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Stabilization and Destabilization of Hybrid
Systems by Periodic Stochastic Controls

Xiaoyue Li, Wei Liu, Xuerong Mao, Junsheng Zhao

Abstract— This paper aims to determine whether or
not a periodic stochastic feedback control can stabilize
or destabilize a given nonlinear hybrid system. New
methods are developed and sufficient conditions on the
stability and instability for hybrid nonlinear systems
with periodic stochastic perturbations are provided. These
results are then used to examine stabilization and
destabilization by periodic stochastic feedback controls,
including intermittent stochastic controls.
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1. INTRODUCTION

Stochastic modelling and control have played a
crucial role in many applications. Since systems in
the real world often need to run for a long period of
time, an important problem concerns stability of such
systems. It is not surprising that noise (or stochastic
perturbation) can destabilize a stable system. But, as
everything has two sides, noise can also be used to form
a stochastic feedback control to stabilize a given unstable
system. The pioneering work was due to Hasminskii [15,
p.229], who stabilized a system by using two white noise
sources. Later, Arnold et al. [4] showed, in particular,
that the linear system ẋ(t) = Ax(t) can be stabilized
by zero mean stationary parameter noise if and only if
trace(A) < 0. In the nonlinear case, Scheutzow [28]
provided us with some examples on stabilization and
destabilization in the plane, and Mao [21] developed
a general theory on stabilization and destabilization by
Brownian motion. The stochastic stabilization theory
was then extended to functional differential equations,
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using the methods described in this paper.
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difference equations, partial differential equations by
many authors (see, e.g. [2], [3], [8], [9]).

For the past 30 years, the hybrid systems driven by
continuous-time Markov chains have been used to model
many practical systems where they may experience
abrupt changes in their structure and parameters, for
examples, electric power systems, the control system of
a solar thermal central receiver, manufacturing systems,
financial systems etc. (see, e.g., [5], [12], [13], [29], [31],
[33], [34]). One of the important issues in the study of
hybrid systems is the automatic control, with consequent
emphasis being placed on the asymptotic analysis of
stability (see, e.g., [6], [10], [14], [23], [24], [27],
[30], [32], [36]. Naturally, stochastic stabilization and
destabilization theory has also been generalised to hybrid
systems (see, e.g., [11], [18], [25], [26]). In particular,
the theory established can also be applicable to hybrid
systems with asynchronous Markovian switching (see,
e.g., [18]).

Typically, a hybrid system driven by a continuous-
time Markov chain is described by

ẋ(t) = f(x(t), t, r(t)), (1.1)

where x(t) is in general referred to as the state and r(t)
is regarded as the mode and is modelled by a Markov
chain on a finite state space S = {1, 2, · · · , N}. (We
will explain the notation in more detail next section).
The stochastic stabilization and destabilization theory is
concerned with its stochastically perturbed system

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t) (1.2)

and to determine if this perturbed system becomes
stable or unstable when (1.1) is unstable or stable,
respectively, where B(t) is a Brownian motion. Although
both coefficients f and g are time-inhomogeneous, most
existing results in this area assume they are bounded by
time-homogeneous functions, say, for example, for each
i ∈ S, there are constants αi, ρi, σi such that

xT f(x, t, i) ≤ αi|x|2, |g(x, t, i)| ≤ ρi|x|,
and |xT g(x, t, i)| ≥ σi|x|2 (1.3)

for all (x, t) ∈ Rn × R+ (see, [25]). Such conditions
do not make use of the time-inhomogeneous property
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and hence the criteria obtained on stabilization and
destabilization are conservative. We may ask

• Question: Could we make use of the time-
inhomogeneous property of both coefficients f and
g to establish better criteria on stabilization and
destabilization?

For example, both coefficients f and g may be bounded
by periodic functions

xT f(x, t, i) ≤ αi(t)|x|2, |g(x, t, i)| ≤ ρi(t)|x|,
and |xT g(x, t, i)| ≥ σi(t)|x|2 (1.4)

for all (x, t, i) ∈ Rn ×R+ × S, where αi(t), ρi(t), σi(t)
(i ∈ S) are all periodic functions of time t. Typically, this
happens when both f and g are periodic functions with a
common period in time. However, we should emphasize
that it is not necessary to require f and g to be periodic in
order for (1.4) to hold. We will explain the later situation
in more detail when we discuss stochastic intermittent
control.

Our key aim in this paper is to show the positive
answer to the question. To achieve this aim, we first
establish certain sufficient conditions on the stability and
instability for stochastically perturbed hybrid systems in
Sections 3 and 4. We then discuss the stabilization and
destabilization for a class of nonlinear hybrid systems
by periodic stochastic feedback controls, including
stochastic intermittent controls, in Sections 5 and 6,
For these purposes, we present some preliminaries on
the hybrid stochastic differential equations (SDEs) in
Section 2 first.

2. PRELIMINARIES

Throughout this paper, unless otherwise specified,
we use the following notation. Let | · | be the Euclidean
norm in Rn. If A is a vector or matrix, its transpose
is denoted by AT . If A is a matrix, its trace norm is
denoted by |A| =

√
trace(ATA) while its operator norm

is denoted by ‖A‖ = sup{|Ax| : |x| = 1}. If A is a
symmetric matrix, denote by λmax(A) and λmin(A) its
largest and smallest eigenvalue, respectively. For T > 0,
denote by KT the family of periodic functions κ : R+ →
R which are right continuous with left limits and have
their period T .

Let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). For a subset Ω1 of
Ω, denote its compliment by Ωc1. Let B(t), t ≥ 0,
be an m-dimensional Brownian motion defined on the
probability space. Let r(t), t ≥ 0, be a right-continuous
Markov chain on the probability space taking values in

a finite state space S = {1, 2, · · · , N} with generator
Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from
i to j if i 6= j while γii = −

∑
j 6=i γij . We assume

that B(t) and r(t) are independent, and they are Ft
adapted. As a standing hypothesis we assume in this
paper that the Markov chain is irreducible. The algebraic
interpretation of irreducibility is rank(Γ) = N−1. Under
this condition, the Markov chain has a unique stationary
(probability) distribution π = (π1, π2, · · · , πN ) ∈ R1×N

which can be determined by solving the following linear
equation πΓ = 0 subject to

∑N
j=1 πj = 1 and πj > 0

for all j ∈ S. We assume that the initial distribution of
the Markov chain (i.e., of r(0)) is fixed arbitrarily and
we will not mention this any more.

Let us consider the hybrid SDE, or SDE with
Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn, where

f : Rn×R+×S→ Rn and g : Rn×R+×S→ Rn×m.

Throughout the paper, both f and g satisfy the local
Lipschitz condition and grow at most linearly (the
precise growth condition will be given in the subsequent
section). Under these conditions, equation (2.1) has a
unique solution (see, e.g., Mao [26]). Denote the unique
solution by x(t;x0) on t ≥ 0. For the purpose of stability
study in this paper we also assume that

f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0 for each i ∈ S.

As a result, (2.1) admits a trivial solution x(t; 0) ≡ 0. It
is also useful to recall an important property (see Mao
[23, Lemma 2.1]):

P{x(t;x0) 6= 0 on t ≥ 0} = 1 ∀x0 6= 0. (2.2)

That is, almost all the sample paths of any solution of
equation (2.1) starting from a nonzero state will never
reach the origin.

The purpose of this paper is to discuss the almost
surely exponential stability and instability of the hybrid
SDE (2.1). Let us recall the following definition (see,
e.g., [19], [20], [22]).

Definition 2.1: The trivial solution of equation
(2.1), or simply, equation (2.1) is said to be almost surely
exponential stable if for any x0 ∈ Rn,

lim sup
t→∞

1

t
log(|x(t;x0)|) < 0 a.s.
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It is said to be almost surely exponentially unstable if
for any x0 6= 0

lim inf
t→∞

1

t
log(|x(t;x0)|) > 0 a.s.

3. NONLINEAR HYBRID SDES

To discuss the stability of the nonlinear hybrid SDE
(2.1), we impose the following assumption.

Assumption 3.1: For each i ∈ S, there are
functions αi(·), ρi(·), and σi(·) in KT such that

xT f(x, t, i) ≤ αi(t)|x|2, |g(x, t, i)| ≤ ρi(t)|x|,
and |xT g(x, t, i)| ≥ σi(t)|x|2 (3.1)

for all (x, t) ∈ Rn × R+.
Before we state our first theorem in this paper, let

us make a useful remark.
Remark 3.2: The reader may wonder why we do

NOT assume explicitly that both coefficients f(x, t, i)
and g(x, t, i) are periodic functions in t with their period
T . In general, it is natural to think both f and g should
be periodic. However, this is not absolutely necessary.
A typical example will be seen when we discuss the
periodic intermittent control later. We should also point
out that all ρi(·) and σi(·) are nonnegative but αi(·) may
not.

Theorem 3.3: Under Assumption 3.1, the solution
of equation (2.1) satisfies

lim sup
t→∞

1

t
log(|x(t;x0)|) (3.2)

≤
∑
i∈S

πi
T

∫ T

0

[αi(s) + 0.5ρ2
i (s)− σ2

i (s)]ds, a.s.

for all x0 ∈ Rn. In particular, the nonlinear hybrid SDE
(2.1) is almost surely exponentially stable, if∑

i∈S

πi
T

∫ T

0

[αi(s) + 0.5ρ2
i (s)− σ2

i (s)]ds < 0. (3.3)

To prove the theorem, let us present two useful
lemmas.

Lemma 3.4: For any t ≥ 0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣r(t) = i) ≤ 1− e−γ̂v,

(3.4)

where γ̂ = maxi∈S(−γii).
Proof. Given r(t) = i, define the stopping time

ζi = inf{s ≥ t : r(s) 6= i},

where and throughout this paper we set inf ∅ = ∞ (in
which ∅ denotes the empty set as usual). It is well known

(see, e.g., [1]) that ζi− t has the exponential distribution
with parameter −γii. Hence

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i)

= P(ζi − t ≤ v|r(t) = i)

=

∫ v

0

(−γii)eγiisds = 1− eγiiv ≤ 1− e−γ̂v (3.5)

as desired. 2
Lemma 3.5: Let κi(·) ∈ KT for i ∈ S. Then

lim
t→∞

1

t

∫ t

0

κr(s)(s)ds =
∑
i∈S

πi
T

∫ T

0

κi(s)ds a.s. (3.6)

Proof. We shall omit writing a.s. after inequalities or
equalities in the proof. It is clear that

lim sup
t→∞

1

t

∫ t

0

κr(s)(s)ds (3.7)

= lim sup
k→∞

( 1

(k + 1)T

k∑
j=0

∫ (j+1)T

jT

κr(s)(s)ds
)
.

Let κ̄ be the bound for κi(·), namely

|κi(t)| ≤ κ̄ for all t ≥ 0 and i ∈ S. (3.8)

Let ε ∈ (0, 1) be arbitrary and let δ = T/m̄ for a
sufficiently large integer m̄ so that δ < ε. It then follows
from (3.7) that

lim sup
t→∞

1

t

∫ t

0

κr(s)(s)ds ≤
m̄−1∑
u=0

Ju, (3.9)

where

Ju = lim sup
k→∞

1

(k + 1)T

k∑
j=0

∫ jT+(u+1)δ

jT+uδ

κr(s)(s)ds.

(3.10)

Let us first estimate

J0 = lim sup
k→∞

1

(k + 1)T

k∑
j=0

∫ jT+δ

jT

κr(s)(s)ds.

For each i ∈ S, define

τ i0 = inf{j ≥ 0 : r(jT ) = i}

and

τ ik = inf{j > τ ik−1 : r(jT ) = i} for k ≥ 1.

Then τ ik(k ≥ 0) are all finite stopping times with respect
to filtration {FjT }j≥0 such that 0 ≤ τ i0 < · · · τ ik → ∞
a.s. Set

Sik = {j ≥ 0 : τ ij ≤ k},

and denote T ik be the total number of nonnegative
integers which Sik contains. By the ergodic property of
the Markov chain (see, e.g., [1]), we have

lim
k→∞

T ik
k + 1

= πi.
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Moreover, we can derive

J0 = lim sup
k→∞

1

(k + 1)T

∑
i∈S

∑
j∈Sik

∫ jT+δ

jT

κr(s)(s)ds

= lim sup
k→∞

∑
i∈S

T ik
(k + 1)T

( 1

T ik

∑
j∈Sik

∫ jT+δ

jT

κr(s)(s)ds
)

≤
∑
i∈S

1

T

(
lim sup
k→∞

T ik
k + 1

)

×

lim sup
k→∞

1

T ik

∑
j∈Sik

∫ jT+δ

jT

κr(s)(s)ds


=
∑
i∈S

πi
T

(
lim sup
k→∞

1

T ik

∑
j∈Sik

∫ jT+δ

jT

κr(s)(s)ds
)

=
∑
i∈S

πi
T

(
lim sup
k→∞

1

k + 1

k∑
j=0

ξij

)
, (3.11)

where

ξij =

∫ τ i
jT+δ

τ i
jT

κr(s)(s)ds.

But, by the strong Markov property, {r(τ ijT + t)}t≥0

forms a Markov chain with the same generator Γ which
starts from state i and is independent of {r(t)}0≤t≤τ i

jT

for each j ≥ 0. We hence see that {ξij}j≥0 are i.i.d. with
their mean Eξi0. By the large number theory,

lim
k→∞

1

k + 1

k∑
j=0

ξij = Eξi0. (3.12)

To estimate

Eξi0 = E
∫ τ i

0T+δ

τ i
0T

κr(s)(s)ds,

we observe that r(τ i0T ) = i a.s. Applying Lemma 3.4
and recalling δ < ε, we see that

P(Ω1) ≤ 1− e−γ̂δ ≤ γ̂ε,

where Ω1 = {ω ∈ Ω : r(s, ω) 6= i for some s ∈
[τ i0T, τ

i
0T + δ]}. Using (3.8) and the Hölder inequality,

we then derive that

Eξi0 = E
(
IΩ1

∫ τ i
0T+δ

τ i
0T

κr(s)(s)ds
)

+ E
(
IΩc

1

∫ τ i
0T+δ

τ i
0T

κr(s)(s)ds
)

≤
(
E
(
I2
Ω1

))1/2 ×
E

(∫ τ i
0T+δ

τ i
0T

κr(s)(s)ds

)2
1/2

+ E
(
IΩc

1

∫ τ i
0T+δ

τ i
0T

κr(s)(s)ds
)

≤ κ̄(γ̂ε)1/2δ + E
(
IΩc

1

∫ τ i
0T+δ

τ i
0T

κi(s)ds
)

= κ̄(γ̂ε)1/2δ + E
(
IΩc

1

∫ δ

0

κi(s)ds
)

≤ κ̄(γ̂ε)1/2δ +

∫ δ

0

κi(s)ds. (3.13)

Substituting this into (3.12) and then into (3.11) we
obtain

J0 ≤
∑
i∈S

πi
T

(
κ̄(γ̂ε)1/2δ +

∫ δ

0

κi(s)ds
)
. (3.14)

Similarly, we can show

Ju ≤
∑
i∈S

πi
T

(
κ̄(γ̂ε)1/2δ +

∫ (u+1)δ

uδ

κi(s)ds
)
, (3.15)

for u = 1, 2, · · · , m̄. Substituting these into (3.9) we get

lim sup
t→∞

1

t

∫ t

0

κr(s)(s)ds

≤
m̄−1∑
u=0

∑
i∈S

πi
T

(
κ̄(γ̂ε)1/2δ +

∫ (u+1)δ

uδ

κi(s)ds
)

= κ̄(γ̂ε)1/2 +
∑
i∈S

πi
T

∫ T

0

κi(s)ds. (3.16)

As ε is arbitrary, we must have

lim sup
t→∞

1

t

∫ t

0

κr(s)(s)ds ≤
∑
i∈S

πi
T

∫ T

0

κi(s)ds. (3.17)

On the other hand, we can show in the same fashion that

lim inf
t→∞

1

t

∫ t

0

κr(s)(s)ds ≥
m̄−1∑
u=0

J̄u, (3.18)

where

J̄u = lim inf
k→∞

1

(k + 1)T

k∑
j=0

∫ jT+(u+1)δ

jT+uδ

κr(s)(s)ds.

(3.19)
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And then show

J̄u ≥
∑
i∈S

πi
T

(
− κ̄γ̂εδ +

∫ (u+1)δ

uδ

κi(s)ds
)
, (3.20)

for u = 0, 1, · · · , m̄− 1. Combining these together and
then letting ε→ 0, we get

lim inf
t→∞

1

t

∫ t

0

κr(s)(s)ds ≥
∑
i∈S

πi
T

∫ T

0

κi(s)ds. (3.21)

The required assertion (3.6) now follows from (3.17) and
(3.21). The proof is therefore complete. 2

We can now begin to prove Theorem 3.3
Proof of Theorem 3.3. If x0 = 0, the solution x(t; 0) ≡ 0
and hence assertion (3.2) holds. Fix any x0 6= 0 and
write x(t;x0) = x(t). Recalling that this solution x(t)
will never reach zero with probability one, we can apply
the Itô formula (see, e.g., [22], [26]) to obtain that

d[log(|x(t)|2)]

=
2xT (t)

|x(t)|2
[
f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t)

]
+

1

2

[2|g(x(t), t, r(t))|2

|x(t)|2
− 4|xT (t)g(x(t), t, r(t))|2

|x(t)|4
]
dt.

(3.22)

By Assumption 3.1, we obtain that

log(|x(t)|2)

≤ log(|x0|2) +

∫ t

0

[
2αr(s)(s) + ρ2

r(s)(s)− 2σ2
r(s)(s)

]
ds

+M(t), (3.23)

where

M(t) =

∫ t

0

2

|x(s)|2
xT (s)g(x(s), s, r(s))dB(s),

which is a continuous martingale vanishing at t = 0. The
quadratic variation of the martingale is given by

〈M(t),M(t)〉 =

∫ t

0

4

|x(s)|4
|xT (s)g(x(s), s, r(s))|2ds

≤ 4t max
1≤i≤N

sup
0≤s≤T

ρ2
i (s).

By the strong law of the large numbers for local
martingales (see, e.g., [17], [26]),

lim
t→∞

M(t)

t
= 0 a.s. (3.24)

Moreover, by Lemma 3.5,

lim
t→∞

1

t

∫ t

0

[
2αr(s)(s) + ρ2

r(s)(s)− 2σ2
r(s)(s)

]
ds

=
∑
i∈S

πi
T

∫ T

0

[2αi(s) + ρ2
i (s)− 2σ2

i (s)]ds a.s.

(3.25)

Dividing both sides of (3.23) by 2t, letting t→∞ and
making use of two equalities above we get the required
assertion (3.2). The proof is therefore complete. 2

To discuss the instability we impose the following
assumption.

Assumption 3.6: For each i ∈ S, there are
functions αi(·), ρi(·), and σi(·) in KT such that

xT f(x, t, i) ≥ αi(t)|x|2, |g(x, t, i)| ≥ ρi(t)|x|,
|xT g(x, t, i)| ≤ σi(t)|x|2 (3.26)

for all (x, t) ∈ Rn × R+.
Comparing this assumption with Assumption 3.1

we observe that the inequalities given in (3.1) and (3.26)
have different directions.

Theorem 3.7: Under Assumption 3.6, the solution
of equation (2.1) satisfies

lim inf
t→∞

1

t
log(|x(t)|)

≥
∑
i∈S

πi
T

∫ T

0

[αi(s) + 0.5ρ2
i (s)− σ2

i (s)]ds a.s.

(3.27)

as long as the initial value x0 6= 0. In particular,
the nonlinear hybrid SDE (2.1) is almost surely
exponentially unstable if∑

i∈S

πi
T

∫ T

0

[αi(s) + 0.5ρ2
i (s)− σ2

i (s)]ds > 0.

Proof. Fix any x0 6= 0 and write x(t;x0) = x(t) again.
By (3.26), we can show from (3.22) that

log(|x(t)|2)

≥ log(|x0|2) +

∫ t

0

[
2αr(s)(s) + ρ2

r(s)(s) − 2σ2
r(s)(s)

]
ds

+M(t), (3.28)

where M(t) is the same continuous martingale as defined
in the proof of Theorem 3.3 but its quadratic variation
is now estimated as

〈M(t),M(t)〉 =

∫ t

0

4

|x(s)|4
|xT (s)g(x(s), s, r(s))|2ds

≤ 4t max
1≤i≤N

sup
0≤s≤T

σ2
i (s).

Thus, by the strong law of the large numbers for local
martingales, we still have (3.24). Making use of (3.24)
and (3.25) we can easily obtain assertion (3.27) from
(3.28). The proof is therefore complete. 2

4. STOCHASTIC STABILIZATION

Let us now begin with the discussion of
the stochastic stabilization for the hybrid ordinary
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differential equation (ODE)

ẋ(t) = f(x(t), t, r(t)). (4.1)

As before, f satisfies the local Lipschitz condition and

xT f(x, t, i) ≤ αi(t)|x|2 (4.2)

for all (x, t, i) ∈ Rn × R+ × S, where αi(·) ∈ KT .
Assume that this given hybrid ODE is not stable and
we are required to stochastic feedback control (i.e.,
stochastic perturbation) to make the controlled stochastic
system

dx(t) = f(x(t), t, r(t))dt+ u(x(t), t, r(t))dB(t) (4.3)

become almost surely exponentially stable, where u :
Rn ×R+ × S→ Rn×m. In this paper we only consider
the periodic linear feedback control of the form

u(x, t, i) = βi(t)(A1,ix,A2,ix, · · · , Am,ix), (4.4)

where βi(·) ∈ KT and Ak,i ∈ Rn×n for i ∈ S and k =
1, 2, · · · ,m. Thus the controlled system (4.3) becomes

dx(t) = f(x(t), t, r(t))dt+

m∑
k=1

βr(t)(t)Ak,r(t)x(t)dBk(t).

(4.5)
Our stabilization problem is therefore to design βi(·)
and Ak,i in order for equation (4.5) to be almost surely
exponentially stable. The following theorem describes
the procedure.

Theorem 4.1: Let (4.2) hold. Choose βi(·) ∈ KT
and nonnegative constants ai, bi with 0.5ai ≤ bi ≤ ai
for i ∈ S such that∑
i∈S

πi
T

∫ T

0

αi(s)ds <
∑
i∈S

πi(bi−0.5ai)
1

T

∫ T

0

(βi(s))
2ds.

(4.6)
Design the matrices Ak,i for the following conditions
m∑
k=1

|Ak,ix|2 ≤ ai|x|2 and
m∑
k=1

|xTAk,ix|2 ≥ bi|x|4

(4.7)
to hold for all (x, i) ∈ Rn × S. Then the controlled
system (4.5) is almost surely exponentially stable.

The proof is a simple application of Theorem
3.3 so is omitted. The questions are: (i) could we
find βi(·), ai, bi for (4.6) to hold; and (ii) once they
are chosen, could we further find the matrices Ak,i
to satisfy (4.7)? The answer to question (i) is yes.
For example, choosing any nonnegative constants ai, bi
with 0.5ai < bi ≤ ai and then letting βi(t) =√

(|αi(t)|+ 1)/(bi − 0.5ai), we see (4.6) is satisfied.
Of course, this is only one of lots of choices. Let us
now answer question (ii) positively. It is sufficient if we
could show that a couple of classes of matrices Ak,i can

satisfy (4.7) for any given nonnegative constants ai, bi
with 0.5ai ≤ bi ≤ ai (i ∈ S). First of all, let

Ak,i = θk,iQn, 1 ≤ k ≤ m, i ∈ S,

where Qn is the n × n identity matrix and θk,i are
constants. Then

m∑
k=1

|Ak,ix|2 =
( m∑
k=1

θ2
k,i

)
|x|2

and
m∑
k=1

|xTAk,ix|2 =
( m∑
k=1

θ2
k,i

)
|x|4 ∀x ∈ Rn.

If we choose θk,i so that
∑m
k=1 θ

2
k,i = ai, then (4.7)

holds. As one more example, for these i ∈ S with ai = 0,
set Ak,i = 0 for 1 ≤ k ≤ m, while for other i, k, choose
symmetric positive definite matrices Ak,i such that

m∑
k=1

‖Ak,i‖2 = ai

and

(xTAk,ix)2 ≥ bi
ai
‖Ak,i‖2|x|4 ∀x ∈ Rn.

Obviously, there are many such matrices. It is then easy
to see such matrices satisfy (4.7).

Let us discuss an example to compare our new
results with existing ones, typically, those in [25].
We will use a simple hybrid ODE in order to avoid
unnecessary calculations but the advantages of our new
results will be explained clearly.

Example 4.2: Consider a scalar hybrid ODE
ẋ(t) = f(x(t), t, r(t)), where the Markov chain r(t) has
its state space S = {1, 2} and generator

Γ =

(
−3 3
1 −1

)
while

f(x, t, i) =

{
(1 + sin(t))x, if i = 1,

(2 + cos(t)) sin(x), if i = 2

for (x, t, i) ∈ R×R+×S. It is clear that the solution of
the system does not tend to 0 as the time advances. We
will use a scalar Brownian motion B(t) as a source of
noise to form the stochastic control σr(t)x(t)dB(t) so
that the controlled system has the form

dx(t) = f(x(t), t, r(t))dt+ σr(t)x(t)dB(t), (4.8)

where σ1 =
√

3 and σ2 = 2. The stationary distribution
of the Markov chain is π1 = 0.25 and π2 = 0.75. To
apply Theorem 3.3 in [25] or Corollary 1 in [18] (with
τ = 0 there), we note

xf(x, t, i) ≤ αix2, ∀(x, i, t) ∈ R× R+ × S,
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where α1 = 2 and α2 = 3. Condition (3.3) in [25] or
Condition (a) in Corollary 1 of [18] needs

2∑
i=1

πi(αi − 0.5σ2
i ) < 0,

but the left-hand-side term = 7/8 so the condition does
not hold and we can NOT apply Theorem 3.3 in [25]
or Corollary 1 in [18] to conclude that the controlled
SDE (4.8) is almost surely exponentially stable. On the
other hand, we can apply our Theorem 4.1 to show it
is. In fact, f is a periodic function of t with period 2π.
Observe that

xf(x, t, i) ≤ αi(t)x2, ∀(x, i, t) ∈ R× R+ × S,

where α1(t) = 1 + sin(t) and α2(t) = 2 + cos(t).
It is also easy to see from the stochastic control
σr(t)x(t)dB(t) that the corresponding βi(·) in (4.5) have
the form β1(t) = β2(t) = 1 which can be regarded as
periodic functions of course. Condition (4.7) holds with
a1 = b1 = 3 and a2 = b2 = 4 while condition (4.6)
becomes

7

4
=

2∑
i=1

πi
2π

∫ 2π

0

αi(s)ds <

2∑
i=1

πi(bi − 0.5ai) =
15

8
,

which is true. By Theorem 4.1 we can conclude that
the controlled SDE (4.8) is almost surely exponentially
stable.

Let further consider a situation where the state x(t)
is only observable in mode 2 but not in mode 1 so the
stochastic control could only be made in mode 2. In
terms of mathematics, we have to set σ1 = 0. In this
situation, we need to increase the noise intensity σ2 from
2 to 2.5. It is not difficult to see that Theorem 3.3 in [25]
fails but our new Theorem 4.1 shows that the controlled
SDE (4.8) is almost surely exponentially stable when
σ1 = 0 and σ2 = 2.5.

This simple example shows clearly that our
Theorem 4.1 is an improvement of Theorem 3.3 in
[25] by taking the periodic property into account. To
show another advantage of our new results, we will
discuss stochastic intermittent controls, which are one
of useful classes of controls (see, e.g., [35]). In terms of
mathematics, βi(·), i ∈ S, in equation (4.5) become

βi(t) =

∞∑
q=0

I[qT,qT+δi)(t), t ≥ 0, (4.9)

where δi ∈ (0, T ] and I[qT,qT+δi)(t) is the indicator
function of [qT, qT + δi), namely it takes 1 when t ∈
[qT, qT+δi) and 0 otherwise. In operation, the stochastic
control (or perturbation) is switched on whenever time
t ∈ [qT, qT +δi) while the system is in mode i. Clearly,
if δi = 0, then there is no control in mode i but if

δi = T , then the control is always on in mode i. A
special case is the situation where δi is independent of i,
namely δi = δ for all i ∈ S, then the stochastic control
is switched on during time periods [0, δ), [T, T + δ),
[2T, 2T + δ), · · · , while off during [δ, T ), [T + δ, 2T ),
[2T + δ, 3T ), · · · for all modes. One of the practical
reasons for such an intermittent control is because a
controller needs a rest periodically. To the best of our
knowledge, none of the existing results including those
in [25], [35] can be applied to the controlled system (4.5)
with βi(·) being defined by (4.9). However, the following
corollary follows from our new Theorem 4.1 easily.

Corollary 4.3: Let (4.2) hold. Choose δi ∈ [0, T ]
and nonnegative constants ai, bi with 0.5ai ≤ bi ≤ ai
for i ∈ S such that

∑
i∈S

πi
T

∫ T

0

αi(s)ds <
1

T

∑
i∈S

πiδi(bi − 0.5ai). (4.10)

Design the matrices Ak,i for (4.7) to hold. Then the
controlled system (4.5) with βi(·) being defined by (4.9)
is almost surely exponentially stable.

Remark 4.4: For the purpose of comparison, we
recall that [35] investigates the stabilization by an
intermittent stochastic perturbation for a given system
without regime switching, namely, the stability of the
SDE

dx(t) = f(x(t), t)dt+

m∑
k=1

βr(t)(t)Akx(t)dBk(t),

(4.11)
with β(t) =

∑∞
q=0 I[qT,qT+δ)(t) on t ≥ 0. Theorem 3

in [35] states that under the conditions

xT f(x, t) ≤ α|x|2,
m∑
k=1

|Akx|2 ≤ a|x|2

and
m∑
k=1

|xTAkx|2 ≥ b|x|4 (4.12)

for all (x, t) ∈ Rn×R+, the controlled system (4.11) is
almost surely exponentially stable if δ(b− 0.5a) > αT .
Our Corollary 4.3 is better than this even in the case
of no regime switching (namely, S = {1}). For an
example, consider a scalar SDE (4.11 with f(x, t) =
(2 + cos(t)) sin(x), T = 2π and choose appropriate
numbers Ak such that the last two inequalities hold with
a = b = 4. Then, by Theorem 3 in [35] the controlled
system (4.11) is almost surely exponentially stable if
δ > 3π while by our new Corollary 4.4 we only require
δ > 2π.

Continuation of Example 4.2 Let us return to
Example 4.2 but we will use an intermittent control. That
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is, the stochastically controlled system is of the form

dx(t) = f(x(t), t, r(t))dt+ βr(t)(t)σr(t)x(t)dB(t),
(4.13)

where βi(t) (i = 1, 2) are defined by (4.9) with T =
2π. We only consider the case where the state x(t)
is observable in mode 2 but not in mode 1. In terms
of mathematics, we have to set σ1 = 0 and δ1 = 0.
Moreover, we set σ2 = 3. Then condition (4.10) becomes

7

4
=

2∑
i=1

πi
2π

∫ 2π

0

αi(s)ds <
27δ2
16π

, (4.14)

namely, δ2 > 28π/27. By Corollary 4.3, we can
conclude that the controlled system (4.13) is almost
surely exponentially stable if σ1 = 0, δ1 = 0, σ2 = 3
and δ2 > 28π/27.

For illustration, we perform a computer simulation.
We set the initial data x(0) = 2 and r(0) = 1 while let
δ2 = 1.5π, and use the Euler-Maruyama method (see,
e.g. [16], [26]) with the step size 10−4π. Figure 4.1
shows the sample paths of the Markov chain and the
state, which illustrate our theory well.

0 5 10 15

1
.0

1
.6

t

r(
t)

0 5 10 15

0
2

0
0

5
0

0

t

x
(t

)

Figure 4.1: The computer simulation of the sample paths of
the Markov chain and the controlled system (4.13).

5. STOCHASTIC DESTABILIZATION

Let us now turn to consider the opposite problem—
stochastic destabilization. More precisely, given a
nonlinear stable hybrid system (4.1), can we design
a linear controller u(x, i) of form (4.4) so that the
controlled system (4.5) become unstable? To answer this
question positively, let us state a result which follows
from Theorem 3.7 directly.

Theorem 5.1: Assume that there are αi(·) ∈
KT , i ∈ S, such that

xT f(x, t, i) ≥ αi(t)|x|2 (5.1)

for all (x, t, i) ∈ Rn ×R+ × S. Choose βi(·) ∈ KT and
constants ai, bi with 0.5ai ≥ bi ≥ 0 for i ∈ S such that

−
∑
i∈S

πi
T

∫ T

0

αi(s)ds

<
∑
i∈S

πi(0.5ai − bi)
1

T

∫ T

0

(βi(s))
2ds. (5.2)

Design the matrices Ak,i for the following conditions
m∑
k=1

|Ak,ix|2 ≥ ai|x|2 and
m∑
k=1

|xTAk,ix|2 ≤ bi|x|4

(5.3)
to hold for all (x, i) ∈ Rn × S. Then the controlled
system (4.5) is almost surely exponentially unstable.

There is no problem at all to find βi(·) and ai, bi
for (5.2) to hold. However, it is not obvious to see if we
can find matrices Ak,i to satisfy (5.3). We shall show
that this is possible if the dimension of the state space
is greater than or equal to 2.

First, let the dimension n of the state space be an
even number. For each i ∈ S, define

A1,i =


0

√
ai

−√ai 0
. . .

0
√
ai

−√ai 0

 ,
but set Ak,i = 0 for 2 ≤ k ≤ m. The controlled system
(4.5) becomes

dx(t) = f(x(t), t, r(t))dt

+ βr(t)(t)
√
ar(t)


x2(t)
−x1(t)

...
xn(t)
−xn−1(t)

 dB1(t). (5.4)

Note that for each i ∈ S,
m∑
k=1

|Ak,ix|2 = |A1,ix|2 = ai|x|2
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and
m∑
k=1

|xTAk,ix|2 = |xTA1,ix|2 = 0.

We see that condition (5.3) holds.
We next consider the case when the dimension n

of the state space is an odd number and n ≥ 3. Let
the dimension of the Brownian motion m ≥ 2. For each
i ∈ S, define

A1,i =



0
√
ai

−√ai 0
. . .

0
√
ai

−√ai 0
0


,

A2,i =



0
0

√
ai

−√ai 0
. . .

0
√
ai

−√ai 0


but set Ak,i = 0 for 3 ≤ k ≤ m. So the controlled
system (4.5) becomes

dx(t) = f(x(t), t, r(t))dt

+ βr(t)(t)
√
ar(t)



x2(t)
−x1(t)

...
xn−1(t)
−xn−2(t)

0


dB1(t)

+ βr(t)(t)
√
ar(t)



0
x3(t)
−x2(t)

...
xn(t)
−xn−1(t)


dB2(t). (5.5)

Note that for each i ∈ S,
m∑
k=1

|Ak,ix|2

= |A1,ix|2 + |A2,ix|2

= ai(x
2
1 + · · ·+ x2

n−1) + ai(x
2
2 + · · ·+ x2

n)

≥ ai|x|2

and
m∑
k=1

|xTAk,ix|2 = |xTA1,ix|2 + |xTA2,ix|2 = 0.

Hence, condition (5.3) is satisfied.

It is also possible to use the intermittent controls
to destabilize stable systems. The following corollary
describes this situation.

Corollary 5.2: Let (5.1) hold. Choose δi ∈ [0, T ]
and nonnegative constants ai, bi with 0.5ai ≥ bi for i ∈
S such that

−
∑
i∈S

πi
T

∫ T

0

αi(s)ds <
1

T

∑
i∈S

πiδi(0.5ai − bi). (5.6)

Design the matrices Ak,i for (5.3) to hold. Then the
controlled system (4.5) with βi(·) being defined by (4.9)
is almost surely exponentially unstable.

Let us discuss an example to illustrate our new
theory on the destabilization.

Example 5.3: Consider a 2-dimensional hybrid
ODE ẋ(t) = f(x(t), t, r(t)), where the Markov chain
r(t) is the same as in Example 4.2 but

f(x, t, i) =

{
(1 + sin(t))F1x, if i = 1,

(2 + cos(t))F2x, if i = 2,

for (x, t, i) ∈ Rn × R+ × S, in which

F1 =

(
−1 0.2
0.1 −2

)
and F2 =

(
−2 0.3
0.2 −1

)
.

It is easy to see that

xT f(x, t, i) ≤

{
−0.9779847(1 + sin(t))|x|2, if i = 1,

−0.9409832(2 + cos(t))|x|2, if i = 2.

Hence the hybrid ODE is stable. To destabilize it
stochastically, we observe that

xT f(x, t, i) ≥

{
−2.0220153(1 + sin(t))|x|2, if i = 1,

−2.0590170(2 + cos(t))|x|2, if i = 2.

That is, condition (5.1) holds. We consider the case
where the state x(t) is observable in mode 2 but
not in mode 1. Moreover, we will use a scalar
Brownian motion B(t) as a source of noise to form the
stochastic intermittent control. In terms of mathematics,
the stochastically controlled system has the form

dx(t) = f(x(t), t, r(t))dt+ βr(t)(t)Ar(t)x(t)dB(t),
(5.7)

where β1(t) = 0, A1 = 0,

β2(t) =

∞∑
q=0

I[2qπ,2qπ+δ2)(t), A2 =

(
0

√
a2

−√a2 0

)
.

It is easy to see that (5.6) becomes

3.594029 = −
∑
i∈S

πi
2π

∫ 2π

0

αi(s)ds

<
1

2π

∑
i∈S

πiδi(0.5ai − bi) =
3δ2a2

16π
.
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By Corollary 5.2, we can therefore conclude that if
we choose δ2 ∈ (0, 2π) and a2 > 0 for δ2a2 >
60.21853, then controlled system (5.7) is almost surely
exponentially unstable.

For computer simulations, we choose δ2 = 1.5π,
a2 = 16 while set x1(0) = x2(0) = 0.001 and r(0) = 2.
The reason why we set the initial value of the state so
small is because we want to show that the stochastic
intermittent control will make the state to increase very
quickly. We use the Euler-Maruyama method with the
step size 10−4π. Figure 5.1 shows the sample paths of
r(t) and x(t) for one period of time, namely [0, 2π].
During the time interval [0, 1.5π), we see the stochastic
control perturbs the given stable system significantly
(from value of 0.001 to scale of 107, while during the
time interval [1.5π, 2π), there is no stochastic control and
the system behaves stably. Figure 5.2 shows the sample
paths for three period of time, namely [0, 6π]. We see
the stochastic control perturbs the given stable system
from value of 0.001 to scale of 1021. This supports the
theoretical result of exponential instability. Please note
that the values of x(t) are in scale of 107 during [0, 2π)
and 1014 during [2π, 4π) and hence they are plotted near
zero.
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Figure 5.1: The computer simulation of the sample paths of
r(t) and x(t) for the controlled system (5.7) for one period

of time.
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Figure 5.2: The computer simulation of the sample paths of
r(t) and x(t) for the controlled system (5.7) for three period

of time.

6. CONCLUSION

In this paper we pointed out that the existing results
on the stochastic stabilization and destabilization for
hybrid ODEs do NOT take the time-inhomogeneous
property into account and hence the criteria so far are
conservative. We then successfully established better
criteria on stability and instability of hybrid SDEs
by making use of the time-inhomogeneous properties,
e.g., the periodic property, of both shift and diffusion
coefficients. These results were then used to examine
stabilization and destabilization by periodic stochastic
feedback controls, including stochastic intermittent
controls. A couple of examples were used to show the
advantages of our new results in comparison with some
of existing ones. These examples also illustrated our new
theory well.
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