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Abstract

This thesis investigates the application of function approximation techniques for com-
putationally demanding problems in finance. We focus on the use of Chebyshev inter-
polation and its multivariate extensions. The main contribution of this thesis is the
development of a new pricing method for path-dependent options. In each step of the
dynamic programming time-stepping we approximate the value function with Chebyshev
polynomials. A key advantage of this approach is that it allows us to shift all model-
dependent computations into a pre-computation step. For each time step the method
delivers a closed form approximation of the price function along with the options’ delta
and gamma. We provide a theoretical error analysis and find conditions that imply ex-
plicit error bounds. Numerical experiments confirm the fast convergence of prices and
sensitivities. We use the new method to calculate credit exposures of European and
path-dependent options for pricing and risk management. The simple structure of the
Chebyshev interpolation allows for a highly efficient evaluation of the exposures. We
validate the accuracy of the computed exposure profiles numerically for different equity
products and a Bermudan swaption. Benchmarking against the least-squares Monte
Carlo approach shows that our method delivers a higher accuracy in a faster runtime.
We extend the method to efficiently price early-exercise options depending on several
risk-factors. As an example, we consider the pricing of callable bonds in a hybrid two-
factor model. We develop an efficient and stable calibration routine for the model based
on our new pricing method. Moreover, we consider the pricing of early-exercise basket
options in a multivariate Black-Scholes model. We propose a numerical smoothing in
the dynamic programming time-stepping using the smoothing property of a Gaussian

kernel. An extensive numerical convergence analysis confirms the efficiency.
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Chapter 1

Introduction

At the heart of modern mathematical finance stands the pricing of financial derivatives
that depend on the price of one or more underlyings. The most important class of
derivatives that are investigated in mathematical finance are option contracts. In the
simplest case, the price of an option can be calculated as its discounted expected payoff at
maturity under the so called pricing measure Q also known as the risk-neutral measure.
The resulting pricing approach is often called risk-neutral valuation and was introduced
by [33], see also [14] for more details. The core of computational finance is the numerical
computation of such option prices if there is no analytic solution. See for instance [115]
and [I0I] for an introduction to computational finance. The complexity of this task is
determined by the type of option that is priced and the stochastic model used for the
underlying risk factors. The price of a European vanilla call or put option depends only
on the distribution of the underlying at maturity whereas path-dependent options such
as early-exercise and barrier option depend on the distribution of the underlying over
the option’s lifetime. An American option is an option that gives the option holder
the right to exercise his right at any time point until the maturity of the option. The
majority of stock options traded in the market are of American type whereas equity index
options are often European options, see for example [72]. The early exercise feature
makes the valuation of the option more challenging. More exotic financial products
require usually also more complex stochastic models that capture relevant additional risks
such as stochastic volatility, jumps or stochastic interest rates. Further computational
complexity occurs for products on more than one underlying such as basket options or
call options on the maximum of different assets. We refer to [I36] for a more practical
introduction to option pricing and to [14] as well as [41] for a comprehensive overview on
the mathematical theory behind option pricing. The first and main step in computational

finance is to find efficient numerical methods that compute the price of a given option

13



Chapter 1. Introduction 14

in a suitable stochastic model. Here, efficiency refers to the accuracy of the resulting
option price in comparison to the runtime spent on its computation. In a second step,
one is often also interested in the sensitivities of the option price, i.e. how does the
value of the option change for a small change in the value of the underlying. There
are two main applications for numerical option pricing methods, on the one side the
trading and hedging of options and on the other side the risk management of a portfolio
of derivative contracts. See [96] for an interesting comparison of these two worlds of
quantitative finance. For many years, trading was the most important application of new
option pricing methods. However, in recent years, there has been a shift from trading
to risk management in quantitative finance. Driven by new regulatory requirements,
the risk management of large trading books of derivatives has become more and more
computationally demanding. In the following, we will briefly discuss how option pricing

differs between trading and risk management.

Option pricing in trading and risk management

For trading, the price of an (exotic) product has to be computed in order to sell it to a
counterparty. First, the relevant risk factors are identified for the specific product and
a suitable stochastic model is chosen. The critical part is then the calibration of the
model to market data in order to make sure that the price of the exotic product is free
of arbitrage. Calibration means that the model parameters are optimized such that the
model prices match the prices of derivatives traded in the market. For equity models, the
prices of vanilla call and put options for different maturities and strikes can be observed
and are used for the calibration. For credit derivatives, the spreads of credit default
swaps (CDS) are a common market instrument used for calibration. This calibration
can be computationally demanding, especially if the model depends on large number of
model parameters. The same set of simple financial instruments (e.g. vanilla options,
CDS instruments) is priced many times for different model parameters until the optimal
parameters are found. Once this calibration is performed, the price of the exotic product
can be computed. See for example [I13] for the calibration of different equity models

and [21] for the calibration of interest rate and credit models.

The complexity of the model calibration is thus closely related to the complexity of
the model itself. For equities, the famous model of [I5] has only one parameter, the
volatility, that cannot directly be observed in the market. The volatility is therefore
computed implicitly from option prices observed in the market, this is called the Black-
Scholes implied volatility. In contrast to the model assumptions, different options on the
same underlying have different implied volatilities, an effect known as smile. This means

that the Black-Scholes model can only be calibrated to one option but not to a whole
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surface, i.e all options on the same underlying that differ only in strike and maturity. Over
the years, different models have been developed that tackle this problem. This includes
local volatility models such as the constant elasticity of variance model presented in [114]
or Dupire’s local volatility model presented in [39]. Other examples are the stochastic
volatility model of [69] and models with jumps such as [94], Lévy models such as the
CGMY model of [29] or a combination of jumps and stochastic volatility such as the
model of [§].

This model price calculated under the risk-neutral measure is however not the price
for which an exotic product can be sold. Additional valuation adjustments have to be
added (or subtracted) from the model price to obtain the final market price. For a OTC
(over-the-counter) trade between two counterpartys, credit risk plays an important role
and the model price is reduced by a bivariate counterparty credit valuation adjustment
(CVA), see [64] for an overview on counterparty credit risk. For example, an option from
a bank with a good credit score is more valuable than the same option from a bank with
a bad credit score. The CVA accounts for this difference in prices. It is usually computed
by simulating the value of the derivative over the options lifetime and multiplying the
calculated exposure by the probability that the counterparty defaults. Calculating this
exposure is computationally demanding since it requires the valuation of the option at
different time points in the future. Similar calculation occur in the computation of other
valuation adjustment such as margin valuation adjustment (MVA) or funding valuation

adjustment (FVA). We refer to [63] for an overview on valuation adjustments.

In risk management, one wants quantify the market risk and counterparty credit risk
on the level of a portfolio or trading book at a future time point or over a certain time
horizon. In this context, the focus shifts from calibration to market instruments to a
scenario simulation based approach. Frequently, a portfolio of derivatives is evaluated for
a large number of risk scenarios, simulated under the real-world (or physical) measure P.
This means that the same type of option has to be repeatedly priced for different input
values. Different risk metrics can then be extracted from the empirical distribution
of the portfolio values. Here, one is typically not only interested in the mean of the
distribution but also in tail measures. The size of the portfolio as well as the number
of risk factors make risk management computationally very demanding. We refer to [I]
for an overview on option pricing from a (market) risk management perspective. Recent
regulatory requirements such as the fundamental review of the trading book (FRTB) put
additional pressure on banks and demand a higher number of calculations. As stated
in [2]: “Efficiencies are always welcome, but especially now in view of the significantly
higher computational capacity and storage needs of FRTB (such as a tenfold increase

in the number of P&L vector calculations over an entire portfolio, and the demands of
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desk-level reporting)”. In order to cope with this demand, banks need either to increase

the computational power or employ more efficient numerical pricers.

Both perspectives, trading and risk management, justify the need for efficient numeri-
cal pricing methods. Starting with one-dimensional European options different numerical
pricing methods have been developed. They can be roughly divided into (binomial) tree
methods, PDE methods, Fourier type methods and simulation based methods. See for
example [115], [136] and [I0T] for more details on these methods. Many of the developed
methods have been extended or modified in order to price path-dependent options or
options on more than one asset. Each of the different classes has its merits and demer-
its and their is clearly no method that always outperform the others. For most of the
method holds that they focus on calculating one price of a specific product in a specific

class of models rather than on repeated calls of the same numerical pricing routine.

For calculating one price of univariate option, the differences in runtimes between
different methods are usually small. However, if the same option is priced many times
for varying starting values the efficiency of the methods differs a lot. For example, if the
expected exposure of a trade is calculated the same product is usually priced for 50,000 or
more simulation paths at up to 50 time steps yielding 2.5 million calls of the same pricing
routine. Here, it is desirable that the pricing method is able to deliver accurate option
prices on an interval of input factors without re-running all computations. Function
approximation methods can help to tackle this problem by providing an approximation

of the option price as a function of its input factors.

In this thesis, we will introduce a new pricing approach for path-dependent options
based on a function approximation method, the Chebyshev polynomial interpolation. We
will show that the new method is well-suited for the calculation of an option’s exposure
since it delivers an approximation of the option price and its sensitivities over the option’s

lifetime. We will then extend the presented pricing method to multivariate options.

Multivariate early-exercise options

A large class of option pricing problems are essentially multidimensional pricing prob-
lems. This is the case for options on multiple underylings such as basket, spread or
rainbow options as well as options that depend on more than one risk factor. Examples
are equity basket options on several stocks, stochastic volatility and stochastic interest
rates in stock price models, credit derivatives with interest rate and default risk or foreign
exchange (FX) options with a stochastic FX rate and stochastic interest rates in both
currencies. While some basket option pricing problems can be truly high-dimensional,

the majority of the problems is in up to five dimensions. Typically the different risk fac-
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tors are modelled using either a (geometric) Brownian motion or an Ornstein-Uhlenbeck
process and thus, they are conditionally normally or log-normally distributed. For many
products it is important that one accounts for correlation between the different risk
factors and if the option has an additional early-exercise feature, the pricing of such
options becomes challenging. Especially, if one is interested in the expected exposure
of multivariate options and the same product has to be priced for a high number of
simulated scenarios. As an example, [119] show the importance of stochastic volatility
and stochastic interest rates for the pricing and risk management of FX derivatives and

they obtain a model with four risk factors.

Most standard pricing methods such as PDE methods or Fourier methods can be
extended into multivariate dimensions. A straightforward extension leads however to
an exponential grows of the number of nodal values, often referred to as the curse of
dimensionality. For example, doubling the number of grid points from 50 to 100 is often
still easy to handle, in three dimensions the step from 503 to 100 is an increase of factor
eight and leads to one million points which makes a method often infeasible. Obtaining
accurate results can therefore require long runtimes, especially if the option is early-
exercisable. Thus, it is crucial to ensure a fast convergence and a low number of nodal
points per dimension. In contrast, simulation based methods do not suffer from the curse
of dimensionality. They are usually simple and can provide fast results if accuracy is not
critical. However, they come with a slow convergence and achieving a higher accuracy
requires an infeasible number of simulations. Additionally, they introduce a simulation
noise and this makes the calculation of sensitivities unstable. These drawbacks are only

justifiable if the dimension is very high and no other method is available.

In this thesis, we want to close this gap and provide a new pricing method for mul-
tivariate early-exercise options. Exploring the beneficial properties of Chebyshev in-
terpolation and combining it with a numerical smoothing approach leads to fast error
decay and an efficient pricing method. We will focus on two main pricing problems
in different asset classes. First, we consider the pricing of credit derivatives with an
early-exercise feature in a two-factor interest rate/credit model driven by two correlated
Ornstein-Uhlenbeck processes. Here, the main computational challenge is the calibration
of the two-factor model to credit spreads obtained form CDS instruments. Due to the
correlation, the pricing of such a CDS is a bivariate pricing problem itself and is signifi-
cantly more challenging than a calibration in a one-dimensional short rate model. The
second problem that we consider is the pricing of basket options on up to five assets in
a multivariate Black-Scholes model assuming a positive correlation between the assets.
Here, we combine our pricing method with a smoothing concept in order to reduce the

computational complexity.
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Function approximation methods in finance

Function approximation methods are a large class of approximation methods that ap-

proximate a function f: R — R by a weighted sum of basis functions

f(zc):uz.wjgoj(a:) for e X cR?
J

for basis functions ¢; : X — R. We write « to indicate that d might be bigger than
1 and we write x if d = 1. The function f might be explicitly or implicitly given and
the approximation domain X can be compact or unbounded. This framework is very
general and includes a simple polynomial interpolation of an univariate function as well
as a high-dimensional deep neural network. Closely related to the approximation of a

function is the numerical integration of a function f. We can approximate the integral
of f as

y f(x)de ~ Zj w; /X @j(x)dx.

If the integral of the basis function are known or can be efficiently calculated, this can be
an efficient quadrature approach. Similarly, we can use function approximation methods

to compute integrals with respect to a probability density function.

In this thesis, we exploit Chebyshev polynomial interpolation in order to obtain
efficient methods for the pricing of path-dependent options. The use of polynomials and
the Chebyshev series is not new and has already been investigated in different papers.

In the following, we present a short literature overview.

[88] propose to use polynomial basis function in a least-square regression in their pric-
ing algorithm for American option. The fitted polynomials are then used to approximate
the optimal early-exercise policy. [124] compares the performance of different families
of polynomials that can be used in the algorithm. [43] proposed a new pricing method
for European options based on a Fourier cosine expansion and extended the approach
to path-dependent options in [44]. More precisely, the density of the underlying is ap-
proximated by its (truncated) Fourier cosine expansion and the series coefficients can be
approximated using the characteristic function. The smoothness of the density function
yields a fast convergence of the series coefficietns. It remains to compute integrals of the
payoff funciton times the cosine basis function of the series. For standard option payoffs,
these integrals are available in closed form. As pointed out in [I0I], the cosine series
is equivalent to a Chebyshev series under the correct variable transformation. See also
[46] for a discussion on the connection between a Chebyshev series and a Fourier series.

Overall, it is the pricing method that is the closest to our new approach.
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Related to the COS method of [43] is the pricing method of [I03] that is based on
Chebyshev quadrature and an efficient splitting of the domain. This paper uses algorithm
of the chebfun Matlab toolbox, available online at www.chebfun.org. The same toolbox
has also been exploited for option pricing in [31], who propose to use the Legendre
series for the pricing and hedging of options. Moreover, [28] and [98] develop an efficient
numerical PDE solver using Chebyshev polynomials for the pricing PDE of European

and early-exercise options.

A general framework for the approximation of option prices using Chebyshev poly-
nomials has been introduced in [49]. They investigate the smoothness of option prices
as a function of their parameters and they show that for a large class of models and
payoffs, this function is infinitely often continuously differentiable and has an extension
into the complex domain. This theoretical investigation motivates them to interpolate
option prices in their parameters to speed-up recurrent pricing tasks. The analyticity of
the option price ensures an exponential convergence for Chebyshev polynomial interpo-
lation. The proposed approach has been extended to high-dimensional problems in [57].
We present this static Chebyshev approach in more details in Section and discuss

how it is related to our new pricing method for path-dependent options.

Outline of the thesis

The thesis is divided into a preliminary chapter about Chebyshev polynomial interpo-
lation and its application in finance, a chapter about a new dynamic pricing algorithm
using Chebyshev interpolation and two chapters about the application of this algorithms
for credit exposure calculation and to multivariate option pricing. We visualized the
structure in Figure In the following, we describe the chapters in more detail and
highlight the main contributions.

Chapter 2 is the preliminary chapter of Chebyshev interpolation and we explain why
we have specifically chosen Chebyshev interpolation as function approximation technique.
We provide theoretical convergence results, discuss the smoothness of option prices and
present promising numerical results. More precisely, in Section 2.1 we introduce the
univariate Chebyshev polynomial interpolation and present the relevant convergence
results. In Section 2.2, we discuss several possibilities for a multivariate Chebyshev
interpolation, including convergence results and possible ways to tackle the curse of
dimensionality. Section 2.3 deals with the application of Chebyshev interpolation in
finance. We give a brief introduction to the mathematical theory behind option pricing
and summarize the most import types of asset price models. We analyse the smoothness
of option prices as a function of different parameters and show that this function is often

analytic, i.e. it is infinitely often continuously differentiable and can be locally written
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as a power series. Then we introduce the Chebyshev interpolation for parametric option
pricing idea proposed by [49] in order to speed-up recurrent pricing tasks. This method
results in a two steps approach consisting of an offline-phase or pre-computation step
where prices are computed at the set of nodal points and an online phase where the
Chebyshev interpolant is evaluated instead of the original pricer. We refer to this method

also as the static Chebyshev method.

We investigate a particular application of the Chebyshev interpolation in finance in
Section 2.4. There, we introduce a new numerical approximation method for the Black-
Scholes implied volatility. The presented method has been published in a joint paper
"The Chebyshev method for the implied volatility” ([56]) with co-authors Kathrin Glau,
Paul Herold and Dilip B. Madan. The implied volatility is the inverse of the call price
function and itself also an analytic. It is one of the most important quantities in finance
and needs to be computed frequently for a large set of different input parameters. Since
there is no closed form solution, it is an ideal application for a (bivariate) Chebyshev
interpolation. We select a suitable interpolation domain based on market data and
interpolate on this domain using a domain splitting and appropriate transformations.
The resulting method is tested against two benchmark methods. We show that our
method is able to cover all options observed in the market and improves the efficiency

of state-of-the art benchmark methods.

Chapter 3 is the core of this thesis and contains the introduction of our new dynamic
pricing method for path-dependent options using Chebyshev interpolation. This chapter
is based on the paper "A mew approach for American option pricing: The dynamic
Chebyshev method” ([59]) published together with co-authors Kathrin Glau and Mirco
Mahlstedt. The main idea of the dynamic Chebyshev method has also been presented
in the PhD thesis ”Complezity Reduction for Option Pricing” of Mirco Mahlstedt. The
proposed method is a novel pricing approach in a dynamic programming framework
that includes the pricing of early-exercise options as well as discretely monitored barrier
options. We provide a theoretical error analysis of the new method and discuss several
aspects regarding the implementation. An empirical convergence analysis is conducted
as well as a first performance comparison to a benchmark approach. We present the
approach in a fairly general set-up and then tailor it to different applications in Chapter
4 and Chapter 5.

More precisely, in Chapter 4, we investigate the numerical calculation of credit ex-
posures for CVA and for counterparty credit risk management. The chapter is based
on the paper ”Speed-up credit exposure calculations for pricing and risk management”
([61]) with Kathrin Glau and Ricardo Pachon and on a previous version of the paper

named ”"Fast Calculation of Credit Exposures for Barrier and Bermudan options us-
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ing Chebyshev interpolation” ([60]). The computational intensive problem fits well into
our dynamic framework and we can apply our new dynamic pricing method. We show
that our new dynamic Chebyshev method delivers a closed form approximation over the
option’s lifetime. The simple polynomial structure of the approximation allows for an ef-
ficient evaluation of credit exposure. We provide different numerical examples for equity
options (European, early-exercise, barrier) and a Bermudan interest rate swaption. Our
investigation shows that the new approach combines the accuracy of a full re-evaluation
with the speed of a simple least-squares Monte Carlo approximation. We conclude the
chapter with a discussion of the economic consequences of using an accurate numerical

pricing routine instead of a simple approximation.

In Chapter 5 we consider the pricing of multivariate early-exercise options where the
underlying is conditionally normally distributed. We start with a general multivariate
dynamic pricing algorithm and provide a first numerical example. Then, we investigate
in detail the pricing of a callable bond (bond with embedded early-exercise call option)
in a two-factor model with stochastic interest rates and stochastic default intensity.
We explain how our pricing method can be used for the calibration of the two-factor
model to credit spreads. An extensive numerical investigation shows the efficiency and
the stability of the resulting calibration and pricing approach. In the last part of the
chapter, we consider a basket option in a multivariate Black-Scholes model. We present
the smoothing concept for European basket options of [I1]. Empirically, we show that
the dynamic Chebyshev method can be turned into an efficient quadrature method for
basket options using this smoothing. Then we extend this approach to early-exercise
options and we propose a new type of numerical smoothing. We conclude the chapter
with a numerical convergence analysis of the resulting pricing method. We observe a fast

error decay and an efficiency gain compared to a least-squares Monte Carlo approach.
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Figure 1.1: Structure of the thesis.



Chapter 2

Chebyshev interpolation in

finance

In this chapter, we discuss Chebyshev interpolation as a form of function approximation
and its application in finance. We start with the univariate Chebyshev interpolation and
discuss how it can be extended to higher dimensions. Then we give a brief overview on
parametric problems in option pricing and investigate the smoothness of pricing func-
tions. We discuss the application of Chebyshev interpolation in this context and provide
a larger numerical example, the computation of the Black-Scholes implied volatility using

a bivariate Chebyshev interpolation.

2.1 Chebyshev polynomial interpolation

This section deals with the univariate Chebyshev polynomial interpolation. We introduce
the important definitions and concepts regarding polynomial interpolation in Chebyshev
points that are relevant for the remaining chapters of this thesis. The first aim of this
section is to be the reference point whenever one of the basic definitions in polynomial
interpolation is needed. The second, more general aim of this section (and essentially
this chapter) is to provide a justification why we have specifically chosen Chebyshev

interpolation as a function approximation technique.

2.1.1 Polynomial interpolation

The main idea behind polynomial interpolation is the approximation of a function using
polynomials that is exact at a set of nodal points. Let xg, ..., x, be a set of n+1 distinct

points in the interval [—1,1] and let f; := f(z;), j =0,...,n be the values of a function

23
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f:[-1,1] = R. Then there exists an unique polynomial p,, of degree n that interpolates

these function values, i.e. p,(z;) = f; for all j =0,...,n.

The interpolant p,, of f can be written as a linear combination of basis functions that

span the vector space of all polynomials up to degree n. This means p,, can be written

as
n

po(@) =Y wigj(w)  for  we[-1,1] (2.1)
5=0

for weights w; and polynomial basis functions ¢; : [-1,1] — R. Different choices of

basis functions are possible and we will later see that some choices are better suited
than others. A simple and very convenient way to express the polynomial interpolant
of a function f is via the Lagrange interpolation formula. For any set of distinct points

g, ...,Ty We can write

 iyle — )

1 (2.2)

p(x) = fili(x)  with ()
7=0

The basis function [; is the j-th Lagrange polynomial with ;(x;) = 1 if j = k and 0
otherwise, see Chapter 5 in [I29]. This formula is a special case of and it is of
particular use because it is the same for any set of nodal points and the weights are
exactly the function values f; = f(z;). We will later see that this is the right form to

investigate the stability of polynomial interpolations.

The crucial question is if the polynomial interpolant p, is a good approximation for
the function f and if the approximation error || f —py||o in the maximum norm converges
for n — oco. Note that the convergence of the interpolation depends only on the set of
(nodal) points xo,...,z, and is independent of the choice of basis functions ¢;. For
computational purposes however, the right choice of basis functions is critical since it

influences the speed and the stability of the evaluation of p,,.

First, we would like to know which functions can be approximated using polynomials.
The following well-known theorem of Karl Weierstrafl shows that any continuous function
f on [—1,1] can be approximated by polynomials with arbitrary accuracy.

Theorem 1 (Weierstrass approximation theorem). Let f : [—1,1] — R be a continuous

function and let € > 0 be arbitrary. Then there exists a polynomial p such that

If = Plloo == max [f(z) —p(z)| <e. (2.3)
ze[—1,1]
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Proof. See Theorem 6.1 in [129]. O

This theorems proves that any continuous function can be approximated by poly-
nomials but it does not answer the question how to find such a polynomial. Ideally,
we would like to find a sequence or a scheme of nodal points xg,...,x, such that the
interpolant in these points p, of a function f converges towards f for all continuous
functions. Unfortunately, as pointed out in [128], "no polynomial interpolation scheme,

no matter how the points are distributed, will converge for all such functions”.

Even for smooth functions, polynomial interpolation does not necessarily converge.
A straightforward approach for choosing interpolation points are equidistant points
xp = =14 2k/n, k = 0,...,n. The famous example of [I10] shows that polynomial
interpolation of a function f can be unstable even though f is an analytic function. We

consider the Runge function

1

f(z) = T for ze[-1,1], (2.4)

which is bounded by 1 and strictly positive. Figure [2.1] shows the function and its
polynomial interpolation in 11 (left plot) and 23 (right plot) equidistant points. We
observe that close to the end points —1 and 1 the interpolation is not stable and it does
not converge. In the left plot we observe that the maximal value of the interpolant is 2

and in the right plot it is already 120.

Polynomial interpolation in equidistant points Polynomial interpolation in equidistant points

120

157
100

0.5

05 L L L L L L L L L , 20

Figure 2.1: Polynomial interpolation of the Runge function on [—1, 1] using 11 (left plot)
and 23 (right plot) equidistant points.

From these results, one could naively conclude that polynomial interpolation is not
a good idea in general. See the discussions around this topic in [128] and [129]. This is
however not the case, and there are sets of nodal points which yield convergence for a
large class of continuous functions. One set that has particularly promising properties
are the Chebyshev points which guarantee convergence for all Lipschitz-continuous func-

tions. We will introduce these points in the next section. Before we do so, we briefly
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discuss two fundamental concepts in polynomial approximation theory: Best polynomial

approximation and the Lebesgue constant.

Best approximation is for a given continuous function the polynomial of a certain
degree that has the minimal approximation error in the maximum norm. In the litera-
ture, it is therefore also called minimax approximation. We define the vector space of all
continuous functions f : [-1,1] — R as C([—1, 1]) and the vector space of all polynomials

of degree n € N as
Pn:={p € C([-1,1]) : pis polynomial of degree n}. (2.5)

This allows us to define the best approximation in the vector space P,, equipped with
the maximum norm.

Definition 1 (Best approximation). Let f € C([—1,1]). The best polynomial approxi-
mation of degree n of f is defined as the polynomial p* € P, such that

1f =P lloo < If = Plloo (2.6)
for allp € Py,

As shown in Theorem 10.1 of [129], this best approximation p* is unique and the ap-
proximation error oscillates. In the 1930s, the Russian mathematician Evgeny Yakovle-
vich Remez proposed an algorithm for computing such a best approximation, the Remez
algorithm. More recently, [105] introduced an optimized version of the algorithm. The-
oretically, this is a very interesting concept, however, in many examples polynomial
interpolation in Chebyshev points is almost as good as the best approximation and
considerably more practical. For instance, for an analytic function the Chebyshev inter-
polation and the best approximation have the same error bound up to a factor of 2. See

[129] for more details on this comparison.

In the previous Runge example we have seen that the maximal value of the polynomial
interpolant p,, can be much higher than the maximum of f and might increase in n.
A suitable polynomial interpolation should ensure that the norm of ||p,||cc does not
explode in relation to || f||co. For a given set of nodal points zy,...,z,, the polynomial
interpolation in these points is a linear operator I,, : C([—1,1]) — P, with I,,(f) = pn.
We are interested in the operator norm of I, which is in the context of polynomial
interpolation the so-called Lebesgue constant A. Consider the Lagrange form , then

we obtain

(7 lloe = lIpnlloc = max \mej 2)| < 1/l ma;cl]Zu

[—1,1]
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and the Lebesgue constant is defined as

An = max Y |l(z)]. (2.7)

-1,1
rel-L1] &

This means that ||p,|lec < Apl/f]lco and the Lebesgue constant measures the stability of
the interpolation. Moreover, the Lebesgue constant can be used to characterize interpo-
lation points that are almost optimal. The following theorem uses the Lebesgue constant
to measure which polynomial interpolations are close to the best approximation. These
interpolations are called near-best approximations.

Theorem 2 (Near-best approximation). Let f € C([—1,1]) and let A,, be the Lebesgue

constant of a polynomial interpolation operator I,,. For p, = I,(f) holds

If = Plloe < (14 Ap)llf = "o, (2.8)

where p* € Py, is the best polynomial approzrimation of f.
Proof. See Theorem 15.1 in [129]. O

The smaller the Lebesgue constant, the closer is a polynomial interpolation to the
best approximation for a given degree n. The Lebesgue constant can be small but it will
grow at least logarithmically in n for any set of interpolation points. More precisely, [22]
shows that

2
A, > —log(n+ 1)+ 0.52125 (2.9)
T

for the Lebesgue constant of any polynomial interpolation. For polynomial interpolation
in equidistant points we obtain from [129]:

n—2 2n+1

Ay~ —f . 2.1
and enlog() or n — oo (2.10)

A, > 2
We observe that the Lebesgue constant for equidistant points grows exponentially in n.
This is the theoretical explanation of the Runge example and shows why equidistant
points are not a suitable set of interpolation points. In contrast, in the next section we
will see that the Lebesgue constant of Chebyshev points is close to the lower bound (2.9).

2.1.2 Chebyshev points and Chebyshev polynomials

In this section, we introduce the Chebyshev points as well as the Chebyshev polynomials

and we discuss their promising properties.
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We follow Chapter 1.5 of [46] and consider the following problem. Find the polynomial
pn € Pr, with leading coefficient 1 such that ||py|leo is minimized. This is essentially a
minimazx problem as studied for the best approximation with f = 0. The solution
to this problem will oscillate between the maximum M and the minimum —M at n+ 1
points. As stated in [46], the trigonometric functions cos(#), sin(#) fulfil such criteria and
cos(0) — cos(nh) is a polynomial of degree n. This motivates the following definition of
the Chebyshev polynomials.
Definition 2 (Chebyshev polynomials). The function T, : [—1,1] — R with

T, (x) = cos(nd), for cos(f)==x (2.11)

is the n-th Chebyshev polynomial.

The letter T' comes from the different transliterations of the name of the Russian
mathematician Pafnuty Chebyshev such as Tchebychev (in French) and Tschebyschow

(in German). The Chebyshev polynomials can also be defined via recursion as
Thi1(z) = 22T, (x) — Tpoq1(z) for n>1, (2.12)

with Tp(z) = 1 and T3(x) = x. The equivalence of the two definitions follows directly

from the cosine identity
cos((n + 1)0) + cos((n — 1)0) = 2 cos(0) cos(nh)

and cos(f) = x. From the definition we immediatly see that T),(z) is a polynomial
of degree n in x with leading coefficient 2"~! for n > 1. From [46] follows that p,(z) =
2*(”*1)Tn(w) is the minimaz-polynomial for degree n with leading coefficient 1 that
minimizes ||pp|lco. The extrema of T}, and thus p,, are the (n + 1) Chebyshev points (of

the second kind) and are given by
xp = cos(km/n), k=0,...,n. (2.13)

Closely related are the roots of T),, the Chebyshev points of the first kind, given by

2k +1
:ck:cos< 2+ 7r), k=0,....,n—1.

n

In this thesis, we will only use the points defined in and simply refer to them as
Chebyshev points. Figure[2.2]shows the Chebyshev polynomials 71, ..., T, for n = 6 with
the corresponding Chebyshev points as the extrema. Figure shows the (n+ 1) points
for different values of n. The Chebyshev points are not equidistantly distributed but

clustered at the end points —1 and 1. Due to this clustering the polynomial interpolation
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in the Chebyshev points becomes stable. Moreover, we observe that the points are
not nested, however, the (n + 1) points zy,...,x, are included in the (2n + 1) points
xg,...,To,. In the remaining part of the section we discuss different properties of the

Chebyshev points and the Chebyshev polynomials.

Chebyshev polynomial Tj Chebyshev polynomial T, Chebyshev polynomial T}
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Figure 2.2: Chebyshev polynomials 77, ...,7Tg and the corresponding Chebyshev points.
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Figure 2.3: Chebyshev points z = cos(kn/n), k = 0,...,n for different levels of n =
1,....8
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Orthogonality of Chebyshev polynomials

The Chebyshev polynomials Ty, . ..,T, form an orthogonal basis of the vector space P,

with respect to the weight function

1
w(z) = N for ze[-1,1]. (2.14)

Consider the inner product associated with this weight function
1
(f, 9w = /lw(a:)f(x)g(a:)dx for f,g€ C(]-1,1)).

For the Chebyshev polynomials holds
(T5,Tk)w =0 if j#Kk,

see [129]. An appropriate scaling then turns the Chebyshev polynomials into an orthonor-
mal basis. The Chebyshev polynomials are a special case of the Jacobi polynomials P,&""ﬁ )
that are orthogonal with respect to the general weight function w(z) = (1 —2)*(1 +z)”.
Orthogonal polynomials and their properties have been extensively studied in the litera-
ture, see e.g. [132] for an earlier reference and [52] for a more recent reference. Note that

in the literature sometimes all orthogonal polynomials are called Chebyshev polynomials.

Chebyshev series and Chebyshev interpolation

The question arises under which condition we can write a function f € C([—1,1]) as an
(infinite) sum of Chebyshev polynomials. From [129] we obtain the following result.
Theorem 3 (Chebyshev series). Let f € C([—1,1]) be Lipschitz continuous. Then f

has a unique representation as an absolutely and uniformly convergent Chebyshev series

= 1 x T
fm:Z%MMMQMh%:iKJ@EiJM (2.15)

and the coefficient ag is multiplied by 1/2.

Proof. See Theorem 3.1 of [129]. O

We recall that a function f € C([—1,1]) is Lipschitz continuous if there exists a
constant L > 0 such that

[f(@) = fyl < Lz -yl Va,yel-11]
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The theorem is based on the orthogonality of the Chebyshev polynomials and can be
motivated in the following way. We multiply f by the polynomial T} and integrate over
[—1,1] using the weight function as defined in (2.14]). Then we obtain

1 o0 1 o0
f(@)Tk(z) / Tj(x)Th(x) m
7dng a; 7d:p:§ a; (T, Ti)w = ar(Tk, T )w = af—=-
/1 V1= 22 =) =2 =~ 35 TeJw = a(Th, T = kg
Since the Chebyshev series is absolutely convergent, |ai| converges towards 0. The

truncation of the series is then a promising candidate for a polynomial approximation

(of degree n) of f, i.e.
f(@) = fo(z) = Zaka(:c) x € [-1,1].
k=0

In fact, this expansion is the continuous least-squares approximation of the function f

in a weighted L? norm. The following least-squares measure is minimized by f,

1
Sz/ w(z)(f(x) —pn(az))2dx for p, € Py
-1

see equation (42) and (43) in [46]. This property is again based on the orthogonality of
Chebyshev polynomials. In a similar way we can also write the polynomial interpolation
of a (Lipschitz) continuous function f as a weighted sum of Chebyshev polynomials.

Proposition 1 (Chebyshev interpolation). Let f € C([—1,1]) be Lipschitz continuous.
The polynomial interpolation of degree n of f in the (n + 1) Chebyshev points xp =

cos(km/n), k=0,...,n can be written as
n 2 n
pul@) =) "eTy(x) with ¢ = - > 7 Fa) Ty () (2.16)
=0 k=0

where the two primes indicate that the first and the last summand is multiplied by 1/2.
Proof. See the derivation of equation (51) in [46]. O

For notational convenience we sometimes shift the two primes of the interpolant to

the coefficients and obtain the slightly modified formula

9lo<j<n .

f(@r)Tj(zk). (2.17)
k=0

n
pn(z) = Z ¢iTj(x) with ¢; = -
=0

Using only the first interpolation coefficients in (2.16)) leads to a good fit in a discrete
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least-squares metric. More precisely, the expansion

n N

po(@) = "eTi(x) with cj == " f(ap) Ty () (2.18)

j=0 k=0

for n < N minimizes the discrete L2 measure

N
S=>""(f(zx) = p(zx))* for p€ Py

=0

See [46] for more details. We have seen that the Chebyshev series is connected to a
continuous least-squares fit and the Chebyshev interpolation to a discrete least-squares
fit. Thereore, the coefficients of the Chebyshev interpolant can be seen as a discretized
version of the coefficients of the Chebyshev series. Moreover, each ¢; can be written as

a series of coefficients ay, see [129].

Lebesgue constant and stability

For the Chebyshev points the Lebesgue constant as defined in ([2.7)) is bounded by
2 2
Ap, < —log(n+1)+1 and A, ~ —log(n), n — oo, (2.19)
T T

see Theorem 15.2 in [129]. We directly see that the Lebesgue constant grows significantly
slower than the Lebesgue constant of the polynomial interpolation in equidistant points
. In fact, comparison to the lower bound reveals that the Chebyshev points
are almost optimal interpolation nodes. The only difference compared to the lower bound

is the added constant that is independent of the number of points n.

We consider again the Runge example and interpolate the Runge function ({2.4)) in
the Chebyshev nodes. Figure shows the resulting interpolant for 11 (left plot) and 23
(right plot) points. Here, the interpolation does converge and there are no instabilities

as for the interpolation in equidistant points, compare Figure [2.1

Evaluation of Chebyshev interpolations

From a computational point of view it is essential that the interpolation (2.16|) can be
evaluated efficiently. Here, efficiency means that the evaluation of the interpolant can be
implemented in a way that is fast and at the same time numerically stable. We illustrate

this problem with a small example of a polynomial of degree 4

pa(x) = asz* + asz® + asx® + a1z + ag.
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Polynomial interpolation in Chebyshev points Polynomial interpolation in Chebyshev points

Figure 2.4: Polynomial interpolation of the Runge function on [—1, 1] using 11 (left plot)
and 23 (right plot) Chebyshev points.

A straightforward evaluation would require 2n — 1 multiplications, i.e. n —1 to compute
22, ..., 2" and n multiplications with the coefficients. For n = 4, we have 7 multiplica-

tions. If we write the same polynomial slightly differently
pa(x) = ap + x(al + a:(ag + x(ag + xa4)))

we only need 4 multiplications. In its general form for a polynomial of degree n this

method is called Horner’s scheme. For the Chebyshev interpolation we do not use the

2

monomials z,z~,...,z" and a direct application of Horner’s scheme is not possible. A

generalization of this idea is provided in [32] for polynomials ¢,, that satisfy the recurrence

relation

(bn—i—l(x) + an¢n($) + 5n¢n—l($) = 0.

This is the case for the Chebyshev polynomials, see equation (2.12]). From [46] we obtain

the recursion

bk(l’) = 2$bk+1($) — bk+2(az) + Cj k <n

with starting values b,y1(x) = bpio(z) =0

and thus

(CO + b()(x) — bg(x)) (2.20)

N =

D oTy(z) =
j=0

This algorithm is often called Clenshaw’s algorithm. As for Horner’s scheme, the evalu-
ation requires only n multiplications and Section 3.13 in [46] shows that this method is
perfectly stable, the local rounding errors are not amplified, and the upper bound to the

error cannot exceed the arithmetic sum of the individual local rounding errors”.
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Chebyshev interpolation on a general interval

So far we have only considered the standard Chebyshev interpolation on the interval
[—1,1]. In most applications we will encounter problems on a general interval [a,b] C R.
In this case, we can use linear transformations and transform the interval [a, b] to [—1, 1].

In order to do so, we define the linear transformation 7 as
T+ [=1,1] = [a,b] with 7144 (2) =a+0.5(b—a)(z+1) (2.21)

and its inverse

Tigy (a0 = [F1,1] with 7 (2) = —1+2 g - Z; (2.22)

Assume f € C([a,b]), then we can define a function f € C([~1,1]) by f(z) = f(Tiap)(2))-
For the coefficients of the Chebyshev interpolation §, of f holds

Z”ka; Z F(Tlaw (21)) T (21) =

n
11

f(@) T (z1)

k=0

S\M

for Chebyshev points z; = cos(kmw/n), k = 0,...,n and transformed nodal points zj =

Ta,)(2k)- The function f at = € [a, ] is then interpolated by
f(z) = f(T[;lb] (v)) ~p Tla b] Z ;1 [a b] Z ijj L(f)(x)

for the transformed Chebyshev polynomials p;(z) = T} (7, T, b}( Mo ().

The chebfun software project

A very useful software package for function approximation using Chebyshev is the chebfun
toolbox for Matlab that is based on [9]. This toolbox can be found at www.chebfun.org
and its functionality is described in detail in [37]. The package provides a good start-
ing point for exploring Chebyshev interpolation and covers a wide range of different
applications including approximation, quadrature, root-finding and solving differential
equations. We refer to their web page for a list of different examples. Moreover, the
package offers extensions to two dimensions (chebfun2) and three dimensions (chebfun3).
For the majority of the experiments of this thesis we used our own implementation of
the univariate Chebyshev interpolation rather than the chebfun package(s). This allowed
us to tailor our implementation to the applications relevant for us and obtain the best
performance. We use however the bivariate extension of the chebfun package and we will

briefly introduce it at a later point.
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2.1.3 Convergence results

In this section, we provide convergence results for the polynomial interpolation in Cheby-
shev points. Generally speaking, the convergence of polynomial interpolations depends
on the smoothness of the approximated function. For this purpose smoothness is mea-
sured in the number of derivatives of the function that exits. A special emphasis is put
on functions that are infinitely often continuously differentiable and can be analytically
continued into the complex plane. A generic approach to obtain convergence results for
any set of interpolation points is to prove results for the best approximation and then
use and the Lebesgue constant. For the Chebyshev points it is however possible to

prove the convergence results directly.

First, we establish a result that links the approximation error to the coefficients of
the Chebyshev series.
Proposition 2. Let f € C([—1,1]) be a Lipschitz continuous function, with Cheby-
shev series f(x) = >, arTy(x). For the truncation of the series f, and the polynomial
interpolation in (n + 1) Chebyshev points p, holds

S S
1f = falloo < D laxl and [If =pulloo <2 D lak|- (2.23)
k=n+1 k=n+1

Proof. The first results follows immediately from

f@) = fal@) =Y arTi(e) = > axTi(@) = > axTi(w)
k=0 k=0 k=n+1

and |Tj(z)| < 1. The second result is based on the aliasing formula for the Chebyshev

coeflicients
¢k = ak + (akt2n + Akan + .. .) + (@—gt2n + Gfian +...) for 1<k <n-—1,

see Theorem 4.1 and Theorem 4.2 of [129] for more details. O

The proposition shows that the approximation error of the truncated series and the
interpolation error are exactly the same up to a factor 2. From now on we will only focus
on the latter one. In order to obtain convergence results we need to study the decay of
the coefficients |ag| depending on the smoothness of the function f. First we introduce
the concept of a Bernstein ellipse, see Chapter 8 of [129].

Definition 3 (Bernstein ellipse). For o > 1 a Bernstein ellipse B([—1,1], 0) is defined

as the open region in the complexr domain which is bounded by an ellipse with foci +1
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and semiminor axis b, and semimajor awis a,, given by

with a, + b, = 0.

The following theorem shows that the coefficients of the Chebyshev series of a Lips-
chitz continuous function decays exponentially fast if the function has an analytic con-
tinuation to the complex plane. This decay is determined by the size ¢ of the Bernstein
ellipse on which the function has an analytic extension. This result for the coefficients
together with the equation shows that the error of the Chebyshev interpolation
converges exponentially fast. From [129] we obtain the following result.

Theorem 4. Let f € C([—1,1]) be an analytic function that can be analytically extended
to a Bernstein ellipse B([—1,1], 0) for 0 > 1 and assume sup,ep(-1,1,0) |f (@) <V for a
constant V> 0. Then the coefficients of the Chebyshev series of f satisfy |ag| <V and

lag] <2V % for k>1.

The approzimation error of the Chebyshev polynomial interpolation p, satisfies

0
o—1

—n

”f _anoo S 4V

(2.24)

Proof. See Theorem 8.1 (for the first part) and Theorem 8.2 (for the second part) in
[129. O

The assumption of analyticity can be too strong in some applications of interest. If
we relax this assumption and consider the larger class of differentiable functions we still
obtain algebraic convergence. The convergence rate for a function f will then depend
on the number of derivatives fP := % that are available. For a p-times continuously
differentiable function the interpolation error decays with n™P. From [129] we obtain the
following result.

Theorem 5. Let f € C([~1,1]) and p > 0. Assume f and its derivatives up to fP—*
are absolutely continuous and fP is of bounded variation V. Then we obtain for the
coefficients of the Chebyshev series of f that

2V

< —F .
o] < m(k — p)Ptt
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Furthermore, for the interpolation error of p, holds

4V

T (2.25)

Hf - anoo <
Proof. The proof follows from Theorem 7.1 and Theorem 7.2 of [129]. O

Note that a function is of bounded variation if the L' norm of its derivative is finite.
A function is absolutely continuous if it can be written as the integral of its derivative,

ie. f:[-1,1] — R is absolutely continuous if

f@ =10+ [ £ (9)dy.

Derivative of the Chebyshev interpolant

Since the Chebyshev interpolant is a polynomial it is continuously differentiable. Based
on the recurrence relation (2.12)) we obtain the following result.
Proposition 3. The derivative of the n-th Chebyshev polynomial T, is a polynomial of

degree n — 1 and can be written as a sum of Chebyshev polynomials given by

n—1
!

T’r/z(l‘) =2n Z T’J(x)ﬂ(n—l—]) mod 2=1-
§=0

Let pp(x) = Y w;Tj(x) be a weighted sum of Chebyshev polynomials. The derivative
of pn is then given by

n—1 n
po(@) =Y Ty(x)  with ;=2 kwpl () mod 21,
Jj=0 k=j+1

where 3. indicates that the first term is multiplied with 1/2.

Proof. First we show that for the derivative of T,,, n > 1 holds

at, =
a(ﬂﬁ) =20 "Th(#) 1 (- 14%) mod 2—0-
k=0

For n =1 we use that T1(z) = x and T{(z) = 1 = Tp(x), we obtain

0
dT; / 1
T;(x) =2 Z T(2)L (04 &) mod 2=0 = 2§T0(37)110 mod 2=0 = T0().
k=0
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Assume the formula holds for j =0, ...,n. From [93] we obtain the identity
1 / 1 !
2T (z) = ] w1 (@) = = Th (@) n>1
This yields
(n+1)
(@) =20+ DT(e) + (T (@)
—2
n -+ 1 i /
=20+ DTy(a) + {320 = 1) Y T 1) mos
j=0
n—2
= 2(” + 1) (Tn(x)]l(n—‘rn) mod 2=0 T Z ,Tj(:n)]l(n-l—j) mod 2:0)
j=0

n

= 2(n + 1) Z /T](x)]l(n-i-j) mod 2=0-
7=0

We used that (n+j) mod 2 = (n+;j—2) mod 2 and 1(,,41,—1) mod 2=0 = 0. This proves the
first part of the preposition. Moreover, the result yields for the derivative of a weighted

sum of Chebyshev polynomials p,,

n n 7—1
po(@) = wiTi(x) = > w25 Y Th(x) (- 144) mod 2—0
7=0 7=0 k=0

1

n Jj

w; 25Tk (%)L (j_14k) mod 2=0

<

Il
o
R
Iy

/

;2§ T (%)L (j-11k) mod 2=0

[l
o,
i M:
_
ol
i
o

3
I

I
]

;25T (%)L (j-11k) mod 2=0
=kt 1

1T
= o

’

n
Ti(z)( Z W;251 (14 k) mod 2=0)
0 Jj=k+1

i

=1y

where 3 indicates that the first term is multiplied with 1/2 if & = 0. This was our

claim. O

More generally, if we have a Chebyshev interpolation I,,(f)(z) = >_7_( ¢jp;(z) on an
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interval X' with p;(z) = Tj(ty" (x)), its derivative is given by

d ATy Ayt dryt, e
Mjn(f)(x)_;cjch-;lj(a:) dr (z) = A (@;ijj(fﬂ)

where we used the chain rule and Proposition @ The coefficients ¢; are given by

n
- ’
¢ =2 E kck1 (k4 4) mod 2=1-
k=j+1

The question arises if the derivative of the Chebyshev interpolant of a function f is also
a good approximation for the derivative of f. For the convergence analysis we define a
Sobolev space using a weighted L? norm, see [125]. For f € C([—1,1]) we define the

norm

1
171 =+ [ w@)ra)ds (2.26)
21

for the Chebyshev weight function w(x) as defined in (2.14)). For s € N, we define the

Sobolev space

d*f
dxk

Wi = {f LA SR B =)

k=0

2
< oo, (2.27)
L%

For functions in W} we obtain a similar convergence results for the Chebyshev interpo-
lation as in Theorem [5} Moreover, the derivatives of the Chebyshev interpolant approxi-
mate the derivatives of the function. From Corollary 4.3 in [125] we obtain the following
result.

Theorem 6. Let f € C([—1,1]) be in W3 for some s € N with s > 1 and let p, be the
Chebyshev interpolant of f. For any o with 0 < 20 < s, we obtain

1f = pallwe < Csllfllwsn 2. (2.28)

This result means that we "loose” two orders of convergence for every derivative we
want to approximate simultaneously. Note that for ¢ = 0 we have a classical convergence
result of the Chebyshev interpolation in a (weighted) Lo-norm. A similar result for the
approximation in the Sobolev norm can be obtained in the case of an analytic function.
Essentially, the term n™° is in this case replaced by a term that decreases exponentially
fast. From [125] we obtain the following result.

Theorem 7. Let f € C([—1,1]) be an analytic function that can be analytically extended
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to a Bernstein ellipse B([—1,1],0) for 0 > 1 and assume supgep(-1,1),0) [f(2)| <V for
a constant V> 0. Then we obtain for the polynomial approximation p, in the Sobolev

norm for o > 0,

20 —n

V
— o <
I = pullwz < Cois

for some constant C, > 0.

In fact, the derivative of the Chebyshev interpolation does not only converge to the
derivative of the function in the L? norm but also in the stronger L> norm. From [129]
we obtain a convergence result similar to Theorem [] for the derivatives.

Theorem 8. Let f € C([—1,1]) be an analytic function that can be analytically extended
to the closure of a Bernstein ellipse B([—1,1],0) for o0 > 1. For each integer s, the sth
derivatives of the Chebyshev projections f, and interpolations p, of f satisfy

1F* = fallo = O(e™) and [|f* = pyllc = Oe™)

for n — oo.

Proof. See Theorem 21.1 in [129]. O

2.2 Multivariate extensions

The fundamental idea of approximating a function using polynomials such that the
resulting approximation is exact at a set of interpolation points can be extend to higher
dimensions. In a multivariate set-up however, it is less obvious how we can find a unique

interpolation of degree n given a set of distinct nodal points. The first question that

arises is how we define the degree of a multivariate polynomial a:lflxé” e xsd or written
in a simpler form x* with k = (kq, k2, ..., kg). Standard choices are the maximum norm

|k|loc = maxi<ij<qk; and the sum ki + k2 + ... + kg, i.e. the I-norm of k. The first one
leads to the so-called tensor product (TP) and the second one to the total degree (TD)
space of polynomials. The two choices lead to very different types of approximations

and both have their merits and demerits.

Any univariate set of interpolation nodes and basis functions can be used to generate
a tensor product interpolation in d dimensions. Let f € C([—1,1]%) be the vector space

of continuous functions f : [-1,1]¢ — R. Then we can write the interpolation of f as

n n d
LH@) = Y cioi@ =Y. > cjra | [ 2 (@) (2.29)
=1

3|0 <n 1=0 ja=0
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for one-dimensional basis functions ¢q, @1, ..., ®,. This isotropic interpolation can be
generalized to an anisotropic one, i.e. the tensor product of univariate interpolations of

different degrees. For n € N¢ we write

ni nq d
(@)= > coil@)=> .. > ciga ][0 (@)
i=1

0<j<n J1=0  ja=0

where 0 < j < n is a componentwise comparison. In both cases we need (n;+1)--- (ng+
1) points and the coefficients c¢; build a d-variate tensor in R™**"d  This approach
is straightforward and yields a unique interpolation polynomial for every set of distinct
univariate nodal points. The drawback is that the number of nodal points and poly-
nomials grows exponentially in the dimension d. Even for a moderately low number of
points n the total number of points can be infeasibly high. This is often called the curse
of dimensionality and makes the method impractical for some applications. Sometimes,

it is however possible to compress the large tensor into a low-rank tensor.

In contrast, the interpolation of bounded total degree of a function f € C([—1,1]%)

is given by

LP(N@) = ) cej) (2.30)

l3lli<n

for £ € [~1,1]%. The number of points grows significantly slower in d and this can
make the interpolation more attractive for higher dimensions. The choice of a set of
nodal points that guarantee a unique interpolation polynomial in the total degree is
challenging. In two dimensions, the so-called (bivariate) Padua points introduced in [27]
are a suitable choice and extensions of these points to three dimensions and the general
d-dimensional case have been made, ses [18] and the references therein. All these sets of
nodal points have in common that they are subsets of tensor product Chebyshev grids
chosen in a meaningful way. The underlying idea is that the approximation using a
smaller but carefully selected grid can achieve almost the same accuracy as a full tensor
grid. A comparison of different methods for multivariate function approximation and

quadrature is provided in [130].

In this section we will discuss the tensor product interpolation and provide con-
vergence results. We briefly introduce low-rank tensor approximation and provide an

overview on sparse grids.
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2.2.1 Tensor based Chebyshev interpolation

The tensor based Chebyshev interpolation (or tensor product) is the straightforward
extension of the univariate polynomial interpolation to higher dimensions. For the in-
terpolation of a d-variate function, a grid of (n 4 1)¢ points is used and the resulting
interpolant is a polynomial of degree n in each dimension. For n € N9, the tensor grid

of Chebyshev points are given by
xr = (Thyy ..., Tk,) with zp, = cos(kym/n;) for 0<k; <n; i=1,...,d

The corresponding multivariate Chebyshev polynomials are defined as products of the

one-dimensional Chebyshev polynomials, i.e.

d

Tj(x) == HT]Z(:BZ) for @« [-1,1]%
i=1

Now we are in a position to define the multivariate Chebyshev interpolation.
Definition 4 (Multivariate Chebyshev interpolation). The multivariate Chebyshev poly-

nomial interpolation of a function f € C([—1,1]%) for degree n € N? is given by
In(f) (@) := Z ¢jTj(x) Z Z Cj1snsia HT% ) (2.31)
0<i<n J1=0  j4=0
with coefficients
2 0<j;<n;

> F(@e) Ty ()

0<k<n

= (I

~.
—_

d

d ]lo<31<nz "1 " Ttd "
(H2 ) Z Z f(xk;la'--)xkd)Hj—jji(xki)‘

k1 =0 kq=0 i=1

—_

~.

Here I,(f) can be seen as an operator from the space of continuous functions on
[~1,1]? to the space of all polynomials of degree n. The Chebyshev interpolation on
[—1,1]? can then be extended to any hyperrectangular

using the linear transformations (2.21]) and (2.22)) in each dimension.
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Convergence results

For the error analysis of the tensor based interpolation we need to generalize the concept
of a Bernstein ellipse. The following definition is based on [58].

Definition 5 (Generalized Bernstein ellipse). Let o € (1,00)? and X C R? a hyperrect-
angle given by X = [x,,T1] X ... X [x4,Zq]. The generalized Bernstein ellipse is defined
by

B(X,0) := B([zy,T1], 01) X ... x B([z4,Z4], 0a)

where B([z;,%;], 0i) are the transformations of the Bernstein ellipses B([—1,1], 0;) for
i=1,....d.

Using this definition we are in a position to extend the convergence results of for

univariate analytic functions to the multivariate case. From [58] we obtain the following
error bound.
Theorem 9. Let f € C(X) for a hyperrectangle X C R%.  Assume f has an ana-
lytic extension to some generalized Bernstein ellipse B(X, @) for some o € (1,00)? and
SUPeB(x,o) |f ()| <V for some V> 0. Then we obtain for the approzimation error of
the multivariate Chebyshev interpolation ]?:: In(f) forn € N¢

1f = Flloo < min{a(o,n,d, V), B(e,m,d, V)} =: eins(0,m,d, V) (2.32)

with error bounds

d —n; d —Nng
Qa 7 Q —1 Qk_l 1
a(e,m,d) = min (4V¢ + v —"4 _. Qk_l(k k— 1)+ -1 ) (2.33)
GGSd 1 0i —1 i 0s(i) — 1 H] 1(I—e U(J))

:d2 —1/2
B(o,n,d) = 2(4/2+1. (Z 0; 2 H ) (2.34)

1—gj

where Sy is the symmetric group of d elements.

As pointed out in [58], it depends on the specific specification of n and g which of
the two error bounds is actually sharper. From the theorem follows the more general

results

If = flloe < Co™ with ¢= min gi, n= min n, (2.35)

for a constant C' > 0. Assuming that all n;’s are the same, the error decays in the d-th
root of the total number of points (n 4 1)¢. This is called the curse of dimensionality.

In order to maintain the same convergence as in the univariate case, the total number
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of points increases exponentially in the dimension. Similar results can be obtained for

polynomial interpolation of differentiable functions.

Interpolation with distortion

In many practical applications we would like to approximate functions that we do not
know analytically. Instead, we need to calculate the nodal values f(xg) of the multi-
variate Chebyshev interpolation numerically. Typical examples are situations where f is
the solution of a PDE or a conditional expectation of a stochastic process. The function
values at the nodal points are then computed via numerical quadrature, finite differences
or Monte Carlo simulation. All these numerical routines introduce an additional error

and result in distorted values f(xg) ~ f(xg). This distortion error affects then the

overall quality of the interpolation.

-~

Depending on the numerical technique used to compute f(xg), it is often possible to

bound the maximal distortion error. On the other hand, Monte Carlo simulation means
that the distortion error becomes a random variable. In both cases, the distortion value
will influence the overall error and the maximal achievable accuracy. In the context of
option pricing this idea of interpolation with distortion error has been investigated in [49].
The following proposition provides a convergence result if the distortion is deterministic
and can be bounded by a constant.
Proposition 4. Let f € C(X) for a hyperrectangle X C RY be a real-valued function
with an analytic extension to some generalized Bernstein ellipse B(X, o) for o € (1,00)%
with SUpgepx,p) |f(®)| < B. Assume distorted values f°(xx) = f(zx) + e(xk) with
le(xk)| < € at all nodes xy,. Then

max |f(®) — In(f*)(®)| < gint(0, M, d, B) + EAp.

with eint(0,m, d, B) := min{a(g,n, d), B(0,n,d)} for a,  as defined in (2.33) and (2.34)
and Lebesgue constant Ap, < ]2, (2log(ni + 1) +1).

Proof. Using the linearity of the interpolation operator we obtain for the Chebyshev
interpolation of f¢ with f¢(xy) = f(xk) + (k) that

In(f)(@) = In(f)(2) + In(e) ().

The tensor-based multivariate Chebyshev interpolation I, (g) can be written in Lagrange
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form

d

In(e)(@) = Y e(xj)rj(x) with Aj(w)zngji(ﬁ;i@](wi))

0<j<n i=1

where £;,(2) =[], Z‘j —£- is the j;—th Lagrange polynomial. This yields

= )\ <z . — =
max |In()(x)| = max Z 6(3)%(%)‘ semax ), [Nj(@)] = Ehn.
0<j<n 0<j<n

The term A,, is the Lebesgue constant of the (multivariate) Chebyshev nodes which is

given by
DT o | (1 ‘— ”E] ~[ta g )|

0<j<n 0<j<ni=1

Since maxy, e, 7] 2 ji—0 [ (7'[;1_1@} (i) = max.e[_1,1) > [€);(2)| = Ap,, which is the
Lebesgue constant of the univariate Chebyshev interpolation, we have A,, = Hle Ap,.
From (2.19)) we obtain for the univariate Chebyshev interpolation A,, < %log(n +1)+1

and hence

Ap < ﬁ (— log(n; +1) + 1). (2.36)

=1

For the distorted Chebyshev interpolation holds

(@) = In(f*)(@)] < [f(®) = In(F)(@)] + [ In(e) ().

Therefore, the proposition follows directly from (2.36) and Theorem [9 O

A more general version of this result can be found in [49, Theorem 2.5] and includes
also the case of a stochastic distortion error. Here, we observe again how critical the
Lebesgue constant is for a stable and accurate interpolation. It ensures that a small
distortion can not lead to a large interpolation error even for a high number of nodal

points.

2.2.2 Complexity reduction for polynomial interpolation

The presented tensor product Chebyshev interpolation suffers from the curse of dimen-
sionality. From the error bound ({2.35|) follows that the error decay is of order O(o~ %)
in the total number of points n. This tensor product interpolation will only be efficient

if the function is smooth enough and p is large and thus n remains small. If the function
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is not smooth enough or the dimension becomes too high, a full tensor approach is no
longer feasible. There are three main challenges for the full tensor Chebyshev interpo-
lation: The computation of the nodal values f(xg), the storage of the coefficients and
the evaluation of the interpolant. Depending on the application, just one or all of them
can be a limitation for the applicability of the Chebyshev interpolation in multivariate

dimensions.

In this section we present concepts how the different challenges of multivariate inter-
polation can be tackled. We start with a bivariate Chebyshev interpolation and discuss
the application of a singular value decomposition (SVD) and the implementation of the
chebfun2 package. Then we briefly discuss low-rank tensor compression in high dimen-

sions and a tensor completion algorithm.

Bivariate Chebyshev, SVD and chebfun?2

In two dimensions, the Chebyshev interpolation can be written in form of matrix mul-
tiplications. Let f : [~1,1]> — R be a continuous function. The bivariate Chebyshev

interpolation of f can be written as

L) y) = (To@), ., Tu@) | z | = Ti@eTn).
Cno --- Cnn T.(y)

The matrix of coefficients C € R™*" grows quadratically in the number of points n. The
matrix admits the singular value decomposition C = UDV7' for a diagonal matrix of
singular values D = diag(dy,...,dy) and two orthogonal matrices U, V. Using only the

k biggest singular values results in a rank & approximation of the function f, i.e.

k

(D) = 3 (3 Ui @) (3 VI T0).

j=1  i1=0 i2=0

This means that the full tensor is approximated by k products of one-dimensional Cheby-
shev interpolations that require 2nk entries in total plus k singular values dy, ..., d;. If
the singular values decay fast, this can reduce the storage significantly. Moreover, the
evaluation of the interpolant becomes more efficient. The chosen rank k£ using the sin-
gular value decomposition is optimal in a (discrete) L?-sense. The drawback of this
approach is that its effort is O(n?) and the full tensor of coefficients has to be computed
first. This means that the number of function evaluations is still (n + 1)2, see [127] for
more details. This approach is therefore only of interest if we can use an offline-online

decomposition and shift the singular value decomposition into the offline step.
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[127] propose to use a Gaussian elimination with complete pivoting instead that
results in a near optimal rank k and requires only O(k?n + k3) operations. The idea of
their algorithm is the following: Find (z¢, yo) that maximizes |f| and construct a rank 1

approximation of f by

1

filw,y) = f(zo0,v0)

f($07y)f($7 yO) ~ dlCl(y)Tl(m)

where ¢; is a Chebyshev interpolation of the slice y — f(z0,y) and r; is the Chebyshev
interpolation of  — f(z,yop). The weight d; is called the pivot value. Repeat this
procedure for the residuum f — f; and obtain a new rank 2 approximation of f. The
algorithm stops if f — f is small enough, e.g. close to machine precision. The resulting

approximation is then given by
k
fla,y) = dici(y)ry(x)
j=1

where r;j(z) and ¢;(y) are univariate Chebyshev interpolations of degree n. We refer to
[127] for more details on the implementation. The resulting algorithm in the Matlab
package chebfun2 avoids the computation of a full tensor first and needs often only a

small number of function evaluations.

Low rank tensor compression

Next we want to extend the rank & approximation of the full tensor product interpolation
to the multivariate cases. Instead of a singular value decomposition of the coefficient
matrix we need to find a method to decompose and compress a tensor of coeflicients
C € R™*--xnd_ Different low rank tensor compression techniques have been developed
for this tasked, we refer to [62] for a literature overview. We will focus on one of them
and briefly introduce the tensor train (TT) format of [102]. The idea is to write every
entry of a larger tensor in d dimension as a product of d matrices of smaller size. A

tensor C € R™*--XMd in the tensor train format can be written as
C(il, 12,... ,id) =G4 (il)GQ(ig) ... Gd(id) with Gu(iu) € RMn—1%"u

with conditions rg = r4 = 1. The matrices G,(i,) form essentially three dimensional
arrays of size r,_1 x n, x r, for every p = 1,...,d. The effort for compressing a full
tensor into the TT-format is of order O(dnr?) for the maximal rank r = maxo<, <47, and
hence, scales linearly in the dimension and in the number of points n. It reduces storage
requirements significantly if the rank r is small in comparison to n and in high dimensions

d. Standard linear algebra operations such as vector times matrix operations can be
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efficiently done using this format. We again refer to [102] for a detailed investigation
of the TT-format and a discussion of the implementation of the tensor compression in
Matlab.

Similarly to the singular value decomposition, the full tensor has to be computed first
before it can be compressed into a low-rank structure. This limits the applicability of the
compression format in high dimensions significantly. Fortunately, there exists different
completion algorithms that construct an approximation of a high-dimensional tensor in
a low-rank format by using only relatively few entries. For the tensor train format,
[123] presents a tensor completion algorithm based on Riemannian optimization. Given
a set of indices of the tensor and a fixed maximal rank the algorithm finds the optimal
low-rank tensor. Usually, the (optimal) rank of a full tensor is unknown and has to be
found adaptively, see [123] for more details. The rank adaptive completion algorithm
comes with the drawback of a large computational overhead. Therefore, especially in
medium high dimension, it is not always faster than working with the full tensor. This

computational bottleneck vanishes if the completion can be done in an offline step.

[57] combine a multivariate Chebyshev interpolation with low-rank tensor compres-
sion and a tensor completion algorithm. They show numerically that the tensor of
Chebyshev coefficients admits a low-rank structure for analytic functions. A similar ap-
proach has also been investigated in the master thesis [137] who uses the hierarchical

Tucker decomposition of [84] and the black box approximation technique of [5] instead.

Alternatives for multivariate interpolation

In the introduction of this section, we briefly mentioned the idea of polynomial interpo-
lation using the total degree. Exploring the same idea, sparse grids are a popular choice
for multivariate interpolation. Sparse grids refers to methods that combine tensor prod-
uct interpolations of smaller order to obtain an interpolation polynomial with bounded
total degree. By combining only the tensor products that contribute most to the overall
error, the approaches aim to overcome the curse of dimensionality. Sparse grids were
introduced in [I139] and the idea of combining tensor product interpolation goes back
to [120]. There are two main types of sparse grids, either they are based on local basis
functions such as piecewise linear (or piecewise quadratic) functions or on global polyno-
mials. The combination of Smolyak’s sparse grid algorithm with Chebyshev polynomial
interpolation was proposed in [7]. On comprehensive introduction to sparse grids using
local basis functions is given in [23]. Sparse grids can be further improved by using

adaptive sparse grids algorithm. This is especially interesting for anisotropic problems.

A common alternative to interpolation approaches are multivariate function approx-
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imations using least-squares fitting. A large number of nodal points is generated and
then the coefficients of a multivariate polynomial of form or is fitted by
minimizing the least-squares error. The resulting approximation polynomial of degree
n is then optimal in a discrete (and possibly weighted) L?-norm. The nodal points can
either be sampled randomly which adds simulation noise or in a deterministic way ac-
cording to an appropriate sampling algorithm. A design of determinsitic nodal points is
for example provided in [141] and [18]. In their approaches, the number of points needs
to scale quadratically in the number of polynomials to ensure optimal convergence. For

our purposes this makes these types of approaches often infeasible.

We refer again to [130] for a comparison of different methods for multivariate func-
tion approximation and quadrature. The author suggests that neither the tensor product
nor the total degree is optimal. The first one oversamples and uses too many polyno-
mials whereas the latter one undersamples and uses too few polynomials. Based on
these findings [131] suggests to use an Euclidean degree polynomial, i.e. to define the

approximation using the Euclidean norm

N = > cipi(@).

lFll2<n

For analytic functions, this approximation can achieve a better accuracy than the total
degree while using at the same time less polynomials than the full tensor product. The
results are so far however theoretical and finding an appropriate set of interpolation

points is an open research question.

2.3 Application of Chebyshev in finance

In this section, we investigate how Chebyshev interpolation can be used in finance in
order to speed-up option pricer. The idea behind this section was first introduced in [49]
and has also been investigated in [47] as well as in [91] and in [107]. We will investigate
option prices as functions of their model and payoff parameters. Then we show how
we can use Chebyshev interpolation in order to explore the smoothness of this function.
Before we can introduce the general concept of parametric option pricing we start with

a short review of the fundamentals of option pricing.

2.3.1 Fundamentals of option pricing

In this section we want to introduce the main concepts of option pricing in mathematical
finance. In order to keep this introduction brief we focus on equity options and ignore

for the moment other asset classes such as interest rate, fixed income, foreign exchange
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and commodities. While there are asset class specific differences, many of the introduced
concepts for equity options are also relevant for other products. A more detailed overview
and a discussion of the stochastic calculus behind mathematical finance can for example
be found in [14] or [41].

The two most common option types are a call and a put option. A call option gives
the holder of the option the right to buy a stock S at a future time point 7T for a fixed
price K. The option holder will only use this exercise right if the price of the stock a
time point 1" indicated as St is higher than the strike. In this case, the option is worth
St — K to him and otherwise the value is zero for the option holder. The resulting payoff
can be written as (S — K)' := max{S — K,0}. The put option is similar, but here the
option holder has the right to sell the stock for the fixed price K. It is common practice
that the stock itself is not physically purchased and the option holder only receives the
payoff. The basic question of mathematical finance is: What is the fair value of a call

option?

The standard approach in the valuation of options is to define a market and model
the price of the stock as a stochastic process (S¢)¢>0 given an initial stock price Sp. Once
such a model is defined one can calculate the price of the option. The most important
model is the Black-Scholes or Black-Scholes-Merton model introduced by [15] and [95].
They assume that there is a bank account with a fixed interest » > 0 at which all market

participants can borrow or invest money. This process is modelled by the equation
dBt = TBtdt with B() =1

and has the explicit solution B; = exp(rt). It can be used to estimate today’s value
of a future cash-flow. The stock price process is modelled by the stochastic differential
equation (SDE)
ds
?t = pdt +odW, with Sy = sg (2.37)
t
for a drift ;4 > 0, a volatility ¢ > 0 and W; is a Brownian motion under a probability
measure PP. This means W; is a stochastic process starting at 0 that has normally
distributed increments Wy — Wy ~ N (0,¢ — s) for ¢ > s. The SDE (2.37) has the explicit

solution
Sy = Soexp ((u — 0.50°)t + o W). (2.38)

The price of a call option in such a stock price model can be calculated as the discounted

expected payoff e "TE[(St — K)*]. Here, the expectation is however not calculated
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under P but under an equivalent measure Q for which the discounted stock price process
is a martingale. The measure Q is called the pricing or equivalent martingale measure
and we call this pricing formula risk-neutral valuation. See [14] for more details and a
discussion of the underlying idea of no arbitrage. In the Black-Scholes model, the price

of a call option is given by

Cps(S,K,o,7,T) = S®(d;) — e "I K®(dy)
_ log(S/K) + (r+0.50%)T
B oVT ’

where @ is the cumulative distribution function of a standard normally distributed vari-

dy and dy=dy — VT,

able. Equivalently, the call price is characterized as a solution of the so-called Black-
Scholes PDE. We refer again to [14] for more details.

The Black-Scholes model is widely seen as the starting point of modern option pric-
ing theory and thus the core of modern mathematical finance. Numerous papers have
investigated if the model actually holds in reality and what the models shortcomings
are. This analysis can be done from two different perspectives. The first approach is to
investigate the time series of daily log returns log(S;+1/5t) over a longer time period.
The Black-Scholes model predicts that log(S¢+1/St) is normally distributed, but unfor-
tunately, the empirical distribution does not confirm these claims. For example, returns
are not symmetric and large losses (negative returns) occur significantly more often then
theoretically predicted. The true distribution of the log returns has fatter tails than
a normal distribution. Moreover, one typically observes periods of lower and periods
of higher volatility (so-called volatility cluster) which is not consisted with a constant

parameter o.

The second approach is to investigate option prices observed in the market. Assume
we observe the price of a call option C and the option’s strike K, maturity 7', initial
stock price Sy and the risk-free interest rate r. Then there is one unique o such that
Cps(So, K, T,r,0) = C. This is called the market implied volatility and plays a crucial
role in finance. Its computation will be discussed in detail in Section [2.4] Taking two
options on the same underlying that differ only in their maturity we expect to obtain
the same implied volatility. In practice, this is not the case and their seems to be a
time-dependence in the volatility. Unfortunately, even if we compare options with the
same maturity and different strikes we observe different levels of implied volatility. This
effect is often called the implied volatility smile, see [39]. Sometimes it is also called skew

to indicate that the different volatilities across strikes are not symmetric.

Since the early seventies different types of stock price models have been developed
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that tackle this problem. We will give a short overview and refer to some of the most
relevant papers. A more comprehensive overview and more detailed explanations can be

found in many standard textbooks on option pricing, see for example [101], [41] and [51].

e Generalized Black-Scholes: The simplest modification is to make the parame-
ters and especially the volatility in the Black-Scholes model time dependent. This
allows for a consistent evaluation of several options with the same strike but dif-

ferent maturities.

e Local volatility models: The next logical extension is to make the volatility
function dependent on the price of the underlying stock. This leads to the class of

so-called local volatility models where the stock price is modelled by

d
ﬁ = Ttdt + O'(t, St)th
St
for a volatility function o. One example is the constant elasticity of variance (CEV)
model that sets o(t,S;) = 0515(6_2)/2 a parameter 8 and the stock price is modelled
by
d _
% = rdt + 05" 2aw,. (2.39)
t
For 8 = 2 we obtain again the standard Black-Scholes model whereas from market

data one typically obtains a 5 < 2. See [114] for more details.

The most important example of a local volatility model is the Dupire model intro-
duced by [39]. This model can be perfectly calibrated to the option prices observed
in the market at a fixed time point. However, the model is not able to capture the

time dynamics of the volatility surface as stated in [67].

e Stochastic volatility models: A different approach towards the modelling of
stock price and volatilities was introduced by [69]. In this paper, the author sug-
gests to make the volatility stochastic and introduces a second Brownian motion.
The model is described by the two SDEs

(?} = rdt + /o, dW}! (2.40)
dvy = k(0 — vp)dt + vy /o, d W7

where dW'dW2 = odt. The resulting process for the variance v; is mean-reverting
with speed of mean-reversion k, long-term mean 6 and volatility of volatility ~.

The introduction of stochastic volatility results in a more realistic behaviour of
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the stock price process and reproduces better the empirically observed volatility
clusters. In contrast to Dupire’s model, the Heston model cannot be perfectly
calibrated to the option price surface. A better fit can be achieved by the SABR
model introduced in [67]. For more details on stochastic volatility models and the

calibration to the volatility surface we refer to [51].

e Models with jumps: As mentioned above, large negative returns occur empir-
ically significantly more often then theoretically predicted if we assume that the
underlying risk factor is essentially a diffusion process. Even with stochastic volatil-
ity the tails of the resulting distribution are not fat enough. This can be changed
if jumps are added to the model. [94] suggests to use a Poisson process in order to

model jumps. The resulting SDE for the stock price process is given by

dS;

S =(r- AE[e” — 1])dt + odW; + (¢! — 1)dx]
t

under the pricing measure Q, see [I01]. The process X} is a Poisson process with
intensity A > 0 and jump size J normally distributed with mean «a and volatility .
A large class of jump models are given by Lévy models that include jump-diffusion
models and pure jump models that do not rely on a Brownian motion. See [41] for

a detailed introduction to option pricing with jump processes.

e More complex models: The above mentioned extension and variations can be
further combined to obtain more promising properties. The most relevant examples
are the model of [§] that combines Merton’s jump diffusion model with a stochastic
volatility and the class of local stochastic volatility models. Other extension are for
instance obtained by a combination of stochastic volatility with stochastic interest

rates.

Note that the increasing complexity of the model also makes the computation of option
prices more complicated. Typically extensions loose the advantage of a closed form
solution that the Black-Scholes model admits. Instead, one has to use a numerical pricing
routine to either compute the expectation of the payoff or solve the corresponding PDE.
The more complex the model becomes, the more difficult it is to calculate accurate option
prices in a short runtime. An overview on numerical methods for option pricing can for
example be found in [54], [115] or [101].

2.3.2 Analyticity of parametric option prices

In this section, we look at parametric option prices and investigate their properties.

With parametric option prices we refer to the function that maps certain parameters
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e.g. payoff and model parameters) to the corresponding option price, i.e.
(e.g. pay g
Price: P > p = (p1,p2) — Price? = E[gP*(XP?)] for P CRP

for a European option depending on a d-dimensional risk factor XP2. This notation
was introduced in [49]. A simple example would be the price of a call option in the

Black-Scholes model given by
P> (So,K,r,T,0) E[e_TT (Soe(T_0'5‘72)T+UWT — K) +] with P C [0, 00)°.

In this example we know that the call payoff has a kink and is not differentiable with
respect to Syp. However, the call option price is differentiable and the first two derivatives
with respect to Sy (i.e. Delta and Gamma) exists. The Gaussian kernel in the model
smoothes the kink. This is the motivation to investigate the smoothness of option prices
as a function of the parameters more systematically. A suitable way of doing so is by

investigating a Fourier type formulation of the option price, see [49].

The idea of using the fast Fourier transform (FFT) for option pricing has been in-
troduced in [30]. Since then, a variety of numerical approaches that rely on the Fourier
transform have been developed. They all have in common that the characteristic func-
tion of the underlying is required in closed form which is the case for many popular asset
price models. The Fourier pricing formula which we will use in this section is based
on [40]. The idea behind their Fourier pricing formula is the application of Parseval’s

theorem for the Fourier transform, see [138], which yields the following expression

where g is the Fourier transform of g given by

) = [ gla)eda

and ¢ is the characteristic function of the random variable X, i.e. the Fourier transform

of the density f of X, given by

z) = E[e**] = z)e**dz.
o(2) = E[e"X] /Rf() a

For this formula to hold we require that the payoff and the characteristic function fulfil
some integrability conditions. A standard call option payoff as a function of the log-
asset price is however not integrable and Parseval’s theorem cannot be applied directly.

A straightforward solution is to multiply g with an exponential damping factor exp(ax)
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for an appropriate a € R.

For the multivariate case we follow [50] and [49]. Let P = P! x P2 C RP be the
hyperrectangular parameter domain with P' ¢ RP1, P2 ¢ RP? and o € R? the damping
weight. Let R? 5 2 — ©P2(2) be the characteristic function of the risk factors XP2. Note
that we consider two different dimensions, the dimension of the underlying asset price
process d and the dimension of the parameter space D. For the Fourier pricing formula

we assume the following integrability condition
x — el gP(x) € LYR?Y) for all p; € P (Int)
Moreover, we impose the exponential moment condition
E[e_<°"xp2>] < oo forall pye P2 (Exp)

Now we are in the position to introduce the Fourier pricing formula.

Proposition 5 (Fourier pricing formula). Let P = P! x P2 C R be a hyperrectangular
and o € R? such that and hold. Assume z — gP1(—z —ia)pP2(z +ia) is in
LYRY) for all p = (p1,p2) € P. Then we obtain

1 —
Price? = E[gP' (XP?)] = @) /Rd gP1(—z —ia)pP? (z +ia)dz. (2.41)
Proof. The proposition follows from Theorem 3.2 in [40]. O

For numerical purposes one can slightly modify the formula and integrate only over
the real part of the integrand. From [50] we obtain

/Rd P (2 — i) P (2 +ia)dz = 2/ ére(g/zi(—z Q)P (2 + m))dz. (2.42)

R+ xRd—1
This integrand can now be truncated and then computed using a numerical quadrature
technique. In this section, we use (2.41]) to analyse the analyticity of parametric option
prices. Following [49] we introduce two additional conditions on the Fourier transform

of the payoff and the characteristic function. First, for the payoff we impose

VzeR! p;— gPi(—z —ia) is analytic in B(P', o1), for o1 € (1,00)™
and 3 ¢1,c0 >0 s.t. sup  |gPL(—z —ia)| < c1e®? for all z € R (Anal)
p1EB(P,01)
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and for the characteristic function we impose

VzeRY py— oP2(z +ia) is analytic in B(P?, 03), for oo € (1,00)P? and

Je,e0>0, fe(1,2] st sup [P (z +ia)| < cre=#” for all z € RY.
p2€B(P2,02)

(Ana2)

This allows us to introduce the following theorem on the analyticity of option prices.
Theorem 10 (Analyticity of parametric option prices). Let P = P! x P2 C R be a
hyperrectangle, o € RP and o = (01, 02) € (1,00)P such that the conditions (Int)) and

(Exp|) as well as (Anal]) and (Ana2) hold. Then the function P > p — PriceP has an

analytic extension to the Bernstein ellipse B(P, o).
Proof. See the proof of Theorem 3.2 in [49]. O

The structure of conditions allows us to investigate payoff functions and models sep-
arately. The conditions and are satisfied for most standard payoff functions
such as of calls, puts and digitals as a function of the log-asset price or strike. For exam-
ple, if we choose av < —1, the Fourier transform of the call option payoff g(z) = (e* — K)*
is given by

Kiz+1+a

g(z) = f R.
9() (iz+a)(iz+ 1+ ) or Z€

The corresponding conditions on the characteristic function and hold in
a large class of asset price models and for most parameters. We refer to [4§] (an earlier
and longer version of [49]) and the references therein as well as [47] and [107] for different
examples of payoffs and models. As an example, the price of a call or put option in the

Black-Scholes model is analytic for the parameters (So, K,7,T,0) € (0,00)°.

2.3.3 Chebyshev interpolation in option pricing

So far, we have seen that option prices are in many cases analytic functions of their
parameters. This means we can interpolate them using only a few Chebyshev nodal
points. Following [49] we obtain the following Chebyshev interpolation of the option

price

PriceP ~ Zj ¢;T;(p)

using the multivariate Chebyshev interpolation as introduced in Section From the

convergence results for the (tensor based) Chebyshev interpolation we conclude that the
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approximation error should theoretically decay (sub)exponentially fast. This means we
can use Chebyshev interpolation to approximate the price function using an existing nu-
merical pricing routine and then evaluate the interpolation instead of calling the original

pricing routine. The resulting method looks as follows:

e Problem: Existing pricer PriceP for parameters p € RP should be approximated

using Chebyshev interpolation.

e [nterpolation domain: Fix a hyperrectangular interpolation domain

P = [&,T)I] X ... X [BD,TJD] c RP

and N = (Ny,...,Np) € NP. Compute nodal points px = 7p(2z) for the multi-
variate Chebyshev points zg = (2k,, ..., 2k, ) with z;, = cos(k;jn/N;), i =0,..., N;.

o Set-up interpolation: Calculate prices at the Chebyshev nodes PricePx for all py.

Compute and store Chebyshev coefficients

9lo<j;<n;
(T) Z PriceP*T;(zy)

S
|
.:b

ﬁ
Il
—

<2 N ) Z Z PrzcePkHT (2k;)

k1=0 kp=

,é@

@
Il
—

e Pricing: For p € P, the option price can be computed as

Pm’cep%Zijg Z Z €1, Jd)HTZ [p, il (pi).

J j1=0  jp

The second and the third step can be seen as the offline phase and the fourth step, the
actual pricing, as the online phase of the approach. Omnly the coefficients ¢; and the
lower and upper bounds of the domain have to be stored after the offline phase. The
presented framework is very general and can be applied to options that are not in the

scope of the theoretical analysis in the previous section.

When analysing the accuracy of the Chebyshev interpolation one has to take into
account that a numerical pricing routine is used in order to compute PricePk. The
overall error will therefore depend on the error between the true values PricePk and
the computed values %pk, the so-called distortion error. We cannot expect the
Chebyshev method to be more accurate than the reference pricer. The distortion error

can be either deterministic and bounded in absolute terms or the error can be stochastic



Chapter 2. Chebyshev interpolation in finance 58

and we know its distribution. The first one occurs when a method such as a PDE solver
or a numerical quadrature is used and the second one occurs if the values at the nodal

points are calculated via Monte Carlo simulation.

Let e = PricePk — PricePk be the error at the grid points. As in [49] we assume
that either |egx| < € or that e is normally distributed with N (0, ok 7). Here M is the
number of simulations of the corresponding Monte Carlo simulation. We define the error
bound

g

e*(N) :=
\/2 log (2 Hil(Ni + 1)) maxg, op,um.

From [49] we obtain the following convergence results for expected error in the maxi-
mum norm for analytic option prices with distortion at the nodal points. The following
theorem can be seen as an extension of Proposition

Theorem 11. Let P C RP a hyperrectengular. Assume P > p +— PriceP has an
analytic extension to some generalized Bernstein ellipse B(P, o), o € (1,oo)D and the
price function is bounded on this ellipse. Assume that |eg| < € or e ~ N(0,0%,n)-

Then we have

E[ ‘P'p— D H<c—ﬂ Ane (N, 2.43
max| Price zj:cgpg (p)|| < Co™ + Ane*(N) (2.43)
for C >0, N =min; N; and AN is the Lebesque constant of the multivariate Chebyshev

interpolation.
Proof. See Theorem 2.5 of [49]. O

The first part of the error bound is the classical Chebyshev interpolation error and
the second term is the distortion error. In the deterministic case we observe directly
that the overall error level cannot be better than the maximal error at the nodal points
multiplied by the Lebesgue constant. From the analyticity it follows that all derivatives
exist and the error results of the Chebyshev interpolation yield that the derivative of
the interpolant converges against the derivative of the option price. From a practical
perspective, this means that the Chebyshev method delivers the option’s sensitivities,
i.e. the Greeks such as Delta, Gamma and Vega as well when we interpolate in the initial

stock price or the volatility.
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Advantages of Chebyshev for parametric option pricing

The use of Chebyshev interpolation for parametric option pricing can yield significant
performance improvements since the evaluation of a Chebyshev interpolant is often sig-
nificantly faster than calling a pricer. Note that with ”pricer” we refer to a numerical
pricing routine such as a PDE solver, a numerical quadrature or a Monte Carlo simu-
lation. The presented type of approximation becomes interesting when the same pricer

has to be called for a large number of different input parameters.

Moreover, the approach admits a useful offline/online decomposition: The Chebyshev
interpolation can be prepared in an offline step and only the coefficients are stored. In
the online step, a real-time evaluation of option prices is possible instead of the slow
evaluation of the original pricer. The slower the original pricer is, the higher is the
possible gain in efficiency in the online step. See the numerical experiments in [49] and
[91] for a detailed investigation of the potential of Chebyshev interpolation for parametric

option pricing.

The merits of the presented approach are that it can be integrated into an existing
pricing library, it is a very simple approach to speed-up calculations, polynomials are
well understood numerical objects and an extensive error analysis as well as convergence

results are available.

Interesting applications of Chebyshev interpolation are for example the calibration of
options to market data, credit exposure calculations and more general risk management
of trading books. Moreover, there are further applications of Chebyshev interpolation
in option pricing that go beyond a straightforward interpolation in parameters. These
approaches are still able to exploit many of the promising properties of Chebyshev in-
terpolation and deliver good results. A first application of Chebyshev interpolation is
the approximation of the implied volatility, the inverse of the call option price function,
in Section A second application and core of the thesis is then the use of Cheby-
shev interpolation in a dynamic programming framework and its possible applications
and extensions. We call the approach of [49] the static Chebyshev method and the new
approach the dynamic Chebyshev method.

Example: Calibration to spread options

In [55], we present an example of a possible application of Chebyshev in finance, the
calibration of spread options. This example uses the chebfund package and has been
uploded to www.chebfun.org. In this toy example, we look at the calibration of the
correlation parameter in a bivariate Black-Scholes model to a set of spread options on two

underlyings. For the calibration, the distance between the market prices and model prices
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for different strikes and maturities has to be minimized over the correlation parameter
0. The numerical optimization requires repeated calls of the pricer for each of the option
and different values of p. The nature of the task makes it an interesting application
of Chebyshev interpolation, since speed is crucial but at the same time the parameter

fitting should also be accurate.

Our idea is to interpolate the price of the spread option as a function of the strike K,
the maturity T and the correlation g using Chebyshev interpolation and chebfun3. As
mentioned earlier, in chebfund the curse of dimensionality of a full tensor based interpo-
lation is avoided by using low-rank approximations. We show that the evaluation of the
resulting interpolation is significantly faster than the original pricer. In our example, the
pricing using the Chebyshev interpolant was more than 250 times faster with a maximal

pricing error of 0.03%. This gain in speed is then explored in the calibration routine.

Challenges and limitations of Chebyshev in finance

The main challenge for the presented static Chebyshev method is the dimensionality
of the problem, i.e. the number of parameters in which we want to interpolate. Note
that this definition of dimensionality might differ from the dimensionality of the un-
derlying stochastic process. In the previous example, we considered a bivariate model
but our interpolation was in three different parameters. In this section, we have there-
fore used the notation d for the number of assets and D for the dimensionality of the
interpolation. A straightforward application of tensor based interpolation leads to an
exponential increase of the number of nodal points in the dimension. As mentioned ear-
lier, this curse of dimensionality can be tackled by techniques such as sparse grids and
low-rank approximations, see [57] for an application of the latter. However, even with
these dimension reduction techniques, high dimensional interpolations are challenging.
Similarly, the size of the interpolation domain has a significant impact on the number of
nodal points. Especially in multivariate dimensions, a careful choice of the interpolation
domain is crucial. In some applications it is better to split a larger domain into several

subdomains.

The second major limitation of the static Chebyshev method is that it still requires
repeated calls of a pricer in order to compute the values at the Chebyshev nodes. It is
therefore only beneficial when the number of option prices that have to be calculated are
an order of magnitude higher than the number of nodal points or if one can really explore
the offline/online decomposition. Another limitation of the Chebyshev interpolation is
that it is not shape preserving, i.e. the interpolant does not inherit the properties of the
(pricing) function. For example, if we interpolate a monotonically increasing function,

the interpolant might not be monotonically increasing. One can modify the Chebyshev
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interpolation to be shape-preserving, see [26], but this comes at additional computational
costs. However, the fast convergence in the maximum norm guarantees that the static
Chebyshev method is almost shape preserving. This is sufficient for most practical

applications.

2.4 Implied volatility

In this section, we consider one particular application of Chebyshev interpolation in
finance, the efficient computation of the so-called Black-Scholes implied volatility. This
problem is highly relevant for practitioners but is also interesting from an academic

perspective.

This section is based on joint work with Kathrin Glau, Paul Herold and Dilip B.
Madan and the presented results have been published in our paper ”The Chebyshev method
for the implied volatility”. The paper builds in parts on the master thesis of [68]. The
results that are discussed in this section are only the ones to which the author has con-
tributed.

2.4.1 Motivation

The Black-Scholes implied volatility is one of the most important quantities in finance.
The one parameter in the Black-Scholes model that cannot be observed using market
data is the volatility of the underlying asset process. The Black-Scholes call price func-
tion is strictly monotone increasing in volatility and [92] show that under no-arbitrage
assumptions there exists always a unique (positive) volatility such that the model price
equals the observed market price. This unique volatility is called the Black-Scholes
implied volatility.

The implied volatility can be seen as a universal language in the daily business of
trading, hedging, model calibration and more generally in risk management. Usually,
option prices are quoted in terms of implied volatilities instead of absolute prices. For
high frequency trading in particular, very accurate real-time evaluations of the implied
volatility are required for large data sets. As stated in [10] and [I11] in practice, often
millions of option prices have to be inverted in real-time for instance by large data
providers. For more details on the use of the implied volatility we refer to [56] and the

references therein.

Unfortunately, the solution of this inverse problem is not available in an explicit
form and thus a numerical approximation method is required. Due to importance of

the implied volatility in the financial industry an efficient numerical solution is crucial.
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From a practitioner’s perspective a suitable numerical method needs to fulfil the following

requirements

e large domain of input variables, i.e. options with very low or high volatilities as
well as options with moneyness varying from far out of the money to deep in the

money,
e high efficiency for a given requirement in terms of accuracy and speed.
Moreover, it is desirable if the method additionally delivers
o real-time evaluations of the implied volatility even for very large data sets,
e closed-form solutions with accessible derivatives,
e casy implementation and maintenance.

Due to the high relevance of the implied volatility and the different computational chal-
lenges arising in the computation, the problem is an ideal candidate to show the potential

of Chebyshev polynomial interpolation in finance.

In the last 40 years, different methods have been introduced to tackle this problem
in the academic literature. The proposed methods can be divided into two main classes,
iterative root-finders and non-iterative approximation methods. In the Black-Scholes
model, the implied volatility depends on the observable parameters Sy, K, T', r and the

option premium C. It can be calculated as the root of the function
o— CB%(Sy, K, T,r o) — CMkt

where CP9(Sy, K, T,r,0) is the model price of a call option in the Black-Scholes model

CMFt is the observed market price for a pair of strike K and maturity 7. The implied

and
volatility can thus be calculated using a (classical) numerical root finder. [92] provide a
possible starting value which ensures that the Newton-Raphson root-finding algorithm
will always converge and return the correct implied volatility. This straightforward
approach is simple and easy to implement. However, for some parameter constellations
the number of iterative steps increases significantly and the method becomes slow. Other
root-finders such as a Brent-Dekker algorithm or a bisection are also possible but typically

less efficient.

The second class of non-iterative methods aim to approximate the implied volatility
as a functions of the parameters Sy, K, T, r and the premium C. The computational

effort to approximate a function depending on five variables is challenging. Fortunately,
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we can reduce the dimensionality as stated in [75] amongst others by normalizing the

call price

C(S(]a K7 T7 T, J)

VSpe " TK

The normalized call price ¢ is a bivariate function given by

CcC =

clz,v) = e2® (% + g) —e2d (E — g) with (2.44)
z = log(Soe"™/K) = rT + log(Sp/K)
v = oVT

where z measures the moneyness (the option is out of the money if x < 0, at the money
if  ~ 0 and in the money if x > 0) and v corresponds to the time-scaled volatility.
Furthermore, call prices of in the money options can be expressed by those of out of the

money options, namely

NI

o(—z,v) = c(x,v) +e 7 —e (2.45)
Hence the parameter domain can be reduced to x < 0 and consequently the call price is
normalized to values in [0, 1]. To calculate the implied volatility o for a call price C' it is
thus sufficient to solve Equation (2.44]) for v using the normalized call price c¢. Overall,
the approximation of the implied volatility v(z,c) becomes a bivariate (interpolation)

problem in the moneyness x and the normalized call price c.

Examples of such non-iterative approaches are the rational approximation methods
of [86] and [ITI]. These methods can be very fast but unfortunately the domain for
which they set up the approximation is very restrictive and excludes option prices that

occur in practice.

More recently, [75] proposed a more sophisticated method that combines the two
types of approaches. [75] explores the limit behaviour of the call price function and uses
rational approximation for the initial guess and then two iterative steps of Householder’s
method to achieve a very high accuracy. For a more detailed literature review we refer

again to [50] and the references therein.

We propose a new method for the implied volatility using bivariate Chebyshev in-
terpolation. The efficiency of such an approach depends critically on the choice of the
interpolation domain. As pointed out in [68] and [56], a straightforward implementa-

tion of the Chebyshev interpolation might yield poor results if the chosen domain is too
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large. On the other hand, a small domain makes the method impractical because not
all parameter constellations occurring in the market are covered. We can overcome this
challenge by splitting a sufficiently larg domain into subdomains and apply suitable scal-
ing functions. This approach is motivated by the choice of the approximation domains
in [75].

In the following, we will first show that the domain proposed by [86] is too restrictive
and then fix a suitable interpolation domain for our approximation method. Then we
will tailor the bivariate Chebyshev interpolation to the problem and explain the algo-
rithmic structure of the presented approach. We conclude the section with a numerical
comparison of the new approach and two benchmark methods, a Newton-Raphson root
finder and the method of [75].

2.4.2 Interpolation domain

In this section, we define a suitable interpolation domain for our method based on market
data. Then we introduce a splitting of the domain resulting in four subdomains which

allow for a better interpolation. For more details we refer to [68].

Choice of the interpolation domain

To find an appropriate interpolation domain, we investigate option data of the DAX,
the EURO STOXX 50, the Standard & Poor’s 500 (S&P 500) and the VIX index from
Thomson Reuters Fikon. For all options with non-zero trading volume we compute the
forward moneyness = and the time-scaled volatility ov/T. As a comparison, we check
if the resulting parameters are covered by the domain of Li. Figure illustrates the
option parameters for all four indices. For all four indices we observe that a relevant part
of the options is not covered by the domain of Li. We observe moneyness between —1.5
and 2 as well as time-scaled volatilities up to 1. In different markets or under different
market conditions one can expect to observe even more extreme option parameters. For
example volatilities become considerably higher during a financial crisis. This motivates
us to set up a Chebyshev interpolation of the implied volatility on a significantly larger

domain which covers all relevant option data.

Domain splitting and scaling

To derive an approximation of the implied volatility on a sufficiently large domain,
we further inspect the normalized call price. The implied volatility is not analytic at
c(x) =0 and c(x) = e2. Therefore the maximal possible interval needs to be restricted
t0 0 < Vmin () < Ve () < 0o with corresponding call prices 0 < ¢pin < Cmaz < es.

This assumption is not restrictive if the chosen v, is small enough. Extending the
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Options on DAX . Options on EURD STOXX 50

Figure 2.5: Moneyness = and time-scaled volatility o+/T of options on four different
indices. We only considered options with positive trading volume.

domain towards the maximal interval decreases the rate of convergence. To reduce this
impact, we exploit the limit behaviour of the normalized call price. Figure shows for
a fixed moneyness x the normalized call price as a function of the time-scaled volatility.
We observe that the call price is flat for very low as well as very high volatilities and
almost linear around the point of inflection. This motivates us to split the domain into

three parts depending on the call price
D1 = [emin(x),c1(x)], D2 :=lci(x),ca(z)], D3 :=[ca(T), Cmaz(T)] (2.46)

with corresponding volatilities 0 < vpin(x) < v1(x) < V2(2) < Vmaz(T), i.€. cmin(z) =

¢(Umin(z), ) and so on. The idea of splitting the domain is based on the method of [75].

For each domain we will tailor a bivariate Chebyshev interpolation. Where call
prices are flat its inverse becomes very steep. Hence, a direct polynomial interpolation
is not well-suited. Fortunately, by exploiting the asymptotic behaviour of the call price
function, we resolve the problem. On each interval, we define a scaling function ¢; , :
D; — [-1,1] for i € {1,2,3} which transforms the call price to [—1,1] for each = €
[Trmin, Tmaz]. For the resulting functions @ : [~1,1]2 — R, (¢,2) — v(c,x) with =
0 1(Z) and ¢ = qb;;(é) for i € {1,2,3} where ¢ is the linear scaling as defined in
(2.22). For a given call price ¢ and moneyness z < 0 the implied volatility can then be
approximated by

N{',Ng(

v(c,x) = I ¢iz(c), p(x)) where i satisfies c € D;
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Figure 2.6: Splitting of the normalized call price (¢) depending on the time-scaled volatil-
ity (v) and its inversion for x = —5 into three parts.

where IiN N3 s the bivariate Chebyshev interpolation of degree (N, N&) on domain
t =1,2,3. The derivation of the scaling functions ¢; , and the domains D; can be found
in the Appendix [A]

Error analysis

The following theorem is the theoretical foundation of the high efficiency of the proposed
approximation method. Thanks to the analyticity of the Black-Scholes call price and
the scaling functions, we gather that the implied volatility function is analytic. We
know that for such a function the convergence of the bivariate Chebyshev interpolation
is sub-exponential in the number of nodal points.

Theorem 12. Let (f)i_l(é, Z) be analytically continuable to some open region around
[—1,1]% and let 0 < ¢; ' ([~1,1],2) < e2 for each x € [~1,1]. Then there exist constants
p1,p2 > 1,V >0 such that 9(¢, ) := U(qﬁi_l_(é, ), ¢, (Z)) is analytic and for its bivariate
Chebshev interpolation IiNll’NQZ(E, z) = Ejﬁo Ei\éo a1 Tj(¢)Ty(Z) holds

Vi —2N}+ —2N4 %
max (e, 7) ~ LM m)| <av | T2 )
(&2)e[-1,1]2 (1=p )1 —py7)

Proof. The proof of the theorem can be found in [6§]. O

From the analyticity of the implied volatility function follows that it is infinitely often
continuously differentiable in each area and in this case the Chebyshev interpolation also
approximates all derivatives, see Theorem This can be exploited when the implied

volatility is used in a gradient-based optimization routine.
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We can enhance the efficiency even further by exploiting the low-rank structure of
the bivariate functions. To do so, in our implementation we use the chebfun2 algorithm
based on [127], see Section for a brief description of the chebfun? algorithm.

2.4.3 Algorithmic structure

In this section, we discuss the algorithmic structure of our method and provide details

on the implementation. The algorithms are listed as pseudocode in the Appendix [A]

As a starting point for the approximation of the implied volatility function, we split
the interpolation domain into four different areas, see Figure For each area, we
approximate the implied volatility by a separate bivariate Chebyshev interpolation using
the corresponding scaling function ¢; , in c. For the sake of a lucid presentation, we list
the different areas and transformations below. A list of all functions required for the

implementation are listed as pseudocode in Algorithm [§]in the appendix.

Area I: For z € [—5,—0.0348] and ¢ € [¢iin(x), c1(x)] we have

_ 2<51(C) — 1 (cmin(z))

Pra(c) : 1 — ¢1(Cmin(2))

Area I’: For € [—0.0348,0] and ¢ € [cmin(x),c1(x)] we again use transformation

$1,0(c).
Area II: For x € [—5,0] and ¢ € [e1(z), ca(z)] we have

c—ci(x)

co(z) —er(z) L

¢2,x (C) =2

Area III: For x € [—5,0] and ¢ € [¢1(x), Cmnaz(z)] we have

o) 2¢3(c) B
('25375‘( ) ' QBB(Cmax(x))

The call prices cpin (), c1(x), ca(z) and ¢pqq(2) correspond to the volatilities
Umin(z) = 0.001 — 0.03z, wvi(z) =0.25—04x, wva(z)=2—-04x, Vmae(r)=_6.
Moreover, we replace the boundary call prices ¢1(z), co(x) and ¢pqq(x) by univariate

interpolations to reduce the runtime further. The evaluation of ¢y, (z), however, is done

directly, since for low volatilities the call price is hard to approximate. For this step we
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Figure 2.7: The four different interpolation areas of the Chebyshev method.

can use the implementation of the call price function provided in [75], which is of very

high precision.

Online/offline decomposition

Our method can be split into an offline phase that has only to be done once and an

online phase.

e offline-phase (preparation):
In each area, we compute the implied volatilities on an N x N grid of Chebyshev
points. Then we apply the chebfun? algorithm with pre-specified accuracy and
obtain a low-rank approximation. For the calculation of the implied volatility at
the grid points one can either use Jickel’s method (see Appendix A, Algorithm 9)
or an iterative root finder (see Algorithm 10). For example the bisection method
is well suited to compute very accurate implied volatilities at the nodal points. We

were able to reach an accuracy in the region of 10~ with this approach.

e online-phase (real-time evaluation):
In the online phase implied volatilities are computed from real-time data, contain-
ing a vector of call prices C € R" and the corresponding strikes K € R", spot
prices Sy € R™, maturities 7' € R™ and interest rates r € R™. Algorithm 11 in

Appendix A provides a pseudocode version for the online step.

— Normalization: We calculate the normalized call price ¢ and the forward
moneyness x from the data. Option prices with z > 0 need to be transformed
to prices with moneyness —z by Formula (2.45)).

— Splitting: For each pair (z,c), we need to find the corresponding area. As the
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computation of ¢, () requires the most computational effort, we proceed as
follows. First, we compute ¢pqq(2z) and check if ¢ < ¢pq0(x). Next, we check
if ¢ < ea(z) and eventually ¢ < ¢1(z). Only in the latter case, do we compute

cmin(z) and check whether ¢ > ¢pin ().

— Transformation: We compute the transformed call prices ¢; ,»(c) and money-

ness ¢, (x) with the respective transformations.

— FEwvaluation: We evaluate the bivariate Chebyshev interpolations provided in
the offline-phase at the transformed call prices and moneyness to obtain the

time-scaled implied volatility.

The runtime of the online-phase is primarily determined by the splitting and the eva-
lutation-phase. The evaluation of the bivariate interpolations can be done in different
ways and can be performed in very few computational steps depending on the required

accuracy.

In the offline phase, the chebfun2 algorithm returns in each area a chebfun2-object
which is a Chebyshev interpolant in low rank form IVt-V2 = Z?:l djc;(y)r;(x) where
rj(x) and ¢;(y) are univariate Chebyshev interpolations of size Ni and Na. One can now
either store the four chebfun2-objects directly and use them in the online evaluation (as
presented in Algorithm 11) or one can extract the coefficients and evaluate the low rank
approximation manually. The first choice is simpler and for many applications sufficient,
the latter can be slightly faster when it is implemented in an efficient way. For the second

choice one can use Clenshaw’s algorithm to evaluate the polynomials ¢; and 7;.

Depending on the application, one can use different accuracies in the offline phase.
Table displays the ranks k and the grid sizes N1, No of the low rank interpolation
operator for the three specified accuracies 107 (low accuracy), 10~ (medium accuracy)
and 107'2 (high accuracy). As expected, the ranks and grid sizes are higher for a higher
accuracy. Moreover, we observe that we need more interpolation nodes in Area I and

Area I’ to obtain the same level of accuracy as in Area II and Area III.

Area low accuracy medium accuracy high accuracy

Areal k=10, N1 =25 Ny =36 k=16 Ny =46, No =79 k=22, N; =67, Np = 122
Areal’ k=9,N; =27, No=18 k=16, Ny =51, No =39 k=23 Ny =77, Ny =57
Areall k=6, N1 =21, Na=20 k=11, N; =36, N =33 k=14, Ny =51, Np = 47
Arealll k=5 Ny =11, No=9 k=7, N1 =17, No=14 k=9, N; =23, Ny = 19

Table 2-A: Rank k and grid sizes Ny, Na of the low rank Chebyshev interpolation in the

different areas for three different levels of pre-specified accuracy.
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2.4.4 Numerical Results

In this section we present a numerical investigation of the Chebyshev method for the

implied volatility. We compare our approximation method to
e the method of [75],
e the approximation formula given in [86],

e the approximation formula given in [86] with the proposed polishing of two Newton-

Raphson iterations,

e the Newton-Raphson algorithm with the starting point given in [92]. The algorithm

terminates if |v, — v,_1| < 1076,

In order to do so, we first choose a domain Dy on which all methods can be applied
and compare the resulting errors and runtimes. On the complete domain Ds, we compare
the proposed method to the [75] method and the Newton-Raphson algorithm as those
are the only ones that can also be applied on this set. Finally, we include actual market
data. All codes are written in Matlab R2014a and the experiments are run on a computer
with Intel Xeon CPU with 3.10 GHz with 20 MB SmartCache. We refer to [56] for a

more detailed presentation of the results and some additional plots.

Comparison on Domain D,

The domain on which all methods work is the domain of [86] bounded below by vpin (),
ie.
Dy = { —05<2<0.5,0<v<1,max (g’,vmm(—m)) < v}

See Figure for a comparison of the domain of [86] and the domain of the Chebyshev
method. On D; we compute normalized call prices on a 1000 x 1000-grid of equidistantly
distributed points, see [68]. We compare the runtimes and errors in the time-scaled
volatilities Av := |v — v™P| and the repricing errors Ac := |c(z,v) — c(z,v"™)| of the

methods.
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Figure 2.8: Domain Dy of the Chebyshev interpolation (red), domain of Li (yellow) and

domain D; as the intersection of both.

Table shows the maximal and the mean error in terms of the time-scaled volatil-
ities and the normalized call prices as well as the runtime as a proportion of the runtime
of the Newton-Raphson method, which takes 1.45s. For the Chebyshev method, the
runtime measures the time of the online phase. The [75] method comes with a solution
close to machine precision for all input parameters and thus qualifies as our reference
method in the offline-phase of the Chebyshev approximation. Also the Newton-Raphson
algorithm reaches very high precision. The approximation of [86], however, is not able
to reach the same range of precision. As Table shows, the mean error of ¢ is a factor
10' higher than Jickel’s approximation. The proposed modification of [86] with two
additional Newton-Raphson steps reduces the error. However, for low volatilities the
effect is rather small and the maximal error is still in the region of 1075, see Table
For the Chebyshev method, the error is determined by the pre-specified accuracy and the
maximal error is close to the mean error. When comparing the runtimes, approximation
formula given in [86] is the fastest. It comes, however, with the lowest precision of a
maximal error in o of 3.26-1073. For a higher precision in the range of 107, the Cheby-
shev method with low accuracy turns out to be faster than the approximation formula
given in [86] with two steps Newton-Raphson. Comparing the mean, the same holds for
the Chebyshev method with medium accuracy. For very high precisions the Chebyshev
method with high accuracy is faster than the Newton-Raphson approach. Compared to
Jackel’s method, the Chebyshev approach is two times faster but with a maximal error
of 10711 instead of 10714,
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Method max |Ac]| mean |Ac| max |Ac| mean |Ac| runtime
Jéickel 2.80-107 457-10716  1.67-1071% 9.99.-107'7 1.39

Li 3.26-1072  3.42-107% 2.15-107% 9.43.107°  0.12

Li with 2 steps of Newton-Raphson 2.02-107%  6.12-107° 1.10-10~6 3.89-10710  0.63
Newton-Raphson 2.05-10710 632.107% 291.-107 1.00-1071% 1
Chebyshev method (low accuracy) 1.52-1075 1.40-1076 4.91-10-° 3.94-1077 0.40
Chebyshev method (medium accuracy) 3.20-10"%  2.17-107%  3.52-1079  5.92.10710 0.55
Chebyshev method (high accuracy) 488-10-11  478.10712 151-10"% 141-10712 0.67

Table 2-B: Interpolation error and runtimes on domain D;y.

Method max |Ac| mean |Ac]| max |Ac| mean |Ac| runtime
Jickel 5.30-107'% 535.1071% 255.1071% 7.10-107'7 0.52
Newton-Raphson 834.107%  6.64-107'2 1.94.10"1 1.28.1071% 1
Chebyshev method (low accuracy) 2.55.107° 1.85-1076 46310~ 1.42-1077 0.14
Chebyshev method (medium accuracy) 4.42-107%  2.38.107%  4.02-1079 1.36-1071% 0.16
Chebyshev method (high accuracy) 1.66-10~10 1.32.10711 1.52-10711 4.83.1013 0.20

Table 2-C: Interpolation error and runtimes on domain Ds.

Comparison on Domain D

Next, we compare the Chebyshev method on the large domain D5 to the Newton-Raphson
approach and the algorithm of Jéckel. The errors and runtimes are again computed on a
1000x 1000 grid. Table[2-C|shows the maximal and the mean error as well as the runtimes
scaled as in the previous experiment. Here, the Newton-Raphson method takes 4.29s.
To reach a medium accuracy in the maximal error in the range of 1078, the Chebyshev
method is more than six times faster than the Newton-Raphson approach. Moreover, the
Chebyshev method is able to reach higher accuracies of 10710 and still needs only 20%
of the runtime of Newton-Raphson. Jéackel’s method reaches very high precisions and
is faster than Newton-Raphson. Compared the Jackel method, the Chebyshev method
allows us to pre-specify accuracies and reduce the runtimes significantly. For example, if
accuracies in the region of 1078 are sufficient, the Chebyshev method is more than three

times faster than Jackel’s approach.

Comparison for market data

In Section [2.4.2] we investigated market data of options and concluded that a significant
part of the options is not covered by the domain of [86]. This was the motivation to
consider a much larger interpolation domain for the Chebyshev method. An empirical

investigation confirms that all the options shown in Figure lie within our domain.
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Method max |Ac| mean |Ao| max |Ac| mean |Ac| runtime
Jéickel 8.05-10716 1.40-10716 2.11.1071% 2.43.10716 0.89
Newton-Raphson 1.78-10719 291.10"12 7.72.10712 222.10713 1
Chebyshev method (low) 1.57-1075  2.95-107%  4.44.1076  4.78-1077  0.37
Chebyshev method (medium) 4.19-10-%  3.87-107%  345-107°  3.98-10710 0.48
Chebyshev method (high) 1.73-10711  221.107'2 270-107!2 291-10"1 0.58

Table 2-D: Interpolation error and runtimes for S&P 500 market data.

Next, we compare the Chebyshev method on this market data to the Newton-Raphson
approach and the algorithm of Jackel. The errors and runtimes are computed for options
on the S&P 500 index traded on 7/17/2017 (Source Thomson Reuters Eikon). We use
the same options as for Figure 2.5 To obtain more reliable results for the runtime

comparison we compute the implied volatilities of the options 5,000 times.

Table shows the maximal and the mean error as well as the runtimes scaled as
in the previous two experiments. Here, the Newton-Raphson method takes 5.72s. The
Chebyshev method is the fastest of the three methods and reaches the target accuracies.
The method is about twice as fast as the Newton-Raphson approach for similar accu-
racies. Again, Jickel’s method reaches very high precisions but it is significantly slower
than the Chebyshev method.

Besides the observed gain in efficiency, the Chebyshev method enjoys conceptual ad-
vantages. It delivers a closed-form approximation in a simple and easy to use polynomial

structure.

2.4.5 Conclusion

The example of the implied volatility shows the potential of Chebyshev interpolation for
problems in financial engineering. The approximation of the implied volatility is a very
specific example but many of observed the conceptual advantages can also be exploited

in other applications. This includes

e Closed form approximation formula: The Chebyshev interpolation has a simple
polynomial structure and can be evaluated efficiently. This structure can be further

explored to express derivatives in a closed form.

e Error analysis: A theoretical error analysis is available for the Chebyshev interpo-
lation and shows (sub)exponential convergence for the implied volatility. Here, we
used that the price of a European call is an analytic function of the model parame-

ters in the Black-Scholes. A fast convergence guarantees that we can approximate
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the function with a low number of nodal points.

o FEasy Implementation: Once the interpolation operator is set up in an offline phase,
the polynomial structure of the approximation formula leads to a simple code. This
facilitates the transfer of the code to other systems and programming languages as
part of the maintenance. The method only requires the coefficients of the Cheby-

shev interpolation to be stored.

e Splitting: For a larger interpolation domain an appropriate splitting of the domain
can significantly reduce the number of nodal points and thus increase the efficiency

of the approximation.

The presented Chebyshev method for the implied volatility enjoys a high flexibility and
the approach can be transferred to similar problems. For example, [56] exploit the
method to approximate the implied volatility in the Laplace option pricing model of
[90].



Chapter 3

The dynamic Chebyshev method

In Chapter 2 we have seen that Chebyshev interpolation is an efficient function approx-
imation method that can be explored for static problems in option pricing. It performs
very well for the approximation of European option prices and can also be used for the
approximation of the implied volatility function. In this chapter we investigate path-
dependent options where the resulting pricing problem is dynamic. The most import
examples are early-exercise options such as American options and Bermudan options.
For both option types holds that their value can be calculated as an optimal stopping
problem. In contrast to a European option in the Black-Scholes model, there is no ex-
plicit solution to this problem. In lack of explicit solutions, different numerical methods

haven been developed to tackle this problem.

The early-exercise feature poses an additional numerical challenge when pricing these
types of option. For example, a straightforward Monte Carlo simulation is not suitable
to price an American put option in the Black-Scholes model. Over the past forty years

different approaches have been developed that tackle this problem.

One of the first algorithms to compute American put option prices in the Black-
Scholes model has been proposed by [19]. In this approach, the related partial differential
inequality is solved by a finite difference scheme. A rich literature further developing the
PDE approach has accrued since, including methods for jump models ([85], [70]), exten-
sions to two dimensions ([66]) and combinations with complexity reduction techniques
([65]). Besides PDE based methods a variety of other approaches has been introduced,
many of which trace back to the solution of the optimal stopping problem by the dynamic
programming principle, see e.g. [106]. For Fourier based solution schemes we refer to
[89], [44]. Simulation based approaches are of fundamental importance, the most promi-

nent representative of this group is the least-squares Monte Carlo (LSM) approach of

75



Chapter 3. The dynamic Chebyshev method 76

[88], we refer to [54] and [83] for an overview of different Monte-Carlo methods.

Typically, Fourier and PDE methods are highly accurate, compared to simulation,
however, they are less flexible towards changes in the model and particularly in the
dimensionality. In order to reconcile the advantages of the PDE and Fourier approach
with the flexibility of Monte Carlo simulation, we propose a new approach based on

Chebyshev interpolation.

In this chapter we will first formulate the pricing problem as a general dynamic pro-
gramming problem. Then we introduce our new method and provide a first modification
that incorporates a domain splitting in the state space. We investigate both approaches
numerically and provide convergence results if the pricing problem is analytic or piece-
wise analytic. We discuss the implementation of the method and conduct an empirical
convergence analysis. We conclude the chapter with a benchmark test and an outline of

different extensions of the method.

This chapter is based on a research collaboration with Kathrin Glau and Mirco Mahlst-
edt. In parts, the results of this chapter are published in our joint paper ”A new approach
for American option pricing: The Dynamic Chebyshev method”, see [59]. Moreover, a
previous version of the presented method is also included in the PhD thesis ”Complexity
Reduction for Option Pricing” of [91]. The results that are discussed in this chapter are

only the ones to which the author has contributed.

3.1 A new pricing algorithm for path-dependent options

In this section, we introduce a new pricing method for path-dependent options. The
most important example of this type are American options, i.e. options that can be
exercised at any time point until maturity. Like most approaches, we discretize the
continuous time problem of pricing an American option and then solve it. Hence, we
actually compute the price of a Bermudan option. It is well known that the Bermudan
price converges towards the American option price. Therefore, a Bermudan option with
a high number of exercise rights or an extrapolation technique can be used to obtain the
American option price, see [53]. The pricing of Bermudan options is similar to the pricing
of discretely monitored barrier options as for example stated in [44]. Our proposed new

approach will be general enough to cover this pricing problem as well.

We consider a general dynamic programming time-stepping in discrete time for a
Markov process X; and value function V;. We propose to approximate the value func-
tion in every time step using Chebyshev interpolation, i.e. V; = > y cé-pj. The choice of

Chebyshev polynomials is motivated by the promising properties of Chebyshev interpo-
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lation such as

e The vector of coefficients (cj-“) j=o0,...,N is explicitly given as a linear combination
of the values V;(z}) at the Chebyshev grid points z;. The pricing is then done on

a discrete grid of Chebyshev points = = zy.

e Exponential convergence of the interpolation for analytic functions and polynomial

convergence of differential functions depending on the order.
e The interpolation can be implemented in a numerically stable way.

See Chapter [2] for more details on Chebyshev interpolation. The computation of the
continuation value at a single time step coincides with the pricing of a European op-
tion. In Section we have seen that the interpolation of European option prices using
Chebyshev interpolation shows to be highly promising and exponential convergence is
established for a large set of models and option types. Moreover, the approximation of
the value function with Chebyshev polynomials has already proven to be beneficial for

optimal control problems in economics, see [78] and [26].

The key advantage of our approach for American option pricing is that it collects
all model-dependent computations in generalized conditional moments I'; ;. If there is
no closed-form solution, their calculation can be shifted into an offline phase prior to
the time-stepping. Depending on the underlying model a suitable numerical technique
such as Monte Carlo, PDE and Fourier transform methods can be chosen, which reveals
the high flexibility of the approach. Once the generalized conditional moments I';
are computed, the backward induction is solved on a discrete Chebyshev grid. This
avoids any computations of conditional expectations during the time-stepping. For each
time step the method delivers a closed form approximation of the price function =z —
Zcﬁ-Tj(m) along with the option’s Delta and Gamma. Since the family of generalized
conditional moments I';; are independent of the value function, they can be used to
generate multiple outputs including