − eXT )+

∣∣∣Xt = x
]

+ E
[ ∫ T

t
e−r(s−tu)rK1{Xs<b?s}ds

∣∣∣Xt = x
]

The first term is the value of a European option with the same parameters and the

second term is the additional early-exercise premium. It follows immediately that the

price of a European and an American put option coincide if interest rates are zero.

In the Black-Scholes model one can show that for the derivatives of the American

put value function holds

lim
x↘bt

dVt(x)

dx
= −1 for almost every t ∈ [0, T ] (3.5)
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see [99]. This property is often called the ”smooth fit” at the optimal exercise boundary

and it implies that the function x 7→ Vt(x) is at least one time continuously differentiable.

As pointed out in [99], the financial implication of the smoothness is that it enables a

continuous adjustment of the hedging portfolio for an American put. There are no jumps

in the option’s delta around the optimal exercise boundary.

From a numerical point of view, the smoothness ensures that the interpolation of the

value function will still convergence algebraically. This justifies the use of the general

dynamic Chebyshev as presented in Algorithm 1 to price an American put. The number

of nodal points will however be higher than for an European option. Alternatively, we

can explore the fact that in the exercise region the value function x 7→ (K − ex) is

analytic and the same holds true for x 7→ E[Vtu+1(Xtu+1)|Xtu = x] in the continuation

region. Hence, the function x 7→ Vtu(x) is piecewise analytic and we propose to split the

interpolation domain in the dynamic Chebyshev algorithm.

At each time step tu in the backward induction we will conduct the following steps

• compute the splitting point/ exercise boundary b?tu ,

• interpolate the value function on each interval [x, b?tu ] and [b?tu , x].

At the final time step tn = T , the splitting point is b?T = k and we only have to

approximate the payoff on X1,T = [x, b?T ], i.e. for x ∈ X we obtain

g(x) ≈ IN (g|X1,T
)(x) + IN (g|X2,T

)(x) = IN (g|X1,T
)(x)

where IN (g|X1,T
) is the Chebyshev interpolation of g on the interval X1,T

IN (g|X1,T
)(x) =

N∑
j=0

c1
j (T )p1,T

j (x) with p1,T
j (x) := Tj(τX1,T

(x))1X1,T
(x).

At time step tn−1 we can use this approximation to compute the (continuation) value of

the option, i.e.

Vtn−1(x) = max
{
g(x),E[Vtn(Xtn)|Xtn−1 = x]

}
= max

{
g(x),E[g(Xtn)|Xtn−1 = x]

}
≈ max

{
g(x),E[IN (g|X1,T

)(Xtn)|Xtn−1 = x]
}
.

In order to approximate this function with Chebyshev interpolation we have to find the
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exercise boundary b?tn−1
∈ [x, b?tn ] given by

g(b?tn−1
)− E[IN (g|X1,T

)(Xtn)|Xtn−1 = b?tn−1
] = 0.

The boundary can be calculated using a numerical root finder such as the Newton-

Raphson algorithm. Then we split the domain X into the subdomains X1,tn−1 = [x, b?tn−1
]

and X2,tn−1 = (b?tn−1
, x]. On each subdomain, the value function is analytic and we will

approximate the value function with Chebyshev polynomial interpolation. We define

nodal points x1,k = τX1,tn−1
(zk) and x2,k = τX2,tn−1

(zk) for k = 0, . . . , N and compute

the nodal values

V̂tn−1(x1,k) := g(x1,k) and V̂tn−1(x2,k) := E[IN (g|X1,T
)(Xtn)|Xtn−1 = x2,k].

Using this nodal values we can calculate the corresponding Chebyshev coefficients c1
j (tn−1),

c2
j (tn−1) and obtain an interpolation of the value function

Vtn−1(x) ≈ IN (Vtn−1 |X1,tn−1
)(x) + IN (Vtn−1 |X2,tn−1

)(x)

=
N∑
j=0

c1
j (tn−1)p

1,tn−1

j (x) +
N∑
j=0

c2
j (tn−1)p

2,tn−1

j (x).

This leads to the following time-stepping to solve the problem via backward induction.

Assume we have an approximation Vtu+1(x) ≈ IN (Vtu+1 |X1,tu+1
)(x)+IN (Vtu+1 |X2,tu+1

)(x),

at tu we will conduct the following steps:

1. Find the splitting point b?tu such that

g(b?tu)− E[IN (Vtu+1 |X1,tu+1
)(Xtu+1) + IN (Vtu+1 |X2,tu+1

)(Xtu+1)|Xtu = b?tu ] = 0.

2. Split the domain X into the two sets X1,tu = [x, b?tu ] and X2,tu = (b?tu , x].

3. Interpolate the value function on each of the sets using Chebyshev interpolation.

Calculate the nodal values

Vtu |X1,tu
(x1,k) = g(x1,k)

Vtu |X2,tu
(x2,k) = E[IN (Vtu+1 |X1,tu+1

)(Xtu+1) + IN (Vtu+1 |X2,tu+1
)(Xtu+1)|Xtu = x2,k]

for x1,k = τX1,tn−1
(zk) and x2,k = τX2,tn−1

(zk), k = 0, . . . , N . Then calculate the

coefficients c1
j (tu), c2

j (tu).
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4. Obtain the Chebyshev approximation of Vtu given by

Vtu(x) ≈ IN (Vtu |X1,tu
)(x) + IN (Vtu |X2,tu

)(x).

The detailed algorithm is described in Algorithm 3.

Compared to the classical dynamic Chebyshev method we are now able to tackle the

American put option pricing problem in a proper way and we will be able to obtain an

exponential order of convergence. However, the new algorithm has one major drawback

since it does not allow for an offline-online decomposition. In order to see this we have

to look at the conditional expectations which are calculated in each time step, i.e. for

i = 1, 2

E[IN (Vtu+1 |Xi,tu+1
)(Xtu+1)|Xtu = x]

= E[
N∑
j=0

cij(tu+1)p
i,tu+1

j (Xtu+1)|Xtu = x]

=
N∑
j=0

cij(tu+1)E[p
i,tu+1

j (Xtu+1)|Xtu = x]

=
N∑
j=0

cij(tu+1)E[Tj(τXi,tu+1
(x))1Xi,tu+1

(Xtu+1)|Xtu = x],

where the conditional expectations E[Tj(τXi,tu+1
(x))1Xi,tu+1

(Xtu+1)|Xtu = x] depend on

Xi,tu+1 and thus on splitting point b?tu+1
. These splitting points are calculated during

the backward induction and are not known before. Therefore, a pre-computation is not

possible. Two different variations of the dynamic Chebyshev algorithm that tackle this

problem are discussed in [91]. In Section 3.7 we will briefly mention another related

modification of the dynamic Chebyshev method that enables again an offline-online de-

composition.

3.1.4 A dynamic Chebyshev algorithm with splitting

In this section we generalize the algorithm presented in the previous section to general

multivariate dynamic programming problem defined in (3.1) and (3.2). The main idea

is to split the interpolation domain X = [x1, x1] × . . . × [xd, xd] into sub-domains, such

that, on each sub-domain, the payoff/value function is analytic. One each sub-domain

we can then employ a separate Chebyshev interpolation.

For the American put on one asset the sub-domains of X = [x, x] where the two

intervals [x, b?tu ] and [b?tu , x] where b?tu is the optimal exercise boundary and b?T = log(K).
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Algorithm 3 Dynamic Chebyshev with splitting for an American put option

Require: N1, N2 ∈ N, X = [x, x], 0 = t0, . . . , tn = T , strike K
1: Determine Chebyshev points z1,k1 , k1 = 0, . . . , N1, z2,k2 , k2 = 0, . . . , N2

2: procedure Initial time T
3: Set b?tn = log(K), X1,tn = [x, b?tn ], X2,tn = (b?tn , x], x1,k = τX1,tn

(z1,k)

4: V̂T (x1,k) = K − ex1,k , k = 0 : N1, derive

5: c1
j1

(T ) =
(

2
1{0<j1<N1}

N1

)∑N1
k=0

′′
V̂T (x1,k)Tj1(z1,k)

6: Obtain Chebyshev interpolation V̂T (x) =
∑N1

j1=0 c
1
j1

(T )p1,T
j1

(x)

7: procedure Iterative time stepping from tu+1 → tu, u = n− 1, . . . , 1
8: Given V̂tu+1(x) =

∑N1
j1=0 c

1
j1

(tu+1)p
1,tu+1

j1
(x) +

∑N2
j2=0 c

2
j2

(tu+1)p
2,tu+1

j2
(x)

9: Determine splitting point b?tu as root of

10: x0 7→ g(x0)− E[V̂tu+1(Xtu+1)|Xtu = x0]
11: Set X1,tu = [x, b?tu ], X2,tu = (b?tu , x], x1,k = τX1,tu

(z1,k), x2,k = τX 2,tu
(z2,k)

12: Apply Chebyshev interpolation on both intervals
13: V̂tu(x1,k) = K − ex1,k , k = 0 : N1, derive

14: c1
j1

(tu) =
(

2
1{0<j1<N1}

N1

)∑N1
k=0

′′
V̂tu(x1,k)Tj1(z1,k)

15: V̂tu(x1,k) = E[V̂tu+1(Xtu+1)|Xtu = x2,k], k = 0 : N2, derive

16: c2
j2

(tu) =
(

2
1{0<j2<N2}

N2

)∑N2
k=0

′′
V̂tu(x2,k)Tj2(z2,k)

17: Obtain Chebyshev interpolation
18: V̂tu(x) =

∑N1
j1=0 c

1
j1

(tu)p1,tu
j1

(x) +
∑N2

j2=0 c
2
j2

(tu)p2,tu
j2

(x)

19: procedure Deriving the solution at t=0
20: V̂0(x) =

∑N1
j1=0 c

1
j1

(t0)p1,t0
j1

(x) +
∑N2

j2=0 c
2
j2

(t0)p2,t0
j2

(x)

For multivariate options such as basket options the sub-domains or splitting regions are

not necessarily (hyper)rectangulars. For example, the payoff of a basket put option on

two assets (K−0.5(S1 +S2))+ has its kink at S1 +S2 = 2K. However, the exercise region

S1 + S2 ≤ 2K is not a rectangle in R2. Therefore, we have to introduce a more general

notation for the partition of X into sub-domains and the corresponding multivariate

Chebyshev interpolation.

Definition 7 (Q-partition). Let X ⊂ Rd be a compact set. We define a Q-partition of

X as a partition XQ = {X1, . . . ,XQ}, Q ∈ N of disjoint sets X1, . . . ,XQ such that

X =

Q⋃
l=1

Xl and ∀Xl ∈ XQ ∃ ϕXl : [−1, 1]d → X l, bijective and analytic. (3.6)

If all ϕXl are linear functions we call XQ a linear Q-partition of X .

For such a partition we can define a multivariate version of (one-dimensional) piece-

wise polynomial interpolation in Chebyshev points.

Definition 8 (Piecewise multivariate Chebyshev interpolation). Let f : X −→ R and
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XQ a Q-partition of X ⊂ Rd. Assume f is Lipschitz continuous on each closure X l for

Xl ∈ XQ. For Nl ∈ Nd, l = 1, . . . ,Q we can define the piecewise multivariate Chebyshev

interpolation of the function f as

IQ
N
∗(f)(x) =

Q∑
l=1

INl
(f
∣∣
Xl

)(x) with N
∗

= {N1, . . . ,NQ}. (3.7)

where INl
(f
∣∣
Xl

) is the multivariate Chebyshev interpolation of f on Xl given by

INl
(f
∣∣
Xl

)(x) =
∑

0≤j≤Nl

cljp
l
j(x)

clj =
( d∏
i=1

2
10<ji<Nl,i

Nl,i

) ∑
0≤k≤Nl

f(xl,k)Tj(z
k)

with transformed Chebyshev polynomials plj(x) = Tj(ϕ
−1
Xl (x))1Xl(x).

We assume that the value function is analytic on each element of the Q-partition.

This generalizes the idea of a piecewise analytic value function that we have seen for the

American put option.

Assumptions 1 (Piecewise analytic DPP). Let a DPP be given as in 3.1 and 3.2. We

assume that the DPP is piecewise analytic, i.e. we assume that for each u = 0, . . . , n

there exists a Q-partition XQu of X such that for all Xl,u ∈ XQu the function Xl,u 3
x 7→ Vtu(x) has an analytic extension to a generalized Bernstein ellipse B(Xl,u, %l,u) with

%l,u ∈ (1,∞)d.

Under this assumptions we can introduce an extension of Algorithm 1 with splitting

in every time step. Assume that at time point tu+1 the function Vtu+1 is approximated

by

V̂tu+1(x) =

Qu+1∑
l=1

IN l,u+1
(Vtu+1

∣∣
Xl,u+1

)(x) =

Qu+1∑
l=1

∑
0≤j≤Nl,u+1

clj(tu+1)pl,u+1
j (x)

with pl,u+1
j (x) := Tj(ϕ

−1
Xl,u+1

(x))1Xl,u+1
(x). At time point tu this yields for the value

function

Vtu(x) = f
(
g(tu,x),E[Vtu+1(Xtu+1)|Xtu = x]

)
≈ f

(
g(tu,x),E[V̂tu+1(Xtu+1)|Xtu = x]

)
= f

(
g(tu,x),E

[Qu+1∑
l=1

∑
0≤j≤Nl,u+1

clj(tu+1)pl,u+1
j (Xtu+1)

∣∣Xtu = x
])
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= f
(
g(tu,x),

Qu+1∑
l=1

∑
0≤j≤Nl,u+1

clj(tu+1)E
[
pl,u+1
j (Xtu+1)|Xtu = x

])
.

In order to approximate the value function with a piecewise multivariate Chebyshev

interpolation we have to compute the nodal values V̂tu(xlk) with nodal points xlk =

ϕXl,u(zk) for all k and Xl,u ∈ XQu , i.e.

V̂tu(xlk) = f
(
g(tu,x

l
k),

Qu+1∑
l=1

∑
0≤j≤Nl,u+1

clj(tu+1)E
[
pl,u+1
j (Xtu+1)|Xtu = xlk

])
.

The values V̂tu(xlk) can be used to set up Qu multivariate Chebyshev interpolations on

the sets Xl,u ∈ XQu yielding a piecewise multivariate Chebyshev interpolation V̂tu of Vtu

given by

V̂tu(x) =

Qu∑
l=1

IN l,u
(Vtu

∣∣
Xl,u

)(x) =

Qu∑
l=1

∑
0≤j≤Nl,u

clj(tu)pl,uj (x).

The method is described in detail in Algorithm 4.

In the previous section we briefly mentioned that the dynamic Chebyshev algorithm

for an American put does not admit an offline-online decomposition. The same holds for

the general dynamic Chebyshev algorithm with splitting as presented in this section. In

this most general version the algorithm is mostly interesting from a theoretical view point.

For any practical application it needs to be tailored to the specific product and payoff.

We expect that the method will only be feasible if the number of domains Qu is relatively

small. Moreover, it must be simple to find the partition XQu in every time step. For the

American put in one dimension this is the case but there is no straightforward extension

to higher dimension of this optimal exercise boundary. Additionally, the computation

of the generalized moments depends on the transformations ϕXl that might be more

complicated than the linear transformation τX . A more efficient alternative to this

splitting algorithm for the pricing of multivariate early-exercise option is introduced in

Section 5.4. This modification of the dynamic Chebyshev algorithm is based on a new

pricing approach for European basket options presented in [11].

3.2 Theoretical error analysis

In this section we analyse the convergence behaviour of the dynamic Chebyshev method

and its extended version using splitting in two different scenarios. First, we assume that

the value function is analytic and second, we consider a value function that is piecewise
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Algorithm 4 Dynamic Chebyshev algorithm with splitting

Require: Domain X = [x1, x1]× . . .× [xd, xd] and time stepping 0 = t0, . . . , tn = T
1: procedure Initial time T
2: Find Q-partitions XQn and fix N l,u ∈ Nd
3: for l = 1 to Qn do
4: Define nodal points xlk = ϕXl(z

l
k)

5: V̂T (xlk) = g(tn,x
l
k), k ∈ I(N l,n), derive

6: c1
j(T ) =

(∏d
i=1

2
1{0<ji<N1}

N1,n,i

)∑
k∈I(N l,n)

′′
V̂T (xlk)Tj(z

l
k)

7: Obtain interpolation V̂tn(x) =
∑Qn

l=1

∑
j∈I(N l,n) c

l
j(tn)pl,nj (x)

8: procedure Iterative time stepping from tu+1 → tu, u = n− 1, . . . , 1

9: Given V̂tu+1(x) =
∑Qu+1

l=1

∑
j∈I(N l,u+1) c

l
j(tu+1)pl,u+1

j (x)

10: Find Q-partitions XQn and fix N l,u ∈ Nd
11: for l = 1 to Qn do
12: Define new nodal points xlk = ϕXl(z

l
k)

13: Calculate new nodal values

14: V̂tu(xlk) = f
(
g(tu,x

l
k),

Qu+1∑
l=1

∑
j∈I(N l,u+1) c

l
j(tu+1)E

[
pl,u+1
j (Xtu+1)|Xtu =

xlk
])

15: Derive coefficients
16: c1

j(tu) =
(∏d

i=1
2
1{0<ji<N1}

N1,u,i

)∑
k∈I(N l,u)

′′
V̂tu(xlk)Tj(z

l
k)

17: Obtain multivariate Chebyshev interpolation
18: V̂tu(x) =

∑Qu
l=1

∑
j∈I(N l,u) c

l
j(tu)pl,uj (x)

19: procedure Deriving the solution at t=0
20: V̂0(x) =

∑Q0

l=1

∑
j∈I(N l,n) c

l
j(0)pl,0j (x)

analytic. The ideas behind the two main proofs can be extended to value function that

are continuously differentiable and have bounded mixed derivatives.

3.2.1 Error analysis for analytic value functions

In this section we analyse the error of Algorithm 1, i.e.

εtu := max
x∈X
|Vtu(x)− V̂tu(x)|. (3.8)

Two different error sources occur at tu, the classical interpolation error of the Chebyshev

interpolation and a distortion error at the nodal points. With distortion, we refer to the

computational noise that comes from the fact that we do not observe the correct function

values Vtu(xk) at the nodal points but distorted values V̂tu(xk). We call the error induced

from this noise distortion error. Hence, we need the convergence result for the Chebyshev

interpolation which incorporates a distortion error at the nodal points, see Proposition

4. We use this result to investigate the error of the dynamic Chebyshev method. First,
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we introduce the following assumption.

Assumptions 2. We assume X 3 x 7→ Vtu(x) is a real valued function that has an

analytic extension to a generalized Bernstein ellipse B(X , %tu) with %tu ∈ (1,∞)d and

supx∈B(X ,%tu ) |Vtu(x)| ≤ Btu for u = 1, . . . , nT .

Proposition 6 provides conditions on the process X and the functions f and g that

guarantee Assumptions 2. Under these assumptions, we can apply Proposition 4 to

obtain an error bound for the dynamic Chebyshev method at each time step. This

error bound has a recursive structure, since the values of Vtu depend on the conditional

expectation of Vtu+1 . The interpolation error of the final time step is of form (2.32).

At any other time step tu an additional distortion error by approximating the function

values at the nodal points by

Vtu(xk) ≈ f
(
g(tu,xk),

∑
j
cj(tu+1)E[pj(Xtu+1)|Xtu = xk]

)
= V̂tu(xk)

comes into play. Proposition 4 yields

εtu := max
x∈X
|Vtu(x)− V̂tu(x)| ≤ εint(%tu ,N , d, Btu) + ΛNFtu ,

where Ftu := maxj |Vtu(xj)− V̂tu(xj)|. The term Ftu depends on the function f and the

interpolation error at the previous time step tu+1.

Moreover, two additional error sources can influence the error bound. If there is no

closed-form solution for the generalized moments E[pj(Xtu+1)|Xtu = xk] a numerical

technique, e.g. a numerical quadrature or a Monte Carlo method, introduces an addi-

tional error. The former is typically deterministic and bounded whereas the latter is

stochastic. In order to incorporate this error in the following error analysis we introduce

some additional notation. The conditional expectation can be seen as a linear operator

which operates on the vector space of all continuous functions C(Rd) with finite L∞-norm

Γktu : C(Rd)→ R with Γktu(f) := E[f(Xtu+1)|Xtu = xk].

We define the subspace of all d-variate polynomials PN (X ) := span{pj , 0 ≤ j ≤ N}
equipped with the L∞-norm. We assume the operator Γktu is approximated by a linear

operator Γ̂ktu : PN (X )→ R on PN (X ) which fulfils one of the two following conditions.

For all u = 0, . . . , nT the approximation is either deterministic and the error is bounded

by a constant δ,

‖Γktu − Γ̂ktu‖op := sup
p∈PN
‖p‖=1

∣∣∣Γktu(p)− Γ̂ktu(p)
∣∣∣ ≤ δ for 0 ≤ k ≤N (GM)
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or the approximation is stochastic and uses M samples of the underlying process and the

polynomials p may have stochastic coefficients. In this case we assume the error bound

‖Γktu − Γ̂ktu‖op := sup
p∈PN
‖p‖?∞=1

E
[∣∣∣Γktu(p)− Γ̂ktu(p)

∣∣∣] ≤ δ?(M) for 0 ≤ k ≤N (GM*)

with norm ‖p‖?∞ := maxx∈X E[|p(x)|]. In order to incorporate stochasticity of V̂tu(x),

we replace (3.8) by

εtu+1 := max
x∈X

E
[∣∣∣Vtu(x)− V̂tu(x)

∣∣∣] . (3.9)

Note that in the deterministic case (3.8) and (3.9) coincide. Additionally, a truncation

error is introduced by restricting to a compact interpolation domain X . We assume that

the conditional expectation of the value function outside this domain is bounded by a

constant

E[Vtu+1(Xtu+1)1Rd\X |Xtu = xk] ≤ εtr. (TR)

In order to obtain a meaningful convergence result we implicitly assume that this trun-

cation error decays fast enough with increasing size of the domain X . The following

theorem provides an error bound for the dynamic Chebyshev method.

Theorem 14. Let the DPP be given as in Definition 6. Assume the regularity Assump-

tions 2 hold and the boundedness of the truncation error (TR). Then we have

εtu ≤
nT∑
j=u

Cj−uεjint + ΛNLf

nT∑
j=u+1

Cj−(u+1)(εtr + εgmV j) (3.10)

with εgm = δ if assumption (GM) holds and εgm = δ?(M) if assumption (GM*) holds

and C = ΛNLf (1 + εgm), V j = maxx∈X |Vtj (x)| and εjint = εint(%tj , N, d,Btj ).

Proof. Consider a DPP as defined in Definition 6, i.e. we have a Lipschitz continuous

function

|f(x1, y1)− f(x2, y2)| ≤ Lf (|x1 − x2|+ |y1 − y2|).

Assume that the regularity Assumption 2 and the assumption on the truncation error

(TR) hold. Then we have to distinguish between the deterministic case (GM) and the

stochastic case (GM*). In the first case, the expectation in the error bound can simply

be ignored. First, we apply Proposition 4. At time point T there is no random part and
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no distortion error. Thus,

max
x∈X

E
[
|VT (x)− V̂T (x)|

]
= max
x∈X
|VT (x)− V̂T (x)| ≤ εint(%tn , N, d,Mtn).

For the ease of notation we will from know on write εjint = εint(%tj , N, d,Mtj ). We obtain

for the error at tu

max
x∈X

E
[
|Vtu(x)− V̂tu(x)|

]
≤ εuint + ΛNF (f, tu) (3.11)

with maximal distortion error F (f, tu) = max0≤k≤N E
[
|Vtu(xk)− V̂tu(xk)|

]
.

Note that whether (GM) or (GM*) hold, an approximation error of the conditional

expectation of V̂tu+1 is made, i.e. E[V̂tu+1(Xtu+1)|Xtu = xk] = Γktu(V̂tu+1) ≈ Γ̂ktu(V̂tu+1).

The Lipschitz continuity of f yields∣∣∣Vtu(xk)− V̂tu(xk)
∣∣∣ =

∣∣∣f (g(tu,xk),Γktu(Vtu+1)
)
− f

(
g(tu,xk), Γ̂ktu(V̂tu+1)

)∣∣∣
≤ Lf

(∣∣∣g(tu,xk)− g(tu,xk)
∣∣∣ +

∣∣∣Γktu(Vtu+1)− Γ̂ktu(V̂tu+1)
∣∣∣)

= Lf

(∣∣∣Γktu(Vtu+1)− Γ̂ktu(V̂tu+1)
∣∣∣)

≤ Lf
(∣∣∣Γktu(Vtu+11X )− Γktu(V̂tu+1)

∣∣∣+
∣∣∣Γktu(Vtu+11Rd\X )

∣∣∣
+
∣∣∣Γktu(V̂tu+1)− Γ̂ktu(V̂tu+1)

∣∣∣).
Next, we consider the expectation for each of the three error terms. For the first term

we obtain

E
[∣∣∣Γktu(Vtu+11X )− Γktu(V̂tu+1)

∣∣∣] = E
[∣∣∣E[Vtu+1(Xtu+1)1X − V̂tu+1(Xtu+1)|Xtu = xk]

∣∣∣]
≤ max
x∈X

E
[
|Vtu+1(x)− V̂tu+1(x)|

]
= εtu+1

and for the second term we have

E
[∣∣∣Γktu(Vtu+11Rd\X )

∣∣∣] ≤ E [εtr] = εtr.

For the last term we have to distinguish two cases. If we assume (GM) holds, the operator

norm yields ∣∣∣Γktu(V̂tu+1)− Γ̂ktu(V̂tu+1)
∣∣∣ =

∣∣∣ (Γktu − Γ̂ktu

)(
V̂tu+1

)∣∣∣
≤
∣∣∣∣∣∣Γktu − Γ̂ktu

∣∣∣∣∣∣
op

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣
∞

≤ δ
∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣
∞
.
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Next, we consider the second case and assume that (GM*) holds. Then we have

E
[∣∣∣Γktu(V̂tu+1)− Γ̂ktu(V̂tu+1)

∣∣∣] ≤ ∣∣∣∣∣∣Γktu − Γ̂ktu

∣∣∣∣∣∣
op

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣?
∞
≤ δ?(M)

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣?
∞
.

Hence in either case the following bound holds

E
[∣∣∣Γktu(V̂tu+1)− Γ̂ktu(V̂tu+1)

∣∣∣] ≤ εgm max
x∈X

E
[
|V̂tu+1(x)|

]
with εgm = δ if assumption (GM) holds and εgm = δ?(M) if assumption (GM*) holds.

We need an upper bound for the maximum of the Chebyshev approximation

max
x∈X

E
[
|V̂tu+1(x)|

]
≤ max
x∈X

E
[
|V̂tu+1(x)− Vtu+1(x)|

]
+ max
x∈X
|Vtu+1(x)| ≤ εtu+1 + V u+1

with V u+1 := maxx∈X |Vtu+1(x)|. Hence, the error bound (3.11) becomes

εtu ≤ εuint + ΛNLf
(
(1 + εgm)εtu+1 + εtr + εgmV u+1

)
.

By induction, we now show (3.10). For u = nT we have εtnT ≤ ε
nT
int and therefore (3.10)

holds for u = nT . We assume that for nT , . . . , u+ 1 equation (3.10) holds. For the error

εtu we obtain

εtu ≤ εuint + ΛNLf
(
(1 + εgm)εtu+1 + εtr + εgmV u+1

)
≤ εuint + ΛNLf

(
(1 + εgm)

( nT∑
j=u+1

Cj−(u+1)εjint + ΛNLf

nT∑
j=u+2

Cj−(u+2)(εtr + εgmV j)
)

+ εtr + εgmV u+1

)
= εuint + C

nT∑
j=u+1

Cj−(u+1)εjint + ΛNLf

(
C

nT∑
j=u+2

Cj−(u+2)(εtr + εgmV j)

+ εtr + εgmV u+1

)
= εuint +

nT∑
j=u+1

Cj−uεjint + ΛNLf

( nT∑
j=u+2

Cj−(u+1)(εtr + εgmV j) + εtr + εgmV u+1

)
=

nT∑
j=u

Cj−uεjint + ΛNLf

nT∑
j=u+1

Cj−(u+1)(εtr + εgmV j)

which was our claim.

The following corollary provides a simplified version of the error bound (3.10) pre-

senting its decomposition into three different errors (interpolation error εint, truncation

error εtr and error from the numerical computation of the generalized moments εgm).
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Corollary 1. Let the setting be as in Theorem 14. Then the error is bounded by

εtu ≤
(
εint(%,N, d,B) + εtr + εgmV

)
C̃nT+1−u (3.12)

with C̃ = max{2, C}, % = min1≤u≤nT %tu, B = max1≤u≤nT Btu, V = maxu≤j≤nT V j.

Moreover, if εtr = 0, Lf ≤ 1 and N = Ni, i = 1, . . . , d the error bound can be

simplified further. Under (GM*) δ?(M) ≤ c/
√
M , c > 0 yields

εtu ≤ c̃1%
−N log(N)dnT + c̃2 log(N)dnTM−0.5.

for some constants c̃1, c̃2 > 0. Under (GM) the term M−0.5 is replaced by δ.

Proof. Assuming C > 2 and using the geometric series, the first term in the error bound

(3.10) can be rewritten as

nT∑
j=u

Cj−uεjint ≤ εint
nT∑
j=u

Cj−u = εint

nT−u∑
k=0

Ck = εint

(
1− CnT+1−u

1− C

)
≤ εintCnT+1−u,

where εint = maxj ε
j
int = maxj εint(%tj , N, d,Btj ) ≤ εint(%,N, d,B) for % = min1≤u≤n %u

and B = max1≤u≤nBtu . For C ≤ 2 the sum is bounded by εint 2nT+1−u. Similarly, we

obtain for the second term in the error bound (3.10) with β = (εtr + εgmV j)

ΛNLf

nT∑
j=u+1

Cj−(u+1)βj ≤ ΛNLf β

nT−(u+1)∑
k=0

Ck ≤ ΛNLf βC
nT−u ≤ βCnT+1−u

where β = maxj βj . Moreover, we used ΛNLf ≤ ΛNLf (1 + εgm) = C in the last step.

Thus, we obtain the following error bound (3.10)

εtu ≤ (εint + β) C̃nT+1−u =
(
εint(%,N, d,B) + εtr + εgmV

)
C̃nT+1−u,

where C̃ = max{2, C} and V = maxj V j , which shows (3.12).

Furthermore, for the error bound of the multivariate Chebyshev interpolation holds

εint(%,N,D,B) ≤ c1%
−N for a constant c1 > 0 if N = Ni, i = 1, . . . , d. For the Lebesgue

constant of the Chebyshev interpolation exists a constant c2 > 0 such that

ΛN ≤
d∏
i=1

( 2

π
log(N + 1) + 1

)
≤

d∏
i=1

( 4

π
+ 1
)

log(N) ≤ c2 log(N)d.
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Under (GM*), δ?(M) ≤ c/
√
M , c > 0 yields with εtr = 0, Lf ≤ 1

εtu ≤
(
εint(%,N, d,B) + εtr + εgmV

)
(ΛNLf (1 + εgm))nT+1−u

≤
(
c1%
−N + cV M−0.5

) (
c2 log(N)d(1 + cM−0.5)

)nT
≤ c̃1%

−N log(N)dnT + c̃2 log(N)dnTM−0.5

and this converges towards zero for N → ∞ if
√
M > log(N)dnT . If (GM) holds we

have εgm = δ and the term M−0.5 is replaced by δ.

The following proposition provides conditions under which the value function has an

analytic extension to some generalized Bernstein ellipse and Assumptions 2 hold.

Proposition 6. Consider a DPP as defined in (3.1) and (3.2) with equidistant time-

stepping and gt(x) := g(t,x). Let X = (Xt)0≤t≤T be a Markov process with stationary

increments. Assume e〈η,·〉gtu(·) ∈ L1(Rd) for some η ∈ Rd and gtu has an analytic

extension to the generalized Bernstein ellipse B(X , %g) for u = 0, . . . , n. Furthermore,

assume f : R× R→ R has an analytic extension to C2. If

(i) the characteristic function ϕx of X∆t with X0 = x is in L1(Rd) for every x ∈ X ,

(ii) for every z ∈ Rd the mapping x 7→ ϕx(z−iη) has an analytic extension to B(X , %ϕ)

and there are constants α ∈ (1, 2] and c1, c2 > 0 such that supx∈B(X ,%ϕ) |ϕx(z)| ≤
c1e
−c2|z|α for all z ∈ Rd,

then the value function x 7→ Vtu(x) of the DPP has an analytic extension to B(X , %)

with % = %g.

Proof. At T the value function x 7→ VT (x) is analytic since VT (x) = gT (x) and gT has

an analytic extension by assumption. Moreover, e〈η,·〉gT (·) ∈ L1(Rd) for some η ∈ Rd.
We assume e〈η,·〉Vtu+1(·) ∈ L1(Rd) and Vtu+1 has an analytic extension to B(X , %). Then

the function

x 7→ Vtu(x) = f
(
gtu(x),E[Vtu+1(Xtu+1)|Xtu = x]

)
is analytic if x 7→ E[Vtu+1(Xtu+1)|Xtu = x] = E[Vtu+1(Xx

∆t)] has an analytic extension.

From [49, Conditions 3.1] we obtain conditions (A1)-(A4) under which a function of the

form (p1,p2) 7→ E[fp
1
(Xp2)] is analytic. In our case we only have the parameter p2 = x

and so Xp2 = Xx
∆t. Condition (A1) is satisfied since e〈η,·〉Vtu+1(·) ∈ L1(Rd) and for (A2)
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we have to verify that |V̂tu+1(−z − iη)| ≤ c1e
c2|z| for constants c1, c2 > 0.

|V̂tu+1(−z − iη)| =
∣∣∣ ∫
Rd

ei〈y,−z−iη〉Vtu+1dy
∣∣∣

≤
∫
Rd

|e−i〈y,z〉|
∣∣∣e〈y,η〉Vtu+1(y)

∣∣∣ dy
≤ ‖e〈η,·〉Vtu+1(·)‖L1

and thus (A2) holds. The remaining conditions (A3)-(A4) are equivalent to our condi-

tions (i)-(ii) and [49, Theorem 3.2] yields the analyticity of x 7→ E[Vtu+1(Xx
∆t)] on the

Bernstein ellipse B(X , %ϕ). Hence, x 7→ Vtu(x) is a composition of analytic functions and

therefore analytic on the intersection of the domains of analyticity B(X , %ϕ)∩B(X , %g) =

B(X , %) with % = min{%g, %ϕ}. It remains to prove that e〈η,·〉Vtu(·) ∈ L1(Rd). Here the

Lipschitz continuity of f yields

‖e〈η,·〉Vtu(·)‖L1 ≤ Lf
(
‖e〈η,·〉gtu(·)‖L1 + ‖e〈η,·〉Vtu+1(·)‖L1

)
<∞.

Often, the discrete time problem (3.1) and (3.2) is an approximation of a continuous

time problem, for example if a Bermudan option is used as a proxy for an American

option. In this case, we are interested in the error behaviour for n→∞.

Remark 1. Assume the setup of Corollary 1. Moreover, assume that εtr = εgm = 0. If

we let N and n go to infinity, we have to ensure that the error bound tends to zero. We

use that εint(%,N, d,B) ≤ C1%
−N for a constant C1 > 0 and N = miniNi. The following

condition on the relation between nT and N ensures convergence

nT <
log(%)

C1d
· N

log(ΛN ) + log(Lf )
+ 1.

3.2.2 Error analysis for piecewise analytic value functions

In this section we investigate the error decay of the dynamic Chebyshev algorithm with

splitting if the value function is piecewise analytic. The procedure is similar to the

non-splitting algorithm. We require a convergence result for the multivariate Chebyshev

interpolation with distortion. Then we are in position to prove an analogous convergence

result. We start with the convergence result for the static Chebyshev interpolation on a

Q-partition.

Proposition 7. Let X 3 x 7→ f(x) for X ⊂ Rd be a real valued function. Assume we

have a Q-partition of X such that f
∣∣
Xl

has an analytic extension to some generalized
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Bernstein ellipse B(Xl, %l) for %l ∈ (1,∞)d and supx∈B(Xl,%l) |g(x)| ≤ Bl for l = 1, . . . ,Q.

Assume distorted values f ε(xlk) = f(xlk) + ε(xlk) with |ε(xlk)| ≤ εl for all 0 ≤ k ≤ N ,

l = 1, . . . ,Q. Then

max
x∈X

∣∣f(x)− IN∗(f
ε)(x)

∣∣ ≤ max
1≤l≤Q

εint(%l,Nl, d, Bl) + ε̄lΛNl
. (3.13)

where εint(%l,Nl, d, Bl) is the error bound of the tensor based Chebyshev interpolation as

shown in Theorem 9.

Proof. Let x ∈ X . If x ∈ Xl, then the function fl := f
∣∣
Xl

satisfies the assumptions from

Proposition 4 with Bl and the generalized Bernstein ellipse B(Xl, %l). This yields

max
x∈Xl

∣∣fl(x)− INl
(f εl )(x)

∣∣ ≤ εint(%l,Nl, d, Bl) + ε̄lΛNl
.

From maxx∈X
∣∣f(x)− IN∗(f

ε)(x)
∣∣ ≤ max1≤l≤Qmaxx∈Xl

∣∣fl(x)− IN l
(f εl )(x)

∣∣ follows the

assertion directly.

In the following, we use the result from Proposition 7 to investigate the error be-

haviour of the dynamic Chebyshev algorithm with splitting of X in several sub-domains,

i.e. applying on each sub-domain a Chebyshev interpolation. Note that, in this case, we

allow the splitting of the domain X at each time step tu into sub-domains as in (3.6) and

that, between different time steps, the number of sub-domains may change. Additionally,

we allow the use of different numbers of nodal points in the Chebyshev interpolations

Nl,u = (N1,l,u, . . . , Nd,l,u) at each time step tu and on each sub-interval. We define the

additional notation Vl,tu := Vtu
∣∣
Xl,tu

.

Similar to the error analysis for the dynamic Chebyshev algorithm we have to incor-

porate additional error sources such as the truncation error and the generalized moment

error. We assume, that the truncation error is bounded by a constant εTR, i.e.

E[Vtu+1(Xtu+1)1Rd\X |Xtu = x] ≤ εTR for x ∈ X . (3.14)

Moreover, a second error comes into play when the conditional expectations cannot be

computed perfectly, ∣∣∣Γtu,tu+1(pj)(xk)− Γδtu,tu+1
(pj)(xk)

∣∣∣ ≤ δ. (3.15)

In order to incorporate the generalized moments error in the following error analysis we

introduce some additional notation. The notation is a modification of the notation we

introduced for the dynamic Chebyshev algorithm without splitting. We define linear
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operators which operate on the vector space of all continuous functions C(Rd) with finite

L∞-norm by

Γl,ktu : C(Rd)→ R with Γktu(f) := E[f(Xtu+1)|Xtu = xlk].

for xlk = τXl,u(zk). We define the subspace of all continuous functions which are piecewise

d variate polynomials PN?(X ) := span{pl,uj , 0 ≤ j ≤Nl,u, l = 1, . . . ,Qu, u = 0, . . . , nT }
equipped with the L∞-norm.

We assume the operator Γl,ktu is approximated by a linear operator Γ̂l,ktu : PN?(Xl,u)→
R on PN?(Xl,u) which fullfills one of the two following conditions. For all u = 0, . . . , nT

the approximation is either deterministic and the error is bounded by a constant δ,

‖Γl,ktu − Γ̂l,ktu ‖op := sup
p∈P?

N
‖p‖=1

∣∣∣Γl,ktu (p)− Γ̂l,ktu (p)
∣∣∣ ≤ δ for 0 ≤ k ≤Nl,u (GMsp)

with l = 1, . . . ,Qu, or the approximation is stochastic and uses M samples of the un-

derlying process and the polynomials p may have stochastic coefficients. In this case we

assume the error bound

‖Γl,ktu − Γ̂l,ktu ‖op := sup
p∈P?

N
‖p‖?∞=1

E
[∣∣∣Γl,ktu (p)− Γ̂l,ktu (p)

∣∣∣] ≤ δ?(M) for 0 ≤ k ≤Nl,u (GMsp∗)

for l = 1, . . . ,Qu with norm ‖p‖?∞ = maxx∈X E[|p(x)|]. The following error results

incorporates both error types.

Theorem 15. Let a Dynamic Programming Principle be given as in (3.1) and (3.2) and

assume Assumptions 1 hold. Further, let f : R × R → R be Lipschitz continuous with

constant Lf and assume (3.14) holds. Then we obtain

εtu ≤
nT∑
j=u

Cj−uε̃jint + ΛN?Lf

nT∑
j=u+1

Cj−(u+1)(εtr + εgmV j) (3.16)

with

ε̃uint = max
l=1,...,Qu

εint(%l,tu ,Nl,u, d, Bl,tu)

and C = ΛN?Lf (1 + εgm), εgm = δ if (GMsp) holds and εgm = δ? if (GMsp∗) holds.

Proof. The proof is based on the proof of Theorem 14. Consider a piecewise analytic
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DPP as in Assumptions 1, i.e. we have a Lipschitz continuous function

|f(x1, y1)− f(x2, y2)| ≤ Lf (|x1 − x2|+ |y1 − y2|).

Moreover assume for the truncation error holds (TR) and either (GMsp) or (GMsp∗)

hold. In the first case, the expectation in the error bound can simply be ignored. At the

inital time tnT = T , we apply Proposition 7 with ε̄l = 0 resulting in,

max
x∈X

E[|VT (x)− V̂tn(x)|] = max
x∈X
|VT (x)− V̂tn(x)| ≤ max

l=1,...,Qn
εint(%l,tn ,Nl,n, d, Bl,tn).

At time step tu, we can again apply Proposition 7 and obtain

max
x∈X

E[|Vtu(x)− V̂tu(x)|] ≤ max
l=1,...,Qu

(
εint(%l,tu ,Nl,u, d, Bl,tu) + ΛNl,u

F (f, tu, l)
)

with

F (f, tu, l) = max
0≤kNl,u

E[|Vtu(xlk)− V̂tu(xlk)|] for xlk = ϕXl,u(zk).

For the ease of notation we will write εl,uint instead of εint(%l,tu ,Nl,u, d, Bl,tu). The following

proof is analogue to the proof of Theorem 14. Note that in both cases (GMsp) or (GMsp∗)

an approximation error of the conditional expectation is made, i.e. E[V̂tu+1(Xtu+1)|Xtu =

xlk] = Γl,ktu (V̂tu+1) ≈ Γ̂l,ktu (V̂tu+1). The Lipschitz continuity of f yields∣∣∣Vtu(xlk)− V̂tu(xlk)
∣∣∣ ≤ Lf(∣∣∣Γl,ktu (Vtu+1)− Γ̂l,ktu (V̂tu+1)

∣∣∣)
≤ Lf

(∣∣∣Γl,ktu (Vtu+11X )− Γl,ktu (V̂tu+1)
∣∣∣+
∣∣∣Γl,ktu (Vtu+11Rd\X )

∣∣∣
+
∣∣∣Γl,ktu (V̂tu+1)− Γ̂l,ktu (V̂tu+1)

∣∣∣).
Next, we consider the expectation for each of the three error terms. For the first term

we obtain

E
[∣∣∣Γl,ktu (Vtu+11X )− Γl,ktu (V̂tu+1)

∣∣∣] ≤ max
x∈X

E
[
|Vtu+1(x)− V̂tu+1(x)|

]
= εtu+1

and for the second term we have

E
[∣∣∣Γl,ktu (Vtu+11Rd\X )

∣∣∣] ≤ E [εtr] = εtr.

For the last term we have to distinguish two cases. If we assume (GMsp) holds, the

operator norm yields∣∣∣Γl,ktu (V̂tu+1)− Γ̂l,ktu (V̂tu+1)
∣∣∣ ≤ ∣∣∣∣∣∣Γl,ktu − Γ̂l,ktu

∣∣∣∣∣∣
op

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣
∞
≤ δ

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣
∞
.
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Next, we consider the second case and assume that (GMsp∗) holds. Then we have

E
[∣∣∣Γl,ktu (V̂tu+1)− Γ̂l,ktu (V̂tu+1)

∣∣∣] ≤ ∣∣∣∣∣∣Γl,ktu − Γ̂l,ktu

∣∣∣∣∣∣
op

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣?
∞
≤ δ?(M)

∣∣∣∣∣∣V̂tu+1

∣∣∣∣∣∣?
∞
.

Hence in either case the following bound holds

E
[∣∣∣Γl,ktu (V̂tu+1)− Γ̂l,ktu (V̂tu+1)

∣∣∣] ≤ εgm max
x∈X

E
[
|V̂tu+1(x)|

]
with εgm = δ if assumption (GMsp) holds and εgm = δ?(M) if assumption (GMsp∗)

holds. We can use the upper bound for V̂tu+1 from the proof of Theorem 14

max
x∈X

E
[
|V̂tu+1(x)|

]
≤ εtu+1 + V u+1

with V u+1 := maxx∈X |Vtu+1(x)|. Hence, the error bound becomes

εtu ≤ max
l=1,...,Qu

εl,uint + ΛNl,u
Lf
(
(1 + εgm)εtu+1 + εtr + εgmV u+1

)
≤ ε̃uint + ΛN?Lf

(
(1 + εgm)εtu+1 + εtr + εgmV u+1

)
with ε̃uint = maxl=1,...,Qu ε

l,u
int and

N? = (N?
1 , . . . , N

?
D) ∈ Nd with N?

i = max
u=0,...,n

max
l=1,...,Qu

Ni,l,u for i = 1, . . . , d.

Following the induction in the proof of Theorem 14 with ε̃uint instead of εuint yields our

results

εtu ≤
nT∑
j=u

Cj−uε̃jint + ΛN?Lf

nT∑
j=u+1

Cj−(u+1)(εtr + εgmV j)

with C = ΛN?Lf (1 + εgm).

Similar to Proposition 6, we can find conditions for the interpolation on several

intervals such that analyticity is given as in Assumption 1.

3.3 Computation of generalized moments

One of the key aspects of the dynamic Chebyshev method is the shift of all model

dependent calculations into a pre-computation step. Naturally, the question arises how

the resulting generalized moments (3.4) can be derived, i.e. how we can compute

Γj,k(tu) = E[pj(Xtu+1)|Xtu = xk] = E[Tj(τ
−1
X (Xtu+1))1X (Xtu+1)|Xtu = xk]
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in an efficient way. Defining Y = τ−1
X (Xtu+1) conditioned on Xtu = xk we obtain

E[Tj(Y )1[−1,1]d(Y )].

In this section, we discuss different approaches how these generalized moments can be

computed. Depending on the distribution of Y , we can divide the approaches into two

main groups. For some models, we can find analytic formulas for the generalized mo-

ments. Otherwise we have to employ a numerical integration routine. We can summarize

the approaches as follows:

Case 1: Analytic formula

For an univariate normally distributed variable Y , the truncated moments are explicitly

available. More generally, [79] provide a recursive formula for the multivariate truncated

moments E[Y m1[−1,1]d(Y )] if Y is multivariate Gaussian. In this section, we will provide

similar formulas for the expectation of the (truncated) Chebyshev polynomials. First for

an univariate Gaussian variable Y and then for a multivariate variable Y .

Case 2: Numerical integration

In general, there will be no analytic formulas for the (generalized) moments of the (mul-

tivariate) random variable Y . Hence numerical integration techniques come into play.

Depending on the availability, either quadrature techniques using the density or charac-

teristic function, finite difference solvers for the associated PDE or as the most general

case Monte Carlo simulation can be used as numerical integration techniques. The choice

of the numerical integration technique depends on the underlying stochastic model and

if the density or characteristic function is available in closed form.

Case 3: Semi-analytic approach

In some models, we can combine the analytic formula and numerical integration. Assume

their is no analytic formula for the double truncated moments E[Y m1[−1,1]d(Y )] but for

the non truncated moments E[Y m]. If the probability that Y ∈ [−1, 1]d is close to

1 we can replace E[Y m1[−1,1]d(Y )] by E[Y m] and use the identity Tj(x) =
∑j

i=0 aix
i

to obtain the generalized moments E[Tj(Y )1[−1,1]d(Y )]. For this ansatz we require a

distribution with a fast decay of the tail distribution in order to control the error and

the stability of this approach. In terms of the stochastic process Xt this means that for

all xk where E[Xm
tu+1

1[−1,1]d(Xtu+1)|Xtu = xk] is close to E[Xm
tu+1
|Xtu = xk] we use

an analytic formula. For all other xk we compute E[pj(Xtu+1)|Xtu = xk] numerically.

Polynomial processes are a class of stochastic processes for which analytic formulas for

the moments E[Y m] are often available.

We start with an analytic formula for the generalized moments in one dimension. An
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extension of this formula to the multivariate moments can be found in Appendix B. In

the remaining part of this section we discuss several numerical integration methods that

can be employed in the pre-computation step of the dynamic Chebyshev method.

3.3.1 Analytic expressions for the generalized moments

Throughout this subsection we assume that the stochastic process (Xt)t≥0 is a one-

dimensional process that has normally distributed increments. This setting includes

import models such as the Black-Scholes model for equities or the Hull-White and the

Black-Karasinski model for short rates. In this setting, the generalized moments can be

written as

E[pj(Xtu+1)|Xtu = xk] = E[Tj(τ
−1
X (Xtu+1))1X (Xtu+1)|Xtu = xk] = E[Tj(Y )1[−1,1](Y )]

for Y = τ−1
X (Xtu+1) conditioned on Xtu = xk. As τX is linear the random variable Y is

also normally distributed. The following proposition formalizes this approach.

Proposition 8. Assume that (Xt)t≥0 is a one-dimensional stochastic process with nor-

mally distributed increments, i.e.

Xtu+1 |Xtu = x0 ∼ N
(
µ(x0, tu,∆t), σ

2(x0, tu,∆t)
)

for ∆t = tu+1 − tu. In this case we obtain for the generalized moments

E[pj(Xtu+1)|Xtu = x] = E[Tj(Y )1[−1,1](Y )]

Y ∼ N
(

1− 2
x− µ(x0, tu,∆t)

x− x
,
( 2

x− x
)2
σ2(x0, tu,∆t)

)
.

Proof. From the properties of a normally distributed variable follows

E
[
pj(Xtu+1)

∣∣Xtu = x
]

= E
[
pj
(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)]
Z ∼ N (0, 1).

The definition of the transformed Chebyshev polynomials pj and the inverse of the linear

transformation τ[x,x] yield

E
[
pj
(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)]
= E[Tj

(
τ−1

[x,x](µ(x0, tu,∆t) + σ(x0, tu,∆t)Z
)
1[x,x]

(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)
]

= E
[
Tj

(
1− 2

x−
(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)
x− x

)
1[x,x]

(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)]
= E[Tj(Y )1[−1,1](Y )]
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with Y defined as

Y = 1− 2
x− x

x− µ(x0, tu,∆t)
+

2

x− x
σ(x0, tu,∆t)Z

and we used that for a linear transformation holds

1[x,x]

(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

)
= 1[τ−1

[x,x]
(x),τ−1

[x,x]
(x)]

(
τ−1

[x,x]

(
µ(x0, tu,∆t) + σ(x0, tu,∆t)Z

))
= 1[−1,1](Y ).

The properties of the normal distribution yield our claim.

In the proposition we considered the most general case where both drift and volatility

can depend on the starting value x0 and the time step ∆t. In many models that are

of interest we can simplify this expression. Assume that Xt is the log-stock price in a

Black-Scholes model given by the SDE

dXt = (r − 0.5σ2)dt+ σdWt X0 = x0

for interest rate r and volatility σ. In this case Xtu+1 |Xtu = xk ∼ N (xk + ∆t b,∆tσ2)

with b = (r − 1
2σ

2) and for the generalized moments holds

E[pj(Xtu+1)|Xtu = x] = E[Tj(Y )1[−1,1](Y )]

Y ∼ N
(

1− 2
x− x
x− x

+
2

x− x
∆tb,

( 2

x− x
)2

∆tσ2
)
.

Similar results can be obtained for the Hull-White model or the Black-Karasinski model.

If the stochastic model does not omit normally distributed increments, the presented

formulas do not hold. However, in many models it is possible to approximateXtu+1 |Xtu =

x0 with a normally distributed variable if ∆t is small. We assume that the process (Xt)t≥0

is modelled by the following SDE

dXt = α(t,Xt)dt+ β(t,Xt)dWt, X0 = x0.

Then we can discretize the SDE using the Euler—Maruyama method and one time step

of length ∆t = tu+1 − tu is given by

Xtu+1 ≈ Xtu + α(tu, Xtu)∆t+ β(tu, Xtu)
√

∆tZ Z ∼ N (0, 1).
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Hence, Xtu+1 |Xtu = x0 is approximately normally distributed with

Xtu+1 |Xtu = x0 ∼ N (x+ α(tu, x0)∆t, β(tu, x0)2∆t).

We can apply Proposition 8 and obtain for the conditional expectations of the Chebyshev

polynomials

E[pj(Xtu+1)|Xtu = x] ≈ E[Tj(Y )1[−1,1](Y )]

Y ∼ N
(

1− 2
x− x
x− x

+
2α(tu, x)

x− x
∆t,

( 2

x− x
)2

∆tβ(tu, x)2
)
.

In situations where we would typically use Monte Carlo simulation in order to compute

the generalized moments we can now use the same analytic formula as if the increments

where normally distributed. We use the same time discretization as in the Monte Carlo

approach but the analytic formula allows us to omit any simulation noise.

So far we also assumed that we are interested in the expectation of pj on the whole

domain [x, x]. The following results provides a similar result if we are only interested in

a subdomain [c, d] ⊂ [x, x].

Proposition 9. Assume we are in the setting of Proposition 8. Let x ≤ a ≤ c ≤ x, then

we have

E[pj(Xtu+1)1[a,c](Xtu+1)|Xtu = x] = E[Tj(Y )1[l,u](Y )]

with l = τ−1
[x,x](a), u = τ−1

[x,x](c) and

Y ∼ N
(

1− 2
x− x
x− x

+
2

x− x
∆tb,

( 2

x− x
)2

∆tσ2
)
.

Proof. The proof is exactly the same as for Proposition 8. Only for the indicator function

we obtain

1[a,c](x+X∆t)] = 1[τ−1
[x,x]

(a),τ−1
[x,x]

(c)](τ
−1
[x,x](x+X∆t)) = 1[ã,c̃](Y ).

with l = τ−1
[x,x](a) and u = τ−1

[x,x](c).

We have seen that the conditional expectation of the transformed Chebyshev polyno-

mials defined on [x, x] can be reduced to the expectation of Chebyshev polynomials on

[−1, 1]. The following proposition provides a recursive formula that allows us to compute

these expectations analytically. It is based on the recursive definition of the Chebyshev

polynomials (2.12) and the formula for the derivative presented in Proposition 3.
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Proposition 10. Let Y ∼ N (µ, σ2) be a normally distributed random variable with

density f and distribution function F , let −1 ≤ l ≤ u ≤ 1. The truncated generalized

moments µj = E[Tj(Y )1[l,u](Y )] and the expectations of the derivatives of the Chebyshev

polynomials µ′j = E[T ′j(Y )1[l,u]] are recursively defined by

µn+1 = 2µµn − 2σ2
(
Tn(u)f(u)− Tn(l)f(l)− 2n

n−1∑
j=0

′
µj1(n+j) mod 2=1

)
− µn−1, n ≥ 1

and starting values µ0 = F (u)− F (l), µ1 = µµ0 − σ2(f(u)− f(l)).

Proof. Let Y ∼ N (µ, σ2) be a normally distributed variable. We obtain for the expec-

tation of T0

µ0 = E[1[l,u](Y )] =

∫ u

l
f(y)dy = F (u)− F (l).

For the remaining part of our proof we make use of the following property of the density

f of a normally distributed variable

f ′(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (−2
(x− µ)

2σ2
) = f(x)(−2

(x− µ)

2σ2
) = (− 1

σ2
)xf(x) +

µ

σ2
f(x)

It follows that xf(x) = µf(x)− σ2f ′(x). Using this property we obtain

µ1 = E[Y 1[l,u](Y )] =

∫ u

l
yf(y)dy

= µ

∫ u

l
f(y)dy − σ2

∫ u

l
f ′(y)dy

= µµ0 − σ2(f(u)− f(l)).

Assume the moments µj are known for j = 0, . . . , n. The Chebyshev polynomials Tn

satisfy the following recursive formula Tn+1(x) = 2xTn(x)−Tn−1(x). For the generalized

moments we obtain

µn+1 = E[Tn+1(Y )1[l,u](Y )] = 2E[Y Tn(Y )1[l,u](Y )]− E[Tn−1(Y )1[l,u](Y )].

The second term is simply µn−1 and for the first term we obtain

E[Y Tn(Y )1[l,u](Y )] =

∫ u

l
yTn(y)f(y)dy

= µ

∫ u

l
Tn(y)f(y)dy − σ2

∫ u

l
Tn(y)f ′(y)dy
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= µµn − σ2
(
Tn(y)f(y)

∣∣∣u
l
−
∫ u

l
T ′n(y)f(y)dy

)
= µµn − σ2

(
Tn(u)f(u)− Tn(l)f(l)− µ′n

)
.

Altogether we obtain

µn+1 = 2E[Y Tn1[l,u](Y )]− E[Tn−11[l,u](Y )]

= 2
(
µµn − σ2

(
Tn(u)f(u)− Tn(l)f(l)− µ′n

))
− µn−1.

From Proposition 3 follows for the expectation of the derivative of the polynomials

µ′n+1 = 2(n+ 1)

n∑
j=0

′
µj1(n+j) mod 2=0, n ≥ 0

where
∑ ′

indicates that the first term is multiplied with 1/2. Combining the two results

yields

µn+1 = 2µµn − 2σ2
(
Tn(u)f(u)− Tn(l)f(l)− 2n

n−1∑
j=0

′
µj1(n+j) mod 2=1

)
− µn−1

for −1 ≤ l ≤ u ≤ 1, which was our claim.

In the relevant special case where [c, d] = [x, x] and thus [l, u] = [−1, 1] we can

simplify the result.

Remark 2. Assume the conditions Proposition 10 hold for l = −1 and u = 1. Then we

obtain

µn+1 = 2µµn − 2σ2
(
f(1)− Tn(−1)f(−1)− 2n

n−1∑
j=0

′
µj1(n+j) mod 2=1

)
− µn−1 (3.17)

and starting values µ0 = F (1)− F (−1), µ1 = µµ0 − σ2(f(1)− f(−1)).

3.3.2 Numerical integration for the generalized moments

In this section, we discuss several numerical approaches that can be used in order to cal-

culate the generalized moments if the underlying is not normally distributed. We present

the ideas for an univariate process, the extension to higher dimension is possible, see [91].

Probability density function

For the derivation of E[pj(Xtu+1)|Xtu = xk], let the density function of the random
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variable Xtu+1 |Xtu = xk be given as fu,k(x). Then, the conditional expectation can be

derived by solving an integral,

E[pj(Xtu+1)|Xtu = xk] =

∫ x

x
Tj(τ

−1
[x,x](y)) fu,k(y)dy

using pj(y) = Tj(τ
−1
X (y))1X (y). This approach is rather intuitive and easy to implement.

Classical quadrature techniques such as Clenshaw-Curtis or Gauss-Legendre are in most

situation sufficient to obtain accurate results.

Depending on the distribution fu,k the interval [x, x] might be too large and the

integrand is almost zero on a large part of the domain. For example assume Xtu+1 |Xtu =

xk is normally distributed with mean xk + µ∆t and volatility σ2∆t. For k = 0 we have

xk = x and for small values ∆t only the interval [x, x + ε] for some ε > 0 is important.

We propose the following algorithm to tackle this problem:

Fix a p ∈ (0, 1) depending on the aimed accuracy of the pricing algorithm. Then

we compute for each k = 0, . . . , N the p and the 1 − p quantile qp, q1−p and set the

interpolation domain

[xkmin, x
k
max] with xkmin = max{x, qp} and xkmax = min{x, q1−p}. (3.18)

This domain can be used to integrate all pj with j = 0, . . . , N .

Fourier Transformation

In many models we do not know the density in closed form but instead the charac-

teristic function is available. Important examples are models with jumps such as the

Merton jump-diffusion model, the large class of Lévy models and models based on affine

processes. In these models we can apply the ideas of Fourier pricing in order to compute

the generalized moments. The idea behind Fourier pricing is to transform an integral

over the distribution into an integral over the characteristic function. The use of Fourier

methods for the efficient pricing of options goes back to the seminal work of [30].

Assume the process (Xt)t≥0 has stationary increments and the characteristic function

ϕ of X∆t is explicitly available. The following proposition provides a version of the

Fourier pricing formula (2.41) for the generalized moments.

Proposition 11. Assume a stochastic process (Xt)t≥0 with characteristic function φx0

of the random variable Xtu+1 |Xtu. The generalized moments can then be computed as

E[pj(Xtu+1)|Xtu = x0] =
1

π

∫ ∞
0
<
(
T̂j(−z)eiz(1−2 x

x−x )
ϕx0

( 2z

x− x

))
dz. (3.19)
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Proof. We obtain for the generalized moments

E[pj(Xtu+1)|Xtu = xk] = E[Tj(τ
−1
[x,x](Xtu+1))1[x,x](Xtu+1)|x0]

=

∫ ∞
−∞

Tj(τ
−1
[x,x](x))1{x≤x≤x}f(x|x0)dx

=
x− x

2

∫ ∞
−∞

Tj(y)1{−1≤y≤1} f(τ[x,x](y)|x0)︸ ︷︷ ︸
=fx0 (τ(y))

dy.

In the last step we used the substitution y = τ−1
x,x(x). The Chebyshev polynomials Tj on

R should be seen as Tj(x)1[−1,1](x). Parseval’s identity yields∫ ∞
−∞

Tj(y)fx0(τ(y))dy =
1

2π

∫ ∞
−∞

T̂j(z) ̂fx0(τ(·))(z)dz.

The Fourier transform of the density is given by

̂fx0(τ(·))(z) =

∫ ∞
−∞

eizxfx0(τ(x))dx

y=τ[x,x](x)
=

2

x− x

∫ ∞
−∞

e
izτ−1

[x,x]
(y)
fx0(y)dy

=
2

x− x

∫ ∞
−∞

e
iz(1−2 x

x−x+ 2
x−xy)

fx0(y)dy

=
2

x− x
e
iz(1−2

x)
x−x

∫ ∞
−∞

e
iz 2
x−xyfx0(y)dy

=
2

x− x
e
iz(1−2 x

x−x )
ϕx0

(
z

2

x− x

)
,

where ϕx0 is the characteristic function of the respective stochastic process with starting

value x0. The Fourier transform of Tj is the integral

T̂j(z) =

∫ ∞
−∞

eizxTj(x)1[−1,1](x)dx =

∫ 1

−1
eizxTj(x)dx.

Thus we obtain

E[Tj(τ
−1
[x,x](Xtk+1

))1{x≤Xtk+1
≤x}|x0] =

1

2π

∫ ∞
−∞

p̂j(z)e
iz(1−2 x

x−x )
ϕx0

(
2z

x− x

)
dz

=
1

2π

∫ ∞
−∞

p̂j(−z)eiz(1−2 x
x−x )

ϕx0

(
2z

x− x

)
dz

In the last step we used that p̂j(z) = p̂j(−z), since pj is a real valued function. Further-
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more, similar to (2.42) we can write∫ ∞
−∞

p̂j(−z)eiz(1−2 x
x−x )

ϕx0

(
2z

x− x

)
dz = 2

∫ ∞
0
<
(
p̂j(−z)eiz(1−2 x

x−x )
ϕx0

( 2z

x− x

))
dz.

This proves our claim.

The Fourier transform of the Chebyshev polynomials T̂j are presented in [35] and

the authors also provide a Matlab implementation. For all Lévy processes with starting

value x0 we have for the characteristic function ϕx0(z) = eix0zϕ(z).

Monte-Carlo simulation

Lastly, especially in cases for which neither a probability density function, nor a

characteristic function of the underlying process is given, Monte-Carlo simulation is a

suitable choice. For every nodal point xk one simulates NMC paths Xi
tu+1

of Xtu+1 with

starting value Xtu = xk. These simulations can then be used to approximate

E[pj(Xtu+1)|Xtu = xk] ≈
1

NMC

NMC∑
i=1

pj(X
i
tu+1

)

for every 0 ≤ j ≤ N . The polynomials pj can be evaluated using Clenshaw’s algorithm.

For an overview of Monte-Carlo simulation from SDEs and variance reduction techniques

we refer to [54] and [83].

3.4 The dynamic Chebyshev method in practice

In the section we move from the theoretical investigation of the method to the imple-

mentation in practice. This section should be the connection between the first three

sections of the chapter and the empirical investigations in the two sections afterwards.

We discuss how the method should be implemented, analyse the computational complex-

ity of the pre-computation step and the backward induction and examine the expected

convergence behaviour.

3.4.1 Implementation of the method

We focus on the implementation of the method for an American (or Bermudan) put

option and an up-and-out barrier call option. The presented ideas can be easily extended

to other problems that can be written as (3.1) and (3.2). We recall the DPP of the

American put option

V Am
T (x) = g(x) = (K − ex)+
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V Am
tu (x) = max{K − ex, e−r∆tE[Vtu+1(Xtu+1)|Xtu = x]}

and the DPP of the up-and-out barrier call option

V Bar
T (x) = g(x) = (K − ex)+1(−∞,b](x)

V Bar
tu (x) = e−r∆tE[Vtu+1(Xtu+1)|Xtu = x]1(−∞,b](x)

for a barrier b. For a large class of models, we know that the value function x 7→ V Am
tu (x)

is continuously differentiable and piecewise analytic on any interval [x, x] for x < k :=

log(K) < x. However, it is not analytic on the whole domain [x, x]. In contrast, the

value function x 7→ V Bar
tu is analytic on any interval [x, x] for x < k < x ≤ b in many

stock price models.

Interpolation domain and truncation error

A suitable choice for the interpolation domain X = [x, x] is crucial for the implementation

of the method since the restriction to a compact domain introduces a truncation error.

The theoretical error analysis shows that the overall error cannot be below this truncation

error. One the other hand, the larger the interpolation domain is, the more interpolation

nodes are required for the same accuracy.

For the up-and-out barrier call option the natural upper bound is exactly the barrier

b because Vtu(x) is zero for x > b. Moreover, we can exploit that Vtu(x)→ 0 for x→ −∞
to find a suitable lower bound x. Depending on the required accuracy we fix an error

threshold ε > 0 and find a lower bound x such that Q(XT > log(K)|X0 = x) < ε, i.e.

we ensure that the probability of ending in the money is small enough.

For the American put the choice of an appropriate interpolation domain is more

complex. We can exploit that V Am
tu (x) goes to zero for x → ∞ and follow the same

procedure as for the barrier option. Unfortunately, for x small enough V Am
tu (x) = K−ex

and converges towards the strike K. Hence, the truncation at the lower end would yield

to a significantly larger truncation error. In order to tackle this we can exploit the

asymptotic behaviour of the payoff and use that the American option is always exercised

if x is below some x that is small enough. The value function can be approximated by

Vtu+1(x) ≈ (K − ex)1{x<x} + V̂tu+1(x)1{x∈X}

and thus

E[Vtu+1(Xtu+1)|Xtu = xk] ≈ E[(K − eXtu+1 )1{Xtu+1<x}|Xtu = xk] +

N∑
j=0

cj(tu+1)Γj,k(tu)
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for x small and x large enough. One can precompute E[(K−eXtu+1 )1{Xtu+1<x}|Xtu = xk].

We emphasize that similar modifications to reduce the truncation error can be found for

other payoff profiles, e.g. for digitals, butterfly options or any other combination of

different put options.

From a theoretical point of view, the suggested procedure guarantees that the trun-

cation error is negligible. For the American option, computing the additional conditional

expectations is often an unnecessary computational effort. Instead, one can simple choose

a large enough interpolation domain such that for all values of interest x0 the probability

P(mint∈[0,T ]Xt ≤ x|X0 = x0) is small enough. In this case, the truncation error is again

negligible compared to the overall error level. The choice can be made explicitly if the

underlying is conditionally normally distributed.

Remark 3. Assume a stochastic process (Xt)t≥0 where XT |X0 = x0 is normally dis-

tributed with mean µ(x0, T ) and volatility σ(x0, T ). Assume we are interested in starting

values x0 ∈ [xlo, xup], then we set the interpolation domain to

[x, x] = [µ(xlo, T )− kσ(x0, T ), µ(xlo, T ) + kσ(x0, T )]

for some integer k > 0. A standard choice is k = 4 or k = 5.

Setting k = 4 means that the probability of XT ∈ [x, x] given an X0 = x0 ∈ [xlo, xup]

is above 99.994% and the domain is large enough for many applications. In order to

ensure a higher accuracy we need to increase k to 5 or 6. Similar results can be found

for other distributions using a lower and an upper quantile. Note that we are often only

interested in one price and set x0 = xlo = xup.

In many applications, we know that the value function converges towards zero on one

side and is increasing on the other end of the domain. In this case, it might be beneficial

to choose different values of k, i.e.

[x, x] = [µ(xlo, T )− klowσ(x0, T ), µ(xlo, T ) + kupσ(x0, T )].

For example, for a put option we typically want to use a bigger klow > kup and the other

way for a call option.

Initial time step: Smoothing the payoff

For both option types holds that the payoff function g(x) has a kink at k = log(K)

and an accurate interpolation would require a high polynomial degree N . The presented

dynamic Chebyshev approach with splitting is a possibility to tackle this problem. For

the American put it splits the interpolation domain at the early-exercise boundary which
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is exactly the strike at maturity.

However, there is a simpler approach that we call ”smoothing the payoff” and that

ensures a better convergence.

Remark 4. Instead of interpolating the non-smooth payoff function g in the dynamic

Chebyshev algorithm (Algorithm 1), we can directly compute the conditional expectations

E[VT (XT )|XtnT−1 = xk] = E[g(XT )|XtnT−1 = xk]

for k = 0, . . . , N at time point tnT−1. Essentially, it means that we start the pricing

algorithm at tnT−1 instead of at time point tnT = T .

For this task, we can use the same techniques as for the generalized moments,

such as quadrature or Monte Carlo simulation. In most models, we have that x 7→
E[g(XT )|Xtn−1 = x] is analytic and hence, this ”smoothing” will improve the overall

convergence and accuracy of the method. In the next section, we will investigate the

smoothing effect on the error decay numerically.

For the American put option we know that the conditional expectation of the payoff

function is the value of an European put option. In the Black-Scholes model, we have

an analytic formula for the value of a put option that can be used in the first time step.

The following proposition provides a similar result if we add a barrier to the payoff of a

European call option.

Proposition 12. Assume a Black-Scholes framework with stock price process (St)t≥0,

interest rate r, volatility σ > 0 and pricing measure Q. The price of a call option with

strike K, maturity T and barrier B at time t,

B(S0, t) := e−r(T−t)E[(ST −K)+1ST≤B|St = S0]

is given by

B(S0, t) = S0

(
Φ(b1)− Φ(d1)

)
− e−r(T−t)K

(
Φ(b2)− Φ(d2)

)
with

b1 =
log(B/S0)− (µ+ σ2

2 )(T − t)
√
T − tσ

, d1 =
log(K/S0)− (µ+ σ2

2 )(T − t)
√
T − tσ

and b2 = b1 +
√
T − tσ, d2 = d1 +

√
T − tσ.

Proof. The proof of this proposition works similar to the derivation of the Black-Scholes

formula via integration, see for example [41]. We assume t = 0. The stock price can be
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written as ST = S0e
XT with XT = (r− σ2

2 )T + σWT for a Brownian motion Wt. Hence,

XT is normally distributed with mean µT = (r − σ2

2 )T and variance Tσ2. The price of

a barrier call option with strike K, barrier B and maturity T is given by

erTB(S0, 0) =

∫
R

(S0e
x −K)+1{S0ex≤B}f(x)dx =

∫ log(B/S0)

log(K/S0)

(
S0e

xf(x)−Kf(x)
)
dx

where f is the density of XT . For the first part of the integral holds∫ log(B/S0)

log(K/S0)
S0e

xf(x)dx =
S0√

2πTσ

∫ log(B/S0)

log(K/S0)
exe−

(x−µT )2

2Tσ2 dx.

We can rewrite the exponent using µT = (r − σ2

2 )T and we obtain

x− (x− µT )2

2Tσ2
= −

x2 − 2xµT + µ2
T − 2Tσ2x

2Tσ2

= −
x2 − 2x((r − σ2

2 )T + Tσ2) + ((r − σ2

2 )T )2

2Tσ2

= −
x2 − 2x(r + σ2

2 )T + ((r + σ2

2 )T )2 − 2rσ2T 2

2Tσ2

= −
(x− (r + σ2

2 )T )2

2Tσ2
+ rT.

This yields

1√
2πTσ

∫ log(B/S0)

log(K/S0)
exe−

(x−µT )2

2Tσ2 dx

=
erT√
2πTσ

∫ log(B/S0)

log(K/S0)
e−

(x−(r+σ
2

2 )T )2

2Tσ2 dx

= erT
(
Q
(

(r +
σ2

2
)T +

√
TσZ ≤ log

( B
S0

))
−Q

(
(r +

σ2

2
)T +

√
TσZ ≤ log

(K
S0

)))
= erT

(
Q
(
Z ≤

log(B/S0)− (r + σ2

2 )T
√
Tσ

)
−Q

(
Z ≤

log(K/S0)− (r + σ2

2 )T
√
Tσ

))
= erT

(
Φ(b1)− Φ(d1)

)
with

b1 :=
log(B/S0)− (µ+ σ2

2 )(T − t)
√
T − tσ

d1 :=
log(K/S0)− (µ+ σ2

2 )(T − t)
√
T − tσ

.

For the second part of the integral holds∫ log(B/S0)

log(K/S0)
f(x)dx = Q(XT ≤ log(B/S0))−Q(XT ≤ log(K/S0))
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= Q(µT +
√
TσZ ≤ log(B/S0))−Q(µT +

√
TσZ ≤ log(K/S0))

= Q(Z ≤ log(B/S0)− µT√
Tσ

)−Q(Z ≤ log(K/S0)− µT√
Tσ

)

= Φ(b2)− Φ(d2)

for Z ∼ N (0, 1) and

b2 :=
log(B/S0)− µT√

Tσ
=

log(B/S0)− (r − σ2

2 )T
√
Tσ

= b1 +
√
Tσ

d2 :=
log(K/S0)− µT√

Tσ
=

log(K/S0)− (r − σ2

2 )T
√
Tσ

+
√
Tσ.

Overall we have

B(S0, 0) = e−rTE[(ST −K)+1ST≤B]

= e−rTS0

∫ log(B/S0)

log(K/S0)
exf(x)dx− e−rTK

∫ log(B/S0)

log(K/S0)
f(x)dx

= S0

(
Φ(b1)− Φ(d1)

)
− e−rTK

(
Φ(b2)− Φ(d2)

)
.

Replacing T with T − t proves our claim.

Convergence of the option’s sensitivities

We know that the Chebyshev interpolation is also able to approximate the derivatives

of the interpolated function, see Theorem 6 and Theorem 7. This can be exploited in

the dynamic Chebyshev algorithm to compute the option’s sensitivities with respect to

the (log-) stock price. The option’s Delta and Gamma can be computed by taking the

first or second derivative of

S 7→ V̂0(log(S)) =

N∑
j=0

cj(t0)pj(log(S)).

Using Proposition 3 we obtain for the first and the second derivative of x 7→ V̂0(x)

V̂
′

0 (x) =

N−1∑
j=0

c̃j(t0)pj(x) with c̃j(t0) = 2

N∑
k=j+1

kck(t0)1(k+j) mod 2=1

V̂
′′

0 (x) =
N−2∑
j=0

˜̃cj(t0)pj(x) with ˜̃cj(t0) = 2
N−1∑
k=j+1

kc̃j(t0)1(k+j) mod 2=1.
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This yields for Delta and Gamma

∂Price(S)

∂S
≈ V̂ ′0 (log(S))

1

S
and

∂2Price(S)

∂S2
≈ 1

S2

(
V̂
′′

0 (log(S))− V̂ ′0 (log(S))
)
.

Thus Delta and Gamma are expressed as the sum of derivatives of Chebyshev polyno-

mials. In particular, their derivation comes without any additional computational costs

in the offline phase or in the time stepping.

3.4.2 Computational complexity

Next, we investigate the complexity and thus the computational cost of the dynamic

Chebyshev algorithm. In order to do so, the offline/online structure of the method

has to be taken into account. We assume an equidistant time stepping and that the

stationarity assumption (3.4) holds.

In the offline or pre-computation step, we thus need to compute the (N + 1)2 gener-

alized moments Γj,k = E[pj(X∆t)|X0 = xk]. If there is no analytic formula, a numerical

integration requires the evaluation of the integrand at M different points. More precisely,

when using numerical quadrature techniques to compute the moments, the evaluation

of the integrand at Mquad quadrature points is required and similarly for the Monte

Carlo approach on MMC samples. In total, the complexity of the offline phase scales

with N2Mquad or N2MMC . The complexity can be reduced when the straightforward

approach for the moment calculation is replaced with a more sophisticated approach.

Moreover, parallelization can help to reduce the runtime significantly. It is important

to acknowledge that the three quantities N , Mquad and MMC are on a different scale.

The number of Monte Carlo simulations is typically much higher than the number of

quadrature points or Chebyshev nodes. For example 50,000 might be a good choice for

MMC whereas Mquad = 500 is typically high enough. Once a required accuracy is fixed,

both, the Chebyshev degree N and the number of integration points M have to be chosen

accordingly. Later on, we will investigate the optimal relation between N and MMC in

more detail.

After the offline phase all model-dependent quantities are readily available. Moreover,

the effort of the offline phase is independent of the number of time steps nT or the number

of different payoffs that have to be priced. For example, the pricing of an option surface,

i.e. options on the same underlying with different strikes and maturities, can be done

using the same generalized moments.

In the online phase, we need to compute the vector of nodal values V̂tu(xk) for all

k = 0, . . . , N and then the coefficient vector ctuj for j = 0, . . . , N in every time step.
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Both require the multiplication of a vector with N + 1 entries with an (N + 1)× (N + 1)

matrix. Hence, the total effort scales with nTN
2 where nT is the number of time steps.

The complexity of the online phase is therefore independent of the numerical method

applied in the offline calculations. Since N is typically relatively small the method

becomes very efficient.

3.4.3 Expected convergence behaviour

Before we perform a numerical convergence analysis, we recall the theoretical error anal-

ysis and point out what type of error decay we can expect in the experiments.

First, we consider an analytic value function in the dynamic Chebyshev method and

assume no truncation error. In this case we know from Corollary 1 that the following

error bound holds

εtu ≤ c1%
−N log(N)dnT + c2 log(N)dnT δ

or with δ? instead of δ if (GM*) holds. This yields for the log-error

log(εtu) ≤ log
(
c1%
−N log(N)dnT + c2 log(N)dnT δ

)
= log

(
c1%
−N log(N)dnT

)
+ log

(
1 +

c2

c1
%Nδ

)
= log(c1)− log(%)N + dnT log(log(N)) + log

(
1 +

c2

c1
%Nδ

)
.

(3.20)

If we assume that %Nδ ≤ 1 the log-error as a function of N is bounded by a function

of the form N 7→ c −m1N + m2 log(log(N)) for constants c,m1,m2 > 0 and since the

linear term dominates the log log-term, we expect to observe an exponential error decay

in N . For %Nδ > 1 we obtain

log
(
1 +

c2

c1
%Nδ

)
= log

(c2

c1
%Nδ

)
+ log

(c1

c2
%−Nδ

−1
+ 1
)

≤ log
(c2

c1
) + log(%)N + log(δ) + log

(c1

c2
+ 1
)
.

When we plug this term into (3.20), the terms − log(%)N and log(%)N cancel each other

out. Combining the two cases yields two observations for the convergence behaviour.

First, for a fixed accuracy δ or δ? in the offline phase the method will converge in the

online phase and the maximal reachable accuracy is limited by δ resp. δ?. Second, in

terms of the total computational effort one should choose N subject to the accuracy

of the generalized moments. For example in the Monte Carlo case the optimal N is

a function of the number of simulations or of the number of quadrature points in the

Fourier case. In the Monte Carlo case the error δ? decays typically with cM−0.5 and
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from %Nδ? ≤ 1 follows N ≤ c̃ log(M) for some constant c̃ > 0. If we fix N like this

the complexity of the offline phase N2M becomes log2(M)M and the complexity of

the online phase N2 becomes log2(M). In the Fourier case the error δ depends on the

regularity of the integrand which is model dependent. Typically the error will decrease

much faster than the Monte Carlo error. Similar results can be obtained for a piecewise

analytic value function and the dynamic Chebyshev method with splitting.

An example for a path-dependent option where we can expect exponential conver-

gence is an up-and-out call option.

Remark 5. When conditions (i) and (ii) of Proposition 6 hold and the smoothing of the

payoff as stated in Remark 4 is applied then the value function of an up-and-out barrier

option

Vtu : [x, b] 3 x 7→ E[Vtu(Xtu+1)|Xtu = x]1(−∞,b](x)

is a function with an analytic extension to some Bernstein ellipse B([x, b], %), % ∈ (1,∞)

for all u = 0, . . . , n − 1. In this case the convergence result for the dynamic Chebyshev

method of Corollary 3.4 holds.

From [49] we know that conditions (i) and (ii) of Proposition 6 are for example fulfilled

in the Black-Scholes model.

If the value function is only continuously differentiable and not analytic, we can no

longer apply the results from Section 3.2.1. Nevertheless, we can apply the dynamic

Chebyshev method and we will provide a (rough) estimate of the expected convergence

behaviour. We know that the convergence of the Chebyshev interpolation is of polyno-

mial order for continuously differentiable functions, see Theorem 6. If we simply replace

the term %−N by a term N−p for a p ∈ N, we can perform the same calculations as in

the analytic case. We obtain for the log-error

log(εtu) ≤ log(c1)− p log(N) + dnT log(log(N)) + log
(
1 +

c1

c2
N−pδ

)
.

Assuming Npδ ≤ 1 suggests that the log-error as a function of N is bounded by a

function N 7→ c−m1 log(N) +m2 log(log(N)) for constants c,m1,m2 > 0. In this case

the log-error is approximately linear in log(N). If we use Monte Carlo simulation in the

offline step with decay cM−0.5 the condition Npδ? ≤ 1 implies for p = 1 that N ≤ c̃
√
M

and more general N ≤ c̃M0.5/p. Similarly to the analytic case, if we choose N = c̃M0.5/p

the complexity of the offline phase N2M becomes M1+1/p and the complexity of the

online phase nTN
2 becomes nTM

1/p.

Examples where the value function is only continuously differentiable are early-
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exercise options. Due to the maxima function in the evaluation of the value function in

every time step, the function is not analytic around the optimal exercise point. However,

from ”smooth-fit” property (3.5) that the value function of an American put option in

the Black-Scholes model is still continuously differentiable at the exercise point. [12]

shows that this smoothness property also holds in a jump-diffusion model.

3.5 Empirical error analysis

In this section we investigate the convergence behaviour of the dynamic Chebyshev

method. We price a barrier call option and an American put option along with the

options’ Delta and Gamma in the Black-Scholes model and the Merton jump diffu-

sion model. Both pricing problems are described in more detail in Section 3.4. As a

benchmark approach we choose the COS method of [44] and we use the Matlab imple-

mentations of method which were provided for the benchmarking project of [135]. The

provided implementations are slightly modified to fit for our examples.

For the experiments, we use the following parameter sets in the Black-Scholes model

K = 100, r = 0.03, σ = 0.25, T = 1,

and for the Merton jump diffusion model

K = 100, r = 0.03, α = −0.5, β = 0.4, σ = 0.25, λ = 0.4

and we use 32 time steps. The jump parameters α, β and λ are taken from [135].

Furthermore, we test different (numerical) approaches for calculating the generalized

moments: Integrating over the density, the Fourier approach using the characteristic

function and the closed-form solution if the underlying process has Gaussian increments.

3.5.1 Convergence for analytic value functions

We price a discretely monitored barrier option with call payoff gT (x) = (ex−K)+1(∞,b](x)

and barrier b = log(125) in the Black-Scholes model. For the following experiments, we

used the density approach to calculate the generalized moments implemented with the

Matlab quadrature routine quadgk with an absolute as well as relative error tolerance of

10−13 and we set x = log(10). Prices and sensitivities are calculated on a grid of starting

values equally distributed between 80 and 120 and compared to the benchmark method.

From Section 3.4.3 follows that the value function is analytic on X = [x, b] and we can

expect an exponential error decay.

The left plot in Figure 3.1 shows the log-error (in absolute terms) for an increasing
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number of nodes N = 10, . . . , 100. The log-error for the prices as well as for Delta and

Gamma decays linearly in N as we expected and reaches an accuracy below 10−12. With

only 50 nodal points the method is already able to achieve an accuracy below 10−6.

The right plot in Figure 3.1 shows the same experiment without the smoothing in the

initial time step. The method still converges but the decay of the log-error is no longer

linear.
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Figure 3.1: Error decay of the dynamic Chebyshev method for an up-an-out barrier call
option in the BS model using smoothing in the first time step(left) and without smoothing
(right). The conditional expectation of the Chebyshev polynomials are calculated with
the density function.

3.5.2 Convergence for differentiable value functions

Next, we price a Bermudan put option in the Black-Scholes and in the Merton model.

Here, the value function is only continuously differentiable but not analytic. The ex-

pected decay of the log-error is therefore slower than a linear decay and behaves approx-

imately like −p log(N), see Section 3.4.3. Therefore, we should need more nodal points

as in the analytic case to obtain the same accuracy.

For both models the generalized moments are computed by the Fourier approach as

stated in Proposition 11. We truncate the integral at |ξ| ≤ 250 and use Clenshaw-Curtis

with 500 nodes for the numerical integration. For the Fourier transform of the Chebyshev

polynomials the implementation of [35] is used. We run the dynamic Chebyshev method

for an increasing number of Chebyshev nodes N = 32, 64, . . . , 512. Doubling of the

polynomial degree ensures that the Chebyshev points are nested. We fix an interpolation

domain [log(Smin), log(Smax)] with Smax = 350 and Smin = 15 in the Black-Scholes

model and Smin = 5 in the Merton jump-diffusion model. Then, option prices and their



Chapter 3. The dynamic Chebyshev method 121

sensitivities delta and gamma are calculated on a grid of different values of S0 equally

distributed between 70% and 130% of the strike K. The resulting prices and Greeks are

compared to our benchmark method and the maximum error over the grid is calculated.

Moreover, we compare the realized error decay to a theoretical error decay of N−2, i.e.

an error decay of order two in space. We recall that no time discretization error is made

for Bermudan options if the generalized moments can be evaluated accurately.

Figure 3.2 shows the error decay (in absolute terms) for the Black-Scholes model

(left hand side) and the Merton model (right hand side). We observe that the method

converges and an error below 10−3 is reached for N = 256 Chebyshev nodes. The speed

of the convergence is similar for both stock price models and slower than in the barrier

option example. The plots demonstrate an approximately polynomial error decay in N .

In both models, the error decay is better than order two without applying any splitting

at the exercise boundary.
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Figure 3.2: Error decay of the dynamic Chebyshev for a Bermudan option in the BS
model (left) and the Merton model (right). The conditional expectation of the Chebyshev
polynomials are calculated with the Fourier transformation.

3.5.3 Convergence for a bivariate barrier option

In this section, we provide evidence that the method also works for multivariate options

by looking at the convergence of the dynamic Chebyshev method for a barrier option

with two barriers. We consider two assets S1
t , S

2
t and an option with payoff

g(x1, x2) = (ex1 −K)+1(−∞,b1](x1)1(−∞,b2](x2) with x1 = log(S1), x2 = log(S2)

strike K and barrier b. This type of option is also referred as outside/rainbow barrier

option as a second (outside) underlying is included to generate an additional discount
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compared to a standard (barrier) option. An economic example could be that a company

would like to hedge against increasing prices of a commodity only if the economy stays

at or below its current level. In the scenario of an economic boom higher prices cover the

increase in costs and no hedge is required. Different examples of options with multiple

barriers and their economic interpretation can for example be found in [42].

Here, we assume that both assets follow a geometric Brownian motion and hence we

are in a bivariate Black-Scholes type model. We fix the following model parameters

K = 100, r = 0.03, σ1 = 0.25, σ2 = 0.2, ρ = 0.4, T = 1,

and choose as barrier b1 = log(125) and b2 = log(120). For the calculation of the

generalized moments we use the density approach implemented using Clenshaw-Curtis

quadrature with 500 points in each dimension. We fix a bivariate interpolation domain

X = [x1, b1]× [x2, b2] with x1 = log(20) and x2 = log(20). We run the dynamic Cheby-

shev method for an increasing number of points N = N1 = N2 ranging from 10 to 40

and calculate prices on a two-dimensional grid of starting values equally distributed in

[90, 110]× [90, 110]. For the comparison of prices, we run the method with N = 50.

Figure 3.3 shows the resulting error decay. We still observe that the log-error de-

cays almost linear in the total number of N2 grid points as theoretically predicted, see

Section 3.4.3. In a general D-dimensional framework we can expect to need ND points

for the same error behaviour in N . This is often called the course of dimensionality.

This numerical experiment should only been seen as a toy example that shows that the

theoretical convergence results for d > 1 hold numerically. In Chapter 5, we discuss how

the dynamic Chebyshev method can be efficiently used to price multivariate options in

detail.

3.5.4 Convergence for piecewise analytic functions

Next, we implemented the dynamic Chebyshev algorithm with splitting as provided in

Algorithm 3. We repeat the experiments for the Bermudan put from Section 3.5.2. Using

the splitting algorithm we expect exponential convergence and a lower number of nodal

points should be sufficient to reach the same level of accuracy. We run the dynamic

Chebyshev method for an increasing number of Chebyshev nodes N = 5, 10, . . . , 75. We

fix an interpolation domain [log(Smin), log(Smax)] with Smin = 10 and Smax = 500 in

the Black-Scholes model and Smin = 2 and Smax = 850 in the Merton jump-diffusion

model. Then, option prices are calculated on a grid of different values of S0 equally

distributed between 70% and 130% of the strike K. Moreover, the option’s sensitivities

delta and gamma are computed on the same grid. The conditional expectations are
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Figure 3.3: Error decay of the dynamic Chebyshev approach for a bivariate barrier
option in a two-dimensional Black-Scholes model. The conditional expectation of the
Chebyshev polynomials are calculated using the density function.

again calculated using the Fourier approach and for the Black-Scholes model we use also

the closed form solution.
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Figure 3.4: Error decay of the dynamic Chebyshev method with splitting for a Bermudan
option in the BS model (left) and the Merton model (right). The conditional expectation
of the Chebyshev polynomials are calculated with the Fourier transformation.

Figure 3.4 shows the error decay for the Black-Scholes model (left plot) and for the

Merton jump-diffusion model (right plot). As expected, we observe that the log-error

decays linearly in the Chebyshev degree N . With only 26 nodal points we reach an

absolute error of 10−4 and with 50 points we obtain an error in the region of 10−8.

Figure 3.5 shows the error decay for the Black-Scholes model combined with the analytic
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Figure 3.5: Error decay of the dynamic Chebyshev with splitting for a Bermudan option
in the Black-Scholes model. The conditional expectation of the Chebyshev polynomials
are calculated with a recursive formula for the truncated moments.

solution for the generalized moments. The behaviour is the same as for the Fourier ap-

proach for N = 5, 10, . . . , 35. The advantage is that the analytic solution is significantly

faster than the integration routine in the Fourier approach. However, the drawback of

this recursive formula is that the approach becomes unstable for higher values of N .

Fortunately, we can easily fix this by increasing the number of time steps nT .

3.6 Benchmarking of the method

So far, we have empirically investigated the error decay of the method for option prices

and their derivatives. In this section, we compare the dynamic Chebyshev method with

the least-squares Monte Carlo approach of [88] in terms of accuracy and runtime. Here,

we consider American options or more precisely, Bermudan options with a high number

of exercise rights per year.

We look at a whole option price surface with varying maturities and strikes. We

choose 9 different maturities between one month and two years given by

T ∈ {1/12, 2/12, 3/12, 6/12, 9/12, 1, 15/12, 18/12, 2}

and strikes equally distributed between 80% and 120% of the current stock price S0 = 100

in steps of 5%. We fix n = 504 time steps (i.e. exercise rights) per year, which is

equivalent to two ticks per trading day (assuming 252 trading days per year). We use a

relatively high number of exercise rights to ensure that the solution in discrete time is a

good approximation of the continuous time problem of pricing an American put.
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We compare the dynamic Chebyshev method to the least-squares Monte Carlo ap-

proach. For the dynamic Chebyshev method we also use Monte Carlo simulation to

calculate the generalized moments in the pre-computation step. We use a Chebyshev

degree of N = 32, 64, 128 and N = 256 and run both methods for an increasing number

of Monte-Carlo paths.

The convergence of the DC method depends on both, the number of nodes N and

the number of Monte Carlo paths M . For an optimal convergence behaviour one needs

to find a reasonable relationship between these factors. The analysis of the expected

convergence behaviour in Section 3.4.3 shows that the number of Chebyshev nodes N

should be c
√
M for a constant c > 0. This implies that if we double the number of

nodal points, the number of Monte Carlo samples should increase by a factor of four.

Therefore, we fix the number of samples M as

M ∈ {2,000, 8,000, 32,000, 128,000} .

3.6.1 The Black-Scholes model

As a first benchmark, we use the Black-Scholes model with the same parameters as in

Section 3.5 and an initial stock price of S0 = 100. In order to price options with different

strikes in one run of the dynamic Chebyshev method, we interpolate in the log-moneyness

x = log(S/K) instead of the log-stock price. We fix an interpolation domain X = [x, x]

with x = log(0.2) and x = log(3).

Figure 3.6 shows the price surface and the error surface for N = 256 and M = 128000.

The error was estimated by using the COS method as benchmark. We reach a maximal

error below 5 · 10−3 on the whole option surface.

In Figure 3.7 the log-error is shown as a function of the log-runtime for both methods.

The left figure compares the total runtimes and the right figure compares the offline run-

time. For the dynamic Chebyshev method the total runtime includes the offline-phase

and the online phase. The offline-phase consists of the simulation of one time step of the

underlying process X∆t for N + 1 starting values X0 = xk and of the computation of

the conditional expectations E[pj(X∆t)|X0 = xk] for j, k = 0, . . . , N . The online phase

is the actual pricing of the American option for all strikes and maturities. Similar, the

total runtime of the least-squares Monte Carlo method includes the simulation of the

Monte Carlo paths (offline-phase) and the pricing of the option via backward induction

(online-phase). The corresponding runtimes and errors are displayed in Table 3-A.
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We observe that the dynamic Chebyshev method reaches the same accuracy in a

significantly lower runtime. For example, a maximum error of 0.1 is reached in a total

runtime of 0.16s with the dynamic Chebyshev method whereas the LSM approach needs

63.35s. This means the dynamic Chebyshev method is nearly 400 times faster for the

same accuracy. For the actual pricing in the online phase, the gain in efficiency is

even higher. We observe that the dynamic Chebyshev method outperforms the least-

squares Monte Carlo method in terms of the total runtime and the pure online runtime.

Moreover, we observe that the performance gain from splitting the computation into

an offline and an online phase is much higher for the dynamic Chebyshev method. For

instance, in the example above the online runtime of the dynamic Chebyshev method is

0.04s whereas the LSM takes 62.33s, a factor of 1,500 times more.
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Figure 3.6: Price surface and corresponding error of the dynamic Chebyshev method in
the Black-Scholes model. The conditional expectations are calculated with Monte Carlo
simulation.
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Figure 3.7: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the
dynamic Chebyshev method with the least-squares Monte Carlo algorithm.
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dynamic Chebyshev least-squares Monte Carlo

paths total online error total online error

M=2000 0.06s 0.04s 0.4447 4.66s 4.46s 0.4491

M=8000 0.16s 0.04s 0.0466 14.74s 14.45s 0.1838

M=32000 2.56s 0.05s 0.0116 63.35s 62.33s 0.0886

M=128000 21.65s 0.06s 0.0072 261.26s 257.70s 0.0438

Table 3-A: Comparison of the dynamic Chebyshev method with the least-squares Monte
Carlo algorithm in the Black-Scholes model. The table shows total and online runtime
vs. accuracy for different number of MC paths.

One striking advantage of the dynamic Chebyshev method is that once the conditional

expectations are calculated, they can be used to price the whole option surface. The pure

pricing, i.e. the online phase, is highly efficient. Furthermore, one only needs to simulate

one time step ∆t of the underlying stochastic process instead of the complete path. We

investigate this efficiency gain by varying the number of options and the number of time

steps (exercise rights). From Section 3.4.2, we know that the computational complexity

of the offline phase is independent of the number of time steps and the number of

payoffs/options we want to price. Once the generalized moments are calculated the

pricing of an option requires only one run of the online time stepping. Figure 3.7 shows

that the online runtime even for pricing a complete option surface is less than 1% of

the total runtime. Therefore we can expect that varying the number of options and

the number of exercise rights has nearly no effect on the total runtime of the dynamic

Chebyshev method.

We use both methods to price an increasing number of options on the same underlying

and compare the runtimes. We fixed M = 32,000 simulation paths for both methods

and used a Chebyshev degree of N = 128. Similarly, we price options with an increasing

number of exercise points per year and compare the runtimes. Figure 3.8 compares the

total runtime of the dynamic Chebyshev method with the total runtime of the least-

squares Monte Carlo method for an increasing number of options and for an increasing

number of time steps. As expected, we can empirically confirm that the efficiency gain

by the dynamic Chebyshev method increases with the number of options and the number

of exercise rights. In both cases, the runtime of the DC method stays nearly constant

whereas the runtime of the least-squares Monte Carlo method increases approximately

linearly.
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Figure 3.8: Total runtime of the dynamic Chebyshev and the least-squares Monte Carlo
method for an increasing number of options (left) and an increasing number of timesteps
(right).

3.6.2 The CEV model

Next, we perform the same experiments using the constant elasticity of variance (CEV)

model for the underlying stock price process. This model belongs to the class of local

volatility models and it is an example of a model where neither the density nor the

characteristic form exist in closed form. For the CEV model as defined in (2.39) we fix

the following parameters.

σ = 0.3, r = 0.03, β = 1.5.

Again, we compare the dynamic Chebyshev and the least-squares Monte Carlo method by

computing the prices of an option price surface. We use the same parameter specifications

for K, T and nT . We fix an interpolation domain X = [x, x] with x = log(50) and

x = log(180).

Figure 3.9 shows the price surface and the error surface forN = 256 andM = 128,000.

The error is calculated using a binomial tree implementation for the CEV model based

on [100].

In Figure 3.10 the log-error is shown as a function of the log-runtime for both methods.

The left figure compares the total runtimes and the right figure compares the offline

runtimes. The corresponding runtimes and error levels are also displayed in Table 3-B.

Again, we observe that the dynamic Chebyshev method is faster for the same accuracy

and it profits more from an offline-online decomposition. For example, the total runtime
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Figure 3.9: Price surface and corresponding error of the dynamic Chebyshev method in
the CEV model. The conditional expectations are calculated with Monte Carlo simula-
tion.

of the dynamic Chebyshev method to reach an accuracy of approximately 0.01 is 2.6s

whereas the least-squares Monte Carlo method takes 444s. For the online runtimes this

out-performance is 1s to 408s.
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Figure 3.10: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the
dynamic Chebyshev method with the least-squares Monte Carlo algorithm.

Investigating this efficiency gain further, we look at the performance for different

numbers of options and time steps (exercise rights). Similarly to the last section, Figure

3.11 compares the total runtime of the DC method with the total runtime of the LSM

method for an increasing number of options and time steps. In both cases, the runtime of

the DC method stays nearly constant whereas the runtime of the LSM method increases

approximately linearly. This observation is consistent with the theoretical considerations

in Section 3.4.2 and the findings for the Black-Scholes model in Section 3.6.1.
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dynamic Chebyshev least-squares Monte Carlo

paths total online error total online error

M=2000 0.44s 0.32s 0.1103 4.97s 4.41s 0.1179

M=8000 0.74s 0.54s 0.0306 20.34s 18.81s 0.0439

M=32000 2.55s 0.97s 0.0136 102.98s 95.65s 0.0379

M=128000 31.18s 4.14s 0.0066 444.87s 407.56s 0.0103

Table 3-B: Comparison of the dynamic Chebyshev method with the least-squares Monte
Carlo algorithm in the CEV model. The table shows total and online runtime vs. accu-
racy for different number of MC paths.
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Figure 3.11: Total runtime of the DC and the LSM method for an increasing number of
options (left) and an increasing number of timesteps (right).

3.6.3 Pre-computation step: Analytic formula vs. Simulation

For the benchmarking against the least-squares Monte Carlo method we have also used

Monte Carlo simulation to compute the generalized moments. In general, this will be

the slowest and least efficient approach to compute these moments due to the slow

convergence of the Monte Carlo simulation. From the complexity analysis we know that

the effort increases quadratic in the number of Monte-Carlo simulations. Recall that we

chose N ≈
√
MMC and thus the offline complexity O(N2MMC) becomes O(N4). This

limits the efficiency of the overall method.

Nevertheless, we observed that the new method outperformed the least-squares Monte

Carlo approach. We expect this performance gain to be even bigger if a different tech-

nique is used in the pre-computation step. We will illustrate this by comparing Monte
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Carlo simulation to the analytic formula for the generalized moments.

In the CEV model, the log-returns are not normally distributed and neither the

density nor the characteristic function of the underlying are available in closed-form. We

show that it is nevertheless possible to use the analytic formula as well as numerical

quadrature. The stock price in the CEV model is modelled by SDE (2.39) and we can

approximate S∆t for small ∆t > 0 by

S∆t ≈ S0 + rS0∆t+ σS
β/2
0

√
∆tZ Z ∼ N (0, 1)

simulating from this discretization yields the Euler—Maruyama scheme which we used

in the previous experiments. Similarly we can find an expression for the log-stock price

Xt = log(St). Ito’s formula yields

dXt =
1

St

(
rStdt+ σS

β/2
t dWt

)
− 1

2

1

S2
t

σ2Sβt dt

= rdt− 1

2
σ2Sβ−2

t dt+ σS
β/2−1
t dWt

=
(
r − 1

2
σ2(eXt)β−2

)
dt+ σ(eXt)β/2−1dWt

and thus we obtain for X∆t the approximation

X∆t ≈ X0 + (r − 1

2
σ2(eX0)β−2

)
∆t+ σ(eX0)β/2−1

√
∆tZ Z ∼ N (0, 1).

We define the right hand side as X̂∆t and we can directly see that X̂∆t ∼ N (X0 + (r −
1
2σ

2(eX0)β−2
)
∆t, σ2(eX0)β−2∆t). We could now either use the density of the normal

distribution or its characteristic function and numerical quadrature or we can directly

explore the analytic formula for the generalized moments.

We repeat the benchmarking experiments form Section 3.6.2 and include the dynamic

Chebyshev method with the analytic formula in the pre-computation step. Figure 3.12

shows the comparison of the dynamic Chebyshev methods and the least-square Monte

Carlo method (left plot) and the runtimes of the simulation and the analytic formula ap-

proach as a function of the number of nodal points N (right plot). We observe that using

the analytic formula in the pre-computation step reduces the overall runtime significantly

due to the lower computational complexity, see the discussion in Section 3.4.2.
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Figure 3.12: Comparison of the DC method for the CEV model using simulation vs.
analytic formula in the pre-computation step. Plot of the total runtime vs. accuracy
(left hand side) and of the runtime as a function of the number of nodal points.

3.7 Extension of the method and outlook

In this chapter, we introduced a new pricing method for path-dependent options with a

focus on barrier options and early-exercise options. Core of the approach is the approxi-

mation of the value function in every time-step of a dynamic programming problem with

a weighted sum of basis functions
∑

j c
t
jpj . This means the new approach belongs to

the group of pricing methods that explore function approximation techniques in finance.

We focussed on Chebyshev polynomial interpolation because of its promising properties

discussed in Chapter 2. Other function approximation methods could be used as well,

especially in multivariate dimensions. Important is the fast convergence of the method

and the efficient computation of the expectations of the basis functions.

We provided a comprehensive theoretical error analysis of the method for a dynamic

programming problem in d dimensions and we also investigated an extension of the

method with splitting. We have seen that the error converges exponentially fast for

discretely monitored barrier options and algebraically for American (and Bermudan)

options. For the latter one an exponential error decay can be achieved if the additional

splitting at the optimal exercise boundary is used. We discussed the implementation of

the method in detail and provided a recursive formula for the conditional expectation of

the Chebyshev basis functions if the underlying is normally distributed.

We validated our theoretical results numerically and provided an empirical error

analysis using different models and option types. Besides the Black-Scholes model we

considered a local volatility model (CEV model) and a model with jumps (Merton’s
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jump-diffusion model). Moreover, we compared the performance of the method to the

regression based Monte Carlo method of [88]. This comparison is a first indicator of the

high numerical potential of the new pricing method.

So far, the numerical testing was mainly a proof of concept. In the next two chapters

we consider the two main applications in the method as motivated in the introduction

in Chapter 1. First, the calculation of credit exposures and second, the pricing of early-

exercise options that depend on multiple risk factors. Besides these two applications,

one can think of several other problems where the dynamic Chebyshev method could be

successfully applied.

So far, we investigated the method only for equity options but the method is not

limited to this asset class. We will see in the next chapters that it can also be used for

the pricing of Bermudan interest rate swaptions and callable bonds (i.e. bonds with an

embedded option). An application to other fixed income products or to foreign exchange

options is possible. Another type of products that provides an interesting application

of the presented method are so-called swing options in energy markets. These options

are early-exercise options with more than one exercise right and they can also be priced

via (multiple) backward-induction(s). For example, [17] as well as [81] extend the least-

squares Monte Carlo method to swing options and [140] apply the COS method to solve

this pricing problem.

Efficiency of the method and limitations

In one dimension, there are two main reasons for the efficiency of the new method. The

first reason is that all stochastic parts are shifted into the generalized moments Γj,k that

can be computed in a pre-computation step. These moments are available in closed form

if the underlying process has Gaussian increments. In this case, no approximation error

or simulation error is made with respect to the underlying distribution. This allowed us

to consider a fine time-discretization with small ∆t that is often difficult to handle for

function approximation methods. Moreover, the same conditional expectations can be

used to price several options on the same underlying.

The second reason for efficiency is the fast convergence and the low number of grid

points. For a discretely monitored barrier option the new method was able to achieve

an accuracy below 10−10 with less than 100 grid points. One reason for the fast error

decay was the application of the smoothing the payoff idea mentioned in Remark 4. In

general, this smoothing is beneficial as long as one can efficiently calculate the prices of

European options in the underlying stochastic model.

For early-exercise options we observed a different convergence behaviour even with the
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smoothing. The value function itself is not analytic and a higher number of grid points

is required to achieve satisfying error levels. We were able to recover the exponential

convergence by applying a domain splitting in every time-step. This splitting comes

however with the computational drawback of computing the exercise point in every

time step. Since the domain varies over time, a pre-computation of the conditional

expectations is no longer possible. In the following, we will briefly introduce two possible

modifications or extensions of the method that address this limitations. The first one is a

simplification of the splitting approach and can be seen as an intermediate step between

the standard dynamic Chebyshev method and the one with splitting. The second idea

is a parametric version of the dynamic Chebyshev method with splitting that enables

again a form of offline-online decomposition. More details on these modifications of the

dynamic Chebyshev method can be found in [91].

Fixed splitting at the strike K

The problematic part about the dynamic Chebyshev method with splitting is the search

of a new exercise boundary in every step. For an American put option, we propose a fix

splitting at the strike K at every time step in Algorithm 3, i.e. we split [x, x] into [x, k]

and [k, x] for k = log(K). This simplifies the algorithm significantly and allows again

for a decomposition into a pre-computation step and the backward time-stepping.

Assume the value function at time point tu+1 is approximated by two Chebyshev

interpolants, i.e. Vtu+1 = V̂ 1
tu+1

1[x,k] + V̂ 2
tu+1

1(k,x]. In order to approximate Vtu we require

the nodal values for two sets of nodal points x1
k and x2

k given by

Vtu(x1
k) = max

{
g(tu, x

1
k),

N1∑
j=0

c1
j (tu+1)E

[
pj(Xtu+1)1[x,k]|Xtu = x1

k

]
+

N2∑
j=0

c2
j (tu+1)E

[
pj(Xtu+1)1(k,x]|Xtu = x1

k

]}

and the equivalent expression for the values Vtu(x2
k). Hence, in the pre-computation step

we need to calculate four different sets of conditional expectations for polynomials pj1[x,k]

and pj1(k,x] and starting values x1
k and x2

k. In comparison to a Chebyshev interpolation

on the whole domain [x, x] with N points we can choose a lower N1, N2. If we set

N1 = N2 = N/2, the number of conditional expectations which we have to compute in

the pre-computation step is exactly the same.

This modification of the algorithm combines different advantages in one method.

First, it makes the smoothing the payoff idea obsolete since the payoff is smooth on

each subinterval [x, k] and [k, x]. Second, we know that the option price changes its
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behaviour around the strike and the two interpolations require often less grid points

than one interpolation on a large interval. We will provide a small toy example to

illustrate the potential of this modification.

We consider again a Bermudan put option in the Black-Scholes model and compare

the error decay of the dynamic Chebyshev method with and without splitting at the

strike. We fix an initial stock price S0 = 100, a strike K = 100, a volatility σ = 0.25

and an interest rate of r = 0.03. We consider an option with maturity T = 1 and 32

exercise rights. As a benchmark, we use again the COS method of [43]. Figure 3.13

shows the resulting error decay for both approaches. We observe that the method with

splitting yields a lower error for the same number of nodal points. This modification of

0 50 100 150
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10-4

10-2

100

Figure 3.13: Error decay of the dynamic Chebyshev method and the dynamic Cheby-
shev method with splitting at the srike for a Bermudan option in the BS model. The
conditional expectation of the Chebyshev polynomials are calculated with the Fourier
transformation.

the dynamic Chebyshev method seems to be promising and we will make use of it in the

next chapter.

Parametric dynamic Chebyshev method

So far, we used the dynamic Chebyshev method to price options for a fixed set of modal

parameters. We extend this method to a parametric pricing algorithm using the so-

called Magic point empirical interpolation. The resulting method is able to handle the

domain splitting more conveniently by considering the splitting point as an additional

parameter.

Consider the problem of interpolating a parametric set of functions U := {hp : Ω →
R | p ∈ P} where Ω ⊂ Cd is a compact domain and P a compact parameter set. [6]
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proposed a greedy procedure wherein the objective is to minimize the L∞-error for the

approximation of functions in the set U . This greedy algorithm results in

• points z∗1 , . . . , z
∗
M ∈ Ω, the so-called Magic points

• basis functions θM1 , . . . , θMM .

The resulting Magic point interpolation operator is given by

hp(z) ≈
M∑
m=1

hp(z
∗
m)θMm (z) ∀z ∈ Ω, ∀p ∈ P.

This interpolation method can be turned into a quadrature rule by integrating the basis

functions. [50] proposed to use this method to efficiently calculate option prices via the

Fourier pricing formula (2.41). This motivates us to use Magic point interpolation to

compute the generalized moments in an efficient way via the Fourier formula (3.19). We

define the parametric integrands

hp(z) = <
(
p̂j(−z)eiz(1−2 x

x−x )
ϕx0
( 2z

x− x
∣∣p̃))

with p = [x, x0, p̃], where p̃ are parameters of the underlying stochastic process. Using

the Magic Point algorithm we find magic points z?1 , . . . , z
?
M and functions θM1 , . . . , θMM

such that the functions hp can be approximated by

hp(z) ≈
M∑
m=1

hp(z
?
m)θm(z)

and thus

E[pj(X∆t)|X0 = x0] ≈ 1

π

M∑
m=1

hp(z
?
m)wMm

=
1

π

M∑
m=1

<
(
p̂j(−z?m)e

iz?m(1−2 x
x−x )

ϕx0
( 2z?m
x− x

∣∣p̃))wMm
with weights wMm =

∫∞
−∞ θm(z)dz.

The advantage is that the greedy algorithm for the Magic point has only to be done

once for each model. Afterwards, the pricing becomes very efficient and a splitting of the

domain can be performed dynamically. A detailed investigation of this algorithm goes

beyond the scope of this thesis and is left for future research. First numerical experiments

showed already a fast error decay of this algorithm. Moreover, [91] obtained promising

results for a similar parametric extension of the dynamic Chebyshev method.



Chapter 4

Efficient computation of credit

exposure

In this chapter, we discuss how credit exposures in pricing and risk management can

be efficiently calculated using Chebyshev interpolation. Credit exposures are used to

estimate, for example, counterparty credit risk (and consequently the regulatory capital

of financial firms), initial margins of collateralized trades, Credit Valuation Adjustments

(CVA), Debit Valuation Adjustments (DVA) and, more recently, Funding Valuation

Adjustments (FVA). The exposure of a trade at time t is defined as

Et(Xt) = max{Vt(Xt), 0},

where Xt is the risk factor that drives the price Vt at time t of a portfolio of derivatives.

In essence, the credit exposure calculation projects forward in time the distributions

of relevant underlying assets, which follow appropriate stochastic models, and obtains

the associated distributions of the values of the derivatives in scope, up to their longest

maturity. The specifics of this calculation vary with each application. For example, for

CVA and DVA the calculation is performed at netting set level while for FVA is done

at portfolio level. Netting means that positions with positive and negative exposure

can offset each other. A netting set refers than to all derivatives traded with the same

counterparty that can be used for netting. For CVA, negative exposures are floored to

zero before taking a discounted average under the risk-neutral pricing measure Q. In

contrast, in order to quantify credit risk, one needs to assess the distribution of the

exposure Et(Xt) under the real-world measure P. For instance, the upper quantiles at

the level of 95, 97.5 or 99% are standard quantities in risk management.

137
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The mentioned distributions are usually obtained through Monte Carlo simulation:

On some chosen time points, the derivatives are re-evaluated on various scenarios, ran-

domly drawn from the distribution of the underlying asset, and from the resulting dis-

tribution the required metric is extracted. This ansatz for the exposure calculation is

often called a full re-evaluation approach. See [64] and [63] for an overview of credit

exposure and its calculation. The crux of the calculation are the repeated calls of the

pricers which can be computationally expensive.

We propose to use the dynamic Chebyshev method to efficiently compute credit

exposures of path-dependent options under both, the risk-neutral and the real-world

measure. We introduce the basic definitions of credit exposure for pricing and risk

management and provide a static Chebyshev solution. Then we discuss how the dynamic

Chebyshev pricing method can be used for the exposure calculation of path-dependent

options. We numerically investigate the new approach for exposure calculation and the

economic advantages of a full re-evaluation over common ad-hoc simplifications.

Our numerical investigation confirms that the proposed method is able to produce

accurate exposure profiles under the risk-neutral and the real-world measure. In our

numerical experiments we validate the method for three different equity products (Euro-

pean, barrier and Bermudan option) and a Bermudan interest rate swaption. As models

we consider the Black-Scholes and the Merton jump-diffusion stock price model and the

Hull-White short rate model. We benchmark our method against a least-squares Monte

Carlo approach. The numerical comparison reveals that the proposed method is able to

deliver a higher accuracy in a faster runtime.

This chapter is joint work with Kathrin Glau and Ricardo Pachon. The main results

in this section have been published in the working paper ”Speed-up credit exposure calcu-

lations for pricing and risk management” and in an earlier version ”Fast Calculation of

Credit Exposures for Barrier and Bermudan options using Chebyshev interpolation”.

4.1 Credit exposure for pricing and risk management

Credit exposures are important quantities in the pricing of derivatives as well as in risk

management of derivative portfolios. For these two different applications there exists

also two (slightly) different definitions of expected exposure. We consider a derivative

(or a portfolio of derivatives) with price process Vt. For risk and capital calculation

purposes, the expected exposure (EE) is defined as

EErisk0 (t) = EP[max(Vt, 0)|F0

]
, (4.1)
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where P refers to the real-world measure, F0 is the filtration at t = 0, and Vt is the

value of the derivative at time t. The potential future exposure (PFE) of the derivative

is defined as

PFErisk0 (t) = inf{y : P(max(Vt, 0) ≤ y) ≥ α}. (4.2)

for a level α ∈ (0, 1). The price process Vt depends typically on several risk factors

such as the value of the underlying, the volatility of the underlying and interest rates.

The influence of each risk factor on the price can vary significantly. Therefore it is a

reasonable simplification to consider only the most relevant factor(s) for the exposure

calculation. For an option this is typically the value of the underlying.

We consider the class of path-dependent options that can be written in the form of

(3.1) and (3.2), i.e. that are characterised by a set of exercise dates t0, . . . , tn = T , and

the value function Vtu(x) is of the form

VT (x) = g(x),

Vtu(x) = f
(
g(tu, x),EQ[D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x]

)
,

(4.3)

where f : R × R → R is a Lipschitz continuous function, and g : [0, T ] × R → R, with

g(T, x) = g(x). Here Xt is the underlying risk factor, D(tu, tu+1) = Btu/Btu+1 is the

discount factor between tu and tu+1 and where B(t) is the bank account

B(t) = B(0) exp
(∫ t

0
r(s)ds

)
with B(0) = 1, (4.4)

where r is the money markets continuously compounded interest rate, and t < T . We

focus on three different option types that can be expresses this way,

• Bermudan options: In this case the value function is given as

Vtu(x) = max
{
g(x),EQ [D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x

]}
.

• European options: European options correspond to Bermudan options with no

early exercise. In this case the value function becomes

Vtu(x) = EQ [D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x
]
.

• Barrier options: A discretely monitored up-and-out barrier option with barrier B
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can be written in the same form with value function

Vtu(x) = EQ [D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x
]
1x≤B.

Similarly, we can use the framework for down-and-out barrier options.

The expected exposure also appears when pricing the basis between the counterparty

risk-free value of a trade and its valuation when accounting for counterparty risk. This

difference arises from the risk that a trade is in favour of one counterparty but the other

one defaults before the trade matures. This Credit Valuation Adjustment (CVA) is

equivalent to the price of a contingent credit default swap (CDS), whose value follows

from the fundamental arbitrage theorem:

CVA0

B(0)
= EQ

[∫ s=T

s=0

max(Vs, 0) · d1(τ≤s)

B(s)

]
=

∫ s=T

s=0
EQ

[
max(Vs, 0) · d1(τ≤s)

B(s)

]
,

where Q is the associated risk-neutral measure and 1(τ≤s) is the default indicator for

the counterparty which equals 1 if s is less than the default time τ and 0 otherwise.

The integral over time can be discretized over time buckets, and in the special case that

the value of the derivative and the default event are independent, the expectation can

be expressed as the product of two terms, one accounting exclusively for the default

probability and the other one for the positive exposure of the trade. This exposure is

calculated as

EEprice0 (t) = EQ
[max(Vt, 0)

B(t)

∣∣∣F0

]
= D(0, t)EQ[max(Vt, 0)|F0

]
, (4.5)

assuming that B(0) = 1. Moreover, we define the Q-counterpart of PFErisk as

PFEprice0 (t) = inf{y : Q(D(0, t) max(Vt, 0) ≤ y) ≥ α}. (4.6)

The differences between the risk and the pricing exposures, i.e., expressions (4.1) and

(4.5), is that the former uses the real-world measure for diffusing the risk factors, while

the latter uses the risk-neutral measure (the pricing of Vt in both cases, of course, uses

Q). Additionally, for pricing exposures we also incorporate a discount factor at time

point t. As we will see in Section 4.3, the structure of our methodology does not change

much when calculating either one of them.

For many derivative portfolios the expected exposure cannot be calculated analyt-

ically and simulation approaches come into play. Risk factors Xi
t , i = 1, . . . ,M are

simulated either under the pricing measure Q or under the real-world measure P. The
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expected exposure is then computed as the empirical mean

EErisk0 (t) = EP[max{Vt(Xt), 0}] ≈
1

M

M∑
i=1

max{Vt(Xi
t), 0}

and the potential future exposure as the empirical quantile. Hence, the value of the

trade/derivative has to be calculated for a large number of simulated risk factors. If

there is no analytic solution for the valuation available a full re-evaluation becomes com-

putationally demanding. When there is no closed form solution for the price of the

derivative, e.g. for path-dependent options, a straightforward approach would lead to

nested Monte Carlo simulations. Moreover, often a high number of scenario simulations

is required to obtain stable results, particularly for tail measures. In credit risk manage-

ment an additional challenge arises from the change of measure, i.e. scenarios need to

be generated under the real-world measure, nonetheless pricing is done under the risk-

neutral measure. Hence, additionally to simulating the paths of the underlying under

Q, the scenario paths need to be simulated under P. A naive simplification would be

to assemble the risk quantities also under the pricing measure Q. As reported in [122],

”since the banks are already heavily invested in CVA calculations, it is becoming popular

to take this shortcut”. The analysis of [122] clearly shows the perils of this approach

and emphasizes the importance of calculating credit risk quantities under the real-world

measure.

In the literature regression-based methods are studied in order to avoid nested Monte

Carlo simulation, see for instance [112], who calculates the exposure and CVA for deriva-

tives without analytic solution (e.g. Bermudan options) based on a modification of the

least-squares Monte Carlo approach of [88]. For the exposure calculation under the

real-world measure in a Black-Scholes type model a change of measure using the Radon-

–Nikodym density is employed. Furthermore, [80] and [45] apply the stochastic grid

bundling method (SGBM) of [76] to credit exposure calculation and compare it to a

least-squares Monte Carlo algorithm. Their comparison reveals severe deficiencies of the

L-S approach. Namely, the L-S price introduces numerical noise that leads to inaccurate

exposure, especially in its tail distribution. While the bundling technique in the SGBM

is able to reduce the Monte Carlo noise and produce more accurate results, it comes at

a higher computational cost. A different method is investigated in [117], who calculate

the exposure for Bermudan options on one asset, based on the COS method for early-

exercise options of [44]. The method produces accurate results under Q and P without

any change of measure. However, due to its higher runtimes it is mostly suitable for

benchmarking.
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4.2 A static Chebyshev approach for exposure calculate

The repeated calls of a numerical option pricing routine for different realizations of an un-

derlying risk factor makes the computation of credit exposure an interesting application

for Chebyshev interpolation. In Section 2.3.3 we presented the idea of a static Chebyshev

method for parametric option prices. If the same pricer is repeatedly called for varying

parameters one can simple approximate the pricer using Chebyshev interpolation. Since

option prices are often analytic functions of their parameters a few Chebyshev nodes are

sufficient to obtain accurate approximations. We suggest to use this idea to speed-up the

credit exposure calculation via full re-evaluation. If the existing pricer for a derivative

is slow, the static Chebyshev approach can reduce runtimes significantly.

In the exposure calculation, we propose to approximate the function x 7→ Vt(x) with

Chebyshev polynomials, i.e.

Vt(x) ≈ V̂t(x) =
∑
‖j‖∞≤n

cjpj(x) for x ∈ X ⊂ Rd

and to replace the value function with its Chebyshev approximation

EEt(x) = EQ[max{Vt(Xt), 0}] ≈
1

M

M∑
i=1

max{V̂t(Xi
t), 0}.

This is a good example of a direct and practical useful application of Chebyshev inter-

polation in finance. We know that the function x 7→ Vt(x) is analytic for many option

payoffs and asset models. Hence, only a relatively few nodal points are required to get an

accurate estimation of the price function. Moreover, the number of simulated scenarios

M is typically large (e.g. 10,000, 50,000 or 250,000) and the two aspects combined yield

a large efficiency gain compared to a full re-evaluation. In the following, we describe the

resulting algorithm for the credit exposure calculation of European options.

Algorithm: Credit exposure of European options

Let (Xt)t≤T be an Rd-valued stochastic process of risk factors. Calculate the expected

exposure for a European option with value Vt(x) = EQ[D(t, T )g(XT )|Xt = x].

Simulation step:

1. Simulate paths Xi
t0 , . . . ,X

i
tn , i = 1, . . . ,M of the risk factors Xt either under the

pricing measure Q or under the real world measure P.

Exposure calculation at time step tu:



Chapter 4. Efficient computation of credit exposure 143

1. Define the interpolation domain

X tu = [x1, x1]× . . .× [xd, xd]

with xj = min1≤i≤M Xi
tu,j

and xj = max1≤i≤M Xi
tu,j

for j = 1, . . . , d.

2. Define nodal points xk = τX tu (zk), ‖k‖∞ ≤ n for a given Chebyshev degree n.

3. Calculate the option price at the nodal points Vt(xk) using an existing numerical

pricing routine.

4. Compute Chebyshev coefficients cj and set up the Chebyshev interpolation

Vtu(x) ≈ V̂tu(x) =
∑
‖j‖∞≤n

cjpj(x).

5. Price the option on each sample paths i = 1, . . . ,M and compute the exposure

Eitu = max{V̂tu(Xi
tu), 0} = max

{ ∑
‖j‖∞≤n

cjpj(X
i
tu), 0

}
.

6. Calculate empirically the required risk metric, e.g. the expected exposure

EErisk0 = EP [max{Vtu , 0}] ≈
1

M

M∑
i=1

Eitu .

Note that the value function Vt(x) might also be the value of a portfolio of European

options instead of the value of a single option. This means the netting effect can be

incorporated by looking at the portfolio of all derivatives traded with one counterparty.

Advantages and drawbacks of the static approach

Once the Chebyshev approximation of the value function is set-up its evaluation can

be performed very efficiently and will typically be much faster than the original pricer.

This allows us to easily increase the number of simulation paths without increasing the

runtime accordingly. The new approach is particularly beneficial when the standard

pricer for the option is relatively slow. For example a (multivariate) integral, a PDE

method or a Monte Carlo solver. Instead of solving the problem on a typically large

grid we only require the evaluation of a low number of polynomials. Depending on the

required accuracy the number of nodal points n is chosen. Especially when a relatively

low accuracy is required this can increase efficiency even further.
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The number of Chebyshev points needed to achieve a required accuracy depends

highly on the smoothness of the value function and the size of the interpolation domain.

For short maturities the option price might be less smooth. In this case convergence is

often improved by splitting the interpolation domain in several subdomains, see [104].

If the simulated risk factor is a diffusion process few outliers can lead to a very large

interpolation domain. In this case it might be beneficial to interpolate on a smaller

domain and treat the outliers separately. Note that we can only expect to increase

efficiency if (n + 1)d < M , i.e. the number of nodal points is smaller than the number

of simulation paths. Otherwise we would calculate more prices at the nodal points than

we actually need.

The drawback of this simple approach is however, that the method still relies on

the availability of an existing pricer for each product and the efficiency gain is mainly

driven by the relationship between evaluating the Chebyshev interpolation and calling

the pricer. This means the approach requires still nested Monte Carlo simulation for

many products but for fewer scenarios than in the full re-evaluation. In the next section,

we show how we can use the dynamic Chebyshev method for exposure calculation that

does no rely on an existing pricer.

4.3 A dynamic approach for exposure calculation

In this section we presented a unified approach for the calculation of credit exposure for

different types of path-dependent options based on the dynamic Chebyshev method. We

consider the dynamic programming problem as presented in equation (4.3)

VT (x) = g(x),

Vtu(x) = f
(
g(tu, x),EQ[D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x]

)
,

for a Lipschitz continuous function f : R×R→ R and a function g : [0, T ]×R→ R with

g(T, x) = g(x).

Using the dynamic Chebyshev method, the backward induction is solved on a finite

domain X = [x, x]. Assume we have at tu+1 an approximation V̂tu+1 with Vtu+1(x) ≈
V̂tu+1(x) =

∑
j cj(tu+1)pj(x). In this case the backward induction becomes

Vtu(xk) = f
(
g(tu, xk),EQ [D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = xk

])
≈ f

(
g(tu, xk),

N∑
j=0

cj(tu+1)EQ [D(tu, tu+1)pj(Xtu+1)|Xtu = xk
] )
,
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where we exploited the linearity of the conditional expectation. From (2.17) we obtain

the following formula for the coefficients of the Chebyshev interpolation of Vt

cj(tu) =
210<j<N

N

N∑
k=0

′′
Vtu(xk)Tj(zk).

We see that the coefficients cj carry the information of the payoff, and the conditional

expectations EQ [D(tu, tu+1)pj(Xtu+1)|Xtu = xk
]

carry the information of the stochastic

process.

Now, we are in a position to efficiently evaluate the different exposure measures

introduced in Section 4.1. Assume we have simulated M paths of the underlying risk

factor. Then we price the option along the paths using the closed form approximation

Vtu(Xi
tu) ≈

N∑
j=0

cj(tu)pj(X
i
tu) for i = 1, . . . ,M and u = 0, . . . , n.

These values can now be used to calculate the expected exposure or the potential future

exposure for a given level α. In the case of a Bermudan option one has to take into

account that by exercising the option at tu the exposure becomes zero. Similarly, if the

barrier option is knocked out the exposure at all future time steps is zero. These two

effects yield a decreasing exposure for both types of options.

Discounting:

If the interest rate is our risk factor, i.e. r(t) = r(t,Xt), we simplify the expectation

of the discounted basis function in the following way. Assume that the time stepping

∆t = tu+1 − tu is small, then we can write

EQ [D(tu, tu+1)pj(Xtu+1)|Xtu = xk
]

= EQ
[
exp

(
−
∫ tu+1

tu

r(s,Xs)ds
)
pj(Xtu+1)|Xtu = xk

]
≈ EQ [exp

(
−∆tr(tu, Xtu)

)
pj(Xtu+1)|Xtu = xk

]
= exp

(
−∆tr(tu, xk)

)
EQ [pj(Xtu+1)|Xtu = xk

]
,

where we assume that the discount factor is constant on a small interval. Otherwise, if

the discount factor is deterministic we can simply write

EQ [D(tu, tu+1)pj(Xtu+1)|Xtu = xk
]

= D(tu, tu+1)EQ [pj(Xtu+1)|Xtu = xk
]
.

In both cases, we only need to pre-compute the expectations EQ [pj(Xtu+1)|Xtu = xk
]
.
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The resulting pricing algorithm is for all three option types (Bermudan, barrier,

European) essentially the same. However, the efficiency of the method is directly related

to the smoothness of the value function. As a result the number of nodal points required

for a given accuracy varies. Moreover, the size of the interpolation domain influences

the number of nodal points that are required for a target accuracy.

The resulting algorithm for exposure calculation under the pricing measure and under

the real-world measure with the dynamic Chebyshev method is presented in the following

two sections.

Exposure calculation for pricing

Here, we consider the computation of the exposure under the pricing measure Q. The

main application is the computation of the expected exposure EEprice0 as an ingredient

of the CVA calculation.

Algorithm: Exposure of Bermudan options under Q
This algorithm provides a framework to calculate the expected exposure and the potential

future exposure for a Bermudan option. A European option can be seen as a special case

and falls also in the scope of this algorithm.

1. Simulation of risk factors:

Simulate M paths of the underlying risk factor Xi
t0 , . . . , X

i
tn , i = 1, . . . ,M under the

pricing measure Q.

2. Preparation of the pricing algorithm:

Find a suitable interpolation domain X = [x, x] and calculate the nodal points xk =

τX (cos(kπ/N)), k = 0, . . . , N for this domain. Pre-compute the conditional expectations

of the basis function under the pricing measure Q

Γk,j = EQ [pj(X∆t)|X0 = xk] .

3. Initialization of the pricing algorithm:

Start pricing at maturity T and compute nodal values V̂T (xk) = g(T, xk) for all k =

0, . . . , N for the payoff function g(T, xk). Calculate Chebyshev coefficients cj(T ) using

the nodal values V̂T (xk). For all paths compute the exposure EiT = max{g(T,Xi
T ), 0}.

4. Exposure calculation via backward induction:

Iterative time stepping tu+1 → tu: Assume we have a Chebyshev approximation Vtu+1(x) ≈
V̂tu+1(x) =

∑
j cj(tu+1)pj(x). Then
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• compute nodal values

V̂tu(xk) =

max{g(xk), Du(xk)
∑N

j=0 cj(tu+1)Γk,j}, if tu is exercise day,

Du(xk)
∑N

j=0 cj(tu+1)Γk,j , otherwise

with discount factor Du(xk) = D(tu, tu+1, xk)

• calculate new coefficients cj(tu) using nodal values V̂tu(xk),

• price the option for all simulation paths V i
tu = V̂tu(Xi

tu) =
∑

j∈J cj(tu)pj(X
i
tu),

• calculate exposure Eitu = D(0, tu) max{V i
tu , 0},

• if the option is exercised (i.e V i
tu = g(Xi

tu)), update the exposure at all future time

steps on this path Eitj , j = u+ 1, . . . , n.

5. Calculation of expected exposure:

Obtain an approximation of the expected future exposures

EEprice0 (tu) = EQ [D(tu) max{Vtu , 0}] ≈
1

M

M∑
i=1

D(tu)Eitu ,

and an approximation of the potential future exposures

PFEprice0 (tu) = inf
{
y : Q

(
Et(x) ≤ y

)
≥ α

}
≈ inf

{
y :

#{Eitu ≤ y}
M

≥ α
}
.

for all u = 0, . . . , n.

Modification of the algorithm for barrier options

The presented algorithm for Bermudan options can be modified to calculate the exposure

of barrier options. In this case the interpolation domain is chosen depending on the

barrier. There is no early exercise, however, we need to take care of the knock-out feature.

For an up-and-out call option with barrier B and b = log(B), the following modifications

are added to the algorithm. First, the interpolation domain is set as X = [x, b]. Second,

the iterative time stepping from tu+1 → tu is modified in the following way. Assume we

have a Chebyshev approximation Vtu+1(x) ≈ V̂tu+1(x) =
∑

j cj(tu+1)pj(x),

• compute nodal values V̂tu(xk) = Du(xk)
∑N

j=0 cjΓk,j and new coefficients cj(tu),

• price the option for all simulation paths V i
tu = V̂tu(Xi

tu) =
∑

j∈J cj(tu)pj(X
i
tu) if

Xi
tu ≤ b and V i

tu = 0 otherwise,

• calculate the exposure Eitu = D(0, tu) max{V i
tu , 0},
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• if the option is knocked-out, i.e if Xi
tu > b update the exposure at all future time

steps on this path Eitj , j = u+ 1, . . . , n.

Exposure calculation for risk management

In this section we present an algorithm for the exposure calculation under the real-world

measure P.

Algorithm: Exposure of Bermudan options under P
This algorithm provides a framework to calculate the expected exposure and the potential

future exposure for a Bermudan option.

1. Simulation of risk factors:

Simulate M paths of the underlying risk factor Xi
t0 , . . . , X

i
tn , i = 1, . . . ,M under the

real-world measure P.

2. Preparation of the pricing algorithm:

Find a suitable interpolation domain X = [x, x] and calculate the nodal points xk =

τX (cos(kπ/N)), k = 0, . . . , N for this domain. Pre-compute the conditional expectations

of the basis function under the pricing measure Q

Γk,j = EQ [pj(X∆t)|X0 = xk] .

3. Initialization of the pricing algorithm:

Start pricing at maturity T and compute nodal values V̂T (xk) = g(T, xk) for all k =

0, . . . , N for the payoff function g(T, xk). Calculate Chebyshev coefficients cj(T ) using

the nodal values V̂T (xk). For all paths compute the exposure EiT = max{g(T,Xi
T ), 0}.

4. Exposure calculation via backward induction:

Iterative time stepping tu+1 → tu: Assume we have a Chebyshev approximation Vtu+1(x) ≈
V̂tu+1(x) =

∑
j cj(tu+1)pj(x). Then

• compute nodal values

V̂tu(xk) =

max{g(xk), Du(xk)
∑N

j=0 cj(tu+1)Γk,j}, if tu is exercise day,

Du(xk)
∑N

j=0 cj(tu+1)Γk,j , otherwise

with discount factor Du(xk) = D(tu, tu+1, xk)

• calculate new coefficients cj(tu) using nodal values V̂tu(xk),

• price the option for all simulation paths V i
tu = V̂tu(Xi

tu) =
∑

j∈J cj(tu)pj(X
i
tu),
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• calculate exposure Eitu = max{V i
tu , 0},

• if the option is exercised (i.e V i
tu = g(Xi

tu)), update the exposure at all future time

steps on this path Eitj , j = u+ 1, . . . , n.

5. Calculation of expected exposure:

Obtain an approximation of the expected future exposures

EErisk0 (tu) = EP [max{Vtu , 0}] ≈
1

M

M∑
i=1

Eitu ,

and an approximation of the potential future exposures

PFErisk0 (tu) = inf
{
y : P

(
Et(x) ≤ y

)
≥ α

}
≈ inf

{
y :

#{Eitu ≤ y}
M

≥ α
}
.

for all u = 0, . . . , n.

Similarly to the exposure calculation for pricing we can modify the algorithm for

barrier options.

A comparison with the algorithms in the previous section shows that the exposure

calculation under Q and P has the same structure. The only difference is that the paths

of the risk factor(s) are simulated under a different measure and the exposure is not

discounted. Moreover, if we are interested in the PFE we need a higher number of

simulation paths since the PFE is a tail measure.

Conceptional benefits of the method

The presented algorithms provide efficient solutions for the exposure calculation. More-

over, the structure of the new approach comes with conceptual benefits, which can be

exploited in practice. See Chapter 3 for more details.

• Closed form expression for the conditional expectations: If the underlying pro-

cess Xtu+1 |Xtu = x is normally distributed the conditional expectations of the

Chebyshev polynomials EQ [pj(Xtu+1)|Xtu = xk
]

can be calculated analytically.

See Proposition 10. Examples are the Black-Scholes model (with log-stock price

Xt), the Vasicek model or the one factor Hull-White model (both with interest rate

Xt). More generaly, assume for instance the underlying process is modelled via an

SDE of the form

dXt = α(t,Xt)dt+ β(t,Xt)dWt
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for a standard Brownian motion Wt. Euler—Maruyama discretization yields for

Xtu+1 |Xtu = x the approximation

Xtu+1 ≈ x+ α(tu, x)(tu+1 − tu) + β(tu, x)
√
tu+1 − tuZ =: X̂x

tu+1
Z ∼ N (0, 1)

and the right hand side is thus normally distributed.

• Delta and Gamma as by-product of the method : For Delta and Gamma the poly-

nomial structure of the Chebyshev approximation allows for a direct computation

without re-running the time-stepping. Instead we only need to differentiate a poly-

nomial, see Section 3.4.1. For Delta we obtain

∂Vt
∂x

(x) ≈
N∑
j=0

ctj
∂pj
∂x

(x),

which is again a polynomial with degree N − 1 and for Gamma we obtain

∂2Vt
∂x2

(x) ≈
N∑
j=0

ctj
∂2pj
∂x2

(x),

a polynomial of degree N−2. These formulas can be used to calculate the derivative

of Vt with respect to xt. For the derivative w.r.t. x0 we obtain via chain rule

∂Vt/∂x0 = ∂Vt/∂xt · ∂xt/∂x0.

• Several options on one underlying: The structure of the dynamic Chebyshev algo-

rithm for exposure calculation exhibits additional benefits for derivative portfolios.

For instance, consider non-directional strategies and structured products that of-

fer different levels of capital protection or enhanced exposure. They are typically

constructed from a combination of European options, with different strikes and

maturities, together with Bermudan options and barrier options. Such structures

are essentially a portfolio of derivatives on the same underlying asset, and in this

case, the pricing and exposure calculation can be simplified by choosing the same

interpolation domain. First, we only need to compute the conditional moments

once and then we can use them for all options. Second, we require less computa-

tions in the exposure calculation. Assume we have two options and we are at time

step tu of the dynamic Chebyshev algorithm. We have two Chebyshev approxi-

mations V̂ 1
tu =

∑
c1
j (tu)pj and V̂ 2

tu =
∑
c2
j (tu)pj . For the exposure calculation we

need to compute V̂
1/2
tu (Xi

tu) =
∑
c

1/2
j (tu)pj(X

i
tu) for all risk factors i = 1, . . . ,M .

Hence the evaluation of the Chebyshev polynomials pj at the risk factors Xi
tu is

the same and has only to be done once. In summary, with low additional effort,

we can calculate the exposure of several options on one underlying.
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We refer to Section 3.4.1 for more details on the efficient implementation of the method.

4.4 Credit exposure of equity options

In this section, we investigate the dynamic Chebyshev method numerically by calculating

the credit exposure profiles of European and path-dependent equity options. We analyse

the accuracy of the exposure profiles produced by the dynamic Chebyshev method by

comparing them to a full re-evaluation. Then we investigate the method’s performance

and compare it to the popular least-squares Monte Carlo approach. Moreover, we check

the influence of the proposed splitting of the domain at the strike, as suggested in Section

3.7, on the method’s performance.

4.4.1 Description of the experiments

For the numerical experiments we consider four different products: A European put

option and an up-and-out barrier call option in the Black-Scholes model, a Bermudan

put option in the Merton jump diffusion model and a Bermudan receiver swaption in the

Hull-White short rate model. In the Black-Scholes and the Hull-White model the risk

factor is normally distributed and we can use the analytic formula for the conditional

expectations of the Chebyshev polynomials.

We compute the expected exposure EEpricet under the pricing measure Q and the

expected exposure EEriskt under the real-world measure P as well as the potential future

exposures PFEpricet and PFEriskt under both measures. For the calculation of the

exposure measures we use 50,000 and 150,000 simulation paths of the underlying risk

factors and a time discretization of 50 time steps per year. The relatively high number

of simulation paths is needed to obtain a stable estimate of the PFE over the lifetime

of the derivative. Since the PFE is a tail measure it is more sensitive to the number of

simulations than the expected exposure.

We run the dynamic Chebyshev method for a different number of nodal points N

and the dynamic Chebyshev with splitting approach with N1 = N2 = N/2 nodal points.

For the least-squares Monte Carlo method we use the monomials up to degree 5 plus

the payoff of the product as basis functions in the regression. The pricing is done using

150,000 paths of the underlying risk factors and then we use a second set of paths for the

calculation of the exposure. Using two different sets of paths for pricing and exposure

calculation reduces the bias of the least-squares Monte Carlo method. See [80] for a

description on how to use the least-squares Monte Carlo approach to calculate credit

exposures under the pricing and the real-world measure. In our implementation of the

least-squares Monte Carlo approach for exposure calculation we use 7 basis functions for
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the European and Bermudan equity options, 8 for the barrier option and 5 basis function

for the Bermudan swaptions. For the pricing we use a separate set of 150,000 simulation

paths of the underlying risk factor.

For the experiments in this section and the next section, we briefly recall the following

three asset price models and explain how we compute the generalized moments in each

of them.

The Black-Scholes model

In the classical model of [15] the stock price process is modelled by the SDE

dSt = µStdt+ σStdWt.

with drift µ and volatility σ > 0 under the real-world measure P. Under the pricing

measure Q the drift equals r. Exploiting the fact that the log-returns Xt = log(St/S0)

are normally distributed we can use the analytic formula for the generalized moments

Γk,j . As model parameter we fix volatility σ = 0.25, real-world drift µ = 0.1, interest

rate r = 0.03 and initial stock price S0 = 100.

The Merton jump diffusion model

The jump diffusion model introduced by [94] adds jumps to the classical Black-Scholes

model. The log-returns follow a jump diffusion with volatility σ and added jumps arriving

at rate λ > 0 with normal distributed jump sizes according to N (α, β2). The stock price

under P is modelled by the SDE

dSt = µStdt+ σStdWt + dJt

for a compound Poisson process Jt with rate λ. The characteristic function of the log-

returns Xt = log(St/S0) under the pricing measure Q is given by

ϕ(z) = exp

(
t

(
ibz − σ2

2
z2 + λ

(
eizα−

β2

2
z2 − 1

)))
with risk-neutral drift

b = r − σ2

2
− λ

(
eα+β2

2 − 1

)
.

In our experiments we calculate the conditional expectations Γk,j using numerical inte-

gration and the Fourier transforms of the Chebyshev polynomials along with the char-

acteristic function of Xt. We fix the parameters

σ = 0.25, α = −0.5, β = 0.4, λ = 0.4 r = 0.03 and µ = 0.1
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and initial stock price S0 = 100.

The Hull-White model

The Hull-White model as described in Chaper 3.3 of [21] is a short rate model where the

rate process (rt)t≥0 is a mean reverting Ornstein–Uhlenbeck process described by the

SDE

drt = (θ(t)− art)dt+ σdWt

where the long term mean θ(t) can be fitted to the term structure of the market and the

speed of mean reversion a and the volatility σ are constant. One can write rt = α(t)+xt

for a deterministic function α(t) given by

α(t) = fM (0, t) +
σ2

2a2
(1− e−at)2

where fM (0, t) is the market forward rate for maturity T obtained from market discount

factors PM (0, T ) via

fM (0, T ) = −∂ ln(PM (0, T ))

∂T
.

The process (xt)t≥0 is modelled by the SDE

dxt = −axtdt+ σdWt x0 = 0

and xt|xs = x0 is normally distributed with

E[xt|xs = x0] = x0e
−a(t−s), and Var[xt|xs = x0] =

σ2

2a
(1− e−2a(t−s)).

Hence, we can use the analytic formula for the generalized moments.

As parameters we fix aq = 0.02 and σq = 0.02 under Q and ap = 0.015 and σp = 0.01

under P and we assume a flat forward rate fM (0, t) = 0.01. All parameters are taken

from [45].

4.4.2 European option in the Black-Scholes model

In this section, we calculate the expected exposure and the potential future exposure of

a European put option in the Black-Scholes model. In this case, we have an analytic

formula for the option price Vt at any time point t and we can investigate the accuracy of

the dynamic Chebyshev method for exposure calculation. We consider an at-the-money

option with strike K = 100 and maturity T = 1. We fix an interpolation domain in the
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log stock price at [x, x] = [log(29), log(373)] based on five times the standard deviation,

see Remark 3.

Figure 4.1 shows the resulting exposure profiles and Table 4-A shows the values of

the exposures at maturity. The expected exposure under the pricing measure is constant

since

EEpricet = D(0, t)EQ[max{Vt(Xt), 0}]

= D(0, t)EQ[D(t, T )EQ[g(XT )|Xt]]

= D(0, T )EQ[g(XT )] = V0

for all European options. Under the real-world measure the positive drift of the un-

derlying yields a decreasing exposure for a put option. The PFE increases under both

measures since it is mainly driven by the diffusion term in the model.

We observe that the exposure profiles of the dynamic Chebyshev method and the

true exposure profile are indistinguishable. In Table 4-B we see the corresponding rela-

tive errors for different Chebyshev N’s. Here, the notation DCN refers to the dynamic

Chebyshev method of degree N and DCN1,N2 refers to the dynamic Chebyshev method

with domain splitting of degree N1 and N2. The error is calculated as the maximum

over the simulation period and displayed in relative terms with respect to the initial

option price. For N = 128 the error is below 10−4 for both quantities and under both

measures. Already for N = 64 nodal points or, if splitting is applied, N1 = N2 = 16 the

error is below 1% in each cases. Figure 4.2 shows the error in the exposure profiles over

the option’s lifetime of the dynamic Chebyshev method with N = 128 and compares it

with the least-squares Monte Carlo approach. Whereas the dynamic Chebyshev method

is able to produce stable results, the least-squares Monte Carlo method is only able to

produces accurate prices at t = 0 but adds additional simulation noise over the option’s

lifetime. For the PFE, the least-squares Monte Carlo method has an relative error of

nearly 2%. Note that at time point t = T the option price is equivalent to the payoff

and there is no pricing error. All three methods produce the same exposure at maturity.

Table 4-C shows the corresponding runtimes for M = 50,000 and M = 150,000 sim-

ulation paths of the underlying risk factor. The runtimes of the dynamic Chebyshev

method increases approximately linearly in M and is in the same region as the runtime

of the analytic pricer. Moreover, the measure under which the risk factors are simu-

lated has no influence on the runtime of the method. The fact that the new numerical

method is competitive in comparison to a analytic formula indicates a high efficiency

of the approach. In comparison to the least-squares Monte Carlo method, the dynamic

Chebyshev method for exposure calculation is as fast or faster and, as already seen, able



Chapter 4. Efficient computation of credit exposure 155

to produce more accurate results. For example, the dynamic Chebyshev method with

N1 = N2 = 32 is in all cases more accurate than the least-squares Monte Carlo method

but also always faster.
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Figure 4.1: Expected exposure (left figure) and potential future exposure (right figure) of
a European put option in the Black-Scholes model, calculated under the pricing measure
Q and the real world measure P using M = 150,000 simulations.
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Figure 4.2: Relative error of the expected exposure (left figure) and potential future
exposure (right figure) of a European put option in the Black-Scholes model of the
dynamic Chebyshev method and the least-squares method. Calculated under the pricing
measure Q and the real world measure P using M = 150,000 simulations.

Price EEpriceT PFEpriceT EEriskT PFEriskT

8.3930 8.3338 37.6163 6.0530 34.5426

Table 4-A: Reference values for option price, EE and PFE of a European put option in
the Black-Scholes model using M = 150,000 simulations.

Overall, the experiment confirms that the new approach is able to produce accurate

credit exposure profiles both under the pricing measure Q and the real-world measure

P. Moreover, we have seen that the computations under the real-world measure are

as fast as the computation under the pricing measure. For the European put option
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Price EEprice PFEprice EErisk PFErisk

DC32 0.0020 0.0095 0.0020 0.0138 0.0020

DC64 0.0011 0.0012 0.0011 0.0017 0.0011

DC128 0.0000 0.0000 0.0000 0.0000 0.0000

DC16,16 split 0.0003 0.0003 0.0020 0.0003 0.0020

DC32,32 split 0.0000 0.0000 0.0011 0.0000 0.0011

DC64,64 split 0.0000 0.0000 0.0000 0.0000 0.0000

LSM 0.0002 0.0019 0.0188 0.0025 0.0172

Table 4-B: Maximal relative error of option price, EE and PFE of a European put option
in the Black-Scholes model for M = 150,000 simulations. Comparison of the dynamic
Chebyshev approach for different N with an analytic formula.

Sim. DC32 DC64 DC128 DC16,16 DC32,32 DC64,64 LSM BS

Q
50k 0.26s 0.30s 0.38s 0.27s 0.29s 0.36s 0.71s 0.31s

150k 0.90s 1.06s 1.31s 0.89s 0.94s 1.10s 1.22s 1.11s

P
50k 0.27s 0.32s 0.40s 0.29s 0.31s 0.37s 0.69s 0.33s

150k 0.92s 1.08s 1.35s 0.90s 0.94s 1.12s 1.18s 1.12s

Table 4-C: Runtimes of the exposure calculation using the dynamic Chebyshev method
for different N . Comparison with the analytic Black-Scholes formula.

the runtimes were comparable to using the analytic Black-Scholes formula. Building on

these very promising results we will investigate the performance for derivatives which

are path-dependent and therefore in general more difficult to price.

4.4.3 Barrier option in the Black-Scholes model

In this section, we calculate the expected exposure and the potential future exposure of

a discretely monitored up-and-out barrier call option in the Black-Scholes model. Due

to the additional discretely monitored barrier the option becomes path-dependent and

there is no longer an analytic solution. In order to compute reference prices we use

the COS method provided in the benchmarking project of [135]. The codes are slightly

modified in order to fit into our experiments. We consider an option with strike K = 100,

barrier B = 130 and maturity T = 1. We fix an interpolation domain in the log stock

price at [x, x] = [log(29), log(B)] based on six times the standard deviation for the lower

bound, see Remark 3. We assume that the barrier option is discretely monitored and

the monitoring dates coincide with dates for the exposure calculation.
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Figure 4.3 shows the resulting exposure profiles and Table 4-D shows the values of

the exposures at maturity. The expected exposure under the pricing measure is constant

over time which can be justified by the same arguments as for the European option.

Under the real-world measure, the expected exposure increases slightly and for the PFE

we observe also an increase. In comparison to the European option we see a slower

increase in the beginning and a faster increase close to maturity. Here, we observe

the effect of the barrier which means that an increase in the stock price also leads to

a higher risk of triggering the barrier and a zero exposure afterwards. This effect is

stronger for a longer time to maturity. As for the European option, the exposure profiles

of the dynamic Chebyshev method and the exposure profile of the full re-evaluation are

indistinguishable. Figure 4.4 shows the error of the exposure profiles computed with

the dynamic Chebyshev method for N = 64 and with the least squares Monte Carlo

approach. For the least squares Monte Carlo approach we added an additional basis

function compared to the European version to better fit the barrier. In Table 4-E we

see the corresponding relative errors for different Chebyshev N’s and the error of the

least-squares Monte Carlo method with 150,000 pricing paths. The error is calculated as

the maximum over the simulation period and is displayed in relative terms. For N = 64

the error is below 10−4 for both quantities. Figure 4.4 shows the relative error of the

dynamic Chebyshev method and the least-squares Monte Carlo method over the option’s

lifetime. We can again observe that a strong fluctuation in the error of the least-squares

Monte Carlo method and a stable and very low error for the dynamic Chebyshev method.

Table 4-F shows the corresponding runtimes for M = 50,000 and M = 150,000 sim-

ulation paths of the underlying risk factor. We observe that the dynamic Chebyshev

method is more than 100 times faster than doing a full-revaluation approach using an

already competitive pricer. Compared to the least-squares Monte Carlo method the dy-

namic Chebyshev method produces more accurate estimates while also being faster. The

barrier yields a smaller interpolation domain and therefore a lower number of interpo-

lation nodes for the dynamic Chebyshev method. On the other side, the least-squares

Monte Carlo method does not profit from the barrier but we had to add an additional

basis function to achieve a satisfying accuracy.

Price EEpriceT PFEpriceT EEriskT PFEriskT

2.6453 2.6678 21.3718 3.0641 22.9297

Table 4-D: Reference values for option price, EE and PFE of a barrier call option in the
Black-Scholes model using M = 150,000 simulations.
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Figure 4.3: Expected exposure (left figure) and potential future exposure (right figure)
of a barrier call option in the Black-Scholes model, calculated under the pricing measure
Q and the real world measure P using M = 150,000 simulations.
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Figure 4.4: Relative error of the expected exposure (left figure) and potential future
exposure (right figure) of a barrier up-and-out call option in the Black-Scholes model
of the dynamic Chebyshev method and the least-squares method. Calculated under the
pricing measure Q and the real world measure P using M = 150,000 simulations.

Price EEprice PFEprice EErisk PFErisk

DC16 0.0064 0.0074 0.0110 0.0069 0.0109

DC32 0.0000 0.0006 0.0007 0.0004 0.0004

DC64 0.0000 0.0000 0.0000 0.0000 0.0000

LSM 0.0006 0.0050 0.0380 0.0047 0.0428

Table 4-E: Maximal relative error of option price, EE and PFE of a barrier call option
in the Black-Scholes model for M = 150,000 simulations. Comparison of the dynamic
Chebyshev approach for different N and the LSM approach with a full re-evaluation.
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Sim. DC16 DC32 DC64 LSM Full re-eval

Q
50k 0.31s 0.31s 0.38s 1.77s 52.0s

150k 0.98s 1.05s 1.23s 2.76s 144.8s

P
50k 0.27s 0.29s 0.33s 1.62s 47.3s

150k 0.92s 0.97s 1.13s 2.58s 140.3s

Table 4-F: Runtimes of the exposure calculation of a barrier call option using the dynamic
Chebyshev method for different N . Comparison with a full re-evaluation using the COS
method.

4.4.4 Bermudan option in the Merton jump-diffusion model

Here, we consider a Bermudan put option in the Merton jump-diffusion model. The early-

exercise feature makes the option path-dependent and the jump component of the stock

price model poses an additional computational challenge. Similar to the barrier option

we can again use the COS method provided in the benchmarking project of [135] for the

calculation of reference prices. The codes are slightly modified in order to fit into our

experiments. We consider an option with strike K = 100, maturity T = 1 and we assume

that the dates used for the exposure calculation are also the exercise dates of the option.

We fix an interpolation domain in the log stock price at [x, x] = [log(0.2), log(400)].

Figure 4.5 shows the resulting exposure profiles and Table 4-G shows the values of the

exposures at maturity. We observe a decreasing expected exposure under both measures

due to the early exercise feature of the option. For the PFE we observe an increasing

exposure in the beginning resulting from the diffusion term and a decreasing exposure

afterwards. As for the European option, the exposure profiles of the dynamic Chebyshev

method and the exposure profile of the full re-evaluation are indistinguishable. In Table

4-H we see the corresponding relative errors for different Chebyshev N’s. Due to the

early-exercise feature, a higher number of nodal points is required for a similar accuracy

of the option prices. Moreover, an exact estimation of the exercise barrier is critical for a

correct estimation of the exposure. A miscalculation of the exercise barrier at time point

tu does not only influence the exposure EEtu but also the exposure at all future time

points. For example, an exercise barrier that is too low means that the option is exercised

for too many paths and the exposure at future time points is underestimated. Figure 4.6

shows the relative error of the dynamic Chebyshev method and the least-squares Monte

Carlo method over the option’s lifetime. We can see that the least-squares Monte Carlo

method struggles to provide accurate estimations in the tail and thus an accurate value

for the PFE. In contrast, the dynamic Chebyshev method produces stable and accurate

results for both quantities.
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Table 4-I shows the corresponding runtimes for M = 50,000 and M = 150,000 sim-

ulation paths of the underlying risk factor. We observe that the dynamic Chebyshev

method is more than 100 times faster than doing a full-revaluation. The comparison to

the least-squares Monte Carlo method shows again that the dynamic Chebyshev method

is able to deliver both, more accurate results and faster runtimes.
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Figure 4.5: Expected exposure (left figure) and potential future exposure (right figure)
of a Bermudan put option in the Merton jump-diffusion model, calculated under the
pricing measure Q and the real world measure P using M = 150,000 simulations.
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Figure 4.6: Relative error w.r.t. to the initial stock price of the expected exposure (left
figure) and potential future exposure (right figure) of a Bermudan put option in the
Merton jump-diffusion model of the dynamic Chebyshev method and the least-squares
method. Calculated under the pricing measure Q and the real world measure P using
M = 150,000 simulations.

Price EEpriceT PFEpriceT EEriskT PFEriskT

14.0739 0.3160 4.0892 0.3423 4.5004

Table 4-G: Reference values for option price, EE and PFE of a Bermudan put option in
the Merton jump-diffusion model using M = 150,000 simulations.
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Price EEprice PFEprice EErisk PFErisk

DC128 0.0001 0.0028 0.0366 0.0041 0.0508

DC256 0.0000 0.0005 0.0045 0.0007 0.0044

DC512 0.0000 0.0001 0.0009 0.0001 0.0013

DC64,64 0.0000 0.0018 0.0102 0.0027 0.0130

DC128,128 0.0000 0.0003 0.0013 0.0005 0.0019

DC256,256 0.0000 0.0001 0.0009 0.0001 0.0006

LSM 0.0016 0.0261 0.1420 0.0300 0.1508

Table 4-H: Maximal relative error w.r.t. to the initial stock price of option price, EE and
PFE of a Bermudan put option in the Merton jump-diffusion model for M = 150,000
simulations. Comparison of the dynamic Chebyshev approach for different N and the
LSM approach with a full re-evaluation.

Sim. DC128 DC256 DC512 DC64,64 DC128,128 DC256,256 LSM full

Q
50k 0.77s 0.95s 1.65s 0.71s 0.86s 1.28s 1.99s 106s

150k 2.54s 3.11s 4.33s 2.41s 2.83s 3.38s 3.79s 317s

P
50k 0.74s 0.93s 1.66s 0.73s 0.86s 1.31s 1.98s 108s

150k 2.38s 2.91s 4.37s 2.26s 2.53s 3.21s 3.63s 320s

Table 4-I: Runtimes of the exposure calculation of a Bermudan put option using the
dynamic Chebyshev method for different N . Comparison with a full re-evaluation using
the COS method.

4.5 Credit exposure of Bermudan swaptions

In this section, we describe how the dynamic Chebyshev method can be used to price

Bermudan swaptions. A swaption is an interest rate derivative that allows the option

holder to enter into a swap contract, i.e. a swaption is an option on an interest rate

swap. Similar to equity products, a European swaption allows the holder to exercise his

right at maturity and a Bermudan swaption allows the holder to exercise the option at

a set of pre-defined exercise dates. In the first part of the section we will give a brief

overview on swaps and swaptions. For more details we refer to [21]. In the second part

of the section we discuss how the pricing of interest rate derivatives falls into the scope

of the dynamic Chebyshev method.
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4.5.1 Interest rate derivatives: Swaps and swaptions

We start with an introduction to swaps and swaptions, two of the most important interest

rate derivatives. This section is based on [21, Chapter 1]. Assume we have a bank account

B(t) that pays the risk-free interest rate with

dB(t) = r(t)B(t)dt and B(0) = 1

for a short rate process (rt)t≥0. The differential equation has the solution

B(t) = exp

(∫ t

0
rsds

)
.

Among the most common models for the stochastic short rate are the models of [134],

[71] and [16]. Using the bank account we can define (stochastic) discount factors

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t
rsds

)
which connect cash-flows at time T to cash-flows at time t. For stochastic interest rates,

the discount factor becomes a random variable. The expectation of D(t, T ) is the value

P (t, T ) at time t of a zero coupon that pays 1 at maturity T .

Next, we introduce an interest rate swap. A swap is an interest rate derivative that

exchanges payments of a fixed leg and a floating leg at a set of payment days T1, . . . , Tn+1.

The payments of the fixed leg at Ti are defined as NτiK where N is the notional amount

of the contract, K is a fixed interest rate and τi = Ti−Ti−1 is the time interval between

payment days with starting point T0. The payments of the floating leg at Ti are given

by NτiL(Ti−1, Ti) where L(Ti−1, Ti) is the floating rate fixed at time point Ti−1.

A payer swap means that the fixed leg is paid to get the floating rate and vice versa

the receiver swap means that the fixed leg is received. The discounted payoff of a swap

at any time t ≤ T0 is given by

n∑
i=1

D(t, Ti)Nτiδ(L(Ti−1, Ti)−K)

with δ = 1 for a payer swap and δ = −1 for a receiver swap. From [21] we obtain for the

value of a receiver swap (i.e. the expected discounted payoff) at time t

Swaprec(t) = N

n∑
i=1

τiP (t, Ti)(K − F (t, Ti−1, Ti))
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where P (t, Ti) is the value of a zero coupon bond and F (t, Ti−1, Ti) is the forward rate

given by

F (t, Ti−1, Ti) =
1

Ti − Ti−1

(P (t, Ti−1)

P (t, Ti)
− 1
)

which is the expectation of L(Ti−1, Ti). We can rewrite the value of the receiver swap as

Swaprec(t) = −NP (t, T0) +NP (t, Tn+1)︸ ︷︷ ︸
floating leg

+N
∑n

i=1
τiKP (t, Ti)︸ ︷︷ ︸

fixed leg

.

The interest K for which the value of the swap is zero is called the forward swap rate

and is given by

ST0,Tn+1(t) =
P (t, T0)− P (t, Tn+1)∑

i=1 τiP (t, Ti)
. (4.7)

The payoff of a receiver swaption is then the value of a receiver swap if it is positive.

Otherwise, the option holder would not use his exercise right. From [21] we obtain for a

receiver option with maturity T0 the discounted payoff

ND(t, T0)
( n∑
i=1

P (T0, Ti)τi(K − F (T0, Ti−1, Ti))
)+
.

Using the forward swap rate we can rewrite the payoff as

ND(0, T0)(K − ST0,Tn+1(T0))+
n∑
i=1

P (T0, Ti)τi.

The fixed rate K of the swap becomes the strike of the swaption. We define an option to

be at-the-money if K = ST0,Tn+1(0). A Bermudan swaption means that the holder can

enter into the swap at multiple time points. For simplicity we will always assume that

the exercise dates of a swaption with payment days T1, . . . , Tn of the underlying swap

are T0, . . . , Tn if not stated otherwise.

4.5.2 Pricing of Bermudan swaptions

Similar to a Bermudan equity option we can price a Bermudan swaption via backward

induction. See for example [45]. We assume that the short rate process (rt)t≥0 is driven

by a risk factor (xt)t≥0 such that rt = r(t, xt). For example in the Hull-White model we

can write r(t) = α(t) + x(t) for a deterministic function α that fits the term structure of

the market. The payoff function g of a Bermudan receiver swaption with exercise dates
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T0, . . . , Tn can be written as

g(Ti, x) = N(K − STi,Tn+1(Ti, x))+
n∑

k=i+1

P (Ti, Tk)τk

where

ST0,Tn+1(t, x) =
P (t, T0, x)− P (t, Tn+1, x)∑

i=1 τiP (t, Ti, x)

and

P (t, T, x) = E
[
D(t, T )

∣∣xt = x
]

= E
[

exp
(∫ T

t
r(s, xs)ds

)∣∣∣xt = x
]
.

Assume a time grid tu, u = 0, . . . , nT with t0 = 0, tnT = Tn that contains all exercise

dates T0, . . . , Tn. Then we can write the pricing problem of a Bermudan swaption in the

form of a dynamic programming problem

VTn(x) = g(Tn, x) = N(K − STn,Tn+1(Tn, x))+P (Tn, Tn+1)τk

Vtu(x) =

max
{
g(tu, x), CVtu(x)

}
, if tu ∈ {T0, . . . , Tn}

CVtu(x), otherwise

with CVtu(x) = E
[
D(tu, tu+1)Vtu+1(xtu+1)

∣∣xtu = x
]
,

see [45]. Here, the notation CVtu refers to the continuation value of the swaption at time

point tu. This backward induction fits into the scope of the dynamic Chebyshev method.

Assume we have a Chebyshev approximation
∑

j c
u+1
j pj of the value function Vtu+1 and

we want to interpolate Vtu . Let xk, k = 0, . . . , N be the Chebyshev nodal points. Then

we obtain for the continuation value

CVtu(xk) ≈ E
[
D(tu, tu+1)

∑
j

cu+1
j pj(xtu+1)

∣∣xtu = x
]

=
∑
j

cu+1
j E

[
D(tu, tu+1)pj(xtu+1)

∣∣xtu = x
]

and Vtu(xk) = max{g(tu, xk), CVtu(xk)} if tu is an exercise date.

For this pricing problem, two additional challenges arise in comparison to a Bermudan

equity option. First, the discount factor D(tu, tu+1) is stochastic and second, the discount

factor depends on the risk factor xtu+1 . We can either calculate discounted conditional

expectations or we approximate the discount factor. Assume that the time stepping
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∆t = tu+1 − tu is small, then we can write

EQ [D(tu, tu+1)pj(xtu+1)|xtu = xk
]

= EQ
[
exp

(
−
∫ tu+1

tu

r(s, xs)ds
)
pj(xtu+1)|xtu = xk

]
≈ EQ [exp

(
−∆t r(tu, xtu)

)
pj(xtu+1)|xtu = xk

]
= exp

(
−∆t r(tu, xk)

)
EQ [pj(xtu+1)|xtu = xk

]
,

where we assumed that the discount factor is constant on a small interval. Hence, the

pre-computation of the conditional expectations is the same as for an equity option.

The second challenge is that the payoff function g(tu, xk) is more complex and re-

quires the computation of zero coupon bond prices P (tu, Tj , xk). If these prices are

available in closed form the implementation of the dynamic Chebyshev method becomes

straightforward. This is for example the case in the Hull-White model. Otherwise, we

need to apply the dynamic Chebyshev method also to the discount factors P (0, Tj , xk)

for j = 0, . . . , n+ 1. In general, the discount factor P (0, Tj) can be seen as a European

option in the short rate model with constant payoff 1 and maturity Tj . We can price

them with the dynamic Chebyshev method using the same time grid tu and the same

conditional expectations as for the swaption.

4.5.3 Bermudan swaption in the Hull-White model

Here, we consider a Bermudan receiver swaption in the Hull-White model. Similar to

the equity case, the early-exercise feature makes the option path-dependent and poses an

additional computational challenge. Additionally, the payoff function is more complex

and requires the pricing of a reciever swap. The Hull-White model is briefly described

in Section 4.4.1. We consider a swaption with strike K = 0.01094 and maturity T = 5

which can be exercised yearly starting at T1 = 1 and the swap terminates at T + 1 and

payments are also exchanged on a yearly basis. A detailed description of the pricing

problem can be found in [45]. From this paper we also obtain a reference price of

V0 = 5.463. We assume that the swaption is cash-settled and hence there is no credit

exposure after the option is exercised. We fix an interpolation domain in xt based on

five times (for N = 32, 64, 128) or six times (for N = 256, used as reference price) the

standard deviation of the underlying, see Remark 3.

Figure 4.7 shows the resulting exposure profiles and Table 4-J shows the price and the

values of the exposures at maturity. The price of the dynamic Chebyshev method is the

same as the reference price V0. Similarly to the equity Bermudan option, the expected

exposure decreases over time and the PFE increases first and then decreases. In contrast
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to the equity option we observe big jumps in the exposure profiles of the swaption. In

our example, the swaption is only exerciseable once per year and the exposure jumps

downwards at these days. In contrast, the equity option was weekly exercisable and

the exercise dates coincided with the exposure calculation dates. Thus, we did not

observe any jumps in the exposure profiles. In Table 4-K we see the corresponding

relative errors w.r.t. to the swaption price for different Chebyshev N’s. Here we used

a dynamic Chebyshev method with higher accuracy to compute reference prices. As

for an equity Bermudan option, an exact estimation of the exercise barrier is critical

for a correct estimation of the exposure and leads to a higher N . However, since the

volatility is lower, the interpolation domain is smaller and we need less nodes than for the

Bermudan equity option. Figure 4.8 shows the relative error of the dynamic Chebyshev

method and the least-squares Monte Carlo method over the option’s lifetime.

Table 4-L shows the corresponding runtimes for M = 50,000 and M = 150,000 simu-

lation paths of the underlying risk factor. Overall the runtime are slightly slower than for

the equity products since the maturity is with five years much longer. The comparison

of the dynamic Chebyshev method with the least-squares Monte Carlo method reveals

again a significantly higher efficiency. This is especially the case when it comes to the

computation of the tail measure PFE.
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Figure 4.7: Expected exposure (left figure) and potential future exposure (right figure)
of a Bermudan swaption in the Hull-White model, calculated under the pricing measure
Q and the real world measure P using M = 150,000 simulations.

Price EEpriceT PFEpriceT EEriskT PFEriskT

5.4628 0.0771 1.2489 0.0540 0.8348

Table 4-J: Reference values for option price, EE and PFE of a Bermudan receiver swap-
tion in the Hull-White model using M = 150,000 simulations.
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Figure 4.8: Relative error w.r.t. to the initial swaption price of the expected exposure
(left figure) and potential future exposure (right figure) of a Bermudan receiver swap-
tion in the Hull-White model of the dynamic Chebyshev method and the least-squares
method. Calculated under the pricing measure Q and the real world measure P using
M = 150,000 simulations.

Price EEprice PFEprice EErisk PFErisk

DC32 0.0148 0.0165 0.0444 0.0245 0.0351

DC64 0.0026 0.0026 0.0069 0.0031 0.0166

DC128 0.0005 0.0005 0.0016 0.0005 0.0032

DC16,16 0.0010 0.0022 0.0323 0.0034 0.0563

DC32,32 0.0005 0.0005 0.0015 0.0006 0.0026

DC64,64 0.0002 0.0002 0.0016 0.0002 0.0014

LSM 0.0069 0.0277 0.1463 0.0331 0.1533

Table 4-K: Maximal relative error w.r.t. to the initial swaption price, EE and PFE of
a Bermudan receiver swapption in the Hull-White model for M = 150,000 simulations.
Comparison of the dynamic Chebyshev approach for different N and the LSM approach
with a full re-evaluation.

4.5.4 Summary of the experiments

In this section, we analysed the dynamic Chebyshev method for credit exposure cal-

culation numerically. In Chapter 3, we have validated the method for the pricing of

options in different asset models. The experiments of this section show that the method

is moreover well suited for credit exposure calculation of path-dependent options such

as Bermudan and barrier equity options and Bermudan swaptions. Our examples show

that the method can be applied to different models which require different numerical

techniques for the moment calculation.
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Sim. DC32 DC64 DC128 DC16,16 DC32,32 DC64,64 LSM DC ref.

Q
50k 1.11s 1.26s 1.65s 1.43s 1.53s 1.96s 8.00s 2.49s

150k 4.09s 5.12s 6.66s 4.41s 4.74s 5.76s 13.56s 9.54s

P
50k 1.20s 1.40s 1.92s 1.41s 1.44s 1.89s 8.22s 3.11s

150k 3.96s 4.96s 6.34s 4.12s 4.44s 5.48s 13.41s 9.37s

Table 4-L: Runtimes of the exposure calculation of a Bermudan swaption using the
dynamic Chebyshev method for different N and the least-squares Monte Carlo method.
As a reference method we use the dynamic Chebyshev method with N = 256.

The experiments show that the dynamic Chebyshev method is able to produce stable

and accurate results even for tail measures like the potential future exposure. It can

handle the measure change from the pricing measure to the real-world measure with-

out an additional computational effort and is therefore suited for the credit exposure

calculation in pricing and risk management.

The comparison with the popular least-squares Monte Carlo method approach re-

vealed the efficiency of the method in terms of accuracy vs. runtime and we have seen

that this is especially the case for the computation of the PFE. The least-squares Monte

Carlo method was not able to produce accurate prices in the tail for early-exercise op-

tions. Moreover, pricing methods based on Monte Carlo simulation and regression add

additional simulation noise to the exposure calculation which is omitted in the new ap-

proach. Other methods that can improve the accuracy in comparison to the LSM are

for example the stochastic grid bundling method. However, this method is more than

a factor of two times slower than the LSM for a Bermudan swaption in the Hull-White

model as shown in [45] and will therefore also be slower than the dynamic Chebyshev

method.

Moreover, the experiments have shown that introducing an additional splitting in

the dynamic Chebyshev method reduces the number of nodal points and can improve

the efficiency of the exposure calculation further. This is mainly interesting for large

interpolation domains and early-exercise options.

4.6 Empirical investigation of exposure profiles

So far, we have seen that the dynamic Chebyshev method is able to calculate accurate

exposure profiles for equity and interest rate derivatives. In this section, we want to

investigate the exposure profiles of path-dependent equity options in more detail. We

empirically analyse the effects of the model choice on the exposure profiles as well as
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the effect of a barrier and an early-exercise feature on the profiles in comparison to a

European option. Due to the computational complexity of calculating credit exposures

for exotic trades, choosing a simpler model and replacing a path-dependent option by a

European option are two ad-hoc simplifications that are popular among practitioners to

speed-up the calculations.

In our analysis, we investigate the effect of the model choice on the exposure profile

by comparing the more complex Merton jump-diffusion model and the constant elasticity

of variance (CEV) model with the simpler Black-Scholes model. Moreover, we compare

the exposure profiles of path-dependent barrier and Bermudan options with the one of

European vanilla options.

For a meaningful comparison we need to make sure that the models are calibrated

to the same instruments. From [25] we obtain the following parameter for the Merton

jump-diffusion model

σ = 0.1936, α = −0.2, β = 0.2194, λ = 0.2935

and a risk-free interest rate of r = 0.0016 and in the CEV model we obtain σ = 0.25 and

β = 1.96. For a maturity of T = 1 the corresponding implied volatility in the Black-

Scholes model is given by σBS = 0.2335. As drift, we fix µMRT = 0.1 in the Merton

model and choose drifts µCEV = 0.0464 and µBS = 0.0477 in the other two models in

order to match this drift.

4.6.1 Credit exposure of Barrier options

We start with the investigation of the expected exposure and the potential future expo-

sure of a barrier option in the three different equity models. We consider a call option

with up-and-out barrier B = 150 and strike K = 100 in the three stock price models with

S0 = 100. We fix an interpolation domain X = [x, x] with x = log(10) and x = log(B).

Moreover, we fix N = 64 Chebyshev points. We calculate both, the expected expo-

sure and the potential future exposure under the real-world measure P using 150,000

simulation paths.

The left plot in Figure 4.9 shows the expected exposure (EE) in the three models

over the option’s lifetime and for a fixed number of simulation paths. The corresponding

option prices and exposure values are displayed in Table 4-M. While the prices of the

European call option differ only slightly due to a small calibration error, we observe

larger differences for the prices of the barrier options. These pricing differences reflected

the different (tail) distributions of the stock price in the three models.
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For a barrier option two different effects have an influence on the expected exposure.

On the one hand, the option is an at-the-money call option and due to the positive

drift of the underlying (under the real-world measure) we expect that over the option’s

lifetime more and more paths will be in the money which leads to an increase of the

expected exposure. On the other hand, when the underlying increases there is a higher

risk that the underlying reaches the barrier and the option is knocked out. Thus the

expected exposure could decay. Depending on the model properties and the relation of

S0 and B one of the effects might dominate the other. In our experiment, the expected

exposure increases in all three models and the profiles are approximately parallel. They

only differ in value due to the pricing differences at t = 0.

The right plot in Figure 4.9 shows the corresponding potential future exposure (PFE)

at the 97, 5% level in the three models. The potential future exposure increases over time

due to the positive drift and the diffusion term in all three models. The PFE converges

towards the maximal possible exercise value B −K which is 50. In the Merton model,

the PFE increases faster than in the other two models due to the additional jumps which

make larger stock price movements more likely.
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Figure 4.9: Expected exposure (EE) and potential future exposure (PFE) for a barrier
option in the Black-Scholes model, the Merton model and the CEV model with maturity
T = 1 and Nsim = 150,000 under the real world measure.

Figure 4.10 shows the comparison of the exposure profiles of barrier options with the

exposure profiles of European options in the three models. The expected exposure and

the potential future exposure in all three models is smaller for the barrier option due to

the knock-out feature. For both option types the expected exposure behaves relatively

similar and moves more or less parallel. For the potential future exposure we observe

different behaviours over time. For the European case the diffusion term results in an

increasing exposure over time. This effect is less strong in the barrier case due to the risk

of a knock-out. Closer to maturity the risk of reaching the barrier becomes smaller and

the PFE increases faster than its European counterpart. We conclude that replacing
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barrier by European options yields an overestimation of the credit exposure. This is

an indication of a very conservative practice. In the potential future exposure case the

difference is substantial. Here, the dynamic Chebyshev method yields more precise result

which could lead to lower capital requirements.
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Figure 4.10: Expected exposure (EE) and potential future exposure (PFE) profiles for
a barrier option and a European call option with maturity T = 1 in the Black-Scholes
model, the Merton model and the CEV model with Nsim = 150,000 under the real world
measure.

Price EE at T PFE at T

BS
European call 9.37 12.22 61.37

Barrier call 6.36 7.71 39.21

Merton
European call 9.32 12.61 58.03

Barrier call 7.13 8.91 40.38

CEV
European call 9.12 11.87 59.13

Barrier call 6.45 7.97 39.98

Table 4-M: Option price, expected exposure and potential future exposure of a European
call and a Barrier up-and-out call option in the Black-Scholes (BS) model, the Merton
model and the CEV model.
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4.6.2 Credit exposure of Bermudan options

In this section, we repeat the empirical analysis of the credit exposure of barrier options

in the previous section for Bermudan options. We consider a Bermudan put option

with strike K = 100 and 52 exercise rights per year and a European option with the

same strike. We fix the interpolation domain X = [x, x] with x = log(0.2) and x =

log(450). Moreover, we fix N = 256 Chebyshev points. We calculate both, the expected

exposure and the potential future exposure under the real-world measure P using 150,000

simulation paths.

For the European put we expect a decreasing exposure due to the positive drift and

the negative delta of the option. In contrast, the PFE should increase because of the

diffusion term and the increasing volatility. For the Bermudan put, we expect that the

early-exercise feature yields an even faster decline of the expected exposure. We know

that if the option is exercised the exposure becomes zero. As we approach maturity, the

optimal exercise boundary of the Bermudan put converges towards the option’s strike.

Therefore, the likeliness that the option is exercised early if the underlying is below the

strike increases over the option’s lifetime. Similarly, the likeliness that the option ends

in-the-money if the underling is above the strike decreases over time. Both effects yield

a decreasing exposure over the lifetime of the option. For the potential future exposure

we expect to see a different effect. The diffusion term should lead to an increasing PFE

whereas the early-exercise feature still leads to a decreasing PFE over time.

Figure 4.11 shows the expected exposure (left plot) and the potential future expo-

sure (right plot) for the European put. The corresponding option values and exposures

for both, the European and the Bermudan put are displayed in Table 4-N. While the

expected exposure is almost identical over the option’s lifetime, the potential future ex-

posure differs between the models. We observe a steeper increase of the PFE in the

Merton model compared to the other two models. This indicates that the model choice

is already critical for vanilla products.

Figure 4.12 shows the expected exposure (left plot) and the potential future exposure

(right plot) for the Bermudan put. We observe that the expected exposure decreases over

the lifetime of the option in all three different models. Close to maturity the option is

for most paths either already exercised or it is out-of-the-money. The potential future

exposure first increases and then decreases in all three models. The profiles of the Black-

Scholes and CEV model behave similarly in both cases. The profiles of the Merton model

exhibit however a slightly different shape.

Figure 4.13 shows the comparison of exposure profiles of Bermudan options with the

one of European options in the three market models. Due to the additional early-exercise
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Figure 4.11: Expected exposure (EE) and potential future exposure (PFE) for a Euro-
pean put option in the Black-Scholes model, the Merton model and the CEV model with
maturity T = 1 and Nsim = 150,000 under the real world measure.
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Figure 4.12: Expected exposure (EE) and potential future exposure (PFE) for a Bermu-
dan put option in the Black-Scholes model, the Merton model and the CEV model with
maturity T = 1 and Nsim = 150,000 under the real world measure.

feature, Bermudan put option prices are higher than the ones of European puts. With

this in mind, the difference between the prices can be seen as the added premium of

the early exercise possibility. The early-exercise premium depends on the the risk-free

interest rate and the dividend yield. In our experiments, the very low rate and zero

dividends make the premium almost vanish, see Table 4-N. Over the option’s lifetime

however, we observe that the early-exercise feature has a significant influence and the

expected exposure of a Bermudan option decreases faster than its European counterpart.

More precisely, the European and the Bermudan profiles are almost identical in the

beginning and diverge towards maturity. For the potential future exposure we observe

the same effects. In absolute terms the effect is stronger as for the expected exposure,

in relative terms it is slightly lower.

We conclude that replacing a Bermudan by a European option in the exposure cal-

culation has two different effects. First, for most of the option’s lifetime it highly over-
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estimates both the option’s expected exposure and potential future exposure and seems

therefore to be too conservative. Secondly, close to t = 0 the exposure of the European

option underestimates the Bermudan option’s exposure slightly. On a netting set level

one can therefore not predict with certainty the effect of this simplification. Scenarios

are possible where the replacement of a Bermudan by a European option in the exposure

calculation leads to a lower CVA. Hence, one cannot conclude that this simplification is

always a conservative practice.
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Figure 4.13: Expected exposure (EE) and potential future exposure (PFE) profiles for a
Bermudan option and a European put option with maturity T = 1 in the Black-Scholes
model, the Merton model and the CEV model with Nsim = 150,000 under the real world
measure.

In order to get a better understanding of the difference between European and Bermu-

dan options we vary the number of exercise rights per year. We consider five different

Bermudan options in the Black-Scholes model and we use a higher rate r = 0.03 to better

show the differences between European and Bermudan options. Figure 4.14 shows the

resulting exposure profile and the corresponding potential future exposure. Both are

calculated on a daily basis, i.e. on 252 (trading) days. We observe that the exposure of

a Bermudan option drops on the exercise days and between the exercise days behaves

similar to a European option. The drops are smaller on the short end and become larger

close to maturity. The potential future exposure shows a very similar behaviour. More
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Price EE at T PFE at T

BS
European put 9.21 7.23 35.35

Bermudan put 9.21 0.66 7.75

Merton
European put 9.21 7.29 42.63

Bermudan put 9.21 1.17 11.80

CEV
European put 8.98 7.11 34.73

Bermudan put 8.99 0.59 7.22

Table 4-N: Option price, expected exposure and potential future exposure of a European
put and a Bermudan put option in the Black-Scholes (BS) model, the Merton model and
the CEV model.

exercise rights yield a smoother exposure profile for Bermudan options. Furthermore,

we observe that the difference in the exposure profiles between a European option and

a Bermudan option with 4 exercise dates is already substantial. On the other hand,

the profiles for a Bermudan option with 36 and one with 84 exercise rights are relatively

similar. The effect of adding additional exercise rights on the exposure seems to decrease

with a higher number of exercise rights.

We conclude that replacing Bermudan options by European options leads to signifi-

cantly different exposure profiles. However, when it comes to efficiency, one could replace

a Bermudan option with a high exercise frequency (or an American option which can

always be exercised) by a Bermudan option with only a few exercise rights.
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Figure 4.14: Expected exposure (EE) and potential future exposure (PFE) for a Bermu-
dan put option with different exercise frequencies and a European option in the Black-
Scholes model with Nsim = 150,000 under the real world measure.
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4.7 Conclusion

In this chapter, we investigated the credit exposure calculation for pricing and risk man-

agement using Chebyshev interpolation. We proposed a static Chebyshev method as an

ad-hoc improvement for a full re-evaluation approach with a slow but accurate numerical

pricer. The main contribution of this chapter is a new unified framework for the exposure

calculation of path-dependent options based on the dynamic Chebyshev method. The

numerical experiments showed that the method is well-suited for the exposure calcula-

tion and the structure of the approach yields high efficiency. The dynamic Chebyshev

method for exposure calculation admits several qualitative advantages.

• The method offers a high flexibility, the price and the credit exposure of many

different products can be calculated with this algorithm and it can be used in

different stock price models.

• The structure of the method allows us to explore additional knowledge of the model

by choosing different techniques to compute the conditional moments in the pre-

computation. This increases the efficiency of the method compared to standard

approaches such as least-squares Monte Carlo method.

• The calculated credit exposure can be aggregated on different levels and enables

the efficient computation of CVA and other risk metrics on a portfolio level.

• The polynomial structure of the approximation of the value function enables an

efficient computation of the option’s sensitivities Delta and Gamma in every time

step.

An extensive numerical performance analysis confirmed the validity and the efficiency

of the method. The approach is able to combine the accuracy of a full re-evaluation ap-

proach with the speed of a simpler least-squares Monte Carlo approach. So far, we have

focused our analysis on options that are driven by only one risk factor. In the next sec-

tion, we discuss an efficient version of the dynamic Chebyshev method for path-dependent

options with more than one risk factor. These methods are than also interesting can-

didates for the exposure calculation. We think that a multivariate dynamic Chebyshev

method could be interesting for calculating exposure of path-dependent options that

depend on up to three risk factors.

The empirical investigation of the exposure profile provides insight into the behaviour

of the profiles for different option types and asset models with practical implications. In

order to speed-up the exposure calculation common simplifications in practice include

the choice of a simple model for the underlying risk factor and the replacement of com-
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plex options by simpler options. Our experiments reveal that the first simplification

affects the results for barrier and Bermudan options. One reason for different exposure

profiles is that even though the models are calibrated to the same instruments, prices

for more exotic products can still differ significantly. This effect is not a surprise and is

a commonly known issue in calibration and pricing. For barrier options, we have seen

that these pricing differences are also reflected in the exposure profiles. However, for

example, for European options we have seen that even though prices are very close, the

potential future exposure can differ between models with jumps and without. This effect

is less obvious and it implies, that even though both models, Black-Scholes and Merton

jump-diffusion are a similarly suitable choice for pricing vanilla options, they lead to sig-

nificantly different credit exposure profiles and thus credit risks. Therefore, it is essential

to have a method for the exposure calculation which is flexible in the model choice. In

particular, one needs to be able to handle different model features such as jumps and

local volatility. As in practice a variety of models will be used to quantify the credit ex-

posure a method which allows to easily switch between different models is desirable. As

the experiments show the dynamic Chebyshev method for exposure calculation exhibits

this flexibility in the models.

Moreover, the experiments show that the replacement of Bermudan options by Eu-

ropean options yields significantly different exposure profiles and two different problems

occur. First, the exposure of the European option overestimates the exposure of the

Bermudan for most of the option’s lifetime and second we cannot conclude that this

simplification is conservative. Therefore, we recommend to compute the exposure for

Bermudan options directly. The presented dynamic Chebyshev method is able to do so

in an efficient way.



Chapter 5

Multivariate early-exercise

options

In this chapter we consider the pricing of early-exercise options that depend on more than

one risk factor. Many relevant option pricing problems are multivariate problems and the

pricing of these options is computationally challenging. This is even more the case when

one considers options with an early-exercise feature and thus adds a path-dependency to

the problem. A variety of different methods have been developed to tackle this problem

each of them with different merits and demerits. In relatively low dimensions, it is

common to extend classical one-dimensional approaches such as PDE methods or Fourier

based methods. These methods produce stable and accurate results but they typically

suffer from the curse of dimensionality. On the other hand, simulation based methods

such as the least-squares Monte Carlo method can be easily extended to medium and high

dimensions since they do not directly suffer from this curse of dimensionality. However,

we have seen in the previous chapters that such methods introduce simulation noise and

struggle to deliver very accurate results. Moreover, simulation based methods often fail

to produce stable sensitivities with respect to the relevant input factors.

We investigate the extension of the dynamic Chebyshev method to multivariate option

pricing problems with a focus on asset models where the underlying risk factors are

conditionally multivariate normally distributed. We discuss one particular bivariate

example in detail to show the potential of our approach. Then we focus on European

basket options in a multivariate Black-Scholes model and investigate the efficiency of

different quadrature techniques. Finally, we extend this analysis to basket options which

admit an early-exercise feature.

178
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5.1 A multivariate dynamic Chebyshev algorithm

We consider the dynamic programming problem of a basket option with payoff function

g on d-underlyings driven by an Rd-valued stochastic process (Xt)t≥0. For the moment,

we ignore interest rates and assume r = 0. The value of a Bermudan basket option with

exercise points tu, u = 0, . . . , nT is computed via the following backward induction

VT (x) = g(x)

Vt(x) = max
{
g(x),E

[
Vtu+1(Xtu+1)|Xtu = x

]}
for x ∈ Rd. Solving this problem by means of the dynamic Chebyshev algorithm using

a straightforward tensor based Chebyshev interpolation can be challenging. In the pre-

computation step this requires the computation of the conditional expectations of (N +

1)d multivariate polynomials pj , j = (j1, . . . , jd) given (N + 1)d starting values xk with

k = (k1, . . . , kd) given by

Γuj,k = E[pj(Xtu+1)|Xtu = xk]

at each time point tu. Hence, the number of conditional expectations grows exponentially

in d with N2d. Even in relatively low dimensions d > 1 this is not feasible. In the

following sections, we will show that one can overcome this curse of dimensionality in the

pre-computation step in two relevant scenarios. First, the computations are simplified if

we assume that (Xt)t≥0 is a vector of uncorrelated processes. Second, we can find a more

efficient solution if we assume that the stochastic process is conditionally multivariate

normally distributed.

5.1.1 Independent risk-factors

The first special case that we investigate is the case of (conditionally) independent risk

factors. We assume that Xtu+1 given Xtu = x is a vector of d independent processes and

we obtain for the conditional expectations of the multivariate Chebyshev polynomials

E[pj(Xtu+1)|Xtu = xk] = E
[ d∏
i=1

pji(X
i
tu+1

)
∣∣∣Xtu = xk

]
=

d∏
i=1

E[pji(X
i
tu+1

)|Xtu = xk].

This means instead of N2d the effort is only proportional to dNd+1 since in each dimen-

sions we compute the expectations of pji , 0 ≤ ji ≤ N for each Chebyshev grid point xk.

Further, if we assume that Xi
tu+1

depends only on the starting value Xi
tu = xki , we can
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simplify the expression above

d∏
i=1

E[pji(X
i
tu+1

)|Xtu = xk] =
d∏
i=1

E[pji(X
i
tu+1

)|Xi
tu = xki ].

In each dimension i = 1, . . . , d we need to compute

Γu,iji,ki = E[pji(X
i
tu+1

)|Xi
tu = xki ] for ji = 0, . . . , Ni and ki = 0, . . . , Ni.

Again, if we choose an equidistant time-stepping and the process has stationary incre-

ments the computation of the conditional expectations become independent of the time

stepping.

Hence, the calculations in the pre-computation step are equivalent to d times the pre-

computation step of the one-dimensional dynamic Chebyshev method. The effort scales

with dN2 and we no longer observe the curse of dimensionality in the pre-computation

step.

In the backward induction we still need to compute the values Vtu(xk) for all grid

points xk and thus obtain a full tensor V̂tu ∈ RN1×...×Nd . Fortunately, each step in the

backward induction can be written as simple matrix times tensor multiplications. We

will illustrate this for d = 2 and then extend the concept to a general d > 2.

Let Cu+1 be the matrix of interpolation coefficients of the bivariate Chebyshev inter-

polation at tu+1 given by

Cu+1
j1,j2

=
210<j1<N1210<j2<N1

N1N2

N1∑
k1=0

”
N2∑
k2=0

”V̂ u+1
k1,k2

Tj1(zk1)Tj2(zk2)

where V̂ u+1 is the matrix of nodal values at tu+1. We recall that the continuation value

at the nodal points xk at time step tu is given by

V̂ u
k1,k2 =

N1∑
j1=0

N2∑
j2=0

Cu+1
j1,j2

E[pj1(X1
tu+1

)pj2(X2
tu+1

)|(X1
tu , X

2
tu) = (xk1 , xk2)]

=

N1∑
j1=0

N2∑
j2=0

Cu+1
j1,j2

E[pj1(X1
tu+1

)|X1
tu = xk1 ]E[pj2(X2

tu+1
)|X2

tu = xk2 ]

=

N1∑
j1=0

N2∑
j2=0

Cu+1
j1,j2

Γ1
j1,k1Γ2

j2,k2 .

Due to the independence of the conditional expectation we can write this equation in
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matrix form as

V̂ u = (Γ1)TCu+1Γ2.

If the option is exercised at time point tu we update the matrix of nodal values accord-

ingly. In the same way we can write the coefficient matrix as a product of V̂ u and two

auxiliary matrices consisting of entries Tji(zki) for each dimension. This matrix notation

makes the method very easy to implement and highly efficient.

In more than two dimensions V̂ u+1 becomes at tensor and the simple matrix times

matrix needs to be replaced by a form of matrix times tensor product. From [3] we

obtain the definition of the n-mode tensor product ×n of a tensor with a matrix.

Definition 9. Let A ∈ RN1×...×Nd be a tensor and U ∈ RNn×Mn a matrix. We define

the n-mode product A×n U of a A and U as a tensor in RN1×...×Mn×...×Nd with entries

(A×n U)(i1, . . . , in−1, jn, in+1, . . . , id) =

Nn∑
in=1

A(i1, . . . , id)U(jn, in).

For example, if d = 2 we can write the singular value decomposition of a m×n matrix

A in terms of two n-mode multiplications as

A = UΣV T = Σ×1 U ×2 V

for a m× k matrix U , a m× k matrix V and a k × k matrix Σ.

We can use this notation in the multivariate dynamic Chebyshev method in d dimen-

sion. In the backward induction, every time step tu+1 → tu can be written as

V̂ u = Cu+1 ×1 Γ1 ×2 . . .×d Γd

where Cu+1 is the tensor of coefficients at tu+1 and V̂ u is the tensor of nodal values at

tu. In Matlab, the n-mode matrix times tensor multiplication can be implemented using

the tensor toolbox of [4].

Our initial assumption of zero correlation between the risk factors is a significant

limitation of this approach. Usually risk factors such as different stock prices or stochastic

rates and stochastic credit spreads are strongly correlated. In some cases, it might be

justified to ignore this correlation since its effect on the pricing is comparably small. In

these situations the presented multivariate dynamic Chebyshev method can be directly

applied.
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However, in many situations the effects of ignoring the correlation between the risk

factors is significant. Fortunately, if the process is conditionally normally distributed,

transformations are available such that the transformed process becomes conditionally

independent. In the next section, we present such a transformation and the resulting

algorithm for a multivariate Black-Scholes model.

5.1.2 Extension to the multivariate Black-Scholes model

In this section, we consider a multivariate extension of the classical Black-Scholes model

and price basket options with an early-exercise feature in this model. The log-stock

prices are normally distributed and we can write them as a linear transformation of a set

of independent risk factors. In this case, the multivariate dynamic Chebyshev method

can be simplified in the same way as seen in the previous section.

We assume a market with d assets modelled by the following SDE under the risk-

neutral pricing measure

dSit = Sit
(
rdt+ σidW

i
t

)
, i = 1, . . . , d

with starting value S0 and for a risk-free interest rate r ≥ 0, volatilities σ1, . . . , σd > 0

and standard Brownian motions W 1
t , . . . ,W

d
t . Assume that the Brownian motions W i

t

are correlated with

dW i
t dW

j
t = %ijdt for %ij ∈ [−1, 1]

with %ii = 1, i = 1, . . . , d. The log-returns Xi
t = log(Sit) fulfils the SDE

dXi
t =

(
r − σ2

i

2

)
dt+ σidW

i
t .

For the d-variate stochastic process Xt = (X1
t , . . . , X

d
t ) it holds for t > s

Xt|Xs = x ∼ Nd
(
x+ µt−s,Σt−s

)

µt−s =



r − σ2
1
2

...

...

r − σ2
d
2


(t− s) and Σt−s =



σ2
1 %12σ1σ2 . . . . . . %1dσ1σd

%12σ2σ1
. . .

...

...
. . .

...

...
. . .

...

%1dσdσ1 . . . . . . . . . σ2
d


(t− s).
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For notational convenience we write µ = µ1 and Σ = Σ1. We assume throughout this

section that the covariance matrix has full rank and thus is positive definite. From

Σ positive definite and symmetric follows that Σ has a singular value decomposition

Σ = OΛOT for an orthogonal matrix O with O−1 = OT and a diagonal matrix Λ.

Exploring this result, we can rewrite the covariance matrix as

Σ = OΛOT = (OΛ1/2)(OΛ1/2)T ,

where Λ1/2 is a diagonal matrix with diagonal elements Λ
1/2
i,i =

√
Λi,i for i = 1, . . . , d.

The process Xt has stationary increments and Xtu+1 |Xtu = x is equal in distribution

to the variable x +X∆t with ∆t = tu+1 − tu. For the multivariate normal distribution

under linear transformations holds

x+X∆t = OΛ1/2
√

∆tZ + µ∆t + x = OZ̃ + µ∆t + x with Z̃ ∼ Nd(0,Λ∆t) (5.1)

see for example [126]. Here, Z̃ is a vector of d independent normally distributed random

variables with variances ∆tΛi,i. The idea of our new method is to interpolate in the

variable Z̃ instead of X. In this case we can explore that

E
[
pj(Z̃)

]
= E

[ d∏
i=1

pj1(Z̃i)
]

=

d∏
i=1

E
[
pj1(Z̃i)

]
.

The remaining challenge is to incorporate this transformation into the framework of the

multivariate dynamic Chebyshev algorithm. We start again with the dynamic program-

ming problem

VT (x) = g(x)

Vtu(x) = max
{
g(x),E

[
Vtu+1(Xt+1)|Xtu = x

]}
.

Our goal is to modify the dynamic Chebyshev algorithm in such a way that we can solve

the curse of dimensionality in the pre-computation step. Using (5.1) we can write the

continuation value as

E
[
Vtu(Xtu)|Xtu−1 = x

]
= E

[
Vtu(x+X∆t)

]
= E

[
Vtu(OZ̃ + µ∆t + x)

]
.

Defining z = O−1x yields

E
[
Vtu(Xtu)|Xtu−1 = Oz

]
= E

[
Vtu(OZ̃ + µ∆t +Oz)

]
= E

[
Ṽtu(z + Z̃)

]
for the modified value function [z, z]d 3 z̃ 7→ Ṽtu(z̃) := Vtu(Oz̃ + µ∆t). Assume we
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have a d-dimensional Chebyshev approximation of Ṽtu given by
∑
j c

u
jpj . Then we can

approximate the expectation of Ṽtu(z̃) by

E
[
Ṽtu(z + Z̃)

]
≈ E

[∑
j
cujpj(z + Z̃)

]
=
∑

j
cujE

[
pj(z + Z̃)

]
.

Here, the independence of the variables Z̃i yields

E
[
pj(z + Z̃)

]
= E

[ d∏
i=1

pji(zi + Z̃i)
]

=
d∏
i=1

E
[
pji(zi + Z̃i)

]
.

Following this approach, we can approximate the continuation value at time point tu−1

using only products of conditional expectations of one-dimensional Chebyshev interpola-

tions. For this, we need the Chebyshev interpolation of [z, z]d 3 z̃ 7→ Ṽtu(z̃) and hence,

we require the function values Ṽtu(zk) = Vtu(Ozk +µ∆t) at the Chebyshev nodal points

zk. For Ozk + µ∆t = O(zk +O−1µ∆t) we get

Vtu(Ozk + µ∆t) = max
{
g(Ozk + µ∆t),E

[
Vtu+1(Xt)|Xtu = Ozk + µ∆t

]}
= max

{
g(Ozk + µ∆t),E

[
Vtu+1(O(zk +O−1µ∆t + Z̃) + µ∆t)

]}
.

Assume
∑
j c

u+1
j pj is an approximation of [z, z]d 3 z̃ 7→ Vtu+1(Oz̃ + µ∆t). Then we

obtain

Vtu(Ozk + µ∆t) = max
{
g(Ozk + µ∆t),E

[
Vtu+1(O(zk +O−1µ∆t + Z̃) + µ∆t)

]}
≈ max

{
g(Ozk + µ∆t),

∑
j
cu+1
j

d∏
i=1

E
[
pji(zki + (O−1µ∆t)i + Z̃i)

]}
where zki + (O−1µ∆t)i + Z̃i ∼ N (zki + (O−1µ∆t)i,∆tΛi,i). The expectations

E
[
pji(zki + (O−1µ∆t)i + Z̃i)

]
0 ≤ ki ≤ Ni, 0 ≤ ji ≤ Ni for i = 1, . . . , d

can be pre-computed. This is essentially d times the offline step of the one-dimensional

dynamic Chebyshev algorithm. The calculated nodal values Vtu(Ozk + µ∆t) are then

used to compute the coefficients of the multivariate Chebyshev interpolation cuj , similar

to the normal dynamic Chebyshev algorithm. In order to recover Vtu(x) we have

Vtu(x) = Vtu(x− µ∆t + µ∆t) = Vtu(O(O−1(x− µ∆t)) + µ∆t) = Ṽtu(O−1(x− µ∆t)).

The backward induction in the new approach is essentially the same as the backward

induction in the (normal) dynamic Chebyshev methods, only the pre-computation of the

generalized moments has changed.
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Fixing an interpolation domain

An interpolation domain can be fixed using a confidence interval for a normal distribu-

tion, see Remark 3. First, we recall that

x+X∆t = OZ̃ + µ∆t + x = O(O−1x+ Z̃) + µ∆t with Z̃ ∼ Nd(0,Λ∆t).

for ∆t = tu+1 − tu. For the multivariate dynamic Chebyshev method we require an

interpolation domain which is large enough for the random variable (O−1x + Z̃). This

means the probability that it lies in the domain should be close to 1.

Let S0 be the vector of starting values for which we want to price the option and

x0 = log(S0). We transform the vector using O−1 and obtain z0 = O−1x0. Next, we

define a rectangular around this point using the standard deviation of Z̃ and adjust for

the maturity T . Let σ̃i be the standard deviation of Z̃i, scaling it from the time step ∆t

to the interval [0, T ] gives us σi = σ̃i
√
T/∆t. This allows us to define the interpolation

domain Z = [z1, z1] × . . . × [zd, zd] with zi = z0,i − kσi and zi = z0,i + kσi for k large

enough. A reasonable choice here is k = 4 or k = 5 which implies that the process stays

in the interpolation domain with a probability of 99.99367% or 99.99994%.

The multivariate dynamic Chebyshev algorithm

Here, we summarize the presented algorithm and formulate it in terms of tensors and

matrices. This formulation allows for a simple implementation of the code in Matlab using

the tensor toolbox of [4] if d > 2. Similarly to the standard dynamic Chebyshev method

we can split the algorithm in a pre-computation step and the pricing via backward-

induction.

Pre-computation step:

1. Pre-requisites: Maturity T , positive definite covariance matrix Σ, interest rate

r, starting value X0 and uniform time stepping 0 = t0 < . . . < tnT = T with

tu+1 − tu = ∆t.

2. Eigenvalue decomposition of the covariance matrix: Perform an eigenvalue decom-

position of Σ and obtain Σ = OΛOT for a diagonal matrix Λ = diag(Λ1, . . . ,Λd)

and an orthogonal matrix O. Define corresponding drift µ = (r − 0.5Σ11, . . . , r −
0.5Σdd)

T and µ∆t = µ∆t.

3. Fix a domain Z = [z1, z1]× . . .× [zd, zd] via

[zi, zi] = [(O−1(µT +X0))i − k(TΛi)
1/2, (O−1(µT +X0))i + k(TΛi)

1/2]
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for i = 1, . . . , d and k ∈ {3, 4, 5}. For Chebyshev degree N = (N1, . . . , Nd) ∈ Nd,
define d-variate nodal points zk. Create vectors of nodal points

Zi =
zi + zi

2
+
zi − zi

2


cos(0π/Ni)

...

cos(Niπ/Ni)

 ∈ RNi+1 for i = 1, . . . , d.

4. Pre-computation of conditional expectations: For i = 1, . . . , d, compute

Γij,k := E
[
pj(zk + (O−1µ∆t)i + Z̃i)

]
, 0 ≤ k ≤ Ni, 0 ≤ j ≤ Ni

where Z̃i ∼ N (0,Λi,i). In matrix form, we compute parameters

(µ̃i0, . . . , µ̃
i
N )T = −1 +

2

zi − zi
(Zi + (OTµ∆t)i − zi) ∈ RNi+1,

σ̃i
2 =

( 2

zi − zi

)2
Λi∆t

and obtain the matrices

Γi =



Γ(µ̃i0, σ̃i
2, 0) . . . . . . Γ(µ̃iN , σ̃i

2, 0)

...
...

...
...

Γ(µ̃i0, σ̃i
2, N) . . . . . . Γ(µ̃iN , σ̃i

2, N)


for i = 1, . . . , d

where Γ(µ̃ik, σ̃i
2, j) = E[Tj(Y )1[−1,1](Y )] for Y ∼ N (µ̃ik, σ̃i

2).

5. Pre-computation of auxiliary matrices for the computation of the coefficients

T i =
2

Ni



1
4

1
2 . . . 1

2
1
4

1
2 cos( π

Ni
) . . . cos(π(Ni−1)

Ni
) 1

2 cos(π)

...
...

. . .
...

...

...
...

...
. . .

...

1
4

1
2 cos(π) . . . 1

2 cos(π(Ni − 1)) 1
4 cos(πNi)


i = 1, . . . , d.
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Pricing via backward-induction:

1. Fix a payoff function g and compute tensor G of grid values Gk = g(Ozk + µ∆t)

2. Initial time step: Use the results from step 5. to calculate nodal values ṼT (zk) =

VT (Ozk + µ∆t) = Gk and coefficients cTj . The tensor of coefficients is computed

using the tensor of nodal values VT via

CT = VT ×1 T
1 ×2 . . .×d T d.

3. Time stepping tu+1 → tu: Assume we have coefficients cu+1
j , then we obtain new

coefficients

cuj =
( d∏
i=1

210<ji<Ni

Ni

)∑
k

′′
Ṽtu(zk)

d∏
i=1

cos
(
ji
kiπ

Ni

)
for Ṽtu(zk) = max

{
Gk,

∑
j
cu+1
j

d∏
i=1

Γiji,ki

}
.

We can write this in tensor form for the tensor of coefficients Cu+1 as

Cu = Vu ×1 T
1 ×2 . . .×d T d for Vu = max{G, Cu+1 ×1 Γ1 ×2 . . .×d Γd}.

Here, the maximum function on two tensors refers to the elementwise maximum

and returns again a tensor.

4. Approximation of the option price at t = 0

V0(x) = Ṽ0(O−1(x− µ∆t)) ≈
∑

j
c0
j pj(O

−1(x− µ∆t)).

This evaluation can be performed via tensor times matrix multiplication for z =

O−1(x− µ∆t)

V0(x) = C0 ×1 P
1 ×2 . . .×d P d for P i =

(
p0(zi), . . . , pN (zi)

)T
i = 1, . . . , d.

First time step: ”Smoothing the payoff”

We could start the backward induction by interpolating the payoff z̃ 7→ ṼT (z̃) = g(Oz̃+

µ∆t) and then calculating coefficients cTj . However, since g is typically not differentiable

this approach would require a relatively high number of nodal points and is therefore

not efficient. Instead, it is better to compute the continuation value at T − 1 directly,

using numerical quadrature techniques and the density of the normal distribution. This
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is the same ”smoothing the payoff” idea that we introduced in Section 3.4.1.

For a higher accuracy, we can replace the initial time step 6. in the algorithm by a

new time step 6. and start the time stepping for tnT−1 → tnT−2.

6. First time step: Compute continuation values

CVtnT−1(zk) = E
[
g(O(zk +O−1µ∆t + Z̃) + µ)

]
for Z̃ ∼ Nd(0,Λ). Use these values to compute nodal values ṼtnT−1(zk) and Cheby-

shev coefficients cnT−1
j .

In order to compute the conditional expectation more efficiently one can apply the

smoothing idea of [11]. They consider the pricing of European basket options, i.e. d-

variate quadrature problem with a non-smooth integrand. [11] explore the smoothing

properties of the density of a normal distribution and obtain a d−1 dimensional quadra-

ture problem with a smooth integrand. We will discuss this in more detail in Section

5.3.

5.1.3 A first numerical experiment

We investigate the dynamic Chebyshev algorithm in a model where the underlying risk

factors are bivariate normally distributed. We price a basket put option on two as-

sets with a Bermudan-style exercise feature using the dynamic Chebyshev method and

compare the results with the least-squares Monte Carlo algorithm.

The pricing problem is defined as

VT (x1, x2) = g(x1, x2) = max
{
K − 0.5ex1 − 0.5ex2 , 0

}
Vt(x1, x2) = max

{
g(x1, x2), E

[
Vtu+1(X1

tu+1
, X2

tu+1
)
∣∣X1

tu = x1, X
2
tu = x2

] }
where (X1

t , X
2
t )t≥0 is a stochastic process with normally distributed increments, i.e.X1

t

X2
t

 ∼ N2

(
X0 + µt, tΣ

)
with µ =

r − 0.5σ2
1

r − 0.5σ2
2

 and Σ =

 σ2
1 %σ1σ2

%σ1σ2 σ2
2

 .

We fix as parameters

K = 100, T = 1, r = 0.03, σ1 = 0.25, σ2 = 0.2, and % = 0.4.

Moreover, we assume an equidistant time stepping with 252 time steps per year, i.e.
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daily exercise. For the experiments, we fix an interpolation domain in the transformed Z̃

variable using five times the standard deviation. The generalized moments are calculated

using the analytic formula presented in Remark 2.

We perform two experiments in this model. First, we run the dynamic Chebyshev

algorithm for an increasing number of nodal points with N = 16, 32, 64, 128 and we

calculate prices on a grid of 11 × 11 starting values, S1
0 = exp(X1

0 ), S2
0 = exp(X2

0 )

equally distributed between 90 and 110. From these prices, we estimate the empir-

ical order of convergence (EOC). As a second experiment, we compare the dynamic

Chebyshev method with the least-squares Monte Carlo method for an increasing num-

ber of nodal points/simulation paths in terms of accuracy and runtime. We run the

dynamic Chebyshev method for N = 16, 32, 64 and the Monte Carlo simulation for M =

5,000, 20,000, 80,000. The price is computed for a starting value of X1
0 = X2

0 = log(100).

For the least-squares Monte Carlo approach we use antithetic variates as variance

reduction technique, 6 basis functions for the regression and we take the mean error over

50 runs for more stable results. In both experiments we apply the ”smoothing the payoff”

idea in the dynamic Chebyshev algorithm using the density function and Clenshaw-

Curtis quadrature to compute the continuation value at T − 1, with 500 quadrature

points in each dimension. The reference price is computed using the least-squares Monte

Carlo algorithm with 15 basis function and M = 400,000 samples and we took the

average price over five hundred runs. As basis functions for the least-squares Monte-Carlo

algorithm we use 1, S1, S2, S
2
1 , S

2
2 , S1S2 for the version with 6 functions and additionally

S3
1 , S

3
2 , S

4
1 , S

4
2 , S

2
1S2, S1S

2
2 , S

3
1S2, S1S

3
2 , S

2
1S

2
2 for the one with 15 functions.

Figure 5.1 shows the results for both experiments. In the left plot, we observe the

empirical order of convergence as a function of the Chebyshev N . We observe that the

algorithm converges and the method reaches an error smaller than 10−3 for 64 nodal

points per dimension. The right picture shows the comparison between the dynamic

Chebyshev method and the least-squares Monte Carlo approach. We observe that the

Chebyshev method achieves a much higher accuracy in the same runtime. For example,

an accuracy below 10−2 is achieved in only 0.03s whereas the Monte Carlo approach

requires 1.2s for a lower accuracy of 2.8·10−2. This indicates that the dynamic Chebyshev

method is able to outperform the least-squares Monte Carlo approach in this bivariate

example.

5.1.4 Omit calculation of coefficients

When computing option prices with the dynamic Chebyshev method we are often only

interested in the price at t = 0 and thus we do not require the coefficients cuj in every time
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Figure 5.1: Error decay of the dynamic Chebyshev method for a basket put option on
two assets with Bermudan exercise feature. Left plot: Empirical order of convergence
in the Black-Scholes model. Right plot: Comparison with least-squares Monte Carlo in
terms of runtime and accuracy.

step. In this case, we can simplify the dynamic Chebyshev method and compute only the

nodal values in the time stepping and not the coefficients. This should approximately

half the run time of the time stepping. For the overall runtime, the effect depends on the

relation between the runtime of the pre-computation step and the runtime of the time

stepping.

We will present this idea for the univariate dynamic Chebyshev method. At time

step tu we need to compute the continuation values at the grid points

E[Vtu+1(Xtu+1)|Xtu = xn] ≈
N∑
j=0

cu+1
j E[pj(Xtu+1)|Xtu = xk]

=

N∑
j=0

210<j<N

N

N∑
k=0

′′
Vtu+1(xk)Tj(zk)E[pj(Xtu+1)|Xtu = xk]

=
N∑
k=0

′′
Vtu+1(xk)

( N∑
j=0

210<j<N

N
Tj(zk)E[pj(Xtu+1)|Xtu = xn]

)

=
N∑
k=0

Vtu+1(xk)w
n
k

for weights

wnk =
210<k<N

N

N∑
j=0

′′
Tj(zk)E[pj(Xtu+1)|Xtu = xn]. (5.2)
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The weights wnk can be calculated in the pre-computation step and in the time stepping

one only has to calculate

Vtu(xk) ≈ max
{
g(xk),

N∑
k=0

Vtu+1(xk)w
n
k

}
.

Every time step of the dynamic Chebyshev method can thus be seen as a numerical

quadrature rule of the value function Vtu with respect to the density of the underlying risk

factor. The weights wnk form a linear operator in R(N+1)×(N+1) that maps the vector of

nodal values at tu+1 onto the vector of nodal values at time point tu. This simplification

of the dynamic Chebyshev algorithm can be extended to higher dimensions. We will

provide a bivariate version explicitly and then state a general d-variate version.

Bivariate dynamic Chebyshev method:

Consider a bivariate dynamic programming problem with value function (x1, x2) 7→
Vtu(x1, x2) and a stochastic process (X1

t , X
2
t ). Let

∑
j1

∑
j2
cu+1
j1,j2

pj1pj2 be the Chebyshev

interpolation of Vtu+1 . Then the continuation value at tu can be written as

E
[
Vtu+1(X1

tu+1
, X2

tu+1
)|X1

tu = xn1 X
2
tu = xn2

]
≈

N1∑
j1=0

N2∑
j2=0

cu+1
j1,j2

E
[
pj1,j2(X1

tu+1
, X2

tu+1
)|X1

tu = xn1 X
2
tu = xn2

]

=

N1∑
j1=0

N2∑
j2=0

(210<j1<N1

N1

210<j2<N2

N2

N1∑
k1=0

′′
N2∑
k2=0

′′
Vtu+1(xk1 , xk2)Tj1,j2(zk1 , zk2)

)
· E
[
pj1,j2(X1

tu+1
, X2

tu+1
)|X1

tu = xn1 X
2
tu = xn2

]
=

N1∑
k1=0

N2∑
k2=0

Vtu+1(xk1 , xk2)wn1,n2

k1,k2

with weights

wn1,n2

k1,k2
=

210<k1<N1
+10<k2<N2

N1N2

N1∑
j1=0

′′
N2∑

j2=0

′′
Tj1,j2(zk1 , zk2)E

[
pj1,j2(X1

t+1, X
2
t+1)|X1

t = xn1 X
2
t = xn2

]

If X1
tu+1

, X2
tu+1

are conditionally independent, we can use that pj1,j2 = pj1pj2 and we

obtain

E
[
pj1,j2(X1

tu+1
, X2

tu+1
)|X1

tu = xn1 X
2
tu = xn2

]
= E

[
pj1(X1

tu+1
)|X1

tu = xn1

]
E
[
pj2(X2

tu+1
)|X2

tu = xn2

]
.

Together with Tj1,j2 = Tj1Tj2 this yields wn1,n2

k1,k2
= wn1

k1
wn2
k2

where wn1
k1

and wn2
k2

are one-
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dimensional weights as defined in (5.2). Overall, the continuation value and thus be

written as

E
[
Vtu+1(X1

tu+1
, X2

tu+1
)|X1

tu = xn1 X
2
tu = xn2

]
≈

N1∑
k1=0

N2∑
k2=0

Vtu+1(xk1 , xk2)wn1
k1
wn2
k2
. (5.3)

The bivariate version of this algorithm can be written in matrix form and allows an

efficient implementation in Matlab.

Multivariate dynamic Chebyshev method:

Consider a d-variate dynamic programming problem with value function Vt(x) and an

Rd-valued stochastic process (Xt)t≥0. Let
∑
j c

u+1
j pj be the Chebyshev interpolation of

Vtu+1 . We obtain

E
[
Vtu+1(Xtu+1)|Xtu = xn

]
≈
∑

j
cu+1
j E

[
pj(Xtu+1)|Xtu = xn

]
=
∑

j

(( d∏
i=1

210<ji<Ni

Ni

)∑′′

k
Vtu+1(xk)Tj(zk)

)
E
[
pj(Xtu+1)|Xtu = xn

]
=
∑

k
Vtu+1(xk)wnk

with weights

wnk =
( d∏
i=1

210<ki<Ni

Ni

)∑′′

j
Tj(zk)E

[
pj(Xtu+1)|Xtu = xn

]
.

Similarly to the bivariate case we can write the weights as a product of d one-dimensional

weights wnk = wn1
k1
· · ·wndkd if Xtu+1 conditioned on Xtu is a vector of independent random

variables.

Numerical example: Bivariate dynamic Chebyshev

We compare the bivariate dynamic Chebyshev algorithm without computation of co-

efficients to the normal dynamic Chebyshev algorithm. For this we use the pricing of

a bivariate basket option in a two-dimensional Black-Scholes model. We use the same

specifications as for the numerical example in Section 5.1.3. We run both methods for

an increasing number of Chebyshev nodes N with N = 16, 32, 64, 128 and compare the

runtimes of both approaches.

Figure 5.2 shows the runtime of the modified algorithm divided by the runtime of the

normal dynamic Chebyshev algorithm. We observe that the modification is a significant

improvement to the algorithm and this effect becomes more important for a higher

number of nodal points. This confirms the theoretical prediction that the runtime of the
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backward induction is approximately halved. Note, that the price differences between

the two approaches is below 10−11, i.e. meaning the two methods produce the same

result apart from rounding errors.
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Figure 5.2: Comparison of the the bivariate dynamic Chebyshev algorithm without coef-
ficients with the normal bivariate dynamic Chebyshev method for an increasing number
of nodal points.

5.2 Pricing of callable bonds

In this section, we investigate one application of the (bivariate) dynamic Chebyshev

method in detail, the pricing of callable bonds. A callable bond is a fixed income deriva-

tive that combines a vanilla bond with an embedded option. The bond issuer has the

right to call the bond before maturity at a pre-specified price. The value of such a

callable bond is driven by interest rates and default risk. The resulting pricing prob-

lem can be formulated as a bivariate dynamic programming problem in a two factor

rate/credit model.

The goal of this section is to tailor the dynamic Chebyshev method to this pricing

problem and provide empirical evidence of its benefits. We start with a short motivation

and discuss the practical relevance of callable bonds. Then, we introduce a two-factor

rate/credit model and we formulate the pricing problem as a dynamic programming

problem. We present a dynamic Chebyshev algorithm for this problem and explain how

this algorithm can be used for the model calibration. We conclude the section with an

empirical analysis of the convergence behaviour of the pricing algorithm and the stability

of the sensitivities.

This section is based on work that the author has conducted during an internship at
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HSBC Bank plc in the credit quantitative analytics team of Mikhail Soloveitchik. The

presented material has been developed by the author and does not contain any sensitive

information or data. It has been approved for use in academic research and education.

All numerical experiments have been re-run by the author.

5.2.1 Callable defaultable bonds

Callable corporate bonds belong to the most important fixed income instruments in fi-

nancial markets. In the United States alone, over 70% of the 1.4 trillion USD of corporate

bond issuance in 2019 were callable bonds. See the data from the Securities Industry and

Financial Markets Association presented in Figure 5.3. This is a tremendous increase

compared to the late nineties, when the yearly US corporate bond issuance had a volume

below 600 billion USD and was dominated by non-callable bonds.

Callable debt offers companies additional financial flexibility by allowing them to re-

buy their own bonds if interest rates are low enough. The bond issuer will call the bonds

when it is cheaper for him to refinance via the issue of a new bond due to lower interest

rates or a lower credit spread. For companies, it can be seen as a hedge against falling

interest rates. Due to the additional optionality for the bond issuer, the callable bond

must be cheaper from an investor’s point of view. Therefore, callable bonds can offer

higher returns than non-callable bonds.

Essentially, buying a callable bond is equivalent to buying a non-callable bond with

the same coupon payments and selling an option on this bond back to the bond issuer.

Usually, the issuer has the right to terminate the contract at one of several predefined

dates (exercise dates) prior to maturity and pay the strike price instead of all outstanding

cash-flows. This means that the embedded option is typically of Bermudan type. There

exits two different classes of models for callable bonds, structural models and reduced

form models. Structural models look at company specific quantities such as a firm’s asset

and liability structure and take this as a starting point for pricing. The main challenge

here is the availability of information. The reduced form models use market information

to calibrate a stochastic short rate model and price the callable bond in this model. We

will focus on these models.

Since the late seventies, different numerical approaches for pricing callable bonds

have been developed. For an early work on the pricing of callable bonds in a PDE

framework see [20]. They propose to use finite-differences to solve the pricing PDE in

a one-dimensional Gaussian short rate model. The default risk of the bond is ignored.

Based on [20], different modifications have been proposed that tackled stability issues,

improved performance and extended the approach to different short rate models. For
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Figure 5.3: Volume of US corporate bond issues from 1996 to 2019 measured in billion US
dollar. Source: Securities Industry and Financial Markets Association, research report
”US corporate bond issuance” from March 9, 2020.

example [34] present an accurate numerical PDE method for the pricing of callable bonds.

As an alternative to the PDE approaches, [13] formulate the pricing problem as a

dynamic programming problem and solve the backward induction using piecewise linear

interpolation. More recently, [87] proposed an approach based on the eigenfunction

expansion of the pricing operators that is able to handle short rate models with jumps and

pure jump models. All these approaches suffer from one major limitation, the restriction

to one-dimensional short rate models. Considering only one risk factor means that

the correlation between risk-free interest rates and credit spreads cannot be captured.

Moreover, it limits the ability to calibrate the model to market data.

[38] propose to use a two-factor model for pricing defaultable bonds where the de-

fault probability is modelled via a stochastic hazard rate (or credit intensity). Using

two separate processes for the risk-free interest rate and the credit intensity allows for

more accurate calibration to market instruments and correlation can be incorporated

into the model. Such a two-factor model is also the right framework for the pricing of

callable defaultable bonds. Unfortunately, pricing an early-exercise product in such a

two-factor model is challenging and straightforward numerical PDE approaches are often

not feasible.

Relatively few literature exists that considers the pricing of callable bonds in such

a two factor model. Recently, [118] proposed a dynamic programming approach based
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on Clenshaw-Curtis quadrature in a two-factor Vasicek model. The reported runtimes

of around 60s seem however to be too slow for practical purposes. As an alternative,

[77] propose to use separate processes for the default intensity and the call intensity

and come up with a closed-form approximation for the callable bond price under some

simplifications. The additional call intensity process is calibrated to a callable bond

and can then be used to price a second callable bond from the same issuer. Thus, this

method works only if at least one callable bond price is already available for the model

calibration.

Therefore, we suggest to apply the bivariate dynamic Chebyshev method as presented

in Section 5.1.2 for the pricing of callable bonds. We will use a two-factor model where the

interest rate is normally distributed and the credit intensity is log-normally distributed

as presented in [133]. This model can be calibrated to the risk-free yield curve and

the credit spreads observed in this market. From a practical point of view, a suitable

numerical pricing method should be capable of calibrating the underlying two-factor

model efficiently to instruments quoted in the market, compute the callable bond price

accurately and produce stable sensitivities with respect to the market instruments. The

sensitivities are relevant for hedging purposes as well as for the risk management of the

trading book. We will show that the bivariate dynamic Chebyshev method is able to

fulfil these requirements.

5.2.2 Problem formulation

Here, we describe the pricing problem of a callable bond in the presence of credit risk in

a two-factor rate/credit model. First we introduce the instrument and the corresponding

two-factor model. Then we are in a position to formulate the actual pricing problem.

A callable bond

We focus on defaultable corporate bonds that pay a fixed coupon rate. For such a

(callable) bond with maturity T we introduce the following notation

• coupon payment dates 0 = T0 < T1 < . . . < TnC = T ,

• coupon payments Ci = cN(Ti − Ti−1), i = 1, . . . , nC , where c is the coupon rate

and N is the notional of the bond,

• exercise dates t1 < . . . < tm = T and strike prices K(τ)

In our examples, we will ignore the possibility of a notice period before calling the bond.
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The two-factor model

For the pricing of a callable bond we introduce a two-factor hybrid model for the interest

rate and the hazard rate of the credit intensity. We consider a two-factor model where

the short rate r(t) is modelled by a Hull-White model (see [71]) and the hazard rate

λ(t) follows the model of [16]. In the Hull-White model, the short rate is normally

distributed and negative interest rates are possible. This has long be seen as a weakness

of the model but turned out to be an advantage in the current interest rate environment.

The process in the Black-Karasinski model is log-normally distributed and it is ensured

that the hazard rate is always positive.

We divide the short rate and the hazard rate into a deterministic and a stochastic

part modelled by a generic Ornstein–Uhlenbeck process. More precisely, we write

r(t) = r(t, xr(t)) = φr(t) + xr(t)

λ(t) = λ(t, xλ(t)) = eφλ(t)+xλ(t)

for deterministic functions φr, φλ and stochastic processes xr, xλ modelled by

dxr(t) = −arxr(t)dt+ σrdW
r
t , xr(0) = 0

dxλ(t) = −aλxλ(t)dt+ σλdW λ
t , xλ(0) = 0

dW r
t dW λ

t = %dt

(5.4)

The functions φr, φλ are later used to fit the term structure implied by the market. For

more details on the Hull-White and the Black-Karasinski model see [21] and we refer to

[133] for a slightly different notation of the same two-factor model.

The stochastic process xr (and therefore also xλ) is normally distributed with

E[xr(t)|xr(s) = xr] = xre
−ar(t−s),

σ2
r (t− s) := V ar[xr(t)|xr(s) = xr] =

σ2
r

2ar

(
1− e−2ar(t−s)),

see [21]. For the two dimensional process (xr(t), xλ(t)) holds for t > sxr(t)
xλ(t)

∣∣∣
xr(s) = xr

xλ(s) = xλ

 ∼ N2

(
µt−s

xr
xλ

 ,Σt−s
)

µt−s =

e−ar(t−s) 0

0 e−aλ(t−s)

 , Σt−s =

 σ2
r (t− s) %σr(t− s)σλ(t− s)

%σr(t− s)σλ(t− s) σ2
λ(t− s)

 .
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In order to simplify the notation we define the bivariate process x(t) := (xr(t), xλ(t))

and x = (xr, xλ). As usually, if we write a variable in bold we refer to a multivariate (in

this section bivariate) vector.

Calibration of the two-factor model

The merit of the presented version of the Hull-White and Black-Karasinski model is that

the functions φr and φλ can be calibrated to match the term structure implied by the

market. The interest rate term structure φr is calibrated to discount factors obtained

from the risk-free yield curve. This is independent of the credit intensity model and

results in a one-dimensional calibration problem.

The hazard rate term structure φλ is calibrated to CDS (Credit Default Swap) par

rates implied by the markets. Note that par rate or swap rate of CDS instrument is

the fixed interest rate for which the price of the CDS is zero, see [21] for more details.

Either they are directly observed or implied by the credit curve generated from market

quotes. A CDS is an insurance for credit risk and protects against the default of a bond

issuer. The protection buyer pays periodically a premium of rate times notional and is

in turn protected in case of default. The price of such an instrument is driven by interest

rate risk as well as credit risk. The calibration of the hazard rate is therefore a bivariate

problem. The price of a CDS instrument with maturity T , rate R0,T and notional 1 is

given by

CDS(R0,T ) =
n∑
j=1

E
[
D(Tj)1{τ>Tj}

]
(Tj − Tj−1)R0,T − LGDE

[
1{0<τ≤T}D(τ)

]
where τ is the default time, T1, . . . , Tn are the payment dates of the CDS with T0 = 0

and D(Tj) is the stochastic discount factor. The default time τ is usually defined as the

first jump time of a Poisson process with (stochastic) intensity, the so-called hazard rate

λ(t) and it holds

Q(τ > t) = E
[

exp
(
−
∫ t

0
λ(s)ds

)]
,

see [21] for more details. The loss given default (LGD) in the CDS formula equals 1

minus the recovery rate of the bond. If a bond has a recovery rate of 40%, the CDS

offers protection for the remaining 60% of the notional value. The first part of the CDS

formula is called the premium leg of the CDS and the second part is called the protection

leg. We call R0,T the par rate or the swap rate of the CDS is CDS(R0,T ) = 0. For more

details on hazard rates, default probabilities and CDS swaps we refer again to [21].
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In our numerical examples, we assume that the speed of mean reversion ar, aλ as

well as the volatilities σr, σλ and the correlation % are given. This means that only the

term structures φr and φλ have to be calibrated. In practice, σr can be relatively easily

obtained from interest rate options such as caps and floors. For the credit volatility σλ

there might not be suitable market data and it has to be computed from historical data.

Similarly, the correlation parameter % is often computed using historical data. The speed

of mean reversion has a relatively small influence and can just be fixed.

Formulation of the pricing problem

We start with the valuation of a non-callable defaultable bond with maturity T . The

price a defaultable bond is computed as the discounted value of all cash-flows where

the discounting reflects the interest rate as well as the credit risk. For the moment, we

assume that there is no recovery, i.e. the bond issuer loses the complete notional N in

the event of a default. The value V Bond
t of such a bond is then given by

V Bond
t =

∑
t≤Ti≤T

Drisky(t, Ti)Ci +Drisky(t, T )N

with risky discount factor

Drisky(s, t) = E
[
Z(s, t)

∣∣Fs] for Z(s, t) := exp
(
−
∫ t

s

(
r(u) + λ(u)

)
du
)
,

see [38]. The pricing formula implies that we discount all cash-flows with a rate r + λ

that reflects the risk-free rate as well as the individual credit risk. Using this concept,

we can write a CDS instrument as

CDS(R0,T ) =

n∑
j=1

E[Z(0, Tj)](Tj − Tj−1)R0,T − LGDE
[ ∫ T

0
λ(s)Z(0, s)ds

]
. (5.5)

Additionally, we define the riskless discount factor

D(s, t) = E
[

exp
(
−
∫ t

s
r(u)du

)∣∣Fs].
For a simpler notation we will write Z(t) instead of Z(0, t) and replace D(0, t) by D(t).

The price of a callable defaultable bond is given by a (discrete-time) optimal stopping

problem. The bond issuer minimizes the (discounted expected) amount he needs to pay

to the investor, i.e.

V (0) = min
τ∈TEx

E
[ ∑
Ti<τ

Z(Ti)Ci + Z(τ) min{K(τ), V Bond(τ)}
]



Chapter 5. Multivariate early-exercise options 200

where TEx is the set of all stopping times which take values in the discrete set of exercise

dates {t1, . . . , tm}. This optimal stopping problem of a callable bond can be reformulated

as a dynamic programming problem which can be solved via backward induction, see

[38]. We obtain

VT (x) = V Bond
T (x)

Vtu(x) = min
{
K(tu),Etu,x

[
Z(tu, tu+1)Vtu+1(x(tu+1)) +

∑
tu≤Ti<tu+1

Z(tu, Ti)Ci
]}

= min
{
K(tu),Etu,x

[
Z(tu, tu+1)Vtu+1(x(tu+1))

]
+

∑
tu≤Ti<tu+1

Etu,x
[
Z(tu, Ti)Ci

]}
where Etu,x[ · ] refers to the conditional expectation E[ · |x(tu) = x]. We refer to the

time-stepping 0 = t0 < . . . < tu < . . . < tn = T as the pricing grid. Each exercise date

needs to be included in the grid, but in general, the pricing grid can be finer. If tu is not

an exercise date we set K(tu) =∞.

5.2.3 A new pricing algorithm for callable bonds

In this section, we introduce the dynamic Chebyshev method for callable bonds. For the

moment, we will assume that the bond pays no coupons and there is no recovery. In this

case, the pricing equation is as follows

Vtu(x) = min
{
K(tu),E

[
Z(tu, tu+1)Vtu+1(x(tu+1))

∣∣x(tu) = x
]}

x(tu+1)|x(tu) = x ∼ N2(µ∆tx,Σ∆t)

where ∆ = tu+1 − tu. This pricing problem fits into the general scope of the dynamic

Chebyshev algorithm and we can apply similar ideas as presented in Section 5.1 for a

general d-dimensional framework. In contrast to equity options in a multivariate Black-

Scholes model, the discount factor Z(tu, tu+1) is stochastic. Moreover, the starting value

x is not just added to the drift but multiplied by the matrix µ∆t. We will see that this

is an additional challenge in the case that interest rate and hazard rate are correlated.

Adding coupon payments and a non-zero recovery rate poses a further challenge. On the

other hand, the terminal payoff of the (callable) bond is constant and there is no kink

in the payoff function that has to be smoothed in the first time step. This will improve

the overall convergence of the method.

Idea of the algorithm

We apply the bivariate dynamic Chebyshev algorithm and approximate the value func-

tion Vtu(x) of a callable bond with Chebyshev polynomials in every time step tu. Assume

we have an approximation of Vtu+1 ≈
∑
j c

u+1
j pj , for multi-index j = (jr, jλ), coefficient
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cu+1
j and bivariate polynomials pj . At time tu, we need to compute the function values

on a grid of nodal points xk = (xkr , xkλ) in order to approximate Vtu , i.e.

V̂tu(k) := min
{
K(tu),

∑
j
cu+1
j Etu,xk

[
Z(tu, tu+1)pj(x(tu+1))

]}
,

k = (kr, kλ). Here, the random variable Z(tu, tu+1) depends on the values of the bi-

variate stochastic process x(t) for t ∈ [tu, tu+1]. This path-dependency makes a direct

computation of the conditional expectation computationally demanding. If the time dis-

cretization is fine enough, the variable Z(tu, tu+1) can be approximated as constant on

the time interval [tu, tu+1]. More precisely, we can approximate the conditional expecta-

tion by

Etu,xk

[
Z(tu, tu+1)pj(x(tu+1))

]
= Etu,xk

[
exp

(
−
∫ tu+1

tu

r(s) + λ(s)ds
)
pj(x(tu+1))

]
≈ Etu,xk

[
exp

(
−∆t(r(tu) + λ(tu))

)
pj(x(tu+1))

]
≈ exp

(
−∆t(r(tu, xkr) + λ(tu, xkλ))

)
Etu,xk

[pj(x(tu+1))]

where ∆t = tu+1 − tu is the length of the time interval. We define the matrix of risky

discount factors Drisky
u with entries

Drisky
u,kr,kλ

= exp
(
−∆t(r(tu, xkr) + λ(tu, xkλ))

)
.

Exploring this simplification, all stochastic information of the model is again hidden in

the generalized moments

Γuj,k := Etu,xk

[
pj(x(tu+1))

]
= Etu,xkr ,xkλ

[
pj(xr(tu+1), xλ(tu+1))

]
.

Since x(tu+1) is conditionally normally distributed, these generalized moments are avail-

able in closed form in the two-factor Hull-White/Black-Karasinski model.

Algorithm for uncorrelated processes

For the moment, we assume that the two processes xr and xλ are independent, i.e. % = 0.

In this case, the dynamic Chebyshev algorithm can be simplified, see Section 5.1.1. For

the conditional expectations Γuj,k holds

Γuj,k = Etu,xkr ,xkλ
[
pj(xr(tu+1), xλ(tu+1))

]
= Etu,xkr [pjr(xr(tu+1))]Etu,xkλ [pjλ(xλ(tu+1))]

due to the independence of the processes and the fact that xr(tu+1) depends only on

the starting value xkr and vice versa. Instead of computing the expectations of N2

polynomials pj for N2 different starting values xk, we only compute the expectations of
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N polynomials for N starting values in each dimension for each time step.

Moreover, if the coefficients ar, aλ, σr, σλ are constant and we use an equidistant time

stepping for the pricing, the pre-computation becomes independent of the number of

time steps. We have

Γrjr,kr := Exkr [pj(xr(∆t))] = Etu,xkr [pjr(xr(tu+1))]

for all time steps tu and similarly, we can define Γλjλ,kλ . For the matrix of risky discount

factors holds

Drisky
u,kr,kλ

= exp(−∆t r(tu, xkr)) exp(−∆t λ(tu, xkλ)) = Drate
u,krD

credit
u,kλ

.

This means that the matrix Drisky
u has rank one (i.e. it can be written as the product of a

column vector Drate
u and a row vector Dcredit

u ) and we call the discount factor separable.

Here, Drate
u is exactly the riskless discount factor at tu. Note that the discount factors

are still time dependent because of the time-dependent term structures φr and φλ.

Adding coupon payments

Adding coupon payments into the presented pricing algorithm is straightforward. If

there are coupon payment dates in the interval [tu, tu+1) we add their discounted value

at time point tu. If the time interval is small enough, we can again assume that the

interest rate and the hazard rate are constant. This means we compute the value of the

coupons V Ck at note k as

V Ck =
∑

tu≤Ti<tu+1

Etu,xk

[
Z(tu, Ti)

]
Ci ≈

∑
tu≤Ti<tu+1

exp
(
− (Ti − tu)(r(tu, xkr) + λ(tu, xkλ))

)
Ci

at every time step tu and add it to the continuation value. If the coupon dates are

a subset of the pricing time grid this can be further simplified and we can ignore the

discounting Z(tu, Ti) form Ti to tu.

Risky callable bonds with recovery

So far, we only considered bonds without any recovery at default. In this section, we

will add recovery to the pricing problem. We assume that in the event of a default, the

bond owner will receive a recovery payment as percentage R of the notional N . We call

R the recovery rate of the bond. At time tu, we add the expected discounted value of
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the default payment for the interval [tu, tu+1]. For the nodal point xk we obtain

DefaultPaymentu,k = Etu,xk

[ ∫ tu+1

tu

λ(s)Z(tu, s)RNds
]

= RN

∫ tu+1

tu

Etu,xk
[λ(s)Z(tu, s)]ds

≈ RN
∫ tu+1

tu

Etu,xk
[λ(tu)Z(tu, tu + 0.5∆t)]ds

= RN∆tλ(tu, xkλ) exp
(
− 0.5∆t

(
r(tu, xkr) + λ(tu, xkλ)

))
.

Here, we assumed again that λ(s) is piecewise constant on a small interval and we

approximated Z(tu, s) on [tu, tu+1] by Z(tu, tu + 0.5∆t).

In summary, the value of a defaultable bond at time point tu is the sum of its

discounted continuation value plus the discounted values of all coupons between tu and

the next time step tu+1 and the expectation of the discounted value at default over this

time period. The discounted factor considers the interest rate risk as well as the hazard

rate of the credit risk.

Choice of interpolation domain

Critical for the convergence behaviour of the algorithm is the choice of the interpolation

domain. A small domain will typically lead to a significant truncation error and an

underestimation of the bond price. In contrast, the larger the domain the more nodal

points are required for the same accuracy. The optimal size depends on the volatility of

the underlying risk factors and the aspired accuracy. We set

[xi, xi] = [µ(xi0, 0, T )− kσ(T ), µ(xi0, 0, T ) + kσ(T )] xiT |xi0 ∼ N (µ(xi0, 0, T ), σ2(T ))

for i = r, λ. As mentioned in Section 5.1.2, setting k = 4 corresponds to a confidence

interval of 99.994% and is sufficiently large for most applications. In order to ensure a

significantly higher accuracy we need to increase k to 5 or 6. Since xr(0) = xλ(0) = 0,

the drift µ(xi0, 0, T ) is zero and the interpolation domain is symmetric around the origin.

For an even Chebyshev degree Nr, xr = 0 will be the midpoint of the nodal points xkr ,

kr = 0, . . . , Nr.

Bivariate pricing algorithm

Here, we present the algorithmic structure in matrix form for a callable bond assuming

that the two processes xr(t) and xλ(t) are uncorrelated and there are no coupon payments

and zero recovery.
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1. Initialization of the algorithm: Fix interpolation degree (Nr, Nλ), number of

time steps nT , and number of standard deviations k. Set domain

[xr, xr] = [−kσr(T ), kσr(T )] [xλ, xλ] = [−kσλ(T ), kσλ(T )]

and define interpolation points

Xr =
xr + xr

2
+
xr − xr

2

(
cos(0π/Nr), . . . , cos(Nrπ/Nr)

)T
,

Xλ =
xλ + xλ

2
+
xλ − xλ

2

(
cos(0π/Nλ), . . . , cos(Nλπ/Nλ)

)
where T means that the vector is transposed. Define the time grid for the pricing

with fixed step size ∆t = T/nT .

2. Compute conditional expectations: Fix drift and volatility

(µ̃i0, . . . , µ
i
N )T = τ−1

[xi,xi]

(
e−ai∆tXi

)
,

σ̃2
i =

( 2

xi − xi

)2
σi(∆t)

2 =
( 2

xi − xi

)2
σ2
i

( 1

2ai

(
1− e−2ai∆t

))
and compute the matrix of conditional expectations

Γi =
(
E[Tj(Yk)1[−1,1](Yk)]

)
j,k

Yk ∼ N (µ̃ik, σ̃
2
i ),

for i = r, λ using formula (3.17).

3. Compute auxiliary matrices:

Ti =
2

Ni



1
4

1
2 . . . 1

2
1
4

1
2 cos( π

Ni
) . . . cos(π(Ni−1)

Ni
) 1

2

...
...

. . .
...

...

...
...

...
. . .

...

1
4

1
2 cos(π) . . . 1

2 cos(π(Ni − 1)) 1
4 cos(πNi)


i = r, λ.

Omit calculation of coefficients: If we are not interested in the coefficients,

compute

Γ̂r = (Γr)TTr, Γ̂λ = TrΓλ.
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4. First time step: At maturity, set CVtnT−1 = V̂T , the notional of the bond.

5. Time stepping: tu+1 → tu

– Compute discount factors:

Drisky
u = Drate

u Dcredit
u

with Drate = exp(−∆tr(tu,X
r)), Dcredit = exp(−∆tλ(tu,X

λ))

where r(tu, xr) = φr(tu) + xr and λ(tu, xλ) = exp(φλ(tu) + xλ).

– Update nodal values:

V̂tu =

min{K(tu), Drisky
u ∗ CVtu}, if bond is callable at tu

Drisky
u ∗ CVtu otherwise

where ∗ refers to the point-wise multiplication.

– Compute new continuation values:

CVtu−1 =

(Γr)TCtuΓλ, for coefficient matrix Ctu = TrV̂tuTλ
Γ̂rV̂tuΓ̂λ, if computation of coefficients is omitted.

6. Final time step: Compute Drisky
0 and final nodal values V̂0 = Drisky

0 ∗ CV0.

7. Compute price: Get option value at starting point (xr(0), xλ(0)) = (0, 0).

Algorithm for correlated processes

In the general case of correlated risk factors the algorithm becomes more complicated.

We can no longer write the conditional expectation of a bivariate Chebyshev polynomial

as the product of the expectations of two one-dimensional polynomials. We want to

explore the ideas of Section 5.1.2 and find an appropriate linear transformation S∆t

such that x(tu+1)|x(tu) = x0 is equal in distribution to S∆tz(tu+1)|z(tu) = z0 with

z0 = S−1
∆tx0 and z(tu+1) is a vector of two independent processes.

Consider the normally distributed bivariate process x(t) := (xr(t), xλ(t)) starting in

x(0) = (xr, xλ). We can write

x(t) =

e−ar(t) 0

0 e−aλ(t)


xr
xλ

+

 σr(t) 0

%σλ(t) σλ(t)
√

1− %2

Z for Z ∼ N2(0,12)
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where 0 is the zero vector and 12 is the 2 × 2 identity matrix. Instead of interpolating

in x(t) we want to interpolate in an independent variable. In order to do so, let us look

at x(tu+1)|x(tu) = x0 with x0 = (xr, xλ) in more detail

x(tu+1) =

e−ar∆t 0

0 e−aλ∆t


xr
xλ

+

 σr(∆t) 0

%σλ(∆t) σλ(∆t)
√

1− %2

Z

=

e−ar∆t 0

0 e−aλ∆t


xr
xλ

+

 1 0

%σλ(∆t)
σr(∆t)

√
1− %2


σr(∆t) 0

0 σλ(∆t)

Z

= S∆t

(
S−1

∆tµ∆t

xr
xλ

+ σ(∆t)Z

)

= S∆tZ̃ with Z̃ ∼ N2

(
S−1

∆tµ∆tx0, σ(∆t)
)

for the matrices

S∆t =

 1 0

%σλ(∆t)
σr(∆t)

√
1− %2

 , µ∆t =

e−ar∆t 0

0 e−aλ∆t

 , σ∆t =

σr(∆t) 0

0 σλ(∆t)

 .

The random variable Z̃ corresponds to the conditional expectation z(tu+1)|z(tu) = z0

with z0 = S−1
∆tx0 for a new independent process z(t) = (zr(t), zλ(t)) given by (5.4) with

% = 0. Instead of working with the process x(t) we will work with the independent

process z(t).

We define the transformed value function Ṽtu(z) := Vtu(S∆tz). Assume we have a

Chebyshev interpolation
∑
j c

u+1
j pj of z 7→ Ṽtu+1(z) and want to obtain an interpolation

of Ṽtu . In order to do so, we require the nodal values Ṽtu(zk) = Vtu(S∆tzk) and thus the

conditional expectations

E
[
Vtu+1(x(tu+1))|x(tu) = S∆tzk

]
= E

[
Vtu+1(S∆tZ̃)|x(tu) = S∆tzk

]
= E

[
Ṽtu+1(Z̃)|x(tu) = S∆tzk

]
= E

[
Ṽtu+1

(
S−1

∆tµ∆tS∆tzk + σ(∆t)Z
)]

=
∑

j
cu+1
j E

[
pj
(
S−1

∆tµ∆tS∆tzk + σ(∆t)Z
)]

for Z ∼ N2(0,12). Assume both processes xr and xλ have the same speed of mean
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reversion, i.e. ar = aλ. In this case, the drift simplifies to

S−1
∆tµ∆S∆tzk = S−1

∆t (e
−ar∆t12)S∆tzk = e−ar∆t12zk.

In this case, the conditional expectations of the bivariate Chebyshev polynomials can

written as

E
[
pj
(
S−1

∆tµ∆tS∆tzk + σ(∆t)Z
)]

= E
[
pjr
(
e−ar∆tzkr + σr(∆t)Zr

)]
E
[
pjλ
(
e−aλ∆tzkλ + σλ(∆t)Zλ

)]
where Zr, Zλ are two independent standard normally distributed random variables. This

means, the pre-computation step for the two correlated processes has the same complex-

ity as in the case of zero correlation. The discount factor at the new nodal points zk is

given by Drisky
u = Drisky

u ((S∆tzk)1, (S∆tzk)2).

If the drift S−1
∆tµ∆S∆tzk does not simplify to a diagonal matrix, the conditional

expectations of pjλ will depend on both, zkr and zkλ . This is the case if either ar 6= aλ

or if the volatility becomes time-dependent.

Separability of discount factors

The problem with the presented transformation is that the new risky discount factor is

not separable, i.e. the discount factor

Drisky
u = exp

(
−∆t

(
φr(tu) + zkr + exp(φλ(tu) + %

σλ
λr
zkr +

√
1− %2zkλ)

))
= exp

(
−∆t

(
φr(tu) + zkr + exp(%

σλ
λr
zkr) exp(φλ(tu) +

√
1− %2zkλ)

))
cannot be written as Drate

u,kr
Dcredit
u,kλ

. Therefore, we have to modify our approach slightly.

Instead of using the process x(t) := (xr(t), xλ(t)) we could apply the same linear

transformation to the process x(t) := (xλ(t), xr(t)) and obtain an independent process

z(t) := (zλ(t), zr(t)). In this case, the matrices become

S∆t =

 1 0

% σr(∆t)σλ(∆t)

√
1− %2

 , µ∆t =

e−aλ∆t 0

0 e−ar∆t

 , σ∆t =

σλ(∆t) 0

0 σr(∆t)

 .

We assume again that aλ = ar, thus σr(∆t)
σλ(∆t) = σr

σλ
and S∆t becomes independent of the

length of the time-step ∆t, i.e. S∆t = S. The discount factor Drisky
u is separable with

Drisky
u = exp

(
−∆t

(
φr(tu) + (Szk)2 + exp(φλ(tu) + (Szk)1)

))
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= exp
(
−∆t

(
φr(tu) + %

σr
σλ
zkλ +

√
1− %2zkr + exp(φλ(tu) + zkλ)

))
= exp

(
−∆t

(
%
σr
σλ
zkλ + exp(φλ(tu) + zkλ)

))
exp

(
−∆t

(
φr(tu) +

√
1− %2zkr

))
= exp

(
−∆t

(
%
σr
σλ
zkλ + λ(tu, zkλ)

))
exp

(
−∆t r(tu,

√
1− %2zkr)

)
.

This means we can separate the terms which depend on zkλ from the terms depending

on zkr and write Drisky
u = Dcredit

u,kλ
Drate
u,kr

.

5.2.4 Calibration of the rate/credit model

In this section, we describe the calibration of the two factor rate/credit model with the

dynamic Chebyshev method.

For the calibration, we require CDS par rates plus riskless discount factors for the

same maturities. We assume that the corresponding CDS are maturing in regular in-

tervals, for example quarterly, and the premium is paid in the same frequency. Let

0 = T0 < T1 < . . . < Tncds be the maturities with Ti = iT1 and R0,Ti the corresponding

par rates. These quarterly par rates can be obtained via bootstrapping from the actual

CDS par rates observed in the market. Let D(Ti) be the riskless discount factors for

T1, . . . , Tncds . For notational convenience we define T0 = 0. We calibrate term structures

as piecewise constant on [Ti−1, Ti) and denote the value of φr on [Ti−1, Ti) as φr(Ti).

First we calibrate φr to the riskless discount factors and then φλ to the CDS par rates.

We start with a straightforward approach and point out its weaknesses. Then we

introduce a second, more efficient approach that significantly reduces the number of

matrix multiplications required for the calibration.

A straightforward calibration approach

The straightforward approach for calibrating the two-factor model is to call a numerical

pricer for each discount factor and CDS and then to minimize the distance between the

market price and the model price. For the interest rate term structure φr one starts with

the first discount factor D(T1) and calibrates φr on [T0, T1). In this case, the calibration

is done by minimizing the distance between the discount factor and the price of a zero-

coupon bond with maturity T1 computed by the univariate dynamic Chebyshev method.

For the minimization one can use a standard numerical optimization routine with an

appropriate initial guess φr(T1) and a target error tolerance. Having calibrated φr on

the first interval, the next discount factor D(T2) can be calibrated and so on. For the
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maturity Ti we obtain

D(Ti) = E
[

exp
(
−
∫ Ti

0
r(s, xr(s))ds

)]
= E

[ i∏
j=1

exp
(
−
∫ Tj

Tj−1

(
φr(Tj) + xr(s)

)
ds
)]

and we minimize the distance between the observed discount factor and the discount

factor computed in our stochastic model over φr(Ti).

For the credit term structure, we use the bivariate dynamic Chebyshev method to

price both, the protection leg and the premium leg of the CDS. Once the model is

calibrated to the first par rate we continue with R0,T2 and so on until we have calibrated

the function φλ to all rates.

Similarly to the pricing of callable bonds with the dynamic Chebyshev method, we

use an equidistant time grid with nq steps on every interval [Ti, Ti+1]. For the first CDS

instrument with pricing formula (5.5), the protection leg is approximated by

E
[ ∫ T1

0
λ(s)Z(s)ds

]
=

nq−1∑
u=0

E
[ ∫ tu+1

tu

λ(s)Z(s)ds
]

≈
nq−1∑
u=0

E
[
∆tλ

( tu + tu+1

2

)
Z
( tu + tu+1

2

)]

≈
nq−1∑
u=0

∆tE
[
Z(tu)λ(tu) exp

(
− ∆t

2
(r(tu, xr(tu)) + λ(tu, xλ(tu)))

)]
.

Here, we explored that φλ, φr are constant on [0, T1) and we approximated xr(t), xλ(t)

as constant on [tu, tu+1]. The expectations can be seen as present values of zero-

coupon bonds with maturity tu and terminal payoff λ(tu) exp
(
− 0.5∆t(r(tu, xr(tu)) +

λ(tu, xλ(tu)))
)
.

Similarly, the premium leg is R0,T1T1 times the present value of a zero-coupon bond

with maturity T1, i.e. E[Z(T1)]. After calibrating the first CDS we can write the pro-

tection leg of the second CDS as

E
[ ∫ T2

0
λ(s)Z(s)ds

]
= E

[ ∫ T1

0
λ(s)Z(s)ds

]
+

2nq−1∑
u=nq

E
[ ∫ tu+1

tu

λ(s)Z(s)ds
]
.

This implies that the protection leg of the second CDS is the protection leg of the first

CDS plus nq new terms. Thus, the calibration of all ncds CDS instruments requires the
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computation of ncdsnq terms

E
[
Z(tu)λ(tu) exp

(
− ∆t

2
(r(tu, xr(tu)) + λ(tu, xλ(tu)))

)]
and ncds terms

E
[
Z(Ti)

]
= E

[
exp

(
−
∫ Ti

0

(
r(s, xr(s)) + λ(s, xλ(s))

)
ds
)]
.

The drawback of this straightforward calibration approach is its computational complex-

ity. For every discount factor we need to call a new dynamic Chebyshev pricer and no

previously computed information is re-used. The number of matrix multiplications that

have to be done grows proportionally to ncds(ncds+1)
2 times the number of time steps nq.

This inefficiency comes from the fact that the calibration is a forward scheme from T1 to

Tncds but the pricing is then done via backward induction. In the following, we introduce

a modified calibration routine which reduces the complexity to ncds.

Efficient bond pricing

For both, the calibration of the rate as well as of the credit term structure, an efficient

way to price zero coupon bonds (with and without credit risk) for different maturities

is crucial. We start with the bivariate case of a zero coupon bond with credit risk (i.e.

a risky discount factor) and derive the riskless case from this. Assume that the interest

rate and the credit intensity are uncorrelated. For a zero coupon bond with credit risk

every time step in the bivariate dynamic Chebyshev method looks as follows

V̂tu = Drisky
u ∗ Γ̂rV̂tu+1Γ̂λ

and at maturity T , V̂T is a (Nr + 1) × (Nλ + 1) matrix of ones denoted by 1Nr,Nλ .

We recall that the discount factor Drisky
u is separable and the matrix Drisky

u can be

written as the product of a column vector Drate
u = exp(−∆tr(tu,xr)) and a row vector

Dcredit
u = exp(−∆tλ(tu,xλ)). We define new matrices

Lr = Drate
u ∗ Γ̂r and Lλ = Dcredit

u ∗ Γ̂λ

where the pointwise multiplication of a column vector with a matrix means that each

matrix column is pointwise multiplied with the vector. For the time stepping of the

dynamic Chebyshev method we obtain

V̂tu = LrV̂tu+1Lλ.
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The matrices Lr, Lλ only change if φr(t) or φλ(t) change. Hence, they are the same on

any interval [Ti, Ti+1) and we write Lir and Liλ to indicate the interval. Let nq be the

number time-steps in the dynamic Chebyshev method in [Ti, Ti+1). The risky discount

factor Drisky(T1) = E[Z(T1)] is then the price of the zero coupon bond at t = 0, i.e. the

entry of V̂0 where xλ(0) = xr(0) = 0, for an even Chebyshev degree N this is the s-th

entry with s = N/2 + 1 in each dimension. We obtain this entry by multiplying V̂0 with

a (row) vector es from the left and eTs from the right, where es is one at entry s and

zero otherwise, i.e.

Drisky(T1) ≈ es(L1
r)
nq1Nr,Nλ(L1

λ)nqeTs .

The computed vectors es(L
1
r)
nq and (L1

λ)nqeTs can then be stored and used again for the

next discount factor

Drisky(T2) ≈ es(L1
r)
nq(L2

r)
nq1Nr,Nλ(L2

λ)nq(L1
λ)nqeTs .

Similarly, we can calculate the riskless discount factors D(Ti) using only the matrices

Lir. The riskless discount factor is a zero coupon bond without credit risk and can be

approximated by

D(Ti) ≈ es(L1
r)
nq . . . (Lir)

nq1T

where 1 is a row vector of ones. Moreover, the vectors es(L
1
r)
nq . . . (Lir)

nq for i =

1, . . . , ncds can be computed once for the calibration of the interest rate term structure

and then be re-used for the calibration of the credit intensity.

The modified calibration approach has two significant advantages. First, the number

of matrix multiplications scales only linearly in ndf since the information computed for

Drisky(Ti) are re-used for Drisky(Ti+1). Second, the matrix power L
nq
r requires only

2 log2(nq) matrix multiplications instead of nq if the idea of exponentiation by squaring

is explored. For nq even we can write L
nq
r = L

nq/2
r L

nq/2
r and for nq odd we can write

L
nq
r = LrL

(nq−1)/2
r L

(nq−1)/2
r . This procedure can then be repeated for L

nq/2
r or L

(nq−1)/2
r

and so on.

If interest rate and hazard are correlated we use the transformations of the pro-

cess x(t) = (xλ(t), xr(t)) described in Section 5.2.3 and explore the separability of the

discount factors

Drisky
u = exp

(
−∆t

(
%
σr
σλ
zkλ + exp(φλ(tu) + zkλ)

))
exp

(
−∆t

(
φr(tu) +

√
1− %2zkr

))
= exp

(
−∆t

(
%
σr
σλ
zkλ + λ(tu, zkλ)

))
exp

(
−∆t r(tu,

√
1− %2zkr)

)
.
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Note that the calibration of the rate term structure remains the same since it depends

only on xr(t). This means, we can calibrate φr using the one-dimensional dynamic

Chebyshev method, independently of the correlation between rate and credit.

Overall, the new scheme requires far less matrix multiplications and leads to a sig-

nificant runtime reduction. Further speed-up can be achieved by using a different op-

timization routine or root-finder in the calibration of each discount factor. Exploring

the monotonicity of the discount factors in φr(Ti) and φλ(Ti) can be beneficial. In our

experiments, a root-finder based on a bisection or a secant method required significantly

fewer steps than a standard minimization routine.

Efficient pricing of CDS instruments

Using the efficient pricing of defaultable zero coupon bonds, we immediately obtain a

more efficient pricer for CDS instruments of different maturities. We recall that the

premium leg is just a sum of risky bonds and the premium leg can also be seen as sum

of bonds with a different payoff profile.

In the bivariate dynamic Chebyshev algorithm, the time step tu+1 → tu in the absence

of an early-exercise possibility or coupon payments is given by

V̂tu = Drisky
u ∗ (Γ̂λV̂tu+1Γ̂r) = LiλV̂tu+1L

i
r

on the interval [Ti−1, Ti]. The matrices Lλ and Lr are defined as

Liλ = exp
(
−∆t exp(φλ(Ti) + xλ)

)
∗ Γ̂λ and Lir = Γ̂r ∗ exp

(
−∆t(φr(Ti) + xr)

)
if interest rate and credit intensity are uncorrelated. In the general case with correlation

we obtain

Liλ = exp
(
−∆t(%

σr
σλ
zλ + exp(φλ(Ti) + zλ)

)
∗ Γ̂λ

Lir = Γ̂r ∗ exp
(
−∆t(φr(Ti) +

√
1− %2zr)

)
.

Here xλ, zλ are column vectors and xr, zr are row vectors of the Chebyshev nodal points.

Note that due to the linear transformation S, the matrix Lir in the two-factor model does

not coincide with the matrix Lir used for the riskless discount factors.

The present value of the protection leg on [tu−1, tu] in [0, T1] is then given by

V̂0 = (L1
λ)u−1λ̃(T1,xλ)D(T1,xr)(L

1
r)
u−1
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where D(T1,xr) = exp(−0.5∆t(φr(T1) + xr)) and

λ̃(T1,xλ) = λ(T1,xλ) ∗ exp(−0.5∆tλ(T1,xλ)) with λ(T1,xλ) = exp(φλ(T1) + xλ).

The actual present value of the protection leg is then the entry of V̂0 where xλ(0) =

xr(0) = 0, given by

V̂0(0) = es(L
1
λ)u−1λ̃(T1,xλ)D(T1,xr)(L

1
r)
u−1eTs ,

similarly to the value of zero coupon bond with maturity T1 given by

V̂0(0) = es(L
1
λ)nq1T1(L1

r)
nqeTs

where 1 is a row vector of ones. Re-using the information computed for the first CDS

instrument, the present value of the protection leg on [tu−1, tu] in the interval [T1, T2] is

given by

V̂0(0) = es(L
1
λ)nq(L2

λ)u−1λ̃(T2,xλ)D(T2,xr)(L
2
r)
u−1(L1

r)
nqeTs

and the value of a zero coupon bond with maturity T2 is given by

V̂0(0) = es(L
1
λ)nq(L2

λ)nq1T1(L2
r)
nq(L1

r)
nqeTs .

The vectors es(L
1
λ)nq . . . (Liλ)nq and (Lir)

nq . . . (L1
r)
nqeTs can then be stored and used

again for the next CDS instrument.

Similar to the case of riskless discount factors it is more efficient to use a root finder to

calibrate φλ(Tj). Since we do not know the derivative of the CDS with respect to φλ(Tj)

in closed from we cannot use Newton’s method. However, the closely related secant

method performed very well in our experiments. As an initial guess we used the hazard

rate in the static (non-stochastic model) and a small shift of this value as a second initial

guess. Moreover, it is more efficient to compute the root of exp(φλ(Tj)) 7→ CDS(R0,Tj )

instead of the root of φλ(Tj) 7→ CDS(R0,Tj ). As an alternative, one could also use a

bracketing method such as a version of the Brent-Dekker root-finding algorithm.

For an efficient implementation, the vectors (Ljr)u−1 . . . (L1
r)
nqeTs for u = 1, . . . , nq+1

should be computed prior to the root-finder and can then be used in each iterative

step of the root-finding algorithm. Their computation requires nq matrix times vector

multiplications for each CDS instrument.
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Summary calibration routine

Next, we summarize the presented calibration routine for the two-factor model using the

dynamic Chebyshev method.

Input:

CDS par rates R0,Ti , maturities T1, . . . , Tncds with Ti+1 − Ti = T1 and riskless discount

factors for the same days D(Ti), recovery rate R ∈ [0, 1] (or LGD = 1−R).

Calibration of φr:

• Calibrate φr as a piecewise constant function on [Ti−1, Ti), i = 1, . . . , ncds

• Calibration problem: For i = 1, . . . , ncds find root of

φr(Ti) 7→ D(Ti)− 1(Lir)
nq . . . (L1

r)
nqeTs , with Lir = exp(−∆t(φr(Ti) + xr)) ∗ Γ̂r

for nT pricing steps between Ti−1 and Ti, row vector xr of nodal points, row vector

1 of ones and row vector es is one at s = N/2 + 1 for N even

• Root-finding via bisection type method or secant method

• Good initial guess φ̂r(Ti) = − log(D(Ti)/D(Ti−1))/(Ti − Ti−1)

• Store vector (Lir)
nq . . . (L1

r)
nqeTs and re-use it for the next discount factor

Calibration of φλ:

• Calibrate φλ as a piecewise constant function on [Ti−1, Ti), i = 1, . . . , ncds

• Compute protection leg and premium leg for CDS(R0,Ti)

Protection(Ti) = Protection(Ti−1)

+ LGD

nT−1∑
u=0

es(L
1
λ)nq . . . (Liλ)u−1λ̃(Ti, zλ)

·D(Ti, zr)(L
i
r)
u−1 . . . (L1

r)
nqeTs

Premium(Ti) =

i∑
j=1

es(L
1
λ)nq . . . (Ljλ)nq1T1(Ljr)

nq . . . (L1
r)
nqeTs

with column vector zλ, row vector zr and

Liλ = exp
(
−∆t

(
%
σr
σλ
zλ + eφλ(Ti)ezλ

))
∗ Γ̂λ

Lir = exp
(
−∆t

(
φr(Ti) +

√
1− %2zr

))
∗ Γ̂r
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λ̃(Ti) = eφλ(Ti)ezλ exp
(
− 0.5∆t

(
%
σr
σλ
zλ + eφλ(Ti)ezλ

))
D̃(Ti) = exp

(
− 0.5∆t

(
φr(Ti) +

√
1− %2zr

))
• Compute root of exp(φλ(Ti)) 7→ R0,TiT1Premium(Ti)− Protection(Ti)

• Root-finding using a secant method or Brent-Dekker

• Store vectors es(L
1
λ)nq . . . (Liλ)nq and (Ljr)nq . . . (L1

r)
nqeTs .

5.2.5 Empirical investigation of the algorithm

In this section, we investigate the dynamic Chebyshev method for callable bonds nu-

merically. We consider non-callable and callable defaultable bonds with and without

coupon payments in the two-factor rate/credit model presented in Section 5.2.2. For our

experiments we consider a bond with maturity T = 5 years, notional 100 and annual

coupons of 5%. As model parameters we fix

αr = 0.01, σr = 0.03, αλ = 0.01, σλ = 0.6, ρ ∈ {0, 0.5}.

For the callable bond we assume that the option can be exercised after 1, 2, 3 and 4 years

at a strike price given in Table 5-A. Moreover, we consider the bond without recovery

and with a recovery of 40%. Overall, we consider eight different scenarios.

We want to investigate the accuracy and the runtime of the presented method as

well as its convergence behaviour. For this, we run the dynamic Chebyshev method for

increasing N = 16, 32, 64 in each dimension, using 20 and 40 time steps per year and

we choose the interpolation domain based on four times the standard deviation of the

underlying process. We compute reference prices using N = 128 points, 80 time steps

per year and 5 times the standard deviation as domain. All experiments have been

performed in Python version 3.7.4 using the numpy package version 1.18.1.

Time Strike (no coupons) Strike (with coupons)

1 65 85

2 70 90

3 75 95

4 80 100

Table 5-A: Exercise dates and strike prices of the callable bonds.

In order to test the calibration procedure we need CDS par rates and discount factors
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that represent realistic market data. In our numerical examples, we calibrate the two-

factor model to par rates of CDS instruments maturing quarterly and riskless discount

factors for the same maturities. The rates and the discount factors required for the

calibration of the model are displayed in Table 5-B. The par rates have been computed

via bootstrapping from five CDS instruments with maturity 1,2,3,4 and 5 years and

corresponding par rates 0.73%, 1.41%, 2.00%, 2.57% and 3.09%. Moreover, it is assumed

that the premium leg of the five instruments is paid annually. The rootfinding step in

the calibration is performed with a target error tolerance of 10−6.

Maturity D(T ) CDS rate (no rec) CDS rate (rec)

0 1 - -

0.25 0.988481 0.007206 0.007194

0.5 0.977198 0.007090 0.007078

0.75 0.965403 0.007130 0.007117

1 0.953647 0.007149 0.007136

1.25 0.94203 0.009833 0.009810

1.5 0.930971 0.011509 0.011477

1.75 0.919701 0.012799 0.012758

2 0.908545 0.013764 0.013717

2.25 0.89747 0.015695 0.015636

2.5 0.886735 0.017170 0.017100

2.75 0.875895 0.018433 0.018351

3 0.865170 0.019482 0.019388

3.25 0.854427 0.021209 0.021102

3.5 0.844152 0.022590 0.022471

3.75 0.833661 0.023868 0.023731

4 0.823289 0.024981 0.024827

4.25 0.812910 0.026485 0.026319

4.5 0.802990 0.027731 0.027552

4.75 0.792863 0.028918 0.028720

5 0.782862 0.029980 0.029761

Table 5-B: Discount factors (without default risk) and CDS par rates (without recovery
and with recovery of R = 40%) used for model calibration.
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Accuracy and runtimes of the method

We start with the investigation of the accuracy of the bond prices using the proposed

calibration routine. An overview of the different scenarios along with reference prices

of the non-callable and the callable bond is displayed in Table 5-C. As a first sanity

check, we see that the callable bond is cheaper than the non-callable bond. Moreover,

we observe that adding yearly coupon payments of 5% increases the overall value by

around 20 for the non-callable bond and slightly more for the callable bond. We note

that in case of coupon payments, we also had to change the strike prices of the bond.

Assuming a non-zero recovery makes the bond more valuable because the bond owner

receives a payment in case of recovery. The correlation parameter has a smaller but not

negligible influence and makes the bond more expensive.

Scenario Correlation Coupon Recovery Non-callable Callable

1 Zero No No 66.8558 56.9431

2 Positive No No 67.2185 56.3092

3 Zero Yes No 87.1385 81.2028

4 Positive Yes No 87.5320 80.3419

5 Zero No Yes 68.0632 58.4311

6 Positive No Yes 68.6168 57.9735

7 Zero Yes Yes 87.4958 81.7794

8 Positive Yes Yes 88.0960 81.1082

Table 5-C: Reference prices of the non-callable and the callable bond computed with a
dynamic Chebyshev method with N = 128 in each dimension and 80 time steps per year.

Table 5-D displays the relative pricing error of the dynamic Chebyshev method with

N = 32, N = 64 and 20 and 40 time steps per year. We observe that the dynamic

Chebyshev method with N = 64 and 40 time steps is for all scenarios able to achieve a

relative accuracy below 10−4 and thus an error of less than 0.01%. Moreover, a Cheby-

shev N of 32 and 20 time steps is already enough to obtain an error of less than 0.1% in

all scenarios. Overall, we observe that both, the number of nodal points and the number

of time steps per year influence the accuracy. In the next section, we will investigate the

convergence behaviour in more detail.

Table 5-E displays the corresponding runtimes of the dynamic Chebyshev for calibra-

tion plus pricing as well as the individual runtimes. Overall, the runtimes of calibration

plus pricing are always less than 50 ms, measured on a standard laptop using Python.

If one is satisfied with a slightly lower accuracy, the whole procedure takes only half of
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1 2 3 4 5 6 7 8

DC32,20

non-callable 0.55 1.09 0.44 0.90 0.54 1.27 0.44 1.06

callable 0.21 4.20 1.84 0.70 1.25 0.72 1.71 0.31

DC64,20

non-callable 0.57 1.12 0.47 0.92 0.57 1.30 0.47 1.10

callable 0.98 0.20 0.01 0.81 1.01 1.26 0.35 0.69

DC32,40

non-callable 0.62 0.92 0.50 0.75 0.59 0.96 0.49 0.80

callable 0.05 4.64 2.02 0.35 1.02 1.24 1.90 0.74

DC64,40

non-callable 0.63 0.93 0.51 0.76 0.60 0.97 0.50 0.81

callable 0.71 0.26 0.21 0.44 0.74 0.75 0.12 0.23

Table 5-D: Pricing error for a non-callable and a callable bond of the dynamic Chebyshev
method in different scenarios. Error in 10−4.

the runtime. Doubling the Chebyshev N and thus increasing the total number of nodal

points by a factor of 4 increases the total runtime by a factor 4. Mainly, because the

runtime of the pricing increases. Doubling the number of time steps has a smaller influ-

ence and leads to an increase of around 25%. Depending on the Chebyshev N and the

number of time steps, at least 2/3 of the runtime is the calibration of the model, even

more if N is smaller. From the table we observe that the different scenarios have only

a small influence on the runtime of the method. For example for DC64,40, the runtime

in scenario 8 with correlation and a non-zero recovery rate is only 3 ms longer than the

runtime in scenario 1 with zero correlation and no recovery. This is an indicator for an

overall high efficiency of the new method.

Empirical convergence analysis

Next, we investigate the convergence behaviour of the dynamic Chebyshev method for

callable bonds. In order to do so, we compute the empirical order of convergence (EOC)

and compare it to a theoretical error decay of N−2. A quadratic error decay is for

example achieved by a standard finite difference PDE solver using a Crank–Nicolson

time discretization. As discussed in Section 5.2.1, finite difference methods are popular

for callable bonds (and essentially option pricing in general) and thus present a good

comparison for our pricing method. We consider the same eight different scenarios

presented in Table 5-C. In each scenario, we compute the empirical order of convergence

for the dynamic Chebyshev method with 20 and with 40 time steps per year.

Figure 5.4 shows the resulting convergence plots for a callable bond with and without

coupon payments in a model with zero correlation and no recovery. Figure 5.5 shows
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1 2 3 4 5 6 7 8

DC32,20

total 23 26 25 25 26 25 25 25

calibration 19 21 19 19 20 19 20 19

pricing 5 5 6 6 6 6 5 6

DC64,20

total 38 38 38 38 38 39 39 41

calibration 27 27 27 28 27 27 27 28

pricing 10 11 11 10 12 12 12 13

DC32,40

total 27 29 29 28 30 29 31 30

calibration 21 23 23 22 23 22 23 23

pricing 6 6 6 6 7 7 7 7

DC64,40

total 46 46 47 47 48 50 50 49

calibration 33 32 32 33 32 34 34 33

pricing 14 14 15 15 16 16 17 16

Table 5-E: Total runtime, calibration time and pricing time of the dynamic Chebyshev
method in eight different scenarios. All runtimes are shown in milliseconds.

the same convergence plots in a model with correlation and Figure 5.6 and Figure 5.7

show the same plots in a model with positive recovery. For all eight scenarios, we observe

that the empirical order of convergence of the dynamic Chebyshev method is better than

quadratic. The different scenarios have only a minor influence on the convergence rate.

We conclude from the experiments that the new method has an advantage over classical

finite difference solver in term of convergence behaviour.
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Figure 5.4: Empirical order of convergence of the dynamic Chebyshev method compared
to a theoretical convergence of N−2 for a callable bond without coupons (left) and with
coupons (right). We assume a model with zero correlation and no recovery.
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Figure 5.5: Empirical order of convergence of the dynamic Chebyshev method compared
to a theoretical convergence of N−2 for a callable bond without coupons (left) and with
coupons (right). We assume a model with positive correlation and no recovery.
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Figure 5.6: Empirical order of convergence of the dynamic Chebyshev method compared
to a theoretical convergence of N−2 for a callable bond without coupons (left) and with
coupons (right). We assume a model with zero correlation and a non-zero recovery rate.

Error behaviour for varying strikes

So far, we investigated the proposed approach for one specific callable bond. Here, we

investigate how the error of the dynamic Chebyshev method behaves if we vary the

strikes of the callable bond. For the experiment, we use scenario 8 in Table 5-C, i.e. we

consider a model with positive correlation and assume a bond with recovery and coupon

payments. We vary the strike K1 at T = 1 between 50 and 130 and assume that the

strike at T = 2 is K1 + 5 and so on. We price the callable bond using the dynamic

Chebyshev method with N = 32 and 20 time steps per year and the one with N = 64

and 40 time steps per year. In order to compute reference prices we use the dynamic

Chebyshev method with N = 128 and 80 time steps per year.

Figure 5.8 shows the bond prices for varying strikes (left plot) and the error of the

dynamic Chebyshev method (right plot). We observe that the price of a callable bond

is increasing in the strike and converges towards the price of a non-callable bond. If
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Figure 5.7: Empirical order of convergence of the dynamic Chebyshev method compared
to a theoretical convergence of N−2 for a callable bond without coupons (left) and with
coupons (right). We assume a model with positive correlation and a non-zero recovery
rate.

the strike is high enough, the bond issuer will almost never call the bond. The error

plot shows that the relative error is of the dynamic Chebyshev method with N = 64

is for all strikes below 10−4. For small strikes it is even below 10−5. The error of the

dynamic Chebyshev method with N = 32 behaves similarly but is slightly higher. This

numerical experiment shows that the method is able to price out-of-the-money as well

as at-the-money and in-the-money callable bonds.
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Figure 5.8: Pricing error of the dynamic Chebyshev method for a callable bond with
varying strikes.

Stability of sensitivities

Next, we investigate the numerical stability of the calibration and the pricing using

the dynamic Chebyshev method with respect to the input factors. We will bump (i.e.

shift) the interest rate and the credit curve for different tenors, re-run the calibration and

pricing algorithm and then compute the pricing delta. For the interest rate, we bump the

riskless discount factors and for the credit intensity we bump the credit spreads presented

in Table 5-B. For both, rate and credit we apply a parallel shift of the curve (i.e. shift
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all input factors simultaneously) as well as individual shifts of the input factors. The

individual shifts are conducted on a yearly basis, this means that we bump the discount

factors or CDS rates with maturity 0.25, 0.5, 0.75, 1 together for year 1 and the same

for the years 2 to 5. For the interest rate, we apply shifts between −0.1 and 0.1 and

for the credit spreads we apply shifts between −0.0025 and 0.0025. A positive shift of

the riskless discount factor corresponds to lower interest rates and should lead to higher

bond prices. In contrast, a higher credit spread means a higher default risk and should

lead to a lower bond price.

We consider a callable bond in scenario 8 presented in Table 5-C, i.e. a callable bond

with positive correlation, non-zero recovery and coupon payments, for this experiment.

The use the bivariate dynamic Chebyshev method with N = 64 and 40 time steps per

year.

Figure 5.9 shows the parallel shift (left plot) and the individual shifts (right plot) of

the riskless discount factors. The parallel shift shows that a positive shift of the discount

factors yields higher bond prices as expected. From the individual shifts we observe that

the shifts on the lower end of the interest rate curve has a bigger influence on the overall

price. Figure 5.10 shows the parallel shift (left plot) and the individual shifts (right plot)

of the credit spreads. As expected, we observe that higher credit spreads cause lower

bond prices. For all scenarios, we could observe that the computed pricing deltas look

reasonable and there are no instabilities in the plotted delta profiles.
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Figure 5.9: Delta of the dynamic Chebyshev method for different parallel shifts (left
plot) and individual bumps (right plot) of the interest rate curve for a callable bond
with coupons and a recovery of R = 40%.

Conclusion experiments

The numerical experiments confirm that the proposed bivariate dynamic Chebyshev

method is a valid method for the calibration and pricing of callable defaultable bonds in

a hybrid interest rate/credit model. The experiments show that the method produces
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Figure 5.10: Delta of the Dynamic Chebyshev method for different parallel shifts (left
plot) and individual bumps (right plot) of the hazard rate curve for a callable bond with
coupons and a recovery of R = 40%.

accurate results using only a low number of nodal points and the empirical order of

convergence is better than a quadratic error decay. We conclude that the dynamic

Chebyshev method is therefore advantageous in comparison to common PDE solvers

using finite differences. The reported runtimes of the method are fast and the complete

calibration plus pricing takes less than 50ms seconds on a mid-range laptop using Python.

We investigated the proposed method further and showed that the new approach is

able to produce accurate results for in-the-money as well as for at-the-money and out-

of-the money embedded options. Moreover, we verified the stability of the calibration

and pricing routine with respect to parallel and individual shifts of the interest rate and

credit curve used for calibration.

We believe that this numerical investigation is a good starting point for further testing

and future research. We considered one specific bond in one market environment but

it would be interesting to investigate the method’s behaviour for different maturities

as well as for different interest rate and credit curves. Moreover, we considered only

callable bonds but the presented method is also a promising candidate for the pricing

of other credit derivatives. Extending the method to puttable bonds should for example

be possible.

5.3 Pricing basket options using quadrature

In this section, we consider the pricing of basket options in a multivariate Black-Scholes

model. In Section 5.1.2, we have shown that the log-stock price process in the mul-

tivariate Black-Scholes model can be transformed into an independent process using a

singular value decomposition of the covariance matrix. In this case, the multivariate

dynamic Chebyshev method is simplified and the complexity of the pre-computation
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step grows only linearly in the dimension d. The tensor of nodal points grows however

still exponentially in d. In this section, we discuss a smoothing idea that ensures that

the total number of nodal points stays as small as possible and enables a more efficient

pricing of multivariate options. We start with the pricing of European basket options

and then extend the suggested approach to basket options with an early-exercise feature.

Computing European option prices is essentially a numerical integration problem of

calculating the expected value of a (payoff) function. Let ST = (S1
T , . . . , S

d
T ) be the

value of the underlying stocks at maturity T . Then the value of a basket call option CB

and a basket put option PB are given by

CB = e−rTE
[( d∑

i=1

wiS
i
T −K

)+]
and PB = e−rTE

[(
K −

d∑
i=1

wiS
i
T

)+]
for a deterministic interest rate r ≥ 0, strike K and weights w1, . . . , wd. Furthermore,

in most stochastic models we can alternatively compute this expectation by solving a

P(I)DE.

Two problems arise when we compute this expectation numerically. First, the option

payoff is not differentiable at the strike K and therefore, a high number of function

evaluations is required for an accurate evaluation of the expectation. The second problem

is the dimensionality d of the basket option. Classical univariate pricing techniques

suffer from the curse of dimensionality when they are extended to higher dimensions.

The number of function evaluations grows exponentially in the number of assets. The

combination of the two problems means that even in two or three dimensions the number

of grid points (and thus function evaluations) required for a reasonably high accuracy is

often several thousand points or more.

Combining tensor based methods with dimension reduction techniques such as sparse

grids can reduce the number of function evaluations significantly. Several paper propose

to use (adaptive) sparse grids either as a quadrature technique or in order to solve the

associated PDE. Apaptive sparse grid quadrature for finance is for example investigated

in [11] and adaptive sparse grid for PDEs is for example investigated in [24]. While

adaptive sparse grid methods are often able to provide good approximation using only

a small number of function evaluations they typically cause a significant computational

overhead.

The most common approach for option pricing in multivariate dimensions is the use

of Monte Carlo simulation and quasi Monte Carlo simulation since they do not suffer

from the curse of dimensionality. However, the rate of convergence of these methods

is slow and a high number of (simulation) points is required for accurate results. For
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Monte Carlo simulation in particular a numerical noise is introduced that makes the

calculation of sensitivities less stable. Bumping one of the input factors and re-run the

simulation does not always yield a price movement into the right direction. For example,

even though the price function is increasing in the volatility, a Monte Carlo simulation

for a higher σ might still return a lower price.

In order to find an efficient and stable pricing algorithm for basket options, we employ

the so-called ‘smoothing the payoff’ idea proposed by [11] and compare three different

quadrature techniques for the resulting integration problem. We show that for medium-

sized dimension a direct application of numerical quadrature techniques omits the com-

putational overhead of adaptive sparse grids reported by [11]. We then show how the

new quadrature approach can be turned into an interpolation method for basket options,

similar to the static Chebyshev method introduced in Section 2.3.3. We build on this

interpolation and extend the smoothing the payoff idea to the dynamic programming

problem of pricing a basket option with early exercise feature. The efficiency of the

resulting dynamic Chebyshev pricing method is confirmed by a numerical convergence

analysis and a comparison of the method’s performance to the least-squares Monte Carlo

approach.

We start by discussing the dynamic Chebyshev method as a quadrature approach and

compare it to other quadrature techniques such as Clenshaw-Curtis, Gauss-Legendre and

Gauss-Hermite.

5.3.1 Dynamic Chebyshev for quadrature

In this section, we show that the dynamic Chebyshev method can be seen as a quadrature

technique for conditional expectations. For a stochastic process (Xt)t≥0 and a function

g : R→ R we want to compute the conditional expectation

E
[
g(XT )

∣∣X0 = x0

]
=

∫ ∞
−∞

g(x)fXT (x|x0)dx (5.6)

where fXT ( · |x0) is the density of XT |X0 = x0. A classical numerical quadrature tech-

nique such as Clenshaw-Curtis or Gauss-Legendre provides quadrature points x1, . . . , xM

and corresponding weights w1, . . . , wM such that

∫ ∞
−∞

g(x)fXT (x|x0)dx ≈
∫ x

x
g(x)fXT (x|x0)dx ≈

M∑
j=1

wjg(xj)fXT (xj |x0)

for a suitable integration domain [x, x] and under some appropriate integrability condi-

tions on g and fXT . Hence, the integral is approximated by a weighted sum of function
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values at a set of nodal points, for example Chebyshev points in the case of the Clenshaw-

Curtis quadrature.

In this sense, each time step in the dynamic Chebyshev method can be seen as

a form of numerical quadrature. We discussed the idea that the calculation of the

coefficients can be omitted and the algorithm operates only on the nodal values, see

Section 5.1.4. Assume that we have the nodal values of the value function at tu+1 given

by V̂tu+1(x0), . . . , V̂tu+1(xN ). At time point tu, the continuation value at the nodal point

xk is given by

V̂tu(xk) = E[Vtu+1(Xtu+1)|Xtu = xk] ≈
N∑
j=0

wjkV̂tu+1(xj)

for weights wjk as defined in (5.2). This can be generalized to a quadrature formula for

conditional expectations of the form (5.6). Assume we have a Chebyshev interpolation∑
j cjpj of a Lipschitz continuous function g : R→ R on the interpolation domain [x, x].

Then we can approximate (5.6) as

E
[
g(XT )

∣∣X0 = x0

]
≈ E

[ N∑
j=0

cjpj(XT )
∣∣X0 = x0

]
=

N∑
j=0

cjE
[
pj(XT )

∣∣X0 = x0

]
=

N∑
j=0

cjΓ
0
j .

Here, Γ0
j refers to the conditional expectation of pj given a starting value x0, i.e.

Γ0
j := E

[
pj(XT )

∣∣X0 = x0

]
.

All stochastic information are hidden in the generalized moments Γ0
j , the zero indicates

that the generalized moments depend on the starting value x0. From the definition of

the Chebyshev coefficients follows the quadrature type formula

N∑
j=0

cjΓ
0
j =

N∑
j=0

′′ 2

N

N∑
k=0

′′
g(xk)Tj(zk)Γ

0
j

=
N∑
k=0

g(xk)
(210<k<N

N

N∑
j=0

′′
Tj(zk)Γ

0
j

)
=

N∑
k=0

g(xk)w
0
k.

The weights w0
k are a linear transformation of the generalized moments using a matrix of

entries (2/N)Tj(zk), where the first and last column and row are multiplied by 1/2. The

resulting quadrature algorithm is displayed in Algorithm 5 for the slightly more general

problem of computing E[g(X)] for a random variable X. If the underlying stochastic

process is normally distributed we have an explicit formula for the generalized moments

Γ0
j and thus the weights w0

k, see formula (3.17).
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Algorithm 5 Univariate dynamic Chebyshev quadrature

Require: Function g : R→ R, random variable X and Chebyshev degree N
1: Fix interpolation domain [x, x]
2: Define Chebyshev points zk = cos(kπ/N) and nodal points xk = τ[x,x](zk), 0 ≤ k ≤ N

3: Quadrature weights:
4: Γj = E[pj(X)] = E[Tj(τ

−1
[x,x](X))1[x,x](X)]

5: Compute wk = 210<k<N
N

∑N
j=0

′′
Tj(zk)Γj , k = 0, . . . , N

6: Compute integral
7: E[g(X)] ≈

∑N
k=0 g(xk)wk

Comparison with Clenshaw-Curtis quadrature

The dynamic Chebyshev quadrature with (N + 1) points looks similar to the Clenshaw-

Curtis quadrature with M = N + 1. In both cases, we require the function values at

the same Chebyshev points and we multiply them with some pre-computed quadrature

weights. Naturally, the question arises how the two approaches differ or if they are

essentially the same.

We consider again the integration problem (5.6). The idea of Clenshaw-Curtis is to

interpolate the integrand x 7→ g(x)f(x|x0) in the Chebyshev points and obtain

∫ ∞
−∞

g(x)f(x|x0)dx ≈
∫ x

x

M∑
k=1

g(xk)f(xk|x0)lk(x)dx =

M∑
k=1

g(xk)f(xk|x0)

∫ x

x
lk(x)dx

where lk are the Lagrange polynomials corresponding to the Chebyshev points x1, . . . , xM .

The Clenshaw-Curtis weights are then essentially the integrated polynomials with respect

to the Lebesgue measure. These weights are independent of the specific integration prob-

lem and just need to be computed once. We refer to [129] for more details on Clenshaw-

Curtis integration. The error decay of this quadrature is determined by the smoothness

of the integrand

[x, x] 3 x 7→ g(x)f(x|x0).

The dynamic Chebyshev quadrature on the other hand starts with the interpolation of

the function x 7→ g(x) and the quadrature weights are then computed as integrated poly-

nomials with respect to the density f( · |x0). If f is the density of a normally distributed

random variable we obtain an analytic formula for the quadrature weights. In general,

they have to be calculated numerically and are problem specific. However, they can be

re-used if the expectations of several functions g are computed with respect to the same

distribution. The Clenshaw-Curtis quadrature is specifically designed for an integration
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w.r.t. the Lebesgue measure, i.e. the weights are the integrated Chebyshev polynomials

w.r.t. to the Lebesgue measure. In contrast, the dynamic Chebyshev quadrature can

be applied to a wider class of (probability) measures and the weights are calculated by

integrating the Chebyshev polynomials w.r.t. a (probability) measure µ.

In summary, for the Clenshaw-Curtis quadrature, the underlying random variable XT

has no influence on the choice of the weights and the quadrature uses only information

of the density at the nodal points. In contrast, the weights of the dynamic Chebyshev

quadrature depend on the distribution of XT on the domain [x, x]. Depending on the

application this additional information might be beneficial. In case of a normally dis-

tributed variable, the Gauss-Hermite quadrature is an interesting comparison for the

dynamic Chebyshev approach. For the Gauss-Hermite quadrature both, points and

weights are chosen with respect to the underlying normal distribution. Moreover, the

quadrature is defined on (−∞,∞) and no truncation error is made. The Gauss-Hermite

quadrature should converge faster since points and weights are chosen in an optimized

way. However, this procedure cannot be extended to other models/random variables.

An advantage of the dynamic Chebyshev approach is that it can also be used if the

density of XT is unknown. In this case, other techniques have to be used in order to

compute the generalized moments, see the discussion in Section 3.3.2. The Clenshaw-

Curtis quadrature cannot be used if the density of the random variable is not available

in closed form.

Numerical investigation

In this section, we provide empirical evidence that the presented dynamic Chebyshev

quadrature is a suitable approach for integration problems in option pricing. Moreover,

we investigate the effect of a smooth integrand on the convergence behaviour. As a toy

example, we consider (5.6) for the Black-Scholes call and put option price, i.e.

g(x) = CBS(ex,K, σ, r, τ) and g(x) = PBS(ex,K, σ, r, τ)

for a strike K, volatility σ interest rate r and time to maturity τ . We assume that the

process (Xt)t≥0 is a Brownian motion with drift where XT = x0 + (r− 0.5σ2)T +σ
√
TZ

for Z ∈ N (0, 1). We calculate the conditional expectations of g for both option types

using the dynamic Chebyshev quadrature method and compare the method’s accuracy

to the Clenshaw-Curtis quadrature and the Gauss-Legendre quadrature for the same

number of quadrature point. We fix the following parameters

x0 = log(100), K = 100, r = 0.03, σ = 0.25, T = 1, τ = 0.5.
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The domain of integration is chosen as X = [x, x] = [(r−0.5σ2)T −6σ
√
T , (r−0.5σ2)T +

6σ
√
T ] and ensures that the probability of XT /∈ X is below 2 · 10−9. We calculate ref-

erence values using Matlab’s integration routine quadgk with an absolute error tolerance

of 10−14 and a larger integration domain [(r − 0.5σ2)T − 9σ
√
T , (r − 0.5σ2)T + 9σ

√
T ].

Figure 5.11 shows the resulting error decay for all three quadrature techniques. For

both integrands, we observe that the dynamic Chebyshev approach is as good as the

other two quadrature routines and the differences are negligible. All methods are able

to converge and reach a maximal accuracy below 10−8 and thus in the region of the

truncation error. This confirms that the dynamic Chebyshev quadrature is a suitable

numerical approach for option pricing.
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Figure 5.11: Comparison of the dynamic Chebyshev quadrature against Clenshaw-Curtis
and Gauss-Legendre quadrature. The integrand is the Black-Scholes call price (left) and
put price (right) for a maturity of T = 1.

Next, we investigate how the convergence behaviour of the dynamic Chebyshev

quadrature changes depending on the smoothness of the integrand. For this, we will

vary the time to maturity τ from 0 to 1. For τ = 0, the option price is the payoff

function and we know that both, the call and the put option payoff, have a kink at the

strike K. However, for every τ > 0 the option price becomes an analytic function of the

log-stock price. The domain of analyticity depends on size of τ . The larger the time to

maturity τ becomes, the smoother will be the option price. We know that Chebyshev

interpolation and quadrature performs better for smooth functions. The experiments

here should give us a good indication how strong this smoothness effect actually is. Fig-

ure 5.12 shows the error decay for both integrands and τ = 0, 1/12, 1/4, 1/2, 1. First we

note that there is no difference between the call and the put option and we can focus on

the call option here. We observe that the quadrature error is in the region of 10−8 for
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31 nodal points if τ = 1. However, for τ = 0 we are not able to reach an accuracy of

10−2 with up to 50 nodal points. We observe that even a small τ of 1/12 leads already

to a significantly faster error decay.
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Figure 5.12: Investigation of the effect of a smooth integrand on the convergence be-
haviour of the dynamic Chebyshev quadrature. The integrands are Black-Scholes call
prices (left) and put prices (right) for different maturities.

Quadrature for multivariate functions

The presented quadrature approaches in one dimension have multivariate extensions.

Consider a d-variate stochastic process (Xt)t≥0 and a continuous function g : Rd → R.

The multivariate version of (5.6) is given by

E
[
g(XT )

∣∣X0 = x0

]
=

∫
Rd
g(x)fXT

(x|x0)dx (5.7)

where fXT
( · |x0) is the density of XT |X0 = x0. Numerically, we can compute the

integral by applying for example a Clenshaw-Curtis or Gauss-Legendre quadrature in

every dimension i = 1, . . . , d. The multivariate quadrature points xk = (xk1 , . . . , xkd)

are a tensor grid of one-dimensional points xki , ki = 1, . . . ,Mi and the corresponding

weights wk = wk1 . . . wkd are the product of weights wki , ki = 1, . . . ,M for i = 1, . . . , d.

Overall, we obtain∫
Rd
g(x)fXT

(x|x0)dx ≈
∑

k
wkg(xk)fXT

(xk|x0)

=

M1∑
k1=1

. . .

Md∑
kd=1

wk1 . . . wkdg(xk1 , . . . , xkd)fXT
(xk1 , . . . , xkd |x0).
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If XT is a vector of independent random variables we can further simplify this expression

and write the joint density function as a product of the marginal density functions

fXT
(xk1 , . . . , xkd |x0) =

d∏
i=1

fXi
T

(xki |x
i
0).

In the same way, the multivariate version of the dynamic Chebyshev approach can be

used as a multivariate quadrature. For an integration problem of the form (5.7) it can

be written as ∫
Rd
g(x)fXT

(x|x0)dx ≈
∑

k
w0
kg(xk).

In both cases, we have a tensor of nodal values G = (g(xk))k ∈ RM×...×M and a tensor

of quadrature weights. The tensor of weights has rank one and can be written as the

product of d vectors of one-dimensional weights W i = [w1, . . . , wMi ]
T . The quadrature

can then be written as tensor times vector multiplications, see Definition 9. The dynamic

Chebyshev quadrature in form of tensor times matrix multiplication is given by

E
[
g(XT )

∣∣X0 = x0

]
= G ×1 W

1 ×2 . . .×dW d. (5.8)

The problematic part in (5.8) is the full tensor G that can be infeasible to work with.

Depending on the number of points per dimension this might already be the case for

relatively low dimensions d. The first challenge is the computation of the tensor itself,

the second one is the storage of all entries and the third challenge are the n-mode

multiplications. It is important to have a smooth integrand g in order to ensure that

the number of nodal points per dimension is relatively small and can still be computed

efficiently. If d is large enough, additional dimension reduction techniques need to be

applied. In the next section, we explore the use of low-rank tensor compression and a

tensor completion algorithm as proposed in [57] to tackle this problem.

5.3.2 Chebyshev quadrature for basket options

We want to use the presented multivariate quadrature method for the efficient pricing of

basket options. The basket call option payoff is however not differentiable and we have

to introduce a smoothing first. We consider a multivariate Black-Scholes with d assets

St = (S1
t , . . . , S

d
t ) modelled by the following SDE under the risk-neutral pricing measure

dSit = Sit
(
rdt+ σidW

i
t

)
, for i = 1, . . . , d
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with starting value S0, interest rate r ≥ 0 and volatilities σ1, . . . , σd > 0. Assume that

the Brownian motions W i
t are correlated with

dW i
t dW

j
t = %ijdt for %ij ∈ [−1, 1]

with %ii = 1, i = 1, . . . , d. The SDE for the stock price has the solution

Sit = Si0e
(r−0.5σ2)t+σW i

t for i = 1, . . . , d,

see Formula (2.38). Following the notation of [11], we can rewrite the basket call option

as

CB = e−rTE
[( d∑

i=1

wiS
i
T −K

)+]
= e−rTE

[( d∑
i=1

wiS
i
0e

(r−0.5σ2)T+σW i
T −K

)+]
= E

[( d∑
i=1

βie
Xi − e−rTK

)+]
where X = (X1, . . . , Xd) ∼ Nd(0,Σ) for modified weights βi and time-scaled covariance

matrix Σ given by

βi = wiS
i
0e
−0.5σ2

i T and Σij = σiσj%ijT.

Note that the random variable Xi is not the usual log-stock price Xi
t = log(Sit) but only

the diffusion part of Xi
T . Similarly, we obtain for the basket put option

PB = e−rTE
[(
K −

d∑
i=1

wiS
i
T

)+]
= E

[(
e−rTK −

d∑
i=1

βie
Xi
)+]

.

In both cases, we can write the option price as a d-dimensional integral using the density

ϕX of the multivariate normal distribution and we obtain for the call option

E
[( d∑

i=1

βie
Xi − e−rTK

)+]
=

∫
Rd

( d∑
i=1

βie
x − e−rTK

)+
ϕX(x)dx.

Since the payoff function is not differentiable, we will explore the smoothing properties

of the Gaussian density function.
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Smoothing the payoff of basket options

We start with a special case and assume that all assets are independent and the covariance

matrix Σ is a diagonal matrix with entries Σi,i = σ2
i T . In this case, we can write

CB = E
[( d∑

i=1

βie
Xi − e−rTK

)+]
= E

[
E
[(
β1e

X1 −
(
e−rTK −

d∑
i=2

βie
Xi
))+∣∣∣X]]

for X = (X2, . . . , Xd) independent of X1. The inner conditional expectation can be seen

as a call option in the one-dimensional Black-Scholes model with a modified strike. Let

CBS(S,K, σ) be the Black-Scholes call price for maturity T = 1 and zero interest rate.

In this case, we can write

CB = E
[
E
[(
β1e

X1 −
(
e−rTK −

d∑
i=2

βie
Xi
))+∣∣∣X]]

= E
[
E
[(
w1S

1
0e
−0.5σ2

1T eX1 −
(
e−rTK −

d∑
i=2

βie
Xi
))+∣∣∣X]]

= E
[
CBS

(
w1S

1
0 , e
−rTK −

d∑
i=2

βie
Xi , σ1

√
T
)]
.

Here, the modified strike can be negative and we interpret the Black-Scholes call price

as CBS(S,K, σ) = S −K for K < 0. Calculating the price of a basket call option is now

transformed into a (d−1)-dimensional integration problem in X2, . . . , Xd with a smooth

integrand. These two improvements should lead to a significantly lower number of nodal

points when using a numerical quadrature technique.

This modification is a special case of the general smoothing the payoff procedure

presented in [11]. Their idea is to find a suitable linear transformation V such that

X = V Y for a vector of independent random variables Y . The transformation V is

chosen in way that allows us to write
∑d

i=1 βie
Xi = eY1h(Y ) for some function h and

Y := (Y2, . . . , Yd) independent of Y1. We obtain for the basket call

E
[( d∑

i=1

βie
Xi − e−rTK

)+]
= E

[(
eY1h(Y )− e−rTK

)+]
= E

[
E
[(
eY1h(Y )e−rT −K

)+∣∣h(Y )
]]
.

The inner conditional expectation is a one-dimensional integration problem of a Euro-

pean call option for a normally distributed variable Y1. This can be calculated analyt-

ically and yields a smooth function of the d − 1 dimensional random variable Y in the

outer expectation. The crucial step is the choice of the linear transformation V .
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We know that if Σ is a positive definite covariance matrix, there exists an eigenvalue

decomposition of Σ such that Σ = V ΛV T for a diagonal matrix Λ = diag(λ2
1, . . . , λ

d
d)

and an invertible matrix V ∈ Rd×d. From Lemma 3.1 in [11] follows that for each v ∈ Rd

we find a decomposition of this form such that v is the first column of V , for example

v = 1 = [1, . . . , 1]T . This allows us to define a new vector of independent variables

Y := V −1X such that Y ∼ Nd(0,Λ) and we can write
∑d

i=1 βie
Xi = eY1h(Y ).

Proposition 13. Assume a multivariate Black-Scholes model with positive definite co-

variance matrix Σ. Then there exits a diagonal matrix Λ = diag(λ2
1, . . . , λ

d
d) and an

invertible matrix V ∈ Rd×d with Vi,1 = 1, i = 1, . . . , d such that Σ = V ΛV T . Using this

decomposition, the price of a European basket call option is given by

CB = E
[
CBS

(
h(Z)eλ

2
1/2, e−rTK,λ1

)]
for Z ∼ Nd−1

(
0, D

)
(5.9)

where D = diag(λ2
2, . . . , λ

2
d) and function h given by

h(y) = h(y2, . . . , yd) =
d∑
i=1

βi exp
( d∑
j=2

Vi,jyj

)
.

Proof. See Lemma 3.2 and Proposition 3.3 in [11].

The basket call option can thus be computed as a expectation of the d−1 dimensional

vector of independent random variables Z. The function

Rd−1 3 z 7→ CBS
(
h(z)eλ

2
1/2,K, λ1

)
is a composition of smooth functions and thus itself smooth. In fact, it is not just

continuously differentiable but also admits an analytic continuation into the complex

domain, see the results in Section 2.3.2. Similar results can be obtained if the basket

call option is replaced by a basket put option. In this case, the smoothed integrand will

be the put option price in the Black-Scholes model and equation (5.9) becomes

PB = E
[
PBS

(
h(Z)eλ

2
1/2, e−rTK,λ1

)]
for Z ∼ Nd−1

(
0, D

)
where PBS is the price of a European put option with r = 0 and T = 1 in the Black-

Scholes model. The question remains how we can obtain the linear transformation V

given the vector v. From [11] we obtain the following construction.

Remark 6. Let Σ ∈ Rd×d be positive definite and symmetric and let v ∈ Rd \ {0}. We

define w := Σ−1v. Then the matrix

Σ̃ := Σ− vvT

vTw
∈ Rd×d
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is positive semi-definite and symmetric with rank d − 1. Let λ2
2 ≥ . . . ≥ λ2

d be the

d − 1 eigenvalues of Σ̃ and v2, . . . ,vd the corresponding eigenvectors. Defining V =

[v,v2, . . . ,vd] and D = diag(λ2
1, . . . , λ

2
d) for λ2

1 = (vTw)−1 yields Σ = V DV T and V is

invertible.

For a high-dimensional d, the resulting quadrature of the smoothed basket option

can be written as tensor times vector multiplication, as in (5.8). The difference is that

the tensor of nodal points depends only on d − 1 dimensions and only the vector of

weightsW 2, . . . ,W d are required. Overall, we expect that the combination of a dimension

reduction plus the smooth integrand results in a significant lower number of quadrature

points.

5.3.3 Numerical investigation of the method

In this section, we investigate the effect of the smoothing and the dimension reduc-

tion numerically. We analyse the convergence behaviour of three different quadrature

techniques, Clenshaw-Curtis quadrature, dynamic Chebyshev quadrature and Gauss-

Hermite quadrature. Moreover, we compare the quadrature approaches to a standard

Monte Carlo simulation. [11] focused their numerical investigation on the comparison of

adaptive sparse grids with Monte Carlo simulation and quasi Monte Carlo simulation.

They showed that adaptive sparse grids achieve a fast convergence in terms of number of

function evaluations but are typically relatively slow in comparison to simulation meth-

ods. In our experiments, we show that for low and medium high dimensions, a tensor

product quadrature combines a fast convergence with low runtimes.

We consider basket call options on 2, 3 and 5 different stocks and investigate the

convergence using the non-smooth payoff and the Black-Scholes price as integrand. Fur-

thermore, we calculate the error decay as a function of the runtime and compare the

quadrature approaches to the Monte Carlo simulation. In the bivariate case, we addi-

tionally compare the quadrature techniques to a benchmark method using the 2d COS

method introduced in [109].

For the experiments, we consider a multivariate Black-Scholes model with d assets

and we fix the following parameters

Si0 = 100, σi = 0.25, r = 0.03 for i = 1, . . . , d

and a basket call option with maturity T = 1, a strike of K = 100 and equal weights

wi = (1/d), i = 1, . . . , d. The integration domain of the Clenshaw-Curtis and dynamic

Chebyshev is defined in terms of the standard deviation of the underlyings. The Gauss-

Hermite quadrature is defined on the whole real line and no truncation error is made. For
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the Monte Carlo simulation we use antithetic variates as variance reduction technique

and compute the error as the median error over 50 runs to filter out the simulation noise.

If not stated otherwise, we measure the error in relative terms.

Bivariate basket option

We start with a bivariate basket call option given

CB = e−rTE
[(

0.5S1
0e
X1
T + 0.5S2

0e
X2
T −K

)+]
with XT = (X1, X2)T ∼ N2(µ,ΣT ).

The drift is the usual Black-Scholes drift µi = (r − 0.5σ2
i )T and the covariance matrix

can be written as

ΣT =

 σ2
1 %σ1σ2

%σ1σ2 σ2
2

T for % ∈ {0, 0.4}.

The smoothing the payoff approach leads directly to a quadrature problem in an inde-

pendent variable Z. For the full tensor quadrature without smoothing, we introduce

an appropriate linear transformation to obtain an integration problem with independent

variables. In the case of positive correlation % = 0.4 we can rewrite XT as

XT = µ+

 1 0

%σ2σ1

√
1− %2

Z for Z ∼ N2(0, D) with D = diag(σ2
1T, σ

2
2T ).

We can now interpolate in Z instead of XT . We use M = 3, 5, 9, 17, 33 quadrature points

per dimension and choose an integration domain based on k = 4 times the standard

deviation for the non-smoothed integrand and k = 4, 5, 6, 7, 8 for the smoothed problem.

For the Monte Carlo simulation we use

M = 1,000, 4,000, 16,000, 64,000, 256,000 (5.10)

simulation paths. As a comparison we calculate a reference price using Matlab’s inte-

gration routine quadgk an absolute error tolerance of 10−14 and 10 times the standard

deviation as domain. We obtain a reference value of 8.566232... in the case of zero corre-

lation and 9.783636... in the case of positive correlation. We verify if the reference price

computed with the quadrature approach is in the confidence interval of a Monte Carlo

pricer with the highest number of sample paths.

Figure 5.13 shows a comparison of the error decay of the dynamic Chebyshev, the

Gauss-Hermite and the Clenshaw-Curtis quadrature using the smoothing and without
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smoothing. The left plot displays the error decay for zero correlation and the right plot

displays the same error decay for positive correlation. We observe a significant faster

error decay when the smoothing is applied then without smoothing in both cases. For

example, an accuracy below 10−2 requires 100 times more nodal points if no smoothing

the payoff is explored. The significant improvement comes from the smoothness of the

Black-Scholes price as integrand as well as from the dimension reduction from a bivariate

integration problem to an univariate integration problem. The differences between the

dynamic Chebyshev method and Clenshaw-Curtis integration are relatively small for the

zero correlation case. In the general case of a positive correlation the dynamic Chebyshev

method is able to achieve a significantly higher accuracy for the same number of nodal

points. For 17 quadrature points the dynamic Chebyshev quadrature is around two or-

ders of magnitude more accurate than Clenshaw-Curtis. The Gauss-Hermite quadrature

outperforms the other two integration routines in both scenarios.

The higher λ1 in Equation (5.9) the smoother is the resulting integrand. The dynamic

Chebyshev method seems to profit more from this smoothness and is less affected from a

small λ2 then the Clenshaw-Curtis quadrature. We observed similar effects for the zero

correlation case if σ1 was bigger than σ2.
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Figure 5.13: Error decay of the Gauss-Hermite (GH), dynamic Chebyshev (DC) and
Clenshaw-Curtis (CC) quadrature for a basket call option with and without smoothing
the payoff. Correlation is assumed to be zero (left plot) and positive (right plot).

Figure 5.14 shows the comparison of the dynamic Chebyshev quadrature with a

Monte-Carlo integration. In combination with the smoothing, the quadrature approach

is able to reach a relative accuracy of 10−10 in less than 10−4 seconds, In contrast, the

Monte Carlo integration is not able to reach an accuracy of 10−4 in 10−2 seconds. The

smoothing has reduced the relative error of the Monte Carlo integration in absolute
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terms but the order of convergence remains the same. In contrast, the differences in

the runtimes between dynamic Chebyshev and Gauss-Hermite quadrature are relatively

small, see Figure 5.15.
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Figure 5.14: Performance comparison of the dynamic Chebyshev (DC) quadrature and
Monte Carlo simulation for a basket call option with and without smoothing the payoff.
Correlation is assumed to be zero (left plot) and positive (right plot).

Comparison with a benchmark method

Next, we compare the error decay of the three different quadrature approaches for the

smoothed integrand with a bivariate benchmark pricer. As a benchmark we use the

bivariate COS method introduced in [109]. For an (arithmetic) basket call option we

obtain the following parameters

S0 = (110, 90), σ1 = 0.3, σ2 = 0.2, % = 0.25, r = 0.04, T = 1, K = 100

(5.11)

from parameter set I in [109] and we assume equal weights. They provide a reference

price of Price = 10.173230 which we use to validate or own reference price. Moreover,

they provide the absolute errors of the bivariate COS method for increasing number of

terms of the series expansions, see Table 5-F.

We run the three quadrature approaches for M = 3, 5, 9, 17, 33, 65 quadrature points

and choose an integration domain based on k = 4, 5, 6, 7, 8, 9 times the standard devia-

tion. Using the reference method as for the previous experiment, we obtain a reference

price of 10.173230... that matches the reference prices provided by [109].

Figure 5.15 shows the error decay of all three quadrature approaches as a function
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N1(= N2) 10 20 40 80

total pts 100 400 1600 6400

error 2.98 · 100 1.91 · 10−1 4.82 · 10−5 1.29 · 10−6

Table 5-F: Absolute error of the bivariate COS method for a European basket call option,
see Table 4 in [109] for parameter Q = 1,000.

of the total points and a function of the runtime. Additionally, Table 5-G displays the

number of quadrature points and the error of the three approaches. All three methods are

able to achieve an accuracy close to machine precision with only 65 quadrature weights

and a runtime of around 10−4 seconds. Again, the Gauss-Hermite quadrature converges

the fastest and is able to achieve an accuracy below 10−10 with only 17 quadrature points

and just 9 quadrature points are already enough to achieve an accuracy below 10−6. In

comparison, Tabel 5-F shows that the bivariate COS method needs 6400 points in total

to achieve an accuracy of 10−6. In terms of runtimes, the Clenshaw-Curtis quadrature is

the fastest and the dynamic Chebyshev and the Gauss-Hermite quadrature are slightly

slower. Here, the performance differences are the computation of the quadrature nodes

and weights for the different methods. For instance, the weights of the Clenshaw-Curtis

quadrature depend only on N whereas the weights of the dynamic Chebyshev quadrature

depend on µ and σ. The differences between the three methods are however small. In

contrast, [109] report a runtime of 2 · 10−1 seconds (also in Matlab) for this particular

example with N1 = N2 = 80. We expect that the quadrature methods would still be

a factor of two to three orders of magnitude faster if the comparison were done on the

same machine.

quad. pts 3 5 9 17 33 65

error CC 7.50 · 100 3.20 · 100 8.84 · 10−2 2.29 · 10−3 4.51 · 10−7 2.24 · 10−13

error DC 4.88 · 10−3 1.70 · 10−2 1.14 · 10−2 1.35 · 10−4 3.16 · 10−10 2.49 · 10−14

error GH 3.12 · 10−3 2.95 · 10−4 5.81 · 10−7 3.24 · 10−11 5.33 · 10−15 7.11 · 10−14

Table 5-G: Absolute error of the Clenshaw-Curtis (CC), dynamic Chebyshev (DC) and
Gauss-Hermite (GH) quadrature for a European basket call option on two stocks.

In this example, the three quadrature approaches are advantegous in comparison

to the bivariate COS method of [109]. All three quadrature approaches achieved the

same accuracy as the COS method using only 33 points in total instead of 80 points per

dimension. We emphasize that our new method is specifically designed for the pricing

of basket options in the multivariate Black-Scholes method whereas the bivariate COS

method can be applied in a variety of two-factor models and for different payoff profiles.
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Figure 5.15: Comparison of the Gauss-Hermite (GH), dynamic Chebyshev (DC) and
Clenshaw-Curtis (CC) quadrature for a basket call option with smoothing the payoff
and assuming positive correlation. Error decay in absolute terms is shown as a function
of the number of quadrature points (left) and of the runtime (right).

Note that we ignored for simplicity the influence of the parameter Q in [109] that refers

to the number of points used for calculating the coefficients of the cosine expansion and

focused only on the number of coefficients/nodal points. As stated in [109], the numerical

computation of the coefficients is the ”most time-consuming part” and one reason for

the slower runtimes. Overall, this numerical experiments is a further indicator of the

potential of the new quadrature approaches for basket options.

3d basket option

Next, we consider a basket call option on three assets in a multivariate Black-Scholes

model with covariance matrix

Σ =


0.0625 0.0281 0.0313

0.0281 0.0625 0.0406

0.0313 0.0406 0.0625

T.

For a basket option on three assets the resulting smoothed problem is then a bivariate

integration problem. We use again M = 3, 5, 9, 17, 33 quadrature points per dimension

and choose an integration domain based on k = 4 times the standard deviation for the

non-smoothed integrand and k = 4, 5, 6, 7, 8 for the smoothed problem. For the Monte

Carlo simulation we use increasing numbers of simulation paths as stated in (5.10). For

the error analysis we calculate a reference price using the Clenshaw-Curtis quadrature for
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the smoothed integrand with M = 257 points per dimension and 10 times the standard

deviation as domain. We obtain a reference value of 9.712263. We verify if the reference

price computed with the quadrature approach is in the confidence interval of a Monte

Carlo pricer with the highest number of sample paths.

The left plot in Figure 5.16 shows the error decay of the three quadrature methods.

This numerical experiment confirms again the high potential of the smoothing for basket

options. The differences between the three quadrature approaches becomes more relevant

in comparison to the bivariate example. The Gauss-Hermite quadrature requires the

fewest points for the same level of accuracy and is able to reach an accuracy of 10−8

with a total of just 25 quadrature points. The dynamic Chebyshev method shows a slower

error decay than the Gauss-Hermite but outperforms the Clenshaw-Curtis quadrature.

It achieves an error of 4 · 10−10 with only 289 total points or 17 points per dimension

whereas the Clenshaw-Curtis quadrature has still an error of 2·10−4 for the same number

of points.

The right plot in Figure 5.16 shows a comparison of the dynamic Chebyshev quadra-

ture with a Monte Carlo integration in terms of runtime vs. accuracy. Combined with

the smoothing, the dynamic Chebyshev quadrature is significantly more efficient then

the Monte Carlo integration. It is faster and at same time also more accurate. For the

Monte Carlo approach itself, the smoothing has a smaller influence. It can reduce the

overall level of the error but the smoothing has no influence on the speed of convergence.

This is in line with the findings of [11]. Moreover, it is more costly to evaluate the

smoothed integrand than the original payoff function.

5d basket option

As a next example, we consider a basket call option on five assets, Hence, the resulting

smoothed problem is still a four-dimensional quadrature problem and a computational

challenge for standard quadrature techniques. Therefore, we want to investigate if the

full-tensor quadrature approaches are still efficient. Again, we consider a multivariate

Black-Scholes model with covariance matrix given by

Σ =



0.0625 0.0250 0.0187 0.0281 0.0313

0.0250 0.0625 0.0219 0.0500 0.0406

0.0187 0.0219 0.0625 0.0125 0.0375

0.0281 0.0500 0.0125 0.0625 0.0313

0.0313 0.0406 0.0375 0.0313 0.0625


T.



Chapter 5. Multivariate early-exercise options 242

101 102 103 104
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

10-5 10-4 10-3 10-2 10-1

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Figure 5.16: Error decay of the dynamic Chebyshev (DC), Clenshaw-Curtis (CC) and
Gauss-Hermite (GH) quadrature for a basket call option on three assets (left plot) and
performance comparison of the dynamic Chebyshev quadrature with a Monte Carlo
simulation (right plot).

We useM = 3, 5, 9, 17 quadrature points per dimension and choose an integration domain

based on k = 4 times the standard deviation for the non-smoothed integrand and k =

4, 5, 6, 7 for the smoothed problem. For the Monte Carlo simulation we use increasing

numbers of simulation paths as stated in (5.10). For the error analysis we calculate a

reference price using the Clenshaw-Curtis quadrature for the smoothed integrand with

M = 129 points per dimension and 10 times the standard deviation as domain. We

obtain a reference value of 9.051446. We verify if the reference price computed with

the quadrature approach is in the confidence interval of a Monte Carlo pricer with the

highest number of sample paths.

The left plot in Figure 5.17 shows the error decay of the three quadrature methods

with and without smoothing. The left plot shows the resulting error decay for uncorre-

lated assets and the right plot shows the corresponding error decay for correlated assets.

In this example, we observe significantly bigger differences between the three quadrature

approaches for the smoothed integrand. Again, the Gauss-Hermite quadrature has the

lowest error and is able to achieve a high accuracy with only 9 points per dimension. The

Clenshaw-Curtis quadrature starts at a relatively high error level and needs therefore

more points to achieve the same level of accuracy. The actual speed of convergence is

then essentially the same as for the dynamic Chebyshev quadrature.

The pricing of basket options on five assets is usually done using Monte Carlo or quasi

Monte Carlo methods, especially if speed is essential. Classical quadrature techniques

are often more accurate but also significantly slower. The right plot in Figure 5.17 shows
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a comparison of the dynamic Chebyshev quadrature and the Gauss-Hermite quadrature

with a Monte Carlo integration. Combined with the smoothing, both quadrature tech-

niques are more efficient then the Monte Carlo integration. They are able to achieve

a significantly higher accuracy in the same runtime. For example the Gauss-Hermite

quadrature is able to achieve an accuracy below 10−10 in under 10−3 seconds using only

6561 quadrature points in total. In contrast, the Monte Carlo simulation is only able to

reach an accuracy of 10−2 in the same time. While the higher accuracy of the quadrature

approaches was expected, it is surprising how fast both approaches are.
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Figure 5.17: Error decay of the dynamic Chebyshev (DC), Clenshaw-Curtis (CC) and
Gauss-Hermite (GH) quadrature for a basket call option on five assets (left plot) and
performance comparison of the dynamic Chebyshev quadrature and the Gauss-Hermite
quadrature with a Monte Carlo simulation (right plot).

5.3.4 Merits and limitations of the quadrature approaches

The presented smoothing the payoff for a basket option combined with an efficient

quadrature technique provided promising numerical results for dimensions 2 to 5. When

using Gauss-Hermite quadrature often only 5 nodal points per dimension were required

in order to achieve a satisfactory accuracy. For the dynamic Chebyshev quadrature

between 9 and 17 points per dimension achieved a similar accuracy. Even for a basket

option on five assets, the quadrature approaches were as fast as a Monte Carlo simulation

while achieving a several orders of magnitude higher accuracy. This high efficiency due

to the smoothness of the integrand allows us to extend the method from low-dimensions

to moderately high dimensions. This leads naturally to the following question: Up to

which dimension can we still employ the full tensor quadrature approach?

Considering a basket option on eight assets leads to a 7 dimensional integration

problem. Applying 5 points per dimension results in 8 ·104 points overall, still significant
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less then a standard Monte Carlo simulation with a comparable accuracy. However, at

some point, the full tensor of nd−1 points is now longer feasible to compute, even if n is

as low as 5 or only 3 in some cases. In this situation an additional dimension reduction

technique has to be employed. [11] showed that adaptive sparse grids are able to deliver

accurate basket option prices in up to 25 dimensions. However, they also state that the

construction of the adaptive sparse grid comes with a large numerical overhead.

Here, we want to investigate an alternative candidate that could reduce the com-

putational complexity and the storage requirements. [57] suggest the use of low-rank

tensors in the tensor train format (TT-format) and a tensor completion algorithm for

the interpolation of European option prices. See Section 2.2.2 for a short introduction to

low-rank tensor compression. We want to investigate if this can also be used to improve

the Gauss-Hermite or dynamic Chebyshev quadrature. Depending on the structure of

the tensor, the TT-format compression reduces the storage requirements tremendously.

For example, in d = 10 [11] were able to approximate a tensor of size 610 with less than

1,000 points and achieved a pricing error of just 5.6 · 10−4, see Table 6 and Table 7 in

[57]. We want to know if the tensor of function values of the smoothed problem admits

a similar low-rank structure.

Numerical investigation of the low-rank structure

We consider a basket call option for d = 8 and d = 10 underlyings in a multivariate Black-

Scholes model where the stocks are correlated. The correlation matrix is computed using

the algorithm proposed in [36] that relies only on the specification of d− 1 parameters.

We run the Gauss-Hermite quadrature and the dynamic Chebyshev quadrature for an

increasing number of nodal points and compute the function values of the integrand as a

full tensor. Then we compress this tensor using the tensor train Matlab toolbox of [102]

for an error tolerance ε. The basket option price is then computed using the full tensor

and tensor times matrix multiplication and using the low-rank tensor. We compare the

size of both tensors as well as the rank-structure and the resulting pricing error.

For d = 8 we use M = 3, 5, 7, 9 points per dimension and an integration domain based

on k = 4, 4, 5, 5 times the standard deviation. The reference price, computed with the

Gauss-Hermite quadrature using 17 points per dimension, is given by 6.956891. Table

5-H shows the low-rank structure for the dynamic Chebyshev quadrature and d = 8.

We see that for n = 9 points, the TT-format requires 1% of the original tensor points

and the resulting pricing error is only slightly worse. Table 5-I shows the same low-rank

structure for the Gauss-Hermite quadrature and d = 8. We observe, that Gauss-Hermite

quadrature is again more accurate but is also less suitable for compression. In order to

obtain a similar pricing error as the full tensor it still needs around 10% of the points.
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n rank total compression ε log-err LR log-err FT

3 (1,3,9,14,12,6,3,1) 1251 57.2% 10−3 -1.71 -1.63

5 (1,5,18,27,22,10,4,1) 7195 9.21% 10−4 -3.14 -3.07

7 (1,7,21,30,24,11,4,1) 12712 1.54% 10−4 -3.54 -3.31

9 (1,9,32,59,45,17,5,1) 51255 1.07% 10−5 - 4.27 -4.62

Table 5-H: Low-rank structure of the 7-dimensional integrand at Chebyshev points of a
basket option on 8 assets after smoothing the payoff. Comparison of the pricing error in
a log scale using low-rank compression (LR) and without low-rank compression (FT).

n rank total compression ε log-err LR log-err FT

3 (1,3,6,8,7,6,3,1) 564 25.8% 10−3 -3.32 -3.78

5 (1,5,20,34,28,13,4,1) 10785 13.8% 10−5 -6.14 -6.90

7 (1,7,35,74,60,21,6,1) 60718 7.37% 10−6 -7.89 -7.38

9 (1,9,67,210,157,40,8,1) 488340 10.21% 10−8 - 10.37 -9.23

Table 5-I: Low-rank structure of the 7-dimensional integrand at Gauss-Hermite points of
a basket option on 8 assets after smoothing the payoff. Comparison of the pricing error
in a log scale using low-rank compression (LR) and without low-rank compression (FT).

For d = 10 we consider only the Gauss-Hermite quadrature and we use M =

2, 3, 4, 5, 6 points per dimension. The reference price, also computed with the Gauss-

Hermite quadrature using 9 points per dimension, is given by 6.824155. Table 5-J shows

the corresponding low-rank structure for a basket option on 10 assets using the Gauss-

Hermite quadrature. Figure 5.18 displays the error decay of the low-rank and the full-

tensor quadrature. In this experiment, we observe a better compression and for example

only 6,060 points are enough to achieve a pricing error below 10−4. However, in all exper-

iments we observe that the maximal rank is relatively high compared to the number of

points n. This is an indicator that the underlying tensor does not admit a good low-rank

structure. For example for n = 5 the maximal rank of the 9 dimensional Gauss-Hermite

low-rank tensor is already 53.

Overall, the experiments confirm that the low-rank compression is able to reduce

the storage requirements of the full tensor. However, the resulting maximal rank is still

relatively large for the approximation of the smoothed integrand. We do not observe

a compression factor in a similar order of magnitude as [57] observed for the low-rank

approximation of option prices. In practical applications we do not want to compute

the full tensor first and then compress it into a low-rank approximation. Instead, we
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Figure 5.18: Error decay of Gauss-Hermite quadrature for a basket call option with
d = 10, comparison of the low-rank approximation with the full-tensor.

n rank total compression ε err LR err FT

2 (1,2,4,6,8,6,5,4,2,1) 380 74.2% 10−3 -2.51 -2.51

3 (1,3,7,9,10,9,7,5,3,1) 1149 5.84% 10−3 -3.72 -3.72

4 (1,4,13,21,23,17,12,7,3,1) 6060 2.31% 10−4 -4.73 -4.59

5 (1,5,20,41,53,39,24,12,4,1) 32205 1.65% 10−5 - 6.06 -5.59

6 (1,6,31,78,113,79,42,17,5,1) 146838 1.46% 10−6 -7.17 -7.49

Table 5-J: Low-rank structure of the 9-dimensional integrand at Gauss-Hermite points
of a basket option on 10 assets after smoothing the payoff. Comparison of the pricing
error in a log scale using low-rank compression (LR) and without low-rank compression
(FT).

want to use only a few function values and directly obtain a low-rank tensor. This

can be done using the completion algorithm proposed in [123]. Since the optimal rank

structure is unknown beforehand, it has to be found via a rank adaptive version of the

completion algorithm, see [57]. In our example, the higher rank of the tensors make the

rank adaptive tensor completion algorithm of [57] unsuitable for this specific problem.

Even though the TT-format offers some compression compared to the full-tensor it is

difficult to explore this theoretical improvement in an efficient way.
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5.4 Smoothing in a dynamic framework

The motivation for the dynamic Chebyshev quadrature came from the idea that pricing

a European option is essentially the first time step of the dynamic Chebyshev method

for early-exercise options. Thus, it seems interesting to go back from the European case

to a more general dynamic programming problem that includes early-exercise options as

well as the possibility to have time-dependent coefficients in the Black-Scholes model. In

this section we want to combine the smoothing the payoff concept and the multivariate

dynamic Chebyshev algorithm introduced in Section 5.1. Before we do so, we have to

investigate if the smoothing the payoff also works for a small time step.

5.4.1 Basket options with short maturities

In order to numerically investigate if the smoothing also works for short maturities, we

re-run the experiments for d = 2 and d = 3 and fix T = 0.02 instead of T = 1. This

corresponds to a maturity of one week or a Bermudan option that is weekly exercisable.

We assume that in both scenarios, the underlying assets are correlated. It is known

that the density of the log-returns becomes steeper for small time-scaled volatilities and

there might be a smaller smoothing effect. On the other hand, the integration domain

becomes smaller and this makes a quadrature more feasible. Moreover, we do the same

experiments for a basket put option in order to investigate if the smoothing effect holds

for the put option as well.

We use the same specifications as in the previous section for the bivariate and trivari-

ate case. For d = 2, we obtain a reference price of 1.209971 for the call and 1.149989

for the basket put. For d = 3, we obtain a reference price of 1.200553 for the call and

1.140571 for the basket put. Figure 5.19 shows the resulting error decay for a bivariate

basket call option (left plot) and a basket call option on three underlyings (right plot).

We observe that the smoothing the payoff technique works even better for short matu-

rities. The Gauss-Hermite quadrature requires only 3 points (if d = 2) or 9 points (if

d = 3) in order to obtain a relative error of 10−7. Similarly, the dynamic Chebyshev

quadrature is able to achieve very satisfactory error levels for a low number of quadrature

points. In contrast, the Clenshaw-Curtis quadrature requires significantly more points

to achieve very accurate results.

Figure 5.20 shows the same error decay for a bivariate basket put option (left plot)

and a basket put option on three underlyings (right plot). We observe an almost identical

convergence behaviour for the basket put option as for the basket call. This confirms

numerically that the smoothing is applicable for both payoff types. Overall, we observe

again that the Gauss-Hermite quadrature converges the fastest if a single European
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Figure 5.19: Error decay of the dynamic Chebyshev (DC), Clenshaw-Curtis (CC) and
Gauss-Hermite (GH) quadrature for a basket call option with and without smoothing
the payoff. Maturity is T = 0.02 and we consider a basket on two assets (left plot) and
three assets (right plot).

basket option is priced. In the next section, we will see that the dynamic Chebyshev

quadrature can be modified to price Bermudan basket options as well. A similar pricing

approach for Bermudan basket options using the Gauss-Hermite quadrature is however

not possible.
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Figure 5.20: Error decay of the dynamic Chebyshev (DC), Clenshaw-Curtis (CC) and
Gauss-Hermite (GH) quadrature for a basket put option with and without smoothing
the payoff. Maturity is T = 0.02 and we consider a basket on two assets (left plot) and
three assets (right plot).
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Interpolation of basket options

The goal of the section is to extend the smoothing the payoff idea from European option

pricing to the pricing of early-exercise options. In the dynamic Chebyshev pricing algo-

rithm, we need an interpolation of the option price in each time step. To fit into this

set-up, the smoothing the payoff concept has to be slightly modified in order to obtain

an interpolation of the European option price after one time step. From Proposition 13

for the price of a basket call option with equal weights follows

E[e−r∆tg(XT )|XtnT−1 = x0] = E
[
CBS(h(Z)eλ

2
1/2, e−r∆tK,λ1)

]
with h(z) =

d∑
i=1

βi exp
( d∑
j=2

Vi,jzj

)
= (1/d)

d∑
i=1

ex
i
0e−0.5σ2

i∆t exp
( d∑
j=2

Vi,jzj

)
for ∆t = tnT − tnT−1. If we want to interpolate the price of a basket option we require

nodal values

E[e−r∆tg(XT )|XtnT−1 = xk]

at the multivariate Chebyshev points xk. These values are then used to compute the

coefficients of the Chebyshev interpolation. A naive approach would be to compute the

conditional value for each xk separately. This would however be very slow and there is

a more efficient approach for the dynamic Chebyshev quadrature. Consider the tensor

notation of the quadrature problem as in (5.8). The vector of quadrature weights can

then simply be replaced by a matrix of weights as defined in (5.2).

A similar extension of the Gauss-Hermite quadrature is not feasible since changing

the mean or volatility will yield a different set of quadrature points. We illustrate this

difference between the Gauss-Hermite quadrature and the dynamic Chebyshev quadra-

ture at a simplified example. Assume we want to interpolate V0 : x 7→ E[V1(x+Z)] for

Z ∼ N (0,1d). This means that we need to compute the values of V0 at a grid of nodal

points xk = (xk1 , . . . , xkd). With the dynamic Chebyshev approach we obtain

V0(xk) = E[V1(xk +Z)] ≈
∑

j
wj1,k1 . . . wjd,kdV1(xj),

see Section 5.1.4. This approach requires (N + 1)d values V1(xj) and d times (N + 1)2

weights wji,ki . In contrast, using Gauss-Hermite quadrature with quadrature nodes zj

we obtain

V0(xk) = E[V1(xk +Z)] ≈
∑

j
wj1 . . . wjdV1(zj + xk),
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where the starting value xk is shifting the nodal points zj instead of changing the

weights. Thus, we require a significantly higher number of (N + 1)2d values V1(zj +xk)

and d times (N + 1) weights wji . Even though the Gauss-Hermite points achieve the

fastest convergence for European basket options they are not the most suitable choice

for a dynamic pricing algorithm.

In Section 5.1.2 we reduced the multivariate dynamic Chebyshev algorithm to the

case of an independent process if the model is multivariate normally distributed. We used

that ifX ∼ Nd(µ,Σ) thenX is equal in distribution to µ+OZ where Z ∼ Nd(0,Λ) for a

diagonal matrix Λ, an orthogonal matrix O and Σ = OΛOT . This general decomposition

can easily be replaced by the covariance matrix decomposition Σ = V DV T introduced

in Remark 6. By doing so, we can apply the smoothing the payoff concept in the

first time step of the pricing algorithm. This leads to a smoother problem and reduces

the required number of nodal points significantly. In this case, we interpolate in the

independent variable Z and we replace xk by starting values µ+V zk. See Section 5.1.2

for more details.

We note that the interpolation of a European basket option price can be interesting

in its own. If the same basket option has to be priced for different starting values the

interpolation can be evaluated instead. An example is the calculation of credit exposure

as presented in Chapter 4. In Section 2.3.3, we have introduced the idea of a static

Chebyshev method that interpolates an option price in its parameters. If the original

pricer is slow, the Chebyshev approximation can lead to a significant performance gain.

[57] extend this approach to higher dimensions and consider among other problems the

pricing of basket options in a multivariate Black-Scholes model. The resulting algorithm

enables a offline-online decomposition and speed-ups the pricing in the online step. How-

ever, the approach of [57] comes with the drawback of a computationally heavy offline

phase. Moreover, it requires a benchmark pricer at the nodal points and is therefore lim-

ited by the maximal accuracy of the chosen benchmark approach, for example a Monte

Carlo pricer. This benchmark approach could be replaced by the dynamic Chebyshev

quadrature for basket options in the multivariate Black-Scholes model.

5.4.2 Numerical smoothing

So far, we have seen that the smoothing the payoff idea can be used in the first time

step of the dynamic Chebyshev algorithm. By doing so, we omit the interpolation of

the payoff function that has a kink at the strike. However, in the backward induction

we still have the problem that the value function of an early-exercise option is only once

continuously differentiable due to the maximum function. Here, we can also apply a sort

of smoothing to improve the convergence behaviour. Consider the value function at time
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point tu given by

x 7→ Vtu(x) = {g(x),E[Vtu+1(Xtu+1)|Xtu = x]}.

This function is continuously differentiable but in general not smoother. A direct inter-

polation requires therefore a relatively high number of nodal points in each dimension in

order to obtain accurate results. However, we know that x 7→ E[Vtu+1(Xtu+1)|Xtu = x]

is smooth and g(x) can be smoothed using the Gaussian density function. Let Σ be

the covariance matrix of X∆t = Xtu+1 − Xtu and assume we have a decomposition

Σ = V DV T as described in Remark 6. Then we can write

E[Vtu(Xtu)|Xtu−1 = x] = E[Vtu(x+X∆t)] = E[Vtu(x+ µ∆t + VZ)]

= E
[
E[Vtu(x+ µ∆t + Z11 + V:,2:dZ)|Z]

]
for a vector of independent random variables Z ∈ Rd with Z = (Z2, . . . , Zd) and a

column vector of ones 1. The notation V:,2:d refers to the columns 2 to d of the matrix

V . The inner expectation is an univariate quadrature problem in Z1 and the resulting

conditional expectation

Rd−1 3 Z 7→ E[Vtu(x+ µ∆t + Z11 + V:,2:dZ)|Z]

is then a smooth function in the remaining variables. If Vtu is not the payoff function there

is unfortunately no closed form expression for the inner expectation as in Proposition

13. This motivates us to perform a numerical version of the smoothing the payoff idea.

We propose to use a relatively higher number of nodal points N1 in the first dimension

and a lower number of nodal points (N2, . . . , Nd) in the other dimensions in the dynamic

Chebyshev algorithm. Due to its smoothness, a lower number of quadrature points should

be sufficient to compute the outer expectation accurately. The resulting multivariate

dynamic Chebyshev algorithm with numerical smoothing for a Bermudan put option is

presented in Algorithm 6 and Algorithm 7.

This idea of numerically smoothing the value function or the payoff is not limited to

basket options in a multivariate Black-Scholes model. In fact, whenever Xtu+1 |Xtu = x

is multivariate normally distributed variable we can explore this idea. Further examples

are multivariate short rate models such as the two-factor Hull-White/Black-Karasinski

model used for the pricing of callable bonds. Another possible example is an equity

Black-Scholes model combined with stochastic volatility and stochastic interest rates.
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Algorithm 6 Multivariate dynamic Chebyshev - pre-computation

Require: Stock price S0 ∈ Rd, positive definite covariance matrix Σ ∈ Rd×d, maturity
T , interest rate r, Chebyshev degree (N1, . . . , Nd) ∈ Nd, number of time steps nT

1: Define µ ∈ Rd with µi ← (r − 0.5Σi,i) and define ∆t ← T/nT
2: Decompose covariance matrix
3: Find Σ = V DV T with D = diag(λ2

1, . . . , λ
2
d) using Remark 6

4: Define z0 ← V −1 · (log(S0) + µT )
5: for i = 1, . . . , d do
6: Fix domain
7: [zi, zi] ← [zi0 − kdomλi, zi0 + kdomλi]
8: Compute nodal points
9: zik ← zi + 0.5(cos(kπ/Ni) + 1)(zi − zi), for k = 0, . . . , Ni

10: Compute generalized moments Γi ∈ R(Ni+1)×(Ni+1)

11: µik ← 1− 2(zik + (V −1µ∆t)i − zi)/(zi − zi) and σi ←
(
2λi
√

∆t
)
/
(
zi − zi

)
12: Γij,k ← E[Tj(Z

i
k)] with Zik ∼ N

(
µik, (σ

i)2
)

13: Compute quadrature weights
14: Define T i ∈ R(Ni+1)×(Ni+1) with T ij,k ← (1/4) cos(jkπ/Ni)2

10<j<Ni210<k<Ni

15: W i ← T i · Γi
return weights W 1, . . . ,W d

5.4.3 Numerical investigation for Bermudan basket options

Next, we investigate the multivariate dynamic Chebyshev algorithm with smoothing in

the first component numerically. We consider a basket put option with early-exercise

feature for d = 2, d = 3 and d = 4. We investigate the convergence behaviour for

an increasing number of nodal points and compare the standard dynamic Chebyshev

approach with N1 = N2 = . . . = Nd to a numerical smoothing where N1 is bigger than

N2 = . . . = Nd. More precisely, we investigate the situation where N1 = N2, N1 = 2N2,

N1 = 3N2 and N1 = 4N2. We refer to the last three ones as dynamic Chebyshev with

numerical smoothing.

In our experiments we use the same model parameters as in previous experiments

and assume that the underlyings are correlated. We assume that the Bermudan put

option is weekly exercisable, i.e. 52 exercise rights per year. For N1 = kN2, we choose

N2 ∈ {4, 8, 16, 32} if k = 1, 2 and N2 ∈ {4, 8, 16} otherwise. We fix an interpolation

domain using 5 times the standard deviation of the underlying. The reference prices are

computed using N1 = N2 = 128 and 6 times the standard deviation.

Moreover, we compare the dynamic Chebyshev approach with and without the smooth-

ing to the least-squares Monte Carlo approach of [88]. We consider a least-squares ap-

proach with 1 + d + d2 basis functions consisting of a constant, the variable x1, . . . , xd

and all products xixj for i, j ∈ {1, . . . , d}.
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Algorithm 7 Multivariate dynamic Chebyshev with numerical smoothing

Require: Stock price S0 ∈ Rd, positive definite covariance matrix Σ ∈ Rd×d, maturity
T , interest rate r, Chebyshev degree N = (N1, . . . , Nd) ∈ Nd, number of time steps
nT , strike K and set of exercise dates S1, . . . , Sm

1: Obtain quadrature weights W 1, . . . ,W d using Algorithm 6

2: Define ∆t ← T/nT and µ ∈ Rd with µi ← (r − 0.5Σi,i)∆t
3: Payoff values at nodal points
4: For 0 ≤ k ≤N compute nodal values G(zk)

5: G(zk) ←
(
K − (1/d)

∑d
i=1 exp

(
µi +

∑d
j=1 Vi,jz

j
kj

))+

6: Initial time step
7: β ∈ Rd with βi ← (1/d) exp(−0.5Σi,i∆t)
8: For 0 ≤ k ≤N compute nodal values VtnT−1(zk)

9: h ←
∑d

i=1 βi exp
(∑d

j=2 Vi,jz
j
kj

)
10: VtnT−1(zk) ← PBS(exp(z1

k1
+ (V −1µ∆t)1)heλ

2
1∆t/2, e−r∆tK,λ1

√
∆t)

11: if tnT−1 ∈ {S1, . . . , Sm} then VtnT−1(zk) ← max{Gk,VtnT−1(zk)}
12: Backward time stepping
13: for u = nT − 2, . . . , 1 do
14: Vtu ← Vtu+1 ×1 W

1 ×2 . . .×dW d

15: if tu ∈ {S1, . . . , Sm} then Vtu ← max{G,Vtu}
16: Evaluate option price
17: Define T i ∈ R(Ni+1)×(Ni+1) with T ij,k ← (1/4) cos(jkπ/Ni)2

10<j<Ni210<k<Ni

18: Coefficients C0 ← Vt0 ×1 T 1 ×2 . . .×d T d
19: For i = 1, . . . , d compute vector T i with entries
20: T ij ← Tj

(
1− 2

(∑d
k=1 V

−1
i,k (log(Si0)− µi)− zi

)
/(zi − zi)

)
21: Price ← C0 ×1 T

1 ×2 . . .×d T d

For d = 2 we obtain for the basket put option a reference price of 7.103965. Figure

5.21 shows the error decay of the dynamic Chebyshev method (left plot) and a comparison

with the least-squares Monte Carlo approach (right plot) for d = 2. We observe that

the numerical smoothing is able to deliver a higher accuracy for the same total number

of nodal points. Using around 1,000 grid points in total leads to an error of 10−4 for

the numerical smoothing with N1 = 4N2 and slight below 10−2 without this smoothing,

i.e. almost two orders of magnitude better. The versions with N1 = 2N2 and N1 = 3N2

are between the two extremes. From the right plot in Figure 5.21 we conclude that

both versions of the dynamic Chebyshev method are significantly faster than the least-

squares Monte Carlo approach. They admit a better convergence rate and the dynamic

Chebyshev version with smoothing is at the same time almost three orders of magnitude

faster as well as two orders of magnitudes more accurate.

For d = 3 we obtain for the basket put option a reference price of 7.038891. Figure

5.22 shows the same experiments for a basket option on three assets. The comparison
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Figure 5.21: Left plot: Error decay of the multivariate dynamic Chebyshev (DC) with
smoothing the payoff and different number of nodal points per dimension. Right plot:
Comparison of the dynamic Chebyshev method with N1 = N2 and with N1 = 4N2 to
the least-squares Monte Carlo (LSM) approach.

between the different versions provide similar results as for the bivariate basket option.

Overall, the algorithm needs (1 + N2) times more nodal points and the runtime of the

dynamic Chebyshev method in three dimensions scales accordingly. In contrast, the

least-squares Monte Carlo method is only moderately effected by the increase of the

dimension and its runtime scales linearly in d. The dynamic Chebyshev method in three

dimensions is still two orders of magnitude faster than the Monte Carlo approach and

at the same time also more accurate.

Since the results for two and three dimensions were promising we will extend the

method one step further and we investigate a basket option on four assets. We assume

that the covariance matrix in the multivariate Black-Scholes model is given by

Σ =



0.0625 0.0187 0.0281 0.0313

0.0187 0.0625 0.0500 0.0406

0.0281 0.0500 0.0625 0.0375

0.0313 0.0406 0.0375 0.0625


T.

In this model we obtain a reference price of 6.877431 for the Bermudan put. We slightly

modify the experiments and omit the cases where N = 2N2 and N2 = 32 as well as

N1 = 4N2 and N2 = 16. Figure 5.23 shows the resulting convergence analysis and

the performance comparison with least-squares Monte Carlo. Similar to the step from
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Figure 5.22: Left plot: Error decay of the multivariate dynamic Chebyshev (DC) with
smoothing the payoff and different number of nodal points per dimension. Right plot:
Comparison of the dynamic Chebyshev method with N1 = N2 and with N1 = 4N2 to
the least-squares Monte Carlo (LSM) approach.

d = 2 to d = 3 we see that the number of points and the runtime increase by another

factor of N2. However, the dynamic Chebyshev method with smoothing is still able to

outperform the least-squares Monte Carlo approach by delivering a higher accuracy in a

shorter runtime.
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Figure 5.23: Left plot: Error decay of the multivariate dynamic Chebyshev (DC) with
smoothing the payoff and different number of nodal points per dimension. Right plot:
Comparison of the dynamic Chebyshev method with N1 = N2 and with N1 = 4N2 to
the least-squares Monte Carlo (LSM) approach.

We have seen that the runtime and the number of nodal points of the dynamic
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Chebyshev method increase roughly by one order of magnitude if we add an additional

dimensions. The numerical experiments confirm that the method can be efficiently ap-

plied in up to four dimensions. Even for d = 4 the proposed method was faster than a

least-squares Monte Carlo approach. For a pricing method operating on a tensor grid

this is a relatively high dimensional extension without applying any additional dimension

reduction techniques. The reason behind this is that combination of the smoothing the

payoff in the first time step plus the numerical smoothing in the first dimension in the

backward induction keeps the number of nodal points in all other dimensions comparably

low. For higher dimensions however, a tensor of (N1 +1)×(N2 +1)d−1 elements becomes

too large even if N2 is small.

Comparison with benchmark method

Similarly to the experiments presented in Figure 5.15 for European basket options, we

compare the bivariate dynamic Chebyshev method with smooothing to the bivariate COS

method of [109]. We consider again the model parameter set (5.11) and price a Bermudan

put option with 10 exercise rights. Table 5-K shows the accuracy in absolute terms of

the bivariate COS method obtained form [109]. For the dynamic Chebyshev method we

obtain a reference price of 6.6113. We use the dynamic Chebyshev without numerical

smoothing and N1 = N2 for N2 = 8, 16, 32 and the one with numerical smoothing

N1 = 4N2 for N2 = 4, 8. In both cases we choose a interpolation domain based on 6 times

the standard deviation of the underlying. Figure 5.24 shows the resulting error decay of

N1(= N2) 40 80 160

total pts 1600 6400 25600

error 2.33 · 10−3 4.66 · 10−4 2.86 · 10−4

Table 5-K: Absolute error of the bivariate COS method for a Bermudan basket put
option with 10 exercise rights, see Table 7 in [109].

the dynamic Chebyshev method with and without numerical smoothing, the bivariate

COS method (values taken from Table 5-K) and of the least-squares Monte Carlo method.

We observe that the dynamic Chebyshev method with numerical smoothing outperforms

all three other methods. It admits a faster convergence behaviour and is therefore able to

achieve the same accuracy as the 2d COS method using around two order of magnitudes

fewer quadrature points. With only 297 total points (N1 = 32 and N2 = 8), the smoothed

dynamic Chebyshev method achieves an absolute accuracy 2.4 · 10−4. In contrast, the

dynamic Chebyshev method without numerical smoothing needs 1,089 points for an

accuracy of 1.3 · 10−2 and the bivariate COS method reaches an accuracy of 2.9 · 10−4

with 25,600 total points. The smoothing seems to work even better for a model where
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σ1 is bigger than σ2.

As mentioned for the European basket, the bivariate COS method requires the nu-

merical calculation of the coefficients of the bivariate cosine expansion. This causes an

additional numerical overhead and yields longer runtimes. Further, we note that the pro-

posed smoothing is only applicable if the underlying is conditional normally distributed

whereas the COS method is only relying on the availability of the characteristic function.
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Figure 5.24: Error decay of the bivariate dynamic Chebyshev (DC) with with N1 = N2

and with N1 = 4N2 and comparison to the bivariate cosine method (COS 2d) and to the
least-squares Monte Carlo (LSM) approach. Error is measured in absolute terms.

5.5 Conclusion and outlook

In this chapter we investigated the pricing of multivariate options that possibly admit

an early-exercise feature. We discussed the extension of the dynamic Chebyshev pricing

method into a multivariate framework. In general this is difficult and a straightfor-

ward application is often not feasible. As a first special case we investigated models

where the risk factors are independent. In this case, the computational effort of the

pre-computation step is dramatically reduced and scales linearly in the number of di-

mensions. We showed how models with multivariate normally distributed increments

can be transformed into this framework using a decomposition of the covariance matrix.

The class of models with multivariate normally distributed increments includes for in-

stance the multivariate Black-Scholes model and short rate models such as a two-factor

Hull-White or Black-Karasinski model. A first toy example of a bivariate Bermudan

option provided promising results in comparison to a least-squares Monte Carlo algo-
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rithm. Furthermore, we have shown that the pricing can be accelerated if the explicit

computation of coefficients is omitted. In this case, the dynamic Chebyshev algorithm

operates solely on the grid values and each time-step becomes the application of (a) lin-

ear operator(s) mapping function values V̂tu+1 to updated values V̂tu . In one dimension,

V̂tu+1 is a vector in Rn and each time step can be seen as a linear operator LdC ∈ Rn×n

with V̂tu = LdC V̂tu+1 . In two dimensions, V̂tu+1 is a matrix in Rn×n and if the risk factors

are independent we can write V̂tu = L1
dC V̂tu+1L2

dC for two operators L1
dC ,L2

dC ∈ Rn×n.

The efficiency of the multivariate dynamic Chebyshev algorithm depends critically on

the size of the grid of nodal points nd.

We then considered an application of the bivariate dynamic Chebyshev method: The

calibration of a two-factor interest rate/credit model and the pricing of callable bonds.

Callable bonds belong to the most relevant fixed income instruments and in 2019, over

70% of the 1.4 trillion USD corporate bond issuance were callable. We showed that our

new pricing method is suitable for an efficient calibration of the model to CDS spreads.

Once the two-factor model is calibrated the method delivers accurate prices and provides

a fast error decay for callable bonds. The empirical order of convergence was better than

quadratic which implies that the new approach outperforms the popular and common

finite-differences PDE solvers. Furthermore, we empirically verified the stability of the

calibration routine with respect to parallel and individual shifts of the interest rate and

credit curve. We point out that the calibration of the two-factor model is of relevance on

its own since different other credit derivatives could possibly be priced in the same model.

Especially, the efficient pricing algorithm for CDS instruments might be interesting for

different applications in fixed income markets.

In the remaining two sections of the chapter we took a closer look at basket options

in a multivariate Black-Scholes model. We started with the pricing of European basket

options and we briefly discussed that the dynamic Chebyshev method can be used as a

quadrature techniques for conditional expectations. Then we showed that the calculation

of basket option prices can be simplified by using the smoothing the payoff approach pro-

posed in [11]. In a numerical convergence analysis we showed that both, Gauss-Hermite

and the dynamic Chebyshev quadrature are able to produce very accurate option prices

using only a few points per dimension. The experiments indicate that in lower dimen-

sions up to roughly d = 5, the additional effort of an adaptive sparse grid quadrature, as

suggested in [11], can be avoided. Due to the smoothness of the integrand, a full-tensor

is still of a workable size and procudes very accurate results while being as fast or faster

than a Monte Carlo simulation.

In the case of d = 2, we compared the new approach to a Fourier type benchmark

method, the bivariate COS method of [109]. Due to the increased smoothness and the
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dimension reduction to a d − 1-dimensional integration problem, the new quadrature

approaches were able to produce the same accuracy with a significantly lower number

of nodal values. Similar comparisons can be done with PDE type benchmark methods,

for example methods using radial basis functions (RBF). For d = 2 (and d = 3) the

RBF partition of unity method of [116] and the RBF generated finite differences of [97]

are suitable benchmark approaches. Alternative approaches, that can also be extended

to higher dimensions, are the hierarchical approximation method of [108] and the PDE

method of [121]. One major drawback of PDE methods for European basket options is

that they require a time-discretization additionally to the discretization in space. For

example, [116] state that their RBF method needs 42 × 42 = 1764 points in space and

also 10 time steps to reach an accuracy of 10−4 for a European basket call option. In

our experiments, the dynamic Chebyshev quadrature was usually able to reach the same

accuracy with 33 total points and no time steps.

The proposed quadrature approaches for European basket options can then be ex-

tended to early exercise options. For the pricing of Bermudan basket options, we gen-

eralized the smoothing the payoff idea and added a new numerical smoothing to the

dynamic Chebyshev method. Our numerical investigation provides promising results for

multivariate early-exercise options on up to 4 assets. The experiments confirm a fast

convergence of the resulting pricing method and indicate an efficiency gain in compari-

son to the least-squares Monte Carlo method. The dynamic Chebyshev method was able

to achieve a higher accuracy while also being faster. Moreover, for d = 2 we compared

our method again to the bivariate COS method of [109] and observed an efficiency gain

in our experiment. In the PDE world the above mentioned methods of [116], [97] and

[121] are again interesting benchmarks for our method. Considering again the numerical

examples in [116], they need also around 46×46 spatial points for an American bivariate

basket option to achieve an accuracy of 10−4. However, for stability reasons they require

10,000 time steps and this leads to realtively long runtimes. The dynamic Chebyshev

method needs a comparable number of points in space but comes out with only 50 time

steps per year. For higher dimensions, [73] propose a new pricing method for Bermudan

baskets based on the approach of [108]. Their ansatz uses a principal component anal-

ysis and then solves several low-dimensional PDEs instead of one high-dimensional one.

[73] report a second-order convergence behaviour of the method but they state that the

“convergence behaviour can be somewhat irregular”. This approach could still be an

interesting benchmark for the dynamic Chebyshev method in four dimensions. It would

be interesting to perform a more comprehensive comparison of the different methods

in terms of convergence behaviour as well as runtimes. Moreover, improvements of the

least-squares Monte Carlo method are suitable candidate for a numerical comparison

in higher dimensions. For example, [82] present a pricing method for high-dimensional
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American options using machine learning as alternative to the classical least-squares

Monte Carlo approach. We expect that for lower dimensions, the dynamic Chebyshev

method is favourable but if d becomes too high, regression or machine learning based

approaches should be more suitable.

In summary, the multivariate dynamic Chebyshev method is a promising candidate

for the pricing of Bermudan basket options in the multivariate Black-Scholes model.

In our numerical experiments the method was able to outperform standard benchmark

methods such as a least-squares Monte Carlo method by providing more accurate results

while also delivering faster runtimes. The numerical smoothing leads to a fast error

decay and a comparably low number of nodal points for option pricing problems in up

to 4 dimensions. Besides its efficiency, the new method has also the advantage of being

simple and easy to implement.

We believe that the presented numerical analysis is a good starting point for further

theoretical and empirical investigations. So far, we focused mainly on an empirical con-

vergence analysis and a comparison to different benchmark methods. From a theoretical

point of view it would be interesting to extend the error analysis conducted in Chapter

3 to the dynamic Chebyshev algorithm with numerical smoothing. In order to achieve

high efficiency, it is important to investigate the optimal relationship between N1 and N2

as well as the optimal domain size in more detail. The fixed ratio of N1 = 4N2 turned

out to be suitable for our experiments but might not be the optimal choice. A better

theoretical understanding could therefore improve the proposed method further.

Besides the theoretical error analysis, it would be interesting to empirically investigate

if the numerical smoothing can be extended to other models or other payoff profiles. The

smoothing the payoff of [11] is specifically designed for basket options in the multivariate

Black-Scholes model and has limited flexibility. In contrast, we expect that the numerical

smoothing offers a higher flexibility and is applicable in a wider range of scenarios. Here,

the pricing of a callable bond in a two-factor Hull–White/Black–Karasinski model would

be an interesting example. Another example would be the replacement of the basket

option payoff by a call or put option on the maximum of d assets.

By design, the new method is a valid candidate for option pricing problems in models

with up to five risk factors that are jointly multivariate normally distributed. The method

allows us to consider correlation between the risk factors as well as products with early-

exercise features. For this framework, different further extensions and modifications of

the method might be interesting to investigate. While this thesis focussed mostly on

Chebyshev interpolation, other function approximation methods can also be used in a

similar way. Here, it would be interesting to compare different approximation techniques
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in terms of their convergence behaviour as well as the resulting runtimes. Possible

examples are kernel based approximation techniques or radial basis function interpolation

that are known to provide good results in multivariate settings. See for example the above

mentioned option pricing methods of [116] and [97]. Often these function approximation

methods are able to achieve accurate results using only a relatively low number of basis

functions. In contrast to the tensor-based Chebyshev interpolation these methods are

not necessarily limited to a rectangular interpolation domain. They come however with

a higher computational complexity and an efficient implementation can be significantly

more challenging. As briefly discussed in [11] for adaptive sparse grids, the choice of a

programming language for the implementation can have a significant influence on the

comparison. For instance, a method that performs relatively poorly in Matlab might

still be highly efficient when implemented in C or C++.

Moreover, we have seen that low-rank tensors in the tensor train format are able to

reduce the storage requirements of the full tensor. We did not pursue this approach

due to the sub-optimal rank structure that would make a rank adaptive completion

algorithm infeasible. It would however be interesting to investigate if other forms of

low-rank approximations are more suitable for this particular problem. For example, in

the dynamic Chebyshev algorithm it could be beneficial to start with a full tensor in the

first time step and then continue with tensors in a (different) low-rank format. For the

one-dimensional dynamic Chebyshev method the splitting at the strike K can increase

the efficiency of the approach by replacing one interpolation of a high polynomial degree

with two interpolations of a lower degree. Similar ideas based on a domain splitting

could also be applied in the multivariate dynamic Chebyshev algorithm. For instance,

a straightforward approach for the bivariate algorithm with numerical smoothing would

be to divide the interpolation domain [x1, x1]× [x2, x2] into two domains [x1, k]× [x2, x2]

and [k, x1]× [x2, x2]. Overall, we think that the presented dynamic Chebyshev method

is an interesting alternative to standard multivariate pricing methods and the method is

a promising starting point for further research.



Appendix A

Chebyshev algorithm for the

implied volatility

In this appendix, we present additional material on the derivation of the Chebyshev

method for the implied volatility as presented in Section 2.4.

Scaling functions

In the following, we derive the scaling functions for each of the three areas. The idea of

the scaling is to define functions φi,x such that v(c, x) = ṽ(c̃, x) with c̃ = φi,x(c) ∈ [−1, 1]

and [−1, 1] 3 c̃ 7→ ṽ(c̃, x) is approximately linear. The resulting Chebyshev interpolation

of ṽ in c̃ will then be significantly more efficient then a direct interpolation of v in c. A

more detailed derivation of the different scaling functions is provided in [68].

Medium volatilities:

For v around the point of inflection, the implied volatility surface is almost linear, see

Figure 2.6. Thus, a linear scaling suffices,

φ2,x : [c1(x), c2(x)]→ [−1, 1], c 7→ 2
c− c1(x)

c2(x)− c1(x)
− 1.

Clearly, φ2 is analytic and the inverse is given by

φ−1
2,x[−1, 1]→ [c1(x), c2(x)], c̃ 7→ c1(x) +

1

2
(c̃+ 1)(c2(x)− c1(x)).

Low volatilities:

For low volatilities the call price function is very flat, and thus the implied volatility

262
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function as its inverse is steep. In order to find a suitable scaling function, we explore

the limit behaviour of the normalized call price. For v → 0 we have by equation (2.8) of

[74] that

c(x, v) ≈ ϕ
(x
v

)(v3

x2

)
,

where ϕ is the density of the standard normal distribution. Inverting the function c(v) =

ϕ
(
x
v

)
, which has the major effect in the limit, leads to the following transformation

φ̃1,x : [0, c1(x)]→ [−1, 1]

c 7→

2
(
− 2

(x−δ)2 log(c) + 2
(x−δ)2 log(c1(x)) + 1

)− 1
2 − 1 if c > 0

−1 else.

The parameter δ > 0 ensures the well-definedness for x = 0 and the remaining terms are

needed to map the interval [0, c1(x)] to [−1, 1]. The transformation φ̃1,x is analytic with

inverse

φ̃−1
1,x : [−1, 1] → [0, c1(x)] : c̃ 7→

c1(x)e
− 2(x−δ)2

(c̃+1)2
+

(x−δ)2
2 if c̃ > −1

0 else.

Using this transformation the function v(φ̃−1
1,x(c̃), x) is approximately linear in c̃. As

already mentioned earlier, to guarantee analyticity we restrict the interval [0, c1(x)] to

[cmin(x), c1(x)] for 0 < cmin(x) < c1(x) < e
x
2 . Therefore, we define the scaling function

for the low volatilities φ1,x : [cmin(x), c1(x)]→ [−1, 1] as φ1,x(c) := l(φ̃1,x(c)), where l is

the linear transformation that maps [φ̃1,x(cmin(x)), 1] to [−1, 1]. The function c 7→ φ1,x(c)

is analytic on [cmin(x), c1(x)] and its inverse is given by φ−1
1,x(c̃) = φ̃−1

1,x

(
l−1 (c̃)

)
.

High volatilities:

Just as for the low volatilities, the call price function is very flat for high volatilities and

thus its inverse becomes steep. As lim
c→e

x
2
v(c, x) =∞ the implied volatility function is

not bounded and we cap it at some vmax. From [74] equation (2.7) we obtain for v →∞

c(x, v) ≈ e
x
2 − 4

v
ϕ
(v

2

)
.

A similar transformation as in the case of low volatilities entails improvement. Assume
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first that cmax(x) = e
x
2 and define

φ̃3,x : [c2(x), e
x
2 ]→ [0,∞] : c 7→


(
− 8 log

(
e
x
2−c

e
x
2−c2(x)

)) 1
2

if c < e
x
2

∞ else

with inverse

φ̃−1
3,x : [0,∞]→ [c2(x), e

x
2 ] : c̃ 7→

e
x
2 −

(
ex/2 − c2(x)

)
e−

c̃2

8 if c̃ <∞

e
x
2 else.

Exploiting the limit behaviour of the call price, one can show that for v large enough

c̃ = φ̃3,x(c(x, v)) ≈ −v. Hence v = v(φ̃−1
3,x(c̃), x) ≈ −c̃ which is linear in c̃. For cmax(x) <

e
x
2 the transformation is a bijection into a bounded domain which can be normalized to

[−1, 1] by the linear transform l that maps [0, φ̃3,x(cmax(x))] to [−1, 1]. Thus φ3,x(c) :=

l(φ̃3,x(x)) and φ−1
3,x(c̃) = φ̃−1

3,x

(
l−1 (c̃)

)
depending on the choice of cmax.

Splitting

As a next steps we define the splitting call prices cmin(x), c1(x), c2(x) and cmax(x) and

thus the three areas D1, D2 and D3 explicitly. We do this by defining the corresponding

volatilities 0 < vmin(x) < v1(x) < v2(x) < vmax(x). We want to set the boundaries in

such a way that a very large set of parameters is covered and the rate of convergence is

about the same for all areas.

Maximal and minimal volatility:

We choose vmax = 6 as an upper bound for the time scaled volatility. This allows

us to include highly volatile markets and long maturities. As a a lower bound we fix

vmin(x) = 0.001−0.03x. This choice includes very low volatilities and the corresponding

prices cmin(x) can still be computed with the machine precision. For instance at x =

log(erTS0/K) = 0 this choice allows call options with a time to maturity of one day

(T = 1/365) and an annual Black-Scholes volatility of σ ≈ 2%. The rate of convergence

can be increased further if vmin is chosen higher.

Splitting volatilities v1 and v2:

We choose v1 and v2 according to the properties of the call price function. The call price

function has a unique inflection point for vc(x) =
√

2|x| where the slope is maximal. [75]

proposes the lower bound v1 as the zeros of the tangent line at this point. The upper

bound v2 is set to be the point where the line hits the maximal call price depending on

x. See Figure A.1 for the tangent line and the suggested splitting points ṽ1 and ṽ2.
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Figure A.1: Definition of the splitting at ṽ1 and ṽ2 by the zeros of the tangent line at
the point of inflection vc.

However, this choice of boundaries has two serious disadvantages. First, the boundary

ṽ1 tends to zero, hence for small values of x we obtain ṽ1(x) < vmin(x). Second, the

computation of ṽ1(x) and ṽ2(x) requires the evaluation of c(x, vc) and ∂
∂v c(x, vc) for each

x. For real-time computation on large data sets, this becomes a computational burden.

We solve this problem by replacing ṽ1 and ṽ2 with linear approximations. We propose

the boundaries v1(x) = 0.25− 0.4x and v2(x) = 2− 0.4x.

Splitting of the low volatility area:

For low volatilities we improve the interpolation by introducing a further splitting in x.

Following [68], we divide the area of the low volatilities in an Area I for x ∈ [−5,−0.0348]

and an Area I’ for x ∈ [−0.0348, 0], see Figure 2.7. The empirical results show that this

additional splitting further improves the rate of convergence.

Algorithm as pseudocode

Here, we present the algorithms of the Chebyshev method for the implied volatility in

form of pseudocodes. Algorithm 8 defines the transformations and scaling functions.

Algorithm 9 and Algorithm 10 describe two versions of the offline phase of our approach.

Algorithm 9 uses Jäckel’s method to compute the implied volatilities at the transformed

Chebyshev grid points. Algorithm 10 shows the offline phase using a general root finder

to compute the implied volatilities at the transformed grid points. Algorithm 11 presents

the Chebyshev implied volatility function using chebfun2 objects in the four interpola-

tion areas.
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Algorithm 8 Initilization

1: Define normalized call price:
2: c(x, v) ← e

x
2 Φ
(
x
v + v

2

)
− e−

x
2 Φ
(
x
v −

v
2

)
3: Define splitting call prices:
4: cmin(x) ← c(x, 0.001 − 0.03x), c1(x) ← c(x, 0.25 − 0.4x), c2(x) ← c(x, 2 −

0.4x), cmax(x) ← c(x, 6)
5: Define scaling functions:
6: ϕ(x, x, x) ← 1− 2 · x−xx−x

7: φ̃1(x, c) ← 2
(
− 2

(x−δ)2 log(c) + 2
(x−δ)2 log(c1(x)) + 1

)− 1
2 − 1

8: φ1(x, c) ← 2 φ̃1(x,c)−φ̃1(x,cmin(x))

1−φ̃1(x,cmin(x))
− 1

9: φ2(x, c) ← 2 c−c1(x)
c2(x)−c1(x) − 1

10: φ̃3(x, c) ←
(
−8 log

(
e
x
2−c

e
x
2−c2(x)

)) 1
2

11: φ3(x, c) ← 2φ̃3(x,c)

φ̃3(x,cmax(x))
− 1

12: Define inverse scaling functions:
13: ϕ−1(y, x, x) ← x− 0.5(x− x)(1− y)

14: φ̃−1
1 (x, c̃) ← c1(x)e

− 2(x−δ)2

(c̃+1)2
+

(x−δ)2
2

15: φ−1
1 (x, c̃) ← φ̃−1

1 (x, φ̃1(x, cmin(x)) + 0.5(1− φ̃1(x, cmin(x)))(1 + c̃))
16: φ−1

2 (x, c̃) ← c1(x) + 1
2(c̃+ 1)(c2(x)− c1(x))

17: φ̃−1
3 (x, c̃) ← e

x
2 −

(
ex/2 − c2(x)

)
e−

c̃2

8

18: φ−1
3 (x, c̃) ← φ̃−1

3 (x, 0.5φ̃3(x, cmax(x))(1 + c̃))

Algorithm 9 Pre-computation step (Using Jäckel’s method)

Require: v̂JL(x, c) (Jäckel’s implied vola function), load chebfun package, ε error toler-
ance

1: Area I
2: ṽ1(x̃, c̃) ← v̂JL(ϕ−1(x̃,−5,−0.0348), φ−1

1 (x̃, c̃))
3: I1(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ1(x̃, c̃), ′tol′ = ε)
4: Area I’
5: ṽ1+(x̃, c̃) ← v̂JL(ϕ−1(x̃,−0.0348, 0), φ−1

1 (x̃, c̃))
6: I1+(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ1+(x̃, c̃), ′tol′ = ε)
7: Area II
8: ṽ2(x̃, c̃) ← v̂JL(ϕ−1(x̃,−5, 0), φ−1

2 (x̃, c̃))
9: I2(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ2(x̃, c̃), ′tol′ = ε)

10: Area III
11: ṽ3(x̃, c̃) ← v̂JL(ϕ−1(x̃,−5, 0), φ−1

3 (x̃, c̃))
12: I3(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ3(x̃, c̃), ′tol′ = ε)
13: Output: Four chebfun2 objects I1(x̃, c̃), I1+(x̃, c̃), I2(x̃, c̃), I3(x̃, c̃)
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Algorithm 10 Pre-computation step (Using a rootfinder)

Require: root(f, tol) (rootfinder which takes a function f and error tolerance tol), load
chebfun package, ε error tolerance

1: Area I
2: ṽ1(x̃, c̃) ← root(v 7→ φ−1

1 (x̃, c̃)− c(ϕ−1(x̃,−5,−0.0348), v), ε)
3: I1(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ1(x̃, c̃), ′tol′ = ε)
4: Area I’
5: ṽ1+(x̃, c̃) ← root(v 7→ φ−1

1 (x̃, c̃)− c(ϕ−1(x̃,−0.0348, 0), v), ε)
6: I1+(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ1+(x̃, c̃), ′tol′ = ε)
7: Area II
8: ṽ2(x̃, c̃) ← root(v 7→ φ−1

2 (x̃, c̃)− c(ϕ−1(x̃,−5, 0), v), ε)
9: I2(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ2(x̃, c̃), ′tol′ = ε)

10: Area III
11: ṽ3(x̃, c̃) ← root(v 7→ φ−1

3 (x̃, c̃)− c(ϕ−1(x̃,−5, 0), v), ε)
12: I3(x̃, c̃) ← chebfun2((x̃, c̃) 7→ ṽ3(x̃, c̃), ′tol′ = ε)
13: Output: Four chebfun2 objects I1(x̃, c̃), I1+(x̃, c̃), I2(x̃, c̃), I3(x̃, c̃)

Algorithm 11 The Chebyshev implied volatility function

Require: Four chebfun2 objects I1(x̃, c̃), I1+(x̃, c̃), I2(x̃, c̃), I3(x̃, c̃)
1: Input call price C, strike K, spot S0, maturity T and rate r
2: Normalization
3: x ← rT + log(S0/K), c ← C/

√
S0e−rTK

4: if x < 0 then c ← c+ e−x/2 − ex/2, x ← −x
5: Splitting
6: if c ≤ cmax(x) and x ≤ 5 then
7: if c < c2(x) then
8: if c < c1(x) and c ≥ cmin(x) then
9: if x < −0.0348 then Area ← Area I’

10: else Area ← Area I
11: else Area ← Area II
12: else Area ← Area III
13: else Return c or x is too high

14: Transformation and Evaluation
15: Switch cases ’Area’
16: Case Area I: x̃ ← ϕ(x,−5,−0.0348), c̃ ← φ1(x, c) and v ← I1(x̃, c̃)
17: Case Area I’: x̃ ← ϕ(x,−0.0348, 0), c̃ ← φ1(x, c) and v ← I1+(x̃, c̃)
18: Case Area II: x̃ ← ϕ(x,−5, 0), c̃ ← φ2(x, c) and v ← I2(x̃, c̃)
19: Case Area III: x̃ ← ϕ(x,−5, 0), c̃ ← φ1(x, c) and v ← I3(x̃, c̃)
20: Return: v
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Multivariate generalized moments

In this appendix, we extend the one-dimensional recursive formula for the generalized

moments into a multivariate setting. We want to compute the multivariate generalized

moments

Γdn(µ,Σ) := E[Tn(X)1Id(X)] with X ∼ Nd(µ,Σ)

for mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d. Here n is a multi-index with

n ∈ Nd and Tn the multivariate Chebyshev polynomial Tn(x) =
∏d
i=1 Tni(xi). The

following theorem provides a recursive formula for the multivariate generalized moments

and is based on [79].

Theorem 16. The generalized moments for a multivariate normally distributed variable

X ∼ Nd(µ,Σ) can be calculated with the following recursive formula for ni ≥ 1

Γdn+ei(µ,Σ) = 2
(
µiΓ

d
n(µ,Σ) + Σi,·cn

)
− Γdn−ei(µ,Σ)

with vector cn ∈ Rd with entry j given by

cn,j = (−1)njΓd−1
n(j)(µ̃

−1
j , Σ̃j)φj,−1 − Γd−1

n(j)(µ̃
1
j , Σ̃j)φj,1 + Γd,′n,j(µ,Σ)

where Γd,′n,j(µ,Σ) = E[∂Tn(X)
∂xj

1Id(X)] and φj,−1 = φ1(−1,µj ,Σ
2
j ), φj,1 = φ1(1,µj ,Σ

2
j ).

Here, φ1 is the density of an univariate normally distributed variable. The formulas

for the generalized moments Γdn+ei(µ,Σ) for ‖n‖∞ ≤ 1 can be directly obtained form

[79].
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Proof. The generalized moment Γdn+ei(µ,Σ) is given by

Γdn+ei(µ,Σ) = E[Tn+ei(X)1Id(X)]

= 2E[XiTn(X)1Id(X)]− E[Tn−ei(X)1Id(X)],

= 2E[XiTn(X)1Id(X)]− Γdn−ei(µ,Σ)

where we used the recursive structure of the Chebyshev polynomials. This means we

need to find an expression for E[XiTn(X)1Id(X)]. For the density of the multivariate

normal distribution φd holds

−∂φ
d(x)

∂x
= Σ−1(x− µ)φd(x) ∈ Rd,

where ∂φd(x)
∂x is the vector of partial derivatives, see [79]. The j-th component the equa-

tion reads as

−∂φ
d(x)

∂xj
= Σ−1

j,· (x− µ)φd(x).

We multiply each side with the Chebyshev polynomial Tn and integrate of Id. For the

left hand side we obtain∫
Id
Tn(x)

∂φd(x)

∂xj
dx =

∫
Id−1

Tn(j)(x(j))

∫
I
Tnj (xj)

∂φd(x)

∂xj
dxjdx(j)

=

∫
Id−1

Tn(j)(x(j))
[
Tnj (xj)φ

d(x)|1xj=−1

−
∫
I

∂Tnj (xj)

∂xj
φd(x)dxj

]
dx(j)

using integration by paths. We define

Γd,′n,j(µ,Σ) :=

∫
Id

∂Tn(x)

∂xj
φd(x)dx =

∫
Id−1

Tn(j)(x(j))

∫
I

∂Tnj (xj)

∂xj
φd(x)dxjdx(j)

where x(j) is the d − 1 dimensional vector of x without the j-th entry. From [79] we

obtain the following formula for the density of the multivariate normal distribution

φd(x,µ,Σ)|xj=−1 = φ1(−1, µj , σ
2
j )φ

d−1(x(j), µ̃
−1
j , Σ̃j)

φd(x,µ,Σ)|xj=1 = φ1(1, µj , σ
2
j )φ

d−1(x(j), µ̃
1
j , Σ̃j)

with modified parameters

µ̃−1
j = µ(j) −Σ(j),j

1 + µj
σ2
j

, µ̃1
j = µ(j) + Σ(j),j

1− µj
σ2
j

, Σ̃j = Σ(j),(j) −
1

σ2
j

Σ(j),jΣj,(j).
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The equations for the density yield∫
Id−1

Tn(j)(x(j))
[
Tnj (xj)φ

d(x)|1xj=−1

]
dx(j)

=

∫
Id−1

Tn(j)(x(j))Tnj (1)φ1(1,µj ,Σ
2
j )φ

d−1(x(j), µ̃
1
j , Σ̃j)dx(j)

−
∫
Id−1

Tn(j)(x(j))Tnj (−1)φ1(−1,µj ,Σ
2
j )φ

d−1(x(j), µ̃
−1
j , Σ̃j)dx(j)

= Γd−1
n(j)(µ̃

1
j , Σ̃j)φ

1(1,µj ,Σ
2
j )− Tnj (−1)Γd−1

n(j)(µ̃
−1
j , Σ̃j)φ

1(−1,µj ,Σ
2
j )

Overall, we obtain for the left hand side

−
∫
Id
Tn(x)

∂φd(x)

∂xj
dx = (−1)njΓd−1

n(j)(µ̃
−1
j , Σ̃j)φj,−1 − Γd−1

n(j)(µ̃
1
j , Σ̃j)φj,1 + Γd,′n,j(µ,Σ)

with φj,−1 = φ1(−1, µj , σ
2
j ), φj,1 = φ1(1, µj , σ

2
j ). For the right hand side we obtain,

∫
Id
Tn(x)

(
Σ−1
j,· (x− µ)φd(x)

)
dx =

∫
Id
Tn(x)

( d∑
i=1

Σ−1
j,i (xi − µi)φd(x)

)
dx

=
d∑
i=1

Σ−1
j,i

∫
Id
Tn(x)xiφ

d(x)− Tn(x)µiφ
d(x)dx

=

d∑
i=1

Σ−1
j,i

(
E[Tn(X)Xi1Id(X)]− µiΓdn(µ,Σ)

)
= Σ−1

j,·
(
E[Tn(X)X1Id(X)]− µΓdn(µ,Σ)

)
,

where E[Tn(X)X1Id ] is a column vector with i-th entry E[Tn(X)Xi1Id(X)] and we

recall that µ is a column vector as well. Bringing the right hand side and the left hand

side together yields

−∂φ
d(x)

∂x
= Σ−1(x− µ)φd(x)

=⇒ cn = Σ−1
(
E[Tn(X)X1Id(X)]− µΓdn(µ,Σ)

)
=⇒ E[Tn(X)X1Id(X)] = µΓdn(µ,Σ) + Σcn

and hence

Γdn+ei(µ,Σ) = 2
(
µiΓ

d
n(µ,Σ) + Σi,·cn

)
− Γdn−ei(µ,Σ)

which was our claim.
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Proposition 14. The expectations of the derivatives of the Chebyshev polynomials are

given by

Γd,′n,j(µ,Σ) = 2nj

nj−1∑
kj=0

′
Γdn−(nj−kj)ej (µ,Σ)1(nj−1+kj)mod2=0.

Proof. For the derivative of the (one-dimensional) Chebyshev polynomial holds T ′n(x) =

2n
∑n−1

k=0

′
Tk(x)1(n−1+k)mod2=0. This yields∫

Id−1

Tn(j)(x(j))

∫
I

∂Tnj (xj)

∂xj
φd(x)dxjdx(j)

=

∫
Id
Tn(j)(x(j))2nj

nj−1∑
kj=0

′
Tkj (xj)1(nj−1+kj)mod2=0φ

d(x)dx

= 2nj

nj−1∑
kj=0

′
∫
Id
Tn−(nj−kj)ej (x)φd(x)dx 1(nj−1+kj)mod2=0

= 2nj

nj−1∑
kj=0

′
Γdn−(nj−kj)ej (µ,Σ)1(nj−1+kj)mod2=0

which was our claim.

Note that for the d-variate generalized moments we require the moments in dimension

d − 1. This dependence on moments in lower dimensions limits the applicability of the

approach in high dimensions.
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Journal of Theoretical and Applied Finance, 7(03):303–335, 2004.

[86] Minqiang Li. Approximate inversion of the Black–Scholes formula using rational

functions. European Journal of Operational Research, 185(2):743–759, 2008.

[87] Dongjae Lim, Lingfei Li, and Vadim Linetsky. Evaluating callable and putable

bonds: an eigenfunction expansion approach. Journal of Economic Dynamics and

Control, 36(12):1888–1908, 2012.

[88] F. A. Longstaff and E. S. Schwartz. Valuing American Options by Simulation:

A Simple Least-Squares Approach. Review of Financial Studies, 14(1):113–147,

2001.

[89] Roger Lord, Fang Fang, Frank Bervoets, and Cornelis W Oosterlee. A fast and ac-

curate FFT-based method for pricing early-exercise options under Lévy processes.
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[97] Slobodan Milovanović and Lina von Sydow. Radial basis function generated finite

differences for option pricing problems. Computers & Mathematics with Applica-



References 278

tions, 75(4):1462–1481, 2018.

[98] Alejandro Mosiño. Using Chebyshev polynomials to approximate partial differen-

tial equations: A reply. Computational Economics, 39(1):13–27, 2012.

[99] Ravi Myneni. The pricing of the American option. The Annals of Applied Proba-

bility, pages 1–23, 1992.

[100] Daniel B Nelson and Krishna Ramaswamy. Simple binomial processes as diffusion

approximations in financial models. The Review of Financial Studies, 3(3):393–

430, 1990.

[101] Cornelis W Oosterlee and Lech A Grzelak. Mathematical Modeling and Computa-

tion in Finance. World Scientific, 2019.

[102] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Com-

puting, 33(5):2295–2317, 2011.

[103] Ricardo Pachón. Numerical pricing of European options with arbitrary payoffs.

International Journal of Financial Engineering, 5(02):1850015, 2018.

[104] Ricardo Pachón, Rodrigo B Platte, and Lloyd N Trefethen. Piecewise-smooth

chebfuns. IMA journal of numerical analysis, 30(4):898–916, 2010.

[105] Ricardo Pachón and Lloyd N Trefethen. Barycentric-Remez algorithms for best

polynomial approximation in the chebfun system. BIT Numerical Mathematics,

49(4):721, 2009.

[106] Goran Peskir and Albert Shiryaev. Optimal Stopping and Free-Boundary Problems.

Springer, 2006.
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