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In the emerging field of systems biology of fungal infection, one of the central roles
belongs to the modeling of gene regulatory networks (GRNs). Utilizing omics-data,
GRNs can be predicted by mathematical modeling. Here, we review current advances
of data-based reconstruction of both small-scale and large-scale GRNs for human
pathogenic fungi. The advantage of large-scale genome-wide modeling is the possibility
to predict central (hub) genes and thereby indicate potential biomarkers and drug
targets. In contrast, small-scale GRN models provide hypotheses on the mode of gene
regulatory interactions, which have to be validated experimentally. Due to the lack of
sufficient quantity and quality of both experimental data and prior knowledge about
regulator–target gene relations, the genome-wide modeling still remains problematic for
fungal pathogens. While a first genome-wide GRN model has already been published for
Candida albicans, the feasibility of such modeling for Aspergillus fumigatus is evaluated
in the present article. Based on this evaluation, opinions are drawn on future directions of
GRN modeling of fungal pathogens. The crucial point of genome-wide GRN modeling is
the experimental evidence, both used for inferring the networks (omics ‘first-hand’ data
as well as literature data used as prior knowledge) and for validation and evaluation of
the inferred network models.

Keywords: Candida albicans, Aspergillus fumigatus, reverse engineering, text mining, transcription factor,
genome-wide modeling

INTRODUCTION

While most of fungal species are harmless for human, some can cause infections (mucoses) with
very high mortality rates. The number of fungal infections has increased over the last decades
due to the rising number of immunocompromised patients (Pfaller and Diekema, 2010). Mucoses
are associated with excessive morbidity and mortality because of difficulties with diagnosis and
antifungal therapy. Fungal pathogens have evolved diverse strategies for colonisation, adhesion,
invasion, translocation, nutrient acquisition, interaction with immune cells of the host, and
(secondary) metabolite synthesis (Brakhage, 2013). About 600 fungal species have been reported
to infect human (Brown et al., 2012a). Over 90% of fungal infections resulting in death
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are caused by Candida, Cryptococcus, Aspergillus, and
Pneumocystis. These species cause over two million life-
threatening infections each year (Brown et al., 2012b). Species
belonging to the genera Candida and Aspergillus are widely
recognized as the most important human fungal pathogens
(Moran et al., 2011).

A key feature of fungal infections is the interaction between
different morphotypes of fungal cells (colonizing, persisting, or
invading) and all kinds of tissues and immune effector cells
of the host. Because of their complexity, the elucidation of
invasive fungal infections requires a systems biological approach
for modelling the complex interactions between a large number
of genes, proteins, metabolites, cells, and tissues from both the
pathogen(s) and the host (Forst, 2006). For reviews of the systems
biology of infections caused by the human pathogenic fungi
Candida albicans and Aspergillus fumigatus, (see e.g., Albrecht
et al., 2008, 2011; Rizzetto and Cavalieri, 2011; Horn et al., 2012,
2014).

The dynamics of host-pathogen interactions has to be
analyzed and modeled in temporal and spatial resolution on
different scales. Recently, we reviewed the emerging multi-scale
modeling of bacterial and microbial infections (Schleicher et al.,
2016). Dühring et al. (2015) reviewed interaction mechanisms
between the human innate immune system and C. albicans
focussing on the mathematical modeling of immune evasion
strategies. These molecular interactions can be modelled by
networks composed of nodes (molecules) connected by edges
(interactions). Network models of host–pathogen interactions,
such as protein–protein interactions, signaling, metabolic, and
gene regulatory networks (GRNs) can be computationally
reconstructed by exploiting molecular databases, literature
mining and model fit to experimental data (Durmuş et al.,
2015).

Focussing on the transcriptomic scale, here we review fungal
GRN models, where nodes represent genes and edges describe
causal regulator–target gene relations. GRN reconstruction
is mainly based on transcriptome data supported by prior
knowledge interactions derived from literature. Additionally, a
set of experimentally verified interactions is needed as ‘gold
standard’ for validation of the inferred model (Hecker et al.,
2009; Linde et al., 2015). In the present article, we compare the
feasibility of genome-wide vs. small-scale modelling under the
current state of (i) species-specific interactome knowledge, (ii)
prior knowledge retrieved via orthologous genes in other fungal
species, (iii) transcriptome data for model fit, and (iv) confirmed
knowledge for model validation.

Here, we discuss GRN prediction for A. fumigatus – one of
the most important causes of life-threatening invasive mycoses.
While a genome-wide network model for for C. albicans has
been published based on a compendium of microarray data
and knowledge extracted by molecular database search and
literature mining (Altwasser et al., 2012), we here show that
genome-wide GRN modeling with sufficient quality is currently
not feasible for A. fumigatus. We found that this is due to
a larger genome compared with C. albicans in conjunction
with a lower number of known interactions and publicly
available transcriptome data sets. Finally, systems biology of

fungal infection requires modeling GRNs not only in the
pathogen but also in the host and modeling of molecular
interactions between them. This was demonstrated so far only
for C. albicans inferring a small-scale model (Tierney et al.,
2012).

SPECIES-SPECIFIC GENOMIC
KNOWLEDGE ABOUT THE FUNGAL
PATHOGENS

The current knowledge about molecular interactions for
C. albicans and A. fumigatus is relatively moderate compared
with the comprehensive knowledge about the model eukaryote
Saccharomyces cerevisiae that is represented in more than
100,000 scientific publications. Moreover, the knowledge about
A. fumigatus is scarcer than that for C. albicans as shown in
Table 1. For C. albicans with 6,218 genes (ORFs) there are more
than 33,000 journal papers whereas for A. fumigatus, despite a
larger genome size, there are less than 10,000 articles referenced
in PubMed.

Curated databases have been developed to provide improved
computational access to the biologically important information.
Basic genomic knowledge about C. albicans and A. fumigatus
is provided by the Candida Genome Database (CGD; Skrzypek
et al., 2016) and Aspergillus Genome Databas (AspDB; Cerqueira
et al., 2014), respectively. Additionally, functional categorisation
of fungal genes and proteins can be extracted for 298 fungal
strains by the Web tool FungiFun2 (Priebe et al., 2014).

In general, manually curated databases have high quality.
However, they cannot be up-to-date as it takes time before
new discoveries are included (Baumgartner et al., 2007).
Therefore, the data presented in databases, such as CGD,
AspDB, and TRANSFAC (Wingender, 2008), does not fully
represent the current state of rapidly growing knowledge.
Obviously, this is the case for TRANSFAC that does not provide
yet any information about TFs in A. fumigatus (Table 1).
The model fungus S. cerevisiae has an estimated number
of 140 to 250 TFs (Costanzo et al., 2014) and about 600
proteins may be involved in the transcriptional regulation
of approximately 6,000 protein-coding genes (Cherry et al.,
2012). The number of TFs varies according to the selection
criteria. Some studies count proteins with predicted DNA-
binding domains; others include only proteins shown to bind
DNA directly; still others also include non-DNA binding subunits
of TF complexes. The regulatory proteins can be subdivided into
the basal machinery, co-regulators, chromatin-remodeling and
modifying factors, as well as DNA-binding TFs. We estimate
for A. fumigatus a number of about 600 TFs (unpublished
results). Compared to these estimated high number of TFs,
the number of experimentally verified TFs that are included
in TRANSFAC is very small. However, the list of predicted
(putative) TFs is increasing. For instance, based on the first
complete genome sequence for A. fumigatus Af293, a set of
28 transcriptional regulators (22 TFs) were predicted (Nierman
et al., 2005). The AspDB currently assigns 273 gene loci
to a TF.

Frontiers in Microbiology | www.frontiersin.org 2 April 2016 | Volume 7 | Article 570

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00570 April 20, 2016 Time: 12:44 # 3

Guthke et al. Reconstructing Fungal Gene Regulatory Networks

PRIOR KNOWLEDGE FROM OTHER
DATABASES VIA ORTHOLOGOUS
GENES
An approach to fill the gap of missing species-specific knowledge
is to make use of known interactions in closely related species
via the mapping of orthologs taking into account the problem
that the regulation of a gene might be different between
phylogenetically close fungal species. Linde et al. (2011) and
Altwasser et al. (2012) mapped orthologous genes of several
fungal species including S. cerevisiae, A. nidulans, C. glabrata
to C. albicans and screened four databases for transcriptional
interactions: (i) TRANSFAC, (ii) MPact (Güldener et al., 2006),
(iii) the transcriptional regulatory network for yeast by Balaji
et al. (2006), and (iv) BIND (Bader et al., 2003). In this
article, we present primary results from genome-wide network
inference for A. fumigatus. Therefore, we exploited three
of these [TRANSFAC, MPact and Balaji et al. (2006)] and
additionally used the STRING database (Szklarczyk et al., 2015)
and BioGRID (Chatr-Aryamontri et al., 2015). The numbers of
gene regulatory interactions and genes involved are shown in
Table 1.

FUNGAL TRANSCRIPTOME DATA

To identify and validate unknown putative gene regulatory
interactions, a compendium of experimental gene expression
data should be collected and analyzed. Ihmels et al. (2005)
published a collection of microarray-based transcriptome data
for 6,167 genes of C. albicans under 198 experimental conditions.
A search for C. albicans in the Gene Expression Omnibus
database (GEO; Barrett et al., 2013) resulted in transcriptome
data sets composed of 1,846 samples at 2016/01/06. Among them,
1,467 samples were analyzed by microarrays and 379 samples
were analyzed by high-throughput sequencing (HTS; 263 of them
using Illumina HiSeq 2500).

For A. fumigatus, Nierman et al. (2005) published the first gene
expression data set. At 2016/01/06 GEO contained transcriptome
data from 101 samples analyzed by HTS of which we used
81 (GEO: GSE55743, GSE55663, GSE55943, and GSE30579). In
addition, we considered unpublished HTS data of 79 samples
from A. fumigatus. To avoid incompatibility problems between
HTS and microarray data, we restricted the data analysis for
A. fumigatus to the HTS data from the total of 160 samples. The
HTS data was preprocessed as described by Schulze et al. (2015).

TABLE 1 | Survey of available data for the fungi Candida albicans and Aspergillus fumigatus.

C. albicans A. fumigatus

Prior knowledge from species-specific databases and literature

# ORFs 6,218 Candida Genome
Database [CGD],
2016

9,840 Aspergillus
Genome Database
[ASPGD], 2016

# ORFs verified 1,581 25% Candida Genome
Database [CGD],
2016

483 5% Aspergillus
Genome Database
[ASPGD], 2016

# TFs predicted 241 Candida Genome
Database [CGD],
2016

273 Aspergillus
Genome Database
[ASPGD], 2016

# TFs (validated) 43 TRANSFAC, 2016 0 TRANSFAC, 2016

# Articles 33,205 PubMed, 2016 9,424 PubMed, 2016

Prior knowledge from other databases via orthologs

# Interactions # Genes 249 226 TRANSFAC, 2012 47 64 TRANSFAC, 2015

# Interactions # Genes 6,674 2,290 MPact, 2012 1,171 1,229 MPact, 2015

# Interactions # Genes 2,689 1,502 Balaji et al., 2006 231 234 Balaji et al., 2006

# Interactions # Genes 6,333 2,288 BIND, 2012 43,852 3,465 STRING, 2015

# Interactions # Genes 2,470 1,122 BioGRID, 2015

# Interactions 11,523 Union of all four 47,230 Union of all five

Experimental gene expression data sets (for model inference)

# Samples 198
1,846

Ihmels et al., 2005
GEO, 2016

101
79

GEO, 2015
unpublished

Knowledge extracted by text mining for model validation (‘gold standard’)

# Regulators # Interactions # Target genes 372 4,625 1,484 Literature
mining + CGD

31 136 104 Literature
mining + manual
curation

# Interactions # Genes 1,016 503 Altwasser et al.,
2012

321 273 as above + AspGD

ORFs for C. albicans SC5314 and A. fumigatus Af293; for referencing of sources CGD, AspGD, TRANSFAC, etc. see text. STRING database filtered by score: text mining
evidence OR experiment evidence OR database evidence ≥ = 700 AND combined score ≥ = 700.
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KNOWLEDGE EXTRACTED BY TEXT
MINING FOR MODEL VALIDATION

To provisionally fill the gap of knowledge between the high
number of expected and the low number of verified TFs and their
target genes, articles downloaded from PubMed (abstracts) or
PMC (full text) were computationally scanned using a software
developed by us (Durmuş et al., 2015). The articles were
preprocessed to obtain relevant sentences which were parsed
afterward using natural language processing.

For C. albicans more than 20,000 articles were scanned
for interactions comprising the following words (and its
derivatives): bind, regulate, promote, suppress, in/activate,
enhance, overexpress, attenuate, induce, block, inhibit, repress.
A number of 4,625 unique interactions (including 1,388
interactions added from CGD) between 372 regulators and 1,484
target genes were found (Table 1). In a previous study using a text
mining tool (JRex), we scanned about 9,000 articles on C. albicans
and found 1,016 interactions between 509 genes (Altwasser et al.,
2012).

In contrast, for A. fumigatus we scanned 1,580 open-
access full-text articles and 6,420 abstracts of non-open-access
articles. Automatic identification of 136 regulatory interactions
between 28 regulators and 104 target genes complemented
by manually curated interactions resulted in 31 regulators
(including 15 TFs, Supplementary Table S1) and a total
of 153 regulatory interactions. Based on the aforementioned
knowledge for A. fumigatus, the well-known TFs SrbA, SreA,
LaeA, BrlA, and Yap1 were identified as hubs (>7 regulator-
target gene interactions). After addition of further interactions
retrieved from AspGD, we obtained for A. fumigatus a
set of 321 gene regulatory interactions between 273 genes,
which was used as ‘gold standard’ for GRN model validation
as described in the next section. This shows that despite
the larger size of the genome, the numbers of known
interactions are significantly smaller for A. fumigatus than for
C. albicans.

LARGE-SCALE MODELING OF GRN IN
PATHOGENIC FUNGI

There exists an impressive corpus of studies in the field of
mathematical modeling and identification of GRN. For reviews
see Hartemink (2005), Hecker et al. (2009), Huang et al. (2009),
Goldenberg et al. (2010), and Linde et al. (2015). Genome-
scale network models arose shortly after the first genome
sequencing, starting with constraint-based metabolic network
models (Bordbar et al., 2014). Most of the published genome-
wide models are knowledge-based. Protein–protein interaction
network models of C. albicans and A. fumigatus were published
(Remmele et al., 2015) based on sequence similarity of known
interaction and supported by GO enrichment analysis. As the
available knowledge for the fungi, in particular for A. fumigatus,
is scarce and far from complete, novel interactions have to
be predicted by the integration of experimental data into the
process of model construction. Due to the availability of data

from only less than 200 samples compared to about 10.000
genes (see Table 1), low complex models were fitted, e.g., by
regression of linear models. This was performed for C. albicans
(Altwasser et al., 2012) using the workflow depicted in Figure 1,
but to the best of our knowledge not yet for A. fumigatus
and other human pathogenic fungi. Altwasser et al. (2012)
inferred a linear regression model describing the interactions
between regulators (expression intensity xj) and target genes
(xi) of N (6,167) genes for different experimental conditions
(samples m) with penalty defined by the prior knowledge:

xi(m) =

N∑
j=1,j6=i

βi,jxj(m)

The identification of the parameters βi,j was performed using
an adaptive LASSO (Least Absolute Shrinkage and Selection
Operator) combined with ridge regression.

As the ‘gold standard’ for model validation in Altwasser et al.
(2012) comprised only 503 genes, the refined GRN inference
was restricted to this subset genes. The model was fitted to the
transcription data collected by Ihmels et al. (2005) with 198
samples.

Here, we present preliminary results of genome-wide
modeling for A. fumigatus based on HTS data from 160
samples and the knowledge (prior knowledge and ‘gold standard’)
surveyed in Table 1. The workflow is depicted in Figure 1 and
the inferred network with highlighted hubs in the Supplementary
Figure S1. The precision and sensitivity of the model quantified
by the F-measure of inferred genome-wide GRN is low due
to several reasons: the number of samples (160) is very small
compared with the number of genes (almost 10,000). This is
called the dimensionality problem (‘curse of dimensionality’). In
general, this problem can be reduced by integration of prior
knowledge. However, for both C. albicans and A. fumigatus,
the overlap of the prior knowledge extracted from different
databases and the ‘gold standard’ (obtained by text mining)
is very small (as shown for C. albicans by Altwasser et al.,
2012). For A. fumigatus, the overlap between the 47,230
interactions used as prior knowledge (including non-species-
specific data) and the 321 interactions used as ‘gold standard’
(species-specific knowledge) is only 25 – indicating the high
diversity of fungal species with respect to gene regulation.
Nevertheless, despite the modest quality of the inferred large-
scale network model for A. fumigatus, the identified hubs were
found to be independent of the parameters of the inference
algorithm.

SMALL-SCALE MODELING OF GRN IN
PATHOGENIC FUNGI

While the quality of genome-wide models for pathogenic fungi
is low due to (i) the moderate amount of publicly available
transcriptome data and (ii) the sparse quality and quantity of
experimentally verified knowledge, there are some examples for
the inference of small-scale modeling of GRNs for C. albicans and
A. fumigatus with sufficient reliability. Using the NetGenerator
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FIGURE 1 | Workflow for large-scale GRN inference. For the example GRN for Aspergillus fumigatus, the network was inferred using the software package
‘adaLARS,’ an adaptive LASSO algorithm (Zou, 2006) combined with ridge regression as used by Altwasser et al. (2012). The prior knowledge was collected for this
example from different databases as listed in Table 1 under ‘Prior knowledge from other databases via orthologs.’ The Gold standard was extracted as described in
section ‘Knowledge extracted by text mining for model validation.’ The hubs were identified using the tool igraph (Csardi and Nepusz, 2006).

algorithm (Guthke et al., 2005; Weber et al., 2013), a first model
comprising four genes (Guthke et al., 2007) was presented for
A. fumigatus based on transcriptome data published by Nierman
et al. (2005). Later, small-scale networks for A. fumigatus with
12 and 26 genes were published by Linde et al. (2012) and
Altwasser et al. (2015), respectively. Small-scale GRN models
for C. albicans were also inferred using the NetGenerator
algorithm and presented by Linde et al. (2010), Tierney et al.
(2012), Ramachandra et al. (2014), Schulze et al. (2015), and
Böhringer et al. (2016), whereas the articles on small-scale
GRN inference used the top–down approach and simulated the
expression profiles of selected genes using ordinary differential
equations, Brandon et al. (2015) applied a bottom up approach to
investigate the iron acquisition and oxidative stress response in
A. fumigatus by discrete dynamic simulation of Boolean network
models.

In all cases, the critical challenge in modeling of small-scale
GRNs is the selection of genes. Mostly, the feature selection is
supported by both prior knowledge and unsupervised learning
algorithms, e.g., clustering or module identification.

An advantage and benefit of small-scale modeling is the
opportunity to predict a small set of hypotheses about
previously unknown gene regulatory interactions, that needs
to be verified experimentally as done for the models by Linde
et al. (2012), Tierney et al. (2012), Altwasser et al. (2015)
and Böhringer et al. (2016). In these cases, small-scale GRN
models supported the experimental design for the follow-
up investigation of transcriptomic regulation in pathogenic
fungi.

FUTURE RESEARCH

The molecular understanding of fungal pathogens will become
more important as there are an ever-growing number of drug-
resistant strains of human pathogenic fungi and an increasing
number of immunocompromised individuals. Most certainly,
the modeling of omics data will pave the way for predictive
diagnostics and personalized treatment of fungal infections
(Oliveira-Coelho et al., 2015). In future this modeling approach
will be extended from the molecular to the cellular, organism, and
population scale (Schleicher et al., 2016).

The modeling of GRNs is crucial to predict potential
drug targets for improved treatment of fungal infections. One
of the aims of GRN modeling is to identify ‘hubs,’ i.e.,
important transcriptional regulators, which are highly connected.
Therefore, it is necessary to reconstruct the topology of the
GRNs as precise as possible. Currently, only small-scale GRN
models were inferred with sufficient reliability, i.e., their in silico
predictions could be experimentally verified. The disadvantage
of small-scale models is the need of feature selection, i.e., the
selection of a number of genes of interest. Such investigation
is hypothesis-driven and does make sense only in connection
with a certain focussed scientific question. In contrast, systems
biology claims a holistic perspective, which requires large-scale
GRN modeling. We reviewed here the feasibility for large-scale
GRN modeling for the two most important human pathogenic
fungi C. albicans and A. fumigatus. For C. albicans such a model
was previously published, but it could now be improved based on
(i) the increased amount of transcriptional data, (ii) enhanced set
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of prior knowledge, and (iii) extended set of knowledge
extracted by text mining for model validation as shown in
Table 1.

In contrast, for A. fumigatus the quantity and quality of
data and knowledge have to be improved before the time will
be ripe for genome-wide GRN modeling. These requirements
will be important for efficient genome-wide GRN modelling
with high reliability also for other fungi: (i) curation of a
more comprehensive database of TFs and TF-binding sites of
human pathogenic fungi, (ii) more standardized reporting of
results in the scientific literature using ontologies and controlled
vocabulary, (iii) improved text mining algorithms to extract
knowledge about gene regulatory interactions to reduce the
effort for manual curation of the databases, (iv) increase in the
number of gene expression data sets covering more experimental
conditions of fungi in public repositories, (v) investigation on
comparative genomics with respect to gene regulation pattern of
different fungi to improve a more careful inclusion or exclusion
of non-species-specific prior knowledge into the inference of
large-scale GRN models. Currently, reliable genome-wide GRN
modeling with some thousands of genes is impossible due to
the scarce knowledge for model validation, i.e., there is no
confirmed ‘gold standard.’ Today, the size of network models
has to be adapted to the number of some dozens or hundreds
of genes with sufficient knowledge about gene regulatory
interactions.
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