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Abstract 
 

Controlled opening of endothelial-cell (EC) junctions is vital in regulating vascular 

permeability and neutrophil transendothelial migration (TEM) during acute 

inflammation. Although both phenomena can occur independently, as supported by 

distinct molecular pathways, the potential inter-play of these two responses requires 

further exploration. In this thesis, we investigated the impact of microvascular leakage 

on neutrophil TEM and the potential downstream pathophysiological consequences.  

To this aim, as part of this project, a confocal intravital microscopy platform was 

developed for simultaneous analysis of neutrophil TEM and vascular permeability within 

the murine cremaster muscle microcirculation. The inflammatory reactions employed 

were driven by locally administered LTB4, or IL-1β ± vasoactive agents (e.g. 

histamine/VEGF), or by a model of IR-injury. The findings provide direct evidence for the 

ability of inflammatory reactions characterised by enhanced microvascular leakage to 

promote an aberrant mode of neutrophil TEM, known as reverse (r)TEM. This response 

is characterised by neutrophils that have partially breached the endothelium and move 

in a retrograde mode, thus returning into the lumen. Interestingly, genetic functional 

deficiency or pharmacological blockade of VE-cadherin-dependent hyper-permeability 

reduced the frequency of neutrophil rTEM. Mechanistically, this migration behaviour 

was driven by excessive diffusion of tissue-derived CXCL1 through EC junctions into the 

plasma, resulting in a disrupted chemotactic gradient across the endothelium. 

Development of a novel tracking method allowed us to demonstrate that rTEM 

neutrophils exhibited a pro-inflammatory phenotype and disseminated into the blood 

and lung circulation. Presence of these cells in lungs was associated with vascular 

damage. Finally, we identified distinct roles for TNF-receptors in controlling vascular 

permeability and neutrophil migration during IR-injury.  

Collectively, the findings of this thesis provide a causal link between increased local 

microvascular leakage induction and disrupted localisation of chemotactic directional 

cues across the endothelial barrier, resulting in aberrant mode of neutrophil migration 

and subsequent distant organ damage. 
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1.1. Acute inflammation and the innate immune response  

 

Inflammation is a natural host defence reaction that is fundamentally mediated by the 

innate and/or the adaptive immune systems in response to infections or tissue damage. 

Inflammation aims to rapidly eliminate the initial cause of insult, i.e. removal of 

pathogens, dead cells and debris, in addition to, initiating tissue repair and remodelling. 

Inflammation is defined by five classical signs: dolor (pain), calor (heat), rubor (redness), 

tumor (swelling) and functio laesa (loss of function) (Majno and Joris, 2004). Redness 

and heat develop as a consequence of increased blood flow, and swelling results from 

increased leakage of plasma proteins and fluid into the damaged tissue. Pain results 

from an active release of neuropeptides that enable stimulation of the sensory nerves, 

and finally, loss of function can occur if the inflammatory response remains unresolved 

or becomes dysregulated.  

Inflammatory responses are triggered within minutes (Chen et al., 2018) by the 

recognition of “pathogenic/danger signals”, comprising distinct chemical motifs known 

as ‘pathogen-associated molecular patterns’ (PAMPs) or ‘damaged-associated 

molecular patterns’ (DAMPs) (Zindel and Kubes, 2020). These factors can be released by 

foreign microorganisms or damaged tissue and cells, respectively, into the interstitial 

tissue. Such molecules are recognised by pattern recognition receptors (PRRs), for 

instance toll-like receptors (TLRs), that are expressed on the surface of resident/sentinel 

immune cells (e.g. macrophages, dendritic cells and mast cells) and non-immune cells 

(e.g. fibroblasts and endothelial cells [ECs]) in the tissue (Andonegui et al., 2009; Zindel 

and Kubes, 2020). One such example is the endotoxin, lipopolysaccharide (LPS), a PAMP 

that can be detected by the cell surface PRR, TLR4, expressed primarily on 

monomyelocytic cells. Once activated, these cells release a plethora of preformed and 

de novo synthesised inflammatory and pro-permeability mediators via the NF-κB 

pathway (Newton and Dixit, 2012). These mediators contribute to the activation of other 

resident cells (e.g. ECs and pericytes), thus further amplifying the inflammatory 

response. The principal mediators involved here include numerous cytokines such as 

tumour necrosis factor (TNF) and interleukin-1β (IL-1β), various C-X-C and C-C motif 

chemokines (e.g. CXCL1, CXCL2, CXCL8, CCL2, CCL5), lipids and eicosanoids such as 

leukotriene (LT)B4 and vasoactive factors such as vascular endothelial growth factor 



22 
 

(VEGF) and histamine in addition to numerous reactive oxygen species (ROS) (Thomas 

and Schroder, 2013; Park-Windhol and D’Amore, 2016). Collectively, this leads to both 

the recruitment and directed migration of immune cells derived from the bone marrow 

(BM) such as monocytes and of particular interest to this thesis, neutrophils (refer to 

section 1.5) and the initiation of an enhanced vascular leakage response at the site of 

insult (Newton and Dixit, 2012). Resident (e.g. dendritic cells and macrophages) and 

migrated (e.g. neutrophils) immune cells are then able to eliminate the invading 

pathogen or remove dead cells in the interstitial tissue via the release a variety of 

bactericidal factors or by targeted phagocytosis (Julier et al., 2017). The return of 

homeostasis is supported by the synthesis of several mediators that hinder further 

recruitment of leukocytes, counteract pathways that lead to leukocyte survival, and 

transitioning of cells, especially macrophages, from a pro-inflammatory to pro-clearance 

phenotype for the removal of apoptotic cells. These factors include, prostaglandin (PGE) 

-E2 and D2 which induce lipid mediator class switching for the formation of lipoxins, E- & 

D- series resolvins and protectins. In addition, expression of the anti-inflammatory 

cytokines IL-10 and transforming growth factor (TGF)-β is upregulated, while negative 

feedback loops are initiated to inhibit further synthesis of inflammatory cytokines (e.g. 

TNF) to support the resolution of the inflammatory response (Serhan et al., 2008; 

Sugimoto et al., 2016). After successful clearance of the pathogen or damaged cells, 

immune cells are able to secrete a range of growth factors to promote tissue repair (e.g. 

VEGF and platelet-derived growth factor (PDGF)) (Julier et al., 2017) (detailed in Fig. 1.1). 

However, if acute inflammation remains unresolved or becomes dysregulated, this 

cascade of events can result in excessive tissue damage, which is a common feature of 

many inflammatory diseases such as cardiovascular and pulmonary conditions including 

stroke, sepsis, pneumonia and trauma (Fan et al., 2018).  
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Figure 1.1. Pathogen or injury-induced activation of the innate immune response. Schematic 

illustrating PAMP/DAMP-mediated activation of resident innate immune cells (macrophages, 

dendritic cells and mast cells) via their PRR’s. This results in the release of pro-inflammatory 

mediators and chemoattractants in order to mobilise and recruit, amongst other cells, 

neutrophils and monocytes. In addition, the inflammatory response initiates the release of pro-

permeability inducing agents, thus supplying the tissue with essential plasma proteins. Once 

recruited, neutrophils play a key role in pathogen killing and tissue repair processes. 

Furthermore, specific resolutory mediators are generated to support the transition back from 

an inflammatory to homeostatic environment. If the acute inflammatory response remains 

unresolved or hyperactivated this can result in an acute response evolving into a chronic 

response in addition to triggering the adaptive immune response. 

 

1.2. Pathological acute inflammation and distant organ injury 

 

Whilst acute inflammation is usually a beneficial response functioning to resolve harmful 

effects of injury or infection, under excessive or prolonged stimulation, this reaction can 

become dysregulated with pathogenic consequences. Examples of diseases caused by 

dysregulated acute inflammation are tissue fibrosis, acute lung injury (ALI) and acute 

respiratory distress syndrome (ARDS) (Chen et al., 2018). Although commonly triggered 

by local inflammatory insults, a life-threatening feature of these conditions is damage 

to distant organs as illustrated following ischaemia reperfusion (IR)-injury (Grace, 1994). 
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IR-injury is an insult associated with tissue damage that results from a period of reduced 

blood supply, usually to an organ (e.g. during transplantation) or limb (e.g. post trauma), 

resulting in hypoxia. During hypoxia, anaerobic respiration becomes the predominant 

source of energy leading to increased local concentrations of lactic acid with a 

consequent reduced pH. Under these acidic conditions, normal enzymes and protein 

functions become dysregulated, leading to a failure of local homeostasis (Grace, 1994; 

Rodrigues and Granger, 2010). As a consequence, prolonged ischaemia leads to loss of 

essential cell functions, resulting in the release of DAMPs and stress signals into the 

extracellular space and cell death. The only means to protect cell damage is the rapid 

restoration of blood flow, known as reperfusion. Paradoxically, reperfusion is a double-

edged sword as it can result in further injury. The sudden return of oxygen leads to a 

cascade of reactions mediated by ROS that cause further tissue damage (Grace, 1994). 

In addition, reperfusion is followed by enhanced local vascular permeability and 

increased levels of neutrophil recruitment and transendothelial migration (TEM) which 

act to enhance the inflammatory response further. Our understanding that  exacerbated 

localised inflammation can lead to adverse systemic pathologies has a been a keen area 

of interest over the decades (Kalia et al., 2005). For example, IR-injury of the intestines, 

lung, heart, kidney, liver and skeletal muscle have been associated with distal (or 

secondary) organ damage (Kalogeris et al., 2012; Faubel and Edelstein, 2016). In 

particular, as the lungs are one of the first organs to be exposed to ischaemia induced 

hypoxic blood, they are particularly susceptible to secondary injury, which can manifest 

as ALI.  

ALI is a serious pathological condition often encountered following major surgery, with 

>200,000 cases/year in the US alone and has a high associated mortality rate (~40%). 

Even patients that survive ALI usually experience lingering adverse effects on quality of 

life resulting from the onset of pulmonary fibrosis, and consequent permanent 

reduction in lung capacity (Johnson and Matthay, 2010). This disease is classically 

characterised by tissue oedema and enhanced neutrophil infiltration, whereby the latter 

can exacerbate the former via the release of various pro-inflammatory mediators 

(discussed in section 1.4.3) and proteases, such as neutrophil elastase (NE) and 

cathepsin G (Soehnlein et al., 2008; Grommes and Soehnlein, 2011). Fundamentally, 

these proteases result in damage and degradation of the endothelial basement 
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membrane and EC junction proteins, a series of responses that ultimately leads to a 

severe reduction in endothelial integrity and enhanced lung permeability. Increased 

passage of plasma proteins and fluid into the alveoli then prohibits effective gaseous 

exchange, at which point ARDS and failure of the respiratory system ensue 

(Raghavendran et al., 2008; Johnson and Matthay, 2010; Dushianthan et al., 2011). 

Currently, our understanding as to precisely how locally induced inflammation can lead 

to the development of distant organ injury, is underdeveloped. Therefore, gaining 

greater insight into the mechanisms driving dysregulated local inflammation and the 

subsequent development of secondary organ injury could be informative for the design 

of therapeutic interventions.  

 

1.3. Neutrophils in homeostasis and physiological inflammation  

 

Neutrophils are terminally differentiated leukocytes, measuring approximately 12-15 

µm (7 µm in mice) in diameter and are the most abundant cell type in human blood (50-

70% of total white blood cells) (Rosales, 2018; Wright et al., 2010). Neutrophils originate 

from haematopoietic stems cells (HSCs) in the BM, which during haematopoiesis 

become committed to the myeloblastic lineage in the presence of granulocyte colony 

stimulating factor (G-CSF). HSCs initially differentiate into granulocyte-monocyte 

progenitors (GMPs), which then require two major phases to develop into mature 

neutrophils: a proliferative stage during which GMPs differentiate into myeloblasts, 

promyelocytes and myelocytes followed by a non-proliferative stage into 

metamyelocytes, immature neutrophils before ultimately terminally differentiating into 

mature neutrophils (~1011 cells per day) (Rosales, 2018; Ng et al., 2019). The release of 

mature neutrophils from the BM into the blood circulation is tightly regulated under 

homeostatic (i.e. healthy) conditions, with only 1-2% of the total neutrophil population 

circulating at any one time, the vast majority being retained in the BM. Immature 

neutrophils are retained in the BM by stromal cells expressing vascular cell adhesion 

molecule (VCAM)-1 and CXCL12 (cognate ligands for neutrophil-derived α4β1 integrin 

(very late antigen (VLA)-4) and CXCR4, respectively). Upon maturation in response to G-

CSF, neutrophil precursors begin to downregulate VLA-4 and CXCR4 (Martin et al., 2003) 

and increase their expression of CXC receptor 2 (CXCR2) and TLR4, allowing neutrophils 
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to respond to chemokines such as CXCL1 and PAMPs/DAMPs, respectively (De Filippo et 

al., 2013; Sawant et al., 2016), culminating in reduced retention and egression of mature 

neutrophils from the BM. Once released, mature neutrophils have a relatively short 

lifespan, surviving between 8-12 hours in the circulation and 1-2 days in the interstitial 

tissue, though this issue remains contentious (Hellebrekers et al., 2018).  

Following an inflammatory insult or infection, circulating inflammatory cytokines, (e.g. 

CXCL1) stimulate the BM for a rapid release en masse of neutrophils (and other 

leukocytes) into the peripheral blood. Circulating neutrophils are then recruited to the 

site of insult. Neutrophils are one of the earliest responders to sites of inflammation 

where they adhere and crawl along the endothelium adjacent to the site of injury and/or 

infection, before ultimately migrating through the vascular barrier into the interstitial 

tissue. The latter series of events is known as the leukocyte adhesion cascade (Ley et al., 

2007) (detailed in section 1.5).  

Neutrophils are considered to exist in three states: resting, primed or fully activated 

states. Under basal resting conditions neutrophils ensure their toxic intracellular 

components are retained. Neutrophils have various cytokines, receptors and 

bactericidal molecules contained in four main preformed granular stores: azurophilic 

(primary), specific (secondary) and gelatinase (tertiary) granules in addition to secretory 

(quaternary) vesicles listed from least to most readily released and the order in which 

they are formed in the BM during neutrophil maturation (Fig. 1.2) (Borregaard et al., 

1996; Cowland and Borregaard, 2016). Transition between the resting and primed state 

is mediated by priming agents such as bacterial products, G-CSF, IL-8 (CXCL8) and various 

cytokines (e.g. TNF, interferon (IFN)-γ) (Hallett and Lloyds, 1995). Priming can occur 

within minutes and involves mobilisation of preformed receptors stored in granules such 

as cluster of differentiation molecule (CD)11b (i.e. αM-subunit of the integrin 

macrophage-1 antigen (MAC-1)) and the integrin, lymphocyte function-associated 

antigen (LFA)-1, to the cell membrane. In addition, priming leads to activation of 

transcription factors such as NF-κB, that initiates de novo synthesis of receptor 

molecules and cytokines (Wright et al., 2010). Neutrophil priming can also occur 

following interaction with activated ECs and during TEM (Condliffe et al., 1998; Summers 

et al., 2010). Activation of neutrophils typically occurs at the site of their TEM, where 

they exert innate immune functions including the synthesis and release of chemokines 
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including CXCL1 and CXCL2 (human homologue known as CXCL8) and cytokines including 

IL-1β and TNF (Finsterbusch et al., 2014). Furthermore, neutrophils are able to secrete 

a variety of pro-permeability factors that reduce the integrity of the endothelial barrier 

(described in detail in section 1.4.3).  

 

Figure 1.2. Neutrophil intracellular granules and their contents. Schematic detailing the 

principal four granular storage compartments of neutrophils, namely, azurophilic, specific, 

gelatinase, secretory and their key known contents. Secretory granules are the most readily 

released and the last to be stored during neutrophil maturation. Figure based on data 

summarised by Cowland & Borregaard 2016. 

 

Neutrophils exhibit a diverse range of effector functions including phagocytosis of 

opsonised microbes, degranulation, intracellular killing, formation of neutrophil 

extracellular traps (NETs) and modulation of the adaptive immune response (Lacy, 2006; 

Wright et al., 2010). Most of these responses induce the production and/or release of 

toxic products such as oxygen-dependent ROS and degrading proteases into the 

environment, which have the potential to be harmful to the host tissue. It is therefore 
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critical that neutrophil migration and specialized cytotoxic neutrophil functions are 

tightly regulated (Thomas and Schroder, 2013). During oxygen dependent killing, 

bacteria opsonised with c-reactive protein (CRP), mannose-binding lectin (MBL) or 

surfactant proteins (SP)-A or D or via direct PAMP recognition, become engulfed by 

neutrophil formed pseudopodia and ingested into a phagosome. This phagosome then 

fuses with a lysosome to form a phagolysosome. The lysosome is a low pH environment, 

containing preformed products from primary and secondary granules such as anti-

microbials (cathelicidins and defensins), hydrolytic enzymes (lysozyme and proteases) 

and oxidative species (ROS and NOS) (Fig. 1.2). ROS generation requires the enzyme 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which converts oxygen 

to superoxide ion (O2
-). Other ROS species such as hydrogen peroxide (H2O2) and 

hypochlorous acid (HClO) are further generated in the presence of the enzyme 

superoxide dismutase (SOD) and myeloperoxidase (MPO), respectively. In addition, ROS 

and other non-oxidative mediators, including NE and lysozyme, can be released from 

the cell via degranulation to kill extracellular pathogens (Borregaard et al., 1996). 

However, inappropriate or uncontrolled release of ROS can accumulate in the vascular 

bed where they can compromise the integrity of the endothelial barrier which 

subsequently results in enhanced tissue oedema. Neutrophils also have the capacity to 

release NETs via a process known as NETosis, which comprises an additional method of 

microbial entrapment and neutralisation (Papayannopoulos, 2018). This process firstly 

requires delobulation of the nucleus and disassembly of the nuclear envelope. 

Chromatin then decondenses and is released into the cytoplasm, where it forms a net-

like structure. This ‘net’ is then released from the cell where it is then able to capture, 

immobilise and kill pathogens with antimicrobial peptides such as NE and MPO, 

calprotectin and defensins (Urban et al., 2009; Papayannopoulos, 2018).  

Due to the plethora of neutrophil effector functions, a hypothesis has emerged 

suggesting the existence of neutrophil sub-populations, some with tissue specific 

functions beyond their generic elimination of inflammatory insults (Fig. 1.3) (Silvestre-

Roig et al., 2016; Rosales, 2018; Ng et al., 2019). For example, in the mouse spleen, a 

neutrophil sub-population exhibiting a CD62Llow (L-selectin), CD11bhigh and intercellular 

adhesion molecule (ICAM)-1high phenotype has been shown to be important in the 

initiation of the adaptive immune response by releasing cytokines that mediate somatic 



29 
 

hypermutation and antibody (Ab) production by B-lymphocytes (Puga et al., 2012). 

Another sub-population of neutrophils identified in mice, exhibiting upregulated 

expression of the CC chemokine receptor (CCR)-7, LFA-1 and CXCR4, selectively migrates 

into lymph nodes during bacterial infection and to a lesser extent following sterile 

scratch injury of the skin, where they mediate activation of T-lymphocytes (Beauvillain 

et al., 2011; Hampton et al., 2015; Hampton and Chtanova, 2016). Interestingly, in LPS-

challenged healthy human volunteers, a distinct subset of neutrophils defined by their 

CD11chigh, CD11bhigh, CD16high and CD62Llow surface expression profile, were found to 

suppress T-cell proliferation in a ROS- and CD11b-dependent manner (Pillay et al., 2010, 

2012). Further, in mice and humans, it is thought that a CD49dhigh, CXCR4high and VEGF-

receptor 1high (VEGFR1) neutrophil sub-population plays a role in mediating angiogenesis 

under hypoxia conditions (Massena et al., 2015) and in promoting tumour 

vascularisation (Jablonska et al., 2010). Indeed, the role of neutrophils in cancer is a 

complex and developing area of research. During cancer, neutrophils are capable of 

exhibiting different phenotypes, including their stage of maturation, tumour cytotoxicity 

and immune suppression, which are influenced by the type of cancer and the stage of 

tumour advancement. For example, Sagiv et al., identified in humans and mice, two 

distinct neutrophil subsets that were classified as high density- (HDN) and low density- 

neutrophils (LDN) (Sagiv et al., 2015). Whilst HDNs comprised solely of mature 

neutrophils, LDNs encompassed both mature and immature neutrophils with impaired 

neutrophil functions. Of these, LDNs were preferentially upregulated in cancer and were 

derived from HDN populations in the blood via stimulation with TGF-β, or directly from 

immature granulocyte pools in the BM (Sagiv et al., 2015). Following migration into 

tumour sites, thereby becoming known as “tumour-associated neutrophils” (TANs), 

HDN and LDN subpopulations have been associated with cytotoxic (i.e. anti-tumour, 

known as N1) and immunosuppressive (i.e. pro-tumour, known as N2) functions, 

respectively (Rosales, 2018). However, our understanding of neutrophil sub-populations 

still remains in its infancy and there is no consensus on precisely what defines a distinct 

and true neutrophil subset, whereby subsets have been defined by their tissue 

localisation, maturation state, phenotype and effector functions. On this basis, these 

sub-populations may even include neutrophils that exhibit varying modes of migrational 

motility during inflammation, a concept further explored in section 1.7 (Németh et al., 

2020). Others have suggested that true subsets should be defined by transcriptional 
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and/or epigenetic profiles to avoid cases of mistaken identity (Ng et al., 2019). For 

example, it has also been noted that many of the aforementioned sub-populations share 

many of the phenotypic differences identified between young and “aged” neutrophils 

in the circulation, whereby the latter exhibit greater expression of CXCR4, ICAM-1, 

CD11b, VLA-4 and decreased expression of CD62L and CXCR2 (Fig. 1.3) (Rosales, 2018).  
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Figure 1.3. Schematic summarising neutrophil sub-populations. During infection or stimulation 

by LPS, the first three neutrophil subsets have been found to modulate the innate immune 

system via B- (spleen) and T-lymphocyte (lymph nodes) activation, or suppression of T-cell 

proliferation (cells isolated from the blood, in vitro). In addition, a phenotypically unique 

neutrophil subset has been identified in hypoxic tissue where it mediates angiogenesis. At least 

three additional subsets, collectively categorised as either HDNs or LDNs, are known to mediate 

immune responses during tumourigenesis. Although to what extent these neutrophils represent 

true sub-populations (i.e. are destined for their stated roles) as opposed to a product of their 

surroundings or their natural aging whereby distinct phenotypic changes have been observed 

between “young” and “aged” circulating neutrophils remains unclear. 
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At the end of their life, neutrophils in the tissue undergo apoptosis followed by 

monocyte-, macrophage- and dendritic cell-mediated phagocytosis (Summers et al., 

2010; Lim et al., 2020). Furthermore, phagocytosis of dead neutrophils also results in 

reduction of macrophage derived IL-23, which in turn reduces IL-17 and G-CSF 

production resulting in reduced granulopoiesis (Stark et al., 2005; Rosales, 2018). In 

contrast, “aged” neutrophils (i.e. those present in the blood for >6 hrs) in the blood 

upregulate expression of CXCR4 allowing them to return to the BM for clearance by 

stromal macrophages (Rosales, 2018). 

 

1.4. The Endothelial barrier and vascular permeability 

 

The vasculature is an essential structure that maintains hydrostatic pressure, ensures a 

continuous and efficient supply of oxygen, nutrients, and fluids to tissues, and controls 

immune cell migration during inflammation (Claesson-Welsh, 2015). There are 5 main 

types of blood vessels: arteries, arterioles, capillaries, venules and veins. This thesis is 

mainly concerned with post-capillary venules that connect capillaries and veins and are 

the chief site of leukocyte migration and vascular leakage during inflammation. The 

vascular barrier of post-capillary venules is composed of a single, semi-permeable layer 

of cobblestone-like ECs surrounded by a thin basement membrane and pericyte layer. 

ECs, in particular, are the first and primary barrier to transmigrating leukocytes. 

Individual ECs are anchored to each other through transmembrane junctional molecules 

that are classically divided into three key groups: gap junctions, tight junctions and 

adherens junctions (Matter and Balda, 2003; Lampugnani, 2012).  

Gap junctions are comprised of the transmembrane proteins, connexins, that aggregate 

to form hexameric structures known as connexons. These semi-permeable structures 

form channels between adjacent ECs allowing for intercellular communication by 

permitting the passage of small molecules, such as Ca2+ ions, amino acids and 

nucleotides (Okamoto and Suzuki, 2017). Tight junctions predominantly consist of 

protein complexes including claudin and occludin transmembrane proteins, members of 

the junctional adhesion molecule (JAM) family, endothelial cell-selective adhesion 

molecule (ESAM) and intracellular adapters such as ZO-1 and ZO-2 (Matter and Balda, 
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2003). Adherens junctions are predominantly populated by molecules of the cadherin 

family, in particular, VE-cadherin; a cornerstone molecule in both vascular permeability 

and neutrophil TEM (Fig. 1.4). Although tight junctional molecules are often depicted to 

be located in closer proximity to the apical side, and adherens molecules closer to the 

basolateral side, both are in fact distributed throughout the EC junction (Dejana, 2004; 

Duong and Vestweber, 2020). Collectively, these proteins play a fundamental role in 

junctional stabilization, through their anchorage to the EC actin cytoskeleton, and in the 

regulation of endothelial permeability. Of note, other adhesion molecules expressed at 

EC junctions include platelet endothelial cell adhesion molecule-1 (PECAM-1, also 

known as CD31) and CD99 which are detailed in section 1.5.3.1.  

 

Figure 1.4. Schematic illustrating the fundamental EC junctional structures required to 

maintain the integrity of the endothelium. ECs are anchored together by gap (connexins)-, tight 

(claudins, occludin, JAMs & ESAM)- and adherens (VE-cadherin & nectin)-junctional proteins 

that form intercellular homophilic interactions between adjacent ECs. Stability of the endothelial 

barrier is maintained via anchorage of these paracellular junctional molecules to the EC actin 

cytoskeleton. Key molecules, including JAMs, ESAM, PECAM-1, VE-cadherin and CD99, play 

essential roles in controlling vascular permeability and neutrophil migration responses. Figure 

adapted from Duong & Vestweber 2020.  

 

Under basal conditions, only molecules under 40 kDa can freely diffuse across the EC 

barrier (known as plasma filtrate) (Nagy et al., 2008). Passage of larger molecules 

CD99 

VE-PTP 

Claudins 
(1, 5 & 12) 

Connexins 
(32, 37, 40 & 43) 

gap 
junction 
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however requires active disruption of the EC barrier e.g. by the pro-permeability agent 

histamine, whereby molecules as large as 2,000 kDa are able to move through EC 

junctions (known as plasma exudate) (Egawa et al., 2013). Vascular hyper-permeability 

is a hallmark response during acute inflammation and functions to supply damaged and 

infected tissues with essential blood-borne immunoregulatory and pro-inflammatory 

proteins (e.g. immunoglobulins and components of the complement cascade). 

Overtime, these plasma proteins and fluids are drained by the tissue lymphatics. The 

lymphatics have a slow filtration rate of the interstitial tissue to ensure sufficient 

availability of nutrients and signalling molecules, including various hormones and 

cytokines, to the cells present within the tissue (Randolph et al., 2017). However, when 

the endothelial integrity is severely disrupted, plasma leakage through the endothelium 

occurs at a rate exceeding the capacity of the tissue lymphatics to drain the excess fluid, 

resulting in tissue oedema (Bates and Harper, 2002; Randolph et al., 2017).  

In addition to histamine, vascular permeability can be modulated by various factors 

including bradykinin, substance P, ROS, TNF and VEGF. Although many of these factors 

result in the destabilisation of EC junctions and/or induction of EC vesicular transcytosis, 

leakage can also be indirectly modulated through induction of vasodilation, resulting in 

changes in blood pressure and thus flow rate. There are two pathways by which hyper-

vascular permeability can occur: transcellular or paracellular (Fig. 1.5). 
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Figure 1.5. Schematic depicting endothelial para- and trans-cellular permeability routes. 

Under basal conditions, the endothelial layer tightly regulates the exchange of plasma- and 

tissue-bound solutes and fluids. Under certain inflammatory conditions (e.g. IR-injury), the 

endothelial barrier becomes compromised and more permeable allowing for greater passage of 

fluid from the blood into the tissue. EC permeability can occur by two key routes, either 

paracellularly or transcellularly. Paracellular leakage is associated with reduced/loosened EC-EC 

contact following internalisation of junctional adhesion proteins such as VE-cadherin and 

exertion of intracellular pulling forces on the EC membrane, which can in some tissues form 

fenestrate structures. Transcellular leakage is mediated by the formation of an EC ‘pinch’, that 

is then released as a vesicle into the cytoplasm and trafficked across the EC.  

 

1.4.1. Transcellular endothelial permeability 

 

Transcellular vascular permeability involves the formation of vesiculo-vascular 

organelles (VVO), whereby vesicles or vacuoles are formed at the endothelial 

membrane. These structures transport solutes and proteins from the apical (luminal) to 

basolateral (abluminal) side, through the EC body. The current understanding of VVO 

transcytosis is in its infancy, but it is thought to primarily support the movement of larger 

macromolecules unable to move through the paracellular junctions. This transport route 

has been shown to occur in normal, inflamed and tumour supplying vasculature (Caruso 

et al., 2001; Dvorak and Feng, 2001). During this process, caveolae form within regions 

of the plasma membrane by establishing a ‘pinch’, which is then released as a vesicle 
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into the cytoplasm. The vesicle is then trafficked across the body of the cell to the 

basolateral side where it fuses with the plasma membrane and its contents are released 

into the perivascular space (Fig. 1.5). However, whether VVOs originate from caveolae 

remains contentious. For example, caveolin-1 (a major caveolae protein) null mice 

exhibit a reduction in vascular leakage but have a similar frequency of VVO formation. 

This suggests VVOs may not be derived from caveolae and thus highlights a need for 

further investigation (Schubert et al., 2001; Chang et al., 2009). The difficulty in studying 

the origin of VVOs is primarily due to a lack of suitable loss-of-function mouse models, 

in addition to the technical limitation that VVOs cannot be studied by conventional light 

microscopy (Claesson-Welsh, 2015). 

 

1.4.2. Paracellular endothelial permeability 

 

The most comprehensively studied and primary route of enhanced vascular leakage 

occurs paracellularly, through EC junctions. Here, endothelial integrity is maintained by 

a dynamic combination of adherens and tight junctional molecules, the distribution of 

which can vary between different vascular beds. For example, in the BBB where vascular 

leakage is more tightly controlled, EC junctions are primarily populated by tight junction 

molecules to minimise leakage into the parenchymal space. However, in the majority of 

vascular beds, adherens junctions provide a semi-permeable barrier and comprise the 

‘gatekeepers’ that govern controlled vascular leakage (Claesson-Welsh, 2015). One of 

the most fundamental junctional molecules in regulating vascular permeability is VE-

cadherin (Fig. 1.6). The extracellular domain of this adherens molecule forms homophilic 

cis dimers that then form trans dimers with the adjacent EC (Sidibé and Imhof, 2014; 

Dejana and Orsenigo, 2013). Stability of VE-cadherin is determined by recruitment of γ-

, β- & p120- catenin to the cytosolic tail. These, in turn, connect to the EC actin 

cytoskeleton through the actin binding proteins α-catenin, vinculin and eplin (Gavard, 

2014). In addition, γ-catenin is involved in maintaining the association between VE-

cadherin and the transmembrane protein, vascular endothelial protein tyrosine 

phosphatase (VE-PTP), which supports the stability of VE-cadherin at the junction by 

sequestering tyrosine-induced phosphorylation (Nottebaum et al., 2008; Gavard, 2014). 

p120-catenin is also particularly important in maintaining VE-cadherin junctional 
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stability through associations with α-catenin, however rescue of VE-cadherin stability in 

p120 KO mice still leads to reduced endothelial integrity (Herron et al., 2011). This 

suggests a wider role for p120-catenin which remains largely unexplored. However, 

following ligation of pro-permeability factors such as VEGF, histamine and/or TNF to 

their cognate receptors, this interactome becomes destabilised, culminating in 

internalisation of VE-cadherin and induction of vascular leakage. This follows the 

dissociation of VE-PTP from VE-cadherin, which occurs within 5 min of ligand binding 

(Nottebaum et al., 2008), and subsequent hyperphosphorylation of tyrosine residues 

Y658 and Y685, the latter being further discussed in Chapter 4 (Sukriti et al., 2014). Of 

note, dephosphorylation of another VE-Cadherin residue, Y731, has been shown to lead 

to enhanced leukocyte migration as discussed in section 1.5.3.1 (Potter et al., 2005; 

Wessel et al., 2014). Phosphorylation of these specific tyrosine residues can lead to 

augmented interactions with associated catenins. For example, phosphorylation of the 

residue Y658 leads to dissociation from p120-catenin, leading to endocytosis of VE-

cadherin via the formation of clathrin-coated vesicles, which results in destabilisation of 

the EC junction (Potter et al., 2005). However, receptor dissolution at the junction is 

transient, whereby VE-cadherin re-establishes at the membrane within 15 min post 

cessation of stimulus application (Gaudry et al., 1997), known in part to be due to rapid 

recycling of the receptor (Fukuhra et al., 2006; Orsenigo et al., 2012). In addition, EC 

integrity can be compromised following influx of Ca2+ ions and by activation of small 

GTPases, namely RhoA, Rac and CDC42, that lead to the phosphorylation of myosin light 

chains (MLC) (Wojciak-Stothard and Ridley, 2002). Consequently, catenin mediated 

contraction of actomyosin stress fibres occurs, which in turn leads to pulling forces 

exerted on the EC membrane. Ultimately, this directly disrupts the intercellular adhesion 

contacts and induces vascular permeability (Qiang et al., 2009; Azzi et al., 2013). Under 

basal conditions, activation of RhoA is inhibited by the key junctional-stabilising 

transmembrane tyrosine kinase receptor, Tie-2 (Frye et al., 2015). Tie-2 activates the 

GTPases, Rac-1 and Rap-1, which prevent phosphorylation of MLCs and subsequent 

dissolution of actomyosin stress fibres, thus preventing their contractility; a function 

which is compromised following VE-PTP-dependent de-phosphorylation as induced by 

pro-permeability agents (Winderlich et al., 2009; Frye et al., 2015).   
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Figure 1.6. Regulation of VE-cadherin internalisation at EC junctions to induce vascular 

permeability. VE-cadherin is expressed at the EC junction and plays a vital role in maintaining 

EC-EC contact and the integrity of the vascular barrier. However, following ligation of a pro-

permeability mediator such VEGF (as depicted) or other factors including TNF and histamine to 

their EC-expressed cognate receptors, VE-PTP dissociates from VE-cadherin, allowing for Src-

dependent phosphorylation of specific VE-cadherin intracellular residues, Y658 and Y685, and 

its binding partners β- and p120-catenin, and MLCs. Downstream, this leads to VE-cadherin 

internalisation, in addition to, contraction of stress fibres that exert a physical pulling force on 

the EC junctional membrane. Collectively, this leads to weakening of EC contacts and 

compromised junctional integrity, culminating in enhanced vascular permeability. Adapted from 

Azzi et al., 2013.  

 

The role of the EC actin cytoskeleton is a growing area of interest. Apart from loosening 

EC contacts during inflammation, these structures can support the formation of 

endothelial fenestrae that permit greater vascular leakage and are commonly found in 

specialised organs, e.g. organs that require rapid transport of hormones such as 

glandular tissue, liver, pancreas and kidneys (Caruso et al., 2001). Fenestrae consist of 

circular pores that form in extremely thin, attenuated regions of ECs. There is some 

evidence to suggest that these structures may also form in capillaries of the cremaster 

muscle and the skin following VEGF (but interestingly, not histamine) stimulation 

(Roberts and Palade, 1995). Despite these observations, endothelial fenestration in the 
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cremasteric vasculature (as is relevant to this thesis) is seldom reported and hence is 

not expected to significantly contribute to vascular permeability in acute inflammation. 

 

1.4.3. Impact of neutrophils on vascular leakage during acute inflammation 

 

Vascular permeability and neutrophil migration are key elements of acute inflammation. 

Although, these phenomena have predominantly been identified to occur 

independently, as supported by distinct molecular pathways (Vestweber, 2015) (as 

discussed in Chapter 3), once recruited to the site of inflammation, activated neutrophils 

can contribute to the induction of enhanced microvascular leakage (Wedmore and 

Williams, 1981; DiStasi and Ley, 2009). In this regard, several studies have reported that 

neutrophils can generate and release vasoactive mediators such as ROS (Segal and 

Jones, 1978), VEGF (Scapini et al., 2004), LTA4 (DiStasi and Ley, 2009), HBP (Kenne et al., 

2019) and TNF (Finsterbusch et al., 2014), at the site of their transmigration. Some of 

these mediators are preformed and stored in intracellular neutrophil granules (Beil et 

al., 1995; Borregaard et al., 1996) and hence can be rapidly mobilised to the cell 

membrane for release upon priming/activation. Other factors, such as ROS for example, 

are exclusively synthesised de novo and released by neutrophils upon their adhesion to 

the endothelium where it is then taken up by ECs leading to downstream activation of 

pro-permeability signalling pathways (Di et al., 2016). The majority of neutrophil-derived 

pro-permeability mediators require ligation to their cognate receptors to directly and/or 

indirectly induce complementary signalling pathways. Of note, the mechanism and role 

of neutrophil-derived TNF is not completely understood, an issue addressed and 

discussed in Chapter 6. Better understood pathways include the role of the lipid LTA4. 

Specifically, following neutrophil activation post adhesion to the EC surface, LTA4 is 

released by neutrophils where it can be converted to LTB4 by neutrophils (autocrine) or 

LTC4 by ECs (paracrine) (Folco and Murphy, 2006; Di Gennaro et al., 2009). Whilst LTC4 

acts directly on ECs to induce endothelial permeability via a Rho kinase-dependent 

build-up of ROS and Ca2+ influx (leading to EC contractility) (Duah et al., 2013), LTB4 acts 

indirectly in a neutrophil-dependent manner (Bjork et al., 1982). Here, ligation of LTB4 

to its cognate receptor on the neutrophil surface initiates the release of HBP, a critical 

mediator of neutrophil-induced permeability (Gautam et al., 2001), from secretory 
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granules. In the blood, HBP binds to EC surface proteoglycans and becomes internalised 

where it proceeds (via unknown signalling pathways) to induce an influx of Ca2+ and 

actomyosin contractility (Di Gennaro et al., 2009).  

The interplay between vascular leakage and neutrophil migration remains a subject of 

keen interest. However, whilst there is ample evidence identifying neutrophil-mediated 

mechanisms of vascular leakage, the impact of microvascular leakage on leukocyte 

migration has been minimally investigated. For instance, histamine, a mediator 

classically defined by its function to induce vascular permeability, has been suggested 

to promote neutrophil adhesion and TEM (Massena, 2015). This however remains 

contentious, as many reports have shown histamine only impacts neutrophil rolling 

following mobilisation of preformed P-selectin from Weibel-Palade bodies (WPBs) to the 

EC surface, a key molecule implicated in leukocyte rolling (Jones et al., 1993; Ley, 1994; 

Yamaki et al., 1998). Similarly, mice deficient in Akt1, a vital serine/threonine protein 

kinase implicated in enhancing endothelial permeability, exhibited both a reduction in 

vascular permeability and neutrophil infiltration (Di Lorenzo et al., 2009), supporting the 

concept that vascular leakage may impact neutrophil migration. Hence, our 

understanding as whether microvascular leakage itself could impact neutrophil 

behaviour requires further exploration. This subject underpins the direction of this 

thesis, and hence requires an appreciation of the mechanisms of neutrophil recruitment 

and migration during inflammation. 

 

1.5. The Leukocyte adhesion cascade 

 

Under homeostatic conditions ECs maintain the integrity of the EC barrier via strict 

regulation in the expression and distribution of endothelial surface and junctional 

molecules (i.e. adhesion molecules) that are known to facilitate leukocyte recruitment 

and TEM. Following tissue damage or infection, DAMPs or PAMPs respectively, trigger 

downstream signalling to induce generation and/or release of cytokines and 

chemoattractants such as chemokines (e.g. CXCL1) by resident tissue and immune cells 

(Table 1.1), and elicit expression of EC surface adhesion molecules (Zindel and Kubes, 
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2020) (Table 1.2). Collectively these events lead to the recruitment of leukocytes from 

the blood circulation (Kolaczkowska and Kubes, 2013).  

 

Table 1.1. Chemokines and cytokines involved in neutrophil recruitment and tissue 
infiltration during inflammation in the murine system (non-exhaustive list). 

Molecule Cell Source  
Complementary 
Receptor 

Functions Reference 

CXCL1 
Pericytes, ECs, 
macrophages 

CXCR2, GAGs, 
ACKR1 

Mediates neutrophil 
adhesion and crawling 

(Pruenster et 
al., 2009; 
Novitzky-Basso 
and Rot, 2012; 
Thiriot et al., 
2017; Girbl et 
al., 2018) 

CXCL2 

Macrophages, 
monocytes, 
and 
neutrophils  

CXCR2, GAGs, 
ACKR1 

Mediates neutrophil 
TEM 

(Pruenster et 
al., 2009; 
Novitzky-Basso 
and Rot, 2012; 
Thiriot et al., 
2017; Girbl et 
al., 2018) 

CXCL3 Platelets CXCR2 

Regulates bioavailability 
of CXCL1 and CXCL2 via 
competitive binding to 
ACKR1 and GAGs. 
Mediates neutrophil 
tissue infiltration during 
viral infection 

(Sokulsky et al., 
2020) 

CXCL5 
Platelets, 
Epithelial cells 
(in the lung) 

CXCR2, GAGs, 
ACKR1 

Regulates bioavailability 
of CXCL1 and CXCL2 via 
competitive binding to 
ACKR1 and GAGs. 
Mediates neutrophil 
tissue infiltration, 
particularly in the lungs 

• (Koltsova and 
Ley, 2010; 
Newton and 
Dixit, 2012; Su 
and Richmond, 
2015)  

CCL2 

Macrophages, 
monocytes 
and dendritic 
cells 

CCR2 

Indirectly mediates 
neutrophil recruitment 
by inducing synthesis of 
chemoattractants such 
as LTB4  

(Reichel et al., 
2009; Newton 
and Dixit, 2012; 
Su and 
Richmond, 
2015) 

CCL5 
(RANTES) 

Platelets, 
neutrophils 

CCR5 
Mediates neutrophil 
recruitment and 
activation 

Tecchio et al., 
2014; Yu et al., 
2016; Pitchford 
et al., 2017) 
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Once attracted to the site of insult, leukocytes undergo several steps, collectively 

described by the leukocyte adhesion cascade that culminates in leukocyte TEM into the 

tissue (Fig. 1.7) (Ley et al., 2007; Muller, 2013). As the focus of this thesis is on neutrophil 

trafficking, the steps involved in neutrophil breaching of venular walls are described 

below.  

The leukocyte adhesion cascade is a tightly regulated process whereby neutrophils 

exhibit a number of luminal interactions with activated ECs, beginning with tethering 

and rolling of the neutrophils along the luminal surface of the endothelium. This is 

followed by neutrophil crawling, arrest and eventually TEM to exit the venular lumen. 

Beyond the endothelium, neutrophils exhibit abluminal motility and passage through 

the basement membrane and the pericyte layer prior to their entry into the interstitial 

tissue (Fig. 1.7). Over the past decade, our understanding of the leukocyte adhesion 

cascade has been accelerated in part due to development of confocal and fluorescent 

TNF 

Macrophages, 
monocytes, T-
cells, 
neutrophils 
and ECs 

TNFRI & TNFRII 

In the acute phase, TNF 
induces the NF-kB 
pathway, particularly in 
ECs, resulting in 
upregulation of pro-
inflammatory mediators 
including: ICAM-1, 
VCAM-1 and E-selectin, 
LTB4, IL-1β, IL-6, CXCL1, 
CXCL2, CCL5 and nitric 
oxide. The net result is 
enhanced leukocyte 
recruitment, migration 
and vasodilation 

(Carswell et al., 
1975; Yang, 
2005; Zhou et 
al., 2008; 
Flemming et al., 
2015) 

IL-1β 
Macrophages, 
ECs 

IL-1R 

Pro-inflammatory 
mediator and potent 
inducer of NF-kB 
pathway. Induces 
neutrophil recruitment 
and neutrophil 
activation at the site of 
inflammation 

(Prince et al., 
2004; Biondo et 
al., 2014; 
Dinarello, 2018; 
Fahey and 
Doyle, 2019) 

IL-6 
ECs, 
neutrophils 

IL-6Rα & gp130 

Pro-inflammatory 
cytokine that indirectly 
mediates during TEM 
via induction of CXCL1 
synthesis 

(Fielding et al., 
2008; Dinarello, 
2018; Fahey and 
Doyle, 2019)  
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microscopy techniques utilising reporter mice expressing EGFP specifically in neutrophils 

(Clausen et al., 1999; Stackowicz et al., 2020). 

 

Figure 1.7. The leukocyte adhesion cascade. The cascade constitutes several key steps: 

leukocyte capture, rolling, adhesion (strengthening and spreading), intraluminal crawling and 

TEM. During neutrophil capture and rolling, tethers and slings operate to facilitate selectin-

mediated weak and temporary holds on the EC surface. Integrins and chemokines mediate the 

transition towards neutrophil adhesion and crawling, before EC junctional molecules facilitate 

neutrophils to migrate through the EC barrier in either a para- or transcellular manner. 

Neutrophils then crawl on the abluminal EC surface before migrating through the basement 

membrane and pericyte layer to reach the inflamed site in the interstitial tissue. Key molecules 

involved at each step are depicted in boxes. ‘?’ indicate molecules with suspected but unproven 

involvement. Adapted from Ley et al., 2007, Voisin et al., 2013 and Vestweber et al., 2015.  

 

Table 1.2. Key endothelial cell adhesion receptors involved in the neutrophil adhesion 
cascade (Table adapted from Vestweber et al., 2015)* 

Receptor/ 
Molecule 

Neutrophil 
Ligand(s) 

Endothelial 
Ligand(s) 

Functions Reference 

E-selectin 
PSGL-1, 
HCAM, ESL-1 

None 

Capture and rolling 
of neutrophils, and 
triggering integrin 
activation 

(McEver, 2015; 
Vestweber and Blanks, 
1999; Abram and 
Lowell, 2013; 
Kotovuori et al., 1993; 
Hidalgo et al., 2007)  

P-selectin 
PSGL-1, 
HCAM 

None 
Capture and rolling 
of neutrophils, and 

(McEver, 2015; 
Vestweber and Blanks, 
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triggering integrin 
activation 

1999; Abram and 
Lowell, 2013) 

PSGL-1 L-selectin None 

Capture and rolling 
of neutrophils, and 
triggering integrin 
activation 

(Rosen, 2004; Martins 
et al., 2007) 

ICAM-1 
LFA-1,  
MAC-1 
 

None 

Rolling, adhesion 
and crawling of 
neutrophils, and 
triggering VE-
cadherin 
phosphorylation 

(Van Buul et al., 2007; 
Barreiro et al., 2002; 
Carman and Springer, 
2004) 

ICAM-2 
LFA-1,  
MAC-1 

None 
Neutrophil crawling 
and initiation of 
diapedesis 

(Halai et al., 2014; 
Woodfin et al., 2009) 

VCAM-1 VLA-4 None 

Rolling, adhesion 
and crawling of 
neutrophils, and 
triggering VE-
cadherin 
phosphorylation 

(Van Buul et al., 2007; 
Barreiro et al., 2002; 
Carman and Springer, 
2004) 

JAM-A LFA-1 JAM-A 
Neutrophil 
diapedesis 

(Nourshargh et al., 
2006; Ostermann et 
al., 2002; Martìn-
Padura et al., 1998; 
Schmitt et al., 2014) 

JAM-B 
VLA-4 (in 
combination 
with JAM-C) 

JAM-B, JAM-C Unknown 
(Cunningham et al., 
2002; Aurrand-Lions et 
al., 2005) 

JAM-C MAC-1 JAM-B, JAM-C 
Prevents reverse 
transmigration of 
neutrophils 

(Woodfin et al., 2011; 
Aurrand-Lions et al., 
2005; Colom et al., 
2015) 

ESAM Unknown ESAM 

Neutrophil 
diapedesis and 
supporting the 
induction of 
increased 
permeability 

(Wegmann et al., 
2006; Nasdala et al., 
2002) 

PECAM-1 PECAM-1 PECAM-1 

Triggering the LBRC 
in ECs; supports 
disconnection of 
neutrophils from 
ECs and their 
passage through 
the basement 
membrane 

(Muller, 1995; 
Nourshargh et al., 
2006; Mamdouh et al., 
2003) 

CD99 CD99 CD99 

Triggering the LBRC 
in ECs; supports 
disconnection of 
neutrophils from 
ECs and their 
passage through 

(Schenkel et al., 2002; 
Bixel et al., 2007; Lou 
et al., 2007; Dufour et 
al., 2008) 



45 
 

the basement 
membrane 

CD99L2 
Possibly 
CD99L2 

CD99L2 

Supports 
neutrophil 
disconnection from 
ECs and passage 
through the 
basement 
membrane 

(Bixel et al., 2007; 
Schenkel et al., 2007; 
Seelige et al., 2013) 

VE-
cadherin 

None VE-cadherin 

EC junctional 
barrier and 
prevention of 
neutrophils 
diapedesis 

(Gotsch et al., 1997; 
Schulte et al., 2011; 
Wessel et al., 2014) 

*Neutrophil transmigration is a highly complex process and this table does not represent an 

exhaustive list of the relevant receptor/ligand pairs.  

 

1.5.1. Neutrophil capture and rolling 

 

The first stage of the leukocyte adhesion cascade following neutrophil recruitment is 

their capture and rolling along the endothelium. These responses are mediated by two 

key factors: the physical hydrodynamic forces exerted by the blood flow on the 

neutrophil and the surface molecules expressed by both neutrophils and on the apical 

EC membrane (see Table 1.2). Capture of neutrophils is predominately facilitated via the 

expression of various glycoproteins, principally selectins, including the highly conserved 

L- E- and P-selectins (Kansas, 1996), while rolling is mediated primarily by selectin- but 

also to a lesser extent, integrin-interactions.  

L-selectin is mainly expressed by leukocytes and is the principal selectin required for 

their capture on ECs (Rosen, 2004). P-selectin can be both newly synthesised and 

mobilised to the EC surface from intracellular WPBs stores, upon pro-inflammatory 

stimulation (Huo et al., 2003; Hidalgo et al., 2007). E-selectin expression however, 

requires de novo synthesis by activated EC, a response that peaks after 4-6 hr.  

Selectins predominantly interact with P-selectin glycoprotein ligand-1 (PSGL-1) that is 

expressed on ECs and neutrophils (Table 1.2). During inflammation, PSGL-1 undergoes 

post-translational modification known as glycosylation (Rosen, 2004; Martins et al., 

2007; Sperandio et al., 2009) that appends the tetrasaccharide carbohydrate, sulphated-
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siayl-Lewisx region; an essential domain that enhances the binding capacity of PSGL-1 to 

the lectin-binding domain (LBD) of the selectin (Bevilacqua and Nelson, 1993; Zarbock 

et al., 2011). Of note, selectins can form additional interactions with homing cell 

adhesion molecule (HCAM, also known as CD44) and E-selectin ligand-1 (ESL-1) 

expressed by neutrophils (refer to Table 1.2). In the blood, these interactions are 

initiated by a pushing force exerted on neutrophils away from the centre of the vessel 

where the hydrodynamic velocity is greatest, and towards the vascular wall where the 

hydrodynamic velocity is lower. Here, under conditions of high shear stress (i.e. close to 

the EC wall), neutrophils extend cell membrane protrusions termed ‘tethers’, which 

contain PSGL-1 and L-selectin rich domains (Alon et al., 1997; Ramachandran et al., 

2004). At the vascular wall, neutrophil PSGL-1-decorated membrane tethers caress the 

endothelial surface and bind EC expressed P- and E-selectin, while L-selectin expressed 

by neutrophils interacts with EC-bound PSGL-1 (Sundd et al., 2012, 2013). These tethers 

constitute a weak and temporary capture of the neutrophil to the endothelium. 

However, as the hydrodynamic velocity is greater nearer the luminal facing edge of the 

neutrophil (i.e. closest to the centre of the vascular lumen), a hydrodynamic ‘drag’ is 

generated which causes the neutrophil to roll along the endothelium in the direction of 

blood flow. This rolling behaviour manifests as a continuous breaking of ‘backend’ PSGL-

1 – P-/E-/L-selectin tethers which then swing around to the ‘front end’ of the cell to form 

new sling-like interactions with the endothelium (Sundd et al., 2012, 2013).  

The importance of selectins in mediating neutrophil rolling has been shown through the 

use of selectin KO mice. In the context of bacterial mediated inflammation, P- and E- 

selectin KO mice all exhibited poor rolling capabilities and consequently neutrophil 

extravasation and thus had a greater susceptibility to infection (Mayadas et al., 1993; 

Bullard et al., 1996; Frenette et al., 1996). Likewise, L-selectin null mice exhibited poor 

neutrophil recruitment and tissue infiltration responses (Arbonés et al., 1994; Tedder et 

al., 1995). Similar responses are presented in human disease, such as leukocyte adhesion 

deficiency II, where patients often suffer from recurring infections. This occurs due to a 

defect in fucosyl transferases (or other related enzymes) that leads to a reduced capacity 

to form the sulphated-siayl-Lewisx
, which renders the selectins non-functional (Becker 

and Lowe, 1999).  
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During rolling, selectin-PSGL-1 interactions also facilitate the establishment of integrin-

mediated attachments that stabilise the rolling phase and extend the lifetime of 

selectin-ligand bonds. This occurs via upregulation of several signalling pathways e.g. 

activation of the intracellular neutrophil p38 mitogen-activated protein kinase (p38-

MAPK) pathway, which leads to conformational changes in neutrophil surface expressed 

LFA-1, resulting in a higher-avidity for EC-expressed ICAM-1 (Sigal et al., 2000; Simon et 

al., 2000). Neutrophil rolling is further supported by additional interactions between 

neutrophil-derived integrins VLA-4 and LFA-1 and EC surface VCAM-1 and ICAM-1 (see 

Table 1.2) (Giagulli et al., 2006; Rullo et al., 2012). Both selectin and integrin interactions 

are concomitantly supported by flattening of leukocytes, which not only reduces the 

hydrodynamic forces exerted on the cell, but also increases the physical footprint of the 

cell, a phenomenon that further strengthens neutrophil-EC interactions (Sundd et al., 

2012). Collectively, these interactions result in slower rolling of the neutrophil and 

facilitate the transition to firm adhesion as discussed in more detail below. 

 

1.5.2. Neutrophil adhesion and luminal crawling 

 

Neutrophil adhesion and crawling are fundamentally mediated by chemokine and 

integrin signalling. Cell flattening enhances the exposure of the neutrophil surface to EC-

derived chemokines (Table 1.1) and integrins (Nourshargh and Alon, 2014). Chemokines 

play an essential role in transitioning a predominantly selectin mediated process to an 

integrin supported response. Specifically, CXC chemokines such as CXCL8 and its murine 

homologues CXCL1, 2 and 5 (defined by their glutamine-leucine-arginine (ELR) motif 

adjacent to the cysteine residue) are particularly important in mediating neutrophil firm 

adhesion and intra-luminal crawling. Neutrophils are able to detect these chemokines 

via surface G-protein coupled receptors (GPCR), primarily CXCR2 (Olson and Ley, 2002).  

During an inflammatory insult, these chemokines are produced by a variety of tissue 

resident cells (e.g. macrophages, pericytes and ECs) and recruited leukocytes, including 

neutrophils. Activated ECs have the capacity to traffic chemokines originating from the 

interstitial tissue from their abluminal- to luminal-surface via transcytosis. For example, 

the atypical chemokine receptor 1 (ACKR1), known to be expressed by RBCs and ECs, 
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can actively bind, retain and transcytose chemokines across the EC body, where they 

are then presented to immune cells such as neutrophils (Rot, 2010). Together, 

chemokines are predominantly retained and presented to neutrophils by 

glycosaminoglycans (GAGs) of the endothelial glycocalyx, a hydrated continuous surface 

of carbohydrates on the luminal side of the blood vessel (Reitsma et al., 2007; Proudfoot 

et al., 2017; Uchimido et al., 2019) and by ACKR1 at EC junctions (Pruenster et al., 2009; 

Novitzky-Basso and Rot, 2012; Thiriot et al., 2017; Girbl et al., 2018). Precise 

presentation of chemokines in this manner facilitates neutrophil adhesion, intraluminal 

crawling and sensing of sites along the endothelium for TEM to occur (Proudfoot, 2015). 

How these chemokines are presented to leukocytes has been proposed via two distinct 

models, the ‘bridge’ and the ‘cloud’ model (Majumdar et al., 2014; Proudfoot, 2015). 

The bridge model proposes that chemokines simultaneously bind to ECs by GAG chains 

and to their cognate leukocyte-expressed receptors. However, this model remains 

contentious as in vitro binding assays have shown that GAGs and GPCR receptors 

compete for chemokine binding (Proudfoot, 2015). This dynamic equilibrium could be 

dependent on the conformation and dimerization of chemokines. This concept has been 

demonstrated for the human chemokine, lymphotactin (XCL1), which has two structural 

forms: the classic form which has greater affinity for GAG-binding and the beta-sheet 

fold form which has greater affinity for receptor binding (Tuinstra et al., 2008). In 

addition, the CXCL12 receptor CXCR4, is able to avidly bind chemokine dimers but doing 

so prohibits additional binding to GAG chains due to spatial interference (Veldkamp et 

al., 2008). Thus, for these reasons, the bridge model is generally unfavoured, as 

chemokines seem to be limited to binding to GAGs or the receptors at any one time due 

to steric limitations.  

The more recently proposed ‘cloud’ model propositions that newly released chemokines 

are retained within the glycocalyx, which acts as a reservoir of chemotactic molecules. 

The latter could provide directional cues for leukocytes while preventing the chemokine 

from being washed away by vascular shear flow. In this model, chemokines continuously 

associate and dissociate from GAGs, thus existing in a soluble phase within the hydrated 

aqueous layer of the glycocalyx (‘cloud’). It is believed that such a microenvironment 

provides sufficient amount of free chemokine within the glycocalyx that facilitates 

stimulation of leukocyte cognate receptors. Additionally, this results in directed 
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penetration of the receptor bearing filopodia into the glycocalyx, thereby facilitating 

integrin interactions and hence firm adhesion (Middleton et al., 1997; Pruenster et al., 

2009). The concept of free chemokine being the active form has been supported by Ab 

blockade experiments. For example, a study using Abs with differing affinities for soluble 

and bound forms of the chemokine CXCL10 (T-cell chemoattractant) provided evidence 

that targeting the soluble form of the molecule was more efficacious in the control of 

the pathogenesis associated with many diseases including diabetes (Bonvin et al., 2017). 

During chemokine-mediated activation of neutrophils, the response switches from a 

predominantly selectin- to an integrin- mediated reaction (Rot and von Andrian, 2004). 

Under homeostatic conditions, integrins are maintained in their non-active 

conformation, exhibiting low affinity towards adhesion molecules on the EC membrane 

(Kinashi and Katagiri, 2005). However, following ligation of specific 

chemokine/chemoattractants with their respective GPCR, a complex network of 

signalling pathways are activated resulting in integrin activation. This response often 

occurs within minutes, culminating in leukocyte arrest under conditions of shear-stress 

(Shamri et al., 2005). This process is more commonly known as ‘inside-out’ signalling 

(Ley et al., 2007). Through this process, integrins switch from a low- to an intermediate- 

and then high-affinity conformational state, whereby the ligand binding pocket is 

exposed allowing for strengthened neutrophil-EC binding (Kinashi and Katagiri, 2005; 

Arnaout et al., 2005). Integrin-mediated ‘outside-in’ signalling can also facilitate 

strengthening of leukocyte adhesion in addition to supporting other intracellular 

pathways that aid in cell motility, proliferation and apoptosis (Fig. 1.8) (Shattil, 2005; 

Giagulli et al., 2006; Shattil et al., 2010).  
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Figure 1.8. Regulation of integrin activation. The avidity of αβ-integrins for their ligands is 

defined by their affinity state and their valency. Right: Chemokine-triggered signalling via 

ligation to cell surface GCPRs (not shown, see text) induces complex intercellular signalling 

leading to the recruitment of cytoskeletal activators (e.g. talin) to the cytoplasmic domain of the 

integrin. This induces a conformational change in the ectoplasmic domain integrin, switching 

from a bent, low-ligand affinity conformation to a linear, high-affinity conformation. This process 

is known as ‘inside-out’ signalling and bolsters the ability of integrins support rearrangement of 

the neutrophil actin cytoskeleton and flattening of the cell; an essential part of neutrophil 

adhesion and crawling. Left: Integrin avidity is also supported by changes in the integrin valency, 

in which activated integrins form clusters, enabling multivalent interactions with their cognate 

ligands (e.g. ICAM-1, VCAM-1), more commonly referred to as ‘outside-in’ signalling. 

Consequentially, ligand-induced ‘outside-in’ signalling results in changes in cell polarity, survival, 

proliferation, gene activation and cytoskeletal rearrangement. Adapted from Shattil et al., 2010. 

 

A change in integrin conformation is not the only factor influencing ligand avidity. For 

instance, valency of the integrins is also determined via lateral clustering of these 

receptors, allowing for greater receptor-ligand interactions (Fig. 1.8). Neutrophils 

express an array of integrins on their cell surface which are available to interact with 

their EC counterparts (see Table 1.2) (Muller, 2013; Nourshargh and Alon, 2014). 

Following integrin-mediated cell arrest on the endothelium, the neutrophil undergoes 

cytoskeletal rearrangements to facilitate leukocyte spreading mediated by ‘inside-out’ 

signalling mechanisms. The leukocyte can be seen to transition from a rounded 

morphology (as observed during leukocyte capture and rolling) to a flattened, more 

polarised morphology, in which the leukocyte develops a lamellipodium (leading edge) 
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and a uropod (trailing edge) (Nourshargh et al., 2010). F-actin polymerisation occurs at 

the lamellipodium, whereas actin-myosin contraction occurs at the uropod allowing for 

intra-luminal crawling along haptotactic gradients established by various 

chemoattractants (Phillipson et al., 2006). Neutrophil crawling is supported by integrins, 

principally interactions between MAC-1 with EC expressed ICAM-1. This is mediated via 

the formation of new bonds at the lamellipodium that are simultaneously broken at the 

uropod to enable neutrophil crawling across the endothelium, a response that ensures 

continuous contact between leukocytes and the endothelium, until a site of TEM is 

identified (Phillipson et al., 2006; Xu et al., 2011). At this point, it is vital that integrins 

are inactivated, for example, by the intracellular signalling molecule ARAP3 (McCormick 

et al., 2019), to allow neutrophils to deform and progress through the EC barrier. 

 

1.5.3. Neutrophil transendothelial migration (TEM) 

 

Neutrophil transmigration is a process whereby leukocytes penetrate the EC monolayer 

(i.e. exhibit TEM), while ensuring minimal disruption of the vascular barrier integrity to 

macromolecules. (as described in Chapter 3). TEM can occur through para- or trans-

cellular routes, with the former being by far the most common mode (Schenkel et al., 

2004; Phillipson et al., 2006; Woodfin et al., 2011) (Fig. 1.9). Both types of TEM rely on 

selective and tightly regulated interactions between the leukocyte and a multitude of 

adhesion molecules decorated on the endothelial membrane, including immunoglobin-

like superfamily members PECAM-1, ICAM-1/2, JAM-A/B/C, VE-cadherin and ESAM and 

non-immunoglobulin-like CD99, as detailed in Fig. 1.9 and section 1.5.3.1 (Muller, 2016). 

The contribution of each of these molecules to TEM can vary depending on the leukocyte 

subtype, the stage of leukocyte diapedesis and the stimulus used (Huang et al., 2006; 

Woodfin et al., 2007b, 2009). In vitro, neutrophil TEM is supported via the formation of 

endothelial adhesive platforms (EAP) exhibiting ICAM-1 and VCAM-1 enriched domains, 

which serve as docking structures (Phillipson et al., 2008). During TEM, these docking 

structures are believed to form a hermetic seal surrounding the neutrophil to maintain 

barrier function (i.e. non-permeable to plasma proteins). The formation of these docking 

structures requires Src-dependent phosphorylation of the actin binding protein, 

cortactin, which has been proposed to be induced by ICAM-1-MAC-1 interactions 
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(Muller, 2011). These defined docking structures form linear clusters of integrins on the 

surface of the endothelium in the direction of migration for both paracellular and 

transcellular TEM. Whilst the factors that determine the route of TEM remain largely 

unclear, one possibility is an effective crawling capability of cells prior to extravasation. 

For example, if crawling is halted due to insufficient interactions between MAC-1 and 

ICAM-1, then transcellular migration is favoured (Ley et al., 2007). 

 

 

Figure 1.9. (A) Paracellular and (B) transcellular neutrophil TEM showing the important 

molecules involved for each mode of transmigration. Following neutrophil-EC adhesion via 

ICAM-1/MAC-1/LFA-1, neutrophils terminate crawling at the sight of transmigration. 

Paracellular migration is mediated by several junction-specific adhesion molecules including 

PECAM-1, CD99, ESAM and JAMs, in addition to dissociation of VE-cadherin intercellular dimers. 

Transcellular migration occurs in “thin” regions of the endothelium and involves translocation 

of ICAM-1 towards actin- and caveolin-rich domains. ICAM-1 containing VVOs form an 

intracellular pore that guides the neutrophil through the EC body. Figure adapted from Ley et 

al., 2007. 

 

Neutrophil paracellular migration 

 

In vivo, approximately 90% of neutrophils migrate through the EC barrier in a 

paracellular manner, i.e. through EC junctions (Fig. 1.9A). Paracellular neutrophil 

migration can be very rapid, typically requiring between 5-7 min to complete (Woodfin 

et al., 2011). Furthermore, during paracellular TEM, neutrophils typically migrate 

through tricellular EC junctions as these sites have ‘looser’ junctional integrity, and thus 

due to the reduced resistance, are more accommodating for neutrophils to migrate 

through (Sumagin and Sarelius, 2010).  

A B 
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Neutrophil paracellular TEM is a multifaceted process that requires EC junctional 

rearrangements as supported by intracellular RhoGTPase activation and increased Ca2+ 

influx, which results in activated MLC kinases and consequent EC contraction (Ley et al., 

2007). Furthermore, this response is mediated either by the redistribution of certain 

junctional molecules away from the EC junction (e.g. VE-cadherin) (Shaw et al., 2001), 

or by targeted translocation of other junctional proteins towards the neutrophil (e.g. 

PECAM-1 and JAM-A). The latter enables the establishment of a “haptotactic gradient” 

of adhesion molecules that facilitate the movement of neutrophils toward EC junctions 

to extravasate (Muller, 2003). Under basal conditions, PECAM-1, JAM-A and CD99 

shuttle between the EC surface and a cell-surface-connected vesicular compartment 

known as the lateral border recycling compartment (LBRC). During inflammation, the 

LBRC membrane is preferentially mobilised to the site of neutrophil diapedesis to 

promote TEM (Mamdouh et al., 2003). In addition, adherens molecules such as VE-

cadherin dissociate from the membrane and are internalised resulting in reduced 

junctional integrity whilst maintaining tightly regulated passage of neutrophils (Schulte 

et al., 2011) (further details on key junctional molecules required for neutrophil TEM are 

described in section 1.5.3.1).  

Of particular interest in the context of this thesis, specific adhesion molecules have been 

shown to mediate different stages of neutrophil TEM in a stimulus specific manner. For 

example, following IL-1β-stimulation, ICAM-2 has been shown to be particularly 

important in guiding neutrophils to EC junctions, whereas JAM-A and PECAM-1 

mediated migration through the EC junction and basement membrane, respectively 

(Woodfin et al., 2009). However, neutrophil TEM induced by other stimuli such as fMLP, 

LTB4 and TNF was independent of these junctional molecules (Huang et al., 2006; 

Nourshargh et al., 2006; Woodfin et al., 2007b) but was dependent on the integrins 

MAC-1 and LFA-1 (Sumagin et al., 2010). 

 

Neutrophil transcellular migration 

 

The least understood of the two routes, transcellular migration, is defined as 

translocation of a cell directly through the EC body and has predominantly been 
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observed within in vitro models and in the vasculature of the central nervous system 

(CNS) (Fig. 1.9B) (Engelhardt and Wolburg, 2004). This route of leukocyte migration 

appears to use much of the same molecular machinery to that employed by paracellular 

migration (Filippi, 2016). For example, PECAM-1, JAM-A and CD99 were observed 

around the site of neutrophil transcellular migration (Carman et al., 2007; Mamdouh et 

al., 2009), and blocking anti-PECAM-1 and anti-CD99 Abs arrested transcellular 

migration (Mamdouh et al., 2009). A key mechanistic distinction from paracellular TEM 

is that VVOs have been observed in vivo at the location of neutrophil firm adhesion 

where they have been suggested to play a role in facilitating transcellular TEM (Dvorak 

and Feng, 2001). Following ligand activation of EC ICAM-1 by neutrophil LFA-1, apical 

ICAM-1 is internalised and translocated to caveolae and F-actin rich domains. These 

ICAM-1-containing caveolae then fuse to form VVOs, thereby forming a transcellular 

pore (Millán et al., 2006; Nieminen et al., 2006). Structural support of these EC pores is 

further aided by the ezrin, radixin and moesin (ERM) complex that links the cytoskeleton 

to these ICAM-1 rich pores. This cascade of events results in EC ‘thinning’ facilitating 

neutrophil migration through the EC body (Feng et al., 1998). 

 

1.5.3.1. Key endothelial junctional molecules involved in neutrophil TEM 

 

As briefly introduced in section 1.4 and Table 1.2, EC junctional molecules play a vital 

role in mediating neutrophil TEM. This section aims to provide further insight into some 

of the key molecules involved in this response.  

 

VE-cadherin 

 

As discussed in section 1.4.3, neutrophils are able to induce vascular leakage through 

the release of a variety of pro-inflammatory factors. Several of these induce disruption 

of the EC barrier by stimulating phosphorylation and internalisation of VE-cadherin 

through the mechanisms discussed in section 1.4.2. More recently, Wessel and 

colleagues described a knock-in mouse model with a single point mutation in tyrosine 

731 residue of VE-cadherin, VEC-Y731F (Wessel et al., 2014). In these mice, the Y731 
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residue can no longer be dephosphorylated and was shown to distinctly impact 

leukocyte migration independent of vascular permeability, whereby mice exhibited an 

approximate 50% reduction in neutrophil extravasation following IL-1β stimulation. 

Neutrophils were shown to trigger dephosphorylation of Y731 through a Src homology 

region 2 domain-containing phosphatase (SHP)-2-dependent mechanism, which 

enabled the binding of the adapter molecule activating protein (AP)-2 to VE-cadherin, 

resulting in its endocytosis. 

 

JAMs 

 

The JAMs are an immunoglobulin-like superfamily consisting of three key junctional 

molecules: JAM-A, -B and -C. JAMs are expressed on leukocytes, platelets, epithelial and 

ECs and play a vital role in mediating leukocyte migration and permeability. JAM protein 

expression can be upregulated under inflammatory, atherosclerotic and ischaemic 

conditions, which supports leukocyte adhesion via their redistribution away from the EC 

intercellular junctions to the apical cell surface (Weber et al., 2007). JAM-A is 

predominantly expressed and concentrated on EC boarders and engages primarily in 

homophilic interactions, but it can also interact with LFA-1 expressed on the surface of 

leukocytes to facilitate neutrophil TEM (Ostermann et al., 2002). Indeed, in vivo 

blockade of JAM-A results in inefficient neutrophil migration (Woodfin et al., 2009). 

JAM-C likewise is concentrated at EC borders and can engage in homophilic interactions 

but additionally in heterophilic interactions with JAM-B and MAC-1. JAM-C-JAM-B 

interactions have been shown to play a vital role in facilitating luminal-to-abluminal 

neutrophil migration in vitro and in vivo (Chavakis et al., 2004; Cunningham et al., 2002; 

Bradfield et al., 2007a; Woodfin et al., 2011). Additionally, JAM-C has been implicated in 

supporting vascular permeability, though this aspect of JAM-C biology remains 

contentious (see Chapter 3 & 4). 
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PECAM-1 

 

PECAM-1 is a member of the immunoglobulin-like superfamily of proteins and expressed 

by platelets and a wide variety of cells including monocytes, neutrophils and ECs. With 

respect to ECs, PECAM-1 forms homodimers between adjacent cells and leukocytes to 

facilitate neutrophil migration during inflammation (Schenkel et al., 2004). PECAM-1 has 

also been shown to engage in heterophilic interactions with GAGs, CD38 and CD117 

(DeLisser et al., 1993; Deaglio et al., 1998; Sachs et al., 2007). PECAM-1 function has 

been determined through a series of Ab blocking experiments or use of PECAM-1 

deficient mice that display poor leukocyte migration responses into the peritoneum, 

mesentery and cremaster muscle during IL-1β-mediated inflammation. These effects 

were linked to both a reduction in penetration of EC junctions and an accumulation of 

leukocytes in the subendothelial space (Thompson et al., 2001; Dangerfield et al., 2002; 

Schenkel et al., 2006; Woodfin et al., 2007a; b). The latter effect was aligned with the 

ability of neutrophil PECAM-1 ligation to mobilise expression of the principal laminin 

receptor, integrin VLA-6, on the neutrophil surface (Dangerfield et al., 2002).  

 

CD99 

 

CD99 is another cell adhesion molecule that has been shown to play a role in paracellular 

neutrophil TEM (Bixel et al., 2007). Similar to PECAM-1, EC junctional CD99 forms 

homophilic interactions between adjacent ECs or leukocytes to facilitate their 

diapedesis into the interstitial tissue (Schenkel et al., 2002; Lou et al., 2007). Following 

IL-1β stimulation, CD99 has been shown to act sequentially after PECAM-1 to facilitate 

neutrophil TEM. Here, in HUVEC monolayers treated with an anti-CD99 blocking Ab, 

leukocytes exhibited only partial diapedesis through the endothelium, but once 

leukocytes reached this point, further progression through the EC junction could not be 

inhibited by the sequential application of an anti-PECAM-1 blocking Ab. However, 

PECAM-1 blockade resulted in enhanced leukocyte arrest on the apical EC surface with 

reduced diapedesis. Although, as discussed above, sequential blockade with an anti-

PECAM-1 Ab may restrict progression through the pericyte layer. However, this does 
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suggests that PECAM-1 is one of the first interactions involved in neutrophil diapedesis 

through the EC junction (Schenkel et al., 2002; Dufour et al., 2008).  

 

ICAMs 

 

ICAM-1 and ICAM-2 have several functions during leukocyte TEM and are expressed by 

neutrophils and by ECs on their apical surface (ICAM-1 & ICAM-2) and at the junctions 

(ICAM-2) (Muller, 2016). Whilst ICAM-1 is primarily associated with the earlier stages of 

the leukocyte adhesion cascade, it appears that clusters of ICAM-1 near EC junctions 

direct adherent neutrophils towards sites of paracellular TEM (Shaw et al., 2004). ICAM-

2 however plays a key role in mediating neutrophil migration through EC junctions 

(Huang et al., 2006; Halai et al., 2014) via interactions with LFA-1 and MAC-1 during IL-

1β-, but not TNF-induced inflammation (Woodfin et al., 2009). Interestingly, despite its 

constitutive expression on ECs and neutrophils, the role of ICAM-2 in neutrophil 

migration is primarily governed by its EC, and not neutrophil, expression. 

 

ESAM 

 

ESAM is mainly limited to expression by ECs and platelets and has a similar molecular 

structure to JAMs, but with a longer cytoplasmic tail. Like JAMs and PECAM-1, ESAM 

expressed by ECs engages in homophilic interactions in trans with adjacent ECs (Nasdala 

et al., 2002). ESAM deficient mice exhibit a transient defect in neutrophil migration 

following peritoneal thioglycollate treatment. This is characterised by decreased TEM 

after 2 hr of stimulation that recovers at 4 hr post stimulation, though the mechanism 

of this effect is largely unknown (Wegmann et al., 2006). Of interest, ESAM has also been 

shown to be important in preventing endothelial permeability, whereby ESAMKO mice 

exhibited enhanced vascular leakage in a model of diabetic nephropathy (Hara et al., 

2009). 
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1.5.4. Neutrophil migration through the venular basement membrane and 

pericyte sheath  

  

After neutrophils migrate through the EC layer, they are then required to progress 

through the basement membrane and pericyte sheath before entering the interstitial 

space. The basement membrane is an extracellular matrix protein complex produced by 

both the ECs and pericytes (Jaffe et al., 1976; Davis and Senger, 2005; Stratman and 

Davis, 2012). This tight structure consists of two key networks of collagen and laminins 

(mainly collagen type IV and laminins 8 and 10) that are interconnected via smaller 

molecules such as heparin sulphate proteoglycans, perlecan and nidogen-2 (Hallmann 

et al., 2005). Neutrophil migration through the basement membrane and pericyte 

sheath takes much longer than TEM, lasting approximately 30-45 min (Ley et al., 2007; 

Woodfin et al., 2011; Proebstl et al., 2012).  

During neutrophil migration, the basement membrane undergoes neutrophil-

dependent remodelling. Under basal conditions ‘low expression regions’ (LERs) have 

been identified in the venular basement membrane, that are defined as sites with lower 

expression of certain matrix proteins (e.g. collagen type IV, laminin-8, laminin-10, 

nidogen, but not perlecan). The size of these regions enlarges during neutrophil TEM in 

a protease-dependent manner, providing evidence for the involvement of NE in 

neutrophil migration through the basement membrane. Furthermore, these weaker 

membrane regions correlate with pericyte gaps (Wang et al., 2006; Voisin et al., 2009, 

2010; Proebstl et al., 2012) and as such, LERs may also allow the site to be more 

permeable to chemoattractants. Hence, although not yet proven, LERs could aid in the 

generation of chemotactic gradients that guide neutrophils to these regions (Ley et al., 

2007). In addition, heparin sulphate GAGs on the abluminal surface of ECs and 

throughout the basement membrane have been shown to retain chemokines, which 

conceptually should be important for guiding neutrophil migration towards the 

interstitial tissue (Stoler-Barak et al., 2014; Monneau et al., 2016) (detailed in section 

1.5.2). Finally, as mentioned above (section 1.5.3.1), the interaction of EC and neutrophil 

PECAM-1 results in upregulation of the neutrophil-derived integrin, VLA-6, which is the 

main receptor for laminins and has been shown to support neutrophil movement 

through the basement membrane (Dangerfield et al., 2002). 
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Pericytes are the second cellular layer of post-capillary venules that are also present on 

capillaries, lymphatics but to a lesser extent on veins and arteries. They surround the EC 

monolayer in a non-uniform manner resulting in a discontinuous EC coverage 

(Nourshargh and Alon, 2014). Pericytes are able to mediate the transition of neutrophils 

into the interstitial tissue through the expression of various receptors including TNF-

receptor (TNFR)I/II, IL-1R, ICAM-1, VCAM-1 and secretion of chemokines (e.g. CXCL1). In 

particular, expression of ICAM-1 on pericytes supports neutrophil abluminal crawling in 

a MAC-1-dependent manner prior to breaching of the pericyte layer (Proebstl et al., 

2012; Voisin and Nourshargh, 2013).  

Collectively, through these tightly regulated interactions, neutrophils navigate through 

the venular basement membrane and the pericyte layer to egress from the vasculature 

into the interstitial tissue. 

 

1.5.5. Interstitial neutrophil migration 

 

Once in the interstitium, neutrophils respond to established chemotactic gradients to 

reach the core of the inflammatory insult. This migration is aided by precise, hierarchical 

and sequential presentation of various chemotactic molecules. fMLP and complement 

component 5a (C5a) are known as end-target chemoattracts towards which neutrophils 

migrate with greater preference over gradients established by secondary 

chemoattractants (e.g. LTB4 and CXCL1) (Foxman et al., 1997). Indeed, fMLP is the most 

potent chemoattractant and sits at the top of the ‘presentation hierarchy’ (Heit et al., 

2002). The nature of neutrophil responses to these mediators is governed via the 

regulation of specific intracellular pathways. LTB4, for example, activates 

phosphoinositide 3-kinase (PI3K) signalling, whereas fMLP and C5a activate both PI3K 

and MAPK signalling that function to induce neutrophil polarisation and migration, 

respectively, towards the site of primary insult within the interstitial tissue. This process 

supports the formation of neutrophil swarms at the site of insult. Neutrophils have been 

observed to exhibit transient swarming, whereby they remain at the site for a few 

minutes, or persistent swarming whereby neutrophil presence at the site is more 

sustained. This neutrophil swarming behaviour has been suggested to be influenced by 
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several factors including the size of the initial tissue damage, the presence of pathogens, 

the volume of neutrophils recruited and the level of resulting cell death (Kienle and 

Lämmermann, 2016). Once at the core of the inflammatory trigger, neutrophils perform 

effector functions such as phagocytosis of microbes or dead cells, 

degranulation/intracellular killing and modulation of the immune response through the 

release of various pro-inflammatory and growth factors (described in section 1.3). 

 

1.6. Neutrophil reverse migration  

 

Following acute injury or infection it is vital that neutrophils are able to reach the area 

of insult quickly and efficiently. Typically, neutrophils migrate in a luminal-to-abluminal 

direction, however, there is now extensive evidence that during certain inflammatory 

reactions, a proportion of neutrophils can undergo reverse interstitial migration (rIM) 

and/or reverse transendothelial migration (rTEM). For example, during neutrophil rTEM, 

observed in post-capillary venules of the cremaster muscle, neutrophils breach the 

endothelium (~20-100% of their cell body) but never progress through the pericyte 

layer, before moving in an abluminal-to-luminal direction and returning back into the 

circulation (Woodfin et al., 2011; Colom et al., 2015). Incidences of leukocyte rTEM were 

initially identified in vitro by Randolph and Furie, who observed reverse migration of 

human derived monocytes through cultured endothelial monolayers (Randolph and 

Furie, 1996). A decade later, Buckley and colleagues reported that neutrophils undergo 

rTEM through cultured ECs in vitro (Buckley et al., 2006). However, it was not until 2011 

that neutrophil rTEM was first observed in vivo in a mammalian system (Woodfin et al., 

2011). Here, following IR-injury of the cremaster muscle, reverse motility of neutrophils 

was clearly observed and quantified at the level of the endothelium (Woodfin et al., 

2011). Interestingly, this in vivo neutrophil rTEM response was noted to be stimulus 

specific, occurring in tissues stimulated with LTB4 or IR-injury, but not following the 

application of IL-1β. The underlying cause of this phenomenon remains largely unknown 

but some possibilities are discussed in Chapter 4.  

Neutrophils have also been observed to undergo rIM, whereby neutrophils fully migrate 

into the interstitial tissue before exhibiting reverse motility toward the blood vessel, 
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followed in some instances by rTEM back into the vascular lumen (Ellett et al., 2015; 

Wang et al., 2017). Neutrophil rIM was first observed in the zebrafish following sterile 

laser burn injury of the tail fin (Mathias et al., 2006; Yoo and Huttenlocher, 2011). 

Neutrophil swarming at the site of injury was observed to peak after 6 hr post injury, 

with neutrophils being observed to migrate away from the injured interstitial site as 

soon as 3 hr post injury (Mathias et al., 2006). Neutrophil rIM was later observed in 

murine models developed by Wang and colleagues using laser induced liver injury 

(Wang et al., 2017). The occurrence of neutrophil rIM in the liver raises the possibility of 

tissue/vasculature specific effects in determining the frequency of neutrophil rTEM and 

neutrophil rIM + rTEM.  

 

1.6.1. Functional consequences of neutrophil rTEM  

 

Our understanding of the (patho)physiological relevance of reverse neutrophil migration 

remains poor and thus far has only been indirectly linked to pathological outcomes. For 

example, reactions that induce neutrophil rTEM in the locally inflamed mouse cremaster 

muscle resulted in the development of distal lung oedema (Woodfin et al., 2011; Colom 

et al., 2015). However, if and how rTEM neutrophils can induce distant organ damage 

remained unclear and was indeed a key subject of this thesis (Chapter 5). Here, a 

principal hypothesis is that as neutrophils initiate diapedesis through the EC layer, they 

become primed/activated and as such their return into the circulation and potential 

dissemination to distant organs (e.g. lungs) could lead to distant organ injury. This notion 

is supported by the findings of Buckley et al., who identified that isolated rTEM 

neutrophils in vitro exhibited increased expression of ICAM-1 and generation of ROS. 

Furthermore, although indirect, they identified a population of ICAM-1high neutrophils in 

the blood of patients suffering from rheumatoid arthritis (RA) (Buckley et al., 2006). This 

data is further supported by the findings of Woodfin et al., whereby neutrophils with an 

rTEM neutrophil phenotype (e.g. ICAM-1high and ROShigh) were detected in murine lungs 

following local IR-injury (Woodfin et al., 2011). Collectively, as local inflammation can in 

some cases lead to systemic consequences (e.g. ALI) (Grace, 1994; Bartels et al., 2013), 

these data suggest that neutrophil rTEM could be of pathophysiological relevance in 

humans and provides an interesting avenue for further exploration.  
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1.6.2. Functional consequences of neutrophil rIM  

 

Poznansky and colleagues were the first to propose that ‘reverse’ motility of neutrophils 

could be an important mechanism in providing inflammation resolution (Tharp et al., 

2006). Here, they observed that neutrophils moved away from areas of high CXCL8 

concentration, indicating a chemo-repulsive affect that they suggested could be the 

mechanism of down-regulating the inflammatory response. This concept was further 

supported by data published by Deng and colleagues demonstrating similar neutrophil 

behaviour at sites of inflammation in zebrafish embryos (Deng and Huttenlocher, 2012). 

Together, these findings indicate that actively recruited neutrophils can become 

unresponsive during the later phase of the inflammatory response, thus losing their 

ability to migrate towards the core of an inflammatory site. Numerous mechanisms 

could account for this. For example, the retrograde motility in the tissue could be due 

to receptor desensitisation on the neutrophil surface. The CXCL8-CXCR2 signalling axis 

has been shown to play an important role in rIM behaviour as CXCR2 null zebrafish have 

defective/delayed resolution of inflammation (Powell et al., 2017). Furthermore, 

following stabilisation of the hypoxia-inducible factor (HIF) pathway by genetic 

modification in zebrafish, the frequency of neutrophil rIM was reduced during sterile 

inflammation (Elks et al., 2011). Here, Elks et al., demonstrated that the reduced ability 

for neutrophils to reverse migrate coincided with delayed inflammation resolution, 

reduced cellular apoptosis and development of scar tissue. Although no direct 

mechanism of neutrophil rIM was explored, it is interesting that HIF-1α, an important 

mediator of the EC HIF pathway, mediates the expression of the chemorepellent, netrin-

1. Whilst the function of netrin-1 remains largely unexplored, it is known to prevent 

neutrophil migration across epithelial cell layers in vitro (Rosenberger et al., 2009). 

Finally, following laser burn injury of the liver, and photoactivation of rIM + rTEM 

neutrophils at this site, Wang et al., identified a small population of these neutrophils in 

the lungs and BM, where they exhibited elevated surface expression of CXCR4. Here, 

this retrograde motility in the liver was reduced in a cathepsin-C KO (CtscKO) mice, 

suggesting that either/both the rIM or TEM require the activity of serine proteases. The 

authors suggested that neutrophils having undergone rIM followed by rTEM in the liver 

microvasculature, upregulate CXCR4 expression in order to return to the BM to be 
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cleared, thus aiding the resolution of local inflammation (Wang et al., 2017). Collectively, 

it is postulated that rIM may provide an attractive therapeutic target to promote wound 

healing and to prevent the formation of undesirable scar tissue. Indeed, some progress 

has already been made in this context with the finding that tashinone IIa, a compound 

derived from the roots of Salvia miltorrhiza commonly used in Chinese medicine as a 

treatment of cardiovascular disease, accelerated inflammation resolution through 

promoting neutrophil apoptosis and reverse migration (Robertson et al., 2014). 

In light of these recent discoveries regarding reverse migration of neutrophils (discussed 

in sections 1.6.1 and 1.6.2), there is a clear need to further explore the mechanisms 

driving the reverse motility of neutrophils, with a focus on rTEM in this thesis, and to 

determine the phenotypic changes and fate of these cells, which are discussed further 

in Chapters 4 and 5. 

 

1.7. Hypothesis and aims of the thesis 

 

There is extensive evidence in the literature supporting a role for neutrophils as inducers 

of vascular leakage via release of pro-permeability factors including VEGF, LTB4, HBP, 

ROS and TNF during inflammation. However, there is minimal understanding of if and 

how microvascular leakage influences neutrophil behaviour. As such, the principal aim 

of this work was to explore the impact of vascular leakage on neutrophil-EC interactions 

in vivo. Here, since the primary effect of microvascular leakage we saw was that of 

induction of neutrophil rTEM, the second important aim of this thesis was to gain insight 

into the phenotype and fate of rTEM neutrophils. The points below highlight the 

approaches used to address the aims of this project.  

 

1.7.1. Development of a confocal IVM methodology for simultaneous study of 

neutrophil migration and vascular leakage  

 

In order to investigate the potential impact of microvascular leakage on neutrophil 

migration we developed a confocal IVM methodology for the simultaneous 
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quantification of both events in real-time. Our ability to concomitantly image and 

quantify vascular leakage and neutrophil TEM responses at high temporal and spatial 

resolutions was assessed using established models of acute inflammation, namely as 

induced by local IL-1β, LTB4 and IR-injury. Initial works aimed to establish the temporal 

association between neutrophil migration and microvascular permeability responses. 

 

1.7.2. Investigating the impact of vascular permeability induction on neutrophil 

migration 

 

From the investigations conducted, as detailed in 1.7.1, we hypothesised that 

microvascular leakage can augment the directionality of neutrophil TEM. To directly 

investigate the impact of vascular permeability on neutrophil migration, the effects of 

two established potent pro-permeability agents, histamine and VEGF, were tested in WT 

mice and in a genetically modified (GM) mouse model that exhibits a selective defect in 

vascular leakage. Hypothesising that enhanced permeability disrupts the normal 

localisation of tissue chemokines, confocal IVM and complementary enzyme linked 

immunosorbent assays (ELISA) were used to assess this notion. 

 

1.7.3. Development of a model to label and track rTEM neutrophils 

 

As enhanced permeability promoted neutrophil rTEM, a key objective was to gain insight 

into the biology of this sub-set of cells. Of note, full understanding of the phenotype and 

fate of rTEM neutrophils has remained a challenging objective, in part due to the 

difficulty to exclusively label and track the fate of these cells. To address this important 

point, this thesis describes a novel in vivo labelling technique for tracking rTEM 

neutrophils that enabled phenotyping of this neutrophil subset and provided insight into 

their dissemination and fate. Here, we hypothesised with this new approach we could 

exclusively and more efficiently label rTEM neutrophils and demonstrate that these cells 

disseminate to the lungs where they exhibit a pro-inflammatory phenotype. 
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1.7.4. Investigating the role of the TNF/TNFR pathway in induction of vascular 

leakage and neutrophil TEM  

 

Finally, to strengthen the link between vascular permeability and neutrophil rTEM, we 

sought to develop experimental models for future investigations of this novel 

association. Specifically, as previous works from our laboratory identified a role for 

neutrophil-derived TNF in induction of neutrophil-mediated vascular permeability 

(Finsterbusch et al., 2014), here we developed a novel mouse model with selective 

neutrophil-TNF deficiency (Neutro-TNFKO). Furthermore, for mechanistic works, we 

established protocols for the generation of chimeric mice deficient in expression of 

TNFRI/II on haematopoietic cells. Overall, we hypothesised that neutrophil-derived TNF 

plays a fundamental role in the vascular leakage response via its action through TNFRs 

and can subsequently alter the directionality of neutrophil TEM. Whilst the model 

development element of these works was successfully achieved, due to time constraints 

and a lack of experimental mice, this Chapter represents a work in progress. 
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Chapter 2 
 

Materials and Methods 
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This Chapter presents an overview of the experimental material/resources and core 

techniques employed for the investigations described in this thesis. The initial section 

provides a list of reagents, sources and additional details to help readers replicate the 

work. The latter section describes the murine models employed, and where relevant, 

how they were generated and treated along with details of data analysis techniques. 

Specialised protocols are detailed in relevant result chapters. 

 

2.1. List of Reagents 

 

Table 2.1. Anaesthetics  

Reagent Source Details 

Ketamine 
Fort Dodge Animal Health Ltd, 
Southampton, UK 

Ketaset® injection  
(Working Conc: 100 mg/ml) 

Xylazine Bayer plc, Newbury, UK 
Rompun® 2 % (v/v in saline) 
(Working Conc: 20 mg/ml) 

Isoflurane Zoetis, London, UK 
Isoflo® 100% 
(Working Conc: 100 %) 

 

Table 2.2. General reagents  

Reagent Source Details 

123count eBeads Thermofisher, Dartford, UK Cat No.: 01-1234-42 

ACK (Ammonium-Chloride-
Potassium) red cell lysis buffer 

Made in house 
PBS containing 150 
mM NH4Cl, 1 mM 
KHCO3, 0.1 mM EDTA 

Baytril Centaur, Castle Carey, UK 
Working Conc: 0.08 %  
(v/v in water) 

Bovine Serum Albumin (BSA) 
Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: A1933 

Phosphate buffered saline (PBS) – 
modified without CaCl2 and MgCl2 

Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: D8537 

Ethylenediaminetetraacetic acid 
(EDTA) 

Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: E5134 
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Ethanol 
VWR International, 
Lutterworth, UK 

Working Conc: 70 %  
(v/v in water) 

Foetal Calf Serum (FCS) 
Gibco/Thermofisher, Dartford, 
UK 

Cat No.: 10500-064 

GolgiPlugTM (Brefeldin-A) 
BD Biosciences, California, 
USA 

Cat No.: 555029.  
Working Conc: 1 µl/ml  
(flow cytometry) 

Paraformaldehyde (PFA) 
Sigma Aldrich, Poole, Dorset, 
UK 

Working Conc: 4 %  
(w/v in PBS, pH 7.4) 

Megamix-Blue PCR mastermix Clent Life Science, UK Cat No.: 2MMB-25 

Halt Protease and Phosphatase 
Inhibitor cocktail 

Thermofisher, Dartford, UK Cat No.: 78441 

Proteinase K 
Bioline (Scientific Laboratory 
Supplies, Nottingham, UK) 

Cat No.: BIO-37037 

Sterile Saline 
Baxter Healthcare, 
Northampton, UK 

Cat No.: UKF7114, 
T2145 

Smart Ladder SF Eurogentec, Seraing, Belgium Cat No.: 1800-04 

Sodium Hydrogen Carbonate Fisher Scientific, Dartford, UK Cat No.: 10020510 

Schwartz Micro Serrefine – 
Straight clamps (10 x 1.75 mm) 

Fine Science Tools (FST), 
Heidelberg, Germany 

Cat No.: 18555-01 

Tetramethylrhodamine 
isothiocyanate-dextran (TRITC-
dextran - 75 kDa) 

Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: 46944-F 

Triton X-100 
Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: 9002-93-1 

Tyrodes Salt Solution 
Sigma Aldrich, Poole, Dorset, 
UK 

Cat No.: T2145 

Ultracomp eBeads Thermofisher, Dartford, UK Cat No.: 01-2222-42 

Zombie Yellow Fixable Viability 
Dye 

Biolegend, London, UK Cat No.: 77168 

 

Table 2.3. PCR Primers (All purchased from Integrated DNA Technologies, Leuven, 
Belgium) 

Primer Sequence Application 

Tnff/f Forward 5’ - TGAGTCTGTCTTAACTAACC - 3’ Genotyping 
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Tnff/f Reverse 5’ - CCCTTCATTCTCAAGGCACA - 3’ 

Mrp8-Cre Forward 

Mrp8-Cre Reverse 

5’ - CTGGAAAATGCTTCTGTCCGTTTG - 3’ 

5’ - ACGAACCTGGTCGAAATCAGTGCG - 3’ 
Genotyping 

 

Table 2.4. List of primary antibodies (Staining antibody cocktails were incubated in a 
volume of 200 µl for flow cytometry application) 

Antigen Source Clone Antibody 

Isotype 
control 
(further 

detailed in 
Table 2.5) 

Fluorophore 

Working 
concentratio
n/ route of 
administrati
on 
(Application) 

CD11b 
Biolegend, 
London, 
UK 

M1/70 

Rat 
monoclo
nal anti-
mouse/ 
human 

IgG2bκ 
Brilliant 
Violet-711 
(BV711) 

0.4 µg per 
106 cells 
(flow 
cytometry) 

CD16/CD3
2 (Fc 
block) 

BD 
Bioscience
s, 
California, 
US 

2.4G2 

Rat 
monoclo
nal anti-
mouse 

N/A None 
1 µg per 106 
cells (flow 
cytometry) 

CD29 
(Integrin-
β1) 

Biolegend, 
London, 
UK 

HMβ1
-1 

Armenia
n 
hamster 
monoclo
nal anti-
mouse 

IgG 
Phycoerythri
n-Cyanine®7 
(PE-Cy7) 

1 µg per 106 
cells (flow 
cytometry) 

CD31 
(PECAM-
1) 

Thermofis
her, 
Waltham, 
MA, USA 

390 

Purified, 
function
al grade 
rat 
monoclo
nal anti-
mouse 

N/A 

Conjugated 
to Alexa 
Fluor® 647 
(AF647) or 
555 (AF555) 
in house 
with a Life 
Technologies 
Alexa Fluor® 
antibody 
labelling kit 
to a stock 
conc of 1 
mg/ml 

4 µg in 400 
µl PBS 
(intrascrotal, 
i.s.) (confocal 
intravital 
microscopy, 
IVM) 
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CD45 
Biolegend, 
London, 
UK 

30-
F11 

Rat 
monoclo
nal rat 
anti-
mouse 

IgG2bκ 
Pacific Blue 
(PB) 

0.25 µg per 
106 cells  
(flow 
cytometry) 

CD54 
(ICAM-1) 

Biolegend, 
London, 
UK 

YN1/1.
7.4 

Rat 
monoclo
nal anti-
mouse 

IgG2bκ 

Phycoerythri
n-
DazzleTM594 
(PE-
Dazzle594) 

0.125 µg per 
106 cells  
(flow 
cytometry) 

CD62L 
(L-
selectin) 

Biolegend, 
London, 
UK 

MEL-
14 

Rat 
monoclo
nal anti-
mouse 

IgG2aκ 
Brilliant 
Violet 605 
(BV605) 

0.25 µg per 
106 cells  
(flow 
cytometry) 

CD102 
Biolegend, 
London, 
UK 

3C4 
MIC2/
4 

Rat 
monoclo
nal anti-
mouse 

IgG2aκ AF488 

0.25 µg per 
106 cells  
(flow 
cytometry) 

CD115 
Biolegend, 
London, 
UK 

AFS98 

Rat 
monoclo
nal anti-
mouse 

IgG2aκ 

AF488 or 
Allophycocya
nin-
Cyanine®7 
(APC-Cy7) 

1 or 0.25 µg 
per 106 cells  
(flow 
cytometry) 

CD120a 
(TNFRI/TN
FRSF1A) 

R&D 
Systems, 
Abingdon, 
UK 

- 

Goat 
polyclon
al anti-
mouse 

Goat IgG None 

2.5 µg per 
106 cells  
(flow 
cytometry) 

CD184 
(CXCR4) 

Thermofis
her, 
Waltham, 
MA, USA 

2B11 

Rat 
monoclo
nal anti-
mouse 

IgG2b PE 

0.5 µg per 
106 cells  
(flow 
cytometry 

CXCL1 

R&D 
Systems, 
Abingdon, 
UK 

48415 

Rat 
monoclo
nal anti-
mouse 

IgG2a None 

1 mg/kg of 
mouse 
weight 
(intravenous, 
i.v.) 
(confocal 
IVM) 

F4/80 
Biolegend, 
London, 
UK 

BM8 

Rat 
monoclo
nal anti-
mouse 

IgG2aκ AF647 
1 µg per 106 
cells (flow 
cytometry) 
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Ly6G 
Biolegend, 
London, 
UK 

1A8 

Rat 
monoclo
nal anti-
mouse 

IgG2aκ 
PB or PE or 
APC-Cy7 

1/0.25 µg 
per 106 cells 
respectively 
(flow 
cytometry) 

Ly6G and 
Ly6C (Gr-
1) 

Biolegend, 
London, 
UK 

RB6-
8C5 

Rat 
monoclo
nal anti-
mouse 

IgG2bκ PB or AF488 
1 µg per 106 
cells (flow 
cytometry) 

Ly6G-
Biotin 

Biolegend, 
London, 
UK 

1A8 

Rat 
monoclo
nal anti-
mouse 

N/A None 

2 µg/150 µl 
i.v. (in vivo 
labelling/ 
flow 
cytometry) 

MRP14 

Generated 
and 
provided 
by Dr. 
Nancy 
Hogg, The 
Francis 
Crick 
Institute, 
UK 

2B10 

Rat 
monoclo
nal anti-
mouse 

N/A 

Conjugated 
to AF647 or 
AF488 in 
house with a 
Life 
Technologies 
Alexa Fluor 
antibody 
labelling kit 
to a stock 
conc of  
1 mg/ml 

5 µg/ml 
(immu-
nofluorescen
ce (IF) tissue 
staining) 

Neutrophi
l Elastase 
(NE) 

Abcam, 
Cambridg
e, UK 

ab686
72 

Rabbit 
polyclon
al anti-
mouse 

IgG 

Conjugated 
to AF594 in 
house with a 
Life 
Technologies 
Alexa Fluor 
antibody 
labelling kit 
to a stock 
conc of  
1 mg/ml 

1 µg per 106 
cells (flow 
cytometry) 

Tumour 
necrosis 
factor 
(TNF) 

Biolegend, 
London, 
UK 

MP6-
XT22 

Rat 
monoclo
nal anti-
mouse 

IgG1κ APC 

0.25 µg per 
106 cells 
(flow 
cytometry) 

Vascular 
Endothelia
l Protein 
Tyrosine 
Phosphata

Generated 
and 
provided 
by Prof. 
Dietmar 
Vestweber

NA 

Rabbit 
polyclon
al anti-
mouse 

IgG None 

100 - 200 
µg/mouse 
i.v. (confocal 
IVM and 
ELISA) 
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se (VE-
PTP) 

, Max 
Plank 
Institute, 
Munster, 
Germany 

 

 

Table 2.5. Isotype control and secondary antibodies (Staining antibody cocktails were 
incubated in a volume of 200 µl for flow cytometry application) 

Antibody  Source Species (clone) Fluorophore 

Working 
concentration/ 
route of 
administration 
(Application) 

IgG  
R&D Systems, 
Abington, UK 

Goat polyclonal None 
2.5 µg per 106 cells  
(flow cytometry) 

IgG2a  
R&D Systems, 
Abington, UK 

Rat monoclonal, raised 
against the immunogen 
keyhole limpet 
hemocyanin (KLH) 
(#54447) 

None 
1 mg/kg i.v. 
(confocal IVM) 

IgG  
Thermofisher, 
Waltham, 
MA, USA 

Rabbit polyclonal None 

100 - 200 µg/mouse 
i.v. (confocal IVM) 
or 200 µg/400 µl i.s. 
(ELISA) 

IgG1K  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2071) 

APC 
0.25 µg per 106 cells  
(flow cytometry) 

IgG 
Biolegend, 
London, UK 

Armenian hamster 
monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(HTK888) 

PE-Cy7 
1 µg per 106 cells  
(flow cytometry) 

IgG2bK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK4530) 

PE-
Dazzle594  

0.125 µg per 106 
cells  
(flow cytometry) 

IgG2bK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK4530) 

AF488  
1 µg per 106 cells  
(flow cytometry) 
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IgG2bK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK4530) 

BV711 
0.125 µg per 106 
cells  
(flow cytometry) 

IgG2bK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK4530) 

PB 
1 or 0.125 µg per 
106 cells  
(flow cytometry) 

IgG2aK 
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

BV605 
0.25 µg per 106 cells  
(flow cytometry) 

IgG2aK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

AF488 
0.25 µg or 1 µg per 
106 cells  
(flow cytometry) 

IgG2aK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

APC-Cy7 
0.25 µg per 106 cells  
(flow cytometry)  

IgG2aK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

PB 
1 µg per 106 cells  
(flow cytometry)  

IgG2aK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

PE 
0.25 µg per 106 cells  
(flow cytometry)  

IgG2aK  
Biolegend, 
London, UK 

Rat monoclonal, raised 
against the immunogen 
KLH + Trinitrophenol 
(RTK2758) 

AF647 
1 µg per 106 cells  
(flow cytometry)  

IgG2b  
Thermofisher, 
Waltham, 
MA, USA 

Rat monoclonal, 
immunogen raised 
against is proprietary 
information 
(eB149/10H5) 

PE 
0.5 µg per 106 cells  
(flow cytometry) 

IgG  
Thermofisher, 
Waltham, 
MA, USA 

Goat polyclonal Biotin 
1 µg per 106 cells  
(flow cytometry) 

IgG  
Abcam, 
Cambridge, 
UK 

Rabbit polyclonal AF594 
1 µg per 106 cells  
(flow cytometry) 
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Table 2.6. Streptavidin and Alexa-Fluor™ conjugates 

Reagents Source Fluorophore 
Working concentration 
(Application) 

Streptavidin 
Thermofisher, 
Waltham, MA, USA 

AF647 
1 µg/ml (confocal IVM and 
flow cytometry) 

Alexa Fluor® 
labelling kit 

Thermofisher, 
Waltham, MA, USA 

AF488 or AF555 or 
AF594 or AF647 

Conjugated to 100 µg of 
primary antibody according 
to manufactures instructions 

 

Table 2.7. Inflammatory stimuli 

Stimulus Source Cat No. 
Working concentration/dose 
(route of administration) 

Histamine 
Sigma Aldrich, 
Poole, Dorset, 
UK 

H7250 
30 µM, (topical) at 1 ml/min, or 
i.s. 400 µl  

Leukotriene B4 
(LTB4) 

Cambridge 
Bioscience Ltd, 
Cambridge, UK 

20110 300 ng/400 μl (i.s.) 

Recombinant 
Mouse Interleukin-
1β  
(IL-1β) /IL-1F2 

R&D Systems, 
Abingdon, UK 

401-ML-005/CF 50 ng/400 μl (i.s.) 

Recombinant 
Vascular 
Endothelial 
Growth Factor 164 
(VEGF) 

R&D Systems, 
Abingdon, UK 

493-MV-025 
 
4 µg/100 µl (i.v.) 

Lipopolysaccharide 
(LPS) E.coli 
O111:64 

Sigma Aldrich, 
Poole, Dorset, 
UK 

L4391 500 ng/ml (ex vivo) 

 

Table 2.8. ELISA and RNA Isolation kits 

Kit Source Cat No. 

Mouse CXCL1 DuoSet ELISA kit 
R&D Systems, Abington, 
UK. 

DY453-05 
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2.2. Animals 

  

All in vivo experiments were conducted under the UK legislation according to the Animal 

Scientific Procedures Act 1986, with the animals humanely sacrificed via cervical 

dislocation at the end of experiments in accordance with UK Home Office regulations. 

Animals were housed in individually ventilated cages and provided with food and water 

ad libitum, with a 12 hr light-dark cycle maintained throughout. All mice used were over 

the age of 8 weeks and weighed between 25 - 30 g.  
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Table 2.9. Mouse strains 

Strain/Gene 
Nomenclature 
(Abbreviation 
used in thesis) 

Description Origin Reference 

C57BL/6  
(WT) 

Wild-type black mouse. Charles River, Margate, UK. 
https://www.criver.com/products-

services/find-model/c57bl6-
mouse?region=3671 

LysM-EGFPki/ki 

EGFP gene ‘knock in’ into the LysM gene, 
resulting in a homozygous EGFP 
expression in monocytes+ and 
granulocytes++. These mice were used to 
generate LysM-EGFP heterozygous (LysM-
EGFPki/+) mice as detailed in section 2.2.2. 

Commercially available (Jackson Laboratory), 
provided by Dr. Thomas Graf, Centre for 
Genomic Regulation, Barcelona, Spain and 
provided by Dr. Markus Sperandio (Ludwig-
Maximillians University, Germany).  

(Faust et al., 2000) 

Tnfrsf1a-/-

;Tnfrsf1B-/- 
(TNFRI/IIKO) 

Global knock out. Mice deficient in both 
the Tnfrsf1a (p55) and Tnfrsf1b (p75) 
genes as detailed in section 2.2.3. 

Commercially available (Jackson Laboratory), 
donated by Dr. J. Peschon, Amgen, 
Department of Molecular Immunology, 
Immunex Corp., Seattle, USA. 

(Peschon et al., 1998) 

Cdh5tm5Dvst (VEC-
Y685F) and 
Cdh5tm2(Cdh5)Dvst 
(VEC-WT) 

Targeted ‘knock in’ inserted into the Cdh5 
(VE-cadherin) gene as detailed in section 
2.2.4.  

Donated by Prof. Dietmar Vestweber, Max-
Planck-Institute for Molecular Biomedicine, 
Münster, Germany. 

(Wessel et al., 2014) 

Mrp8-Cre-IRES-
EGFP, (Mrp8-Cre) 

Transgenic. Cre recombinase inserted 
downstream of the MRP8 promotor. Mice 
were used to generated neutrophil-TNF 
knock out mice as detailed in section 
2.2.6 and Chapter 6. 

Commercially available (Jackson Laboratory), 
donated by Dr. E. Passegue (Institute of 
Cancer and Stem Cell Biology and Medicine, 
Stanford University, USA). 

(Passegué et al., 2004) 

Tnfflox/flox 
 

Targeted gene modification (‘knock in’) 
creating a floxed allele in the Tnf gene. 
Mice were used to generate neutrophil-
TNF knock out mice as detailed in section 
2.2.6 and Chapter 6. 

Bred in house following permission from 
Prof. S. Nedospasov, Molecular Immunology, 
Russian Academy of Sciences, Moscow, 
Russia) and provided by the laboratory of 
Prof. F. Balkwill (Barts Cancer Institute, 
QMUL, UK). 

(Grivennikov et al., 2005) 
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2.2.1. Wild-type mice 

 

Commercially purchased male wild-type (WT) C57BL/6 mice were allowed to acclimatise 

for one week prior to experimental use.  

 

2.2.2. LysM-EGFPki/+ mice 

 

LysM-EGFPki/+ mice exhibit fluorescently labelled myelomonocytic cells in which mature 

monocytes express EGFP at low levels and mature neutrophils at much higher levels 

(Woodfin et al., 2011). In brief, LysM-EGFPki/ki mice were generated by knocking-in EGFP 

cDNA into the lysozyme M (LysM) locus, containing the coding part of exon 1 (including 

the start codon) and parts of intron 1. Mice were backcrossed for a minimum of 8 

generations with WT mice (Faust et al., 2000). In-house experimental heterozygous 

LysM-EGFPki/+ mice were generated by crossing LysM-EGFPki/ki mice with WT mice. 

 

2.2.3. TNFRI/IIKO mice 

 

TNF receptor I (TNFRI) and II (TNFRII) double receptor knockout (TNFRI/IIKO) mice, back 

crossed onto a WT background for a minimum of 8 generations, were acquired from 

Jackson Laboratory. These mice were generated by Peschon and colleagues via the 

intercrossing of singly receptor deficient mice (Tnfrs1a tm1/mx x Tnfrsf1b tm1/mx) (Peschon 

et al., 1998). Once imported, TNFRI/IIKO mice were then successively intercrossed in 

house to maintain the colony.  

 

2.2.4. VE-cadherin-Y685F (VEC-Y685F) and control VE-cadherin-WT (VEC-WT) 

mice 

 

VEC-Y685F and VEC-WT mutant mice were provided by Prof. Dietmar Vestweber (Max 

Plank Institute, Munster, Germany). VEC-Y685F mice were engineered to encode a single 

amino acid substitution, converting a tyrosine amino acid to phenylalanine, via 

substitution of a Y to F codon at position 685 of the VE-cadherin receptor (VEC-Y685F). 
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As a control, the locus encoding VE-cadherin was targeted with cDNA encoding WT VE-

cadherin (VEC-WT) (Wessel et al., 2014). VEC-Y685F mice have been shown to have no 

effect on leukocyte migration but have a defect in vascular permeability (Wessel et al., 

2014). Mice were irradiated and reconstituted with bone marrow from LysM-EGFPki/+ 

mice as detailed below in section 2.2.5.1 by our collaborators. This allowed for the 

visualisation of neutrophils by confocal intravital microscopy (confocal IVM) for 

experiments conducted in-house, aimed at analysing neutrophil transendothelial 

migration (TEM) dynamics in inflamed tissues.  

 

2.2.5. Generation of chimeric mice 

 

All donor and recipient mice intended for the generation of chimeras were treated as 

follows: 7 days prior to irradiation all recipient animals were placed on sterile tap water 

supplemented with 0.08% Baytril (enrofloxacin), a broad-spectrum fluoroquinolone 

antibiotic commonly used for the management of bacterial diseases in dogs and 

cats. The purpose of this treatment was to reduce the risk of the irradiated mice 

developing bacterial infections during the recovery period.  

 

2.2.5.1. Generation of LysM-EGFPki/+ - VEC-Y685F or VEC-WT chimeras 

 

VEC-Y685F and littermate control (VEC-WT) mice were irradiated with 2 doses of 5 Gy, 4 

hr apart using a RadSource-2000 irradiator and placed in fresh cages provided with wet 

mash diet. 24 hr post irradiation, the mice were injected i.v. with freshly isolated LysM-

EGFPki/+ bone marrow. In brief, the donor mouse was culled and swabbed with 70% 

ethanol and the hind legs were removed, cutting at the ball of the hip joint to leave the 

femur intact. The skin and muscle tissue were removed, and in a laminar flow hood, the 

bones were briefly soaked in 70% ethanol and then washed in sterile PBS. The bone 

marrow (BM) was flushed out from both the femur and tibia bones with 10 ml/leg of 

cold-sterile PBS. Afterwards, the cells were filtered through a 100 µm nylon mesh filter 

and centrifuged at 300 g for 5 min and the cell pellet resuspended in ACK lysis buffer 

(150 mM NH4Cl, 1 mM KHCO3, 0.1 mM EDTA) for 5 - 7 min at room temperature to lyse 

the erythrocytes. The cell suspension was centrifuged again as above, resuspended in 
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PBS and counted using a haemocytometer. The cell density was then adjusted to 7.5 x 

106 cells/ml and 200 µl injected i.v. into each recipient mouse. Reconstitution of VEC-

WT or VEC-Y685F recipients with LysM-EGFPki/+ BM was assessed by flow cytometry as 

detailed in section 2.2.5.3.  

 

2.2.5.2. Generation of haematopoietic-derived cell (HDC)-TNFRI/IIKO and WT 

chimeras  

 

In a similar series of experiments, WT or LysM-EGFPki/+ recipient mice were irradiated 

and then reconstituted with BM from WT or TNFRI/IIKO donor mice as described above. 

This resulted in the generation of chimeric mice exhibiting WT HDCs (WT-BM->-WT) or 

TNFRI/IIKO null HDCs (TNFRI/II KO-BM->-WT), respectively. Reconstitution of WT 

recipients with TNFRI/IIKO or WT BM was assessed by flow cytometry as detailed in 

section 2.2.5.3.  

 

2.2.5.3. Flow cytometry to assess haematopoietic reconstitution of chimeric animals  

 

Flow Cytometry was employed to assess the reconstitution of WT or LysM-EGFPki/+ mice 

with BM of TNFRI/IIKO- or WT control- mice, and in an alternate series of experiments, in 

VEC-WT and VEC-Y685F mice with BM from LysM-EGFPki/+ mice. 4-6 weeks after BM 

transfer, reconstitution of the haematopoietic system in all recipient mice was assessed 

by flow cytometry as follows: 10 µl of blood was collected in 50 µl of PBS with 5 mM 

ETDA via a tail vein bleed. Samples were then centrifuged at 400 g for 5 min and the cell 

pellet was re-suspended in ACK lysis buffer for 5 min at room temperature. 20 µl of 

counting eBeads were added post blood collection for the TNFRI/IIKO/WT experimental 

mice and just after the ACK lysis steps for the VEC-Y865F/WT mice. The cell suspension 

was then centrifuged again as above and the pellet washed 3 times with sorting buffer 

(SB, 2.5 mM EDTA, 0.5% BSA in PBS). Samples were washed again and pre-incubated 

with anti-CD16/-CD32 (Fc-block) for 10 min followed by incubation with fluorescently 

conjugated primary antibodies for 40 min at 4oC in the dark. For the detection of LysM-

EGFPki/+ or TNFRI/IIKO neutrophils, CD45-PB and Ly6G-PE antibodies or CD45-PB and 

Ly6G-PE antibodies in combination with an unconjugated goat anti-mouse TNFRI 

antibody were used, respectively. Samples were then washed 3 times with SB buffer and 
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the latter further incubated with an anti-goat IgG biotin antibody for 30 min at 4oC in 

the dark, washed 3 times with SB buffer and then incubated with strept-AF647 as above. 

In all cases, after a further 3 washes with SB buffer, samples were resuspended in 200 

µl of SB buffer and analysed using an LSR Fortessa flow cytometer (Becton Dickinson) 

and quantified offline using FlowJo software (TreeStar). A minimum of 10,000 

neutrophils were recorded. Doublets were first excluded and neutrophils were gated 

using the markers expressed by the donor populations to quantify the reconstitution 

efficiency against any remaining host cell populations. Reconstitution was assessed 

using the following gating strategy, CD45-PB+, Ly6G-PE+, EGFPhigh or CD45-PB+, Ly6G-PE+, 

TNFRI-biotin-strept-AF647+/- for LysM-EGFPki/+ or TNFRI/IIKO transfer experiments, 

respectively. Peripheral neutrophil counts are presented in Chapter 4, section 4.2.2 for 

LysM-EGFPki/+ or Chapter 6, section 6.2.4 for TNFRI/IIKO null transfer experiments.  

 

2.2.6. Generation of Mrp8-Cre;Tnfflox/flox;LysM-EGFki/+ (Neutro-TNFKO) mice  

 

To generate Mrp8-Cre;Tnfflox/flox mice, Tnfflox/flox mice (Grivennikov et al., 2005) were 

intercrossed with Mrp8-Cre-IRES-GFP (Mrp8-Cre) transgenic mice (Passegué et al., 

2004), in which the Cre recombinase cDNA is inserted downstream of the Mrp8 

promoter. Myeloid-related protein-8 (MRP8) is an inflammatory protein which has been 

shown to upregulate expression of pro-inflammatory cytokines such as TNF and 

contribute to the development of toxic shock syndrome (Vogl et al., 2007). MRP8 is 

expressed primarily by neutrophils and by approximately 20% of monocytes, allowing 

for conditional deletion of floxed alleles in these 2 cell populations (Abram et al., 2014). 

In-house, these mice were crossed with Tnfflox/flox;LysM-EGFPki/ki mice to generate 

experimental Mrp8-Cre;Tnfflox/flox;LysM-EGFki/+ (Neutro-TNFKO) or Tnfflox/flox;LysM-EGFki/+ 

(Neutro-TNFWT) mice as depicted in Chapter 6, section 6.2.1. The resultant mice 

selectively expressed neutrophils that were conditionally deficient in TNF. In addition, 

through the expression of EGFP, neutrophils and monocytes could be tracked by 

confocal IVM.  
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2.2.6.1. Genotyping methods 

 

For genotyping of the animals, ear notch biopsies were taken after weaning and stored 

at -20oC. Subsequent processing was carried out by Dr. Matthew Golding. In brief, ear 

notch samples were lysed in 100 µl of DirectPCR lysis reagent (Viagen Biotech), 

containing 200 µg/ml proteinase K overnight at 55oC. The samples were then heated at 

85oC for 45 min in order to denature the protease K enzyme rendering it inactive. 

Subsequently, samples were centrifuged briefly to sediment insoluble material and the 

crude lysate was stored at 4oC prior to PCR analysis.  

The Tnfflox/flox, TnfKO/KO and MRP8-Cre transgene sequences were amplified in separate 

PCR reactions using their respective primer pairs detailed in Table 2.3, and using the 

reaction constituents detailed in Table 2.10. DNA was amplified in a thermocycler 

(DNAEngine® Peltier Thermal cycler, Bio-Rad, Hemel Hempstead, UK) using reaction 

conditions detailed in Table 2.11. Briefly, 4 µl (Flox product) or 4 µl (Cre product) was 

loaded onto a 2.5% agarose gel and 1.5 µl of SmartLadder SF in adjacent wells. The gel 

was run at 135 V for 30 min and PCR products visualised under UV light and 

photographed (data presented in Chapter 6, section 6.2.2). Expected PCR products were 

then determined according to Table 2.12.  

Table 2.10. PCR master mix 

Reagent Volume per sample Concentration 

Forward primer (stock 100 µM) 0.08 µl 0.8 µM 

Reverse primer (stock 100 µM) 0.08 µl 0.8 µM 

DirectPCR Lysis Reagent crude lysate 0.1 µl - 

Megamix Blue PCR mastermix 10 µl - 

Total 10.26 µl - 
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Table 2.11. PCR reaction conditions 

PCR programme  

Initial denaturation  94oC for 3 min 1 cycle  

Denaturation 94oC for 30 sec  

30 cycles 
Annealing 60oC for 30 sec 

Elongation  72oC for 30 sec 

Final extension 72oC for 3 min 1 cycle 

Hold sample 10oC - 

 

Table 2.12. Expected PCR products   

Product Molecular Weight 

Tnfflox/flox allele 450 bp 

Cre transgene 325 bp 

 

2.2.6.2. TNF protein expression analysis using flow cytometry 

 

Flow cytometry was used to assess total TNF protein expression of neutrophils and 

monocytes in order to validate Mrp8-Cre mediated Tnf deletion efficiency in the Neutro-

TNFKO mouse model. Experimental details can be found in Chapter 6, section 6.2.3. 

 

2.4. Confocal intravital microscopy on the mouse cremaster muscle 

 

To investigate hallmarks of acute inflammation such as neutrophil-EC interactions and 

vascular leakage overtime, a confocal IVM platform was developed for simultaneous 

visualisation and quantification of these two phenomena via confocal microscopy in 

vivo. In this section, the core methodology enabling investigations into neutrophil-EC 

interactions is detailed in accordance to Woodfin et al., 2011, while further specialised 

methodology details are described in their relevant result chapters. This includes details 

of imaging and quantification of vascular leakage that is reported in Chapter 3.  
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Under isoflurane (intranasal) anaesthesia, male LysM-EGFPki/+ mice, which exhibit green 

fluorescent neutrophils, received an i.s. injection of PBS (400 µl) containing 4 µg of the 

non-blocking anti-CD31-AF647 or AF555 antibody in order to fluorescently label 

endothelial cell junctions and in some cases together with IL-1β (50 ng) or LTB4 (300 ng) 

to elicit an inflammatory response. These animals were then allowed to recover for 2 hr 

or 30 min, respectively. 30 min prior to tissue exteriorisation, the mouse was subjected 

to terminal anaesthesia by intraperitoneal injection of ketamine (100 mg/kg) and 

xylazine (10 mg/kg). The animals were kept fully anaesthetized and maintained on a 

heated custom-built Perspex® microscope stage throughout the entire imaging period. 

To maintain deep anaesthesia, mice were subjected to additional periodic intramuscular 

(i.m.) administration of 1 ml/kg anaesthetic mix (40 mg ketamine and 2 mg xylazine in 

saline) approximately every 20-30 min. The depth of anaesthesia was monitored every 

10-15 min using the pedal reflex to ensure the animals felt no discomfort at any time. 

Cremaster muscles were prepared for intravital imaging as previously described 

(Woodfin et al., 2011; Colom et al., 2015). Briefly, one testis was gently exteriorised by 

making an incision at the base of the skin of the scrotum. The cremaster muscle around 

the testis was incised longitudinally (avoiding cutting through major arteries and 

veins/large venules) and laterally pinned out over the optical window of a custom-made 

microscope stage. The tissue was kept warm and superfused with pre-warmed Tyrode’s 

balanced salt solution. The vasculature integrity in the tissue was assessed to ensure 

there was good blood flow in approximately 90% of all vessels before leukocyte 

responses were quantified by IVM over a 1.5 - 2 hr period. In some experiments, the 

mice were subjected to acute IR-injury of the cremaster muscle prior to confocal 

imaging. For this purpose, vessels of the cremaster muscle were occluded using two 

overlapping non-crushing Schwartz Micro Serrefine clamps which were used to occlude 

the blood supply to the cremaster muscle (Fig. 2.1). The effectiveness of this procedure 

was validated by viewing the cremaster muscle under brightfield illumination to confirm 

that blood flow had stopped. The cremaster muscle was consistently superfused with 

warm Tyrode’s solution throughout this ischaemic phase (maximum of 40 min). The 

clamps were then removed to initiate the reperfusion phase and the return of adequate 

blood flow was verified by brightfield microscopy. The tissue was allowed to reperfuse 

for 2 hr during which leukocyte-vessel wall interactions were imaged. Sham operated 
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mice underwent an identical surgical procedure with the exception of placement of the 

clamps. Z-stack images of ‘straight walled’ post-capillary venules measuring 20–40 µm 

in diameter were imaged to record leukocyte–vessel wall interactions using Leica SP5 or 

SP8 confocal microscopes incorporating a 20x water-dipping objective (NA 1.0). Images 

were acquired every minute with sequential scanning of different channels at a 

resolution of 1024 x 450 pixels, corresponding to a voxel size of approximately 0.25 x 

0.25 x 0.69 µm in the x-y-z planes. Z-stacks comprised of approximately 60 optical 

sections. Each stack routinely took 40 seconds to acquire on the SP8 platform using the 

8,000 Hz resonance scanner, thus enabling high temporal and spatial resolution of 

leukocyte behaviour. At the end of the procedure, all animals were culled via cervical 

dislocation or via exsanguination according to UK Home Office regulations. 

 

 

2.5. IMARIS analysis of neutrophil migration 

 

IMARIS software (Bitplane, Oxford Instruments, Zurich, Switzerland) enabled the off-line 

analysis of confocal image sequences to visualise and quantify neutrophil-EC 

interactions and vascular leakage in high temporal and spatial resolution overtime. Lif 

files generated on the Leica confocal microscopes were then opened in IMARIS Bitplane 

Figure 2.1. Photograph showing IR-injury of the cremaster muscle. The cremaster muscle  

(highlighted with a red arrow) is flat-mounted and pinned over an optical window of a custom 

made microscope stage. Two serrefine clamps (highlighted with black arrows) are placed at the 

anterior aspect of the of the cremaster muscle to occlude the afferent blood supply, thus 

inducing ischaemia. 
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software and saved as an Ims file. For visualisation purposes, anti-CD31 staining was 

underwent thresholding to a point in which predominantly only junctional staining was 

visible to allow for greater ease when quantifying neutrophil TEM at EC junctions. 

Images were all processed for image smoothing using a median filter on the anti-CD31 

staining and neutrophil EGFP fluorescence. Subsequently for sequential images (i.e. 

those that generated timecourses) underwent an additional step to facilitate drift 

correction to minimise the amount of autonomous drift of the vessel from its original 

location. Here, using an IMARIS spots tool, a spot was placed in the same location (i.e. 

picking a unique recognisable vessel reference point) and was subsequently placed on 

the same location over all frames. The software then can correct for translational and 

rotational drift.  

Numerous neutrophil responses were quantified. Most notably, normal neutrophil TEM 

was classified as a response in which the cells migrated through EC junctions in a luminal-

to-abluminal direction without pausing. In contrast, neutrophils exhibiting reverse TEM 

(rTEM) were defined as cells that moved in an abluminal-to-luminal direction through 

EC junctions as previously described (Woodfin et al., 2011; Colom et al., 2015). This 

included cells that fully or partially breached the endothelium from the vascular lumen 

before exhibiting reverse motility through EC junctions and re-entering the blood 

circulation (Fig. 2.2).  

In some experiments, the duration of neutrophil migration was measured from the 

timepoint at which the neutrophil initiated breaching of the endothelium through an 

endothelial pore until the time point at which the neutrophil had fully migrated and was 

in the sub-endothelial space. To assess interstitial motility, IMARIS software was used to 

generate tracks that followed the movement of the neutrophil within the interstitial 

tissue. This was achieved via the placement of a tracking dot at the centre of the 

neutrophil from the timepoint it exits the pericyte layer for a minimum of 7 min. IMARIS 

software then generates a value based on the placement of the track to determine the 

interstitial velocity of the neutrophil. For neutrophil duration and interstitial velocity an 

average of 10 neutrophils/mouse were assessed with data presented as the average 

neutrophil- TEM duration (min) or interstitial speed (µm/min) per mouse, respectively. 

Additionally, the temporal nature of the extravascular leakage response was analysed 

as described in Chapter 3, section 3.2.1.  
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2.6. Acquisition and quantification of total neutrophil extravasation 

 

To quantify the total number of extravasated EGFP+ neutrophils from LysM-EGFPki/+ mice 

in the extravascular space, 4-6 representative still confocal images of post-capillary 

venules measuring 300 µm x 300 µm were acquired. Each image consisted of ~60 - 75 

individual steps, each measuring 0.69 µm, at the end of the confocal IVM experiment. 

These images were then analysed using IMARIS software, which identified extravascular 

EGFP+ neutrophils that had fully transmigrated through the endothelial layer (Fig. 2.3). 

Fully extravasated neutrophils in the interstitial tissue were identified as those that had 

returned to a more spherical as opposed to the flattened morphology that is 

characteristic of neutrophils within the sub-endothelial space. In experiments using 

mice that did not possess EGFP+ neutrophils, post real-time imaging, tissues were fixed 

and immunostained for the neutrophil marker MRP14, using established protocols 

(Woodfin et al., 2011; Colom et al., 2015). Briefly, cremaster muscles were fixed in ice-

cold PFA (4% in PBS) for 40 min, blocked and permeabilised at room temperature for 4 

hr in PBS containing 25% FCS and 0.5% Triton X-100, and then incubated overnight at 

4°C with a rat AF647 or AF488 conjugated anti-MRP14 mAb diluted in PBS containing 

Figure 2.2. Schematic representation depicting normal and reverse modes of neutrophil 

transendothelial migration (TEM) in a post-capillary venule. 
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10% FCS. Tissues were then washed 3 times in PBS and flat mounted under a coverslip 

using a Leica SP5 or SP8 confocal microscope as detailed previously. Post-acquisition, 

images were analysed off-line using IMARIS software. All total neutrophil extravasation 

quantification was presented as the total number of extravasated neutrophils per mm3 

of tissue.  

 

 

 

2.7. Quantification of plasma and tissue CXCL1 levels 

 

Plasma and tissue levels of CXCL1 post-treatment with IL-1β + histamine or following IR-

injury (as detailed in section 2.4), were analysed by ELISA in collaboration with Dr. Régis 

Joulia. 

Mouse plasma and cremaster muscle tissues were collected after 40 min of ischaemia 

and 30 min of reperfusion or alternatively after 2 hr of locally injected IL-1β (50 ng in 

200 µl PBS, i.s.) followed by 30 min of locally injected histamine (200 µl of a 30 µM 

Figure 2.3. Representative 3D image reconstruction of a postcapillary venule from a LysM-

EGFPki/+ mouse using IMARIS software to quantifiy total neutrophil extravasation into the 

surrounding tissue. The image displays EGFP+ neutrophils (green) and fluorescently labelled 

PECAM-1 on endothelial cells (red). Scale Bar: 20 µm. 
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solution, i.s.) or PBS control (200 µl). In some experiments, anti-VE-PTP (100 - 200 µg) or 

rabbit IgG control (200 µg) antibodies were injected i.v. 90 min after IL-1β injection in 

100 µl of PBS and blood samples were collected at the end of the confocal IVM 

acquisition (1 hr post histamine). Whole blood was collected from the ascending vena 

cava and decanted into 50 µl of a 50 mM EDTA-PBS solution, immediately centrifuged 

for 10 min at 2000 g and the plasma was collected.  Cremaster muscles were weighed 

and then homogenized in 500 μl PBS containing 0.1% Triton and 1% Halt Protease and 

Phosphatase Inhibitor Cocktail (ThermoFisher) using the Precellys24 bead-beating 

system (Bertin Technologies, France). Tissue samples were then centrifuged for 5 min at 

10,000 g and the supernatant collected to determine CXCL1 content in parallel with the 

plasma samples from above. All samples were snap frozen in liquid N2 prior to their 

thawing and analysis by ELISA, using a commercial kit as per manufacturer’s instructions. 

Data obtained from plasma was presented as picogram (pg) of CXCL1 per ml of plasma 

and for tissue as pg of CXCL1/mg of protein.  

 

2.8. Statistics 

 

All data were analysed using GraphPad Prism 8 software (GraphPad, San Diego, CA, USA) 

and are expressed as mean ± standard error of the mean (SEM). As the experiments 

conducted in this thesis have been utilised in our lab and were previously identified to 

exhibit a normal distribution, we assumed our data sets exhibit a normal distribution 

and thus we applied the corresponding tests. Statistical significance between two 

groups was assessed by an unpaired student t-test. To determine significance between 

multiple groups (e.g. different stimuli treatment groups) a one-way analysis of variance 

(ANOVA) or two-way ANOVA was used followed by a Bonferroni post hoc test as 

appropriate. P values < 0.05 were considered significant.  
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Chapter 3 
 

Development and application of a confocal intravital 
microscopy method for simultaneous analysis of 

microvascular leakage and neutrophil TEM 
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3.1. Introduction  

 

Inflammation is a physiological response that develops rapidly following sterile or non-

sterile insults such as tissue damage (e.g. IR-injury) or infection. Principal hallmarks of 

this critical response are leukocyte infiltration of tissues and tissue oedema as the result 

of enhanced/abnormal vascular permeability. Both phenomena typically occur acutely 

following stimulation and are essential in mediating the pro-inflammatory response. 

Furthermore, both phenomena are critical in ensuring efficient host defence, providing 

rapid resolution and tissue repair, essential processes for our survival. However, 

excessive or dysregulated infiltration of pro-inflammatory leukocytes and tissue oedema 

can lead to the development of acute and chronic inflammation as illustrated by 

pathologies such as acute lung injury, myocardial infarction, arthritis or multiple organ 

failure (Park-Windhol and D’Amore, 2016; Chen et al., 2018).  

Fundamentally, both vascular leakage and trafficking of leukocytes from the blood 

circulation into the surrounding tissues are governed by the integrity of the vessel wall, 

and in particular the endothelium. Composed of a monolayer of ECs, the endothelium is 

the first cellular barrier between the lumen and the extravascular space, composed by 

the presence of specific intercellular molecular complexes between adjacent cells. These 

complexes form junctional structures known as tight junctions (composed of claudins, 

occludins and JAMs) and adherens junctions (composed of nectins and cadherins), which 

are connected to the cytoskeleton of the ECs and collectively maintain the junctional 

barrier to macromolecules and immune cells (Dejana, 2004; Dejana et al., 2008; 

Chistiakov et al., 2015). Under basal conditions, EC junctions allow minimal plasma 

protein leakage into the tissue that primarily occurs through the paracellular route. 

However, under inflammatory conditions the EC junctional barrier is disrupted by two 

significant mechanisms. Firstly, ligation of pro-inflammatory molecules (e.g. histamine 

and VEGF) to their respective GPCRs induces a build-up of intracellular Ca2+ and the 

activation of intracellular protein kinases (Vestweber et al., 2014). This in turn leads to 

actinomyosin-based contractions and dissolution of radical stress fibres which together 

results in the exertion of pulling forces on ECs and destabilisation of EC junctional 

contacts (Bates, 2010; Frye et al., 2015). Secondly, this ligation can perturb the function 

of key stabilising junctional adhesion molecules, such as VE-cadherin, by inducing their 
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internalisation and therefore loss of their corresponding intercellular tethers (Guo et al., 

2008; Sun et al., 2012). Collectively, these events disrupt the endothelial integrity that 

results in a rapid increase in luminal-to-abluminal leakage of plasma fluids, solutes and 

proteins (e.g. complement proteins and antibodies) into injured or infected tissues to 

aid bacterial recognition/removal and hence promote tissue repair. Furthermore, EC 

junctional integrity also plays a vital role in facilitating controlled entry of leukocytes 

across the EC barrier, a process predominately mediated by paracellular breaching of EC 

junctions.  

Neutrophil migration through the endothelium is a multifaceted and highly regulated 

process. Once recruited to the vasculature near the site of injury or infection, commonly 

in response to locally generated DAMPs and PAMPs, neutrophils interact with ECs as 

described by the leukocyte adhesion cascade (see Chapter 1, section 1.5). This response 

begins with capture and rolling of free-flowing neutrophils along the endothelium, 

followed by firm arrest, luminal crawling and ultimately transendothelial migration 

(TEM); all of which are mediated by various adhesion molecules. Neutrophil TEM itself 

is mediated by several key EC junctional molecules (Nourshargh and Alon, 2014; Muller, 

2016) in addition to chemotactic directional cues across the endothelium. Chemotaxis 

of neutrophils to the site of damaged or infected tissue is governed by the presence and 

levels of chemokines such as CXCL1 and CXCL2 that are released by ECs, pericytes and 

resident tissue cells such as mast cells and macrophages (Jin, 2013; Girbl et al., 2018; 

Majumdar et al., 2016). These directional cues are further enhanced by the secretion of 

secondary chemotactic agents such as LTB4, generated by neutrophils, that act in an 

autocrine and paracrine manner to prime and activate neighbouring neutrophils 

(Majumdar et al., 2016). Response to these chemotactic directional cues are governed 

by transmembrane GPCRs, which are uniformly distributed on the neutrophil cell 

surface, and that link to, and dissociate from heterotrimeric G-proteins. These G-

proteins induce intracellular signalling that leads to continuous growth of the actin 

cytoskeleton towards the sensing-edge of the cell, resulting in a polarised morphology 

consisting of a leading and trailing edge (Xu et al., 2005; Janetopoulos and Firtel, 2008); 

ultimately leading to neutrophil diapedesis and tissue infiltration.  

The distinct mechanisms underpinning vascular leakage and neutrophil migration have 

been widely reported in the literature. For example, early investigations from Hurley et 
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al., identified that following histamine treatment, endothelial gaps that supported 

microvascular leakage were not associated with sites of neutrophil migration in rat skin 

(Hurley, 1963). Subsequently, Baluk et al., reported that allergen-induced leukocyte 

migration and vascular leakage occurred at distinct locations from each other in post-

capillary venules of the rat trachea (Baluk et al., 1998). Furthermore, neutrophil 

migration has been shown to occur independently of vascular leakage as supported by 

the formation of an F-actin-rich contractile endothelial pore, which prevented vascular 

leakage occurring at the site of leukocyte migration (Heemskerk et al., 2016). In another 

important example, VE-cadherin is known to play a vital role in controlling vascular 

leakage and neutrophil migration (Broermann et al., 2011; Vestweber, 2012) (see 

Chapter 1, section 1.4.2 & 1.7.1 for details). To further elucidate the function of VE-

cadherin, additional formative studies have been conducted by Wessel et al., using a 

knock-in mouse model expressing specific point mutations within the VE-cadherin 

complex at either Tyr685 (VEC-Y685F) or Tyr731 (VEC-Y731F). Here, it was identified that 

phosphorylation of these distinct residues was essential for vascular leakage and 

leukocyte migration, respectively. Furthermore, phosphorylation of Tyr685 was 

detected in venules but not arterioles following treatment with histamine, whereas the 

action of VEGF was even more restricted and only induced phosphorylation in a sub-

population of capillaries (Wessel et al., 2014).  

Despite these seminal observations, recent studies have demonstrated a potential 

interplay between these two phenomena culminating in the general consensus that 

adhered and transmigrating neutrophils in vasculature can impact microvascular 

leakage through the direct secretion of vasoactive mediators. These include ROS (Segal 

and Jones, 1978; Smith, 1994), HBP (Kenne et al., 2019), TNF (Djeu et al., 1990; 

Finsterbusch et al., 2014), VEGF (Scapini et al., 2004) and LTA4, the precursor for the 

generation of LTB4 (Wedmore and Williams, 1981; DiStasi and Ley, 2009). Nevertheless, 

whether microvascular permeability can impact neutrophil TEM dynamics is a subject 

that remains poorly understood and provides the basis of this Chapter (Fig. 3.1).  
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3.1.1. Scope of the Chapter 

 

This Chapter sought to investigate the potential inter-play between enhanced vascular 

permeability and neutrophil TEM as investigated by confocal IVM. To this end, the key 

aims of this Chapter were as follows:  

• To establish a reliable intravital microscopy-based experimental approach for 

the simultaneous visualisation of neutrophil TEM and vascular leakage. 

• To develop rigorous quantification methods to measure neutrophil TEM and 

vascular leakage in defined models of acute inflammation. 

• To analyse potential temporal relationships of neutrophil TEM and enhanced 

vascular leakage.  

Figure 3.1. Investigating the role of microvascular leakage on neutrophil dynamics. 
Investigation into the interplay between microvascular leakage and neutrophil infiltration has 

provided extensive understanding and identification of the factor’s neutrophils generate and 

release to induce vascular leakage (ROS, VEGF, HBP, TNF, LTA4). Although not shown in Fig 3.1, 

a number of cells (e.g. macrophages, ECs, monocytes and mast cells) are also able to secrete 

factors capable of inducing changes in microvascular permeability in addition neutrophils. 

However, what role microvascular leakage has on neutrophil migration dynamics remains 

poorly understood and contentious offering a novel direction for scientific investigations and 

provides the basis on this thesis. 
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3.2. Results 

 

3.2.1. Development of a confocal intravital microscopy methodology for 

simultaneous analysis of neutrophil transendothelial migration and vascular 

leakage  

 

In order to simultaneously visualise and quantify neutrophil migration and vascular 

leakage in real time, experiments were conducted using LysM-EGFPki/+ mice that express 

high levels of enhanced GFP (EGFP) in neutrophils, and to a lesser extent, in 

monocytes/macrophages. In addition, we injected locally a fluorescently-labelled anti-

CD31 antibody to label the endothelial vasculature, thus enabling examination of 

neutrophil-EC interactions as previously described (Huang et al., 2006; Woodfin et al., 

2009; Colom et al., 2015; Woodfin et al., 2016). To concomitantly visualise vascular 

leakage, fluorescently (i.e. TRITC)-labelled dextran, a branched polysaccharide with 

good solubility and low in vivo toxicity, was used. This methodology was applied to an 

experimental model of IR-injury that has previously been shown to elicit both neutrophil 

migration and vascular leakage (Woodfin et al., 2011; Voisin et al., 2019), making it an 

ideal test-bed for validation of the approach. 

Briefly, male mice received an i.s. injection of a non-blocking anti-CD31 mAb conjugated 

to AF647 in a vehicle solution (PBS) for 30 min to label ECs. The cremaster muscle was 

then exteriorised, and ischaemia of the tissue was induced via the placement of clamps 

at the base of the cremaster muscle for 40 min. Upon their removal, reperfusion was 

initiated and imaging acquisition by confocal IVM began (further detailed in Chapter 2, 

section 2.4). At the point of image acquisition, all mice were subjected to an i.v. injection 

of fluorescent TRITC-dextran (75 kDa, 40 mg/kg in 100 µl of PBS). Three lasers were used 

to activate and detect the fluorescence emitted by the EGFP (Argon 488 laser), anti-

CD31-AF647 (HeNe 633 laser) and TRITC-dextran (DPSS 561 laser). The 488 and 647 were 

run on one scan and the TRITC was detected on a second sequential scan, over the 

period of 1 min, to avoid spectral overlap from the different fluorescent channels. 

Offline analysis of the 4D image sequences was subsequently performed using IMARIS 

Bitplane software. Images were first processed for IMARIS analysis as described in 



          

91 
 

section 2.5. Additionally, enhanced vascular leakage was analysed by generating 6-8 

regions of interest (ROI, Fig. 3.2) along the periphery of the vessel reaching up to 30 µm 

away into the interstitial tissue. The fluorescent signal in each ROI was smoothed and 

thresholding was set to the absolute intensity (i.e. set to 0). This ensures the entire signal 

was being quantified within each ROI. Of note, it was important to switch off the TRITC-

dextran channel on IMARIS to prevent bias when placing the ROIs. After placement, the 

channel was switched back on to ensure there was no overlap with perivascular immune 

cells (i.e. macrophages that phagocytose the TRITC-dextran). This placement was then 

applied to each time-point, enabling quantification of the vascular leakage response 

over time. Mean fluorescence intensity (MFI) values were obtained from the ROIs within 

the TRITC-dextran channel and an average intensity was calculated to provide a mean 

value for the vessel segment for each min. To account for variation between animals 

and depth of the vessel in the tissue, which could impact fluorescence intensity values, 

the relative mean fluorescence intensity (rMFI) was obtained by normalizing the data 

set per vessel over the mean of the first two baseline time-point measurements.  

Implementation of this experimental approach to IR-stimulated tissues illustrated the 

method’s ability to simultaneously detect and quantify neutrophil migration and 

vascular leakage over time (Fig. 3.2 and video 1). Of note, perivascular cells were 

observed to accumulate the TRITC-Dextran over time. Therefore, it was essential to 

exclude those cells from ROI position along the vessel wall to prevent false 

measurement of the vascular leakage response. Specifically, in IR-stimulated cremaster 

muscles, a rapid and transient leakage response was observed during the reperfusion 

period. This initiated within the first few min post reperfusion, peaking at 9 min and 

returning to basal levels by 60 min (Fig. 3.2 and video 1).  

Collectively, this model enabled simultaneous detection of vascular leakage and 

neutrophil migration in vivo, providing a means for deciphering the relationship 

between these two responses in a wider range of inflammatory models. 
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Interstitial tissue 

Vascular Lumen 

t = 9 min t (post reperfusion) = 1 min t = 60 min 

EGFP (Neutrophils) CD31 (EC junctions) 75 kDa TRITC-Dextran 

Visualisation of neutrophil TEM and vascular leakage using confocal intravital microscopy  

following IR-injury 

Figure 3.2. Validation of a confocal IVM platform for simultaneous and real-time 

investigation of vascular leakage and neutrophil-EC interactions in the mouse cremaster 

muscle. LysM-EGFPki/+ mice received an i.s. injection of a fluorescently (AF647)-labelled anti-

CD31 mAb (4 µg) 30 min prior to exteriorisation to label EC junctions. Following exteriorisation 

of the cremaster tissue, mice were subjected to IR-injury (40 min ischaemia followed by 2 hr 

of reperfusion). In addition, all mice received i.v. injection of TRITC-dextran (75 kDa) at the 

beginning of confocal IVM image acquisition. (A) Representative confocal images at t = 1, 9 

and 60 min after the start of the image acquisition period of a mouse cremasteric post-

capillary venule from IR-stimulated tissues. Images show neutrophils (green) and ECs (red, top 

row) and corresponding venules with ECs (red) and dextran extravasation (blue) with the black 

boxes showing examples of defined ROIs for the measurement of vascular leakage (middle 

row), and all three parameters merged (bottom row). Images are representatives of at least 

seven independent experiments. Scale bar (black) = 15 µm.  
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3.2.2. Stimulation of cremaster muscles with IL-1β, LTB4 and IR-injury elicited 

comparable total neutrophil extravasation responses  

 

To investigate associations between neutrophil TEM dynamics and microvascular 

permeability the confocal IVM methodology detailed above was applied to other 

established models of inflammation. Specifically, mouse cremaster muscles were 

stimulated with IL-1β (Woodfin et al., 2011), LTB4 (Finsterbusch et al., 2014; Colom et 

al., 2015), or were subjected to our pathophysiological model of IR-injury (Woodfin et 

al., 2011; Colom et al., 2015; Voisin et al., 2019).  

In brief, LysM-EGFPki/+ mice were injected i.s. with a fluorescently (AF647)-labelled anti-

CD31 mAb to visualize EC junctions in combination with PBS or inflammatory stimuli 

LTB4 or IL-1β, 30 min or 2 hr prior to exteriorisation of the cremaster muscle, 

respectively. Subsequently, to facilitate quantification of vascular leakage, the mice 

were injected with i.v. TRITC-dextran as previously described (Chapter 2, section 2.5.4). 

In addition, for all reactions, the total number of neutrophils that had fully migrated 

through the endothelial and pericyte layer, and thus appearing in the extravascular 

tissue, was quantified at the final time-point of image acquisition, corresponding to 2 hr 

post reperfusion, 2.5 hr post LTB4 or 4 hr post IL-1β (experimental timeline depicted in 

Appendix 3, section 9.3.1 & 9.3.2).  

Analysis of neutrophil responses in the cremaster tissue revealed that locally 

administered IL-1β and LTB4 and IR-injury elicited significant neutrophil extravasation as 

compared to control PBS-treated mice. All reactions induced comparable responses, 

resulting in ~7000 neutrophils/mm3 of tissue at the final time-point of acquisition (Fig. 

3.3A-B). 
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Figure 3.3. Locally injected IL-1β, LTB4 and IR-injury induced comparable levels of neutrophil 

extravasation in the mouse cremaster muscle. LysM-EGFPki/+ mice received an i.s. injection of 

fluorescently (AF647) labelled anti-CD31 mAb (4 µg) to label EC junctions, in combination with 

either PBS (2 hr or 30 min), IL-1β (50 ng, 2 hr) or LTB4 (300 ng, 30 min). Alternatively, 30 min post 

i.s. of anti-CD31, mice were subjected to IR-injury (40 min ischaemia followed by 2 hr of 

reperfusion). In addition, all mice were subjected to an i.v. injection of TRITC-dextran (75 kDa) 

at the start of image acquisition using confocal IVM. (A) Representative confocal IVM images 

and (B) quantification of total neutrophil extravasation responses taken at the final time-point 

of image acquisition (2 hr post reperfusion, 2.5 hr post LTB4 or 4 hr post IL-1β, n = 5-12 

mice/group). Data are represented as mean ± SEM (each dot represents one mouse and one 

independent experiment). Statistically significant differences from PBS (B) treated mice are 

indicated by ***p<0.001, as analysed by one-way ANOVA followed by Bonferroni’s post hoc 

test. Scale bar (white) = 30 µm. 
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3.2.3. Local LTB4 and IR-injury, but not IL-1β, elicited enhanced vascular leakage  

 

Having assessed the neutrophil infiltration response induced by LTB4, IR-injury and IL-1β, 

we next sought to quantify vascular leakage in these inflammatory reactions. Time-

course of dextran leakage into the interstitial tissue, as described in sections 3.2.1 & 

3.2.2, showed that both IR-injury and LTB4 induced rapid but transient leakage of dextran 

into the extravascular space (Fig. 3.4A). In both reactions, vascular leakage peaked at 9 

min, reaching approximately a 3-fold increase over basal levels (p<0.0001 relative to PBS 

and IL-1β) (Fig. 3.4B), before returning close to baseline level after 60 min. In contrast, 

IL-1β-induced inflammation showed a modest, but non-significant, enhanced dextran 

leakage, reaching a 1.3x increase as compared to the baseline value (p>0.05 relative to 

PBS) (Fig. 3.4B). 

Following the characterisation of their vascular leakage and neutrophil extravasation 

responses, the dynamics and mode of neutrophil TEM in each reaction was evaluated. 
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A        

EGFP (Neutrophils) CD31 (EC junctions) 75 kDa TRITC-Dextran 

IR-injury t = 9 min post reperfusion LTB
4
 t = 9 min post exteriorisation IL-1β t = 9 min post exteriorisation 

Figure 3.4. IR-injury and LTB4 stimulation induced rapid vascular leakage responses, whereas 

IL-1β did not. LysM-EGFPki/+ mice received an i.s. injection of a fluorescently (AF647) labelled 

anti-CD31 mAb (4 µg) to label endothelial junctions in combination with either vehicle (PBS, 2 

hr or 30 min) IL-1β (50 ng, 2 hr) or LTB4 (300 ng, 30 min) prior to exteriorisation. Alternatively, 

30 min post i.s. of anti-CD31, mice were subjected to IR-injury (40 min ischaemia followed by 2 

hr of reperfusion). In addition, all mice were subjected to an i.v. injection of TRITC-dextran (75 

kDa) at the start of confocal IVM image acquisition. (A) Representative images of cremasteric 

venules following IL-1β-, LTB4-stimulation or IR-injury. Images show neutrophils (green) and ECs 

(red) and corresponding venules with ECs and dextran extravasation (blue) (middle row), and 

the final row shows all three parameters merged at t = 9 min (maximal vascular leakage 

timepoint) after the start of the image acquisition. Images are representatives of at least five 

independent experiments. (B) Time-course of dextran accumulation in the perivascular region 

of a selected post-capillary venule, represented as relative MFI (normalised to the first 2 time-

points post dextran i.v., mean of n = 3-10 mice/group). Error bars are not shown for clarity but 

the SEM at the peak timepoint was within 0.047 and 0.347. Statistically significant differences 

from PBS (****p<0.0001) or IL-1β (####p<0.0001) treated mice are indicated, as analysed by 

two-way ANOVA followed by Bonferroni’s post hoc test. (ns = not significant). Scale bar 

(black)=15 µm.  

B 

Quantification of vascular leakage responses following local IL-1β and LTB4 and IR-injury 
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3.2.4. Hyper-permeability inflammatory reactions were associated with 

dysregulated neutrophil TEM  

 

Having characterised the vascular leakage profiles of IR-injury, LTB4 and IL-1β-mediated 

acute inflammatory responses, the dynamics of neutrophil TEM in these reactions was 

next analysed.  

Quantification of neutrophil TEM dynamics was performed by observing neutrophil 

motility through EC junctions by confocal IVM over the 2 hr imaging period. This analysis 

showed that the majority of neutrophils breaching the endothelium migrated in a 

luminal-to-abluminal direction through EC junctions, a response termed normal 

neutrophil TEM (Fig. 3.5A and video 2). Interestingly however, in response to local LTB4 

and IR-injury, a significant portion of neutrophils exhibited an aberrant behaviour 

whereby cells that had initiated breaching of the endothelium, exhibited reverse 

motility in an abluminal-to-luminal direction and re-entered the blood circulation (Fig. 

3.5B and video 3). This response, which we have previously termed neutrophil reverse 

transendothelial migration (rTEM) (Woodfin et al., 2011; Colom et al., 2015), accounted 

for ~15% and ~25% of total neutrophil TEM events in LTB4- and IR-stimulated tissues, 

respectively (Fig. 3.4C). In contrast, local IL-1β induced very little neutrophil rTEM, 

accounting for less than 5% of the total quantified TEM events.  

As reactions exhibiting increased levels of neutrophil rTEM featured strong vascular 

leakage responses, we hypothesised a causal effect, prompting us to look at both 

phenomena concomitantly over time.  
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Figure 3.5. IR-injury and LTB4 stimulation, but not IL-1β, were associated with enhanced 

levels of neutrophil rTEM. LysM-EGFPki/+ mice received an i.s. injection of a fluorescently 

(AF647) labelled anti-CD31 mAb (4 µg) to label EC junctions, in combination with IL-1β (50 ng, 

2 hr) or LTB4 (300 ng, 30 min). Alternatively, 30 min post i.s. of anti-CD31, mice were subjected 

to IR-injury (40 min ischaemia followed by 2 hr of reperfusion). (A-B) Representative confocal 

IVM images of an IR-stimulated cremasteric post-capillary venule at different time-points post 

reperfusion illustrating an example of a normal neutrophil TEM event (A) and a rTEM event 

(B). Luminal (top panels) and cross-sectional (bottom panels) views are shown with the arrows 

(black) signifying the direction of motility of the indicated neutrophil. (C) Frequency of 

neutrophil rTEM events (n = 6-8 mice/group). Data are represented as mean ± SEM (each dot 

represents one independent experiment). Statistically significant differences from IL-1β 

treated mice are indicated by **p<0.01, ***p<0.001, as analysed by one-way ANOVA followed 

by Bonferroni’s post hoc test. Scale bar (black) = 5 µm. 

A Neutrophil normal TEM (IR-injury) 

B 
Neutrophil reverse TEM (IR-injury) 

C 
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3.2.5. Microvascular leakage and neutrophil rTEM were temporally aligned 

 

Following the observation that vascular hyperpermeability and enhanced neutrophil 

rTEM occurred in the same inflammatory reactions, we next considered the temporal 

association of the two phenomena. Specifically, we analysed the time-course of 

neutrophil rTEM induction in relation to the time-course of enhanced microvascular 

leakage. 

Analysis of the temporal relationship between TRITC-dextran leakage and neutrophil 

rTEM events during IR-injury and LTB4 indicated a rapid increase in microvascular leakage 

within the first few min post reperfusion or exteriorisation. Interestingly, permeability 

induction was closely followed by rapidly enhanced frequency of neutrophil rTEM. 

Indeed, ~90% of all neutrophil rTEM events occurred within the first 20 min of 

reperfusion (Fig. 3.6A), or with respect to LTB4, post tissue exteriorisation (Fig. 3.6B). 

Occurrences of neutrophil rTEM plateaued at 30 min, coinciding with the decline of the 

vascular leakage response. Of interest, mice treated with IL-1β alone exhibit minimal 

leakage which coincided with a poor neutrophil rTEM response (Fig. 3.6C). Collectively, 

these results demonstrate a previously unappreciated association between 

microvascular permeability and aberrant neutrophil TEM; a notion that was further 

explored in the following Chapters.  
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C 

Figure 3.6. Temporal association between neutrophil rTEM and microvascular leakage in 

inflammatory models of IR-injury and local LTB4. LysM-EGFPki/+ mice received an i.s. injection 

of a fluorescently (AF647) labelled anti-CD31 mAb (4 µg) to label EC junctions in combination 

with IL-1β (50 ng, 2 hrs) or LTB4 (300 ng, 30 min). Alternatively, 30 min post i.s. of anti-CD31, 

mice were subjected to IR-injury (40 min ischaemia followed by 2 hr of reperfusion). In addition, 

all mice received i.v. fluorescent TRITC-dextran (75 kDa) at the beginning of the confocal IVM 

image acquisition. Temporal association of dextran leakage and cumulative mean (± SEM) 

frequency of neutrophil rTEM following (A) IR-injury or (B) LTB4 or (C) IL-1β stimulation (n = 4-6 

mice).  

A 

B 
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3.3. Discussion 

 

Investigations surrounding the interplay between microvascular leakage and neutrophil 

migration remain poorly developed in part due our limited ability to visualise these two 

phenomena spatially, temporally and simultaneously. To overcome this limitation, we 

successfully extended our existing confocal IVM platform that has been optimised for 

high resolution tracking of neutrophil TEM (Woodfin et al., 2011; Colom et al., 2015; 

Girbl et al., 2018) for simultaneous analysis of vascular permeability. Hence, alongside 

our established methodology for quantifying neutrophil TEM, we utilised TRITC-dextran 

as a fluorescent tracer of vascular leakage into the extravascular tissue of the cremaster 

muscle in real-time. By doing so, our investigations into the acute inflammatory 

responses as mediated by IL-1β, LTB4 and IR-injury revealed that despite induction of 

comparable neutrophil extravasation by the different stimuli at the end of the respective 

reactions, a rapid and transient vascular leakage was observed only following LTB4 and 

IR-injury. In addition, inflammatory reactions induced by LTB4 and IR-injury were 

associated with enhanced levels of neutrophil rTEM, a response temporally aligned with 

the onset of vascular leakage.  

To extend our confocal IVM platform for concomitant analysis of neutrophil TEM and 

vascular permeability, we opted to use fluorescently labelled (TRITC-)dextran (75 kDa) 

as a plasma protein marker. This branched polysaccharide is classically characterised by 

its good solubility and low toxicity in vivo. This particular fluorophore-tracer was chosen 

compared to other examples, such as FITC-dextran (Pink et al., 2012), for a number of 

reasons. For example, whilst FITC-dextran exhibits a high quantum yield and good 

aqueous solubility, it suffers from rapid photo bleaching after excitation. Consequently, 

this would render the FITC-dextran invisible over time by confocal IVM. TRITC-dextran is 

a great alternative that makes reasonable compromises on aqueous solubility and 

quantum yield but offers excellent photo-stability (Reeves et al., 2012). Hence, it is more 

suitable for the relatively long-term monitoring required for time-course studies via 

confocal IVM.  

Similar to our experimental approach, a recent study by Park and colleagues developed 

a model for concomitant visualisation of vascular leakage and neutrophil extravasation 

using two-photon confocal IVM imaging (Park et al., 2018). In this study, LysM-EGFPki/+ 
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mice received an i.v. injection of Texas-Red labelled Dextran (70 kDa) to label the blood 

flow prior to exteriorisation of the cremaster tissue, which was followed by superfusion 

of fMLP, a potent neutrophil chemoattractant. Using this protocol, the authors 

quantified the fluorescence intensity of Texas-Red-dextran as a measure of vascular 

leakage with two large defined ROIs covering interstitial tissue but also both the vessel 

and extravascular resident tissue cells such as macrophages. Whilst they normalised 

their data as percentage change over a vessel section without leakage, their 

quantification method suffers from a lack of scientific rigour as the accumulation of 

dextran over time within the interstitial macrophages and within the lumen of blood 

vessels would negatively influence the MFI detected in the ROIs. In contrast, in our 

model, the ROIs were positioned as to avoid vessel dextran and resident tissue cells such 

that only measurements of the interstitial tissue contributed to the detected 

fluorescence intensity. In addition, whilst using LysM-EGFPki/+ mice, the group did not 

discuss neutrophil migration dynamics but concluded the model would be sufficient to 

do so (Park et al., 2018). This model is therefore complementary to the one discussed in 

this Chapter, which aims to provide novelty in the form of simultaneous analysis of 

neutrophil dynamics and vascular leakage.  

Our methodology for the simultaneous quantification of microvascular leakage and 

neutrophil migration was implemented for the evaluation of these responses in three 

established inflammatory reactions, as induced by IL-1β, LTB4, or following a 

pathophysiological model of IR-injury. Here, we observed a marked and rapid increase 

in vascular leakage following IR-injury or stimulation of tissues with local LTB4. In both 

cases, the majority of vascular leakage occurred within the first 20 min after 

exteriorisation or post reperfusion of the mouse cremaster muscle. These findings are 

in line with previous reports indicating that IR-injury (Voisin et al., 2019) and LTB4- 

stimulated (Finsterbusch et al., 2014) cremaster muscles exhibit enhanced vascular 

leakage, as detected by the Miles assay. In contrast, using our methodology, we were 

able to determine that IL-1β-induced inflammation was not characterised by a 

significant enhancement of vascular leakage. Interestingly, the role of IL-1β on vascular 

permeability in the literature is controversial, with only scarce examples examining this 

point directly (Fahey and Doyle, 2019). Firstly, investigations on the impact of IL-1β on 

EC monolayers in vitro showed loss of β-catenin and VE-cadherin at EC borders leading 
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to the formation of gaps between adjacent ECs and an increase in endothelial leakage, 

as measured by transendothelial electrical resistance (TEER) (Wong et al., 2004; Skaria 

et al., 2017). Studies looking directly at the effects IL-1β in vivo are limited to mouse 

intestinal models that investigated the effect of IL-1β on intestinal permeability (Al-Sadi 

et al., 2012). In this study, modest increases in permeability were observed in a dose-

dependent manner after 24 hr, a response that was hypothesised to occur through a 

myosin-light chain kinase (MLCK)-mediated pathway within enterocytes (Al-Sadi et al., 

2012). MLCKs are also involved in mediating EC contractility, however we observed only 

minimal vascular leakage in our model of IL-1β. This may highlight tissue-specific 

differences between ECs and enterocytes, whereby IL-1β does not result in endothelial 

contractility in our model. More likely however, the cause of this disparity is due to the 

difference in time-points at which permeability is measured (2 hr vs. 24 hr+), and the 

size of the dextran (75 vs. 10 kDa) whereby the latter employed in the comparative study 

would be more susceptible to passive diffusion (Al-Sadi et al., 2012; Claesson-Welsh, 

2015). Therefore, it can be concluded that between 2 – 4 hr post IL-1β administration 

there is minimal vascular leakage, however, we may observe more significant changes 

after 24 hr, outside our experimental window of interest. 

Having established the vascular permeability profiles of our inflammatory models, we 

looked at the associated neutrophil migration responses. Here, compared to PBS-

treated mice, treatment with LTB4 or IL-1β and following IR-injury elicited significant and 

comparable levels of neutrophil extravasation into the tissue; an observation that is in 

line with previously published studies (Woodfin et al., 2009, 2011; Finsterbusch et al., 

2014; Voisin et al., 2019). In combination with the present findings on vascular 

permeability discussed above, these results confirm that neutrophil infiltration by itself 

is not sufficient for eliciting neutrophil-dependent microvascular leakage, 

complimentary to previous findings (DiStasi and Ley, 2009; He, 2010).  

Furthermore, using our confocal IVM and 3D-imaging platform, we carefully evaluated 

neutrophil migration dynamics. Interestingly, whilst in all inflammatory reactions tested 

neutrophil TEM was predominantly in the expected luminal-to-abluminal manner 

(termed normal TEM), a large proportion of the TEM detected following IR-injury and 

stimulation of tissues with LTB4 was in the reverse mode, i.e. reverse (r)TEM. This 

incomplete, aberrant mode of neutrophil TEM accounted for ~25% and 15% of all TEM 
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events driven by IR-injury and LTB4, respectively, but was rarely seen in IL-1β-stimulated 

tissues where rTEM events accounted for less than 5% of total TEM events. 

Complementary to these findings, Woodfin et al., observed that approximately 15% of 

total neutrophil migration events following IR-injury were rTEM (Woodfin et al., 2011). 

The slightly reduced overall level of neutrophil rTEM reported by Woodfin et al., may be 

accounted for by their use of a shorter 30 min period of ischaemia, compared to the 40 

min period used in the present work. However, whether the duration of ischaemia 

correlates to the frequency of neutrophil rTEM requires further exploration. In addition, 

Colom et al., observed that approximately 20% of neutrophils undergo rTEM following 

LTB4 stimulation of tissues (Colom et al., 2015), findings that are comparable to the 

present results.  

Following the observation that neutrophil rTEM events occurred in reactions that 

exhibited higher levels of microvascular leakage, a time-course comparison of the two 

responses demonstrated that microvascular leakage and neutrophil rTEM had a close 

temporal association. Furthermore, the majority of this aberrant neutrophil TEM 

occurred during the peak of hyperpermeability induction, a response which ceased 

following the decline of vascular leakage. Taken together, these findings indicate that 

microvascular leakage may directly influence neutrophil TEM dynamics. Thus, to explore 

this idea further, in the subsequent Chapter we sought to investigate the effect of direct 

permeability inducing agents such as histamine and VEGF on neutrophil TEM dynamics. 

This approach enabled manipulation of the vascular leakage response in a more 

controlled manner and hence directly provided a means of investigating the impact of 

vascular leakage on neutrophil TEM.  

 

3.4. Conclusion 

 

The development of the confocal IVM platform to enable the simultaneous 

quantification of neutrophil trafficking and vascular leakage in real-time, allowed for 

spatiotemporal investigations of these events within acute inflammatory responses. Via 

this approach, we identified that acute inflammatory reactions (mediated by LTB4 and 

IR-injury) characterized by marked vascular leakage, exhibited an increased frequency 

of neutrophil rTEM. Further insights into these models included the findings that a rapid 
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and transient vascular leakage response was closely followed by enhanced levels of 

neutrophil rTEM. These data led to the formulation of a novel hypothesis that 

microvascular leakage could directly impact the dynamics of neutrophil migration 

through EC junctions and mandated further exploration. 

 

 

  



          

106 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4  
 

Acute vascular leakage promotes neutrophil reverse 
transendothelial migration 
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4.1. Introduction 

 

In Chapter 3, we extended our confocal IVM platform to investigate both neutrophil 

migration and vascular leakage simultaneously using established models of acute 

inflammation, as elicited by locally administered IL-1β and LTB4 or following IR-injury. Of 

particular interest, only the last two models induced both vascular leakage and 

increased the levels of neutrophil rTEM, whilst IL-1β exhibited minimal vascular leakage 

and neutrophil rTEM. Intrigued by these findings, we explored the hypothesis that 

‘microvascular leakage drives neutrophil rTEM’. To address this, we used exogenous pro-

permeability agents and employed a GM mouse model that exhibits reduced vascular 

leakage. In addition, we investigated the mechanism supporting this phenomenon.   

Neutrophil TEM is a multifaceted, tightly regulated process, involving a complex array of 

mediators and mechanical endothelial alterations, as described in Chapter 1, section 1.5 

& 1.6 and Chapter 3, section 3.1. Fundamental to this process is a reduction in EC 

junctional integrity and the sequential interactions between neutrophils and EC 

junctional molecules, including PECAM-1, JAMs, ESAM, ICAM-2 and CD99 (Vestweber, 

2015). Simultaneously, neutrophil directional motility through the EC wall is guided by 

presentation and ligation of specific chemoattractants including C5a, LTB4, or 

chemokines such as CXCL8, its murine homologue CXCL1, CXCL2 and CXCL5, (Koltsova 

and Ley, 2010; Newton and Dixit, 2012), whereby neutrophils migrate towards higher 

chemotactic concentrations (Jin, 2013). Our current understanding of leukocyte TEM is 

the product of several decades of research, however, neutrophil rTEM is a relatively 

recent observation. rTEM was first noted by Randolph and Furie, who observed reverse 

migration of human derived monocytes through EC monolayers in vitro (Randolph and 

Furie, 1996). Bradfield et al., extended this observation in vivo additionally finding that 

blockade of JAM-C enhanced the frequency of monocyte rTEM (Bradfield et al., 2007b). 

Later, Buckley and colleagues identified that neutrophils could also exhibit rTEM through 

cultured ECs in response to TNF or fMLP (Buckley et al., 2006). This finding has since 

been extended into murine in vivo inflammatory settings (Woodfin et al., 2011) and 

explorations into the underlying mechanisms and pathological significance of neutrophil 

rTEM has been the subject of several papers from our group (Woodfin et al., 2011; Girbl 

et al., 2018; Owen-Woods et al., 2020) and beyond (Wu et al., 2016; Wang et al., 2017). 



          

108 
 

Pioneering in vivo investigations on neutrophil rTEM by Woodfin et al., first identified 

that its frequency is stimulus-dependent, with the highest occurrence being observed in 

tissues stimulated with LTB4 (approximately 25% of total TEM) and IR-injury 

(approximately 15% of total TEM) with minimal neutrophil rTEM occurring in IL-1β-

stimulated tissues (Woodfin et al., 2011). This study also identified that similar to 

neutrophil TEM, the majority of neutrophil rTEM occurred in a paracellular (as opposed 

to transcellular) manner (i.e. between EC junctions). Mechanistically, the increased 

frequency of neutrophil rTEM was associated with loss of EC junctional JAM-C, which 

was required for unidirectional migration of neutrophils (Woodfin et al., 2011). This 

study provided the first evidence of neutrophil rTEM being induced by disrupted 

molecular changes in the venular wall. Intriguingly, Woodfin and colleagues also 

observed that conditions promoting neutrophil rTEM also induced significantly higher 

plasma protein leakage and promoted elevated numbers of ICAM-1high and ROShigh 

neutrophils in the pulmonary vasculature (Woodfin et al., 2011). This is of particular 

interest as increased leukocyte migration and vascular leakage in the lungs are both 

characteristics of pathologies such as ALI (Johnson and Matthay, 2010). Similar results 

have been found following analysis of human blood samples taken from patients with 

systemic inflammation (Buckley et al., 2006) and those suffering from acute pancreatitis 

(Wu et al., 2016). Collectively, these findings suggest a pathophysiological role for 

neutrophil rTEM in human disease. 

These findings were subsequently extended by Colom et al., where it was determined 

that during an LTB4 driven inflammatory reaction, JAM-C cleavage and subsequent 

induction of neutrophil rTEM was promoted by release of NE upon neutrophil 

degranulation. The latter was presented to EC JAM-C by the neutrophil surface pro-

adhesion molecule, CD11b (Colom et al., 2015). The authors also demonstrated that 

JAM-C loss at the endothelium was a characteristic of IR-injury, implying that LTB4-NE 

axis is a key mediator of IR-injury induced neutrophil rTEM. Furthermore, Colom et al., 

identified an elevated presence of neutrophil retention and plasma protein leakage in 

the lung vasculature, complementary to the findings of Woodfin et al. This response was 

effectively abolished following inhibition of NE (Colom et al., 2015). Indeed, Colom et 

al., further discovered that human patients suffering from ARDS exhibited elevated 

levels of soluble JAM-C relative to healthy patients. As increased NE expression in the 
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lung is a known risk factor towards the development of lung pathologies (Polverino et 

al., 2017), the combined findings of Colom et al., and Woodfin et al., comprised 

compelling evidence to mandate further investigations into the mechanisms that 

promote neutrophil rTEM. 

Chemokines are essential in mediating neutrophil recruitment and provide directional 

cues into damaged or infected tissues via establishment of chemotactic gradients (Furze 

and Rankin, 2008; Massena et al., 2010). In part, chemokines such as CXCL1 and CXCL2 

interact with neutrophils following their presentation by GAGs and receptors such as 

ACKR1 expressed on the surface of ECs (Proudfoot et al., 2003; Novitzky-Basso and Rot, 

2012; David and Kubes, 2019). Initially, investigations by Girbl et al., identified that the 

sequential presentation of CXCL1 and CXCL2 was required to facilitate TNF-induced 

neutrophil crawling and TEM, respectively. Of particular interest, they identified that the 

frequency of neutrophil rTEM was increased by disruption of chemokine presentation 

at EC junctions. More specifically, retention of neutrophil-derived CXCL2 at EC junctions 

by ACKR1 was required for facilitating unidirectional neutrophil TEM. This was 

demonstrated by pharmacological blockade of CXCL2 and use of ACKR1KO mice; 

experimental strategies that enhanced the frequency of neutrophil rTEM. This study 

thereby highlighted that the correct and sequential presentation of specific chemokines 

is essential in facilitating luminal-to-abluminal neutrophil TEM (Girbl et al., 2018). 

However, as yet, how these findings relate to our observations in Chapter 3, whereby 

the onset of enhanced vascular leakage coincided with an enhanced frequency of 

neutrophil rTEM was unknown and provides the basis of this Chapter.  
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4.1.1. Scope of the chapter 

 

As Chapter 3 identified that models of vascular leakage exhibited enhanced levels of 

neutrophil rTEM, the aim of this Chapter was to gain direct insight into the impact of 

microvascular leakage on neutrophil TEM directionality. To this end, the key aims of this 

Chapter were as follows:  

• To investigate the impact of direct vasoactive agents on neutrophil TEM. 

• To explore the underlying mechanisms governing vascular leakage-mediated 

neutrophil rTEM.  



          

111 
 

4.2. Results 

 

4.2.1. Pro-permeability agents promote neutrophil rTEM in IL-1β-stimulated 

tissues 

 

To directly investigate the impact of vascular leakage on neutrophil migration dynamics 

in vivo, we investigated the effect of the pro-permeability agents histamine (Benly, 

2015) and VEGF (Bates, 2010) in IL-1β-stimulated murine cremaster tissues. As 

previously determined in Chapter 3, IL-1β (Dinarello, 2018) promotes neutrophil 

extravasation but not significant vascular leakage (Chapter 3, section 3.2.2 & 3.2.3). As 

such, this model was chosen for investigating the effect of vascular leakage inducing 

agents on the quantity and profile of neutrophil TEM.  

In brief, LysM-EGFPki/+ mice were injected i.s. with IL-1β for 2 hr followed by 

exteriorisation of the cremaster muscle (refer to Chapter 2, section 2.4.2). Histamine (30 

µM, at a drip rate of 1 ml/min) or vehicle control was then topically applied to the tissue 

over a period of 2 hr during image acquisition using our extended confocal IVM platform. 

Alternatively, VEGF (4 µg) was injected i.v. at the start of acquisition period. 

Furthermore, to visualise vascular leakage, TRITC-dextran was injected i.v. 2 min prior 

to the application of histamine/VEGF. Both vascular permeability and neutrophil 

extravasation were quantified using IMARIS software as detailed in Chapter 3, section 

3.2.1 and Chapter 2, section 2.7, respectively. Lastly, at the final time-point (2 hr post 

histamine or VEGF application) still images of random post-capillary venules (n = 4-

8/mouse) were taken to determine total neutrophil extravasation as detailed in Chapter 

2, section 2.6 (experimental timeline depicted in Appendix 3, section 9.3.3).  

Firstly, we confirmed that histamine or VEGF did not impact total neutrophil 

extravasation when used on their own (data not shown) (Owen-Woods et al., 2020) or 

in IL-1β-stimulated cremaster tissues (Fig. 4.1B). However, as expected, time-course 

analysis of confocal image sequences revealed that the addition histamine or VEGF 

induced strong and significant leakage of TRITC-dextran into the extravascular tissue, 

whereas IL-1β or PBS (control)-treated mice showed minimal leakage responses (Fig. 

4.1A & C). Interestingly, the leakage responses following histamine or VEGF application 
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were very rapid and transient, occurring within the first few min and peaked after 15 

and 7 min, respectively and in both cases returned close to the baseline by 60 min (Fig. 

4.1A & C and video 4). Of note, the leakage induced following i.v. VEGF was significantly 

lower than that observed following topical histamine (~2.8-fold vs. ~4-fold, at 10 min 

post histamine/VEGF application, respectively), possibly due to the different doses used 

and/or the differing route of administration of the agents.  
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B C 

Representative images of neutrophil TEM and vascular leakage using confocal IVM,  

following IL-1β +/- histamine (topical) or VEGF (i.v.) stimulation  

EGFP (Neutrophils) CD31 (EC junctions) 75 kDa TRITC-Dextran 

A 

IL-1β  
t = 9 min post exteriorisation 

IL-1β + Hist (topical) 
 t = 15 min post exteriorisation 

IL-1β + VEGF (i.v.)  
t = 7 min post exteriorisation 

Interstitial tissue 

Vascular Lumen 

Figure 4.1. Histamine and VEGF had no impact on neutrophil extravasation induced by IL-1β. 

LysM-EGFPki/+ mice received an i.s. injection of an anti-CD31 mAb (4 µg) to label EC junctions 

for 2 hr in combination with either PBS or IL-1β (50 ng). Cremaster muscles were then 

exteriorised and the mice were treated with histamine (30 µM, topical), VEGF (4 μg, i.v) or 

control vehicle solution (Tyrode’s topical and/or PBS i.v.) and neutrophil migration and vascular 

leakage responses were quantified by confocal IVM. In addition, all the mice were subjected to 

an i.v. injection of fluorescent TRITC-dextran at the start of the image acquisition period. (A) 

Representative confocal IVM images illustrating neutrophil TEM and dextran leakage responses 

from a post-capillary venule segment subjected to IL-1β alone, IL-1β + histamine or VEGF 

stimulation. Images are representative of the peak of the vascular leakage response. Scale bars 

(black) = 15 µm. (B) Total neutrophil extravasation (n = 3-5 mice/group). (C) Dextran leakage 

extravasation normalised to the value of the first 2 min in control (grey), IL-1β (black), IL-1β + 

histamine (blue) or IL-1β + VEGF (purple) stimulated tissues (n = 3-9 mice/group). Error bars are 

not shown for clarity but the SEM at the peak timepoint was within 0.195 and 1.736. Statistically 

significant differences from (B & C) PBS-treated (indicated by *p<0.05 or ****p<0.0001) or (C) 

IL-1β-treated (indicated by ####p<0.0001) or IL-1β + VEGF-treated (indicated by ††††p<0.0001) 

mice, as analysed by a (B) one-way ANOVA or (C) two-way ANOVA followed by Bonferroni’s 

post hoc test, (ns = not significant). 
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Next, we assessed whether the addition of pro-permeability agents could impact the 

mode of neutrophil transmigration and in particular the directionality of neutrophil TEM 

(Fig. 4.2A & B). As expected, treatment with IL-1β alone induced almost exclusively 

luminal-to-abluminal migration through EC junctions (i.e. 97% of normal TEM vs. 3% of 

reverse TEM). In contrast, in mice treated with IL-1β + histamine or VEGF, neutrophil 

rTEM events rose to 25% (Fig. 4.2C and video 4). Interestingly, the permeability 

response in the IL-1β + histamine reaction occurred very rapidly (i.e. within the first 10 

min of histamine application) and was promptly followed by an increase in the frequency 

of neutrophil rTEM (79% of neutrophil rTEM events occurred within 30 min post topical 

histamine). Furthermore, once the vascular leakage declined, the neutrophil rTEM 

response ceased (Fig. 4.2D). Collectively, these findings suggested a temporal 

association between vascular leakage and neutrophil rTEM. 
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Figure 4.2. Pro-permeability agents promote neutrophil rTEM in IL-1β-stimulated tissues. 

LysM-EGFPki/+ mice received an i.s. injection of an anti-CD31 mAb (4 µg) to label EC junctions for 

2 hr in combination with either PBS or IL-1β (50 ng). Cremaster muscles were then exteriorised 

and the mice were treated with histamine (30 µM, topical), VEGF (4 μg, i.v) or control vehicle 

solution (Tyrode’s topical and/or PBS i.v.) and neutrophil migration and vascular leakage 

responses were quantified by confocal IVM. In addition, all the mice were subjected to an i.v. 

injection of fluorescent TRITC-dextran at the beginning of the image acquisition period and prior 

to the addition of histamine or VEGF. (A & B) Representative images of an IL-1β + histamine-

stimulated post-capillary venule at different time-points, illustrating a normal neutrophil TEM 

(top) and a reverse TEM (bottom) event. Luminal and cross-sectional views with arrows 

indicating the direction of motility of the indicated neutrophil. Scale bars (black) = 5 μm. (C) 

Frequency of neutrophil rTEM events in IL-1β or IL-1β + histamine or VEGF stimulated tissues (n 

= 4-10 mice/group). (D) Temporal association between dextran leakage and frequency of 

neutrophil rTEM shown as an accumulated frequency over time (n = 7 mice/group). Statistically 

significant differences from (C) IL-1β-treated mice are indicated by *p<0.05 or **p<0.01, as 

analysed by a one-way ANOVA followed by Bonferroni’s post hoc test. 
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4.2.2. Mice exhibiting defective vascular permeability showed reduced 

neutrophil rTEM  

 

VE-cadherin is a vital EC junctional adhesion molecule that is intricately involved in the 

regulation of vascular permeability and neutrophil TEM. To gain conclusive evidence for 

the ability of microvascular permeability to impact neutrophil TEM dynamics, the IL-1β 

+ histamine reaction was investigated in a genetically modified knock-in mouse model 

that exhibits reduced vascular permeability induction (e.g. a 33% reduction in histamine-

induced vascular leakage) (Wessel et al., 2014). This mouse strain is characterised by the 

presence of a single point mutation in the VE-cadherin gene sequence leading to the 

specific replacement of a tyrosine residue in position 685 of the peptide sequence by a 

phenylalanine residue (VEC-Y685F).  

In order to analyse the dynamics of both vascular leakage and neutrophil responses in 

these mice concomitantly, VEC-Y685F mice and control littermates (VEC-WT) were sub-

lethally irradiated and reconstituted with BM cells from LysM-EGFPki/+ (Fig. 4.3A & B), as 

described in Chapter 2, section 2.2.5.1. Acute inflammation was induced using our 

aforementioned IL-1β + histamine protocol and vascular leakage and neutrophil time-

course responses were analysed by confocal IVM (experimental timeline depicted in 

Appendix 3, section 9.3.3). 

Engraftment efficiency was evaluated 4 weeks post BM transplant and was assessed by 

flow cytometry as detailed in section 2.2.5.3. Here, both chimeras exhibited comparable 

peripheral neutrophil counts (Fig. 4.3A & B). In line with investigations from Wessel et 

al., we found that in our model, the VEC-Y685F chimeric mice showed a significantly 

reduced microvascular leakage response when exposed to histamine stimulation 

corresponding to an approximate 30% inhibition at the peak of the reaction (i.e. 15 min 

post topical histamine application) as compared to VEC-WT control littermates (Fig. 4.3C 

& D). In addition, analysis of neutrophil TEM dynamics identified that whilst no 

significant differences in total neutrophil extravasation could be observed during the IL-

1β + histamine-mediated reaction (Fig. 4.3E), VEC-Y658F mice exhibited a significant 

50% inhibition in the frequency of neutrophil rTEM as compared to VEC-WT (Fig. 4.3F). 

Collectively these data strongly support the concept that vascular leakage promotes 

aberrant modes of neutrophil TEM.  
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Vascular leakage (2 hr IL-1β + Hist (topical)) 

Figure 4.3. Chimeric VEC-Y658F mice exhibit reduced microvascular leakage induction and 

neutrophil rTEM. (A) Schematic diagram illustrating the generation of chimeric mice exhibiting 

LysM-EGFPki/+ HSCs within VEC-WT or VEC-Y658F recipients. Recipient mice (VEC-WT or VEC-

Y658F) mice were irradiated and reconstituted with BM from LysM-EGFPki/+ donor mice as 

described in Chapter 2, section 2.2.5.3. This resulted in the generation of chimeric mice 

exhibiting LysM-EGFPki/+ monocytes (+) and neutrophils (++). (B) 4 weeks after reconstitution, 

both chimeras exhibited comparable neutrophil counts (>99% LysM-EGFP-positive neutrophils). 

(n = 8-13 mice/group). (C) Representative confocal IVM images of post-capillary venular 

segments (stained with anti-CD31; red) subjected to IL-1β + histamine stimulation at two time-

points post application of histamine in chimeric VEC-WT and VEC-Y658F mice, illustrating 

dextran leakage (blue pseudocolour intensity). Scale bars (black) = 10 µm. (D) Time-course of 

dextran accumulation in the perivascular region of selected IL-1β-stimulated post-capillary 

venules in VEC-WT and VEC-Y658F chimeric mice post topical application of histamine. Tissue 

dextran accumulation is represented as MFI normalised to the first 2 time-points post i.v. 

dextran injection (n = 6-12 mice/group). Error bars are not shown for clarity but the SEM at the 

peak timepoint was within 0.782 and 1.013. (E) Total neutrophil extravasation (n = 5-11 

mice/group). (F) Frequency of neutrophil rTEM events (n = 5-11 mice/group). Data are 

represented as mean ± SEM (each dot represents one mouse and one independent 

experiment). Indicated statistical differences are shown by *p<0.05 or **p<0.01, unpaired 

student t-test, (ns = not significant).  
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4.2.3. Enhanced vascular leakage promotes redistribution of CXCL1 from tissues 

to the vascular lumen 

 

The next series of experiments aimed to investigate the molecular mechanism by which 

microvascular leakage influenced neutrophil migration dynamics. As previous 

investigations have demonstrated the importance of chemokines, specifically CXCL1 & 

CXCL2 in unidirectional neutrophil TEM (Girbl et al., 2018), we hypothesised that models 

of hyper-permeability could disrupt the established chemotactic gradient across the 

venular wall, thus impacting the ability of neutrophils to migrate in a strictly luminal-to-

abluminal direction before reaching the tissue. In particular, as IL-1β effectively induces 

expression of the potent neutrophil chemoattractant, CXCL1, (Ribaux et al., 2007; Biondo 

et al., 2014), we sought to investigate whether the tissue distribution of CXCL1 was 

disrupted. To address this, in collaboration with Dr. Régis Joulia, we analysed the 

expression of CXCL1 in plasma and tissue by ELISA, following IL-1β +/- histamine-

treatment or IR-injury of the cremaster tissue, according to Chapter 2, section 2.4.2. In 

brief, for IR-injury, WT mice were subjected to 40 min of ischaemia prior to reperfusion. 

Alternatively, WT mice were subjected to a local injection of IL-1β (200 µl of a 50 ng 

solution, i.s.) 2 hr prior to a local injection of histamine (200 μl of a 30 µM solution, i.s.) 

or PBS control (200 µl). Plasma and cremaster tissue samples were then collected after 

the peak of vascular leakage in each reaction i.e. following 30 min post reperfusion (Fig. 

3.4B) or 30 min post topical histamine treatment (Fig. 4.1C) and processed for ELISA as 

detailed in Chapter 2, section 2.7.  

Quantitative analysis of chemokine concentrations (kindly provided by Dr. Régis Joulia) 

revealed that tissue levels of CXCL1 were significantly increased in mice treated with IL-

1β or IL-1β + histamine as compared to unstimulated (PBS) or histamine alone-treated 

mice (Fig. 4.4A). Of particular interest, mice treated with IL-1β + histamine had enhanced 

levels of CXCL1 in their plasma (1.3-fold increase) as compared to IL-1β-treated mice (Fig. 

4.4B). Similarly, mice subjected to IR-injury had increased tissue and plasma CXCL1 levels 

relative to PBS-treated control animals (Fig. 4.4C & D). These findings suggest that 

microvascular leakage modifies the levels of CXCL1 between tissue and lumen/plasma; 

thus, disrupting the chemotactic gradient across the inflamed venular wall.  
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To further investigate the link between microvascular leakage induction and enhanced 

plasma CXCL1, we sought to inhibit histamine-dependent permeability. In vivo, vascular 

permeability is determined by the strength of intercellular interactions, which are 

themselves mediated by several pathways. In particular, the activity of Tie2, a tyrosine-

protein kinase receptor known to be important for bolstering EC junctional integrity, is 

dependent on its dissociation from VE-PTP (Winderlich et al., 2009; Frye et al., 2015). 

Thus, we opted to use an anti-VE-PTP blocking Ab previously known to partially inhibit 

histamine- and VEGF-dependent vascular leakage in murine skin by inhibiting association 

of VE-PTP with Tie2 (Broermann et al., 2011; Frye et al., 2015). 

In a first set of control experiments, we investigated if VE-PTP blockade inhibits vascular 

leakage in our IL-1β + histamine model in the cremaster muscle. For this purpose, WT 

mice received an i.v. injection of an anti-VE-PTP Ab (100-200 µg/mouse) 90 min post IL-

1β stimulation. Alternatively, control mice were treated with an isotype matched control 

Ab or PBS (rabbit IgG 100-200 µg/mouse - no differences were observed between the 

PBS and the isotype control Ab). The cremaster muscle tissue was then exteriorised and 

processed to measure histamine-dependent vascular leakage as detailed in section 4.2.1 

(experimental timeline depicted in Appendix 3, section 9.3.4). Alternatively, IL-1β 

treated mice received a local injection of histamine as described above for subsequent 

analysis of CXCL1 by ELISA. Plasma was collected from all mice 1 hr post application of 

histamine and were analysed by Dr. Régis Joulia to determine CXCL1 levels by ELISA.  

Mice injected with the anti-VE-PTP Ab exhibited a 37% reduction in histamine-induced 

vascular leakage relative to treatment with PBS or the control IgG rabbit Ab (Fig. 4.4E). 

Furthermore, a 36% decrease in the plasma CXCL1 levels was noted in mice treated with 

the anti-VE-PTP Ab (Fig. 4.4F).  

Collectively, the increase in plasma CXCL1 levels is at least partly governed by VE-

cadherin-dependent vascular leakage. 
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Plasma Tissue 

Figure 4.4. Histamine-induced vascular leakage enhanced translocation of tissue generated 

CXCL1 into the blood. (A-F) Cremaster muscles of WT mice were subjected to 40 min of 

ischaemia and 30 min of reperfusion or alternatively after 2 hr of locally injected IL-1β (200 µl 

of a 50 ng solution, i.s.) followed by 30 min of locally injected histamine (200 μl of a 30 µM 

solution, i.s.) or PBS control (200 µl). In some experiments, fluorescently labelled anti-CD31 

mAb (4 µg) was injected i.s. 30 min prior to exteriorisation (IR-injury experiments) or in 

combination with PBS/IL-1β (IL-1β + Histamine experiments). Some mice were also injected i.v. 

with an anti-VE-PTP Ab or IgG rabbit control Ab 90 min post local IL-1β. In addition, some mice 

received an i.v. injection of 75 kDa TRITC-dextran at the start of the image acquisition period. 

In some experiments plasma and tissue samples were isolated 30 min post reperfusion or local 

application of histamine and processed for CXCL1 quantification as analysed by ELISA. (A & C) 

Tissue or (B & D) Plasma CXCL1 analysis (n = 4-6 mice/group). (E) Time-course of dextran 

accumulation in the perivascular region of a post-capillary venule, represented as relative MFI 

(n = 3-4 mice/group). Error bars are not shown for clarity but the SEM at the peak timepoint 

was within 2.668 and 2.207. (F) Plasma CXCL1 as analysed by ELISA, 1 hr post histamine +/-anti-

VE-PTP (100-200 µg) (n = 4-5 mice/group). Data are represented as mean ± SEM (each dot 

represents one mouse/independent experiment). Statistically significant differences from (A-D 

+ F) PBS-treated (indicated by **p<0.01, ***p<0.001) or (A & B) IL-1β (indicated by #p<0.05) or 

(E) anti-VE-PTP Ab treated (indicated by †††p<0.001) mice, as analysed by an (A & B) one-way 

ANOVA followed by Bonferroni’s post-hoc test or (C-F) unpaired student t-test, (ns = not 

significant). Data obtained in collaboration with Dr. Régis Joulia.   
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4.2.4. Blockade of systemic CXCL1 reduced the frequency of neutrophil rTEM  

 

As previous experiments provided evidence that vascular leakage induction leads to a 

disrupted distribution of tissue CXCL1, we considered that this excess plasma CXCL1 

could drive transmigrating neutrophils back into the vascular lumen and hence promote 

rTEM. To this end, the next series of experiments were aimed at investigating the effect 

of systemic blockade of CXCL1, using an anti-CXCL1 blocking Ab (Girbl et al., 2018), in our 

models of IL-1β + histamine and IR-injury.  

Briefly, 2 hr post-stimulation of tissues with IL-1β, mice were injected i.v. with an anti-

CXCL1 blocking Ab (1 mg/kg) at a dose determined by colleagues (data not shown) not 

to block total neutrophil recruitment. Control animals received the same dose of an 

isotype matched control Ab. Alternatively, mice were subjected to IR-injury, as described 

in Chapter 2, section 2.4.2. and were additionally, injected i.v. with an anti-CXCL1 

antibody at the point of reperfusion of the cremaster muscle. In the IL-1β + histamine 

studies, TRITC-dextran was injected i.v. at the start of the 2 hr confocal image acquisition 

period (experimental timeline depicted in Appendix 3, section 9.3.5 & 9.3.6). Neutrophil 

migratory behaviour and vascular leakage were then analysed offline with IMARIS 

software as detailed in Chapter 2, section 2.6 and Chapter 3, section 3.2.1, respectively. 

Analysis of confocal image sequences revealed that at the dose and time employed, 

systemic administration of anti-CXCL1 Ab had no impact on plasma protein leakage (Fig. 

4.5A) or total neutrophil extravasation into the surrounding tissue (Fig. 4.5B & D). 

However, the frequency of neutrophil rTEM events was significantly reduced by 

approximately 60 % as compared to mice injected with a control Ab (Fig. 4.5C & E).  

Collectively, these data strongly suggest that inflammatory reactions characterised by a 

rapid increase in vascular leakage also lead to enhanced levels of plasma CXCL1, which 

in turn, disrupts chemotactic directional cues, a response that drives neutrophil rTEM. 
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Figure 4.5. Systemic CXCL1 blockade reduces the frequency of neutrophil rTEM. Cremaster 

muscles of LysM-EGFPki/+ mice were stimulated with IL-1β (50 ng for 2 hr) followed by topical 

superfusion of histamine (30 µM) onto an exteriorised cremaster tissue. Alternatively, mice 

were subjected to 40 min ischaemia and 2 hr of reperfusion. Blocking anti-CXCL1 Ab (1 mg/kg), 

or control IgG Ab was injected i.v. immediately prior to exteriorisation of the cremaster tissue 

or at the point of reperfusion. Fluorescently labelled anti-CD31 mAb (4 µg) was injected i.s. to 

visualise EC junctions and in some experiments, 75 kDa TRITC-dextran was injected i.v. at the 

start of the image acquisition period. (A) Time-course of dextran accumulation in the 

perivascular region of a post-capillary venule, represented as relative MFI (n = 4-6 mice/group). 

Error bars are not shown for clarity but the SEM at the peak timepoint was within 0.499 and 

1.213. (B & D) Total neutrophil extravasation (n = 3-6 mice/group). (C & E) Frequency of 

neutrophil rTEM events. (n = 3-7 mice/group). Data are represented as mean ± SEM (each dot 

represents one mouse and one independent experiment). (B-E) Statistically significant 

differences from control Ab-treated groups is shown by *p<0.05 as determined by an unpaired 

student t-test, (ns = not significant).  

A 

B C 

* 

E D 

ns 
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4.3. Discussion 

 

Vascular hyper-permeability and leukocyte recruitment are key hallmarks of the innate 

immune system that occur during the development of acute inflammatory reactions. 

Whilst these two events have largely been studied independently, there is ample 

evidence for neutrophil activation and transmigration to alter the barrier functions of 

blood vessel walls. More specifically, there is now extensive evidence that neutrophils 

can promote vascular leakage in the very preliminary stages of the inflammatory process 

through the secretion of a variety of factors, including TNF (Djeu et al., 1990; 

Finsterbusch et al., 2014), VEGF (Scapini et al., 2004) and LTA4 (Wedmore and Williams, 

1981; DiStasi and Ley, 2009). However, it is not yet understood whether vascular leakage 

itself can impact neutrophil trafficking. Therefore, experiments were conducted to 

investigate the interplay of these two fundamental components in models of acute 

inflammation. The present work provides evidence for the first time that microvascular 

hyper-permeability induction can lead to disruption of neutrophil TEM, whereby a 

significant proportion of neutrophils (20-25%) migrate in an abluminal-to-luminal 

direction, known as neutrophil rTEM. Mechanistically, this response was mediated by a 

permeability-dependent disruption of chemokine distribution, namely CXCL1, across the 

endothelium. Collectively, these findings extend our current knowledge of how vascular 

leakage and neutrophil TEM are interlinked during acute inflammatory reactions. 

In this Chapter, our extended confocal IVM platform (as established in Chapter 3) was 

utilised to further investigate the impact of vascular leakage on neutrophil TEM 

dynamics in real time. Here, application of pro-permeability agents (histamine or VEGF) 

to IL-1β stimulated cremaster muscles resulted in rapid and transient but potent 

vascular leakage responses. This was associated with enhanced levels of neutrophil 

rTEM within the first 30 min, whilst all treatment groups exhibited comparable levels of 

total neutrophil extravasation at the end of the imaging acquisition period (2 hr post 

histamine/VEGF). Overall, this suggested a causal link whereby the onset of 

microvascular leakage results in enhanced levels of neutrophil rTEM.  

To explore this concept further, we sought to manipulate the vascular leakage response. 

Our investigations focused on VE-cadherin, a vital EC junctional adherens molecule and 
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mediator of histamine-induced vascular permeability (Winter et al., 2004). In 

collaboration with Prof. Dietmar Vestweber, we utilised a mutant VE-cadherin mouse 

model which has been shown to exhibit reduced vascular leakage induction following 

histamine treatment, but with no effect on total neutrophil extravasation following IL-

1β-stimulation of the cremaster tissue, as analysed by confocal IVM (Wessel et al., 

2014). In the present study, histamine-dependent vascular leakage was similarly 

decreased by ~30% in VEC-Y685F mice, relative to VEC-WT mice. Importantly, while this 

inhibition of vascular leakage did not affect total neutrophil extravasation, the frequency 

of neutrophil rTEM was partially decreased (~30%), providing direct evidence that 

microvascular leakage can impact the directionality of neutrophil TEM. 

Next, we investigated mechanistically how enhanced microvascular leakage could lead 

to augmented neutrophil rTEM. Firstly, we considered previous publications identifying 

the mechanisms regulating neutrophil rTEM (Woodfin et al., 2011; Colom et al., 2015). 

In these previous studies, the NE-dependent cleavage of JAM-C at EC junctions results 

in enhanced neutrophil rTEM during IR-injury and LTB4 treatment (Woodfin et al., 2011; 

Colom et al., 2015). Whilst we initially considered this mechanism in our model of IL-1β 

+ histamine, a review of the relevant literature revealed that findings regarding the 

distribution of JAM-C during vascular permeability is conflicting. While investigations by 

Orlova et al., observed that loss of JAM-C resulted in reduced vascular permeability 

compared to control groups following histamine or VEGF stimulation, investigations by 

Imhof and colleagues found opposing observations in a parasitic infection model of 

Leishmania major in which loss of JAM-C increased vascular permeability by 15% (Ballet 

et al., 2014). As such, the role of JAM-C in vascular leakage remains ambiguous and 

requires exploration in our model of IL-1β + histamine. To assess whether loss of EC JAM-

C can impact vascular permeability and subsequently the rTEM response in our acute 

inflammatory model, Dr. Régis Joulia performed experiments that identified no 

difference in junctional JAM-C expression following histamine alone, IL-1β alone or IL-

1β + histamine (Owen-Woods et al., 2020). Therefore, other avenues needed to be 

explored to elucidate the mechanism driving permeability-mediated neutrophil rTEM. 

To this end, we considered the potential disruption of chemokine 

expression/localisation, essential aspects of the neutrophil transmigration cascade. 

Chemotactic directional cues are governed by the establishment of a concentration 
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gradient as determined by the localisation and expression of chemoattractants such as 

LTB4 and CXCL1 (Janetopoulos and Firtel, 2008; McDonald et al., 2010; Jin, 2013). The 

importance of chemotactic directional cues has also recently been demonstrated in the 

context of neutrophil TEM (Girbl et al., 2018). This work showed that neutrophils require 

sequential interactions with the chemokines CXCL1 followed by CXCL2, as potentially 

presented by EC surface GAGs (Proudfoot et al., 2017; Uchimido et al., 2019) and EC 

junctional ACKR1 (Pruenster et al., 2009; Novitzky-Basso and Rot, 2012; Thiriot et al., 

2017; Girbl et al., 2018), to mediate neutrophil crawling and unidirectional paracellular 

TEM, respectively. Based on our current understanding of neutrophil directional motility 

towards a chemotactic gradient, we hypothesised that enhanced microvascular leakage 

could disrupt the correct localisation of directional cues, and in turn, lead to abnormal 

neutrophil TEM. As IL-1β is known to be a potent inducer of CXCL1 expression (Ribaux 

et al., 2007; Biondo et al., 2014), our investigations focused on this chemokine. In 

collaboration with Dr. Régis Joulia, we observed that IL-1β induced production and 

release of CXCL1 in the tissue and plasma. However, following IL-1β + histamine 

treatment, CXCL1 levels were significantly increased (1.3-fold increase) in the plasma as 

compared to control IL-1β-treated mice. This could suggest that tissue generated CXCL1 

may be translocated/transported through the disrupted EC junctions into the plasma 

following enhanced vascular leakage, thus reversing the chemotactic gradient of this 

chemokine. Indeed, the interstitial tissue contains many cellular sources of CXCL1, 

including pericytes (Girbl et al., 2018), ECs (Goebeler et al., 1997; Girbl et al., 2018) and 

macrophages (Becker et al., 1994). However, if true, this would require CXCL1 to move 

against the luminal-to-abluminal hydraulic flux, which would be greater in scenarios of 

enhanced vascular leakage. 

To test the veracity of this hypothesis, mathematical modelling was initially developed 

in collaboration with the group of Prof. David Bates from the University of Nottingham, 

which simulated venule and tissue exchange dynamics of our inflammatory reaction 

(Owen-Woods et al., 2020). Under basal conditions, passage of molecules across the 

endothelium is minimal, but under conditions of hyper-permeability the EC junctions 

widen/loosen and enable transendothelial movement of blood and tissue bound 

molecules. In our mathematical model, movement across the endothelium of molecule 

of interest, such as CXCL1, is related to the Péclet number (Pe). This number is a ratio of 
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the opposing transendothelial diffusive flux (i.e. abluminal-to-luminal movement) and 

advective flux (i.e. luminal-to-abluminal movement), whereby lower or higher numbers 

indicate dominating advective or diffusive flux, respectively. These factors are 

determined by four underpinning major factors: the hydraulic velocity of fluids and 

solutes from the blood into the tissue, the chemokine diffusion distance, diameter of 

the EC junctional pore and finally the size of the molecule of interest, in this case 10 kDa. 

The hydraulic velocity depends on hydrostatic/oncotic pressures exerted by the blood 

and tissue, as well as the overall endothelial permeability. These factors were 

determined using known data available in the literature and adapted to simulate 

scenarios of minimal and enhanced vascular permeability, whereby in the latter 

hydraulic velocity is reduced. Through this approach, our mathematical model predicted 

that molecules such as CXCL1 would have a Pe number of 0.8 under homeostatic control 

conditions, which decreased to 0.3 under enhanced vascular permeability. This 

indicated that the diffusion of CXCL1 from tissue into plasma was feasible in our 

inflammatory reaction as induced by IL-1β + histamine. These predictions were thus 

experimentally tested by Dr. Régis Joulia using a small fluorescently labelled 10 kDa 

dextran topically applied to the cremaster tissue prior to the topical application of 

histamine- or vehicle control solution. The experimental data successfully demonstrated 

trafficking of the 10 kDa dextran from the tissue into the blood (as detected by 

fluorospectrometry of plasma samples) following topical application of histamine, but 

minimally in vehicle control treated mice (Owen-Woods et al., 2020).  

To further explore the hypothesis that vascular permeability can promote the 

translocation of tissue-generated chemokines into the vascular lumen, we sought to 

block the vascular leakage response. This was accomplished using an anti-VE-PTP 

blocking Ab previously shown to partially inhibit histamine- and VEGF-dependent 

vascular leakage in a model of skin inflammation through a Tie2 dependent mechanism 

(Frye et al., 2015; Winderlich et al., 2009). In vivo, Tie2 functionally attenuates vascular 

leakage by activating the GTPase, Rac1, which is turn blocks the activation of RhoA and 

prevents the induction of contractile forces of actinomyosin stress fibres. This not only 

helps to prevent the formation of EC junctional gaps but also acts to prevent 

internalisation of VE-cadherin (Braun et al., 2019). Indeed, in our study at the dose 

employed, blockade with anti-VE-PTP Ab partially reduced (~30 %) the vascular leakage 
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response as induced by IL-1β + histamine. Furthermore, plasma CXCL1 levels were also 

reduced, supporting the hypothesis that vascular permeability drives enhanced 

translocation of tissue generated CXCL1 into the plasma.  

Finally, the impact of increased plasma CXCL1 on neutrophil dynamics was directly 

assessed. Here, mice received an i.v. injection of a blocking anti-CXCL1 Ab at a dose 

known not to interfere with the neutrophil extravasation response (data not shown) 

prior to the topical application of histamine on IL-1β stimulated tissues or following IR 

injury. In this context, mice treated with the anti-CXCL1 Ab exhibited a reduced 

frequency of neutrophil rTEM in both inflammatory reactions. Here, we provide 

evidence that chemotactic cues are critical for neutrophil luminal-to-abluminal 

migration across the EC wall. This result is consistent with previous investigations from 

Girbl et al., showing that CXCL1 and CXCL2 sequentially interact with neutrophil 

expressed-CXCR2 to ensure effective neutrophil crawling and luminal-to-abluminal TEM, 

respectively, following TNF stimulation (Girbl et al., 2018). 

In the context of our study, increased detection of CXCL1 in the plasma following 

histamine application may be indicative of augmented retention and presentation of the 

chemokine CXCL1 at EC junctions, which subsequently disrupts the sequential steps 

required for neutrophil migration. Increased passage of CXCL1 through EC junctions in 

an abluminal-to-luminal direction could result in excessive retention and therefore 

presentation at the junction of CXCL1 by ACKR1, which has been shown to bind CXCL1 

(Pruenster et al., 2009; Novitzky-Basso and Rot, 2012). This could consequently either 

saturate neutrophil-expressed CXCR2 and thus not allow for sufficient binding of CXCL2, 

previously shown to mediate neutrophil TEM (Girbl et al., 2018). Alternatively, this could 

lead to desensitisation and internalisation of CXCR2, thus resulting in the inability for 

CXCL2 to bind. In both cases, the resultant effect could be ineffective signalling to 

mediate normal TEM and hence could lead to neutrophil rTEM. This hypothesis requires 

further exploration to determine the specific contribution of chemokines governing 

neutrophil rTEM, as discussed in Chapter 7. 
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4.4. Conclusion 

 

This Chapter provided direct evidence for the ability of vascular leakage to impact the 

directionality of neutrophil TEM in vivo. Here, and as supported by the relevant 

literature and detailed in our recent publication (Owen-Woods et al., 2020; see appendix 

1), we identified a novel mechanistic pathway whereby vascular leakage results in 

disruption of the CXCL1 chemotactic gradient across the endothelium. This response 

was subsequently found to enhance the occurrence of neutrophil rTEM (Fig. 4.6). 

Previous studies investigating this phenomenon have reported that during inflammatory 

reactions that exhibit local neutrophil rTEM, enhanced levels of lung permeability are 

also observed (Woodfin et al., 2011; Colom et al., 2015). Thus, it has been hypothesised 

that rTEM neutrophils disseminate to distant organs where they have a pathological 

consequence. Hence, in the next Chapter, we sought to eludicate the potential 

pathophysiological relevance of this abnormal mode of neutrophil TEM.  
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Figure 4.6. Microvascular leakage disrupts chemotactic cues and promotes neutrophil rTEM. 

Following local IL-1β stimulation of the mouse cremaster muscle, a chemotactic gradient across 

the endothelium is established, one such chemokine being CXCL1, resulting in the rapid 

recruitment of neutrophils to the site of inflammation, where they then adhere and undergo 

normal TEM. However, under conditions of hyper-permeability such as those seen following 

IR-injury or following the addition of the exogenous pro-permeability agent, histamine, the 

chemotactic gradient is disrupted resulting in elevated plasma CXCL1 levels. This augmentation 

of CXCL1 supported enhanced neutrophil rTEM. Following systemic blockade of CXCL1 the 

gradient is rebalanced and the frequency of neutrophil rTEM is reduced.  
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Chapter 5  
 

Tracking and phenotypic analysis of reverse 
transmigrating neutrophils 
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5.1. Introduction 

 

Our understanding that neutrophils can undergo rTEM is well established (Buckley et 

al., 2006; Woodfin et al., 2011; Colom et al., 2015; Girbl et al., 2018; Owen-Woods et al., 

2020), but the phenotype, fate and (patho)physiological role of reverse transmigrating 

neutrophils remains poorly understood. Primarily, this lies in the difficulty to exclusively 

target, track and isolate this sub-set of neutrophils. An early in vivo attempt to 

understand the phenotype of rTEM neutrophils was carried out by our team (Woodfin 

et al., 2011). Following a model of local IR-injury of the hind limb, the group observed 

an increased frequency of neutrophil rTEM and further identified a population of 

activated neutrophils in the lung vasculature expressing high levels of ICAM-1 and ROS 

(Woodfin et al., 2011). This small population of pro-inflammatory neutrophils were 

hypothesised to be reverse migrating neutrophils that had disseminated from the local 

injured area. However, to conclusively demonstrate this hypothesis, a method to directly 

track and phenotype reverse transmigrating neutrophils was required.  

One of the first studies aiming to directly track reverse transmigrating neutrophils 

employed a model of sterile injury in a transgenic zebrafish that expressed the 

photoconvertible fluorescent reporter Dendra2 in leukocytes (Yoo and Huttenlocher, 

2011). Following wounding of the tail fin, neutrophils that had reached the site of 

inflammation in the interstitial tissue were laser-targeted for photoconversion (PC). 

Here, over the course of a few days, a small proportion of extravasated photoconverted 

neutrophils where observed to migrate back into the vasculature lumen (Yoo and 

Huttenlocher, 2011). The interstitial reverse migration element of this response was later 

termed reverse interstitial migration (rIM) (Nourshargh et al., 2016). While the approach 

employed allowed for differentiation of neutrophils undergoing rIM and rTEM, the 

authors did not isolate the neutrophils for phenotypic analysis (Yoo and Huttenlocher, 

2011). More recently, Wang et al., utilised a similar approach by employing laser-

photoactivation (PA) of neutrophils to enable tracking of cells that underwent a 

combined rIM and rTEM response in injured murine livers (see Chapter 1, section 1.6) 

(Wang et al., 2017). Specifically, Ly6G-PA-GFP mice that specifically express 

photoactivatable GFP exclusively in mature neutrophils, were subjected to surface liver 

burn injury. Cell PA was conducted 14 hr post injury of neutrophils located within the 
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extravascular tissue and close to the injured site. With this approach, only neutrophils 

that had undergone migration into the interstitium were photoactivated, whilst 

neutrophils in the vasculature remained inactivated. The authors then observed that a 

proportion of these photoactivated neutrophils undergo rIM followed by rTEM into the 

murine liver microcirculation and thus were able to definitively label and track a 

proportion of these cells. The group then extended their investigations to track these 

reverse migrating neutrophils. Subsequently, the group identified a small population of 

photoactivated (and therefore assumedly) reverse migrated neutrophils in the lungs and 

BM of the mice 24 hr post induction of liver injury. Furthermore, at both sites, Ly6G-PA-

GFP+ cells had elevated surface expression levels of CXCR4, whilst those exclusively in 

the BM also exhibited elevated surface expression of annexin V, suggesting these cells 

homed to the BM to be cleared. Collectively, these two cited studies indicated that 

neutrophil rIM may serve as a physiological clearance mechanism for neutrophils, thus 

contributing to local resolution of the inflammatory response and wound healing (Yoo 

and Huttenlocher, 2011; Wang et al., 2017).     

Comparison of investigations by Woodfin et al., Yoo & Huttenlocher and Wang et al., 

reveals a conflict between the fate of reverse migrating neutrophils, which may be 

attributed to two key factors. Firstly, the type of reverse migration under consideration 

(rTEM by the former and rIM + rTEM by the latter studies) and secondly, the timepoint 

post injury at which Woodfin et al., and Wang et al., conducted phenotypic analysis (at 

1 hr or 24 hr, respectively), among other factors as further detailed in the discussion 

(section 5.3). However, a comprehensive comparison is difficult without direct 

phenotypic analysis of rTEM neutrophils in these reactions. Although the 

aforementioned PC/PA techniques have advanced our understanding of reverse 

migrating neutrophils, they remain impractical for analysis of rTEM neutrophils. For 

instance, laser PA only allows for selected regions of interest to be targeted and 

therefore only provides a snapshot of the overall response. This severely limits the 

number of cells tracked and thus reduces the reliability of any observed phenotype 

change. In addition, while these approaches are suitable for targeting reversing 

neutrophils that have migrated deep into the tissue (i.e. rIM), they do not possess the 

precision to target rTEM neutrophils, in which reversing cells are limited to breaching of 

the thin endothelium only. Hence, a new technique was required to improve the number 
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of reversing neutrophils tracked, and more importantly, to selectively track rTEM 

neutrophils that only breach the endothelium and do not enter the interstitial tissue. 

 

5.1.3. Scope of the Chapter 

 

This Chapter details a novel methodology for the exclusive labelling and tracking of rTEM 

neutrophils and thus provides insight into their phenotype and fate. To this end, the 

aims of this Chapter are as follows: 

- Establish an effective immuno-labelling protocol for the tracking of neutrophils 

exhibiting rTEM. 

- To validate the methodology. 

- To provide insight into the phenotype and fate of reverse migrating neutrophils.  
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5.2. Results 

 

5.2.1. Strategy for the exclusive labelling and tracking of rTEM neutrophils 

 

In order to specifically target rTEM neutrophils (and not intraluminal cells), a two-step 

immuno-labelling approach was added to our IVM protocol. As the objective was to track 

rTEM neutrophils, the new labelling strategy was applied to analysis of tissues stimulated 

with the combination of IL-1β + histamine, an inflammatory reaction that caused a 

significant rTEM response (see Chapter 4 & Chapter 2, section 2.4 for the details of the 

IVM protocol). Since neutrophil rTEM is a rapid response during which neutrophils do 

not migrate beyond the pericyte layer, it was essential that the labelling occurred 

immediately and irreversibly upon engagement of the neutrophils within EC junctions.  

To this end, we sought to exploit the high affinity between biotin and streptavidin, which 

when bound, exhibits one of the strongest known non-covalent interactions 

(dissociation constant, KD ≈ 10-15 mol/L) (Green, 1975; Weber et al., 1989). Thus, we 

elected to inject biotinylated anti-Ly6G Ab (anti-Ly6G-biotin – 2 µg) i.v., 30 min prior to 

cremaster exteriorisation, to target the glycoprotein, Ly6G (exclusively expressed by 

mature neutrophils in the blood) to label all peripheral neutrophils (Lee et al., 2013). In 

addition, streptavidin (fluorescently labelled, strept-AF647 – 1 µg/ml) was applied 

topically to the cremaster tissue. Based on its molecular weight (e.g. 60 kDa; see the 

mathematical modelling discussed in Chapter 4), we envisaged minimal diffusion of 

strept-AF647 into the vascular lumen. 

Through this methodology, only neutrophils that breached the endothelium 

(extravascular and rTEM) became labelled with strept-AF647 (Fig. 5.1). Thus, in the 

circulation, rTEM neutrophils could be identified as Ly6G-biotin-Strept-AF647+ (strept-

AF647+) by both confocal IVM and flow cytometry. Firstly however, it was important to 

validate this approach as detailed in section 5.2.2. 
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Figure 5.1. Schematic demonstrating the novel labelling strategy developed for exclusive 

targeting of rTEM neutrophils. LysM-EGFPki/+ mice received an i.v. injection of anti-Ly6G-biotin 

Ab (2 µg) for 30 min. Cremaster muscles were then exteriorised and strept-AF647 (1 µg/ml) was 

topically applied for up to 2 hr. Reproduced from Owen-Woods et al., 2020.  
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5.2.2. Experimental validation of the methodology  

 

Before fully assessing the efficacy of the protocol in labelling rTEM neutrophils, we 

conducted a number of validation steps. Firstly, we assessed whether the anti-Ly6G-

biotin Ab, at the dose employed, labelled all peripheral neutrophils with high efficacy 

and specificity. Secondly and crucially, to assess the selectivity of the technique for 

labelling rTEM neutrophils, we analysed the potential diffusion of topically applied 

strept-AF647 from the tissue into the blood. Naturally, such an effect would lead to 

undesirable labelling of blood circulating Ly6G-biotin+ neutrophils and hence confound 

conclusions drawn in the context of rTEM neutrophils.   

To address the efficacy and specificity of the anti-Ly6G Ab staining in vivo, LysM-EGFPki/+ 

mice were treated locally with IL-1β and subsequently injected i.v. with anti-Ly6G-biotin, 

as described in section 5.2.1. Blood samples were then collected via the tail vein every 

30 min up to 150 min. Samples were then processed for flow cytometry as detailed in 

Chapter 2, section 2.2.5.3. Distinctly, samples were incubated in vitro with exogenous 

strept-AF647 (1 µg/ml) or vehicle solution in combination with anti-CD45 and anti-GR1-

PE mAb to discriminate between neutrophils (CD45-PB+, Gr1-PEhigh and EGFPhigh) and 

inflammatory monocytes (CD45-PB+, Gr1-PElow and EGFPlow). The data showed that 2 µg 

of anti-Ly6G-biotin was sufficient to label >99% of all circulating neutrophils for up to 

150 min post injection of anti-Ly6G-biotin, whilst monocytes remained negative for Ly6G 

staining throughout (Fig. 5.2A & B). 

For assessment of strept-AF647 diffusion into the circulation, LysM-EGFPki/+ mice 

received an i.v. injection of anti-Ly6G-biotin for 30 min. The cremaster muscle was then 

exteriorised and subjected to topical application of strept-AF647 (1 µg/ml) ± histamine 

for 2 hr. Blood samples were collected from the ascending vena cava and processed for 

flow cytometry as detailed in Chapter 2, section 2.2.5.3. Samples were incubated with 

fluorescently labelled anti-CD45 and anti-Gr1 mAbs. Our analysis showed that topical 

application of strept-AF647 in the presence and absence of histamine for 2 hr led to very 

low numbers of strept-AF647+ neutrophils (<0.17%) in the blood (Fig. 5.2C). 

Collectively, we established that at the doses employed, i.v. anti-Ly6G-biotin was 

suitable for specific and efficient labelling of blood neutrophils and that topically applied 

strept-AF647 exhibited minimal intraluminal diffusion, even under conditions of 
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enhanced vascular leakage as induced by local histamine. With these findings in hand, 

we next assessed if this strategy was sufficient to label migrating neutrophils. 

  

 

 

A 

Figure 5.2. Anti-Ly6G-biotin efficiently and specifically labelled neutrophils, while topical 

strept-AF647 exhibited minimal diffusion into the blood. (A-B) LysM-EGFPki/+ mice received an 

i.s. injection of IL-1β (50 ng) for 1.5 hr followed by an i.v. injection of anti-Ly6G-biotin Ab (2 µg). 

Blood was then taken every 30 min up to 150 min post anti-Ly6G-biotin injection and treated 

with exogenous strept-AF647 (1 µg/ml). (A) Validation of anti-Ly6G-biotin dose efficacy and (B) 

assessment of the specificity of anti-Ly6G-biotin binding to selectively label neutrophils 

overtime (30-150 min post i.v. anti-Ly6G-biotin). (C) Alternatively, LysM-EGFPki/+ mice were 

injected i.v. with anti-Ly6G-biotin mAb for 30 min. The dot plot histograms show the assessment 

of strept-AF647 diffusion into the circulation under basal condition or following histamine-

induced vascular leakage as determined by flow cytometry. Representative of (A-B) 5 and (C) 3 

independent experiments. Experiments were carried out in collaboration with Dr. Loïc Rolas.  
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For this purpose, we assessed the capacity of this protocol to label neutrophils that 

undergo diapedesis in IL-1β-stimulated tissues, as analysed by confocal microscopy.  

Here, LysM-EGFPki/+ mice were treated with local IL-1β (50 ng) in combination with anti-

CD31-AF555 (2 µg) for 1.5 hr, after which, anti-Ly6G-biotin (2 µg) was administered i.v. 

After 30 min the cremaster tissue was exteriorised and topically applied with strept-

AF647 (1 µg/ml) for 2 hr, as described in section 5.2.1. Tissues were then collected and 

fixed as detailed in Chapter 2, section 2.6 and imaged on a confocal microscope in 

collaboration with Dr. Loïc Rolas, as described in Fig. 5.3. Fixed tissue images 

showed/indicated that luminal EGFP+ neutrophils, i.e. those that had not breached the 

endothelium, were strept-AF647- following topical application of strept-AF647. In 

contrast, EGFP+ neutrophils in the interstitial tissue, but most importantly, in the sub-EC 

space were clearly strept-AF647+ (Fig. 5.3).  

These results further confirmed that strept-AF647 was retained on the abluminal side of 

the endothelial wall and only labelled neutrophils that had undergone TEM. With these 

encouraging findings at hand, we next investigated the potential impact of the labelling 

protocol on neutrophil behaviour, including their capacity to exhibit rTEM. 
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Figure 5.3. Topical strept-AF647 only labels neutrophils that have breached the endothelial 

layer. LysM-EGFPki/+ mice received an i.s. injection of an anti-CD31-AF555 mAb (4 µg) to label EC 

junctions for 2 hr in combination with IL-1β (50 ng). After 1.5 hr an anti-Ly6G-biotin Ab (2 µg) 

was injected i.v. Cremaster muscles were then exteriorised and treated with topical strept-AF647 

(1 µg/ml) for 2 hr. The tissue was then dissected away, fixed with 4% paraformaldehyde for 30 

min and visualised in collaboration with Dr. Loïc Rolas using an inverted Zeiss LSM 800 confocal 

laser scanning microscope with a 40 x (1.3 numerical aperture, NA) or 63 x (1.4 NA) oil dipping 

objective in a single-track scanning mode. Images measuring 160 µm x 85 µm were acquired with 

a Z-step of 0.25 µm (30-70 individual steps, dependent on the size of the blood vessel). Post-

acquisition, images were analysed off-line using IMARIS software. All quantification was 

determined from 4-8 images/tissue and expressed total number of extravasated neutrophils per 

mm3 of tissue. The left panel shows a representative confocal image of an IL-1β–stimulated 

postcapillary venule illustrating the extent of AF647-streptavidin labelling of neutrophils at 

different stages of trafficking. Right panels show enlarged images of the boxed regions and 

demonstrate that both sub-EC and interstitial neutrophils are strept-AF647+ whilst luminal cells 

are strept-AF647-. Scale bars, 5 μm.   
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For this purpose, we compared neutrophil responses in tissues stimulated with IL-1β + 

histamine by confocal IVM in mice subjected to the labelling strategy or not 

(experimental timeline depicted in Appendix 3, section 9.3.7). Neutrophil- extravasation, 

rTEM, TEM duration and interstitial speed migration parameters were quantified using 

IMARIS software as detailed in Chapter 2, sections 2.5-2.6. The data revealed that in 

mice treated with the labelling methodology, neutrophils exhibited comparable levels of 

migration into tissues (~8 x 103 neutrophils/mm3 of tissue) and frequency of rTEM 

(~25%) (Fig. 5.4A & B), as compared to mice not exposed to the labelling protocol (shown 

in Chapter 4, section 4.2.1). Furthermore, the labelling of cells did not affect the duration 

of neutrophil TEM or neutrophil interstitial motility (Fig. 5.4C & D).  
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D C 

A B 

Figure 5.4. Labelling of neutrophils did not impact neutrophil migration behaviour. (A-D) 

LysM-EGFPki/+ mice received an i.s. injection of an anti-CD31 mAb (4 µg) to label EC junctions 

for 2 hr in combination with IL-1β (50 ng). After 1.5 hr an anti-Ly6G-biotin Ab (2 µg) was injected 

i.v. The cremaster muscle was then exteriorised and treated with topical histamine (30 µM) in 

combination with strept-AF647 (1 µg/ml). (A) Total neutrophil extravasation (n = 3 mice/group) 

and (B) frequency of neutrophil rTEM (n = 3-4 mice/group) show similar levels compared to 

reactions quantified in mice not subjected to the labelling strategy (shown in Chapter 4, section 

4.2.1). (C and D) Mice subjected to the anti-Ly6G-biotin and strept-AF647 labelling strategy and 

unlabeled mice (not subjected to anti-Ly6G-biotin or strept-AF647 application) exhibited 

similar neutrophil TEM duration (C, n = 4-9 mice/group) and neutrophil interstitial migration 

speed (D, n = 32-74 neutrophils/group, across 4-8 mice) in cremaster muscles following local 

stimulation with IL-1β + histamine. Data are represented as mean ± SEM (A-C) each point 

represents one mouse, (D) each dot represents one neutrophil across 4-8 mice. Statistically 

significant differences from (A-B) IL-1β or (C-D) without strept-AF647 application are shown by 

*p<0.05, unpaired student t-test, (ns = not significant).  
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Having established that our labelling strategy did not disrupt neutrophil migratory 

behaviour, we next directly analysed the efficacy of the method in labelling and tracking 

rTEM neutrophils. For this purpose, using the IL-1β + histamine reaction, mice were 

treated- and data was acquired by confocal IVM- as described in section 5.2.1., with 

strept-AF647 labelling quantification being determined using IMARIS software. To allow 

for distinction of ‘true’ neutrophil-associated strept-AF647 signal, in each mouse we 

obtained a background value prior to the application of topical strept-AF647. This was 

achieved by creating a surface on a total of 20 neutrophils/mouse (10 representative 

neutrophils in the interstitium and 10 in the luminal space), a step that provided an MFI 

value for each neutrophil. In each experiment, the average background neutrophil MFI 

was subtracted from the MFI values obtained from neutrophils categorised as “luminal”, 

“interstitial” and “rTEM”. The strept-AF647 MFI values were similarly attained following 

the creation of a surface on luminal and interstitial neutrophils, 2 hr post topical strept-

AF647 treatment. Strept-AF647 MFI values for rTEM neutrophils were quantified 

immediately prior to their detachment from the vascular wall. The average MFI of all 

quantified neutrophils were presented as a mean/mouse in each defined category, once 

again demonstrating the efficacy of the labelling method for tracking all neutrophils that 

had breached the endothelium, including most importantly, rTEM neutrophils (Fig. 

5.5B). Indeed, time-course analysis of our confocal IVM sequences revealed that rTEM 

neutrophils rapidly became strept-AF647+ (Fig. 5.5A and video 5) to a similar extent to 

that observed with fully extravasated cells (Fig. 5.5B). In contrast, no significant labelling 

of (non-rTEM) luminal neutrophils could be detected. 

Collectively, these results showed that only cells that breached the endothelium (i.e. 

fully extravasated or exhibited reverse TEM) were labelled with locally applied strept-

AF647. With the method fully validated, we extended the investigations to analysis of 

the fate and phenotype of rTEM neutrophils. 
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Figure 5.5. rTEM neutrophils were efficiently labelled with strept-AF647. (A-B) LysM-EGFPki/+ 

mice received an i.s. injection of an anti-CD31 mAb (4 µg) to label EC junctions for 2 hr in 

combination with IL-1β (50 ng). After 1.5 hr an anti-Ly6G-biotin Ab (2 µg) was injected i.v. 

Cremaster muscles were then exteriorised and treated with topical histamine (30 µM) in 

combination with strept-AF647 (1 µg/ml). (A) Representative confocal IVM images of a tissue 

stimulated with IL-1β + histamine illustrating the effective labelling of an rTEM event. The 

exemplified neutrophil shows that once the cell has breached an EC junction, the leading body 

part in the sub-EC space rapidly becomes strept-AF647+ whilst the luminal body segment 

remains strept-AF647-. Luminal and cross-sectional views are shown with the arrows indicating 

the direction of motility for the indicated neutrophil. Scale bars, 3 µm. (B) Fluorescence intensity 

of strept-AF647 on neutrophils in the venular lumen, tissue and cells exhibiting rTEM (n = 4 

mice/group). Data are represented as mean ± SEM (Each dot represents an average of 1-4 

neutrophils for rTEM and 10 neutrophils for luminal and interstitial/300 µm vessel 

segment/mouse). Statistically significant differences from luminal neutrophils is shown by 

**p<0.01, ***p<0.001, one-way ANOVA followed by Bonferroni’s post-hoc test. 
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5.2.3. rTEM neutrophils were detected in the blood and lung vascular washout 

(LVWO) 

 

Having validated our novel cell labelling technique, we next sought to determine the fate 

of rTEM neutrophils following local IL-1β + histamine. Since our confocal IVM works 

showed that following completion of rTEM neutrophils detach from the venular wall and 

re-enter the circulation, we first examined the presence of rTEM neutrophils in the 

peripheral blood. 

In brief, LysM-EGFPki/+ mice were treated with local IL-1β (50 ng) for 1.5 hr, after which, 

anti-Ly6G-biotin (2 µg) was administered i.v. After 30 min the cremaster tissue was 

exteriorised and topically applied with strept-AF647 (1 µg/ml) for 2 hr, as described in 

section 5.2.1. Blood was then collected from the ascending vena cava 2 hr post local 

application of histamine + strept-AF647 application, immunostained ex vivo with anti-

Gr1 and anti-CD115 mAbs and analysed by flow cytometry as detailed in Chapter 2, 

section 2.2.5.3. Neutrophils were gated as EGFPhigh, Gr1-PEhigh and CD45-PB+ (Fig. 5.6A). 

With this approach, we found that in the absence of histamine, only 0.1% (equivalent to 

800 cells/ml of blood) of the circulating neutrophils were strept-AF647+. In contrast, 

following histamine-induced vascular leakage, the frequency of strept-AF647+ neutrophil 

rose to ~0.5% (~5-fold increase), corresponding to ~2,800 strept-AF647+ neutrophils/ml 

of blood (Fig. 5.6B & C). These results were consistent with the approximately 5-fold 

increase in the frequency of neutrophil rTEM events between IL-1β alone and IL-1β + 

histamine treated mice (see section 5.2.3). Collectively, these results strongly indicated 

that rTEM neutrophils recirculate through the blood/systemic circulation.  
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Figure 5.6. Strept-AF647+ neutrophils were detected in the blood of IL-1β + histamine-

treated mice. (A-C) LysM-EGFPki/+ mice received an i.s. injection of an anti-CD31 mAb (4 µg) to 

label EC junctions for 2 hr in combination with IL-1β (50 ng). After 1.5 hr an anti-Ly6G-biotin 

Ab (2 µg) was injected i.v. Cremaster muscles were exteriorised and treated with topical 

histamine (30 µM) in combination with strept-AF647 (1 µg/ml). (A) Representative gating 

strategy (B) Representative flow cytometry profiles and (C) frequency of strept-AF647+ 

neutrophils (EGFPhigh, Gr1-PEhigh and CD45-PB+), (n = 6 mice/group). Data are represented as 

mean ± SEM (each dot represents one mouse/independent experiment). (C) Statistically 

significant differences from IL-1β is shown by *p<0.05, using an unpaired student t-test.  
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Next, we sought to determine if strept-AF647+ neutrophils disseminated into other 

organs. This hypothesis is supported by previous publications that reported an 

association between rTEM neutrophils stemming from inflamed cremaster muscles and 

increased lung permeability (Woodfin et al., 2011; Colom et al., 2015). To investigate this 

directly, we harvested the lung vascular washout (LVWO) from mice exposed to different 

treatment groups, namely PBS, histamine and IL-1β ± histamine. For these studies, our 

inflammatory and labelling protocol was slightly modified.  

In brief, WT mice were treated with IL-1β (50 ng, i.s.) for 1.5 hr after which mice were 

injected i.v. with anti-Ly6G-biotin Ab (2 µg) for 30 min. Mice then received an i.s. injection 

of strept-AF647 (400 ng) co-administered with histamine (200 µl of 30 µM solution) or 

PBS for 2 hr to stimulate both cremaster muscles, as opposed to the previous protocol 

of topical application onto one exteriorised tissue. This adaptation was confirmed by Dr. 

Régis Joulia to exclusively label neutrophils that breached the endothelium, while non-

transmigrating luminal neutrophils remained strept-AF647- (data not shown, Owen-

Woods et al., 2020). At the end of the stimulation period, and in collaboration with Dr. 

Régis Joulia, animals were terminally anaesthetised, and the peripheral blood was 

removed to minimise contamination of the LVWOs. A thoracotomy was then performed 

to expose the heart and lungs and the vena cava and aortic arch were clamped to isolate 

the pulmonary vasculature. 5 ml of ice-cold PBS containing heparin (20 U/ml) and EDTA 

(5 mM) was injected into the right ventricle at a perfusion rate of 1 ml/min using a 

syringe pump. LVWO was then collected from the left ventricle. Samples were then 

processed with the relevant fluorescently labelled antibodies (described in section 5.2.3) 

and analysed by flow cytometry (as detailed in Chapter 2, section 2.2.5.3). Neutrophils 

were gated as Gr1-PBhigh and CD115-AF488-. 

Here, a marginal number of strept-AF647+ neutrophils were detected in the LVWO 

(~0.2%, corresponding to ~120 strept-AF647+/LVWO) in PBS, histamine or IL-1β alone 

conditions, reactions characterised by negligible levels neutrophil rTEM. However, 

following local IL-1β + histamine, a 4-fold increase of strept-AF647+ neutrophils were 

detected in the LVWO (~0.8%, corresponding to ~1100 strept-AF647+/LVWO) (Fig. 5.7A 

& B). 

Collectively, these data indicated that upon local inflammation associated with acute 

vascular permeability, rTEM neutrophils recirculating in the blood trafficked to the lungs. 
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In the next series of investigations, the phenotype of rTEM neutrophils in the blood and 

LVWO was analysed. 

 

  

Figure 5.7. Strept-AF647+ neutrophils accumulated in the lung vasculature. (A-B) WT mice 

received an i.s. injection of IL-1β (50 ng). After 1.5 hr, mice were injected i.v. with anti-Ly6G-

biotin Ab (2 µg) for 30 min. Mice then received an i.s. injection of strept-AF647 (400 ng) co-

administered with histamine (200 µl of 30 µM solution) or PBS for 2 hr. (A) Representative flow 

cytometry profiles and (B) frequency of strept-AF647+ neutrophils (Gr1-PBhigh
, CD115-488-) (n = 

4-8 mice/group). Data are represented as mean ± SEM (each dot represents one 

mouse/independent experiment). Statistically significant differences from PBS are shown by 

**p<0.01 or by indicated comparisons ##p<0.01, one-way ANOVA followed by Bonferroni’s 

post-hoc test, (ns = not significant). 
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5.2.4. rTEM neutrophils in the blood and LVWO exhibited a pro-inflammatory 

phenotype  

 

As the identification of rTEM neutrophils was facilitated by the Ly6G-biotin-strept-AF647 

labelling protocol, we next compared the phenotype of strept-AF647+ and strept-AF647- 

neutrophils present in the blood and lung vasculature by flow cytometry.   

In brief, in collaboration with Dr. Régis Joulia, blood and LVWO were collected as 

described in section 5.2.3. Samples were then processed as detailed in Chapter 2, 

section 2.2.5.3 and were immunostained uniquely with fluorescently labelled antibodies 

raised against Gr1 and CD115 to identify neutrophil populations, in addition to CXCR4, 

CD62L (L-selectin), CD11b, ICAM-2 (CD102), ICAM-1 (CD54), β1-integrin (CD29) and/or 

NE to evaluate surface markers of activation. Neutrophils were gated as Gr1-PBhigh, 

CD115-APC-Cy7- and strept-AF647+/-.  

We noted that as compared to strept-AF647- neutrophils, strept-AF647+ neutrophils in 

the blood exhibited no significant change in the expression of CD62L, β1-integrins, 

ICAM-2, NE, or CXCR4. However, these neutrophils exhibited significantly increased 

surface levels of CD11b and to a lesser extent ICAM-1 (Fig. 5.8A) as compared to strept-

AF647- neutrophils. Interestingly, strept-AF647+ neutrophils from the LVWO exhibited 

increased expression of β1-integrins, NE and CXCR4 in addition of CD11b and ICAM-1, 

whilst no significant change in expression of CD62L and ICAM-2 were detected. Thus, 

suggesting that this activated phenotype is further exacerbated once they reach the lung 

vasculature (Fig. 5.8B). Of note, strept-AF647- neutrophils collected from the blood and 

LVWO of IL-1β + histamine-treated mice exhibited a comparable phenotype to PBS, 

histamine or IL-1β only-treated mice (data not shown, Owen-Woods et al., 2020). 

Collectively, the activated phenotype of rTEM neutrophils indicates a pro-inflammatory 

state of these cells that may contribute to the development of pathogenicities in distant 

organs. 
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Figure 5.8. Labelled rTEM neutrophils exhibit an activated phenotype in the blood and 

LVWO. (A-B) WT mice were subjected to local cremaster muscle stimulation with IL-1β (50 ng, 

2 hr) and an i.v. injection of anti-Ly6G-biotin Ab (2 µg) after 1.5 hr. Mice then received an i.s. 

injection of strept-AF647 (400 ng) co-administered with histamine (200 µl of 30 µM solution) 

or PBS for 2 hr. Peripheral blood and LVWO samples were analysed by FACS. (A-B) Expression 

of indicated markers on strept-AF647+ neutrophils (gated: Gr1-PBhigh
, CD115-APC-Cy7-, strept-

AF647+/-) relative to levels on strept-AF647- neutrophils in (A) blood or (B) LVWO samples 

collected from mice subjected to IL-1β (4 hr) + histamine (2 hr), as measured by geometric MFI 

(gMFI) (A) n = 5-8 mice/group (B) n = 6-9 mice/group. Data are represented as mean ± SEM 

(each dot represents one mouse/independent experiment). Statistically significant differences 

from gMFI of indicated markers of blood (A) or LVWO (B) strept-AF647 labelled neutrophils. 

Statistical significance is shown by *p<0.05, paired student’s t-test, (ns = not significant). 

Blood neutrophils (4 hr IL-1β + 2 hr Hist) 

Pulmonary vasculature neutrophils (4 hr IL-1β + 2 hr Hist) 

S
tr

e
p

t-
A

F
6
4

7
+
 n

e
u

tr
o

p
h

ils
  

(g
M

F
I,

 %
 c

h
a
n

g
e

 a
s
 c

o
m

p
a

re
d
 t

o
 

s
tr

e
p

t-
A

F
6
4

7
-  
n
e

u
tr

o
p

h
ils

) 

S
tr

e
p

t-
A

F
6
4

7
+
 n

e
u

tr
o

p
h

ils
  

(g
M

F
I,

 %
 c

h
a
n

g
e

 a
s
 c

o
m

p
a

re
d
 t

o
 

s
tr

e
p

t-
A

F
6
4

7
-  
n
e

u
tr

o
p

h
ils

) 

A 

B 



          

150 
 

5.3. Discussion 

 

Reverse migration of neutrophils through EC junctions is a recently established 

phenomenon observed in various models of sterile inflammatory reactions such as IR-

injury, (Woodfin et al., 2011; Colom et al., 2015), burn injury, (Yoo and Huttenlocher, 

2011; Wang et al., 2017) and more recently hyper-permeability associated reactions 

(Colom et al., 2015; Owen-Woods et al., 2020). However, despite these advancements 

in the field, understanding the fate and phenotype of these cells has proven difficult. 

This lack of understanding resided mainly in our inability to exclusively target and 

efficiently label neutrophils that exhibit rTEM.  

In this Chapter, tracking of rTEM neutrophils has been comprehensively addressed by 

establishing an effective immunolabelling method of rTEM neutrophils. In brief, as the 

glycoprotein Ly6G is highly and exclusively expressed on the surface of mature 

neutrophils (Lee et al., 2013), biotinylated anti-Ly6G Ab was used to tag blood 

neutrophils when injected i.v. Furthermore, we exploited the high affinity binding of 

biotin and streptavidin by applying fluorescent strept-AF647 topically onto the 

exteriorised cremaster tissue so as to label anti-Ly6G-biotin+ neutrophils that had 

exclusively breached the EC layer during diapedesis. With this approach, extravascular 

and reverse migrating neutrophils became rapidly strept-AF647+ whilst luminal non-

migrating neutrophils remained strept-AF647-. Furthermore, strept-AF647+ reverse 

migrating neutrophils could be detected in the circulation but also within the pulmonary 

vasculature where they exhibited an activated phenotype. These results provide the first 

direct evidence that rTEM neutrophils exhibit an activated phenotype and establish a 

platform for future in vivo investigations into the function and pathological 

consequences of these cells. 

In the literature, tracking of reverse migrating neutrophils has previously been explored 

in zebrafish that express the photoconvertible fluorescent reporter, Dendra2 in 

leukocytes, or using genetically modified Ly6G-PA-GFP mice. However, these methods 

have limitations in the sense that tracking of neutrophils is restricted to the laser-

accessible microscopic field-of-view outside the vasculature and beyond the pericyte 

layer (Yoo and Huttenlocher, 2011; Wang et al., 2017). Inevitably, such a targeted method 

restricts the number of reversing neutrophils that can be tracked. In addition, UV/visible 
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lasers used for photoconversion with single-photon confocal microscopy penetrate the 

whole depth of tissues, thus increasing the risk of converting cells that that may not have 

undergone rIM or rTEM. Additionally, this technique lacks the level of precision required 

for targeting rTEM neutrophils that do not migrate beyond the pericyte layer of the 

vessel wall. To this end, we developed a novel tracking technique as described in section 

5.2.1. Overall, this was proven to be an effective strategy, whereby a low dose (2 µg) of 

anti-Ly6G-biotin was sufficient to label >99% of all circulating neutrophils, while other 

myeloid cells (e.g. monocytes) remained strept-AF647-. Furthermore, in the absence of 

rTEM induction, nominal fluorescence of strept-AF647 was detected on the surface of 

circulating anti-Ly6G-biotin-labelled neutrophils, with or without local histamine, 

demonstrating a lack of abluminal-to-luminal diffusion of topically applied strept-AF647. 

Histamine most likely does not affect strept-AF647 retention, because with a size similar 

to albumin, i.e. 60 kDa, (Kuzuya et al., 2008), streptavidin would not be susceptible to 

tissue-to-blood diffusion under conditions of hyper-permeability as discussed in Chapter 

4 (Pe = ~4). Similarly, our observation that non-migrating luminal neutrophils were 

largely strept-AF647- demonstrates minimal drainage via the tissue lymphatics at the 

time-points analysed, which could otherwise lead to undesirable entry of strept-AF647 

into the blood stream. 

Next, as part of our model validation, we observed that the experimental labelling 

conditions did not induce any diminution of neutrophil extravasation, interstitial 

migration velocity, duration of TEM or the frequency of rTEM. Collectively, these 

validations were crucial as previous in vitro studies have shown that pre-treatment of EC 

monolayers with streptavidin-biotin complexes resulted in reduced neutrophil-EC 

adhesion under conditions of shear flow (Chan et al., 2004). Such effects have been 

proposed to be mediated by streptavidin binding to, and blocking of pro-adhesive cell 

surface integrins (Alon et al., 1993). However, to-date there have been no reports on the 

influence of streptavidin-biotin on neutrophil-EC interactions in vivo. In addition, Ab 

binding can lead to enhanced cell activation or cell death through antibody-dependent 

cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) leading to 

cellular depletion (Pitsillides et al., 2011). Regarding in vivo treatment with anti-Ly6G Ab, 

this occurs at relatively high doses (>200 µg) (Pollenus et al., 2019), whilst at lower doses 

(1-40 µg) the impact of anti-Ly6G Ab on neutrophil migration remains contentious. For 
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instance, Wang et al., suggested that neutrophil migration was reduced following i.p. 

injection of doses between 5 – 50 µg in arthritic mice, which they hypothesised to occur 

via disruption of β2-integrin-dependent ICAM-1 adhesion (Wang et al., 2012; Cunin et 

al., 2019). However, a rebuttal report by Yipp and Kubes, details no significant effect on 

neutrophil migratory behaviour at doses up to 40 µg i.v. in an in vivo model of 

staphylococcus aureus-infection of the mouse skin (Yipp and Kubes, 2013). Therefore, 

our results are in accordance with the latter study, whereby a low dose of anti-Ly6G Ab 

has no impact on neutrophil migration. Lastly, during our investigations we also observed 

that rTEM neutrophils exhibited a comparable degree of labelling to those that had fully 

migrated. This may be mediated by persistent Ly6G rearrangement on the cell 

membrane as seen in Fig. 5.6 and video 5. Overall, these results form a robust validation 

and are an ideal basis upon which to assess the fate and phenotype of rTEM neutrophils 

in different inflammatory contexts. 

In the first instance, as neutrophils move away from their site of rTEM into the direction 

of blood flow, we sought to determine if we could detect strept-AF647+ cells in the 

systemic circulation. Indeed, we observed ~2,800 strept-AF647+ neutrophils/ml in mice 

subjected to cremasteric inflammation through local application of IL-1β + histamine, a 

reaction that caused significant frequency of neutrophil rTEM. In contrast, mice treated 

with just IL-1β, exhibited only ~800 strept-AF647+ neutrophils/ml of blood. This ~5-fold 

change aligns closely with the difference observed in the frequency of neutrophil rTEM 

for each of these reactions and supports the notion that strept-AF647+ represent rTEM 

neutrophils. Comparatively, Wang et al., identified ~300 PA-GFP+ neutrophils/ml blood 

(Wang et al., 2017) following liver burn injury compared to the negligible count of PA-

GFP+ neutrophils/ml blood detected in sham-operated mice. In both cases labelling 

occurred just prior to the peak of reverse transmigration suggesting that our approach 

may be more efficacious for labelling of reverse migrating neutrophils. However, a more 

comprehensive comparison is difficult as each scenario consists of different 

inflammatory reactions (IL-1β + histamine vs. sterile burn injury), type of reverse 

migration (rTEM vs. rIM), type of organ (cremaster muscle vs. liver) and time-points of 

the reaction (4 hr post IL-1β + 2 hr post histamine vs. 16-24 hr post burn injury). In any 

case, the present work provides the first report of rTEM neutrophils being effectively 
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labelled and tracked and thus opens up opportunities for explorations of the fate and 

phenotype of these cells. 

Next, as previous publications have shown an association between locally reverse-

migrating neutrophils and increased distal lung permeability (Woodfin et al., 2011; 

Colom et al., 2015), we sought to assess the presence of rTEM neutrophils in the 

pulmonary vasculature. LVWOs from mice treated locally with IL-1β + histamine 

exhibited a significantly higher frequency of strept-AF647+ neutrophils, consistent with 

a higher frequency of neutrophil rTEM, compared to PBS-, IL-1β-, or histamine-alone 

treated mice. Of interest, this observation reveals some similarity to the behaviour of 

neutrophils that underwent rIM + rTEM, whereby these cells accumulated in the lung 24 

hr post sterile injury of the liver (Wang et al., 2017).  

Finally, we sought to determine the phenotype of rTEM neutrophils in the blood and 

those reaching the lung vasculature to provide insight into their function. Here, we 

showed that strept-AF647+ neutrophils in the blood exhibited a typically activated 

phenotype characterised by elevated surface expression of the pro-adhesion molecules 

CD11b and ICAM-1, as compared to strept-AF647- neutrophils. In addition, strept-

AF647+ neutrophils within LVWO exhibited an exacerbated activated phenotype with 

significantly increased surface expression of CD11b, ICAM-1, β1-integrins, the 

chemokine receptor CXCR4 and the serine protease NE. Neutrophil ICAM-1, CD11b and 

β1-integrin are markers of neutrophil activation and aid in neutrophil adhesion and 

migration (Sumagin et al., 2010; Nourshargh and Alon, 2014). Of particular interest, our 

finding of ICAM-1+ strept-AF647+ neutrophils in the lung vasculature is complementary 

to investigations by Buckley et al., and Woodfin et al., who both proposed links between 

neutrophil rTEM and distant organ damage (Buckley et al., 2006; Woodfin et al., 2011). 

Buckley et al., identified in vitro that rTEM neutrophils were ICAM-1high and could be 

detected in the blood of patients suffering with chronic inflammatory disorders. Here 

they suggested that the reason these patients have a greater risk of developing distal 

organ damage e.g. post-surgery, may be due to the increased prevalence of rTEM 

neutrophils (Buckley et al., 2006). Furthermore, investigations by Woodfin et al., 

identified a population of ICAM-1high neutrophils in the mouse lung vasculature, 

following local IR-induced rTEM, which were further hypothesised to represent rTEM 

neutrophils (Woodfin et al., 2011). Collectively, the findings of the discussed literature 
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and those presented in this Chapter, demonstrate that rTEM neutrophils in various 

inflammatory conditions are ICAMhigh/+ and thus may prove a reliable biomarker to 

assess patient prognosis and risk of developing distal organ injury. Of interest however, 

Woodfin et al., identified approximately 300 ICAM-1high neutrophils in the lung 1 hr post 

local IR-injury of the mouse hide limb, in contrast to the ~1100 strept-AF647+ neutrophils 

observed in our study (4 hr IL-1β + 2 hr histamine). Whilst this discrepancy may be 

explained by differing inflammatory conditions, it may also highlight that gating on an 

ICAM-1high sub-population of neutrophils may not account for all rTEM neutrophils. The 

presence and importance of neutrophil sub-populations is a currently developing 

concept (Rosales, 2018), and may provide an exciting avenue for further study.  

Of particular interest, strept-AF647+ cells were found to be closely associated with sites 

of pulmonary vascular leakage, a finding that was only observed following our local IL-

1β + histamine reaction (data not shown, Owen-Woods et al., 2020). Our initial 

phenotypic findings provide some insight as to how rTEM neutrophils may drive this 

vascular leakage response. For example, ICAM-1-mediated signalling in neutrophils has 

been shown to support generation of ROS (Woodfin et al., 2016). In combination with 

the fact that activated neutrophils release TNF in close proximity to ECs (Finsterbusch et 

al., 2014), increased ability to generate ROS may contribute to the ability of rTEM 

neutrophils to induce lung vascular leakage. Of particular interest however, is the 

increased expression of NE by strept-AF647+ neutrophils. NE is a destructive serine 

protease enzyme secreted by activated neutrophils following degranulation of 

azurophilic (primary) granules or release of neutrophil extracellular traps (NETs) 

(Cowland and Borregaard, 2016). The increased detection of NE suggests that these cells 

undergo degranulation. This is further supported by the concomitantly enhanced 

expression of CD11b and β1-integrin, which are known to be stored in pre-formed 

granules, the former being a surface ligand for the enzyme (Roussel and Gingras, 1997; 

Cowland and Borregaard, 2016). Once released, NE facilitates the breakdown of the 

extracellular matrix and cleaves endothelial junctional molecules causing compromised 

endothelial barriers and subsequent vascular leakage (Chua and Laurent, 2006; Taylor et 

al., 2018; Voisin et al., 2019). Indeed, elevated expression of NE has been strongly 

associated with various lung diseases such as ALI and ARDs in humans (Polverino et al., 
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2017). Collectively, the elevated surface expression of NE in our study may indicate that 

rTEM neutrophils are capable of contributing to the development of lung pathologies. 

At first glance, this predominately pro-inflammatory phenotype of rTEM neutrophils 

shown in this Chapter, contrasts with the pro-resolution role of rIM neutrophils 

suggested by Wang et al. (Wang et al., 2017). Indeed, whilst neutrophil rTEM and rIM 

are distinct forms of reverse migration, these findings may be complementary, when 

considered sequentially. Recent investigations by Wang et al., observed increased CXCR4 

expression on Ly6G-PA-GFP+ (i.e. rIM) neutrophils in the lung and BM, 16 – 24 hr post 

local liver injury (Wang et al., 2017). Furthermore, increased expression of CXCR4 in aged 

neutrophils has been associated with a neutrophil’s capacity to migrate/home back to 

the BM at the end of their life cycle (Martin et al., 2003; Furze and Rankin, 2008), whilst 

the CXCL12/CXCR4 axis, has also been shown to mediate neutrophil margination in the 

lung (Devi et al., 2013). We now report that rTEM neutrophils as induced by local IL-1β 

+ histamine reaction are retained in the lung vasculature after 2 hr, a response that 

slightly reduced after 4 hr (data not shown, Owen-Woods et al., 2020). Consistent with 

the findings of Wang et al., we observed increased surface expression of CXCR4. In 

addition, after 4 hr a significant number of strept-AF647+ neutrophils were detected in 

the BM suggesting that neutrophils that previously resided in the lungs, later relocated 

to the BM (data not shown, Owen-Woods et al., 2020), consistent with findings of Furze 

and Rankin. Hence, we propose that during the acute phase of the inflammatory 

reaction, reverse migrated neutrophils exhibit a typically pro-inflammatory/pro-

permeability phenotype and are capable of inducing distant organ damage. Then, during 

the increased retention time in the lung, neutrophils undergo modifications altering 

their phenotype and begin expressing CXCR4 before trafficking back to the BM, thereby 

shifting from an inflammatory to pro-resolution phenotype. This hypothesis is further 

supported by experiments that analysed vascular leakage in the lung at both time points. 

Although very different inflammatory reactions are at play, Wang et al., stated an 

absence of any significant permeability in the lungs 11 hr after the peak of reverse 

migration in the liver (24 hr post injury). However, experiments conducted by Dr. Régis 

Joulia using our model showed increased vascular leakage in lung alveoli 2 hr after the 

peak of reverse migration (4 hr post IL-1β + 2 hr post histamine) (data not shown, Owen-

Woods et al., 2020). Together, these results are indicative of reverse migrating 
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neutrophils switching phenotypes in the lung over time, a concept that would require 

further investigations.  

Lastly, we found striking similaries between the phenotype of reverse transmigrating 

neutrophils in our model and ‘aged’ netrophils (so called, due to their phenotype). Aged 

neutrophils have been shown to have increased expression of CXCR4, ICAM-1, CD11b 

and decreased expression of CD62L (Rosales, 2018). This is largely consistent with the 

findings of this chapter. In addition, aged neutrophils exhibit CXCR2 downregulation and 

VLA-4 upregulation (Rosales, 2018), markers that were not evaluated in this thesis. Of 

particular interest, Adrover and colleagues have recently shown that neutrophil aging is 

induced by activation of CXCR2 (Adrover et al., 2019). As suggested in Chapter 4, 

following enhanced vascular leakage, excessive diffusion of CXCL1 through paracellular 

junctions could potentially result in hyper-activation of CXCR2, leading to its 

internalisation and the stated aged phenotype. Collectively, this would suggest that 

rTEM neutrophils acquire an accelerated “aged” phenotype. Further studies are needed 

to assess deep phenotyping of these cell types, investigating key cell surface markers 

such as CXCR2 expression.  

 

5.4. Conclusion 

 

In conclusion, we have established a novel cell labelling technique that enables direct 

tracking of reverse TEM neutrophils in vivo (Fig. 5.9). For the first time, through 

application of this methodology, rTEM neutrophils were found to be enriched in the lung 

vasculature where they exhibited a typically pro-inflammatory phenotype and were 

associated with sites of induced vascular leakage. These findings strongly suggest that 

the link between local trauma and distant organ damage, may be mediated to some 

extent by rTEM neutrophils (Owen-Woods et al., 2020). In the future, this approach will 

facilitate further explorative studies into the phenotype, fate and pathophysiological 

relevance of rTEM neutrophils.  
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Figure 5.9. Representative schematic displaying labelling, tracking and phenotyping of rTEM 

neutrophils. Strept-AF647+ cells were identified in blood samples following local IL-1β + 

histamine- induced inflammation where they presented an activated phenotype as shown by 

enhanced surface expression of CD11b and ICAM-1, relative to strept-AF647- neutrophils. 

Furthermore, an enrichment of strept-AF647+ neutrophils was identified in LVWO, where they 

exhibited a pro-inflammatory phenotype as identified by further increased expression of CD11b 

and ICAM-1, in addition to increased NE, β1-integrin and CXCR4, relative to strept-AF647- 

neutrophils. 
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Chapter 6  
 

Investigations into the role of TNF/TNFR pathway in the 
regulation of vascular leakage and neutrophil TEM 
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6.1. Introduction 

 

The previous Chapters (see Chapters 3 – 5) demonstrated for the first time that vascular 

leakage supports an aberrant mode of leukocyte diapedesis during acute inflammatory 

responses, namely neutrophil rTEM. Here, we sought to further elucidate the causal link 

between neutrophil TEM and vascular permeability by exploring the role of the TNF 

pathway in these events. Our interest in this cytokine extends from previous 

investigations within our group demonstrating for the first time that neutrophil-derived 

TNF is a fundamental mediator of vascular leakage in tissues stimulated by chemotactic 

agents (Finsterbusch et al., 2014).  

TNF is a prototypical pro-inflammatory cytokine produced by an array of cells including 

monocytes, macrophages, T-cells, ECs and neutrophils. First discovered for its potent 

anti-tumour activity in animal models (Carswell et al., 1975; Bradley, 2008; Josephs et 

al., 2018), TNF plays a crucial role in our immune system by maintaining lymphoid organ 

structure, activating blood vasculature and inducing acute and chronic inflammatory 

responses (Pfeffer et al., 1993; Rothe et al., 1993; Pasparakis et al., 1996; Flynn et al., 

1995). Specifically, TNF induces EC upregulation of a range of pro-inflammatory 

mediators, including surface pro-adhesion molecules ICAM-1, VCAM-1 and E-selectin, 

cytokines such as IL-1β, IL-6, chemokines CXCL8 & RANTES (CCL5) and promotes 

generation of nitric oxide (Zhou et al., 2008). Overall, these factors can result in 

enhanced leukocyte recruitment, migration, and vasodilation (Yang, 2005). TNF also 

induces vascular permeability by activating p38-MAPK, leading to internalisation of EC 

junctional VE-cadherin (Flemming et al., 2015), and contraction of actin stress fibres, 

reducing EC junctional integrity (Nwariaku et al., 2003). Our group has previously 

demonstrated that ablation of the TNF pathway by genetic deficiency or 

pharmacological blockade using TNFRI/IIKO mice or an anti-TNF-blocking Ab, 

respectively, inhibited/suppressed neutrophil-dependent vascular permeability 

(Finsterbusch et al., 2014). Specifically, it was shown that neutrophils released pre-

formed TNF in response to LTB4, CXCL1 and C5a when the leukocytes adhere to ECs via 

ICAM-1 and ICAM-2 but also that TNF could be detected on the neutrophil cell surface 

prior to- and during- neutrophil TEM (Finsterbusch et al., 2014).  
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TNF exists in two active forms, soluble TNF (sTNF) and transmembrane TNF (mTNF). The 

former moiety is generated from cleavage of mTNF from the cell surface by the matrix 

metalloprotease enzyme, TNF-alpha converting enzyme (TACE). Both sTNF and mTNF 

consist of homotrimers and act through two transmembrane receptors, TNFRI/p55 and 

TNFRII/p75, which together mediate the effects of TNF during inflammation. While 

TNFRI is expressed ubiquitously, TNFRII is more restrictively expressed by ECs, pericytes 

and leukocytes, including neutrophils (Dopp et al., 2002; Futosi et al., 2013; Proebstl et 

al., 2012). Both TNFRI and TNFRII form homotrimers with cysteine-rich motifs in the 

extracellular space and can also be cleaved by TACE to yield sTNFRI and sTNFRII. 

Knowledge on the function of sTNFRs is lacking at present but it is thought that at lower 

concentrations, sTNFRs enhance the function of TNF by stabilising the active 

homotrimeric structure of TNF; whilst at higher concentrations they inhibit and clear 

TNF. The latter discovery led to the development of pharmaceuticals based on sTNFRs 

to treat chronic inflammatory disorders associated with high levels of pro-inflammatory 

sTNF such as idiopathic pulmonary fibrosis (Koga et al., 2000; Barash et al., 2003; Raghu 

et al., 2008; Carlsson et al., 2014; Cui et al., 2018).  

The key distinction between TNFRI and TNFRII lies in their different intracellular domains 

and signalling pathways which determine their respective effector functions (Wu and 

Hymowitz, 2010). Generally, TNFRI supports a pro-inflammatory outcome while TNFRII 

is considered to support pro-resolution responses (Carpentier et al., 2004; Cabal-Hierro 

and Lazo, 2012). However, these receptors exhibit ample signalling crosstalk through 

activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase 

(MAPK) transcription pathways. Hence, both receptors have been implicated to have 

anti- and pro-inflammatory functions (Naudé et al., 2011; Bouwmeester et al., 2004). 

Signalling crosstalk occurs despite the receptors having distinct intracellular domains. 

For example, the cytoplasmic tail of TNFRI contains a death domain (DD) and recruits 

TNFR-associated death domain (TRADD) which in turn recruits TNFR-associated factor 2 

(TRAF2). By contrast, TNFRII does not have a DD and instead recruits TRAF2 directly. 

Fundamentally, TNFRI signalling can mediate EC contractility and apoptosis mediated 

cell death via the activation of TRAF2/NF-κB, MAPK/C-Jun and caspase/ signalling and 

apoptotic pathways, respectively. TNFRII signalling mediates pro-survival effects by the 

activation of PI3K/Akt and pro-angiogenic pathways, while also being able to activate 
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NF-κB (Fig. 6.1) (Baud et al., 2001; Cicha and Urschel, 2015). Ultimately, the prevailing 

response (pro-apoptosis vs. pro-survival) depends on the inflammatory stimulus, cell 

type, activation status of the cell and state of the microenvironment (Cabal-Hierro and 

Lazo, 2012; Holbrook et al., 2019). Adding to this complexity, negative and positive 

feedback loops are common features of TNF signalling and can be supported by both 

paracrine and autocrine mechanisms. In particular, NF-κB positive feedback loops are 

often operational during inflammatory responses, to amplify the production of pro-

inflammatory mediators (Blasi et al., 1994; Caldwell et al., 2014; Gane et al., 2016).  

 

 

 

Figure 6.1. Summary of the signalling pathways following TNF ligation through EC-bound 

TNFRI or TNFRII. TNF exists in two active forms, soluble TNF (sTNF) and transmembrane TNF 

(mTNF) that act through two main transmembrane receptors, TNFRI and TNFRII, respectively. 

TNF-TNFRI interactions initiate recruitment of two distinct adaptor molecules (TRAF2 and 

TRADD) at the intracellular DD. This ultimately leads to the activation of three major 

signalling pathways, NF-κB-, MAPK/C-Jun- and caspase/apoptotic- signalling. Alternatively, 

TNF-TNFRII interactions lead to activation of the PI3K/Akt- and pro-angiogenic (e.g. VEGF-

VEGFR2) pathways, while also being able to interfere with NF-κB mediated signalling. It is 

through these pathways that TNFRI signalling can mediate EC contractility and apoptosis 

mediated cell death and TNFRII signalling mediates pro-angiogenic/survival effects. 

Reproduced from Urschel and Cicha et al., 2015.  
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Both the source and target of TNF can lead to different effector functions. For example, 

in leukocytes, TNF signalling promotes monopoiesis, survival, and differentiation of 

monocytes into macrophages and dendritic cells (Wolf et al., 2017; Chomarat et al., 

2003). Macrophage-derived TNF can act in an autocrine-manner to mediate enhanced 

phagocytosis and killing of pathogens and removal of apoptotic neutrophils; the latter 

being an essential step in the resolution of inflammation (Michlewska et al., 2009). In a 

particularly relevant example reported by Bowers et al., granulocyte-derived TNF was 

shown to be essential for successful HSC transplantation following irradiation, by 

promoting blood vessel regeneration and haematopoietic repopulation (Bowers et al., 

2018). Using chimeric animals exhibiting Tnf knock out (TNFKO) donor granulocytes in WT 

host mice or WT donor granulocytes in TNFRI/II knock out (TNFRI/IIKO) mice, the authors 

demonstrated these affects were governed by granulocyte-derived TNF acting on EC-

TNFRs in the BM. The authors further proposed the existence of a positive feedback loop 

via the neutrophil-TNF/EC-TNFR signalling axis. Here, EC regeneration (and return of the 

stromal niche) drives haematopoietic-progenitor expansion; including generation of 

neutrophils (e.g. stem cell factor, G-CSF, granulocyte-macrophage-CSF and IL-6), thus 

supporting further vessel regeneration (Bowers et al., 2018; Kim et al., 2019). 

In this Chapter, we sought to continue previous investigations by Finsterbusch et al., on 

the role of the TNF/TNFR axis on neutrophil migration and vascular leakage in a more 

pathophysiologically relevant model of acute inflammation, namely IR-injury. This 

model emulates scenarios commonly encountered following a period of blood vessel 

occlusion such as during transplantation surgery or myocardial infarction (Grace, 1994). 

IR-injury is also considered a risk factor for the development of ALI, and if left 

unresolved, may develop into ARDS (Mukhopadhyay et al., 2006). As shown in Chapter 

3, IR-injury is characterised by a robust neutrophil migration and vascular leakage 

response, with an enhanced frequency of neutrophil rTEM. In Chapter 5, we confirmed 

that rTEM neutrophils exhibiting a pro-inflammatory phenotype, accumulated in the 

lung vasculature, and were associated with pulmonary vascular damage, which may be 

a contributing factor to the development of ALI (Owen-Woods et al., 2020). Similar 

observations were noted by Woodfin et al., and Colom et al., who identified increased 

vascular permeability in the lung following IR-injury and LTB4 induced inflammatory 

reactions that exhibited enhanced levels of local neutrophil rTEM (Woodfin et al., 2011; 
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Colom et al., 2015). Therefore, we asked the question: Could neutrophil TNF-mediated 

vascular permeability induce neutrophil rTEM in IR-injury, as inferred by Finsterbusch 

and colleagues? Addressing this question would lay the groundwork for future works, 

investigating how enhanced levels of neutrophil rTEM could contribute to IR-injury as a 

risk factor for ALI and assess the therapeutic value of targeting TNF/TNFRs in such 

conditions.   

 

6.1.1. Scope of the Chapter 

 

This Chapter describes investigations aimed at addressing the contribution of 

neutrophil-derived TNF in vascular leakage and neutrophil migration responses. Due to 

time constraints and limited availability of experimental mice, this chapter represents 

work in progress, and presents the groundwork for future investigations.  

Specific aims: 

• To devise and validate a novel mouse strain exhibiting a selective deficiency in 

neutrophil-derived TNF (Neutro-TNFKO). 

• To generate and validate a mouse chimeric model, consisting of TNFRI/IIKO 

haematopoietic derived cells (HDCs) and WT vasculature.  

• To investigate the impact of HDC-TNFRI/IIKO on vascular leakage and neutrophil 

TEM.  
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6.2. Results 

 

6.2.1. Generation of a neutrophil-TNF deficient mouse model 

 

We have previously demonstrated that acute microvascular leakage as induced by 

inflammatory mediators LTB4, C5a or CXCL1 in mouse cremaster muscles or dorsal skin 

was dependent on endogenous TNF (Finsterbusch et al., 2014). However, whilst 

experiments using neutrophil depletion or chimeric animals exhibiting TNF deficiency in 

HDCs suggested a role for neutrophil-derived TNF in this response, conclusive and direct 

evidence needed to be established. Therefore, a new GM mouse strain exhibiting a 

neutrophil-specific TNF-deficiency was generated as depicted in Fig. 6.2.  

In brief, these mice were generated via Cre-lox mediated functional deletion of the 

Tnfflox/flox allele leading to formation of a TnfKO/KO allele. Here, we utilised a myeloid 

specific Cre-driver expressed from the myeloid-related protein 8 (MRP8)-promoter. 

MRP8 is a protein highly expressed by mature neutrophils and a small percentage of 

monocytes, thus controlling and restricting the expression of the Cre-transgene to these 

HDCs only.  

To this end, we imported and inter-crossed Mrp8-Cre (Passegué et al., 2004) with 

Tnfflox/flox (Grivennikov et al., 2005) mice as previously described in Chapter 2, section 

2.2.6. These mice were further inter-crossed with the LysM-EGFPki/ki mice to enable the 

tracking of neutrophils by confocal IVM. Mrp8-Cre;Tnfflox/flox;LysM-EGFPki/+ (Neutro-

TNFKO) or Tnfflox/flox;LysM-EGFPki/+ (Neutro-TNFWT) littermate controls were used for our 

investigations (Fig. 6.2). 
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Figure 6.2. Generation of neutrophil-TNF deficient mice. To generate Mrp8-Cre;Tnfflox/flox mice, 

Tnfflox/flox mice (Grivennikov et al., 2005) were inter-crossed with Mrp8-Cre-IRES-GFP (Mrp8-

Cre) transgenic mice (Passegué et al., 2004), in which the Cre recombinase cDNA is inserted 

downstream of the Mrp8 promoter. MRP8 is an inflammatory protein expressed primarily by 

neutrophils and by approximately 20% of monocytes, allowing for conditional deletion of 

floxed alleles in these cells (Abram et al., 2014). In-house, these mice were crossed with 

Tnfflox/flox;LysM-EGFPki/ki mice to generate experimental Mrp8-Cre;Tnfflox/flox;LysM-EGFki/ 

(Neutro-TNFKO) or Tnfflox/flox;LysM-EGFki/+ (Neutro-TNFWT). 
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6.2.2. Genomic validation of specific neutrophil-TNF deletion 

 

With help from Dr. Matthew Golding, genomic PCR was initially conducted to assess the 

genotype of the mice generated from the inter-crossing described above. Briefly, ear 

notch samples were collected and processed for isolation of genomic DNA, followed by 

amplification using PCR and run on an agarose gel as detailed in Chapter 2, section 

2.2.6.1. Specifically, two genomic amplifications were performed independently to 

detect the presence or absence of both the Mrp8-Cre transgene and the fully functional 

Tnfflox/flox allele. All samples returned the Tnfflox/flox allele due to the pluricellular nature 

of ear notches and Neutro-TNFKO also return an amplified band for Cre-transgene, while 

those that returned only the full length Tnfflox/flox were identified as Neutro-TNFWT (Fig. 

6.3A-B). 

  

 

 

 

 

 

 

 

 

 

Mouse 
ID 

Genotype Acronym 

1 Mrp8-
Cre;Tnfflox/flox  

Neutro-TNFKO 

2 Tnfflox/flox Neutro-TNFWT 

3 Tnfflox/flox Neutro-TNFWT 

4 Mrp8-
Cre;Tnfflox/flox  

Neutro-TNFKO 

5 Tnfflox/flox Neutro-TNFWT 

6 Tnfflox/flox Neutro-TNFWT 

7 Mrp8-
Cre;Tnfflox/flox  

Neutro-TNFKO 

Figure 6.3. Validating neutrophil specific deletion of TNF using PCR. (A) Detection of PCR 

fragments on a 2.5% agarose gel. Band were visualised under UV light and the expected 

molecular weight for each band was determined. (B) Represents the genotype concluded for 

each mouse based on the representation observed in (A). 
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(450 bp) 
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6.2.3. Protein validation of specific neutrophil-TNF deletion 

 

Due to the inherent mixed cell population of ear notch samples and to fully validate the 

selectivity of the TNF deletion in neutrophils, we sought to assess TNF protein levels in 

neutrophils by flow cytometry. For these investigations, leukocytes from Neutro-TNFKO 

mice and their littermate controls were initially stimulated in vitro with LPS, a potent 

inducer of TNF synthesis. As such, whole blood was collected from the ascending vena 

cava of naïve Neutro-TNFKO mice and Neutro-TNFWT littermates and processed for red 

cell lysis as detailed in Chapter 2, section 2.2.5.3. Following red blood cell lysis, samples 

were incubated with GolgiPlugTM (1:1000) for 10 min at 37oC to prevent the release of 

endogenous cellular TNF. LPS (500 ng/ml) was then added directly for 4 hr at 37oC. 

Samples were then processed for Ab staining as described in Chapter 2, section 2.2.5.3. 

Distinctly, samples were incubated with fluorescently conjugated antibodies targeting 

the cell surface proteins CD45 and Ly6G. Samples were then fixed/permeabilised 

according to the BD cytofix/cytopermTM kit and immunostained with an anti-TNF-APC 

conjugate or isotype control and resuspended in SB buffer prior to LSR Fortessa flow 

cytometry analysis (Becton Dickinson). Data was quantified offline using FlowJo 

software (TreeStar).  

Neutrophils were gated as LysM-EGFPhigh/Ly6G-PEpos/CD45-PBpos and monocytes were 

gated as LysM-EGFPlow/Ly6G-PEneg/ CD45-PBpos. TNF-APC positivity was determined for 

cells gated outside the control population immunostained with an isotype Ab. Data 

showed that ~20% of Neutro-TNFWT neutrophils upon in vitro stimulation were TNF 

positive whilst only ~2% of neutrophils derived from Neutro-TNFKO mice were positive, 

suggesting a 90% reduction in neutrophil-derived TNF expression in Mrp8-Cre 

expressing mice (Fig. 6.4A-B). In addition, we noted ~20% reduction in the number of 

TNF expressing monocytes in Neutro-TNFKO compared to Neutro-TNFWT mice (Fig. 6.4C). 
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Although we successfully established a novel Neutro-TNFKO mouse model, due to time 

restrictions and limited supply of experimental Neutro-TNFKO mice, no functional studies 

were conducted as part of the present work.  

Figure 6.4. Validation of neutrophil TNF deletion using flow cytometry. (A-C) Whole blood was 

collected from WT, Neutro-TNFWT or Neutro-TNFKO and stimulated in vitro with LPS to induce TNF 

protein synthesis. As assessed by flow cytometry, neutrophils were gated as LysM-

EGFPhigh/Ly6G-PEpos/CD45-PBneg and monocytes were gated as LysM-EGFPlow/Ly6G-PEneg/CD45-

PBpos. (A) Determination of TNF-APC positive cells was established over the isotype control 

antibody. (B) Total number of gated TNF-positive neutrophils (n = 3-4 mice/group). (C) Total 

number of gated TNF-positive monocytes (n = 2-4 mice/group). Statistically significant 

differences are relative to Neutro-TNFWT mice (B-C). Data are represented as mean ± SEM (each 

dot represents one mouse and one independent experiment). Indicated statistical differences 

are shown by **p<0.01 as analysed by a one-way ANOVA followed by a Bonferroni post-hoc test 

(ns = not significant).  
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6.2.4. Generation and validation of chimeric animals with TNFRI/IIKO HDCs 

 

To build upon a previous study from our lab that demonstrated TNFRI/IIKO mice 

exhibited reduced LTB4-induced vascular permeability (Finsterbusch et al., 2014), we 

extended these investigations to further explore the TNF pathway and its receptors in 

acute inflammatory responses. Specifically, we sought to elucidate the distinct 

contribution of both HDC-derived TNFRs in vascular permeability induction and 

neutrophil migration in a model of IR-injury. To address this, chimeric animals were 

generated, whereby BM from TNFRI/IIKO or WT control mice were isolated and injected 

into lethally irradiated WT or LysM-EGFPki/+ (herein, collectively referred to as WT) 

recipients as detailed in Chapter 2, section 2.2.5. This strategy led to the generation of 

mice with TNFRI/II null myeloid and lymphoid cells (TNFRI/II KO-BM->-WT) while 

maintaining the expression of these receptors on other cell types such as ECs and 

pericytes (Fig. 6.5A).  

Flow cytometry was first employed to assess the reconstitution of recipient mice with 

TNFRI/IIKO- or WT- donor BM as described in Chapter 2, section 2.2.5.3. Neutrophils were 

gated as CD45+ and Ly6G+ (i.e. all neutrophils) and the level of TNFRI surface expression 

by these cells was determined by their fluorescence intensity (Fig. 6.5B). TNFRI+ from 

TNFRI- expressing cells were first distinguished by the use of an isotype control Ab or a 

global TNFRI/IIKO mouse. Furthermore, the total neutrophil count was calculated as the 

number of CD45+ and Ly6G+ cells (Fig. 6.5C). 

Our analysis showed that blood neutrophils from TNFRI/II KO-BM->-WT chimeric mice 

had no detectable TNFRI or GFP expression (>98% negative), similar to global TNFRI/IIKO 

or LysM-EGFPki/+ mice, respectively (Fig. 6.5B). Together, these results confirmed 

complete ablation of LysM-EGFPki/+ and/or WT HDCs from the host animals. 

Furthermore, mice injected with WT BM cells (WT-BM->-WT) had detectable and 

comparable TNFRI expression (MFIs) to control WT or LysM-EGFPki/+ mice, indicating that 

these chimeric mice would serve as a suitable TNFRI/II positive control (Fig. 6.5B). 

Importantly, both chimeric groups exhibited comparable neutrophil counts with 

approximately 3.5 x 106 neutrophils/ml of blood (Fig. 6.5C), suggesting a comparable 

level of BM reconstitution.  
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Mouse strain 
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B 

Figure 6.5. Generation of chimeric mice with TNFRI/IIKO HDCs. (A-C) Recipient mice (LysM-

EGFPki/+or WT) mice were irradiated and reconstituted with BM from WT or TNFRI/IIKO donor 

mice as described in Chapter 2, section 2.2.5.3. This resulted in the generation of chimeric 

mice exhibiting WT HDCs (WT-BM->-WT) or TNFRI/IIKO HDCs (TNFRI/II KO-BM->-WT), 

respectively. (B) Representative histogram of TNFRI surface expression on neutrophils, from 

each representative mouse strain/chimera. 6 weeks after reconstitution, LysM-EGFPki/+ or WT 

recipients with TNFRI/IIKO BM exhibited >98% of circulating donor derived neutrophils. (C) 

Both chimeras exhibited comparable neutrophil counts (n = 9-11 mice/group). Data are 

represented as mean ± SEM (each dot represents one mouse and one independent 

experiment). Statistical differences were analysed using an unpaired t-test (ns = not 

significant). 
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6.2.5. HDC-derived TNFRI/II support neutrophil tissue infiltration and vascular 

leakage  

Upon generation and validation of the chimeric mice described in the previous section, 

we sought to assess vascular leakage and neutrophil extravasation responses following 

IR-injury in both WT-BM->-WT and TNFRI/II KO-BM->-WT chimeric animals by confocal 

IVM.  

Briefly, mice received an i.s. injection of a fluorescently (AF647)-labelled anti-CD31 mAb 

to label ECs, 2 hr prior to exteriorisation of the cremaster tissue. Following 

exteriorisation, mice were subjected to IR-injury (40 min ischaemia followed by 2 hr of 

reperfusion) as described in Chapter 3, section 3.2.2. Control animals (sham) were not 

subjected to IR-injury but the cremaster was exteriorised. In addition, all mice received 

an i.v. injection of fluorescent TRITC-dextran (75 kDa) at the beginning of the confocal 

IVM image acquisition period. Vascular leakage responses were then quantified as 

previously described in section 3.2.1. Furthermore, neutrophil counts in the 

extravascular tissue were assessed post mortem by confocal microscopy in fixed 

cremaster tissues collected 2 hr post reperfusion as detailed in Chapter 2, section 2.6 

(experimental timeline depicted in Appendix 3, section 9.3.2). 

Our data revealed a rapid vascular leakage response upon reperfusion in WT-BM->-WT 

(Fig. 6.6A). Interestingly, whilst the peak of leakage was reached within 20 min, the 

leakage response was sustained, decreasing slowly without returning to basal level up 

by 60 min post reperfusion. In contrast, in TNFRI/II KO-BM->-WT chimeras the vascular 

leakage response was comparable to sham operated animals. Furthermore, 

quantification of tissue-infiltrated neutrophils demonstrated that in TNFRI/II KO-BM->-

WT chimeric mice the neutrophil migration extravasation response was reduced by 40% 

as compared to WT-BM->-WT animals (Fig. 6.6B-C).  

In conclusion, these data suggest that HDC-TNFR’s play a fundamental role in IR-induced 

vascular leakage and neutrophil TEM.  
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Figure 6.6. HDC-derived TNFRI/II mediated both enhanced vascular leakage and neutrophil 

transmigration following IR injury. Mice received an i.s. injection of a fluorescently (AF647) 

conjugated anti-CD31 mAb (4 µg) to label EC junctions, 2 hr prior to exteriorisation of the 

cremaster tissue. Following exteriorisation, mice were subjected to IR-injury (40 min ischaemia 

followed by 2 hr of reperfusion). Control animals (sham) were not subjected to IR-injury but 

the cremaster was exteriorised. In addition, all mice were subjected to an i.v. injection of 

fluorescent dextran (75 kDa) at the beginning of confocal IVM image acquisition. (A) Time-

course of dextran accumulation in the perivascular region of a post-capillary venule, quantified 

as relative MFI (normalised to the first 2 time-points post dextran i.v., (n = 2-5 mice/group). 

Error bars are not shown for clarity but the SEM at the peak timepoint was within 0.157 and 

1.223. (B) Representative confocal images of post-capillary venular segments (stained with 

anti-CD31; green and MRP14-AF647; blue) and (C) quantification of total neutrophil 

extravasation after 2 hr reperfusion (n = 3-5 mice/group). Data are represented as mean ± SEM 

(each dot represents one mouse and one independent experiment). (A) Statistically significant 

differences of TNFRI/II KO-BM->-WT mice are indicated, relative to WT-BM->-WT Sham 

(nsp>0.05) or WT-BM->-WT IR (****p<0.0001) treated mice, as analysed by two way ANOVA 

followed by Bonferroni’s post hoc test (C) or significant differences are indicated are indicated 

(*p<0.05) as analysed using a one-way ANOVA followed by a Bonferroni post hoc test. (ns = 

not significant). 

A 

C 
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6.3. Discussion 

 

In this Chapter, we sought to understand how neutrophil-derived TNF impacts vascular 

leakage and neutrophil migration during IR-injury, a pathophysiological model of acute 

inflammation. To this aim, we successfully developed a novel GM mouse strain, 

selectively deficient in neutrophil-derived TNF. Furthermore, to enhance our 

understanding of the signalling pathways by which TNF mediates the inflammation 

response, we generated chimeric animals deficient in TNFRI/II for HDCs exclusively. In 

these mice, vascular leakage following IR-injury was abolished and neutrophil 

extravasation was significantly reduced as compared to control (WT-HDC) animals. 

During acute inflammation, TNF is released from tissue macrophages, dendritic cells, ECs 

and neutrophils (Kany et al., 2019). However, as suggested by Finsterbusch et al., the 

onset of vascular leakage is fundamentally driven by neutrophil-derived TNF 

(Finsterbusch et al., 2014). TNF is known to act on EC-expressed TNFRI/II, leading to 

activation of the NF-kB pathway and the production of a variety of additional pro-

inflammatory mediators such as IL-1β, CXCL1 and VEGF (Madge and Pober, 2001; Chen 

and Goeddel, 2002; Bian et al., 2017; Zhou et al., 2017). Another vital component of this 

signalling in ECs is the induction of Rac-dependent activation of various ROS-producing 

enzymes, such as NADPH oxidase, xanthine oxidase and nitric oxide synthase (Gao et al., 

2015). ROS activity then leads to additional stimulation of the NF-κB pathway, and 

activates Src kinase which is responsible for the phosphorylation and subsequent 

internalisation of VE-cadherin (Naikawadi et al., 2012). Independently, ROS also leads to 

an influx of Ca2+, resulting in stimulation of actin stress fibres and EC contractility. In 

conjunction with VE-cadherin internalisation, this results in compromised EC junctional 

integrity and the formation of ‘micro-pores’ between ECs, thus facilitating the passage 

of plasma proteins and solutes into the surrounding tissue (Szocs, 2004; Kumar et al., 

2009; Claesson-Welsh, 2015). However, in response to pro-inflammatory mediators, 

neutrophils can augment the permeability response through the release of TNF-

independent mediators, including ROS, VEGF (Gong and Koh, 2010), LTA4 (which is 

metabolised by neutrophils to yield LTB4 and ECs to yield LTC4) and HBP (DiStasi and Ley, 

2009) (Fig. 6.7). Similar to ROS, most of these mediators’ act to induce contractility of 

ECs. It is rather remarkable then, that this ostensible plethora of pro-permeability 
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mediators requires, at least in the early acute phase, the release of neutrophil-derived 

TNF. 

To facilitate future investigations into the impact of neutrophil-derived TNF, we 

developed a neutrophil-TNF deficient mouse model (Neutro-TNFKO). Genomic PCR was 

successfully used to assess deletion/truncation of the Tnf gene (TnfKO/KO allele) in 

neutrophils, which was further validated by evaluation of LPS-induced TNF protein 

expression by flow cytometry. Here, compared to Neutro-TNFWT mice, neutrophils from 

Neutro-TNFKO mice exhibited an almost complete loss of neutrophil-derived TNF 

expression thus validating the robustness of the genetic targeting strategy used. As 

expected, the majority of monocytes in Neutro-TNFKO mice retained TNF expression. To 

generate this Neutro-TNFKO mouse strain, we used a myeloid specific Cre-driver 

expressed from the MRP8 promoter. As MRP8, an essential component of the anti-

bacterial protein calprotectin, is restrictively expressed by mature neutrophils and a 

small percentage of monocytes, we were able to restrict the expression of the Cre-

transgene (and thus TNF deletion) to these cells only. Our strategy of using MRP8-Cre to 

conditionally delete floxed alleles has been reported previously to induce selective 

neutrophil knock-outs of Caspase recruitment domain-containing protein 9 (CARD9) 

(Németh et al., 2016), Syk tyrosine kinase (Elliott et al., 2011), and Mcl-1 (Csepregi et al., 

2018). Furthermore, its effectiveness as a cell-specific deletion tool was 

comprehensively assessed by Abram and colleagues (Abram et al., 2014) whereby 

MRP8-Cre mice were crossed with R26-stop-enhanced yellow fluorescent protein 

(ROSA-EYFP) lineage trace reporter mice. Here, ROSA comprises a stop codon which 

controls the expression of the EYFP gene. Hence, any cell that expressed MRP8-Cre at 

any time during its lifetime would excise the stop codon and thereafter constitutively 

express EYFP (Abram et al., 2014). This study confirmed that approximately 85% of 

neutrophils isolated from peripheral blood, spleen and BM were EYFP-positive (Abram 

et al., 2014). We can now extend this finding to our Neutro-TNFKO mice, which exhibited 

a similar level of floxed allele (Tnf) deletion in that only 2% of circulating neutrophils 

expressed TNF in Neutro-TNFKO mice, compared to 20% identified as TNF+ from Neutro-

TNFWT mice. Overall, this equates to a 90% reduction in neutrophil-derived TNF 

expression. Furthermore, Abram et al., also identified that approximately 20% of 

peripheral blood and 8% of tissue resident monocytes exhibited EYFP expression, and 
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hence had expressed MRP8-Cre at some point during ontogeny (Abram et al., 2014). 

Similar findings were confirmed by Elliot et al., following MRP8-Cre induced Syk deletion 

(Elliott et al., 2011) and are also consistent with our findings where approximately 20% 

of circulating monocytes exhibited a TNF-deficient phenotype. It is difficult to suggest 

an improved method of selectively targeting neutrophils for TNF deletion, as to our 

knowledge, no gene has yet been identified to be exclusively expressed by neutrophils. 

Overall, we take these findings as a positive validation for a selective deficiency in 

neutrophil-derived TNF. As such, we anticipate that these experimental mice will be a 

useful tool for future investigations into the role of neutrophil-derived TNF in mediating 

acute inflammatory responses. 

Due to time constraints and a lack of experimental Neutro-TNFKO mice, we 

concomitantly sought to investigate the contribution of both TNFRI & TNFRII on vascular 

leakage and neutrophil extravasation during a model of acute sterile inflammation as 

elicited by IR-injury. Specifically, a series of experiments were conducted to investigate 

the contribution of HDC-TNFRs on vascular leakage and neutrophil extravasation. This 

direction follows a growing number of reports that TNF may act in an autocrine manner, 

where it initiates and amplifies the synthesis/release of pro-inflammatory mediators 

within a variety of cell types, including neutrophils (Cassatella et al., 1993; Yarilina et al., 

2008; Pękalski et al., 2013; Tecchio et al., 2014). To this end, chimeric animals were 

generated in which BM from global TNFRI/IIKO or respective WT control mice was 

injected i.v. into irradiated LysM-EGFPki/+ or WT recipient mice. In both cases, 

haematopoietic regeneration was successful and chimeric mice containing TNFRI/IIKO 

and WT BM exhibited comparable neutrophil counts in the blood. Subsequently, these 

mice were used to investigate the role of HDC-TNFRs in response to IR-injury of the 

cremaster muscles. This was the model of choice as TNF has previously been shown to 

play a key role in the induction of vascular leakage and leukocyte migration responses 

during IR-injury (Gao et al., 2015; Wu et al., 2018).  

Here, whilst mice receiving WT BM elicited a very rapid vascular leakage response, mice 

receiving TNFRI/IIKO BM did not. This result was a rather surprising finding, as ECs are 

the ‘gatekeepers’ that regulate leakage into the interstitial tissue and in such it was 

expected that EC-TNFRs, and not HDC-TNFRs, would be more important in mediating 

enhanced endothelial permeability. This finding was complimentary to that of 
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Finsterbusch et al., whereby LTB4-induced vascular leakage in global TNFRI/IIKO-, 

neutrophil depleted- or chimeric HDC-TNFKO-mice, was abolished (Finsterbusch et al., 

2014). Taken together, these results demonstrate that induction of vascular leakage may 

require a reservoir of pre-formed neutrophil-TNF and HDC-TNFRI/II to indirectly mediate 

the response. This also suggests that the initial release of pre-formed neutrophil-TNF 

may not be sufficient to induce enhanced endothelial permeability and that TNF acts 

indirectly through an autocrine pathway, but would require further experimental 

investigation to definitively address this hypothesis. Nevertheless, it is surprising that 

other pro-permeability mediators that are generated during IR-injury, are not sufficient 

to induce permeability. Therefore, we hypothesise the presence of a permeability 

“threshold” during inflammation, which must be overcome before vascular leakage can 

occur. Pivotal to surpassing of this threshold is the requirement of early HDC-TNFRI/II 

signalling as initiated by the release of preformed intracellular TNF. Thus, based on our 

findings and those in the literature, we propose the following series of events: following 

neutrophil adhesion to ECs, intracellular neutrophil TNF is released and acts in an 

autocrine manner. Subsequently, this amplifies the synthesis and release of TNF in 

addition to other pro-inflammatory/permeability factors, such as LTB4, VEGF and HBP 

(DiStasi and Ley, 2009), resulting in the amplification of the inflammatory/permeability 

response and surpassing of the permeability threshold (Fig. 6.7).  
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Finally, we also observed that TNFRI/II KO-BM->-WT mice exhibited reduced neutrophil 

extravasation as compared to WT-BM->-WT mice. Interestingly, this would constitute 

further evidence that neutrophil migration can occur independently of vascular leakage 

(DiStasi and Ley, 2009). Here, the observed partial defect in neutrophil extravasation 

could also be the consequence of downregulation of CD11b and LFA-1, both of which 

mediate TNF-induced leukocyte crawling and migration (Sumagin et al., 2010). Instead, 

neutrophil migration in IR has been previously shown to be mediated by PECAM-1, 

ICAM-2 and JAM-A, whilst these junctional adhesion molecules are not involved in 

neutrophil TEM upon TNF stimulation (Nourshargh et al., 2006; Huang et al., 2006; 

Woodfin et al., 2007b, 2009). Overall, whilst shedding novel insight into the role and 

mechanism of action of TNF/TNFR pathway in regulation of neutrophil migration and 

vascular leakage, primarily the present findings provide a platform for future works as 

discussed in Chapter 7. 

 

Figure 6.7. Schematic depicting proposed working 

hypothesis. Neutrophils are known to induce vascular 

permeability through the release of neutrophil-derived 

TNF, and the secretion of additional pro-permeability 

factors. In the absence of neutrophil-TNFRI/II signalling, 

downstream activation of the NF-κB transcription 

pathway is inhibited. Hence, pro-permeability mediators 

are not released, and the threshold required to induce 

vascular permeability is not surpassed.  
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6.4. Conclusion 

 

This Chapter provides preliminary insights into the contribution of TNFRs expressed by 

different cell types, whereby HDC-TNFRs play a fundamental role in mediating an IR-

dependent vascular leakage response in addition to partially mediating neutrophil 

migration into the extravascular tissue. While these findings suggest intriguing 

underlying mechanisms, further experimentations are required to definitively 

understand the observed phenotypes (see Chapter 7, future works). Lastly, to 

exclusively investigate the role of neutrophil-derived TNF in models of acute 

inflammation, a selective neutrophil TNF ‘knock out’ mouse was generated and 

successfully validated. Collectively, the present work provides the basis of future studies 

currently beyond the scope of this thesis.  
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Chapter 7 
 

     General Discussion 
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7.1. Project overview 

 

Microvascular permeability and neutrophil TEM are key hallmarks of the immune 

response that are essential for survival and recovery following sterile (e.g. IR-injury) or 

non-sterile (i.e. infection) acute inflammatory reactions and tissue injury. However, our 

understanding of the interplay between these phenomena is limited and has historically 

focused on how neutrophils hinder endothelial integrity and vascular barrier functions. 

The aim of this thesis was to advance our understanding of the impact of microvascular 

permeability on neutrophil TEM in vivo. Overall, whilst increased vascular permeability 

did not appear to grossly influence neutrophil infiltration into tissues, we provide strong 

evidence for enhanced vascular leakage supporting an aberrant mode of neutrophil 

migration known as neutrophil rTEM. Mechanistically, this was caused by augmented 

abluminal-to-luminal translocation of the endogenously generated chemokine CXCL1. 

Furthermore, through the development of a novel tracking method, rTEM neutrophils 

were found to disseminate rapidly to the lung, where they exhibited an activated 

phenotype and were associated with sites of lung tissue damage. The project also began 

investigations into the roles of TNFRI/II in the induction of vascular leakage and 

neutrophil migration following IR-injury. This Chapter collectively discusses and critiques 

the findings of this thesis and suggests future directions to extend these investigations. 

 

7.1.1. Enhanced microvascular leakage supports neutrophil rTEM 

 

Microvascular leakage and neutrophil migration occur independently, as supported by 

distinct molecular pathways (Ley et al., 2007; Vestweber, 2007; DiStasi and Ley, 2009; 

Vestweber, 2012; Frye et al., 2015). For instance, vascular leakage can occur at local 

luminal sites separate from those supporting neutrophil migration (Baluk et al., 1998) 

and each phenomenon is mediated by phosphorylation of distinct VE-cadherin residues 

at EC junctions (Wessel et al., 2014). However, direct evidence showing that migrating 

neutrophils can induce vascular permeability suggested an interplay between these 

phenomena (Wedmore and Williams, 1981; DiStasi and Ley, 2009). Nevertheless, the 
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direct impact of vascular permeability on neutrophil TEM dynamics has not previously 

been studied and formed the focus of the present research.   

Using our extended confocal IVM platform optimised for imaging the mouse cremaster 

muscle (described in Chapter 3), we observed that reactions featuring enhanced vascular 

leakage, namely as induced by local LTB4 and IR-injury, exhibited an enhanced frequency 

of neutrophil rTEM (Fig. 3.5C), without affecting total neutrophil extravasation (Fig. 

3.2B). Although neutrophil rTEM in these reactions was previously reported (Woodfin et 

al., 2011; Colom et al., 2015), the novel observation of a temporal association between 

increased vascular leakage and rTEM led to the hypothesis of a direct link between these 

two responses.  

To investigate directly the effect of vascular permeability on neutrophil TEM, the project 

studied the impact of vasoactive mediators (i.e. histamine and VEGF) on neutrophil TEM 

induced by locally applied IL-1β. With this approach, we demonstrated that histamine-

induced vascular leakage resulted in enhanced neutrophil rTEM (Fig. 4.2D) without 

affecting total neutrophil extravasation (Fig. 4.1B). Furthermore, VEGF, a well-

established alternative pro-permeability factor (Ferrara, 2004) elicited the same effect 

(Fig. 4.2C). Crucially, a GM mouse strain characterised by a defect in vascular 

permeability induction (Fig. 4.3D) (Wessel et al., 2014), exhibited reduced levels of 

neutrophil rTEM in tissues stimulated with IL-1β + histamine (Fig. 4.3F). Overall, these 

results comprehensively established a causative link between vascular permeability and 

the incidence of neutrophil rTEM. However, as vasoconstriction can lead to a decrease 

in blood flow rate, which has been shown to impact neutrophil migration parameters 

such as adhesion, we cannot directly rule out the potential impact that histamine, a 

vasoconstrictor, may have on neutrophil rTEM (Majno et al., 1969; Ebeigbe Anthony and 

Talabi Olufunke, 2014; Ashina et al., 2015). Nevertheless, as compared to IL-1β alone, 

additional administration of histamine did not affect neutrophil adhesion or 

extravasation parameters as measured by brightfield IVM (data not shown). In addition, 

stimulation with VEGF, a known vasodilator that increases blood flow rate (Ashrafpour 

et al., 2004; Ferrara, 2004), induced a similar frequency of neutrophil rTEM compared 

to histamine. To conclusively examine potential changes in blood flow rate in the 

inflammatory models used, measurements in single post-capillary venules would be 

required. Blood flow rate in the cremaster tissue could be measured using full field laser 
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perfusion doppler imaging (Ye et al., 2020), or measured and calculated for single post-

capillary venules using a dual photodiode and brightfield video analysis (Lipowsky and 

Zweifach, 1978; Lindner et al., 2000; Ortiz et al., 2014).  

Next, we considered how hyper-permeability could lead to augmented aberrant 

neutrophil migration. Previous investigations from our group have identified NE-

dependent cleavage of JAM-C in EC junctions as a key regulator of neutrophil rTEM 

during LTB4- and IR-injury-induced inflammation (Woodfin et al., 2011; Colom et al., 

2015). This was complementary to findings by Bradfield et al., who demonstrated that 

maintenance of JAM-C at EC junctions was vital for unidirectional monocyte TEM 

(Bradfield et al., 2007b). These observations raised the question as to whether loss of 

junctional JAM-C could drive vascular leakage-dependent neutrophil rTEM. Indeed, JAM-

C has been shown to be involved in the regulation of vascular permeability. Works by 

Orlova et al., observed that loss of JAM-C resulted in reduced histamine- or VEGF-

dependent vascular permeability induction by stabilisation of EC junctional VE-cadherin 

(Orlova et al., 2006). On the other hand, investigations by Imhof and colleagues found 

opposing observations in a bacterial infection model of Leishmania major, wherein loss 

of JAM-C increased vascular permeability induction by 15% (Ballet et al., 2014). As such, 

the role of JAM-C in vascular leakage remains contentious and may be reaction-specific. 

To determine the contribution of JAM-C in our model, Dr. Régis Joulia, within our group, 

analysed EC junctional JAM-C expression and found no difference following treatment 

of tissues with histamine, IL-1β alone, or IL-1β + histamine. This suggested the presence 

of a novel mechanism, independent of JAM-C loss, in driving permeability-mediated 

rTEM (Owen-Woods et al., 2020). This hypothesis is consistent with findings from Colom 

et al., 2015 who observed only a partial reduction (~50%) in the neutrophil rTEM 

response following LTB4-stimulation in a full ElaneKO (NEKO) mouse model (Colom et al., 

2015). 

 

7.1.2. Enhanced vascular leakage leads to augmented tissue-to-blood 

translocation of CXCL1 

 

Neutrophil TEM is fundamentally orchestrated by sequential molecular interactions and 

directional chemotaxis as mediated by chemotactic cues/chemokines such as CXCL1 and 
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CXCL2 (Janetopoulos and Firtel, 2008; McDonald et al., 2010; Jin, 2013). The importance 

of these interactions in neutrophil TEM was recently demonstrated by Girbl et al., in a 

murine model of TNF-induced acute inflammation (Girbl et al., 2018). This work 

demonstrated that unidirectional neutrophil migration across the vessel wall requires 

consecutive interactions with CXCL1 and CXCL2. These mediators were potentially 

presented at the EC-surface on GAGs (Proudfoot et al., 2017; Uchimido et al., 2019) and 

at EC junctions by ACKR1 (Pruenster et al., 2009; Novitzky-Basso and Rot, 2012; Thiriot 

et al., 2017; Girbl et al., 2018), where they mediated crawling and TEM, respectively 

(Girbl et al., 2018). To this end, we hypothesised that under conditions of hyper-

permeability, chemokine expression/localisation may be disrupted leading to a loss of 

directional cues, which consequently facilitates augmented levels of neutrophil rTEM. 

As CXCL1 is known to be highly upregulated following IL-1β stimulation (Ribaux et al., 

2007; Biondo et al., 2014), we focused our investigations on this chemokine. 

Here we identified that IL-1β induced generation of CXCL1 in both the tissue and plasma 

(Fig. 4.4A-D). Chemokines are known to be released by various resident-tissue cells such 

as pericytes, ECs, mast cells and macrophages (Becker et al., 1994; Griffin et al., 2012; 

De Filippo et al., 2008; Girbl et al., 2018), where they usually form a chemotactic gradient 

to direct neutrophils to the site of insult (McDonald et al., 2010). Interestingly, in 

samples isolated from inflammatory reactions associated with acute vascular leakage 

and neutrophil rTEM, (e.g. IL-1β + histamine and IR-injury), CXCL1 levels significantly 

increased in the plasma as compared to IL-1β-treated mice (~1.4-fold) or PBS-treated 

mice (~2.3-fold), respectively (Fig. 4.4B & D). This suggested that tissue generated CXCL1 

may be rapidly translocated through loose EC junctions into the bloodstream following 

induction of vascular leakage. In support of this concept, pharmacological blockade of 

histamine-induced vascular permeability using an Ab against VE-PTP, a phosphatase 

vital in controlling EC junctional barrier function, resulted in a partial reduction of CXCL1 

in the plasma (Fig. 4.4F). We therefore hypothesised that during scenarios of enhanced 

permeability (i.e. histamine-induced leakage), tissue-generated CXCL1 is able to 

overcome the advective flux and diffuse through EC junctions into the bloodstream. This 

idea was first supported by mathematical modelling that simulated fluid flow across the 

endothelium (data not shown, Owen-Woods et al., 2020) and was then experimentally 

tested in vivo by Dr. Régis Joulia. In both cases, it was shown that a small 10 kDa molecule 
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(such as CXCL1) could feasibly diffuse from the tissue into the blood under conditions of 

enhanced vascular permeability. Lastly, we directly assessed if this disruption of CXCL1 

localisation was responsible for the enhanced frequency of neutrophil rTEM. Indeed, 

inhibition of CXCL1 using an anti-CXCL1 Ab reduced the frequency of neutrophil rTEM 

(Fig. 4.5C & E). Of consideration, whilst detection of CXCL1 in the plasma upon 

inflammation could also result from lymphatic drainage, our study clearly showed VE-

PTP blockade resulted in reduced CXCL1 blood levels, suggesting that the increase 

observed following acute hyperpermeability reactions is directly associated with EC 

junctional translocation of CXCL1. Collectively, these investigations provide evidence for 

the first time that enhanced microvascular leakage disrupts the directional chemotactic 

cues required to govern unidirectional neutrophil TEM, resulting in enhanced neutrophil 

rTEM. However, precisely how this augmented localisation of CXCL1 leads to aberrant 

neutrophil migration provides scope for postulation and is further summarised in Fig. 

7.1.  

Perhaps the most intuitive hypothesis would be that excessive CXCL1 specifically in the 

blood might lead to disrupted neutrophil migration. However, this assumption is 

contrary to the fact that both the IR-injury and IL-1β + histamine reactions exhibited very 

different levels of plasma CXCL1, but had comparable frequencies (~20%) and number 

(~4/300 µm vessel segment/2 hr) of neutrophil rTEM events. While this may be partially 

explained by the fact that neutrophil rTEM is additionally mediated by JAM-C cleavage 

in IR-injury (but not in response to IL-1β + histamine) (Woodfin et al., 2011), this does 

not account for the similar reduction in neutrophil rTEM upon administration of an anti-

CXCL1 Ab. In addition, at the timepoints analysed, mice treated with IL-1β alone 

exhibited a higher concentration of plasma CXCL1 than IR-injury and yet demonstrated 

minimal neutrophil rTEM. Furthermore, of consideration, chemokines are prone to 

proteolytic degradation and would wash away in the blood from the site of 

inflammation. Lastly, under inflammatory conditions the plasma concentration of 

chemokines, such as CXCL1, is usually buffered by ACKR1 that is expressed not only by 

ECs, but also on circulating RBCs. This “sink” of chemokine modulates their 

bioavailability and prevents excessive changes in plasma chemokine concentrations 

(Darbonne et al., 1991; Bonecchi and Graham, 2016). Collectively, a plausible 

explanation may be that vascular leakage induces an augmented localisation of CXCL1 
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specifically at the junction as opposed to the increased CXCL1 level in the blood; the 

latter acting more as a reservoir for excess unbound CXCL1. Indeed, as suggested by 

Girbl et al., it is conceivable that within the confines of the EC junction, where 

chemokines are physically retained, proteolytic degradation and dilution that is noted 

in the blood will be attenuated (Girbl et al., 2018). Consequently, excessive presentation 

of CXCL1 at EC junctions could result in overstimulation and possibly internalisation of 

neutrophil-derived CXCR2, leading to a loss of regulated chemokine sensing/signalling 

by the neutrophil, promoting augmented neutrophil rTEM. This hypothesis is supported 

by findings from Wiekowski et al., who identified desensitisation of neutrophil-derived 

CXCR2 in a conditional transgenic mouse model that overexpresses CXCL1, resulting in 

poor neutrophil migration responses (Wiekowski et al., 2001). In addition, CXCR2 

internalisation was observed by Carlos and colleagues to lead to poor neutrophil 

migration, whereby elevated blood levels of histamine in a model of sepsis resulted in 

upregulation of GRK2 causing reduced surface expression of CXCR2 (Carlos et al., 2013). 

Furthermore, Girbl et al., identified CXCL2, another ligand for CXCR2, as the chemokine 

that supports luminal-to-abluminal neutrophil TEM (Girbl et al., 2018). Thus, excessive 

presentation of CXCL1 to CXCR2 may prevent CXCL2 from interacting with its shared 

receptor, either by occupying the physically space or following internalisation of CXCR2.  
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Lastly, although we have substantial evidence to support enhanced diffusion of CXCL1 

through EC junctions, we cannot necessarily rule out the possibility that CXCL1 could be 

actively transported across the endothelium by ACKR1. Indeed, overexpression of 

ACKR1 has been shown to support neutrophil trafficking by internalising and 

transporting chemokine from the basolateral to apical membrane in vitro. Here, the 

chemokine is presented and was found to enhance adhesion of neutrophils to the 

luminal EC surface in vivo (Lee et al., 2003; Pruenster et al., 2009). In addition, temporal 

investigations into ACKR1 transcytosis have shown that trafficking of the chemokine, 

CCL2, across Madin-Darby Canine Kidney (MDCK) cells takes approximately 30 – 120 min 

(Pruenster et al., 2009). If we make the assumption that transcytosis of ACKR1 occurs at 

similar rates in ECs (equivalent data not available), it would seem unlikely that ACRK1-

mediated chemokine transcytosis contributes to the changes in CXCL1 distribution that 

Figure 7.1. Schematic presenting the proposed mechanisms of how microvascular leakage-

induced CXCL1 redistribution facilitates neutrophil rTEM. IL-1β is a potent stimulator of 

synthesis and release of CXCL1 from a variety of cells including ECs, pericytes, macrophages and 

mast cells. Following reactions exhibiting hyper-permeability (e.g. IL-1β + histamine or IR-

injury), CXCL1 passively diffuses through EC junctions. Here, we hypothesise that excessive 

diffusion of CXCL1 from the tissue to the blood may result in overstimulation and internalisation 

of its respective receptor, CXCR2, either by disproportionate presention by ACKR1 and/or direct 

binding of CXCL1 to CXCR2 within the confines of the junction during neutrophil diapedesis. 

Alternatively, excessive availabilty of CXCL1 may saturate CXCR2 leading to an inability for 

neutrophil-derived CXCL2 to bind and facilite unidirectional neutrophil TEM.  
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drives neutrophil rTEM, the majority of which occurs within 30 min post- 

histamine/VEGF treatment or reperfusion. To definitively assess this, experiments 

would need to be conducted in vitro using HUVECs or in vivo using ACKR1KO mice. In 

addition, chemokines can also be retained by GAGs to facilitate neutrophil migration. 

Thus, potential changes in the GAG retention capacity or cleavage, known to occur 

during inflammation due the presence of MMPs and other enzymes such as heparanase 

(Massena et al., 2010; Thompson et al., 2017), could lead to elevated plasma CXCL1. 

However, as neutrophil adhesion was not affected in our IL-1β + histamine reaction 

(data not shown), where CXCL1 presentation on GAGs is key, contributions from GAG 

disruption is less plausible. Overall, to ascertain the direct regulation, expression and 

presentation of CXCL1 dynamics would require further investigations (see section 7.2.1).  

 

7.1.3. Activated rTEM neutrophils disseminate to the lungs and induce damage 

 

Reverse migration of neutrophils through the endothelium occurs in a variety of sterile 

inflammatory reactions including IR-injury, (Woodfin et al., 2011; Colom et al., 2015), 

burn injury (Yoo and Huttenlocher, 2011; Wang et al., 2017), and more recently, hyper-

permeability associated reactions (Owen-Woods et al., 2020). Although advancements 

have been made to target, track and phenotype neutrophils that undergo rIM followed 

by rTEM (i.e. neutrophils that return to the vasculature from the interstitial tissue), our 

understanding of neutrophils that undergo rTEM exclusively is limited. The main reason 

for this resides in fundamental limitations of these photoconversion 

(PC)/photoactivation (PA) tracking methods, in the sense that targeting of neutrophils is 

restricted to the laser-accessible microscopic field-of-view outside the vasculature and 

beyond the pericyte layer (Yoo and Huttenlocher, 2011; Wang et al., 2017). Thus, in our 

model, as rTEM neutrophils only partially breach the endothelium, these approaches are 

impractical. In addition, PC/PA only allows for select numbers of neutrophils to be 

targeted within defined ROIs (i.e. not all reverse migrating cells are tagged), thus limiting 

the frequency of trackable reverse migrating cells.  

To overcome these limitations, we developed a novel fluorescent labelling approach to 

exclusively label rTEM neutrophils. This methodology, applied to the inflammatory 

reaction as induced by IL-1β + histamine, utilised the natural high affinity between biotin 
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and streptavidin through i.v. administration of anti-Ly6G-biotin and locally applied strept-

AF647, as described in Chapter 5 (Fig. 5.1). Via this approach, we were able to ‘tag’ 

interstitial but also rTEM neutrophils whilst non-migrating neutrophils (i.e. free-flowing, 

rolling or adherent cells) and other immune cells (e.g. monocytes) remained unlabelled 

(Fig. 5.2B). Related to this approach, the use of an anti-Ly6G Ab to label circulating 

neutrophils without affecting their migration required addressing due to mixed literature 

reports. Specifically, whilst Nigrovic and colleagues had observed defects in neutrophil 

migration with doses of anti-Ly6G Ab between 5 – 50 µg (i.p.) (Wang et al., 2012; Cunin 

et al., 2019), Yipp and Kubes have reported no such effects up to the dose of 40 µg (i.v.) 

of the Ab (Yipp and Kubes, 2013). The latter finding is consistent with our data showing 

that anti-Ly6G labelling of neutrophils in vivo has no impact on their migratory behaviour 

(Fig. 5.4A-D). 

Following induction of vascular permeability, a ~5-fold increase in the number of strept-

AF647+ neutrophils was detected in the blood as compared to levels detected in mice 

treated with IL-1β alone (Fig. 5.6A & B). This aligned closely with the observed change 

in the frequency of neutrophil rTEM. Further, these data strongly supported the notion 

that strept-AF647+ cells are indeed rTEM neutrophils. Application of our novel tracking 

method to the IL-1β + histamine reaction enabled the detection of ~2,800 strept-AF647+ 

neutrophils/ml of blood, compared to the ~300 PA-GFP+ (i.e. rIM + rTEM) neutrophils/ml 

blood detected using the PA approach (Wang et al., 2017). Hence, our model may offer 

the ability to track a larger number of reversing cells as compared to the alternative PA 

approach. However, a definite comparison of each technique is limited by fundamental 

differences including: the inflammatory reactions employed (IL-1β + histamine vs. sterile 

burn injury), types of reverse migration studied (rTEM vs. rIM), type of organ (cremaster 

muscle vs. liver), time-points of the reaction (4 hr post IL-1β + 2 hr histamine vs. 16-24 

hr post sterile burn injury) and the labelling duration used (continuous topical 

application of strept-AF647 vs. single laser pulse PA). Nevertheless, our advancement 

allowed us to directly explore the phenotype and fate of rTEM neutrophils for the first 

time.  

Previous in vitro studies from Buckley et al., discovered that neutrophils that underwent 

rTEM through a monolayer of ECs expressed higher levels of the surface molecule, ICAM-

1 (Buckley et al., 2006). Interestingly, in vivo, an ICAM-1high neutrophil population could 
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be detected in the lung vasculature in reactions characterised by a high frequency of 

reversing neutrophils, which were hypothesised to be local rTEM cells that disseminated 

to secondary organs (Woodfin et al., 2011). Furthermore, Colom et al., observed 

increased pulmonary vascular leakage following local LTB4 stimulation of the cremaster 

muscle, suggesting that rTEM neutrophils may contribute towards the onset of 

secondary organ injury (Colom et al., 2015). Therefore, through our direct tracking 

method we sought to determine if our labelled rTEM neutrophils indeed relocated to 

the lungs. We identified an increased population of strept-AF647+ neutrophils in lung 

vascular washout (LVWO) and in the bone marrow (BM) at 2 hr and 4 hr post histamine, 

respectively (Owen-Woods et al., 2020). Similar to our study, Wang et al., observed 

increased retention of rIM neutrophils in the lungs and BM post local sterile 

inflammation, albeit at 24 hr and 48 hr, respectively (Wang et al., 2017). As return of 

neutrophils to the BM is associated with resolution of inflammation (Furze and Rankin, 

2008), Wang et al., postulated that neutrophils that undergo rIM + rTEM support a pro-

resolutory pathway.  

Due to the limited understanding of the fate of reverse migrating leukocytes, it was vital 

to assess the phenotype of tracked rTEM neutrophils in the blood and LVWO. Here, Ly6G-

strept-AF647-tagged rTEM neutrophils in the blood exhibited an activated phenotype 

(increased ICAM-1 and CD11b) (Fig. 5.8A) and were further detected in the lung 

vasculature where they presented an exacerbated pro-inflammatory phenotype 

(increased CD11b, ICAM-1, β1-integrin, NE and CXCR4) (Fig. 5.8B). Increased expression 

of ICAM-1 and of integrin subunits (e.g. CD11b and β1-integrin) are established markers 

of neutrophil activation that could explain their retention in the lung vasculature 

(Sumagin et al., 2010; Nourshargh and Alon, 2014). Furthermore, expression of CXCR4 

on the surface of leukocytes can mediate neutrophil margination in the lung (Devi et al., 

2013). Lastly, we observed that strept-AFT647+ neutrophils correlated with sites of 

vascular leakage (data not shown, Owen-Woods et al., 2020), a finding consistent with 

the results of Colom et al., suggesting a pro-inflammatory role for rTEM neutrophils. This 

is supported by the increased expression of NE by rTEM neutrophils in the lung 

vasculature which could be responsible for the observed increase in vascular leakage. NE 

is a destructive serine protease enzyme secreted from azurophil (primary) granules or 

released in NETs (Cowland and Borregaard, 2016). NE can facilitate the breakdown of the 
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extracellular matrix and cleave essential EC junctional molecules such as JAMs (Colom et 

al., 2015), ICAM-1 (Champagne et al., 1998) and VE-cadherin (Carden et al., 1998), thus 

resulting in reduced stability of the endothelial barrier (Chua and Laurent, 2006; Taylor 

et al., 2018; Voisin et al., 2019). Of particular importance, increased NE expression can 

induce tissue damage and has been strongly associated with various lung diseases 

including ALI and ARDs (Polverino et al., 2017). The identification of elevated NE surface 

expression on rTEM neutrophils reported in this thesis may indicate that these 

neutrophils are indeed capable of contributing to the development of lung pathologies. 

However, neutrophils have the capacity to induce vascular leakage through the release 

of a variety of other factors, such as ROS, TNF, VEGF and HBP (DiStasi and Ley, 2009). Of 

particular interest, ICAM-1 expression by neutrophils enhances their phagocytic activity, 

and more importantly, generation of ROS (Woodfin et al., 2016). To assess the potential 

contribution of these factors in the tissue destructive capability of rTEM neutrophils 

would require further investigations (section 7.2.2.1). Of consideration, the increased 

levels of CXCL1 in the plasma detected following the topical application of histamine to 

IL-1β stimulated cremaster tissues, may also play a role in the observed lung vasculature 

dysfunction. Indeed, injection of CXCL1 i.v. can induce vascular leakage and increase 

neutrophil accumulation in rabbit lungs (Rot, 1991). However, although a different 

animal species is used in our model, the dose of CXCL1 employed in the former study 

(100 µg i.v.) was far higher than the increase observed in this thesis between IL-1β and 

IL-1β + histamine-treated mice (0.01 µg increase following histamine application). 

Furthermore, although in our studies we observed lung vascular dysfunction, total local 

(Fig. 4.1B) and remote (data collected by Dr Régis Joulia, not shown) organ neutrophil 

accumulation was similar between IL-1β +/- histamine-treated groups. Therefore, the 

increased plasma level of CXCL1 following IL-1β + histamine is unlikely to be the cause 

of vascular leakage in the lung. However, to definitively investigate the contribution of 

plasma CXCL1 in our model, a dose response of injected recombinant CXCL1 (i.v.) 

experiment, followed by assessment of the lung vascular leakage would be required. 

Additionally, adoptive cell transfer experiments could be conducted, whereby isolated 

strept-AF647+ or strept-AF647- neutrophils could be injected into naïve mice followed by 

subsequent analysis of the pulmonary vascular leakage response.  
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Lastly, we found striking similarities between the phenotype of rTEM neutrophils within 

the pulmonary vasculature and “aged” neutrophils, whereby both exhibit enhanced 

suface expression of CXCR4, ICAM-1 and CD11b (Rosales, 2018), with the exception of 

CD62L where only a trend towards reduction was observed. Aged neutrophils also 

reportedly exhibit upregulation of VLA-4 and downregulation of CXCR2, which could 

provide potential markers for future characterisations. Furthermore, Androver and 

colleagues have recently shown that activation of CXCR2 induces cell aging, which they 

suggest favours neutrophil clearance from the tissue into the circulation (Adrover et al., 

2019). This could be consistent with our proposed mechanism for neutrophil rTEM, 

involving hyper-activation and consequential desensitisation/internalisation of CXCR2 

by excessive EC junctional expression of CXCL1 (see section 7.1.2). In addition, 

neutrophil clearance is proposed to be mediated by CXCR4, a response linked to 

terminal relocation of neutrophils back to the BM (Martin et al., 2003; Furze and Rankin, 

2008). Complementary to our finding of increased CXCR4 expression on rTEM 

neutrophils in the lung vasculature, Wang et al., detected increased CXCR4 on reverse 

migrated neutrophils in the lungs, in their model. In addition, through use of a CXCR4 

antagonist, the number of PA neutrophils was increased in the lung but decreased in the 

BM (Wang et al., 2017). Overall, these findings suggest that CXCR4 could be important 

in homing of reversing cells from the lung back to the BM. Collectively, our data highlight 

key similarities between rTEM and rIM + rTEM neutrophils. Therefore, we propose that 

initially, after neutrophils reverse migrate, they are transported into the lungs during the 

acute phase of the reaction where they exhibit a typically pro-

inflammatory/permeability phenotype. Then, during their increased retention time 

within the lung vasculature, the neutrophils may switch to a resolving phenotype, 

characterised by decreased pro-inflammatory markers, and increased CXCR4 expression, 

thus facilitating their terminal relocation to the BM at a later time-point (24 hr+).  

 

7.1.4. Investigating the role of neutrophil-derived TNF and TNFRI/II in acute 

inflammation 

 

Following a previous publication by our team, demonstrating that neutrophil-derived 

TNF is responsible for the initial vascular leakage induced by LTB4 (Finsterbusch et al., 
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2014), we sought to explore the role of neutrophil-derived TNF and TNFRs as mediators 

of neutrophil rTEM. To this end, we initiated an ambitious programme aimed at 

generating and validating a novel mouse line exhibiting a selective neutrophil TNF 

deficiency (neutrophil-selective TNFKO; Neutro-TNFKO). In addition, we sought to 

generate and investigate a chimeric haematopoietic-derived cell (HDC)-TNFRI/IIKO 

(TNFRI/II KO-BM->-WT) mouse model. 

To generate the Neutro-TNFKO line, we first crossed MRP8-Cre and TNF loxP floxed GM 

lines (Kim et al., 2018). MRP8 is an essential component of the anti-bacterial protein 

calprotectin that is mostly expressed by neutrophils, thus limiting the functional deletion 

of the TNF gene to this cell type. Genomic validation by PCR revealed that only Neutro-

TNFKO mice contained that Cre transgene (Fig. 6.3A-B). Additionally, flow cytometry of 

LPS-stimulated cells revealed that the majority of peripheral blood neutrophils were 

deficient in TNF (Fig. 6.4A-C). Moreover, we found deletion of TNF in ~20% of peripheral 

monocytes. This is in accordance with the literature whereby MRP8 has been shown to 

be expressed during early monocyte development (Elliott et al., 2011; Abram et al., 

2014; Csepregi et al., 2018). Whilst a monocyte-TNF deficiency could be cause for 

concern in terms of determining the effects of neutrophil derived-TNF, our inflammatory 

models are acute reactions characterised by a disruption of endothelial integrity and 

leukocyte migration, mediated predominantly by neutrophils but not monocytes 

(McDonald et al., 2010; Lämmermann et al., 2013; Finsterbusch et al., 2014). Having said 

that, it would be essential to rule out the potential contribution of monocytes in any 

noted phenotypes (section 7.2.3.4). Unfortunately, whilst our results suggest the 

successful generation of the Neutro-TNFKO line, due to time and resource constraints we 

did not extend these mice to analysis of inflammatory models.   

The project also generated chimeric TNFRI/II KO-BM->-WT and control WT chimeric 

mice (WT-BM->-WT), in which BM from donor global TNFRI/IIKO or WT mice respectively, 

were injected i.v. into irradiated LysM-EGFPki/+ or WT recipient mice. Both chimeric 

animals, exhibited comparable reconstituted neutrophil blood counts at 6 weeks post-

BM transplant (Fig. 6.5C). Interestingly, following IR-injury of the cremaster muscle, 

TNFRI/II KO-BM->-WT mice exhibited a complete loss of a vascular leakage response 

(Fig. 6.6A) and a significant (~40%) reduction in total neutrophil extravasation with 

respect to WT-BM->-WT control mice (Fig. 6.6B-C). Collectively, these experiments 
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suggest a critical role for neutrophil-TNFRI/II in the induction of vascular leakage and 

neutrophil migration. Finsterbusch et al., previously provided evidence that following 

LTB4 stimulation, neutrophil-derived TNF signalling was fundamental in driving the 

vascular leakage response post leukocyte-EC adhesion (Finsterbusch et al., 2014). 

Together with our observations, it would appear that the assumed release of neutrophil-

derived TNF alone during IR-injury, is not sufficient to induce vascular leakage. 

Therefore, it could be hypothesised that once released, TNF acts in an 

autocrine/paracrine manner via neutrophil-TNFRs to amplify the synthesis and release 

of neutrophil-derived pro-permeability factors such as ROS, LTB4, VEGF, HBP as well as 

TNF, whereby the latter three are preformed and stored in neutrophil granules (Beil et 

al., 1995; Borregaard et al., 2007; Gong and Koh, 2010). This suggests the existence of a 

permeability threshold, whereby a minimum concentration of pro-permeability factors 

is required to induce a vascular leakage response. Indeed, autocrine and/or paracrine 

TNF-TNFR signaling has previously been reported for a number of immune cell types, 

including monocytes and macrophages (Lombardo et al., 2007; Caldwell et al., 2014), 

but most importantly also for neutrophils. In the latter case, neutrophil TNF production, 

as induced by TLR2 ligand stimulation, increased the synthesis of neutrophil-derived 

cytokines, chemokines and lipid mediators via TNFR1 activation (Deguine et al., 2017). 

This included the production of additional TNF, as well as CCL3, CCL4, CXCL1, CXCL2, LTB4 

and PGE2. However, in this study amplification by TNF-TNFRI/II began at 90 min post 

zymosan-stimulation and peaked at 240 min, whereas we have shown that IR-injury-

induced permeability occurs within a few min post reperfusion (see Chapter 3). Hence, 

it is possible that in our reaction, a lack of HDC-TNFRs prevents neutrophil 

degranulation, known to be induced by TNF (Richter et al., 1990). This would also be 

consistent with a lack of availability of preformed pro-permeability factors such as HBP 

(Borregaard et al., 2007) and VEGF (Gong and Koh, 2010; Zhou et al., 2017), which as 

suggested, may be required to surpass the ‘permeability threshold’.  

A deficiency in neutrophil degranulation may also explain our observed partial defect in 

the neutrophil extravasation response. Neutrophil TEM, in part, is mediated by surface 

molecules CD11b and LFA-1 that are known to be pre-formed in specific, gelatinase and 

secretory granules/vesicles, where they are released upon neutrophil activation 

(Borregaard et al., 2007). A defect in neutrophil extravasation is hence consistent with 
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a potential downregulation of CD11b and LFA-1, both of which are known to mediate 

TNF-induced leukocyte crawling and migration (Sumagin et al., 2010). Neutrophil 

migration would likely therefore be predominantly mediated by TNF-independent 

mechanisms, namely by PECAM-1, ICAM-2, JAM-A and ESAM (Nourshargh et al., 2006; 

Huang et al., 2006; Woodfin et al., 2009; Wegmann et al., 2006), however this 

hypothesis would require further investigations, initially looking at the surface 

expression of CD11b and LFA-1 (section 7.2.4).  

Another potential explanation for our observed loss of vascular leakage and partial 

defect in neutrophil extravasation responses could be an initial absence of preformed 

TNF in neutrophil intracellular stores. Finsterbusch et al., previously showed that 

following neutrophil-EC interactions, preformed neutrophil-derived TNF is released and 

mediates LTB4-induced permeability (Finsterbusch et al., 2014). Hence similar to their 

use of HDC-TNFKO chimeras, the absence of preformed stores in our HDC-TNFRI/IIKO 

chimeras would result in the loss of TNF-induced vascular leakage. If correct, this would 

imply that HDC-TNFRI/II contribute to the development of intracellular TNF stores 

during granulopoiesis. However, evaluation of this postulate based on the current 

literature is difficult, as little is known about how TNF is stored by neutrophils (Beil et 

al., 1995). This hypothesis might be directly assessed by flow cytometry to measure 

intracellular TNF levels under basal and/or inflammatory conditions as described by 

Finsterbusch et al., (section 7.2.4.2) (Finsterbusch et al., 2014). Collectively, our findings 

in the context of the discussed literature and proposed hypotheses provide fruitful 

grounds for future investigations into the role of neutrophil-derived TNF and TNFRI/II. 
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7.2. Open questions and future perspectives 

 

7.2.1. Deciphering the specific mechanisms of CXCL1-mediated neutrophil rTEM 

 

This section will discuss potential future investigations aimed at shedding greater insight 

into the mechanisms through which augmented distribution of CXCL1 may lead to 

neutrophil rTEM, as summarised in Fig. 7.2.  

 

Figure 7.2. Future investigations to understand how disruption of CXCL1 mediates neutrophil 

rTEM. This flow diagram represents a series of proposed future investigations, extending the 

studies described in this thesis. See text for further details.  
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In this thesis, we have shown that vascular permeability induction facilitated the 

diffusion of tissue-generated CXCL1 through paracellular junctions into the vascular 

lumen and subsequently induced aberrant neutrophil TEM. However, the precise 

mechanisms as to how changes in CXCL1 localisation facilitate neutrophil rTEM remains 

unclear. To ascertain the direct regulation, expression and presentation of CXCL1, would 

require further investigation.  

One possible explanation could be that increased diffusion of CXCL1 through EC 

junctions may result in excessive presentation of chemokine to its neutrophil-bound 

receptor, CXCR2, leading to its saturation and/or hyperactivation followed by receptor 

internalisation. Thus, potential internalisation of CXCR2 on rTEM neutrophils could be 

assessed by confocal IVM using commercially available fluorescently conjugated 

antibodies for CXCR2 (Haarmann et al., 2019). Additionally, flow cytometry could be 

employed to compare CXCR2 expression levels on strept-AF647+ vs. strept-AF647- 

neutrophils isolated from the blood and LVWO. If a decrease in CXCR2 expression on 

rTEM neutrophils was identified, this may explain why these neutrophils are unable to 

progress into the extravascular space and instead move in a retrograde manner. 

Complementary to this, if excessive CXCL1 does indeed lead to CXCR2 internalisation, 

we may expect this augmented expression to be prevented following prophylactic 

treatment with an anti-CXCL1 Ab. 

As binding of CXCL2 to its receptor is known to facilitate neutrophil TEM (Girbl et al., 

2018), an alternative hypothesis could be that excess of CXCL1 in proximity to the 

migrating neutrophil may result in saturation of CXCR2, and consequently reduce and/or 

block receptor availability for CXCL2. If this is the case, we may detect enhanced levels 

of unbound CXCL2 in the plasma, a response that could be measured by ELISA. 

Additionally, we could compare the junctional presentation of CXCL1 and CXCL2 under 

inflammatory conditions that induce, or fail to induce, neutrophil rTEM by IF using 

fluorescently labelled anti-CXCL1 and anti-CXCL2.  

Lastly, it would be useful to investigate other potential mechanisms that could account 

for elevated plasma CXCL1 levels following hyper-permeability induction. For example, 

we could assess the potential contribution of GAGs in retention of CXCL1 and hence 

assess its cleavage from EC membranes. GAGs are readily cleaved under certain 
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inflammatory conditions (Key et al., 1992; Crijns et al., 2020) and therefore their absence 

from the EC surface/junction may disrupt presentation of chemokines and thus 

directional cues for neutrophil migration. This question could be addressed by 

measuring cleaved GAGs using a commercially available ELISA kit to detect heparan 

sulfate (Rees et al., 2010) (i.e. GAGs known to retain CXCL1 and CXCL2) (Crijns et al., 

2020), or via IF staining of CXCL1 on ECs, to determine if there are different levels and/or 

localisation of CXCL1 following models of vascular leakage. If evidence for GAG cleavage 

is obtained, the effect of GAG cleavage inhibitors (e.g. non-anticoagulant heparins, a 

heparanase inhibitor (Cassinelli et al., 2020)) on CXCL1 plasma levels and neutrophil 

rTEM could be investigated.  

 

7.2.2. Understanding the pathophysiological relevance of rTEM neutrophils for 

the identification of novel therapeutic targets 

 

This section will discuss potential future investigations regarding the characterisation of 

rTEM neutrophils and their pathophysiological impact, beyond the findings of this thesis 

as summarised in Fig. 7.3 and described in more detail in sections 7.2.2.1 – 7.2.2.4. 
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Figure 7.3. Future work to characterise rTEM neutrophils and their (patho)physiological 

impact. This flow diagram represents a series of proposed future investigations beyond 

completion of the work described in this thesis, as further described in sections 7.2.2.1 – 7.2.2.4. 
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7.2.2.1. How do rTEM neutrophils cause secondary organ vascular leakage/damage?  

 

In Chapter 5, reverse transmigrating neutrophils were shown to be enriched in the lung 

vasculature where they displayed a pro-inflammatory phenotype characterised by 

higher cell surface expression of CD11b, ICAM-1, β1-integrin, CXCR4 and NE. As 

discussed in section 7.1.3, these molecules are known markers of neutrophil activation 

(ICAM-1), adhesion & TEM (CD11b & β1-integrin), lung margination (CXCR4) and 

vascular damage (NE) (Sumagin et al., 2010; Devi et al., 2013; Nourshargh and Alon, 

2014). However, the precise mechanism(s) as to how reverse transmigrating neutrophils 

are retained in the lung vasculature, and more importantly, how they may induce 

vascular leakage requires further investigations. 

To confirm definitively that rTEM neutrophils are responsible for pulmonary 

leakage/damage, we could seek to attenuate the impact of rTEM neutrophils. Firstly, as 

we found that use of an anti-CXCL1 Ab reduced the frequency of rTEM, we could use this 

approach to block the induction of rTEM followed by evaluation of the pulmonary 

vascular leakage response. Next, based on our initial phenotypic analysis of rTEM 

neutrophils, we hypothesise that CXCR4 may mediate margination of rTEM neutrophils 

in the lung vasculature. To address this, we could use pharmacological inhibitors of 

CXCR4 (Gaur et al., 2018). Complementary to this, we could measure the level of CXCL12, 

the ligand of CXCR4, from isolated lung tissue where CXCL12 has been shown to be 

upregulated under inflammatory conditions (Devi et al., 2013; Li et al., 2020). Lastly, we 

hypothesise that rTEM neutrophil-derived NE may be responsible for the observed 

pulmonary vascular leakage. This could be directly assessed via the use of commercially 

available NE inhibitors or NEKO mice (Colom et al., 2015; Voisin et al., 2019), which if the 

hypothesis is correct would reduce the onset of damage to the endothelium. Targeting 

ICAM-1, CD11b or β2-integrins should be avoided as this may adversely affect neutrophil 

migration. Experimentally, a prophylactic i.v. injection of the aforementioned 

antagonists/inhibitors could be used in the inflammatory reactions of IL-1β + histamine 

or IR-injury in combination with our neutrophil rTEM tracking strategy (Chapter 5). Lung 

permeability could then be assessed in extracted tissues using an i.v. injection of 

fluorescent microspheres as detailed in Owen-Woods et al (Owen-Woods et al., 2020). 

This could then be correlated with the number of strept-AF647+ neutrophils detected in 
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LVWOs at 2 hr, as assessed by flow cytometry. This approach could be extended to using 

two-photon confocal microscopy. Here, this would facilitate real-time imaging of the 

lung vasculature following local induction and tracking of rTEM neutrophils, thus 

allowing for visualisation of the arrival of rTEM neutrophils and the onset of vascular 

leakage. Such an approach would allow identification of the optimal time point to collect 

rTEM neutrophils from LVWOs to gain a more representative picture of the rTEM 

phenotype at the relevant time of vascular leakage induction. 

In addition to the phenotyping performed in Chapter 5, we could look at other known 

neutrophil-derived pro-permeability factors, such as ROS, as suggested by Buckley et al., 

and Woodfin et al., (Buckley et al., 2006; Woodfin et al., 2011). To assess the intracellular 

neutrophil production of ROS, LVWO could be collected and incubated ex vivo with a 

ROS probe such as dihydrorhodamine (DHR). This probe is predominantly oxidised by 

superoxide radicals to produce the fluorescent product, 2-hydroxyethidium, hence, the 

greater ROS production the greater the fluorescent signal. This could then be analysed 

by flow cytometry to allow for a direct comparison between streptavidin- and 

streptavidin+ neutrophils.  

Another neutrophil-derived factor that could mediate vascular leakage is TNF, 

previously shown to be expressed in close proximity to ECs prior to transmigration 

(Finsterbusch et al., 2014). Thus, an interesting avenue of research would be to assess 

whether rTEM neutrophils express higher levels of TNF. For this purpose, Neutro-TNFKO 

mice (validated in Chapter 6) could be used in inflammatory models that elicit rTEM to 

assess the contribution of TNF derived from rTEM neutrophils to remote organ damage. 

However, while antibodies are available to look at surface TNF expression, maintaining 

retention of TNF after extraction from the mouse remains difficult as TNF can be readily 

cleaved at the cell surface by the enzyme, TACE (Moss et al., 2008). Inhibition of TNF 

release could be achieved through the use of TACE-inhibitors (Wong et al., 2016), or 

commercially available iRhom2 KO mice. iRhom2, known to be expressed by neutrophils, 

is an essential shuttle protein that transports TACE (Adrain et al., 2012). If TNF derived 

from reverse migrating neutrophils is responsible for the vascular leakage in the lung, 

then it would be expected that absence of soluble/released TNF would suppress or 

reduce this lung vascular dysfunction. These experiments could be complemented by 

quantifying surface TNF expression on rTEM neutrophils.  
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7.2.2.2. Deeper exploration into the phenotype of rTEM neutrophils to identify novel 

therapeutic targets 

With a better understanding of the expression profile of rTEM neutrophil in different 

tissues, future investigations can begin to suggest potential novel anti-inflammatory 

therapeutic strategies. For example, our current profiling revealed that rTEM 

neutrophils found in the lung express high levels of NE, a serine protease strongly linked 

to numerous acute lung diseases such as ALI (Dushianthan et al., 2011; Colom et al., 

2015). As such, NE inhibitors have previously been used in the clinical setting to treat 

NE-induced lung injury (Polverino et al., 2017). Not only could our work help inform the 

wider impact of these inhibitors but they can also be used as a basis to better understand 

their mechanisms and hence their use. Use of flow cytometry provided insight into the 

phenotype of rTEM neutrophils but with this approach only a limited number of markers 

were assessed. Expanding the analysis of rTEM neutrophil phenotype could be achieved 

using time-of-flight mass cytometry (CyTOF), to enable deep phenotyping of reverse 

migrating neutrophils. CyTOF works on a similar principle to the flow cytometry 

employed in the thesis, however antigens are alternatively labelled with Abs conjugated 

to unique metal isotopes. Once labelled, cells are processed and analysed by mass 

spectrometry where the presence and abundance of the metal ion signal is used as a 

marker of antigen expression. Through this method, up to 40 different antigens can be 

detected simultaneously, enabling deeper understanding of the rTEM neutrophil 

phenotype. This technique has been used previously to assess the phenotype of 

leukocytes in human patients suffering from cancer and rheumatoid arthritis (Goldman 

et al., 2019; Leite Pereira et al., 2019). For example, Leite Pereira et al., demonstrated 

the power of this technique by examining 34 different makers on leukocytes, facilitating 

the identification of two potentially new subpopulation of neutrophils and T-cells. To 

further characterise rTEM neutrophils, we could assess potential changes at the level of 

transcription. This can be addressed following isolation of rTEM neutrophils by flow 

cytometry and subsequent analysis by single cell RNA-sequencing. Furthermore, as this 

can identify changes at the level of a single cell this may provide insight into the 

heterogeneity of this cell population (Haque et al., 2017).  
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7.2.2.3. Do rTEM neutrophils disseminate to other secondary organs and do they exhibit 

the same phenotype/pathogenic function? 

 

In Chapter 5, neutrophils that have undergone rTEM were tracked into the peripheral 

circulation, lung vasculature followed by the BM at a later time-point. In the lung, they 

were identified to exhibit a pro-inflammatory phenotype as shown by enhanced surface 

expression levels of CD11b, ICAM-1, β1-integrins, CXCR4 and NE. However, it remains 

unknown whether reverse transmigrating neutrophils are retained and exhibit a similar 

pro-inflammatory phenotype in other key organs such as the liver, kidneys, heart and 

brain. This could be assessed by detecting the presence and phenotype of fluorescently 

labelled strept-AF647+ cells in these organs by flow cytometry as described in Chapter 

5, or alternatively, tissue samples could be collected and processed for confocal 

microscopy. Furthermore, the potential pathophysiological consequences of rTEM 

neutrophils in these organs could be assessed following i.v. injection of fluorescent 

microspheres and subsequent analysis of the relevant tissues. Lastly, 

damage/dysfunction of specific tissues could be assessed by measurement of certain 

proteins in the blood. For example, tissue damage is often associated with elevated 

levels of non-specific markers, including c-reactive protein (Pepys and Hirschfield, 2003) 

and lactate dehydrogenase (Guzmán-de la Garza et al., 2013). In addition, levels of tissue 

specific markers, for example, troponin (heart) (Maynard et al., 2000), and aspartate 

aminotransferase and alanine aminotransferase (liver) (Guzmán-de la Garza et al., 

2013), could be quantified. 

 

7.2.2.4. Can phenotypic markers aid in the detection of rTEM neutrophils in humans and 

act as a prognosis marker?  

 

Detection of reverse migrating neutrophils has proved difficult to translate towards 

humans. In part, this is due to the limited understanding of their phenotype and fate, 

rendering it challenging to know where to look for these cells and how to differentiate 

them from other neutrophils. Investigations discussed in Chapter 5 provided insight into 

the fate and phenotype of reverse transmigrating neutrophils and may thus form the 

basis for development of a bio-marker detection strategy. Phenotyping of rTEM 

neutrophils in humans has so far been limited to in vitro investigations. Here, Buckley et 



          

203 
 

al., identified rTEM neutrophils to be ICAM-1high and interestingly they detected a 

population of ICAM-1high neutrophils in the blood of patients suffering with chronic 

inflammatory disorders. This is complementary to the findings presented here and with 

those of Woodfin et al., where increased expression of ICAM-1 was detected on rTEM 

neutrophils in the blood and lung vasculature. However, the reported changes in ICAM-

1 expression are subtle and may not represent the optimal marker for detection of rTEM 

neutrophils. This may be improved via deep phenotyping of this sub-population as 

discussed previously (section 7.2.2.2). Of note, since we detected increased levels of 

rTEM post IR-injury, a representative model of an insult incurred during pathologies such 

as trauma and organ transplantation, detection of rTEM in blood samples of such 

patients could potentially serve as a prognosis marker to predict the risk of developing 

secondary organ damage.  

 

7.2.3. Deciphering the role of neutrophil-derived TNF in models of acute 

inflammation 

 

The next two sections will discuss future work that could build upon the initial but 

potentially exciting findings of Chapter 6. These experiments will encompass 

characterising the role of neutrophil-derived TNF during the early acute phase of IR-

injury, as summarised in Fig. 7.4 and described in more detail in sections 7.2.3.1 – 

7.2.3.4. 
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Figure 7.4. Future investigations into the role of neutrophil-derived TNF during the early acute 

phase of IR-injury. These experiments and concepts are further developed in sections 7.2.3.1 – 

7.2.3.2. *Of note, highlighted experiments are also informed by TNFR studies summarised in Fig. 

7.5 and detailed in section 7.2.4.3. 
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7.2.3.1. Does neutrophil-derived TNF play a role in IR-mediated acute inflammatory 

responses? 

 

Previous studies from our team (Finsterbusch et al., 2014) provided the first evidence 

that neutrophil-derived TNF is a key regulator of microvascular plasma leakage following 

induction of inflammation by neutrophil chemoattractants such as LTB4, C5a and KC. 

However, whilst there is ample indirect evidence to illustrate the ability of neutrophil 

derived-TNF to induce microvascular leakage, direct verification is lacking. This led us to 

generate the selective neutrophil-TNF deficient mouse model, Neutro-TNFKO (Chapter 

6). This novel line could be used to provide direct evidence for the role of neutrophil-

derived TNF in mediating vascular leakage, for example, following IR-injury. 

Experimentally, vascular leakage could be evaluated in multiple organs using the Evans 

blue assay in Neutro-TNFKO mice. However, for real-time analysis of the leakage 

response, the TRITC-dextran strategy developed in Chapters 3 and 4 using confocal IVM 

of the cremaster muscle could be employed.  

Furthermore, our group has previously shown that neutrophil rTEM during IR-injury is 

mediated by JAM-C cleavage at EC junctions (Woodfin et al., 2011). However, 

stabilisation of JAM-C only led to a partial inhibition of neutrophil rTEM. Since TNF is a 

key player in vascular permeability induction (Finsterbusch et al., 2014) and enhanced 

vascular leakage can lead to enhanced neutrophil rTEM in IR-injury (Owen-Woods et al., 

2020), we hypothesise that neutrophil-derived TNF contributes to the induction of 

neutrophil rTEM during IR-injury. Application of confocal IVM, as stated above, would 

allow for simultaneous investigations into the impact on vascular permeability and 

neutrophil rTEM.  

 

7.2.3.2. Does monocyte-TNF play a role in any identified phenomena? 

 

MRP8 is expressed primarily by neutrophils but also by approximately 20% of 

monocytes, allowing for conditional deletion of floxed alleles in these two leukocyte 

populations (Abram et al., 2014). To directly associate any observed phenotype to the 

contribution of neutrophil-derived TNF it would be essential to understand the role of 

monocytes during early acute inflammation. Firstly, commercially available CX3R1-EGFP 
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mice (Jung et al., 2000) could be used to specifically track monocytes in vivo, to assess 

their recruitment responses during the early phase of acute inflammation. Secondly, this 

could be followed by monocyte depletion experiments using an anti-CCR2 Ab (MC-21) 

(Mack et al., 2001; Hammond et al., 2014) to assess if the prospective phenotype of 

enhanced vascular leakage and neutrophil rTEM is monocyte-dependent. These 

experiments would also utilise the TRITC-dextran and confocal IVM strategy to evaluate 

neutrophil migratory dynamics and vascular leakage responses. 

 

7.2.4. Understanding the role of HDC-TNFRI/II in vascular leakage and 

neutrophil extravasation during acute inflammation 

 

This section will discuss additional future investigations stemming from Chapter 6 into the role 

of HDC-TNFRs. These investigations that are complementary to works detailed in section 7.2.3 

would further our understanding of how TNF mediates the early acute phase of IR-injury, as 

summarised in Fig. 7.5, and detailed in sections 7.2.4.1 – 7.2.4.3. 
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Figure 7.5. Future investigations into the role of HDC-TNFRs during the early acute phase of 

IR-injury. These experiments and concepts are further developed in sections 7.2.4.1 – 7.2.4.3. 

*Of note, highlighted experiments also inform the proposed investigations summarised in Fig. 

7.4 and detailed in section 7.2.4.3. 
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7.2.4.1. How does an absence of HDC-TNFRI/II result in a defect in leukocyte 

extravasation? 

In Chapter 6, preliminary investigations identified a role for HDC-TNFRI/II in neutrophil 

extravasation and vascular leakage. However, to definitively determine the origin of this 

defect in neutrophil extravasation, further exploration would be required. As TNFRI is 

considered to be a predominately pro-inflammatory receptor, we hypothesise that loss 

of this receptor would lead to a similar defect in extravasation by reduced degranulation 

(Richter et al., 1990). To address, experiments could be conducted to explore the 

individual contribution of each TNFR on HDCs in driving neutrophil TEM. This could be 

assessed via the generation of chimeric animals, whereby WT mice are reconstituted 

with BM from TNFRIKO or TNFRIIKO mice. To support these experiments, selective TNFRI 

(Zhang et al., 2020) or TNFRII (Torrey et al., 2017; Shaikh et al., 2018) inhibitors could be 

used.  

Next, neutrophil migration is known to be dependent on chemotactic cues and 

presentation of neutrophil-surface molecules (Ley et al., 2007; Girbl et al., 2018). As one 

of our hypothesis involved a defect in degranulation (see Chapter 6, or section 7.1.4), 

flow cytometry could be used to assess neutrophil cell surface expression of β2-integrins 

following degranulation, which are involved in mediating neutrophil migration (Chapter 

1, section 1.5 & 1.6) (Sumagin et al., 2010). For this purpose, blood samples could be 

collected at 30 min intervals during the 2 hr reperfusion period of an IR reaction. If the 

aforementioned hypothesis is correct, then it should be expected that some of these 

markers would be downregulated.  

7.2.4.2. Is the vascular leakage response during IR-injury dependent on HDC-TNFRI/II? 

If our hypothesis of TNF-TNFR autocrine/paracrine signal amplification is correct 

(section 7.1.4), then it would be expected that TNFRI/II KO-BM->-WT mice would secrete 

reduced levels of pre-formed pro-permeability mediators including TNF, VEGF and HBP, 

with reduced levels of de novo synthesised ROS and LTB4. To examine this, it would be 

useful to determine the presence of intracellular vs. soluble levels of TNF by flow 

cytometry and ELISA, respectively (Finsterbusch et al., 2014), for both TNFRI/II KO-BM-

>-WT and WT-BM->-WT mice following stimulation by IR-injury. Similar experiments 
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could also be performed to look at neutrophil-derived HBP (Olofsson et al., 1999; Tapper 

et al., 2002) and VEGF (Gaudry et al., 1997; Krause et al., 2014). In addition, blood levels 

of mediators such as LTB4 could be assessed by ELISA using samples collected 

throughout the 2 hr reperfusion period, while ROS could be detected using fluorescent 

probes by flow cytometry as described in section 7.2.2.1. Complimentary to this, if 

neutrophil-derived TNFRs are required for the release of pre-formed pro-permeability 

factors, then we may expect that vascular leakage induction following neutrophil 

depletion during IR-injury would be the same as that noted in TNFRI/II KO-BM->-WT 

chimeric mice. Hence, to assess this, neutrophil depletion experiments could be 

conducted during IR-injury using a high dose of anti-Ly6G Ab (e.g. 150 µg) to specifically 

target neutrophils (Pollenus et al., 2019).  

Secondly, to directly address the importance of EC-derived TNFRs on the vascular 

leakage response chimeric mice expressing WT-HDCs and TNFRI/IIKO ECs would be 

expected to have comparable leakage response to those of WT mice if the vascular 

leakage response is purely mediated by HDC-TNFRs as indicated in Chapter 6.  

7.2.4.3. Could selective blockade of TNFRI be therapeutically advantageous and prevent 

the development of secondary organ damage?  

Currently, the predominant treatment for regulating pulmonary inflammatory disorders 

such as ALI in humans revolves around the use of blocking anti-TNF Ab (Raghavendran 

et al., 2008). A systemic inhibition of TNF and/or its respective receptors can however 

result in undesirable side effects due to its pivotal role in many biological functions 

(Horiuchi et al., 2010). Of note, TNFRI is generally considered to predominantly mediate 

pro-inflammatory effects, as opposed to the typically anti-inflammatory properties of 

TNFRII (Naudé et al., 2011; Cabal-Hierro and Lazo, 2012; Holbrook et al., 2019). As such, 

it has been hypothesised that blocking both receptors may result in loss of TNFRII-

mediated attenuation of apoptotic activity and its role in promoting cell survival and 

proliferation (Proudfoot et al., 2018). This mandates the development of more selective 

therapy options. Recently, the therapeutic benefits of TNFR antagonists have been 

considered as a prophylactic treatment, whereby treatment with a selective TNFRI 

inhibitor has been used to combat pulmonary oedema as induced by inhaled LPS in non-
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human primates (NHP) and in healthy humans (Proudfoot et al., 2018). Here, they 

observed reduced pulmonary vascular oedema in both species that received the pre-

treatment. Furthermore, if neutrophil-derived TNF is identified as a key driver of IR-

mediated secondary organ damage, as induced by disseminated rTEM neutrophils, then 

selective inhibition of TNFRI pathway could be therapeutically advantageous in 

preventing the onset of vascular oedema. Auxiliary investigations could be performed 

using TNFRI-/ TNFRII-specific inhibitors or via the use single receptor KO (TNFRIKO & 

TNFRIIKO) mice, as described in section 7.2.4.1, to assess if TNFRI does indeed mediate 

these responses.  

7.3. Concluding remarks 

Acute inflammation is a fundamental innate process following infection and sterile 

injuries. Depending on the severity of inflammation, secondary pathologies can develop 

and adversely affect prognostic outcomes. This thesis has revisited two established 

features of inflammation, namely, vascular leakage and neutrophil migration. The 

findings provide comprehensive evidence for enhanced microvascular leakage in 

disrupting chemotactic directional cues that drive retrograde migration of neutrophils 

back into the circulation. Importantly, through the development of a novel methodology 

for exclusive labelling and tracking of rTEM neutrophils, the findings reveal that these 

neutrophils exhibit an activated phenotype in the blood that is further exacerbated in 

the lung vasculature where they accumulate and their presence is associated with sites 

of vascular damage (Fig. 7.6). This methodological advancement offers the first 

approach for labelling and tracking of rTEM neutrophils, facilitating direct insight into 

their phenotype and fate. Finally, the work identified crucial roles for HDC-TNFRs in both 

vascular permeability and neutrophil migration during IR-injury. Collectively, these 

results suggest that antagonism of CXCL1, CXCR2 or possibly NE could be therapeutically 

advantageous to prevent the onset of secondary organ damage, and provides a plausible 

basis for further investigations into the pathophysiological relevance of neutrophil 

rTEM. 
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Figure 7.6. A working schematic presenting the proposed mechanism of how permeability 

regulates neutrophil TEM. Neutrophils that undergo rTEM in the cremaster muscle following 

models of hyper-permeability travel in the blood and exhibit increased retention in the lung 

vasculature. In the blood, these cells exhibit a pro-inflammatory phenotype which is further 

exacerbated in the lung vasculature, where they contribute to secondary organ damage. Figure 

reproduced from Owen-Woods et al., 2020. 
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9. Appendices  

 
All videos and the publication arising from investigations conducted in this thesis are 

available in OneDrive shared file, accessible using the link sent via email.  

 

9.1. Appendix 1 

 

The videos and their respective descriptive legends below demonstrate examples of 

neutrophil migration (normal and reverse TEM), vascular leakage responses and 

labelling of rTEM neutrophils. LysM-EGFPki/+ mice were used for visualisation of 

neutrophils (Video 1-4 - green and video 5 - blue). ECs are labelled using a fluorescently 

labelled, non-blocking anti-CD31 Ab (Video 1-4 - red and video 5 – green). All images 

were acquired using a confocal microscope at a speed of 1 frame/min. All reactions are 

clearly highlighted in each video and in the complementary descriptions. Lastly, for the 

examples of normal and reverse TEM events an isosurface was generated using IMARIS 

Bitplane software to remove the other surrounding neutrophils for the purpose of 

clarity.  

 

Video 1: A representative example of the neutrophil TEM & vascular leakage response 

during IR-injury induced cremasteric inflammation 

This video shows an inflamed post-capillary venule as induced by IR-injury. Here, during 

the 1 hr reperfusion period, neutrophils (green) can be seen to undergo TEM and 

concomitantly, TRITC-Dextran (blue) can be seen to rapidly leak into the interstitial 

tissue, whereby the latter is seen to decrease after 30 min.  

 

Video 2: An example of normal neutrophil TEM (nTEM) during IR-injury induced 

cremasteric inflammation 

This video represents a typical/normal neutrophil TEM in a post-capillary venule during 

the reperfusion phase as induced during a model of IR-injury. Here, the video focuses 

on one neutrophil (green) of interest and the cell can be seen to protrude through an EC 
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junctional pore (red), which is clearly observed upon the brief removal of the neutrophil 

fluorescence channel (green). The neutrophil takes approximately 7 min to fully migrate 

into the sub-EC space, which is clearly observable following rotation of the blood vessel.  

 

Video 3: An example of neutrophil reverse TEM (rTEM) during IR-injury induced 

cremasteric inflammation 

This video shows a typical example of a neutrophil undergoing rTEM in a post-capillary 

venule during the reperfusion phase of cremasteric IR-injury. Here, the neutrophil 

(green) can be seen to initiate breaching through the EC wall (red) into the sub-EC space 

as is clearly observed following the temporary removal of the neutrophil fluorescence 

channel and rotation of the blood vessel. The cell is then seen to move in a retrograde 

manner, returning into the vascular lumen and detaching from the venular wall.   

 

Video 4: Neutrophil TEM, vascular leakage and neutrophil rTEM as induced by IL-1β + 

histamine cremasteric inflammation 

This video demonstrates the neutrophil TEM (green) response in a fluorescently labelled 

post-capillary venule (red) as induced following local IL-1β stimulation. Following the 

application of topical histamine over the surface of the cremaster tissue, TRITC-dextran 

can be seen to rapidly leak into the interstitial tissue, a response which declines after 30 

min and is minimal after 1 hr. The second part of the video shows a representative 

example of a neutrophil undergoing rTEM following the application of histamine and as 

is described for video 3.  

 

Video 5: Labelling of rTEM neutrophils in the cremaster muscle with anti-Ly6G-biotin 

Ab and strept-AF647 

This video demonstrates our novel labelling strategy of rTEM neutrophils. Here, an anti-

Ly6G-biotin labelled neutrophil (blue) initiates breaching through an EC junction (green) 

and becomes rapidly labelled with strept-AF647 (red) after its topical application. The 

neutrophil then initiates retrograde motility and returns to the vascular lumen and 
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detaches from the vascular wall. This approach allowed for distinction from other (non-

reverse) neutrophils, thus facilitating their tracking.  

 

9.2. Appendix 2 

 

This section provides full access to our recent publication in JCI (2020) via the OneDrive, 

which included the experimental investigations presented in Chapters 3-5 in this thesis.  

 

9.3. Appendix 3 

This section specifies key experiment details in a timeline for confocal IVM experiments 

conducted in this thesis.  

 

9.3.1. IL-1β or LTB4 stimulation – (LysM-EGFPki/+, Chapter 3): 

 

NB: Control treated mice were alternatively treated with an anti-CD31 Ab (4 μg) in 400 μl PBS, 

i.s.  

 

9.3.2. IR-injury - (LysM-EGFPki/+, Chapter 3) or (TNFRI/II KO-BM->-WT & WT-BM->-WT, 

Chapter 6):   

 

NB: For sham operated control mice there was no placement of the clamps.   
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9.3.3. IL-1β +/- histamine or VEGF - (LysM-EGFPki/+, Chapter 4) or VEC-Y685F & VEC-WT, 

Chapter 4 - IL-1β +/- Histamine only): 

 

NB: Control PBS treated mice were alternatively treated with anti-CD31 Ab (4 μg) in 400 μl PBS, 

i.s. and were topically applied with Tyrodes solution alone. 

 

9.3.4. IL-1β + histamine +/- Anti-VE-PTP - (WT, Chapter 4): 

 

NB: For plasma and tissue CXCL1 analysis: Alternatively, WT mice were subjected to a local 

injection of IL-1β (200 µl of a 50 ng solution, i.s.) or PBS, 2 hr prior to a local injection of histamine 

(200 μl of a 30 µM solution, i.s.) or PBS control (200 µl) or 30 min prior to induction of cremaster 

ischaemia. Plasma and cremaster tissue samples were then collected after the peak of the 

vascular leakage response for each reaction i.e. following 30 min post reperfusion or 30 min post 

topical histamine treatment. Additionally, in some mice an anti-VE-PTP/isotype control Ab were 

injected as depicted and plasma was collected 60 min post local histamine treatment. 

 

9.3.5. IL1β + histamine +/- anti-CXCL1 - (LysM-EGFPki/+, Chapter 4): 

 

 

9.3.6. IR-injury +/- anti-CXCL1 - (LysM-EGFPki/+, Chapter 4): 
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9.3.7. IL-1β + histamine + anti-Ly6G-biotin & strept-AF647 - (LysM-EGFPki/+, Chapter 5): 

NB: Control IL-1β alone treated mice were alternatively just topically applied with Tyrodes 

solution alone. Alternatively, in some experiments control mice received no injection of anti-

Ly6G Ab and topical application strept-AF647. 


