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Abstract

For many pathogenic fungi, siderophore-mediated iron acquisition is essential for virulence.
The process of siderophore production and further mechanisms to adapt to iron limitation
are strictly controlled in fungi to maintain iron homeostasis. Here we demonstrate that the
human pathogenic dermatophyte Arthroderma benhamiae produces the hydroxamate side-
rophores ferricrocin and ferrichrome C. Additionally, we show that the iron regulator HapX is
crucial for the adaptation to iron starvation and iron excess, but is dispensable for virulence
of A. benhamiae. Deletion of hapX caused downregulation of siderophore biosynthesis
genes leading to a decreased production of siderophores during iron starvation. Further-
more, HapX was required for transcriptional repression of genes involved in iron-dependent
pathways during iron-depleted conditions. Additionally, the AhapX mutant of A. benhamiae
was sensitive to high-iron concentrations indicating that HapX also contributes to iron detox-
ification. In contrast to other pathogenic fungi, HapX of A. benhamiae was redundant for vir-
ulence and a AhapX mutant was still able to infect keratinized host tissues in vitro. Our
findings underline the highly conserved role of the transcription factor HapX for maintaining
iron homeostasis in ascomycetous fungi but, unlike in many other human and plant patho-
genic fungi, HapX of A. benhamiae is not a virulence determinant.

Introduction

The fungal pathogen Arthroderma benhamiae belongs to a group of fungi known as dermato-
phytes, which exclusively infect keratinized structures such as hair, skin (stratum corneum)
and nails of humans and animals [1]. In recent years, an increasing number of A. benhamiae
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infections have been observed worldwide [2]. Amongst others, the main reservoir of the zoo-
philic species A. benhamiae is the guinea pig [3] and infections of humans often occur after
direct contact with an animal carrying the fungus. Usually, the infections are superficial and
not life-threatening, but even in immunocompetent hosts, dermatophytosis is long-lasting and
difficult to cure [4]. To date, only few putative virulence factors of dermatophytes have been
identified and investigated at the molecular level yet. These are, for example, the ABC trans-
porter TruMDR?2 and pH signalling transcription factor PacC of Trichophyton rubrum as well
as the keratinolytic proteases Sub3 of Microsporum canis and Sub6 of Trichophyton mentagro-
phytes [5-10]. Recent advances in genetic manipulation of A. benhamiae have set a basis for
fundamental genetic research of dermatophytes [11]. A. benhamiae has proven to be an ideal
model organism because it grows relatively fast and allows efficient targeted gene deletion as
well as gene complementation [12]. Additionally, the complete genome sequence and global
transcriptional profiles are available, and comprehensive in vitro and in vivo infection models
have been established [13-15].

Iron is an essential trace element for almost all organisms. Its ability to exist in two redox
states makes iron an important cofactor of proteins involved in a variety of cellular processes,
including respiration. On the other hand, iron excess is toxic because it catalyzes the produc-
tion of cell-damaging hydroxyl radicals in the presence of oxygen [16]. Thus, cellular uptake,
storage and utilization of iron need to be tightly regulated to avoid the formation of reactive
oxygen species. In the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus, iron
homeostasis is regulated by the transcription factors HapX and SreA which are interconnected
by a negative regulatory feedback loop [17-20]. The Cys,-Cys,-type GATA zinc finger tran-
scription factor SreA downregulates the expression of hapX and other genes during iron suffi-
ciency by binding to a specific motif within the promoter region. SreA represses siderophore
biosynthesis and reductive iron assimilation to avoid iron excess during iron sufficiency [21].
The basic region leucine zipper (bZIP) transcription factor HapX downregulates the expression
of sreA during iron starvation by protein-protein interaction with the heterotrimeric CCAAT-
binding complex (CBC) and by sequence-specific DNA binding [22, 23]. During iron-depleted
conditions, the CBC-HapX complex represses iron-consuming pathways, including heme bio-
synthesis, tricarboxylic acid cycle and respiration to spare iron. On the other hand, it activates
reductive iron assimilation, siderophore biosynthesis and siderophore uptake for iron acquisi-
tion [18, 19, 24]. Additionally, HapX is essential for iron detoxification by activating the vacuo-
lar iron importer CccA under high-iron conditions [22, 25]. Due to its central role in iron
homeostasis, the transcription factor HapX has shown to be a virulence determinant in several
human fungal pathogens, such as A. fumigatus, Candida albicans, Cryptococcus neoformans as
well as in the plant pathogenic fungus Fusarium oxysporum [19, 26-29]. Remarkably, until
now, the role of iron during the infection of keratinized host tissues by dermatophytes has not
been elucidated.

In this study, we have set out to investigate the function of the transcription factor HapX in
A. benhamiae. We demonstrate that HapX function is crucial for the adaptation to iron starva-
tion and iron excess, but is dispensable for the infection of keratinized host tissue.

Materials and Methods
Strains, media and growth conditions

The wild-type strain A. benhamiae LAU2354-2 = CBS 112371 = IHEM 20161 [30] was used
for the generation of deletion mutants and reconstituted strains. For short-term storage, the
wild-type A. benhamiae LAU2354-2 was cultivated on Sabouraud glucose agar [1% (w/v) pep-
tone, 2% (w/v) glucose, 1.5% (w/v) agar] (SAB) and transformants of A. benhamiae LAU2354-
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2 were grown on SAB supplemented with 200 pg/ml hygromycin (ForMedium, Hunstanton,
UK) or G418 (Carl Roth, Karlsruhe, Germany), according to the selectable marker used. Addi-
tionally, all fungal strains used in this study were stored as frozen glycerol stocks at -80°C
(Table 1). Production of microconidia was performed on MAT agar [0.1% (w/v) peptone, 0.2%
(w/v) glucose, 0.1% (w/v) MgSOy, 0.1% (w/v) KH,PO,; Carl Roth, Karlsruhe, Germany] if not
otherwise stated. Further experiments were carried out at 30°C in Aspergillus minimal medium
(AMM) containing 1% (w/v) glucose as the carbon source and 20 mM glutamine as the nitro-
gen source [31]. For solid AMM, 1.5% (w/v) agar was added. For iron-depleted conditions,
iron was omitted (-Fe). Iron-replete media was supplemented with 0.03 mM FeSO, (+Fe). For
harsh iron starvation conditions, the ferrous iron chelator bathophenanthroline disulfonic acid
Naj,-salt (BPS) (Serva, Heidelberg, Germany) was used at a final concentration of 0.2 mM (-Fe
+BPS). As xenosiderophore, the ferric iron chelator deferoxamine mesylate salt (DFOM)
(Sigma-Aldrich, Taufkirchen, Germany) was added to the medium at a final concentration of
10 uM (-Fe +DFOM). For growth inhibition assays, 10* microconidia of A. benhamiae wild
type, AhapX mutant and hapX® reconstituted strain were spotted on solid AMM agar supple-
mented with iron concentrations ranging from 1-10 mM FeSO,.

Plasmid construction

Sequence information for the gene hapX (ARB_06811) was obtained from the annotated A.
benhamiae genome [13]. Plasmid construction was performed as described before [12]. For the
generation of the deletion mutants, up- and downstream sequences of the hapX gene were
cloned successively in the plasmid pHPHI [12]. For deletion of the entire coding region of
hapX, an Apal-HindIII fragment containing hapX upstream sequences from positions -518 to
-4 with respect to the start codon was obtained by PCR with the primers AbenHAPX-1/Aben-
HAPX-2. Genomic DNA from the wild-type strain A. benhamiae LAU2354-2 was used as a
template. A BamHI-NotI fragment with hapX downstream sequences from positions +1417 to
+1894 was amplified by PCR with the primers AbenHAPX-3/AbenHAPX-4. The hapX
upstream and downstream sequences were successively cloned via the introduced restriction
sites in plasmid pHPHI to result in plasmids pAbenHAPXM1 and pAbenHAPXM?2, respec-
tively (Fig 1A). For reinsertion of the hapX gene into the knock-out mutant, the plasmid
pAbenHAPXK?2 was generated as follows. An Apal-BglII DNA fragment including the hapX
gene and hapX upstream sequences from positions -1008 to +1425 was amplified by PCR with
the primers AbenHAPX-5/AbenHAPX-9. The BamHI-NotI fragment with hapX downstream
sequences from positions +1417 to +1894 (amplified with the primers AbenHAPX-3/Aben-
HAPX-4) was cloned in the BamHI-NotI digested plasmid pNEO1 [12] yielding pAben-
HAPXK]1. The PCR product was cloned via the introduced Apal and BgIII restriction sites
together with the BgllI-HindIII [CaACT1T] fragment from pJetGFPACT1T1 [12] in the Apal-
HindIlI digested plasmid pAbenHAPXKI1 to give plasmid pAbenHAPXK?2 (Fig 1B). All prim-
ers used for plasmid construction in this study are listed in S1 Table.

Transformation of A. benhamiae

Transformation of A. benhamiae was carried out as previously described [12]. The AhapX
mutant and the hapX© reconstituted strain were generated by homologous recombination.
Briefly, protoplasts produced from A. benhamiae microconidia were transformed with the con-
structed linear DNA cassettes from plasmids pAbenHAPXM2 (AhapX mutant) and pAben-
HAPXK2 (hapX© reconstituted strain). Hygromycin or neomycin resistant transformants were
selected with either 250 ug/ml hygromycin or G418 depending on the selection marker used.
For analysis of the transformants, fungal genomic DNA was isolated as stated before [12].
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Table 1. A. benhamiae strains used in this study.

Strain

LAU2354-2

AbenHAPXM1A
AbenHAPXM1B
AbenHAPXK1A
AbenHAPXK1B

doi:10.1371/journal.pone.0150701.t001

Parent Genotype Reference
wild-type strain [30]
LAU2354-2 DhapX::Pgog-hph-Tipe This study
LAU2354-2 AhapX::Pgpq-hph-Tipe This study
AbenHAPXM1A AhapX::hapX-Teaact1-PacTi-n€0 This study
AbenHAPXM1B AhapX::hapX-Teaact1-Pacri-neo This study

Targeted gene disruption or gene complementation was confirmed via Southern analyis using
the Amersham ECL direct nucleic acid labeling and detection system (GE Healthcare, Little
Chalfont, UK) according to the manufacturer’s instructions (Fig 1C).

Determination of cell dry weight

A volume of 100 ml AMM was used for cell dry weight determination during iron-replete con-
ditions (+Fe), iron limitation (-Fe), harsh iron starvation (-Fe +BPS) and in the presence of
DFOM (-Fe +DFOM). For high iron concentrations 50 ml AMM was supplemented with 1
mM, 3 mM, 5 mM and 7 mM FeSO,. The medium was inoculated with 10® microconidia per
ml of the respective fungal strain and incubated at 30°C and 200 rpm. After 5 d of cultivation
the mycelium was harvested by Miracloth (Calbiochem®, Merck Millipore, Darmstadt, Ger-
many), thoroughly dried at 50°C and weighed.

Identification of siderophores produced by A. benhamiae

For identification of siderophores produced by A. benhamiae, fungal cultures were grown in
AMM without iron for 5 d at 30°C and 200 rpm. The mycelium was harvested by Miracloth
and the culture supernatant was collected. The supernatant was exhaustively extracted with
ethylacetate and the resulting extract dried with Na,SO, and concentrated under reduced pres-
sure. For HPLC analysis the dry extract was re-dissolved in 200 pL of methanol and filtered
(Ultrafree filtration system for laboratory centrifuges, Oxy-Fill Rotrac™ membrane). The aque-
ous residue was freeze-dried and extracted with methanol. The extract was filtered using a
paper filter, concentrated under reduced pressure and finally redissolved in 4 mL of 50%
MeOH (H,O0, v/v) for HPLC analysis. The fungal mycelium was freeze-dried, extracted with 10
mL of 50% MeOH (H,O, v/v) and filtered using a paper filter. Next, the filtrate was concen-
trated under reduced pressure and dissolved in 100 pL of 50% MeOH (H,O, v/v) for HPLC
analysis. To convert the Fe-free derivatives into the iron complexes, all extracts were supple-
mented with 3 mM FeCl; before HPLC analyses.

Analytical HPLC was performed on a Shimadzu LC-10Avp series HPLC system consisting
of an autosampler, high-pressure pumps, column oven and PDA. HPLC conditions: C18 col-
umn (Eurospher 100-5, 250 x 4.6 mm) and gradient elution (MeCN/0.1% (v/v) TFA 0.5/99.5
in 30 min to MeCN/0.1% (v/v) TFA 100/0, MeCN 100% for 10 min), flow rate 1 mL min™’;
injection volume: 30 uL. LC-MS measurements were performed using an Exactive Orbitrap
High Performance Benchtop LC-MS with an electrospray ion source and an Accela HPLC sys-
tem (Thermo Fisher Scientific, Bremen, Germany). HPLC conditions: C18 column (Betasil
C18 3 um 150 x 2.1 mm) and gradient elution (MeCN/0.1% (v/v) HCOOH (H,0) 5/95 for 1
min, going up to 98/2 in 15 min, then 98/2 for another 3 min; flow rate 0.2 mL min~") ora Q
Exactive Orbitrap High Performance Benchtop LC-MS with an electrospray ion source and an
Accela HPLC system (Thermo Fisher Scientific, Bremen, Germany). HPLC conditions: C18
column (Accucore C18 3 pm 100 x 2.1 mm) and gradient elution (MeCN/0.1% (v/v) HCOOH
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Fig 1. Generation of A. benhamiae AhapX mutants and reconstituted strains. (A) For deletion of the
hapX locus (white arrow) in the wild-type strain A. benhamiae LAU2354-2 (bottom) a DNA cassette,
containing the hygromycin resistance gene hph (black arrow) under control of the gpd promoter (P4, bent
arrow) together with the termination sequence fragment T;,,¢ (filled circle) flanked by hapX upstream and
downstream regions (hapX,, and hapXqown, solid lines), was used (top). (B) For reinsertion of the hapX gene
into its original locus in the AhapX mutants a DNA cassette, containing the coding region of hapX and the
neomycin resistance gene neo (lined arrow) under control of the A. benhamiae actin promoter (Pacr7, bent
arrow) together with the Candida albicans actin termination sequence fragment Tacr; (blank circle) flanked
by hapX upstream and downstream regions (hapXy, and hapXgyown, solid lines), was used. (C) Southern blot
of Ndel-digested genomic DNA of the wild-type strain A. benhamiae LAU2354-2, AhapX mutants and hapX©
reconstituted strains with hapX-specific probe 1. The probes which were used for Southern analysis of the
transformants are indicated by the black bars. Only the following relevant restriction sites are given in panels
aand b: A, Apal; B, BamHI; H, Hindlll; Nd, Ndel; Notl. The sizes of the hybridizing fragments are given on the
left and their identities on the right.

doi:10.1371/journal.pone.0150701.g001

(H,0) 5/95 for 1 min, going up to 98/2 in 15 min, then 98/2 for another 3 min; flow rate 0.2
mL minY).

The siderophore ferricrocin (used as a standard) was isolated as the ferri-form from Asper-
gillus fumigatus and was kindly provided by Prof. H. Haas (Innsbruck Medical University,
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Austria). Ferrichrome C (used as a standard) was isolated as the ferri-form from Aspergillus
ochraceous and was purchased from EMC microcollections GmbH, Tiibingen, Germany.

Determination of extracellular siderophore activity

For determination of the siderophore activity in culture supernatants of A. benhamiae wild
type, AhapX mutant and hapX® reconstituted strain the chrome azurol S (CAS) liquid assay
was used as described [32]. A volume of 100 ml of AMM without iron or supplemented with
0.03 mM ferrous sulfate was inoculated with 10® microconidia and incubated for 3 d, 4 d and 5
d at 30°C and 200 rpm. The supernatant was collected by filtration through Miracloth and an
aliquot of 100 ul culture supernatant was mixed with 100 pl CAS assay solution prepared
according to Schwyn and Neilands [33]. As a reference AMM without iron was used. After
incubation for 1 h at room temperature the absorbance at 630 nm was measured with a micro-
titer plate reader (Infinite™ 200 PRO, Tecan, Switzerland). The percentage of siderophore
activity was calculated by substracting the sample absorbance values from the reference accord-
ing to the formula [(A,-A)/A,] x 100. The experiments were run in three biological replicates.

Isolation of RNA and quantitative real-time reverse transcription-PCR
(gRT-PCR)

For RNA isolation fungal mycelium was harvested after cultivation in AMM during iron-
replete conditions (+Fe), iron starvation (-Fe, 0.03 mM FeSO,) and high iron conditions (hFe,
3 mM FeSO,) for 5 d at 30°C and 200 rpm. For short-term iron stress the mycelium was grown
for 3 d at 30°C and 200 rpm and shifted from -Fe to +Fe for 1 h (sFe). The frozen mycelium
was ground with mortar and pestle and subsequently the RNeasy Plant Mini Kit (QIAGEN,
Venlo, Netherlands) was used for total RNA isolation according to the manufacturer’s instruc-
tions. The quality and quantity of RNA was determined with a NanoDrop 1000 Spectropho-
tometer (Thermo Fisher Scientific, Waltham, USA). For complete digestion of DNA 1000 ng
RNA were treated with the TURBO DNA-free™ Kit (Ambion™, Thermo Fisher Scientific, Wal-
tham, USA) and the purified RNA was used for first strand cDNA synthesis with oligo d(t),3
VN primer (New England Biolabs, Ipswich, USA) and RevertAid Reverse Transcriptase
(Thermo Fisher Scientific, Waltham, USA) according to the manufacturer’s instructions. The
qRT-PCR experiments were performed with the StepOnePlus Real-Time PCR System (Applied
Biosystem, Thermo Fisher Scientific, Waltham, USA). Gene-specific primers (S2 Table) were
designed with the software Primer3 [34]. The actin gene of A. benhamiae (ARB_04092) was
chosen as internal control for normalization. Quantitative RT-PCR products were obtained
using MyTaq HS Mix 2x (Bioline, London, UK) and EvaGreen (Biotium, Hayward, USA) as
fluorescent dye. PCR conditions were 95°C for 2 min followed by 40 cycles with 15 s at 95°C,
20 s at 60°C, 15 s at 72°C and a final step at 95°C for additional 15 s. For each primer pair a
standard curve with serial dilutions of genomic DNA of A. benhamiae in technical triplicates
was determined and the primer efficiency (100% +10) was used for the calculation of transcript
levels by the method described by Pfaffl et al. [35]. Transcript levels are presented relative to
those of A. benhamiae wild type during iron-replete conditions. The experiments were run in
three biological replicates with technical duplicates.

Growth on keratin substrates

Human hair and finger nails as well as keratin powder from hooves and horns (MP Biomedi-
cals Germany GmbH, Eschwege, Germany) were used for the analysis of fungal growth on ker-
atin substrates. Human scalp hair from a child and finger nails from a healthy female donor
were cut from the donors themselves or the next of kin in their domestic home. The provided
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hair and clipped finger nail samples were autoclaved. Hair, nails and keratin powder were
placed on water agar plates and inoculated with 3 plugs of fresh fungal mycelium from SAB
agar plates. After incubation at 22°C for 25 d (keratin powder), 30 d (nails) and 40 d (hair) in
the dark, mycelia formation on the keratin substrates was documented.

Ethics Statement

The study did not include any diagnostic procedure or therapeutic method. Furthermore, the
sample collection was non-invasive (the physical integrity of the donor was maintained) and
did not intrude into the privacy of the donor. Based on the regulations of the ethics commis-
sion at the Jena University Hospital, Jena (Germany), an approval of this study was not neces-
sary in this case. Only human material (scalp hair and clipped finger nails) from voluntary
donors were used. Additionally, the donors or the next of kin have provided written consent
for the use of the samples for research and publication. The study does not contain any patient
data. Only the first author had access to any potentially identifying donor information. Identi-
fying details are omitted in the manuscript.

Results

Identification of A. benhamiae HapX homologue

BLASTP search revealed a single HapX homologue in the genome of A. benhamiae which has
significant similarity to HapX of A. nidulans (49% identity) and A. fumigatus (48% identity). A.
benhamiae hapX is encoded by an open reading frame of 1425 bp with a deduced protein of
474 amino acids. Furthermore, HapX of A. benhamiae displays all the typical characteristics
which are common to this class of transcription factors, including the basic region leucine zip-
per (bZIP) and coiled-coil domains mediating DNA-binding, an N-terminal CCAAT-binding
complex (CBC) domain, which is essential for interaction with the CBC subunit HapE [18]

and four conserved cysteine-rich regions (CRR) (S1 Fig). In A. fumigatus, two of the four CRR
are known to be involved in detoxification of iron excess [22].

Generation of A. benhamiae AhapX mutants and reconstituted strains

To assess the functional role of HapX, AhapX mutants were generated in the wild-type strain
A. benhamiae LAU2354-2 by targeted hapX gene deletion with the hph resistance cassette (Fig
1A). To ensure that the observed phenotypes were a result of the deletion of hapX, the AhapX
mutants were complemented with a copy of the wild-type hapX gene (Fig 1B). Southern blot
analysis confirmed the site-directed insertion of the linear DNA cassettes (Fig 1C). The dele-
tion strain AbenHAPXMI1A (AhapX) and the reconstituted strain AbenHAPXK1A (hapXC)
were used for further analysis.

HapX is important for growth, conidiation and hyphal pigmentation
during iron starvation

Analysis of fungal growth and conidiation revealed reduced growth and decreased conidiation
of the AhapX mutant during iron starvation, but not during iron-replete conditions (Fig 2).
The biomass production of the AhapX mutant in liquid culture was significantly reduced dur-
ing iron starvation and in the presence of the ferrous iron chelator BPS (Fig 2A). In contrast to
A. benhamiae wild type and hapX©, growth of the AhapX mutant was highly impaired when
the medium was supplemented with the xenosiderophore DFOM (Fig 2A). Additionally, loss
of HapX led to a decrease of conidiation during iron starvation (-Fe) and in the presence of the
iron chelator BPS but not during iron-replete conditions or in the presence of DFOM (Fig 2A).
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Fig 2. HapX of A. benhamiae is important for growth, conidiation and hyphal pigmentation during iron starvation. (A) Cultivation of A. benhamiae
wild type, AhapX mutant and hapXC reconstituted strain in AMM during iron-replete conditions (+Fe), iron limitation (-Fe), harsh iron starvation (-Fe +BPS)
and in the presence of the xenosiderophore deferoxamine (-Fe + DFOM). Data represent the means and standard deviations of three biological replicates.
The differences between wild type and AhapX mutant were statistically significant during iron starvation and in the presence of BPS and DFOM (2way
ANOVA,; * significant at P < 0.05, ** significantat P <0.01, *** significant at P < 0.001). (B) Growth of the fungal strains in AMM during iron-replete
conditions (+Fe) and iron starvation (-Fe) for 5 d at 30°C led to the formation of a reddish pigmented mycelium of AhapX mutant, particularly during iron
deficiency.

doi:10.1371/journal.pone.0150701.g002

Furthermore, the mycelium of the AhapX mutant showed a reddish pigmentation during iron-
depleted conditions probably due to the accumulation of iron-free precursors of heme (Fig
2B). By contrast, biomass and mycelial pigmentation of the AhapX mutant was comparable to
the wild type during iron-replete conditions. Complementation of the hapX gene, resulting in
the hapX© reconstituted strain, restored the phenotype of A. benhamiae wild type in all
experiments.

HapX is necessary for the regulation of siderophore biosynthesis during
iron starvation

In order to identify the intra- and extracellular siderophores of A. benhamiae the supernatant
and the mycelia of fungal cultures were separately extracted and analyzed by HPLC-PDA and
HPLC-HRESIMS. Trace amounts of compounds with a molecular mass of m/z 753 (M-H")
and m/z 769 (M-H") were found by MS analyses. MS/MS analyses and dereplication with

PLOS ONE | DOI:10.1371/journal.pone.0150701 March 9, 2016 8/283



@’PLOS ‘ ONE

Functional Analysis of HapX in A. benhamiae

commercial databases suggested a potential identity of the compounds with the hydroxamate-
type siderophores ferrichrome C and ferricrocin, respectively. To unequivocally prove the
structures, their UV spectra, HRESIMS-spectra, MS/MS fragmentation pattern as well as
HPLC retention times were compared to authentic standards (S2-S6 Figs). As a result, ferri-
chrome C and ferricrocin could be identified as siderophores of A. benhamiae (Fig 3).

The extracellular siderophores produced by A. benhamiae wild type, AhapX mutant and
hapX© reconstituted strains were quantified by using the CAS liquid assay (Fig 4A). During
iron starvation, the extracellular siderophore production of the AhapX mutant was decreased
in comparison to the wild type. However, all strains showed an increase of extracellular sidero-
phore activity over time. In contrast, the siderophore production of A. benhamiae wild type,
AhapX mutant and hapX© reconstituted strain was almost abolished during iron-replete
conditions.

Quantification of extracellular siderophores by HPLC analysis revealed a significantly
reduced amount of secreted ferrichrome C in the AhapX mutant in comparison to the wild
type (Fig 4B). By contrast, no difference between the wild type and AhapX mutant strain was
observed for the extracellular concentration of ferricrocin (Fig 4B).

Homologues of proteins involved in the biosynthesis of the siderophores fusarinine C and
TAFC were found in A. benhamiae by comparative genomic analysis with A. fumigatus (53
Table). However, fusarinine C and TAFC were not identified in extracts of A. benhamiae cul-
ture supernatants or mycelium. Furthermore, homologous genes of the A. fumigatus TAFC
esterase EstB, acetyltransferase SidG and siderophore iron transporter MirB are not clustered
in A. benhamiae (S3 Table). Interestingly, the siderophore biosynthesis genes sidC (non-ribo-
somal peptide synthetase; ARB_07686) and sidA (ornithine monooxygenase; ARB_07687) of
A. benhamiae are clustered (Fig 4C). Quantitative RT-PCR analysis of the genes sidC and sidA
displayed that the transcript level of both genes is highly decreased in the AhapX mutant in
comparison to the wild type during iron starvation (Fig 4D). In some fungi a link between side-
rophore biosynthesis and the isoprenoid biosynthesis pathway has been demonstrated [36, 37].
The 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase is an important enzyme for iso-
prenoid biosynthesis. HMG-CoA reductase is encoded by the gene hmgl and its expression is
dependent on the iron availability, but only in fungi which produce mevalonate-derived sidero-
phores such as fusarinine C or TAFC [36]. Quantitative RT-PCR analysis of the gene hmgl
showed that the transcript level of himglI is slightly upregulated in A. benhamiae wild type dur-
ing iron starvation. By contrast, no differences in the transcript level of himgl were observed
during iron-replete conditions and iron starvation in the AhapX mutant and hapX® reconsti-
tuted strains (Fig 4D).

HapX is required for transcriptional repression of genes involved in iron-
dependent pathways during iron starvation

Next, we investigated the role of the transcriptional regulators HapX and SreA of A. benhamiae
in the presence or absence of iron by qRT-PCR. During iron starvation, the transcript level of
hapX was highly upregulated in A. benhamiae wild type in comparison to iron-replete condi-
tions, which indicates that hapX transcription is repressed by iron (Fig 5A). By contrast, the
transcript level of sreA was downregulated in A. benhamiae wild type, but significantly
increased in the AhapX mutant during iron starvation compared to iron-replete conditions
which shows that HapX represses the sreA gene during iron starvation (Fig 5A).
Representative genes from known iron consuming pathways were chosen for further tran-
scriptional analysis of HapX during iron starvation and iron-replete conditions. In A. fumiga-
tus the cccA gene encodes a vacuolar iron importer which mediates the import of iron into the
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and ferricrocin produced by A. benhamiae.

doi:10.1371/journal.pone.0150701.g003

vacuole to avoid toxic levels of this metal in the cytosol [25]. The genes hemA (5-aminolevuli-
nic acid synthase), cycA (cytochrome C) and lysF (homoaconitase) are involved in heme bio-
synthesis, respiration and lysine biosynthesis, respectively [18, 19]. The transcript levels of
cccA, hemA, cycA and lysF were significantly increased in the AhapX mutant during iron starva-
tion, but not during iron-replete conditions in comparison to the wild type (Fig 5B).

HapX is involved in iron detoxification

In addition to the characterization of HapX during iron starvation, the role of this transcription
factor in the presence of iron excess was analyzed. Cultivation of A. benhamiae wild type,
AhapX mutant and hapX© reconstituted strains on agar plates and in liquid medium resulted
in a strong growth defect of the AhapX mutant in the presence of 5 to 10 mM FeSO, (Fig 6A
and 6B). Quantitative RT-PCR analysis of the vacuolar iron importer encoding gene cccA
showed that the transcript level of cccA was highly upregulated during a shift from iron starva-
tion to 0.03 mM FeSO, for 1 h (sFe) in A. benhamiae wild type but not in the AhapX mutant
(Fig 6C). By contrast, no significant differences in the transcript level of cccA in A. benhamiae
wild type and the AhapX mutant were observed during growth in medium supplemented with
3 mM FeSO, (hFe) (Fig 6C).
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from A. fumigatus) and genomic organization of the genes sidC (ARB_07686) and sidA (ARB_07687) of A. benhamiae. (D) Quantitative RT-PCR analysis of
the transcript level of the genes sidA (ornithine monooxygenase), sidC (NRPS) and hmg1 (HMG-CoA reductase) of A. benhamiae wild type, AhapX mutant
and hapXC reconstituted strain during iron starvation (-Fe) and iron-replete conditions (+Fe). Transcript levels are presented relative to those of A. benhamiae
wild type during iron-replete conditions. Data represent the means and standard deviations of three biological replicates. The differences between wild type
and AhapX were statistically significant during iron starvation (2way ANOVA; *** significant at P < 0.001).

doi:10.1371/journal.pone.0150701.g004
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Fig 5. HapX of A. benhamiae is important for transcription of iron regulatory genes during iron
limitation. (A) Transcript levels of transcription factors HapX and SreA during iron starvation (-Fe) and iron-
replete conditions (+Fe). (B) Transcript levels of the genes cccA, hemA, lysF and cycA during iron starvation
(-Fe) and iron-replete conditions (+Fe). Transcript levels measured by quantitative RT-PCR analysis are
presented relative to those of A. benhamiae wild type during iron-replete conditions. Data represent the
means and standard deviations of three biological replicates. The differences between wild type and AhapX
mutant were statistically significant during iron starvation (2way ANOVA; ** significantat P < 0.01, ***
significant at P < 0.001).

doi:10.1371/journal.pone.0150701.g005
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high iron concentrations (1-7 mM FeSQ,). Data represent the means and standard deviations of three
biological replicates. The differences between wild type and AhapX mutant were statistically significant
between 5 mM and 7 mM Fe (2way ANOVA,; ** significant at P < 0.01, *** significant at P < 0.001). (C)
Quantitative RT-PCR analysis of the cccA gene under different iron concentrations. The mycelium was
cultivated under high iron concentrations (hFe) or shifted for 1 h from -Fe to +Fe (sFe). Data represent the
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means and standard deviations of three biological replicates. The differences between wild type and AhapX
mutant were statistically significant during sFe (2way ANOVA; *** significant at P < 0.001).

doi:10.1371/journal.pone.0150701.g006

HapX is dispensable for growth on keratin substrates

To date, only few models are available for testing putative virulence factors of dermatophytes
[38]. Besides the application of animal models in guinea pig and mouse [39, 40], keratinized
host tissues, including hair and nails, have been used for the analysis of putative pathogenicity
associated factors in dermatophytes [12, 41]. To test whether the transcription factor HapX
plays a role during infection, in vitro growth of A. benhamiae wild type, AhapX mutant and
hapX® reconstituted strain on human hair and nails as well as on keratin powder derived from
hooves and horns was analyzed. No growth differences were observed between A. benhamiae
wild type, AhapX mutant and hapX® reconstituted strain during infection of all tested keratin
substrates (Fig 7).

Discussion

To overcome iron deficiency, many pathogenic fungi produce, release and take up sidero-
phores. The chemical structure of siderophores enable them to chelate ferric iron and even
extract iron from transferrin, lactoferrin or ferritin [42, 43]. The production of siderophores is
usually transcriptionally regulated depending on iron availability.

As shown here, the emerging human pathogenic dermatophyte A. benhamiae produces the
hydroxamate siderophores ferricrocin and ferrichrome C as intra- and extracellular sidero-
phores. Both siderophores were isolated from the culture supernatant of the dermatophytes
Microsporum gypseum, Microsporum audouinii, M. canis as well as T. rubrum [44]. Usually, fil-
amentous fungi use ferrichrome-type siderophores for intracellular iron distribution and iron
storage [45] as shown for A. nidulans, A. fumigatus, Fusarium graminearum, F. oxysporum,
Neurospora crassa and Magnaporthe grisea [29, 46-50]. For iron acquisition, however, most
fungi produce and secrete different hydroxamate siderophores, such as fusarinines and copro-
gens. The extracellular siderophores fusarinine C and triacetylfusarinine C (TAFC), for
instance, are produced by A. nidulans and A. fumigatus [46, 51, 52], exclusively fusarinine C by
Fusarium roseum and F. oxysporum [29, 53] and coprogens by N. crassa and M. grisea [49, 50].
In contrast to other fungi, dermatophytes appear to produce ferrichromes for both intra- and
extracellular use. In this context, it is interesting to note that secretion of ferrichrome-type side-
rophores has been described for the yeast Schizosaccharomyces pombe [54], the basidiomycete
Ustilago maydis [55] and the filamentous fungi F. roseum and F. oxysporum [29, 53]. In the
presence of the bacterial siderophore deferoxamine biomass production of the A. benhamiae
wild-type strain was increased under iron limitation compared to iron-depleted conditions
which indicates that A. behamiae is able to use xenosiderophores as iron source. Similar results
were reported for species of Paracoccidioides [56]. By contrast, growth of the AhapX mutant of
A. benhamiae was highly negatively affected by the presence of deferoxamine. This result sug-
gests that the AhapX mutant was unable to use xenosiderophore for iron acquisition, which
may be caused by a defect in the siderophore uptake system in this mutant. Uptake of the ferri-
form of the siderophores is mediated by siderophore-iron transporters (SITs). Although SITs
are quite conserved in siderophore producing and non-producing fungal species only a few
SITs have been identified and functionally characterized, so far (reviewed in [24]). In dermato-
phytes, SITs responsible for uptake of ferrichrome C and ferricrocin have not been identified

yet.
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Fig 7. HapX of A. benhamiae is dispensable for growth on keratin substrates. Cultivation of A.
benhamiae wild type, AhapX mutant and hapXC reconstituted strain on human hair, finger nails and keratin
powder derived from hooves and horns. Scale bar represents 5 mm.

doi:10.1371/journal.pone.0150701.g007

The structure of ferricrocin differs from ferrichrome C only by a serine for alanine substitu-
tion. It has been suggested that both siderophores ferricrocin and ferrichrome C are synthe-
sized by the ferrichrome-type NRPS SidC in F. oxysporum [29]. The genes encoding NRPS
SidC and ornithine monooxygenase SidA of A. benhamiae are clustered which is typical for
genes encoding components of common pathways in filamentous fungi. Similar to U. maydis,
S. pombe, F. graminearum and F. oxysporum the genes sidA and sidC of A. benhamiae are prob-
ably bidirectionally transcribed from a common promoter region [29, 54, 57, 58]. In contrast,
sidA and sidC of A. nidulans and A. fumigatus are located on different chromosomes [47, 59].
Conversely, the genes encoding TAFC esterase EstB, acetyltransferase SidG, siderophore iron
transporter MirB and an ABC-transporter are clustered in A. fumigatus [60], but not in A. ben-
hamiae (S3 Table). Although Arthroderma and Aspergillus both belong to the subclass Eurotio-
mycetidae, the organisation of their siderophore biosynthesis genes is obviously more similar
to phylogenetically more distantly related phyla.

Deletion of hapX of A. benhamiae resulted in a lacking activation of the siderophore biosyn-
thesis genes sidA and sidC during iron starvation and in a decreased production of extracellular
ferrichrome C, but not ferricrocin. Similarly, the AhapX mutant of A. fumigatus displayed a
downregulation of genes involved in siderophore biosynthesis and a decreased production of
the siderophores ferricrocin and TAFC, but not fusarinine C during iron-limiting conditions
[19]. Divergent from this observation, lack of HapX caused a reduced TAFC production but an
increased level of ferricrocin and the sidC transcript during iron-depleted conditions in A.
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nidulans [18]. By contrast, inactivation of hapX in F. oxysporum led to elevated transcript levels
of several siderophore genes and to an increased amount of intracellular, but not extracellular
siderophores during iron starvation [29].

Transcriptional regulation of iron homeostasis and regulation of the siderophore system in
A. nidulans, A. fumigatus and S. pombe is achieved by the transcription factors HapX and SreA
(referred to as Php4 and Fepl in S. pombe) which are interconnected by a negative feed-back
loop [18, 19, 61, 62]. The data from our study indicate that the same model can be applied to A.
benhamiae. SreA represses the expression of hapX and the siderophore system during iron suf-
ficient conditions by an iron-sensing mechanism, while HapX represses sreA and activates the
siderophore system during iron-limiting conditions resulting in efficient iron uptake and inhi-
bition of iron-consuming pathways. As described above, deletion of hapX in A. benhamiae, A.
fumigatus and A. nidulans resulted to some extent in a decreased siderophore production [18,
19]. At the same time, this result implies the existence of alternative mechanisms regulating the
siderophore system. Besides HapX and SreA, the sterol regulatory element binding protein
(SREBP) SrbA was shown to contribute to the activation of siderophore production in A. fum-
gatus [63]. Furthermore, the pH signaling transcription factor PacC, the gluconeogenesis-regu-
lating transcription factors AcuK and AcuM and the mitogen-activated protein kinase
(MAPK) MpkA have been suggested to be involved as well [64-67].

The main precursor for fungal siderophores is the non proteinogenic amino acid ornithine
[45]. Additionally, the biosynthesis of fusarinine-type siderophores is linked to the isoprenoid
biosynthesis pathway in A. fumigatus. The intermediate mevalonate produced by the
HMG-CoA reductase serves as precursor for the biosynthesis of fusarinine C and TAFC [36].
In A. fumigatus, the transcript level of the gene encoding the HMG-CoA reductase, hmgl, is
highly increased during iron starvation [36]. In contrast, the availability of iron did not signifi-
cantly influence the transcript level of hmgl in A. benhamiae. This is in line with data from the
non-siderophore producing fungi S. cerevisiae, C. neoformans and C. albicans [68-70]. Simi-
larly, the presence or absence of iron did not affect the expression of hmngl in U. maydis [71]
despite the fact that ferrichrome A biosynthesis is also linked to the isoprenoid biosynthesis
pathway in U. maydis [37].

Besides altered regulation of siderophore biosynthesis, deletion of HapX in A. benhamiae
resulted in decreased growth, conidiation and complete deregulation of genes from iron-
dependent pathways such as vacuolar iron storage, amino acid metabolism, respiration and
heme biosynthesis during iron limitation. The transcript level of cccA (vacuolar iron importer),
lysF (homoaconitase), cycA (cytochrome C) and hemA (5-amino-levulinic acid synthase) was
highly upregulated in the AhapX mutant during iron starvation. Similar results have been
obtained for loss of HapX homologues in A. nidulans, A. fumigatus, F. oxysporum, C. neofor-
mans, C. albicans and S. pombe [18, 19, 27-29, 61, 62]. Due to the activated heme biosynthesis
during iron starvation, predictably the iron-free heme precursor protoporphyrin IX accumu-
lated in the AhapX mutant of A. benhamiae causing a reddish pigmentation of the mycelium.
The same has been previously reported from A. nidulans, A. fumigatus and F. oxysporum [18,
19, 29].

The transcription factor HapX is also essential for iron detoxification by activating the vacu-
olar iron importer CccA during high iron conditions [21, 25]. Consequently, deletion of hapX
inhibited growth of A. fumigatus, A. nidulans, F. oxysporum and A. benhamiae in the presence
of excess iron (this study, [22]). Similarly, the transcript level of cccA was highly upregulated
during a shift from iron starvation to iron-replete conditions for one hour in A. benhamiae
wild type, but not in the AhapX mutant. Interestingly, long-term periods of iron excess did not
affect the transcript level of cccA in A. benhamiae which underlines the importance of the vacu-
olar iron importer during acute high iron stress. Distinct protein domains of HapX allow this
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Janus-type transcription factor to function as activator or repressor and consequently, to medi-
ate both adaptation to iron starvation and iron resistance [22]. Additionally, it was found that
the CBC-HapX complex of A. nidulans cooperatively binds to a bipartite DNA motif within
the promoter of genes which are downregulated during iron limitation [23]. Characterization
of this DNA motif in promoters of the genes cycA, sreA, acoA and lysF in A. nidulans resulted
in the identification of the minimal motif 5-GAT-3’, which is located at a distance of 11-12 bp
downstream of the respective CCAAT box [23]. A similar motif is also evolutionary conserved
in the cccA promoter of 28 fungi including species of Aspergillus and dermatophytes, e.g. A.
benhamiae [22].

The critical role of iron acquistion in host-pathogen interactions has been demonstrated in
various animal and plant pathogenic fungi. Siderophore-mediated iron uptake was shown to
be essential for virulence of A. fumigatus, C. albicans, F. oxysporum and to a lesser extent in C.
neoformans in murine infection models [19, 27-29, 47, 52, 72, 73]. Surprisingly, the AhapX
mutant of A. benhamiae did not show a virulence defect during in vitro infection of hair and
nails. A major difference between the human pathogenic fungi A. fumigatus, C. albicans, C.
neoformans and A. benhamiae is the infectious life cycle. In contrast to A. fumigatus, C. albi-
cans and C. neoformans, which are able to grow invasively in immunocompromised individu-
als, A. benhamiae is restricted to superficial growth on keratinized host structures such as skin
(stratum corneum), hair and nails of humans and animals. We hypothesized that skin, hair
and nails constitute a highly iron-restricted environment, but the ability of the AhapX mutant
of A. benhamiae to grow on these keratinized structures might result from sufficient iron
acquisition. In support of this idea, it has been described that iron is excreted by skin through
desquamation of iron-loaded epithelial cells [74]. Furthermore, previous studies have shown
that human epidermis, hair of children and finger nails contain variable amounts of iron [75-
77]. It is possible that iron of these keratin substrates is easily accessable for dermatophytes by
siderophores or alternative iron uptake mechanisms, which might explain the missing growth
defect of the AhapX mutant of A. benhamiae on keratin. Besides siderophores, the A. benha-
miae genome encodes proteins which represent homologues of iron permeases and oxidore-
ductases known to be involved in reductive iron assimilation (RIA) (S3 Table). These proteins
may contribute to iron acquisition, too. Alternative mechanisms for iron acquisition such as
low-affinity iron uptake systems have been described in S. cerevisiae, C. neoformans and A.
nidulans [59, 78, 79]. Prerequisite for iron uptake by low-affinity mechanisms is the availability
of ferrous iron which is the prevalent form of iron during acidic conditions. Human skin,
scalp, hair shafts and nail plate have an acidic pH of 5.5 and below [80-82] which suggests that
ferrous iron uptake mechanisms might play a role during superficial growth of A. benhamiae.
Additionally, genes involved in iron homeostasis were not differentially regulated in the tran-
scriptome of A. benhamiae during infection of human keratinocytes [13]. This result further
supports the idea that siderophore-mediated iron uptake plays a minor role during dermato-
phyte infection.

Conclusions

This study underlines the highly conserved role of the fungal-specific transcription factor
HapX for adaptation to iron starvation and especially, its relevance for the downregulation of
iron-consuming pathways and the activation of siderophore biosynthesis during iron defi-
ciency in ascomycetous fungi. Furthermore, HapX is a virulence factor in many plant and
human pathogenic fungi in vivo, but is redundant in A. benhamiae during in vitro infection of
keratinized host tissues, which might reflect the different iron supply or requirements of fungi
during their respective infectious life cycle.
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Supporting Information

S1 Fig. Multiple sequence alignment of the HapX protein of Aspergillus fumigatus
(AFUA_5G03920), Arthroderma benhamiae (ARB_06811) and Trichophyton rubrum
(TERG_07733.3) using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The N-
terminal CBC binding domain is indicated by bold letters, the bZIP domain is shaded in black,
the coiled-coil domain is highlighted in grey and the four conserved cysteine-rich regions are
indicated by black lines.

(TIF)

S2 Fig. Extracted mass traces (ESI"). (A) Ferricrocin standard m/z 771. (B) Ferrichrome C
standard m/z 755. (C) Mycelial extract of A. benhamiae wild type m/z 771. (D) Mycelial extract
of A. benhamiae wild type m/z 755.

(TIF)

S3 Fig. MS/MS spectrum of ferrichrome C reference.
(TTF)

S4 Fig. MS/MS spectrum of ferricrocin reference.
(TIF)

S5 Fig. MS/MS spectrum of ferrichrome C detected in the mycelial extract of A. benhamiae.
(TIF)

S6 Fig. MS/MS spectrum of ferricrocin detected in the mycelial extract of A. benhamiae.
(TIF)

S1 Table. Primers used for the generation of plasmids.
(PDF)

S2 Table. Primers used for qRT-PCR.
(PDF)

$3 Table. Putative homologues of proteins involved in iron homeostasis of A. benhamiae.
(PDF)
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