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Abstract 

 

Terrestrial ecosystems account for two-fifths of the total exchange of CO2 between the 

earth and the atmosphere, with forests contributing 80% of that exchange. Forest biomass 

and forest soils are particularly important carbon (C) sinks, however forest soil C stocks 

can vary widely, depending on the dominant tree species. Species-specific differences in 

the quality and quantity of plant litter inputs can influence soil C dynamics and storage 

because they control decomposition processes, altering soil respiration and soil properties. 

However, our knowledge of how tree species identity influences the interactions between 

decomposition processes, soil C dynamics and soil C storage is still deficient. Resolving 

this knowledge gap is important to determine how tree species selection for afforestation 

might help us increase soil C sequestration and mitigate the effects of climate change. 

Using microcosm experiments and in situ mesocosms, I studied interactions between litter 

quality and soil properties for different temperate tree species in the UK. I measured key 

litter properties, and quantified the effect of litter quality and quantity on soil CO2 efflux and 

soil properties. My results show that litter quality, represented by nitrogen and lignin 

content, plays a major role in regulating soil C dynamics via litter decomposition. Litter 

quality also modified changes in soil CO2 efflux in response to altered litter inputs but the 

effect varied strongly by species. Using reciprocal transplant experiments in single-species 

stands of alder, oak, and pine, I demonstrate variable influences of litter quality and the 

‘home-field advantage’ on decomposition and soil CO2 efflux. The present work provides 

an insight into the linkages between litter quality, decomposition and soil respiration in 

temperate forests. My results represent an important first step in identifying the future role 

of different tree species on soil C dynamics under climate change, which could inform 

forestry rotation and reforestation practices.  

 



11 

 

1. Introduction 

 

A large proportion of Earth’s land surface has changed as a result of human activity, 

causing alterations to the functioning of ecosystems on a global scale (Vitousek et al, 

1997). Land-use change plays a key role in this global transformation, where the increase 

of land area for food production and forestry are important drivers of the exaggerated loss 

of biological diversity (Barnosky et al, 2011). Interactions among several global change 

phenomena, such as the increase in nitrogen deposition, climate changes, and species 

invasion and extinction have caused global concern and raised awareness for the 

importance of understanding what drives these phenomena and their environmental 

consequences (Bardgett et al, 2010). 

Climate change is arguably the global phenomenon that has captured the most attention 

(Wardle, 2002). There are numerous lines of evidence for the effects of climate change on 

processes at different levels, from individuals to ecosystems, and with diverse 

geographical distribution (Cox et al., 2000; Jobbagy et al., 2000; Schlesinger et al., 2000). 

However, there are still gaps in our understanding of the effects of climate change for 

ecological processes at a global and regional scale, and little we know about how future 

climate scenarios will affect ecological interactions (Dixon et al., 1994). These poorly 

understood interactions reduce the accuracy in our attempts to mitigate climate change 

and its effect on the functioning of ecosystems. 

Carbon dioxide (CO2)
 has received much attention as an atmospheric gas with rapidly 

increasing concentrations (Figure 1), which are responsible for c. 60% of the observed 

global warming (Houghton et al, 1996; Grace 2004). Since the beginning of the industrial 

era, the concentrations of CO2
 in the atmosphere have increased from 277 ppm in 1750 to 

395.31 ppm in 2013 (Le Quere, 2014; Figure 1.1). Consequently, each of the last three 

decades has been successively warmer than any preceding decade since 1850 (IPCC, 
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2014). Therefore, it is important to understand the mechanisms regulating the increase of 

atmospheric CO2 concentrations and its ecological effects, as it will help us to better 

describe climate change and predict future scenarios (Reichstein et al., 2013). 

 

1.1. Forest and C dynamics 

Terrestrial ecosystems play an important role in the global C cycle under climate change, 

which has given rise to a substantial body of research into terrestrial C dynamics 

(Schlesinger, 1997).  

Forests play a particularly important role in the global C cycle, as they cover c. 40% of the 

total land surface area (Jobbagy & Jackson 2000), making them the largest terrestrial 

store of C (Malhi et al. 1999). Estimated C stocks in forests and forest soils is c. 2150 GtC, 

which is three times greater than the atmospheric C pool (IPCC, 2000). Moreover, studies 

estimate that forest standing biomass constitutes c. 82-86% of all aboveground C 

worldwide (Ritcher et all 1999), representing a substantial part of the global C budget. At 

the same time, forests are particularly sensitive to climate change because of their inability 

to rapidly adapt to environmental changes, which means that there is a high potential for 

alterations to forest functioning in response to the independent or combined effect of 

several climate change factors, such as the rise in temperature, droughts and floods 

(Lindner, 2014). 

Forest ecosystems include producer and decomposer subsystems, which interact and 

depend upon each other, whereby the producer subsystem is the primary source of 

organic C to decomposers, and the decomposer subsystem breaks down, releases and 

cycles nutrients for producers (Wardle, 2002). These feedbacks can cause changes in 

biotic or abiotic soil properties, which affect the establishment, growth and/or reproduction 

of plant species (Wardle, 2004). Additionally, positive and/or negative feedbacks can 

promote coexistence, by diminishing fitness differences between species (negative 
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feedbacks), or by generating multiple steady states and promoting coexistence via species 

partitioning in space and/or time (positive feedbacks; Barot, 2004; Pacala, 1997). Such 

interactions and feedbacks between subsystems and the species within them need to be 

taken into account to assess the potential effects of environmental change on ecosystem 

function, as they might lead to changes in C sequestration and emissions. 

 The majority of net primary productivity in forests enters the system via organic C inputs 

from plant aboveground biomass (producers) into the soil, providing substrate for microbial 

decomposers (McNaughton et al. 1989). Accordingly, plant litter is crucial for ecosystem 

function, as it is a key component within the processes controlling ecosystem productivity, 

gas fluxes and C sequestration (Swift et al. 1979; Wardle et al, 2004). Thus, the quality 

and quantity of litter inputs have the potential to affect the feedbacks between producer 

and decomposer subsystems and modify ecosystem carbon and nutrient dynamics 

(Prescott et al, 2013).  

Research on forest C dynamics has become a useful tool to assess the role of forest 

vegetation and soils under climate change (Shibata et al, 2005), and forms a fundamental 

component of ecosystem ecology, particularly because of the close relationship between 

forest C dynamics and productivity (Cole and Rapp 1981). However, despite the global 

importance of forest C dynamics, our understanding of the interactions between 

aboveground and belowground subsystems remains deficient. 

Approximately 80% to 90% of total plant production (e.g. root exudates, leaves, roots) 

enters the soil food web, returning C to the soil (Zhu et al., 1996). These organic materials, 

which are an important source of labile C, are broken down by the soil biota and eventually 

decomposed by soil microbes. During this process, a large proportion of the C is released 

back to the atmosphere as CO2 as a consequence of microbial respiration (Bardgett and 

Wardle, 2010). 
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Figure 1.1. Long-term temperature averages and changes in global temperature and CO2 

concentrations over time. Red bars show temperatures above the long-term average, and blue 

bars indicate temperatures below the long-term average. The black line shows atmospheric carbon 

dioxide (CO2) concentration in parts per million (ppm). Figure reproduced from Melillo et al. (2014).   

 

It is therefore important to acknowledge that an important portion of the forest C cycle 

occurs belowground, and it will be altered by changes in the biotic and abiotic variables 

associated with it, such as tree species composition and changes in climate. 

 

1.2. Tree species effects on C dynamics 

Tree species presence and distribution can regulate the resources entering the forest soil, 

as these resources vary according to species-specific differences in the quality and 

quantity of leaf litter and root inputs (Wardle, 2002). In forests, variations in the chemical 

properties of leaf litter and differences in tree functional traits (e.g. deciduous, conifer, 

nitrogen fixing) can been important soil forming factors, shaping C cycling in forests 
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(Hobbie, 1992; Mitchell et al., 2010). This is particularly important for countries in the 

European Union, because their forest landscape (which comprises 35% of the total area) 

contains up to 49% of the soil organic C stock (Smith et al 2002) and is likely to be the 

result of past forest management decisions (Vesterdal et al, 2013). In this context, the 

informed selection of tree species for managed afforested land is of great importance, and 

the variable influence of different tree species on C dynamics becomes a key factor for 

consideration. In particular, studies have demonstrated the crucial role of trees in shaping 

forest ecosystem by generating species-specific effects on soil properties and soil 

communities (Vesterdal et al, 2008; Lucas-Borja, 2012; Vesterdal et al, 2012; Vesterdal et 

al, 2013), affecting litter decomposition and soil respiration. However, the mechanisms 

behind these interactions and how they affect forest soil processes are still unclear 

(Prescott, 2013). 

 

1.3. Litter quality and quantity 

The quantity and quality of litter both play important but distinct roles in forest soil C 

dynamics (Westoby and Wright, 2006) but whereas litter quantity can be easily measured, 

the selection of leaf litter properties to determine “litter quality” varies among studies 

(Couteaux et al., 1995; Aerts, 1997, Prescott, 2010). Previous work has shown the 

importance of total C and nitrogen (N) content, the C:N ratio, lignin content, cellulose 

content and the ratio of lignin to nitrogen to represent litter quality, particularly because of 

their importance in litter decomposition and soil C dynamics (Schulps et al., 2008). Litter 

decomposition involves two simultaneous sets of processes: i) the mineralization and 

humification of lignin, cellulose and other compounds by the soil microbial community; and 

ii) the leaching into the soil of nutrients and C, which are subsequently progressively 

mineralized or immobilized (Wardle, 2002 ). Decomposition processes are also controlled 

by abiotic factors, such as climate, and by biotic factors such as soil macro and micro 
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fauna (Couteaux, 1995), all of which affect belowground microbial activity and the 

consequent release of CO2 by respiration (Scherer-Lorenzen, 2008). In addition, leaf litter 

properties can affect decomposition rates by promoting or inhibiting soil microbial activity 

as a consequence of levels of chemical compounds present in leaves (Sariyildiz and 

Anderson, 2003). Moreover, the content of nutrients and C in leaf litter also have a direct 

impact on microbial activity, as they are the main energy source for decomposers 

(Freschet et al., 2013). A number of studies show how the presence of different tree 

species can affect soil pH, soil C and N content, and other soil properties (Hobbie, 1992; 

McNamara, 2008), but the influence of species-specific litter properties on C dynamics 

under climate change is poorly characterised.  

Variations in the quantity of litter inputs are an important driver of soil C dynamics (Raich 

and Tufekciogul 2000; Xu et al. 2013) because changes in litter inputs directly influence 

the amount of resources entering the soil. Litter manipulation experiments are a useful tool 

for research into the importance of litterfall in forest ecosystems (Sayer 2006). For 

instance, long-term litter removal treatments cause nutrient depletion, which can alter other 

soil processes and reduce soil quality (Sayer 2006). Litter removal also causes a reduction 

in soil respiration because it removes organic substrates for microbial soil biota (Xu et al. 

2013). On the other hand, the effects of litter addition can be less evident, as big pulses of 

litter inputs commonly occur naturally, such as at the beginning of autumn in temperate 

forests, which can  account for a large proportion of the annual litterfall (Fenn, 2014). Litter 

inputs are likely to increase in response to elevated concentration of atmospheric CO2 and 

patterns of litterfall could also be affected by changes in climate and species composition.    

The body of research presented in this thesis aimed to determine the effects of different 

tree species on soil C dynamics via their litter inputs. In particular, I conducted a series of 

experiments, including a microcosm study in the lab, and in situ mesocosm experiments 
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within an established tree growth trial, to assess the relative influence of litter and soil 

properties on decomposition processes and soil respiration (CO2 efflux).  

- In Chapter 2, I present a detailed account of the methodology used to conduct these 

experiments, including descriptions of my field sites, and laboratory and field procedures I 

used to answer key research questions about forest soil C dynamics. 

- In Chapter 3, titled “Litter quality affects the dynamics and storage of soil carbon 

under different tree species in a temperate woodland”, I present the results from a soil 

microcosm study, which used a factorial design to assess the influence of litter from ash, 

oak, sycamore and a species mixture on the C dynamics of soils collected from under the 

same species. For this study I used litter and soil collected from a naturally established 

temperate woodland near Wytham, UK. 

- In Chapter 4, titled “Litter quality controls the response of soil carbon dynamics to 

altered litter inputs in a managed temperate woodland”, I explored the effects of litter 

addition and litter removal treatments in single-species plots of alder, oak or pine, and all 

possible two-species mixtures, in a forestry growth trial at Gisburn Forest, UK. I measured 

litter quality, and quantified litter decomposition for each species and mixture to interpret 

changes in soil respiration in response to litter treatments and assess the potential release 

of soil C through ‘priming effects’. 

- Finally, in Chapter 5, titled "Tree species identity and litter quality regulate soil 

carbon dynamics in a managed temperate woodland", I present evidence for the 

influence of litter from different tree species on soil C dynamics using a reciprocal litter 

transplant experiment, within the Gisburn Forest plots. I quantified litter decomposition and 

soil respiration in response to "home" or "foreign" litter in single-species plots of oak, alder 

or pine, measured changes in soil properties in response to litter addition and assessed 

the occurrence of ‘home field advantage’.  
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Taken together, the results of each study provide important insights into the linkages 

between litter quality, decomposition and soil respiration in temperate forests. Thus, the 

work presented in this thesis represents an advance in research into the influence of 

different tree species on soil C dynamics under climate change, which could inform 

forestry rotation and reforestation practices in future. 
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2. Methods 

 

2.1.Introduction 

Temperate forest soils are a key global carbon (C) repository. Several factors, both biotic 

and abiotic, have an effect on C dynamics in temperate forest soils. Tree species identity 

and distribution influence soil processes via the quantity and quality of litter inputs to the 

soil, which suggests that differences in tree species can also influence soil C storage and 

its release as CO2.   

The research I present in this thesis investigates differences in the litter quality of 

temperate tree species and how these differences affect C dynamics in forest soils. 

Furthermore, I explore the implications of how tree species identity could modify soil 

carbon dynamics under climate change. To achieve this, I conducted a series of studies 

that include lab incubations and field experiments. Each experiment was designed to 

answer a specific set of questions, however most of my experiments follow the same lab 

and field procedures.  

The aim of this chapter is to present the methodology used to conduct my experiments. I 

describe in detail my experimental designs, sample collections, measurements, and the 

laboratory procedures I used to analyse litter and soil samples. 

 

2.2. Field sites 

I established field experiments in two different locations in the UK; both are temperate 

woodlands but they differ in site history and dominant tree species.   

 

2.2.1. Wytham Woods 

Wytham Woods (henceforth "Wytham"), to the west of Oxford, UK (1º19´W 51º46´N; Kirby 

and Thomas 2000; Fig 2.1), is owned by the University of Oxford and commonly used for 
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environmental research. Wytham comprises of 390 ha with a variety of habitats including 

ancient semi-natural woodland, secondary woodland and plantations as well as calcareous 

grasslands. According to the SSSI citation, Wytham has an exceptionally rich flora and 

fauna, with over 500 species of vascular plants. It is also one of the most researched 

areas of woodland in the world, with important long-term biological monitoring that includes 

climate change data for the last 18 years. My field experiment was established in an area 

of 100-year old, naturally established mixed deciduous woodland. The canopy is 

dominated by ash (Fraxinus excelsior L.), sycamore (Acer pseudoplatanus L.), and oak 

(Quercus robur L.; Fenn, 2015) and I therefore chose these as focal species for my 

experiments.  

 

2.2.1.1. Experimental design. 

I established 20 plots, measuring 4-m x 4-m each, in naturally occurring stands dominated 

by ash, oak or sycamore, and mixed stands with all three species. Plots were chosen 

based on two criteria: (a) the canopy above each plot was composed exclusively of the 

relevant focal species, and (b) plots were surrounded by at least three mature individuals 

of the focal species, with the exception of oak. For oak, plots were established at 2-m 

distance from the trunk and beneath the canopy of at least one adult tree because adult 

oak trees did not occur in clusters at the study site. Following these two criteria I ensured 

that the soil in each plot was mainly influenced by the focal species. In total, I selected five 

replicate plots for each individual species and five for the tree-species mixtures. I used the 

20 plots to conduct two experiments: 

Experiment 1. “Litter quality affects the dynamics and storage of soil carbon under 

different tree species in a temperate woodland” (see Chapter 3) 

I collected soil samples from each block to conduct a lab microcosm experiment. The aim 

of this experiment was to assess the influence of tree species on soil properties and CO2 
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efflux. I collected litter and soils from the 20 plots at Wytham and established microcosms 

in a fully factorial design with all possible combinations of litter species and soil types.  

 

2.2.2. Gisburn Forest  

I conducted studies within a long-term tree growth trial established by Forest Research, 

located in Gisburn Forest, northwest England (henceforth "Gisburn"; Fig. 2.1). The site is 

c. 35 km inland from the coast (54° 1′ N; 2° 22′ W), with elevation ranging from 260 to 290 

m a.s.l., and the site slopes slightly to the south-west.  

The first rotation of the growth trial was planted in 1955. The trial is currently in its second 

rotation, which was planted in April 1991 following the same ploughing, planting pattern 

and spacing as the first rotation. Consequently, at the time of my study, the soil in each plot 

had been under the influence of the same tree species or mixture of species for 60 years. 

The experiment includes single-species plots of alder (Alnus glutinosa L.), oak (Quercus 

petraea L.), Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Sitka 

spruce (Picea sitchensis L.). 

The growth trial consists of a total of 36 square 0.2-ha plots with a core plot of 0.1 ha, 

which is used for all tree growth measurements. Each species was planted in monoculture 

and in all possible two-way species combinations in a 50:50 mixture. Thus, there are 15 

single-species and mixed-species treatments in three replicate blocks, as well as 

unplanted control plots (for details, see Mason and Connolly 2013). The layout of the 

species mixtures consisted of a ‘checkerboard’ pattern of alternating groups of 18 plants of 

each species in a six by three plant layout at 1.5-m x 1.5-m spacing. This layout was used 

to reduce the risk of a faster growing species suppressing slower growing trees and to 

ensure longer-term continuity of the mixed plots. For my experiments, I selected tree 

species based on functional group differences. I included all plots with monocultures of 
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alder (nitrogen-fixer), oak (broadleaf deciduous), and scots pine (evergreen) and all plots 

with the paired combinations of these species, giving six treatments and a total of 18 plots.  

 

2.2.2.1. Experimental design. 

I conducted two field experiments at Gisburn Forest.  

Experiment 2. “Litter quality controls the response of soil carbon dynamics to 

altered litter inputs in a managed temperate woodland” (see Chapter 4) 

I used a reciprocal litter transplantation experiment to determine how the "home-field 

advantage" (Ayres et al., 2009) affects soil C dynamics. I established three in situ 

mesocosms per single-species plot; two received a ‘foreign’ litter input from each of the 

other two species and the third one received litter from the ‘home’ species. Litter addition 

followed a factorial design with all litter types decomposing within mesocosms on each soil 

type. I analysed initial and final soil properties, measured litter decomposition rates and 

performed monthly field soil CO2 efflux measurements during 18 months.  

Experiment 3. “Tree species identity and litter quality regulate soil carbon dynamics 

in response to inputs on ‘foreign’ litter in a managed temperate woodland” (see 

Chapter 5) 

The second experiment at Gisburn explored the effects of increased litter inputs on soil C 

dynamics, particularly how different tree species and mixtures contribute to priming effects.  

I used litter removal and litter addition treatments within in situ mesocosms to assess the 

effect of altered litter inputs on soil properties over time. I measured soil CO2 efflux 

monthly during 18 months and determined litter decomposition rates for each species 

using litterbags (see section 2.3.3.). 
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Figure 2.1. Aerial photographs of Wytham Woods, Oxfordshire, UK. a) Wytham Woods 

location, Oxfordshire  b) Specific location of the experimental plots at Wytham Woods. 

Image b representa a 16-ha area, with red square showing the approximate location of the 

study area at Wytham woods (Images were obtained from: Wytham Woods-Imagery 

©2017 Infoterra Ltd & Bluesky, Digital Globe, Map Data ©2017 Google; and Gisburn 

Forest-Imagery ©2017 Getmapping plc, Map Data ©2017 Google). 

 

2.3. Field measurements 

2.3.1. Soil respiration measurements  

Soil respiration (soil CO2 efflux) measurements were taken monthly from in situ 

mesocosms installed at both field sites. Mesocosms were installed to standardize the soil 

surface area and to delimit treatment area. Mesocosms represent an important tool in 

ecological research (Stewart et al. 2013) and I used them for my experiments to contain 

treatment effects within a discrete area and avoid disrupting long-term measurements at 

the sites. All mesocosms were installed at least one month before the start of data 

collection (Fig 2). Mesocosms were polyvinyl chloride (PVC) tubes (20-cm diameter 

and13-cm height) sunk 3-cm deep into the soil leaving a 10-cm length aboveground, 

aiming for a flat and visually undisturbed soil surface inside the mesocosm.   
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Figure 2.2. Aerial photographs of Gisburn Forest, UK.: a) Gisburn Forest, Lancashire, UK. 

b) Diagram representing the distribution of plots and experimental set up at Gisburn 

Forest.  (Images were obtained from: Wytham Woods-Imagery ©2017 Infoterra Ltd & 

Bluesky, Digital Globe, Map Data ©2017 Google; and Gisburn Forest-Imagery ©2017 

Getmapping plc, Map Data ©2017 Google). 

 

All mesocosms were installed manually at a minimum distance from tree trunks, as tree 

proximity can influence soil respiration rates (Hanson et al., 2000). All mesocosms were 

placed at 2-m from the nearest tree trunk at Wytham Woods. At Gisburn Forest, collars 

were placed outside of the core measurement plot and at least 1-m from the nearest tree 

trunk. All vegetation and litter within the collars was removed one month prior to soil CO2 

efflux measurements and checked monthly to avoid plant growth and unwanted litter.  

To avoid naturally falling litter entering the mesocosms, wire mesh 'hats' were placed on 

top of each collar. Each hat was made from a 40-cm square of 1-cm aperture wire mesh, 

which was cut and folded to create a cone that fit over the mesocosm (Fig. 2a). The 

aperture in the hats was enough to permit water and light to transfer freely. Hats were 

pinned to the soil using commercial tent pegs; they were removed before taking respiration 

measurements and replaced immediately afterwards.  
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Soil CO2 efflux measurements were taken using a LiCor L1-8100A soil survey system 

(LiCor BioSciences, Lincoln, Nebraska, USA; Fig. 2.2), a closed-system infra-red gas 

analyser with a soil chamber that fits on top of the mesocosms. The IRGA measures the 

concentration of CO2 in the headspace over time and calculates efflux rates from the 

accumulation of CO2 within the chamber. To eliminate the effects of turbulence from 

chamber closure, a 15-sec post-purge period and a 15-sec dead band period were set for 

each measurement. 

 

2.3.2 Soil and litter collection 

Soil collection. 

Soil samples were collected from both field sites at 0-10 cm depth using a 2.5-cm diameter 

soil corer. At Wytham Woods, soil was collected from inside the experimental plots, 

avoiding trees closer than 2-m. At Gisburn Forest, soils were collected from the core plot, 

avoiding trees closer than 1-m. The number of cores taken varied depending on the 

quantity of soil needed for analysis and/or lab incubations. To determine initial soil 

properties, soils from each plot were collected and mixed to create a composite sample 

per replicate. To determine treatment effects, soils were collected from within mesocosms 

at the end of experiments. All samples were sealed in plastic bags and brought back to the 

lab. Soil samples were then either processed fresh (within 24 h after collection) or oven-

dried for further analysis.  

  

Litter collection. 

Freshly fallen litter of all species included in my experiments was collected from the study 

sites. Only litter on the top layer of the forest floor was selected and to ensure its 

freshness, I made sure the base of petioles was still green.  
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  a)                                                                           b) 

 

 

 

 

 

 

 

Figure 2.3. Photographs of mesocosms in the field and field CO2 efflux measurements. a) 

Mesocosm in an oak stand, showing the wire-mesh hat to prevent natural litter inputs. b) 

The LiCor L1-8100A survey system during a soil CO2 efflux measurement. 

 

2.3.3 Leaf litter decomposition (Litterbag experiment) 

To measure leaf litter decomposition rates for different tree species in the field, I made 10-

cm x 10-cm litterbags using 1-mm nylon mesh containing 3-g of dry leaf litter that was 

chopped and sieved to 1 cm. Litterbags were placed next to mesocosms in the field, 

removing all litter and vegetation to ensure direct contact with the soil, and the bags were 

fixed using metal pegs. Sets of litterbags were collected after two and four months to 

calculate litter decomposition rates. 

 

2.4. Sample processing and laboratory procedures 

2.4.1. Litter processing and analysis  

Leaves and litter samples were brought back to the lab and oven dried (60 ºC). Litter used 

in field experiments was left intact, litter used in soil incubation was knife-milled (Retsch 

GM300, Hann, Germany) and sieved (2 mm), and litter used for litterbag experiments was 

manually chopped and sieved (1 cm). The remaining litter was ground using a ball mill 
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(Retsch MM400, Hann, Germany) to perform further analyses and chemical analyses were 

performed on three replicate composite samples per species.  

 

2.4.2. Litter chemical properties 

I determined the total C and N content and conducted fibre analysis of leaf litter samples. I 

measured the C and N content of the leaf litter on 0.30-g subsamples using a Vario ELIII 

Element Analyser (Elementar, Hessia, Germany) and calculated ratios of C to N (C:N 

ratio). Fibre analysis was performed to determine lignin and cellulose content following the 

Van Soest method (Van Soest, 1963), which uses a series of digestions to calculate fiber 

content from plant material by mass loss. Acid detergent lignin (ADL) and cellulose were 

determined on 1-g of oven-dried (60 ºC) and knife-milled (1 mm) litter. I performed the 

extractions using a FibertecTM 1020 hot extraction unit (Foss, Hilleroed, Denmark). Each 

sample was placed in a glass crucible and 1-g of celite was added as a filtration aid. Total 

acid detergent fibre (ADF) was obtained after washing the samples with boiling acid 

detergent solution (0.5 M H2SO4 + CTAB(Cetyl trimethylammonium bromide)) for 1 h, 

followed by a 5-min acetone soak. The resulting ADF samples were drained and oven-

dried at 105 ºC for 5 h. Cellulose was then solubilized by soaking the ADF samples in 70% 

H2SO4 for 3 h, followed by washing with hot deionized H2O (until acid-free, determined 

using pH indicator paper). The remaining sample was dried for 2 h at 130 ºC and then 

ashed in a furnace for 3 h at 525 ºC. Cellulose content was calculated from the mass loss 

after solubilization and lignin content was calculated from the mass of the residue pre 

ashing. 

 

2.4.2. Soil analysis 

2.4.2.1. Soil moisture, water holding capacity, and pH 
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Gravimetric soil water content was determined by oven-drying 20-g of fresh soil to 

constant weight at 105 ºC. Soil water holding capacity (WHC) was measured by placing 

100-g of oven-dried soil in a plastic container. The base of the container had small holes to 

allow drainage. Soil-filled containers were placed in a water bath for 24 h to allow the soil 

to absorb water, and removed from the water bath for another 24 h, allowing water to drain 

freely. Subsamples were then weighed to calculate water-holding (field) capacity by mass 

difference.  

Soil pH was measured in a 1:3 slurry of soil to deionised water. The slurry was made by 

mixing 3-g of fresh soil in 9-g of distilled water in a small plastic cup and shaking the 

mixture for 1 h. Soil pH was then measured using a S220 Seven Compact pH meter 

(Mettler Toledo, Columbus OH, USA). The pH meter was calibrated at the beginning of 

measurements and the electrode was rinsed in between measurements with distilled 

water.  

2.4.2.2. Soil microbial C 

Soil microbial biomass was determined on paired subsamples (8-g fresh weight) by 

chloroform fumigation extraction (Vance et al, 1987), with modifications (Jones & Willet, 

2006) within 24 h of sample collection from the field. One of the subsamples from each 

pair was fumigated by placing the soil samples in a desiccator with a 250-ml beaker 

containing 40-ml of ethanol-free chloroform, and another smaller beaker with 20-g of soda 

lime. To keep the samples from dehydrating, I included damp commercial paper towel. The 

desiccator was then closed and evacuated using a suction pump until the chloroform 

boiled. After 5 minutes, the pump was turned off (making sure the desiccator was 

completely sealed) and left for 24 h. After this period, the stopcock on the desiccator was 

opened and all air was pumped out three times to make sure samples were free of 

chloroform. The fumigated and unfumigated sub-samples were then placed in 50-ml 

plastic falcon tubes with 40-ml 0.5M K2SO4. The samples were shaken at 200 rpm for 1 h, 
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centrifuged at 3000 rpm for 5 minutes and filtered (Whatman 42 filter paper). The extracts 

were refrigerated until total C analysis was performed (see section 2.4.2.3. below). Soil 

microbial biomass was estimated by the difference in total C between fumigated and 

unfumigated subsamples. 

2.4.2.3. Soil carbon and nutrient concentrations 

I measured total soil C and N content on 0.15 g oven-dried (105 ºC), ground soil using a 

Vario ELIII Element Analyser (Elementar, Hessia, Germany). This procedure also calculate 

C:N ratios.  

I extracted ammonium-N and nitrate-N from soil samples using a KCl solution. As the 

conversion of ammonium to nitrate can occur rapidly after sampling, the extraction process 

started during sampling in the field. The day before collection, I filled a 50-ml plastic falcon 

tube with 20 ml 2M KCl solution for each sample. The tubes were refrigerated overnight 

and taken to the field for soil collection. Soil cores were collected and placed in bags to 

create a composite sample (see section 2.3.2. above), from which 2 g were subsampled 

and added to each tube. All tubes were kept cool until the samples were brought back to 

the lab. Within 24 h, all samples were shaken at 200 rpm for 1 h, allowed to settle for 30 

min and filtered (Whatman 42 filter paper). Samples where then refrigerated until analysis 

for NH4
+-N and NO3

--N using an Autoanalyser (Bran and Luebbe AA 3; Seal Analytical, 

Southampton, UK). 

 

2.5. Soil microcosm experiments 

Soil microcosms are commonly used to assess soil processes under controlled lab 

conditions. However, vessel size, soil quantity, and C source differ among studies that 

suggest different approaches to soil incubations (Alef, 1995). Differences in the microcosm 

design can influence the accumulation of CO2, evaporation of water from the soil, and the 

appropriate duration of the experiment, which in turn can affect the results of soil 
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microcosm experiments. Measurements of soil CO2 efflux are also influenced by ambient 

CO2 concentrations, and the build-up of CO2 within incubation jars should be avoided to 

maintain similar CO2 efflux to field conditions (Shoji and Komatsu, 2006). At the same time, 

soil moisture is critical for microbial activity and decomposition rates, which in turn affect 

soil respiration measurements (Borken et al, 2003). Given the need to limit CO2 

accumulation while minimising water loss, I conducted a pilot study to determine the 

optimal microcosm design for my experiment. Soils for this pilot study were collected from 

Wytham Woods in November 2013, oven dried (38 °C), sieved (2 mm) and manually 

homogenized to remove roots and stones.  

2.5.1. Pilot studies to determine microcosm design. 

To test the influence of microcosm design on soil water content and soil CO2 efflux, I 

conducted three pilot studies looking at (a) the effect of incubation size on soil water loss 

and CO2 efflux, (b) the effect of different lid designs on CO2 efflux and water loss and c) the 

effect of litter processing on CO2 efflux.  

In all three studies, I measured soil CO2 efflux using an infra-red gas analyser with an 

eight-channel multiplexer adapted to incubation jars (LI-8100 and LI-8150, LiCor 

Biosciences, Lincoln, Nebraska, USA). Soil CO2 efflux from each microcosm was 

measured during 2 minutes with a dead-band period of 15 s to account for turbulence at 

the beginning of measurements. 

(a) The effect of incubation size on soil water loss and soil CO2 efflux. For this study, 

I used Kilner™ jars of three different volumes (0.25 L, 0.5 L and 1 L). For each jar size, I 

established two replicates of three different soil quantities (Table 1) for a total of nine 

treatments and 18 microcosms. Soils in all microcosms were brought to 50% WHC and left 

uncovered to measure water loss over time. I recorded water loss by mass difference and 

measured CO2 efflux every hour for the first 6 h and 18 h later for a 24 h total observation 
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time. Results of these observations showed that microcosms with less soil lost more water 

(Fig. 2.3a). 

 

Table 2.1. Different combinations of jar size and soil mass used in a pilot study of microcosm 

designs, testing for water loss, lid design and their effect on soil CO2 efflux. I used three different jar 

sizes: small (0.25L), medium (0.5L) and large (1L), and each jar size was tested with three different 

soil quantities. 

Jar size (L)  Soil quantity (g) 

 
0.25 

small 10 

medium 20 

large 50 

 
0.5 

small 20 

medium 50 

large 100 

 
1 

small 50 

medium 100 

large 200 

  

  

The study also demonstrated that water loss affected soil CO2 efflux, as soil respiration 

rates declined with the decrease in WHC (Fig. 2.3b). Of all tested microcosms, those 

consisting of 0.5-L jars and 50-g of soil had the lowest rate of water loss and the smallest 

fluctuations in CO2 efflux.  

 b) The effect of different lid designs on CO2 accumulation in microcosms. To reduce 

CO2 accumulation within and water loss from the mesocosms, I tested three different lid 

designs: 1) 'open', with no lid, 2) 'vented' a 1-cm opening in the centre of the lid, and 3) 

'closed' with standard lids. I used these lids in combination with all nine microcosm sizes 

(nine microcosm sizes x three lid designs x two replicates; 54 microcosms in total). The 

soils in this experiment were incubated at 50% WHC, observations were made during four 

days, and CO2 efflux was measured at 48 h and 96 h. To ensure constant WHC, the 

microcosms were weighed 1 h prior to respiration measurements and the weight was  
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Figure 2.4. Figures show results from pilot experiments exploring the effect of different 

microcosm designs (treatment) on soil water loss and CO2 efflux. a) Evaluation of the 

effect of soil water content on CO2 efflux among the best 5 microcosms designs; the 

treatments show the size of the jars (L= 1L, M = 0.5 L and S = 0.25 L) and the quantity of 

soil. b) Graph shows soil water loss on each treatment; the treatments show the size of the 

jars (L= 1L, M = 0.5 L and S = 0.25 L) and the quantity of soil; b) c) Differences in soil CO2 

efflux during a test of lid design of incubation jars; where ‘open’ = without a lid, ‘vented’ = 

lid with a 1-cm opening in the centre and ‘closed’ = completely closed. 

 

                        a)                                                                        b) 

c)                                       

Vented       Closed           Open 
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readjusted by water addition. All lids were removed 30 min before the start of respiration 

measurements. Results of these observations (Fig. 2.3c) showed that accumulation of 

CO2 in 'closed' mesocosms was still evident during measurements. However, CO2 efflux in 

'vented' microcosms had low variation and was similar to 'open' microcosms, but with only 

a modest decrease in water content. Based on these results, the microcosm design used 

for my next experiment was a 0.5-L Kilner™ jar containing 50-g of soil and a vented lid. 

 c)  Effect of litter processing on soil CO2 efflux in microcosms. Litter for this test was 

collected from Wytham Woods. A 50:50 mixture of oak and sycamore leaf litter was used 

and the quantity added to each microcosm (0.3 g) was estimated using litterfall data from 

experimental plots in Wytham Woods. Litter was oven dried at 60 ºC and either chopped 

into 1-cm2 pieces or ground using a ball mill. The litter was then either thoroughly mixed 

with the soil (chopped litter only) or placed on the soil surface resulting in three different 

litter treatments: chopped-mixed, chopped-top, ground-top, as well as a control treatment 

with no litter addition (Fig 2.4). Following the results of the previous pilot study, 

microcosms consisted of 0.5-L Kilner™ jars with 50-g of soil and a vented lid (five 

microcosms per litter treatment; 15 total).  

The soils were incubated at 50% WHC for three weeks and soil CO2 efflux measurements 

were taken every two days.  Soils were brought up to 50% WHC 1 h prior to respiration 

measurements as described above. Results showed a difference in the strength of the 

response among treatments, with ground litter placed on the soil surface showing higher 

CO2 efflux rates compared to the other litter treatments. Based on these results, the 

selected incubation design for my microcosm experiment consisted of a 0.5-L Kilner jar™ 

with a vented lid containing 50-g of dry soil and ground leaf litter added on top of the soil 

as the experimental C input. 
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a)                                               b)                                               c) 

 

 

 

 

Figure 2.5. Figure shows different litter treatments and results for my experiment studying the 

effect of litter fragment size on soil CO2 efflux. Pictures show microcosms with different litter 

treatments: a) ground litter placed on the surface, b)  chopped litter mixed with soil, and c) chopped 

litter placed on the surface. Results show that ground litter treatment evoke the highest respiration 

rates. 

 

2.5.2. Soil incubations for microcosm experiments 

 Soil samples for the microcosm experiments were brought back to the lab immediately 

after collection and oven-dried to constant weight at 38 ºC. Samples were sieved (2 mm) 

and 50-g of soil were placed within 0.5-L glass Kilner™ jars with a vented lid (Fig. 2.5). To 

allow soil CO2 efflux to stabilise before treatment addition, soils were pre-incubated at 

constant room temperature and 50% WHC for 13 days. Microcosms were brought up to 

50% WHC 1 h before each respiration measurement. 

 

I measured soil CO2 efflux using an infra-red gas analyser with an eight-channel 

multiplexer adapted to incubation jars (LI-8100 and LI-8150, LiCor Biosciences, Lincoln, 

Nebraska, USA). Once CO2 efflux from the microcosms had stabilized, I performed one 

single litte addition of 0.3-g of ground litter, corresponding to double the annual litterfall at 

Wytham Woods. The litter was placed carefully on the soil surface to create an evenly 



35 

 

distributed litter layer. After litter addition, I measured soil CO2 efflux three times a week 

during four weeks and then once a week for another two weeks (14 observations in total). I 

terminated the experiment 43 days after the start of litter treatments and sampled the soil 

inside the microcosms for soil chemical analysis.  

 

 

 

 

 

 

 

 

Figure 2.6. Photo of the microcosm design used to study the effects of different tree species litter 

on soil C dynamics. I used vented Kilner™ jars (0.5 L) containing 50-g of dried, sieved soil, and 

ground litter.  
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Chapter 3. Litter quality affects the dynamics and storage of soil carbon under 

different tree species in a temperate woodland.  

 

Abstract 

 

Forest soil carbon (C) stocks vary widely depending on the dominant tree species, and 

differences in the quality of leaf litter also affects soil carbon dynamics during 

decomposition. However, less is known about how the interaction between soil properties 

and litter quality will influence carbon dynamics in future., In this chapter,  the interactive 

effects of litter quality and soil properties from stands of different tree species in mixed 

temperate woodland in the UK were studied, using a microcosm experiment. I measured 

key properties of ash, oak, sycamore, and mixed-species litter, and their effect on soil CO2 

efflux and soil properties were quantified during a four week incubation. Pre-treatment soil 

CO2 efflux varied by species and was linked to soil pH and the ratio of C to nitrogen (N) in 

the soil, whereby CO2 efflux was highest for mixed-species and lowest for oak soils. 

However, changes in soil CO2 efflux and microbial biomass after litter additions revealed 

interactions between litter quality and initial soil properties. Peak and cumulative soil CO2 

efflux from microcosms was related to litter quality. Sycamore litter had the highest N and 

lowest lignin content; whereas the reverse was observed for oak litter. Accordingly, 

sycamore induced the highest peak CO2 efflux, regardless of soil type, with respiration 

rates up to 57.1% higher than soils to which oak litter was added. However, the magnitude 

of this response was modified by soil type. In particular, soil type largely explained 

changes in soil microbial biomass carbon (MBC) and pH after litter addition, regardless of 

litter type. My results give an insight into the potential contribution of different tree species 

to soil C storage to mitigate rising atmospheric levels of CO2. 
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3.1. Introduction 

 

Forests play a key role in global carbon (C) cycling and sequestration (Dixon et al., 1994; 

Peng et al., 2008, Schimel and Gulledge, 2001). Forests represent c. 80% and 40% of 

global terrestrial aboveground and belowground C stocks respectively, with an estimated 

total C stock of 2150 Gt C, making them one of the world’s major C stores (Kirschbaum et 

al., 1996). Accordingly, forests are particularly important in the efforts to reduce 

atmospheric concentrations of CO2 because their rate of CO2 exchange with the 

atmosphere (≈ 50 Pg C yr-1) is seven times larger than anthropogenic emissions (Brown et 

al., 1995). However, despite the number of studies assessing forest C pools (Batjes, 1996; 

Jobbágy and Jackson, 2000; Six et al., 2002), our understanding of soil C dynamics in 

different forest types needs to be improved.  

In many temperate forests, the soil contains more than twice as much C as the 

aboveground biomass (Eswaran et al., 1993; Goodale et al., 2002). A large quantity of C 

enters the soil as leaf and root litter (McNaughton et al., 1989), which is estimated to 

contribute about 70% to the annual C flux, with leaf litter decomposition as the primary 

source of soil C and nutrients (Warembourg and Paul, 1977). During leaf litter 

decomposition, nutrients from organic materials are mineralised by microorganisms and 

made available for plant uptake, whereas C is either stabilised and stored in the soil or 

released back to the atmosphere as CO2 (Aber and Melillo, 1991; Schlesinger, 1997; 

Gartner and Cardon, 2004). The turnover, storage and release of C and nutrients during 

decomposition is the result of many complex interactions, which are influenced by soil 

type, decomposer communities, climate conditions and tree species (Vesterdal and 

Raulund-Rasmussen, 1998; Côté et al., 2000; Callesen et al., 2003; Jandl et al., 2007; 

Prescott, 2010). Nonetheless, there is still a particular need for a better understanding of 

how plant - soil interactions will affect temperate forests in a changing environment. 
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Changes in climate conditions are likely to affect temperate forests (Reichstein et al., 

2013). This is particularly important because temperate forests are essential for ecosystem 

C sequestration above and belowground. However, belowground C stocks are likely to be 

more stable over the long term than C sequestered in aboveground biomass (Batjes, 

1998). This makes soils an important sink for C, which could help stem the rise in 

atmospheric CO2 (Vesterdal, 2012). However, our current knowledge of the mechanisms 

underlying temperate forest soil C dynamics, and how these mechanisms may be affected 

by climate change, is still deficient.  

A particular aspect that remains poorly explored, is how different tree species affect soil C 

dynamics in forest. Forest vegetation is known to affect soil C dynamics (Folster et al, 

2001), and studies in temperate forest have demonstrated that soil C concentrations vary 

with tree species (Ahmed et al, 2016), but it is still unclear how the litter of different tree 

species influences soil processes. This lack of knowledge becomes critical in the face of 

climate change, as tree species are likely to have different responses that affect important 

aspects such as tree growth, seedling emergence, and survival rate (Jiang et al, 2014; 

Fisichelli et al, 2014), which in turn could affect species composition. Additionally, 

variations in rainfall patterns and the likelihood of more frequent extreme events like 

storms and droughts (IPCC 2013; Clark et al, 2014) underlines the importance of 

understanding how such events affect tree species and their consequent effect on forests 

role in C assimilation and sequestration. This information should be incorporated in 

projections of the role of forests in mitigating CO2 emissions, which would help countries 

achieve greater accuracy for reports under the Climate Convention and the Kyoto Protocol 

(Peltoniemi et al., 2007). 
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3.1.1. Tree species variation in litter quality and decomposition 

Litter quality can be defined as a set of physical and chemical characteristics that regulate 

rates of mineralization by decomposers (Paustian et al., 1997). Such characteristics 

include concentrations of C, N, lignin and polyphenols (Gentile et al., 2011; Hattenschwiler, 

2005), control turnover rates of organic matter and essential mineral elements in the soil 

(Melillo et al., 1982; McClaugherty and Berg, 1987; Berg and Ekbohm, 1993) via leaf litter 

decomposition. Hence, variation in these characteristics among tree species is particularly 

important in forests nutrient cycling (Couteaux, 1995; Gehrke, 1995; Yang, 2014). 

The decomposition of plant material is central to ecosystem functioning because it 

underpins the cycling of C and nutrients (Swift et al. 1979, Cadish & Giller 1997), which in 

turn influence plant growth and C storage (Wardle 2002, Bardgett 2005). However, the 

rate of litter decomposition is governed by both the physical and chemical traits of leaf 

litter, which determine the quality of substrate available to decomposer organisms and the 

available habitat space in the forest floor (Berg et al. 1993, Perez-Harguindeguy et al. 

2000). Therefore, it is expected that tree species that vary in litter quality will also vary in 

decomposition rates, thus having different effects in C and nutrient cycling.  

 

In general, leaf litter with high N and P concentrations relative to C concentration 

decomposes faster than leaf litter with low relative concentration of N and P (Webster & 

Benfield, 1986; Enriquez et al., 1993). Other indicator of leaf litter decomposition rates is 

the concentrations of soluble polysaccharides, which are labile C sources, and thus are 

easily degraded and consumed by microbes. In contrast, more complex C compounds in 

leaf litter, such as lignin or tannins, are recalcitrant C resources, and thus metabolically 

more costly to be used by microbes (Sinsabaugh et al., 1993), and expected to slow down 

decomposition rates (Schindler and Gessner, 2009). 

 

Lignin to nitrogen ratios (Lignin:N ratio) play a key role in decomposition (Sinsabaugh et 

al., 1993). Lignin's’ recalcitrance helps to slow down microbial decomposition because only 

specialized biota (predominantly fungi) are able to synthesize extracellular enzymes that 

break down lignin into biologically usable forms (Swift et al., 1979). At the same time, 

Lignin:N ratios are expected to vary with species. In a recent study conducted by Osono 

and Takeda in 2004, the Lignin:N ratios of 14 broadleaf tree species in a Japanese 

temperate forest were compared. In these tree species, litter Lignin:N ratios ranged from 
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10.3 to 80.0 and had a significant effect over litter decomposition, as they helped predict 

the mobilisation and immobilisation of N.   

In addition, litter N is hypothesized to control rates of decomposition by alleviating N 

limitation of litter C degradation (Berg and Staaf, 1980). Hence, specific litter chemical 

properties can be a better predictor of soil processes than plant species composition, plant 

species richness, and litter chemical diversity (Meier and Bowman, 2008). Experimental 

evidence also shows that differences in leaf properties among species, particularly C, N 

and lignin concentrations will affect the rate of organic matter inputs to the soil (Binkley and 

Giardina, 1998; Schulp, 2008). In this case, litter quality appears to be the most important 

control on soil C and N cycling rates, with litter chemical diversity related to soil respiration 

and net N mineralization rates (Meier and Bowman, 2008). At the same time, litter quality 

can be affected by the soil (Lutz and Chandler, 1946), and although there is evidence for a 

relationship between litter and soil nutrient concentrations (Kost and Boerner, 1985), this is 

not consistent across similar studies (Leyton, 1948; Staaf, 1982) possibly due to factors 

such as differences in nutrient re-translocation. Despite much previous research on how 

differences in plant litter, particularly litter quality, affect ecosystem dynamics (Aerts, 1997; 

Berg, 2000; Facelli and Pickett, 1991) there are still many open questions about how 

different tree species affect C dynamics in temperate forest soils. 

 

3.1.1. Tree species effects on forest soil C 

European forests (which includes the forests in the landmass between the Atlantic Ocean 

and the Ural, excluding Turkey and the Mediterranean isles) absorb 7 to 12% of Europe’s 

CO2 emissions (Janssens el al., 2003). This promotes the efforts made by European 

countries to increase forest coverage, as afforested land functions as an important C offset 

(Janssens el al., 2003). Tree species selection is an important criterion for such 

reforestation efforts, as the appropriate choice can increase total C stocks by up to 18%, 
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with most of the initial accumulation occurring in the forest soil (Jandl et al., 2007; Guo and 

Gifford, 2002).   

Tree species effects on soil properties have been acknowledged for more than half a 

century (Zinke, 1962), with studies exploring their contribution to ecosystem processes 

and productivity, gas fluxes, and C sequestration (Binkley and Giardina, 1998; Raich and 

Tufekcioglu, 2000; Wardle et al., 2004; Schulp et al., 2008; Prescott and Grayston, 2013). 

Common garden studies have demonstrated that tree species composition affects soil 

organic carbon (SOC) pools (Vesterdal et al., 2008), whereby SOC concentrations are 

determined by the balance between inputs (e.g. tree litter) and outputs of C (heterotrophic 

respiration). Tree species identity can play important role in SOC formation, because this 

balance depends on the quality and quantity of litter inputs, (Borken et al., 2002; Vesterdal, 

2008).   

Recent studies demonstrate that forest floor concentrations of C, N and C:N ratios differ 

with litter quality  (Vesterdal et al., 2008).  Additionally, tree species with similar litter fall 

rates can differ in forest floor litter accumulation, which is influenced by differences in litter 

decomposition (Hansen et al., 2009). This suggests that litter quality can influence soil C 

stocks by regulating C input rates despite tree species differences in litter quantity 

(Vesterdal et al, 2012). Furthermore, topsoil C concentrations can be affected by dissolved 

organic carbon (DOC) leaching from the litter, which also varies with litter quality (Kleja et 

al., 2008, Fröberg et al., 2011). Finally, differences in litter quality influence soil C turnover 

and storage, directly affecting the rate by which soils release CO2 back to the atmosphere 

(Diaz-Pines et al., 2014). It follows that tree species identity and differences in their litter 

quality is important for C dynamics in forest soils. Despite this, knowledge of the 

mechanisms underlying the tree species effects on soil C and nutrient dynamics are still 

understudied, particularly when assessing the role of plant-soil feedbacks in the global C 

budget (Jandl et al., 2007; Vesterdal, 2008). 
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The aim of this study was to quantify differences in tree species litter quality and explore 

how such differences affect forest soil CO2 efflux. I used a microcosm experiment to 

explore how leaf litter and soil properties interact and tested how differences in litter quality 

promote changes in soil properties and affect soil CO2 efflux. I hypothesised that:  

H1) Soil properties and CO2 efflux vary with tree species, whereas litter with a high lignin 

content will promote lower respiration rates; and 

H2) Litter with high C content will evoke higher respiration rates and increase soil microbial 

carbon (MBC).  

 

3.2. Methods 

3.2.1. Study site 

I collected soil and leaf litter samples from a 100 year old, naturally established mixed 

deciduous woodland at Wytham Woods, Oxfordshire, UK (1º19´W 51º46´N; Kirby and 

Thomas, 2000) in May 2014. I selected ash (Fraxinus excelsior L.), sycamore (Acer 

pseudoplatanus L.), and oak (Quercus robur L.) as my focal species as they were the 

dominant species at the site (Lopez-Sangil et al. 2017). A tree survey close to the study 

site gives adult tree canopy coverage of 17% for ash, 70% for sycamore and 5% for oak 

(Fenn, 2015).  

I selected five 4-m x 4-m sampling areas in naturally occurring stands dominated by ash, 

sycamore or oak and mixed stands with all three species, giving a total of 20 sampling 

sites. Site selection was based on two criteria. (A) the canopy above each sampling area 

was composed exclusively of the relevant focal species to ensure that the soil was mainly 

influenced by a given specie. (B) The sampling area was surrounded by at least three 

mature individuals of the focal species, with the exception of oak, where sampling areas 

were established at 2-m distance from the trunk and beneath the canopy of at least one 

adult tree (adult oak trees did not occur in clusters at the study site).  
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3.2.2. Soil and litter collection and processing. 

From each sampling site, I collected six soil cores to create a composite soil sample (0-10 

cm depth using a 2.5-cm diameter soil corer). The soils were oven-dried at 38 ºC for two 

days and sieved (2-mm mesh) to remove stones and debris. The soils were stored in the 

lab at room temperature until the start of the microcosm experiments. Soils from individual 

sampling sites were considered as replicates throughout the experiment, giving n = 5 per 

species and mixture.  

I collected freshly fallen litter of all three species from the surface of the forest soil floor 

during the autumn of 2014 (October to November). Leaf litter was collected around the 

sampling sites and I ensured that only recently fallen litter was collected  by checking that 

the base of the petioles was still green. The litter samples were brought back to the lab, 

oven-dried at 60 ºC, shredded with a knife mill (Retsch GM300, Hann, Germany) and 

sieved (2-mm mesh). 

 

3.2.3. Microcosm experiment 

To determine the influence of litter and soil type on soil C dynamics, I established 

microcosms consisting of 0.5-L glass KilnerTM jars containing 50-g of soil (dry weight). I 

applied four soil treatments and four litter treatments in a factorial design so that each litter 

type (ash, sycamore, oak or mixed) was incubated with each soil type in five replicate jars, 

giving a total of 16 treatments and 80 microcosms. Soils were pre-incubated at constant 

room temperature (c. 20ºC) and 50% water holding capacity. To prevent excessive water 

loss and CO2 accumulation within the microcosm, jars were closed using a vented lid 

design (with a 1-cm diameter hole in the centre, see Chapter 2 section 2.5). Throughout 

the experiment, the soil water content was maintained by weighing the jars and adding the 

corresponding amount of deionised water at least 1 h prior to CO2 measurements. 
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I measured soil CO2 efflux using an infra-red gas analyser with an eight-channel 

multiplexer adapted to incubation jars (LI-8100 and LI-8150, LiCor Biosciences, Lincoln, 

Nebraska, USA). I measured soil CO2 efflux in pre-incubated soils until it stabilised (13 

days), and then I added 3-g of litter, corresponding to the mean annual litterfall at Wytham 

Woods (Lopez-Sangil; unpublished data). The litter was placed carefully on the soil surface 

to create an evenly distributed litter layer. After litter addition, I measured soil CO2 efflux 

three times a week during four weeks and then once a week for another two weeks (14 

observations in total). I terminated the experiment 43 days after the start of litter treatments 

and sampled the soil inside the microcosms. 

 

3.2.4. Soil analyses 

To assess the influence of litter type on soil properties, I performed all analyses on soil 

samples at two time points: after collection (20 soil samples) and at the end of experiment 

(32 soil samples).  

 

3.2.4.1. Soil water content, water holding capacity and pH 

I determined gravimetric soil water content using 20-g subsamples of fresh soil. I 

measured the fresh weight of the soils within 24 h of collection and then the samples were 

dried at 105 ºC for 48 h to calculate soil water content. To determine soil water holding 

capacity, I placed 100-g of dried soil in a container with small holes in the base to allow 

drainage and placed then the containers were placed in a water bath for 24 h until 

saturated. I allowed the soil to drain freely for another 24 h and then calculated the water 

holding (field) capacity from the difference in weight. I measured soil pH on a slurry of soil 

in deionised water (1:3 ratio) using a S220 Seven Compact pH meter (Mettler Toledo, 

Columbus OH, USA).  
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3.2.4.2. Total soil carbon, nitrogen and microbial biomass 

I measured the total C and N content of the soil on ground subsamples of oven-dried soil 

using a Vario ELIII Element Analyser (Elementar, Hessia, Germany). To determine soil 

microbial biomass carbon (MBC), I performed the chloroform fumigation extraction method 

(Vance et al, 1987) with modifications (Jones & Willet, 2006) on paired subsamples (8-g 

dry weight equivalent) of fresh soil. Briefly, one subsample was fumigated with ethanol-free 

chloroform for 24 h and both subsamples were extracted in 40 ml 0.5M K2SO4, shaken at 

200 rpm for 1 h, centrifuged at 3000 rpm, and filtered. The extracts were refrigerated for 

~10 days until analysis for total C analysis on a TOC-L combustion analyser coupled with a 

TNM-L unit (Shimadzu Corp, Kyoto, Japan). Soil MBC was estimated by the difference in 

C content between fumigated and unfumigated subsamples, without correction for 

extraction efficiency. 

 

3.2.5. Litter properties 

To assess litter quality, I analysed leaf litter from composite samples of each study species 

(three replicates per species, 12 samples). I determined the total C and N content and 

conducted fibre analysis of the litter samples were determined following the Van Soest 

method (Van Soest 1963). I measured the C and N content of the leaf litter on oven-dried 

(60 ºC) ground subsamples using a Vario ELIII Element Analyser (Elementar, Hessia, 

Germany). Acid detergent lignin (ADL) and cellulose were determined on 1 g oven-dried 

(60 ºC) knife-milled (1 mm) litter samples. I performed the extractions using a FibertecTM 

1020 hot extraction unit (Foss, Hilleroed, Denmark). Briefly, each sample was placed in a 

glass crucible and 1-g of celite was added as a filtration aid. Total acid detergent fibre 

(ADF) was obtained after washing the samples with boiling acid detergent solution (0.5 M 

H2SO4 + CTAB) for 1 h, followed by a 5-min acetone soak; the resulting ADF samples were 

drained and oven-dried at 105 ºC for 5 h. Cellulose was then solubilized by soaking the 
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ADF samples in H2SO4 for 3 h, followed by washing with hot deionised H2O (until acid-

free). The remaining sample was dried for 2 h at 130 ºC and then ashed in a furnace for 3 

h at 525 ºC. Cellulose content was calculated from the mass loss after solubilization and 

lignin content was calculated from the mass of the residue.  

 

3.2.5. Statistical analysis 

All statistical analyses were performed in R version 3.2.4 (R Core Team, 2016). I used 

Principle Components Analysis (PCA; rda function in the vegan package; Oksanen et al., 

2017) to explore the initial differences in soil properties among the four soil types. I 

included all soil variables measured (C, N, C:N ratio, pH, ammonium-N and nitrate-N) and 

scaled them to allow direct comparisons. The scores of the first two ordination axes (PC1 

and PC2) were included as explanatory variables in linear models (lm function) to 

investigate the effect of initial soil properties on baseline soil CO2 efflux, whereby CO2 

efflux was modelled as a function of PC1, PC2 and their interaction as explanatory 

variables. The best model was identified by comparing nested models using AICs and p-

values to check for model improvement (Pinheiro and Bates, 2000). 

 I used linear mixed effects models (lmer function in the lme4 package; Bates et al., 2015) 

to determine the influence of soil type and litter type on total and peak soil respiration. Total 

respiration was calculated by summing all respiration measurements for each microcosm 

after litter addition, whereas peak respiration was the highest respiration value after litter 

addition. I included litter type, soil type and their interaction as fixed effects and sampling 

site as a random effect. To determine the effect of soil type and litter treatment on the 

differences between initial and final soil properties, I calculated response ratios for C, 

MBC, pH and N. I used response ratio as a way of measuring treatment effect on soil 

variable using the equation: RR = ln (t / c); where ‘ln’ is natural logarithm; ‘t’ is the value at 

the end of the experiment, accounting for treatment effects; and ‘c’ is the initial value, used 
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as a control. I then used linear mixed effect models to model the response ratios as a 

function of soil type and litter type (fixed affects), using sampling site as a random effect. 

The best model was identified as described above and the fit of all final models were 

inspected with diagnostic plots. 

 

3.3. Results 

 

3.3.1. Litter quality 

Litter properties varied among species (Table 3.1.): oak had the highest C content, C:N 

ratio, and lignin content. By contrast, sycamore had the lowest C concentration, C:N ratio, 

and lignin content. Based on species differences in lignin:N ratios, I categorized litter 

quality from high to low; where sycamore litter as ‘high quality’, followed by ash, mix as 

‘medium quality’ and oak as ‘low quality’. 

 

3.3.2. Initial soil differences and respiration 

Ordination showed that initial soil properties (Table 3.1.) varied with tree species (Figure 

3.1.). Sycamore and oak soils differed the most, with oak soils having the lowest C:N ratio 

and pH compared to sycamore, whereas mixed soils showed the greatest variability 

among samples. Accordingly, the first ordination axis (PC1) explained a significant 

proportion of the variation in pre-treatment respiration rates (R2 = 0.42, p = 0.001). 

Additionally, soils under the influence of mixed species showed higher pre-treatment 

average CO2 efflux. Compared to mixed-species soils, CO2 efflux was 16%, 24% lower in 

soils influenced by ash and oak respectively, and 39% lower in sycamore soils (Figure 

3.2.). 
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Table 3.1. Leaf litter properties of different tree species and soil properties of soils influenced by 

different tree species used in an incubation study. Soils and litter were collected at Wytham woods, 

UK. Litter properties show carbon (C), nitrogen (N), lignin (L) and cellulose content, and C:N and 

L:N ratios for freshly fallen leaf litter of ash, oak, sycamore, and a litter mixture containing an equal 

mass of litter from each species for n = 3 analytical replicates. Soil properties show total carbon 

(C), total nitrogen (N), microbial biomass carbon (MBC), carbon to nitrogen ratios (C:N ratio), soil 

pH (pH), ammonium-N (NH4) and nitrate-N (NO3) for n = 5 plots per species. Soil was collected 

from patches of the soil dominated by adult trees of ash, oak, sycamore, or a mixture of species 

respectively. 

 

 

  Total C 
(%) 

Total N 
(%) 

C:N 
ratio 

Lignin 
(%) 

Cellulos
e (%) 

L:N 
ratio 

 

 Ash 43.44 1.18 36.79 8.2 13.61 6.95  

Litter Oak 47.01 1.19 39.64 10.96 12.46 9.21  

 Sycamor
e 

44.39 1.6 27.76 6.84 9.83 4.28  

 Mix 44.01 1.22 36.19 8.67 11.97 7.11  

         

  Total C 
(%) 

Total N 
(%) 

MBC C:N 
ratio 

pH NH4-N NO3-N 

 Ash 5.51 0.45 129.78 12.56 6.85 0.04 .003 

Soil Oak 6.49 0.49 90.34 13.44 5.82 0.04 .004 

 Sycamor
e 

3.53 0.22 82.03 16.20 6.22 0.03 .002 

 Mix 6.82 0.49 83.83 13.87 7.06 0.03 .002 

 

 

 

 



49 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.1. PCA ordination plot of initial differences in soil properties for each soil type (ash, 

sycamore, oak and 'mix' with all three species), showing a clear separation of sycamore soils from 

all other soil types; vectors show the relative influence of each soil property on the distribution of 

samples in ordination space, where C is carbon, N is nitrogen, MBC is microbial biomass carbon, 

pH is soil pH and Ammonium is ammonium-N. 

 

3.3.3. The effect of different litter type on soil CO2 efflux.  

Soil CO2 efflux increased markedly in all soils after litter addition.  All treatments showed a 

similar pattern in soil CO2 efflux, with peak respiration rates 12 days after litter addition 

(Figure 3). Results from mixed effect models show a significant effect of litter type on peak 

respiration (χ2 = 228.2, p <0.001; Figure 3) whereby microcosms with oak litter had the 

lowest peak of soil CO2 efflux, while microcosms with sycamore litter had the highest. 

Mean peak respiration in soils receiving sycamore litter was 57.1% higher than in soils 

receiving oak litter.  
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Figure 3.2. Baseline mean CO2 efflux from each soil type at the start of a 4 week incubation 

experiment using soils and litter collected at Wytham woods, UK. Boxes indicate upper and lower 

quartiles and median lines for n = 5 microcosms per soil type using soils collected from patches in 

the forest under the influence of ash, oak, sycamore or a mixture of species. 

 

Additionally, results from mixed effect models show a significant effect of litter type on 

cumulative respiration (χ2 = 200.2, p <0.001; Figure 4), with microcosms that received ash, 

sycamore and mixed litter having the highest total respiration in all soil types, whereas 

microcosms with oak litter respired the lowest. 
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Figure 3.3. Mean CO2 efflux from soils collected under ash, oak, sycamore or mixed species after 

the addition of litter from the same species in a factorial design. Observations were made during a 

43 day incubation experiment in laboratory microcosms (n = 16 soil and litter combination), 

showing the pattern of soil respiration over the duration of the experiment and the clear peak in 

respiration rates 12 days after the start of litter treatments on day 13.    

 

 
3.3.4. The effect of different litter on soil properties 

  
Initial soil properties changed after litter addition but each soil type (with minor exceptions) 

responded similarly despite the type of litter added (Figure 3.5.). Accordingly, there was no 

significant effect of soil or litter type on response ratios for C and N. In contrast, for MBC 

and pH, the models including soil type were the best fit (χ2 = 11.63, p = 0.008; χ2 = 36.13, p 

= 0.001). In general, MBC declined following litter addition in ash, oak and mixed soils 
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while increasing in sycamore soils. The pH in all soil types increased after litter addition, 

with sycamore soils showing the bigger increase and ash and mix soils differing the most. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Cumulative CO2 efflux from soils collected under ash, oak, sycamore or mixed species 

after the addition of litter from the same species in a factorial design. Observations were made 

during a 43 day incubation experiment in laboratory microcosms (n = 16 soil and litter 

combination), showing the additive effect of soil respiration measurements during the duration of 

the experiment.    
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Figure 3.5. Response ratios of soil properties at the end of an incubation experiment in response 

to the addition of different species of litter. The experiment used freshly fallen litter from ash, oak, 

sycamore and mixed-species, and soils collected under patches of the forest dominated by the 

same species in a factorial design (n = 16 soil and litter combinations). The graphs show response 

ratios for carbon (C), nitrogen (N), microbial biomass carbon (MBC) and soil pH (pH) in all 

treatments compared to initial values of the respective property. Boxes indicate upper and lower 

quartiles and median lines per treatment.  
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3.4. Discussion 

My experiment assessed how different tree species litter affect C dynamics in temperate 

forest soils. Specifically, it provided an insight into  how differences in litter quality affect 

soil properties and soil C dynamics. 

My experiment assessed how different tree species litter affect C dynamics in temperate 

forest soils. Specifically, it provided an insight into short term soil responses to differences 

in litter quality, focusing on the effect of litter addition in soil properties and soil respiration. 

Initial soil properties and basal soil respiration 

Soils influenced by mixed tree species had higher basal respiration rates than soils 

influenced by single species (Figure 3.2.). This suggests that, under natural conditions, 

microbial activity in patches of the forest dominated by a mixture of species is higher than 

those dominated by ash, oak or sycamore. Mixed soils also had a higher pH before 

treatment addition. This difference in soil pH could be important, as soil pH is determined 

by the concentration of cations in soil water (Brady, 1974) and influences the input, release 

and availability of nutrients and C (Sayer, 2006). However, microbial decomposition of 

organic matter can also affect soil pH as a consequence of the production of organic acids 

(Anderson and Domsch, 1993). Hence, increased microbial activity in mixed soils in this 

study could result in the slightly higher pH and explain the high respiration rates despite 

lower MBC compared to the single-species soils.  

Interestingly, soils influenced by sycamore had the lowest CO2 efflux and the lowest C 

concentration, despite the ‘high quality’ of sycamore litter (Figure 3.2., Table 4.1). The 

quality of litter and its decomposition play an integral role in determining the rate by which 

C enters the soil (Reynolds and Hunter, 2001; Subke et al., 2004), and it is likely that the 

rapid decomposition of sycamore litter releases much of the labile carbon as CO2, which 
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results in lower carbon inputs to the soil and reduces the quality and quantity of resources 

for soil microbes (Franzluebbers, 2002). This suggests that species with rapidly 

decomposing litter, such as sycamore, do not promote soil C storage in this temperate 

forest.  

 

Differences in litter quality and their effect on soil respiration 

Litter type modified the dynamics of soil CO2 efflux, whereby microcosms containing 

sycamore litter had the highest peak CO2 efflux after litter addition, and microcosms 

containing oak litter had the lowest, regardless of basal respiration rates. Peak respiration 

is likely to be linked to litter quality, as sycamore and oak also had the highest and lowest 

litter quality, respectively (Table 4.1.). ‘High quality’ litter is likely to promote higher soil 

respiration as it decomposes rapidly (Bardgett and Wardle, 2010). Hence, variation in tree 

species litter quality is tightly linked to soil C storage and soil respiration via its regulatory 

effect on decomposition rates (Berg, 2000). However, controlled lab experiments such as 

those used in this study exclude or standardize several biotic (e.g. soil fauna) and abiotic 

(e.g. temperature, soil moisture) factors affecting decomposition (Riutta et al., 2012). They 

are also limited to short-term responses, which can underestimate long-term effects and 

limit the implications of these results for processes in situ. Nonetheless, the results of my 

lab experiments help to explain the variation in soil C content in stands dominated by 

different species.  

Nonetheless, my study suggests a potential long-term effect of litter quality on soil C 

dynamics because the different soil types regulated the magnitude of soil CO2 efflux. Soils 

collected from ash, mixed species and oak stands had higher CO2 efflux throughout the 

experiment than those influenced by sycamore trees, irrespective of the type of litter added 

(Figure 3.3.). This suggests that differences in soil properties under the long-term influence 
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of specific tree species have a stronger influence on soil CO2 efflux than short-term inputs 

of differing litter quality. Soil properties are likely to be linked to differences in litter 

chemical properties among tree species, which in turn regulate decomposition rates and 

the activity of decomposer organisms (Swift et al., 1979, Berg and McClaugherty 2003). 

For instance, plant species can influence the taxa of decomposers present in the soil, thus 

favouring the decomposition of their own litter (Ayres et al., 2009). Additionally, the rates of 

processes that occur in the soil often vary strongly according to litter quality of the plant 

species present (Binkley and Giardina, 1998). Hence, it is likely that the microbial 

decomposer communities associated with soils under specific tree species have a greater 

influence on CO2 efflux during decomposition than the nature of the organic material being 

decomposed. 

 

Litter quality effect on soil properties. 

By the end of the experiment, soil MBC and pH had changed as a result of the interaction 

between litter and soil type. Although sycamore soils had the lowest initial MBC, they also 

showed the largest increase in MBC after litter addition (Figure 3.5.), suggesting that the 

availability of C in the soil may limit microbial growth (de Graff et al., 2006). The low CO2 

efflux from sycamore soils (Figure 3.3.) could indicate that the microbial community is 

adapted to labile C inputs and less efficient at breaking down recalcitrant substrates. It is 

therefore likely that the additional C from leaf litter was invested in microbial growth, rather 

than turnover, hence increasing soil total C (Lopez-Sangil et al. 2017). Additionally, oak 

soils showed the greatest increase in total soil C, irrespectively of the litter type added. At 

the same time, the soil CO2 response to litter inputs was low in oak soils (Figure 3.3.) and 

oak litter had the highest lignin and lowest N content (Table 3.1.). Due to the long-term 

inputs of low-quality litter, it is likely that oak soils are dominated by slow-growing microbial 
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taxa capable of breaking down more recalcitrant organic material (de Graff et al., 2006). 

Consequently, the slow decomposition rates of oak litter and the long-term effect of low-

quality litter on soil properties and C dynamics could promote soil C storage.  

My results provide evidence for the influence of tree species litter on the dynamics of C in 

temperate forest soils. Litter quality influences soil C dynamics over the short-term via 

decomposition rates but tree species can also influence soil C storage over the long-term 

by modifying key soil properties, which modulate the response of the soils to different 

types of litter inputs. 

 

 

3.5. Conclusion  

In the face of climate change, many countries aim to increase forest coverage as a 

measure to increase soil C sequestration and help reduce atmospheric CO2 levels 

(Campbell-Arvai et al., 2017). Although C is stored rapidly in the above-ground biomass of 

fast-growing trees, the influence of tree species on soil C dynamics and storage is often 

overlooked. My experiment demonstrates the variable influence of different tree species on 

soil C dynamics and soil properties. The interaction between tree litter inputs and soil 

properties will affect soil C storage and CO2 release in temperate forests and hence, it is 

important to select appropriate tree species for afforestation purposes. My results suggest 

that soil C storage could be promoted by slow-growing species such as oak, but that 

rapidly growing species with high-quality litter, such as sycamore, are less beneficial for 

increasing belowground C stocks. However, replacing sycamore with species such as ash, 

that grow rapidly but have lower quality litter, could alter soil C dynamics and increase soil 

C storage in the future.  
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Chapter 4.  Litter quality controls soil carbon dynamics to altered litter quantity 

inputs in a temperate woodland. 

 

  

Abstract 

Forest productivity is likely to increase in response to elevated concentrations of 

atmospheric CO2, altering the inputs of leaf litter into forest soils. Increased litterfall is 

expected to affect soil carbon (C) stocks, but such effects will vary with tree species 

because species-specific variations in the quality of leaf litter regulates litter decomposition 

and the input of C into the soil. To determine the influence from different single and mixed-

species on soil C dynamics, I experimentally altered litter inputs during a 15-month field 

study in a managed woodland near Gisburn, UK. I established in situ mesocosms in 

single-species plots of alder, oak and pine as well as in mixed-species plots of all possible 

two-species mixtures. I measured differences in litter properties and initial soil properties 

for each species and mixture; and manipulated the quantity of litter inputs to quantify the 

effects of increased litterfall on soil CO2 efflux (soil respiration). Soil C to N (C:N) ratios 

affected pre-treatment soil respiration, whereby soil respiration was higher in plots planted 

with alder, which had lower C:N ratios due to N fixation. Additionally, the distinct litter 

decomposition rates among species and mixtures largely predicted soil respiration, 

whereas alder litter (high-quality) decomposed rapidly and promoted high soil respiration, 

and pine litter (low quality litter) had the opposite effect. Litter removal (LR) decreased soil 

respiration in single-species plots of alder and oak, but not in pine or mixed-species plots. 

Litter addition (LA) treatments had no consistent effect, but there was a temporary 

increase in soil respiration in single-species plots, which lasted longer in alder and oak 

compared to pine and occurred in different periods of time for each species. 
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My study provides an insight into the variable effects of increased litterfall from different 

tree species on soil C dynamics. In particular, I show clear links between litter quality, 

decomposition rates and the l response of soil respiration to altered litter inputs.  

 

4.1 Introduction 

The concentration of CO2 in the atmosphere has increased from 277 ppm in 1750, at the 

beginning of the industrial era, to 395 ppm in 2013 (Joos and Spahni, 2008).  Nonetheless, 

terrestrial ecosystems are capable of absorbing a significant portion of anthropogenic CO2 

emissions, with much of this uptake occurring via carbon accumulation in forest biomass 

and soils (Le Quéré et al, 2009; Reichstein et at., 2013). In this context, forest ecosystems 

have received especial attention as key components in the efforts to mitigate CO2 

emissions because of their ability to storage large quantities of C. Forests cover 

approximately 3.8 billion ha globally (Pan et al., 2011), storing about 82 to 86% of all 

aboveground C (Richter et al., 1999; Six et al., 2002). At the same time, forest soils 

contain about 70 to 73% of all soil organic carbon (SOC; Birdsey et al., 1993; Six et al., 

2002), making them a significant component of the forest C budget (Ussiri, 2017). 

Furthermore, the exchange of CO2 between forests and the atmosphere via 

photosynthesis and respiration is ≈50 Pg C/yr annually, which is seven times greater than 

anthropogenic C emissions. At the same time, forest soils contain about 70 to 73% of all 

SOC (Birdsey et al., 1993; Six et al., 2002), making them a significant component of the 

forest C budget (Ussiri, 2017).  

Forests vegetation and soils are key contributors to the global C budget because of their 

potential in mitigating the raise of atmospheric CO2 via C sequestration (Schlesinger and 

Andrews, 2000; Seidl et al., 2011). However, most research has focused on exploring 

aboveground C dynamics, underestimating soil processes and limiting our understanding 
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of the C pools in forest soils (Kusyakov and Domanski, 2000). These is particularly 

important under climate change, as forest productivity is likely to increase in response to 

the rise in atmospheric CO2 levels, altering aboveground inputs into forests soils. These 

reinforces the importance of expanding our knowledge of belowground C dynamics, 

particularly because changes in forest soil respiration would alter total CO2 emissions from 

forest ecosystems, affecting the considerable contribution of forests to the global C budget 

(Ussiri, 2017).  

 

4.1.2. Afforestation and tree species differences 

Many countries worldwide are attempting to offset C emissions and increase C storage by 

increasing forest coverage. (Linder et al., 2004). This has promoted the afforestation of 

former agricultural land as it helps increase the C pool in the aboveground biomass, and 

replenishes the soil C pool (Jandl et al, 2006). Research within reforestation projects has 

contributed to our knowledge of soil C dynamics in forests (Peltoniemi et al., 2007). 

Afforestation can also increase total C stocks by 18%, with the initial C accumulation 

occurring in the forest floor (Guo and Gifford, 2002). However, afforestation strategies 

aimed at simultaneously maximizing above and belowground C sequestration are scarce 

(Brown et al., 1996) and little is known about how the selected tree species (Batjes, 2014).  

Tree species is  an important factor in regulating soil C dynamics in forests because of 

their strong influence on soil chemical properties (Vesterdal and Raulund-Rasmussen, 

1998; Six et al., 2002a). For instance, many deciduous tree species (with high wood 

density) accumulate more aboveground C than coniferous species (with low wood 

density). In contrast, some coniferous species tend to accumulate more SOM in the forest 

floor, but less in the mineral soil compared with deciduous trees (Jandl et al., 2006). 

However, the effect of tree species on soil processes across sites is still unclear, 
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particularly because different species vary in the way they affect the storage of C (Stone, 

1975; Augusto et al., 2002; Binkley and Menyailo, 2005) and they also vary in their effect 

on the balance between C input (via litterfall and rhizodeposition) and the release of C 

during decomposition (Jandl et al., 2006). These processes are often strongly related to 

the variation in the quantity and quality of litter inputs among tree species and are also 

affected by climate. Changes in the interactions between plant inputs and soil processes 

make it particularly difficult to predict soil C storage under climate change. One such plant-

soil interaction, which is likely to occur more frequently as a consequence of increased 

litterfall, is the so-called "priming effect". 

Priming effects are defined as an increase in soil organic C mineralisation following the 

input of a fresh organic matter (Bingeman et al.,1953). Priming effects therefore have the 

potential to release stored C from the soil as forest productivity increases under elevated 

CO2 (Reichstein et al., 2013). However, the likelihood of whether a given tree species will 

promote priming effects is likely to vary according to the quality of litter inputs to the soil 

because laboratory studies have shown that priming effects vary with the quantity and 

quality of organic inputs (Kuzyakov et al. 2000). Priming effects have been observed in 

many types of laboratory and field studies and they commonly occur in as part of terrestrial 

ecosystem soil C dynamics (Fontaine et al., 2011).  

The mechanisms underlying soil C release by priming effects remain poorly understood 

(Kuzyakov et al., 2010). However, one of the first proposed mechanisms suggests links 

between priming effects and the quality of organic matter. Soil organic matter represents a 

low-quality resource for soil microorganisms and this limits the rate at which soil organic 

matter is mineralized. Hence, inputs of high-quality fresh organic material to the soil will 

result in greater nutrient availability for the soil microbial community, which results in 

increased microbial activity and promotes the mineralisation of soil organic matter (Lohnis, 

1926; Broadbent, 1947). However, there remain fundamental knowledge gaps about how 
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variations in organic inputs into the soil (e.g. species-specific variation in litter quality and 

quantity) will regulate the occurrence of priming. For instance, a microcosm study 

conducted by Nottingham in 2009 measured priming effects in response to different 

substrates that act as a source of C. His results demonstrate that variations in the 

availability of C for decomposers significantly affect priming effects. As substrate that in 

which the supply of C occurs rapidly evoke the fastest priming effects, calculated via soil 

CO2 efflux. According to these results, we can predict that leaf litter from different tree 

species can potentially cause different priming responses, as different tree species vary in 

litter quality.  Furthermore, little we know about how such differences in litter quality will 

affect soil process facing a an increase in aboveground productivity. (Ussiri, 2017). 

 

4.1.3. Litter quality and quantity 

Variations in the quality of litter of different tree species affect soil CO2 efflux (Giardina and 

Ryan, 2000; Liski et al., 2003), as species litter can vary in labile C content ( Hobbie et al., 

2000, Forrester et al., 2013). Litter can also differ in N and lignin content, C/N ratio, and 

leaf area, which are highly related to decomposition rates (Peterken, 2001; Reich et al., 

2005; Hobbie et al., 2006; Vesterdal et al., 2008). For instance, differences between litter 

quality from broadleaved and conifer species are the reason behind their difference in 

decomposition rates, with broadleaved species decomposing faster, thus regulating 

microbial processes (Johansson, 1995; Sugihara et al.,  2014). Litter quality can also affect 

soil pH, which in turn can alter soil microbial activity and the decomposition of soil organic 

matter (Blagodatskaya and Anderson, 1998). These differences enhance the importance of 

a better understanding of species-specific effects on soil processes, as an informed 

species selection in afforested land will increase C sequestration. 
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To explore the effect of increase litterfall in plots with different tree species and the 

occurrence of priming effects, I conducted a litter manipulation experiment in the field. The 

aim of my study was to quantify how different litter quality and alterations in litter quantity 

interact to affect forest soil CO2 efflux. I used a mesocosm experiment in which I 

manipulated litter inputs of different tree species to assess changes in soil properties, soil 

CO2 efflux, and the occurrence of priming effects. I hypothesised that: 

H1) Soil CO2 efflux in plots planted with different tree species will mirror the pattern of litter 

decomposition of those species. 

H2) The increase in soil respiration in response to litter addition will differ among tree 

species; with a greater increase after the addition of "high-quality" litter, characterised by 

high N and low lignin content. 

H3) Priming effects are the result of higher microbial activity with additional labile C inputs, 

and therefore the likelihood of priming effects will be greater following the addition of "high-

quality" litter. 

 

 

4.2. Methods 

 

4.2.1. Field site 

I conducted my study within a long-term tree growth trial established by Forest Research 

in 1955, which was located in Gisburn Forest, northwest England (henceforth "Gisburn"; 

Figure 1). A storm in 1990 fell a large proportion of the trees and the site was consequently 

completely fell using a helicopter to remove tree trunks, thus assuring minimal soil 

disturbance. The trial is currently in its second rotation (planted in April 1991) with all plots 

following the same tree species arrangement as the first rotation. Consequently, the soil in 

each plot has been under the influence of the same tree species or mixture of species for 
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over 60 years. For my study, I selected single-species plots (c. 45-m x 45-m each) of black 

alder (Alnus glutinosa L., henceforth alder), sessile oak (Quercus petraea L., henceforth 

oak), Scots pine (Pinus sylvestris L., henceforth pine); and 50:50 mixed-species plots of 

alder-oak, alder-pine and oak-pine in three replicate blocks giving a total of 18 plots. 

 

 

 

Figure 4.1. Aerial photographs of Gisburn Forest, UK.: a) Gisburn Forest, Lancashire, UK. 

b) Diagram representing the distribution of plots and experimental set up at Gisburn 

Forest.  (Images were obtained from: Wytham Woods-Imagery ©2017 Infoterra Ltd & 

Bluesky, Digital Globe, Map Data ©2017 Google; and Gisburn Forest-Imagery ©2017 

Getmapping plc, Map Data ©2017 Google). 

 

 

4.2.2. Litter treatment addition 

To determine how variation in litter quantity affects soil C dynamics, I conducted a litter 

manipulation experiment using mesocosms to contain treatments within a discrete area and 

avoid disrupting long-term measurements at the sites. In each plot, I installed three 

mesocosms, consisting of polypropylene tubes (20-cm inner diameter and 12-cm height) that were 

sunk into the soil to 3-cm depth and located at least 1-m from the nearest tree trunk. All 
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mesocosms were installed in May 2014, and were left undisturbed for one month before 

measurements were taken. All vegetation and litter within the collars were carefully 

removed after installation and checked monthly to remove recently germinated seedlings.  

To quantify pre-treatment differences in soil CO2 efflux, I measured soil respiration during 

three months prior the addition of treatments. After this period, one mesocosm per plot 

was left as an undisturbed control with natural litter inputs (henceforth CT), in the second 

mesocosm, all litter was removed (henceforth LR) and added to the third mesocosm, 

effectively doubling litter inputs (henceforth LA). Litter manipulation was conducted 

monthly, starting in July 2015 and terminating after 15 months of observations in October 

2016.  

 

4.2.3. Soil respiration measurements  

To determine if litter treatment affected soil respiration, I took monthly soil CO2 efflux 

measurements of each mesocosm from August 2015 (one month after the start of 

treatments) to October 2016 using a soil CO2 survey system (Li-8100A; LiCor 

BioSciences, Lincoln, Nebraska, USA). To eliminate the effects of turbulence from 

chamber closure, a 15-s post-purge period and a 15-s dead-band period was set for each 

measurement. No measurements were made in December 2015 and January 2016 

because the soil was frozen. 

 

4.2.4. Litter collection and processing 

I collected freshly fallen litter of all species from two litter traps per plot during October and 

November 2015. Litter traps were constructed using polypropylene tubes and mesh (1-m above 

the soil surface, 1-m2 area). Leaf litter samples were brought back to the lab and oven-dried at 

60 ºC. Litter for decomposition experiments was manually chopped and sieved to 1 cm 
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and the remaining litter was ground using a ball mill (Retsch MM400, Hann, Germany) for 

chemical analyses.  

To assess litter quality, I analysed three analytical replicates for each study species or 

species combination (24 samples total). I measured the C and N content of the leaf litter 

on oven-dried (60 ºC) ground subsamples using a Vario EL III Element Analyser 

(Elementar, Hessia, Germany). I conducted fibre analysis of the litter samples following the 

Van Soest method (Van Soest 1963). Briefly, acid detergent lignin (ADL) and cellulose 

were determined on 1 g oven-dried (60 ºC) knife-milled (1 mm) litter samples using a 

FibertecTM 1020 hot extraction unit (Foss, Hilleroed, Denmark). Each sample was placed in 

a glass crucible and 1-g of celite was added as a filtration aid. Total acid detergent fibre 

(ADF) was obtained after washing the samples with boiling acid detergent solution (0.5 M 

H2SO4 + CTAB) for 1 h, followed by a 5-min acetone soak; the resulting ADF samples were 

drained and oven-dried at 105 ºC for 5 h. Cellulose was then solubilized by soaking the 

ADF samples in H2SO4 for 3 h, followed by washing with hot deionised H2O (until acid-

free). The remaining sample was dried for 2 h at 130 ºC and then ashed in a furnace at 

525 ºC for 3 h. Cellulose content was calculated from the mass loss after solubilization and 

lignin content was calculated from the mass of the residue.  

 

4.2.5. Litter decomposition experiment 

I used litterbags to measure differences in decomposition rates for each litter type in my 

study, where each litter type decomposed in the plot of origin. The experiment was 

conducted in the field using litterbags (10-cm x 10-cm) made of nylon mesh (aperture 1 

mm). Each bag was filled with 3 g of leaf litter of one of the three study species or two-

species mixtures (six litter types in total), and four litterbags were placed in each of the 

three plots planted with the corresponding species (72 litterbags in total). Vegetation and 

litter was carefully removed from the soil surface in an area c. 1-m from the mesocosms, 
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and litterbags were pinned to the soil to ensure good contact. The experiment started in 

July 2015 and I collected two bags in September 2015 (after 3 months) and two bags in 

January 2016 (after 6 months). After collection, leaf litter was removed from the litterbags, 

oven dried (60 ºC) and weighed to calculate mass loss over time.  

 

 

4.2.6. Soil collection and analysis 

To measure initial soil properties in the study plots, I collected six soil samples at 0-10 cm 

depth using a 2.5-cm diameter soil corer and mixed them to create one composite sample 

per replicate plot. Following the same procedure, I collected three soil cores from within 

the mesocosms at the end of experiments to determine leaf litter effects on soil properties. 

All samples were sealed in plastic bags, brought back to the lab and either processed 

within 24 h of collection or oven-dried for further analysis. 

 

4.2.7. Soil water content and pH 

I determined gravimetric soil water content using 20-g subsamples of fresh soil. I 

measured the fresh weight of the soils within 24 h of collection and then dried the samples 

at 105 ºC for 48 h to calculate soil water content.I measured soil pH on a slurry of soil in 

deionised water (1:3 ratio) using a S220 Seven Compact pH meter (Mettler Toledo, 

Columbus OH, USA).  

 

4.2.8. Soil total C and N; and microbial biomass C and N. 

I measured the total C and N content of the soil on ground subsamples of oven-dried soil 

using a Vario ELIII Element Analyser (Elementar, Hessia, Germany). To determine soil 

microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), I performed the 

chloroform fumigation extraction method (Vance et al, 1987) with modifications (Jones & 
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Willet, 2006) on paired subsamples (8-g dry weight equivalent) of fresh soil. Briefly, one 

subsample was fumigated with ethanol-free chloroform for 24 h and both subsamples were 

extracted in 40 ml 0.5M K2SO4, shaken at 200 rpm for 1 h, centrifuged at 3000 rpm, and 

filtered. The extracts were refrigerated for ~10 days until analysis for total C on a TOC-L 

combustion analyser coupled with a TNM-L unit (Shimadzu Corp, Kyoto, Japan). For MBN 

analysis, the extracts were digested with potassium persulphate. Briefly, 3.0-ml of 

potassium persulphate were added to a bottle containing 1-ml of soil extract. Samples 

were autoclaved for 20 minutes at 121 ºC and analysed in an Autoanalyser (Bran and 

Luebbe AA 3; Seal Analytical, Southampton, UK) to determine total nitrogen content. Soil 

MBC and MBN were estimated by the difference in content between fumigated and 

unfumigated subsamples, without correction for extraction efficiency.  

 

4.2.9. Soil ammonium-N and nitrate-N extraction. 

I extracted ammonium-N and nitrate-N from soil samples using a KCl solution. As the 

conversion of ammonium to nitrate can occur rapidly after sampling, the extraction process 

started during sampling in the field. From the composite soil sample for each plot (see 

section 2.3.2. above), 2 g were subsampled and added to each a falcon tube containing 

20-ml of 2M KCl solution. All tubes were kept cool and brought back to the lab to be 

processed within 24 h. Samples were shaken at 200 rpm for 1 h, allowed to settle for 30 

minutes and filtered (Whatman 42 filter paper). Samples were then refrigerated until 

analysis for NH4
+-N and NO3

--N on an Autoanalyser (Bran and Luebbe AA 3; Seal 

Analytical, Southampton, UK). 
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4.2.10. Statistical analysis 

All statistical analyses were performed in R version 3.2.4 (R Core Team, 2016) using the 

vegan (Oksanen et al., 2017) and lme4 packages (Bates et al., 2015) for multivariate and 

mixed model analyses, respectively.  

I used Principle Components Analysis (PCA; rda function) to explore the initial differences 

in soil properties among the six soil types. I included all soil variables measured (C, N, 

MBC, MBN, C:N ratio, pH, ammonium-N and nitrate-N) and scaled them for direct 

comparison. The scores of the first two ordination axes (PC1 and PC2) were included as 

explanatory variables in linear models (lm function), to investigate the effect of initial soil 

properties on mean pre-treatment soil CO2 efflux, whereby CO2 efflux was modelled as a 

function of PC1 and PC2 as explanatory variables; with block as included as an error term. 

The full model included the interaction between PC1 and PC2, and the best model was achieved by 

dropping non-significant terms to identify the most parsimonious model. The final model fit was 

assessed using diagnostic plots (Crawley, 2007).  

I used linear mixed effects models (lmer function) to determine the influence of tree 

species on pre-treatment soil respiration and the effect of litter treatments on soil 

respiration. For pre-treatment soil respiration models, the full model included tree species 

as a fixed effect, and block and time as random effects. To explore the influence of litter 

treatment and tree species on soil respiration, the full model included litter treatment and tree species 

as explanatory variables and block and time as random effects. Due to the strong influence of 

temperature on soil respiration, soil temperature was included as a covariate in all models of soil 

respiration. The significance of individual terms was determined by dropping terms individually using 

AICs and p values to check for model improvement, until the best fit was reached. All final models were 

tested against the appropriate null model and the model fit was assessed using diagnostic plots.  

To determine the effects of litter treatment on soil variables, I calculated response ratios using the 

equation: RR = ln (Rx / Rc); where ‘ln’ is natural logarithm; ‘Rx’ is the value for treatment; 
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and ‘Rc’ is the value for the control. Then I used linear models to determine the influence 

of litter treatment on soil properties (C, N, MBC, MBN, pH and C:N), including block as an 

error term.  

Finally, for months in which I measured a disproportionate increase in soil respiration with 

litter addition, I calculated priming effects for each species from the differences soil 

respiration among litter treatments as: 

PE = (SRLA - SRCT) - (SRCT - SRLR), 

where PE is the priming effect, SRLA is the soil CO2 efflux in the litter addition treatment, 

SRLR is the soil CO2 efflux in litter removal treatments, and SRCT is the soil CO2 efflux in 

the controls.  

 

4.3. Results 

 

4.3.1. Litter quality and initial soil properties 

Litter properties varied among species (Table 4.1.): pine litter had the highest C content, 

C:N ratio and the highest ratio of lignin to nitrogen (L:N ratio). Accordingly, mixed litter in 

which pine was one of the constituent species also had high carbon and lignin content. 

Alder had the highest N content and the lowest C:N ratio. Using the L:N ratio as a proxy for 

‘litter quality’, alder and alder- oak were the litter types with the ‘highest quality’, while pine 

and oak-pine were ‘low-quality’ litter. Initial soil properties also varied among soil types 

(Table 4.1.). Single species plots of pine had the highest total C, while alder soils had the 

highest total N and the lowest MBC, MBN and C:N ratio. At the same time, oak soils had 

the highest MBC and MBN. In soils from mixed species plots, the alder-pine mixture had 

the highest C, MBC, N and MBN; and soils in the mixed pine–oak plots had the lowest N 

content and C:N ratio (Table 4.1.). Accordingly, ordination showed clear separation of 

species and species mixtures linked to initial soil properties (Figure 4.1.). Total C, total N 
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and ammonium-N concentrations were closely aligned with the first ordination axis, which 

explained the variation between alder-pine and alder-oak soils. On the other hand, soil pH, 

soil nitrate-N concentrations and C:N ratios were aligned with the second ordination axis, 

which explained the clear separation of alder soils from soils under oak-pine and oak. 

When the scores from the first two ordination axes were included as explanatory variables 

in linear models of soil respiration, the second ordination axis (PC2) explained a significant 

proportion of the variation in pre-treatment respiration rates (R2 = 0.25, p = 0.01), where 

alder-oak plots had the highest soil CO2 efflux and pine plots had lowest (Figure 4.3.a).  

 

Table 4.1. Leaf litter properties of different tree species and soil properties from plots planted with a 

single species or a two-species mixture at Gisburn Forest, UK. The table shows carbon (C), 

nitrogen (N), lignin (L) and cellulose content, and C:N and L:N ratios for freshly fallen leaf litter. And  

of alder (A), oak (O), pine (P), and two-species litter mixtures (AO = alder and oak, AP = alder and 

pine and OP= oak and pine) containing an equal mass of both species. 

 

  Total C 
(%) 

Total N 
(%) 

C:N ratio Lignin 
(%) 

Cellulose 
(%) 

L:N ratio   

 
Litter 

alder 49.00 3.60 13.60 5.55 37.73 1.54   

oak 47.01 1.19 39.64 8.20 10.79 6.89   

pine 63.55 0.93 59.10 16.37 12.60 17.6    

alder-oak 48.01 2.40 26.62 6.88 24.26 4.22   

alder-pine 56.27 2.27 36.35 10.96 25.16 9.57   

oak-pine 55.28 1.06 49.37 12.29 11.70 12.25   

          

  Total C 
(%) 

Total N 
(%) 

MBC MBN C:N ratio pH NH4-N NO3-N 

 
Soil 

alder 9.24 0.5 260.25 55.00 18.76 4.03 68.31 20.11 

oak 7.97 0.37 362.10 83.00 21.57 4.59 57.72 2.43 

pine 12.94 0.67 353.19 69.53 20.75 4.35 80.12 3.21 

alder-oak 12.22 0.61 449.99 82.79 20.33 4.12 62.79 15.38 

alder-pine 16.47 0.79 461.32 92.31 20.63 4.11 68.53 6.19 

oak-pine 9.33 0.43 365.25 76.09 21.74 4.62 64.34 3.19 
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4.3.2. Soil pre-treatment respiration and litter decomposition 

Soil pre-treatment respiration varied among soil types (Figure 4.3.). Mean respiration from 

soils, in which alder was present (alder, alder-oak and alder-pine), had the highest CO2 

efflux; whereas pine, oak and pine-oak plots had the lowest. Accordingly, litter 

decomposition also varied significantly among species (R2 = 0.94, p = 0.001; Figure 4.3.b), 

with alder and alder-oak litter (‘high quality’) decomposing significantly faster than all other 

litter types, whereas pine (‘low quality’) had the slowest decomposition rate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. PCA ordination showing the initial differences in soil properties in field plots planted 

with different tree species and two-species mixtures at Gisburn Forest, UK; where A, O and P are 

monoculture plots of alder, oak and pine respectively; AO is a 50:50 mix of alder and oak, AP is 

50:50 mix of alder and pine, and OP is 50:50 mix of oak and pine; vectors show the relative 

influence of each soil property on the distribution of samples in ordination space, where C is 
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carbon, N is nitrogen, MBC is microbial biomass carbon, MBN is microbial biomass nitrogen, pH is 

soil pH, NH4 is ammonium-N and NO3 is nitrate-N. 

 

4.3.3. The effect of litter manipulation on soil CO2 efflux. 

Soil CO2 efflux in all species plots showed strong seasonal variation, where colder months 

caused a pronounced drop in soil CO2 efflux in alder and oak plots, but there was a 

weaker decrease in pine and mixed-species plots.  Soil CO2 efflux in all plots responded to 

the interactive effect of litter treatment and tree species, with soil CO2 efflux differing 

among species and a significant decrease in soil CO2 efflux in LR treatments (χ2 = 59.194, 

p = 0.001; Figure 4.4.). soil CO2 efflux was lower in LR mesocosms compared to controls 

in single-species plots of alder and oak, (χ2 = 114.24, p = 0.001; Figure 4.4.), but not in 

pine plots. There was also no significant effect of litter treatment on soil CO2 efflux in 

mixed-species plots, but soil CO2 efflux varied with species mixture (χ2 = 57.448, p = 

0.001; Figure 4.5.), whereby alder-oak plots had the highest respiration rates and oak-pine 

plots the lowest.  

 

  

 

Figure 4.3. Pre-treatment mean soil CO2 efflux and litter decomposition rates from field plots (n = 3 

plots) planted with different species and two-species mixtures at Gisburn Forest, UK. a) Mean soil 

CO2 efflux during three months before the start of litter treatments. b) Mean mass loss of litter from 

Tree species Tree species 
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different tree species during 6 months of decomposition, measured using litterbags. Bags in each 

plot contained leaf litter of the corresponding species and were collected at two time points over six 

months to calculate mass loss. Means and standard error bars are given for n = 3 per tree species 

and mixture. 

Surprisingly, I observed no clear or consistent increase in soil respiration in LA mesocosms 

and consequently, priming effects occurred too infrequently for formal analysis. However, 

there was a disproportionate increase in soil respiration in LA mesocosms in all alder plots 

in May and June 2016 (Figure 4.6.), which lends partial support to my third hypothesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Soil CO2 efflux from mesocosms with different litter quantity in plots planted with single 

tree species at Gisburn Forest, UK. The lines show the monthly mean soil CO2 efflux from each 

species plot (n = 3 plots per species) in response to litter treatment during 15 months of 

observations; where CT is control, LA is litter addition and LR is litter removal; and A, O and P are 

plots of alder, oak and pine respectively. 

 Aug    Sept    Oct      Nov               Mar    Apr     May    Jun      Jul      Sep     Oct 
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Figure 4.5. Soil CO2 efflux from mesocosms with different litter quantity in plots planted with two-

species mixtures at Gisburn Forest, UK. The lines show the monthly mean soil CO2 efflux from 

each mixed species plot (n = 3 plots per mixture) in response to litter treatment during 15 months 

of observations; where CT is control, LA is litter addition and LR is litter removal; and AO is a 50:50 

mix plot of alder and oak, AP is 50:50 mix plot of alder and pine, and OP is 50:50 mix plot of oak 

and pine 
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Figure 4.6. Priming effects from different tree species plots planted with single tree species and 

two-species mixtures at Gisburn Forest, UK; Monthly means are shown during 15 months of 

observations (n = 3 plots per species), where A, O and P are single species plots of plots of alder, 

oak and pine respectively; and AO is a 50:50 mix plot of alder and oak, AP is 50:50 mix plot of 

alder and pine, and OP is 50:50 mix plot of oak and pine.  

 

4.3.6. The effect of litter manipulation on soil properties 

The effect of litter manipulation in soil properties at the end of the experiment varied 

among tree species (Figure 4.7.) and mixtures (Figure 4.8.). Soil C and N declined in oak 

plots during the study regardless of litter treatment, but there were no significant changes 

  Aug      Sept     Oct       Nov                  Mar      Apr       May     Jun      Jul        Sep       Oct 
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in alder and only an increase in soil N with litter addition in pine plots. By contrast soil 

MBC, and MBN was lower in both LR and LA treatments relative to controls within pine 

and alder, but not in oak plots. 

 

 
 

 

 

Figure 4.7. Mean priming effects from different tree species plots planted with single tree species 

and two-species mixtures at Gisburn Forest, UK; Dots represent means that were calculated from 

15 months of observations (n = 3 plots per species), where A, O and P are single species plots of 

plots of alder, oak and pine respectively; and AO is a 50:50 mix plot of alder and oak, AP is 50:50 

mix plot of alder and pine, and OP is 50:50 mix plot of oak and pine.  
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4.4. Discussion 

 

My study assessed how different tree species affect C dynamics in temperate forest soils. 

Specifically, it provided an insight into how differences in litter quality and quantity 

interacted to affect soil respiration, soil properties, and the occurrence of priming effects. 

 

4.4.1. The link between soil properties, litter decomposition and soil respiration. 

Soil pH and C:N ratios affected pre-treatment soil respiration and explained a large portion 

of the separation in ordination space between tree species plots. The lower soil pH in plots 

in which alder was present could be due to the established influence of alder to soil 

acidification (Rhoades et al, 2001).  Additionally, the differences in C:N ratios among plots 

planted with different species, were mainly driven by higher concentrations of total N in 

soils where alder was present. This can be explained by the association of alder roots with 

the N- fixing bacteria, such as Frankia alni, which converts atmospheric N into usable 

compounds like ammonium-N and nitrate-N (Mitchell and Ruess, 2009). Alder not only 

benefits from the association with N-fixing bacteria, but can also promote higher nutrient 

content of adjacent tree species when planted in mixtures (Binkley et al., 1992). Hence, 

the similarity in soil properties and soil CO2 efflux in plots where alder is present is likely to 

be largely due to the role of alder in increasing the nutrient content of the soil and 

neighbouring plants. 

The soil C:N ratio has long been used as an indicator for soil quality (Batjes, 1996).This is 

because greater inputs of available soil nitrogen increases microbial activity, as microbes 

are less likely to be limited by N,  which promotes higher soil CO2 efflux (Tarrant and 

Trappe, 1971).  By contrast, the higher C:N ratio in oak and oak-pine plots explains low 

pre-treatment soil respiration rates.  
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In support of my first hypothesis, differences in soil respiration largely reflected the 

species-specific rates of litter decomposition in my study (Figure 4.3). Litter decomposition 

in terrestrial ecosystems directly regulates the input of nutrients and C entering the soil, 

thus affecting respiration (Veen et al., 2015). At the same time, differences in litter 

decomposition are regulated by litter quality, with higher quality litter decomposing faster 

(Wardle, 2002). According to the litter properties I measured in my study, I expected to see 

the most rapid mass loss in alder litter, followed by oak, and then the alder-oak mixture 

with corresponding patterns in soil CO2 efflux. Whereas the decomposition rates 

conformed to expectations, soil respiration tended to be higher in alder-oak mixed plots 

than in alder, and in alder-pine mixed plots compared to oak plots. This finding suggests 

both a key role of N availability from alder litter and supports previous research on the  

facilitative effect of litter mixtures over decomposition via microbial activity and soil 

respiration (Wardle et al. 1997). 

 

 

The effect of litter manipulation on soil CO2 efflux and the occurrence of priming effects. 

The effects of litter removal treatments can be attributed to the differences in 

decomposition rates of leaf litter present on each plot. Slow decomposition rates can often 

promote the accumulation of organic matter in the forest-floor. This is particularly important 

at Gisburn Forest, as the soils have considerably high moisture and high water tables 

(Mcnamara et al, 2008), which can in turn slow down litter decomposition and promote 

accumulation of organic matter (Strakova et al, 2012). As I only removed litter that was 

clearly identifiable as leaves or pine needles, I expected the LR treatment to have a 

smaller effect in pine and oak-pine plots, as a result of greater availability of organic 

carbon in the forest floor and low respiration rates from low-quality litter. Accordingly, litter 

removal had no, or only a minor effect in pine and in mixed-species plots. At the same 
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time, the removal of the litter in the LR treatments had a significant effect on respiration 

rates in single-species alder and oak plots, which had higher decomposition rates (Figure 

4.3.). Nonetheless, it is important to note that litter removal had no effect in alder-oak 

mixtures, despite high rates of litter mass loss. 

Contrary to my second hypothesis, litter addition (LA) treatments had no consistent effects. 

The effects of litter addition were temporary in single-species plots but lasted longer in 

alder and oak compared to pine, which follows the pattern of litter quality and 

decomposition of these species. However, doubling the amount of litter inputs not only 

doubles the quantity of C and nutrients entering the soil, but also increases the amount of 

compounds that have a negative impact on microbial communities and decomposition 

(Facelli and Pickett, 1991). For instance, the high content of tannins and phenolic acids in 

pine litter reduce microbial activity and therefore, affect C dynamics by reducing soil 

respiration (Nierop et al, 2006). The effect of litter addition in mixed-species plots was 

unclear and in all plots, the increase in soil respiration with litter addition was mainly limited 

to warm months when decomposition is expected to be rapid (Figures 4.4. & 4.5.).  

Given the limited effects of litter addition, it is unsurprising that I did not observe clear soil 

CO2 release by priming effects in my study. However, it is important to note that I 

measured a disproportionate increase in soil respiration in response to litter addition 

treatments in single-species alder plots during months when soil respiration was at its 

highest (May and June 2016). This finding provides partial support to my third hypothesis 

that high-quality litter is more likely to produce priming effects by stimulating soil microbial 

activity.  

 

My results provide evidence for the influence of variations in tree species, litter quality and 

quantity on C dynamics, in managed temperate forest soils. Increased litter inputs did not 

have the same effect on soil respiration and the occurrence of priming effects across all 
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species and mixtures, because the effects of the experimental treatments were regulated 

by litter quality and decomposition rates. Additionally, my results give an insight on how 

increased litterfall, which is likely to increase under climate change, could have variable 

effects on soil C dynamics in single-species and mixed-species plantations.  

4.5. Conclusion 

My results demonstrate the influence of tree species on soil C dynamics in managed 

temperate forest soils via the quality and quantity of leaf litter. Increased litter inputs had 

variable effects across species and mixtures, because the effects of the experimental 

treatments were regulated by decomposition rates. Additionally, my results give an insight 

into the potential impact of altered litterfall on soil C dynamics in single-species and mixed-

species plantations under climate change.  

Increased litterfall is expected as rising atmospheric CO2 levels promote forest productivity 

(Raich and Schelsinger, 1992). My experiments demonstrate variable responses of soil 

respiration and soil properties to changes in litter inputs under different tree species. 

Without appropriate species selection, plant-soil interactions could either increase or 

reduce the release of CO2 from temperate forests, highlighting the importance of improving 

our understanding of tree species responses to environmental changes. My study 

demonstrates that mixed-species plantations have lower soil respiration rates overall and 

also seem to be less sensitive to increased litter inputs, suggesting that the right mixture of 

species might be key to increasing soil carbon sequestration in future.  
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Chapter 5. Tree species identity and litter quality regulate soil carbon dynamics in 

response to inputs on ‘foreign’ litter in a managed temperate woodland. 

 

 

Abstract 
 
 
An informed selection of tree species for rotations in managed forests could reduce forest 

CO2 emissions in the UK. However, it is still unclear how the rotation of tree species can 

improve the stocks of carbon (C) in forest soils and mitigate the rise of atmospheric CO2 

efflux. The ‘home field advantage’ (HFA) of litter decomposition is likely to be particularly 

important in this context, as planting one tree species in soil conditioned by another could 

also modify the input of C and nutrients into the soil during the first years of a new rotation 

period. Here, I conducted a field experiment in Gisburn forest, UK, to explore the effects of 

‘foreign’ litter additions in soil C dynamics. I measured key litter properties of alder, oak 

and pine, and measured soil properties in single-species plots of the same species. I used 

a reciprocal transplant experiment in mesocosms within the plots to assess how the HFA 

influences litter decomposition and soil CO2 efflux (soil respiration) in ‘home’ or ‘away’ soils 

during 15 months. Additionally, I measured the changes in soil properties after ‘foreign’ 

litter inputs. The occurrence of HFA varied among species, with alder soils favouring the 

decomposition of ‘home’ litter when compared to ‘foreign’ oak or pine litter. In contrast, 

decomposition in pine plots seemed to be driven by litter quality, rather than the HFA. The 

HFA was also apparent in soil CO2 efflux, with the highest respiration rates over ‘home’ 

litter in alder and oak, but not in pine plots. Soil properties varied with ‘foreign’ litter 

addition, and increased total soil C content of pine soils with alder litter suggested that the 

addition of ‘high-quality’ litter could promote C storage. By contrast, the results suggest 

that the  addition of ‘foreign’ litter might reduce C stocks in oak soils, irrespectively of litter 

quality. 
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My results demonstrate how an informed selection of species for forestry rotations could 

affect soil C dynamics and provide an insight into the possible role of the HFA for 

increasing soil C stocks during forestry rotations.  

 
 
5.1 Introduction 

 
Afforestation and land management practices aimed to reduce CO2 emissions while 

ensuring sustainable timber production, is influencing land-use policy in the UK (Jenkins et 

al., 2011). Practices such as afforestation are designed to contribute to mitigating the rise 

in atmospheric CO2, helping nations worldwide meet their Kyoto targets (van Kooten & 

Johnston, 2016). Increased afforestation across the UK is a current policy target, which is 

most likely to use low-quality agricultural land (McNamara, 2008). Indeed, the afforestation 

of grassland or moorland has become common practice, as it has great impact on 

reducing inputs of CO2 to the atmosphere (Calder, 1990; Fowler, 1989; Soulsby and 

Reynolds, 1994). At the same time, afforestation can also alter nutrient cycling and soil 

processes as consequence of forest growth (Robertson, 2008). However, these effects can 

vary with tree species, climate and soil type (Ulrich, 1983; Cape et al., 1991; Brown and 

Iles, 1991; Parker, 1983; Miller et al., 1990). Forests are important in global C cycling and 

sequestration as they contain c. 80% and 40% of all global terrestrial aboveground and 

belowground C stocks respectively (Kirschbaum et al., 1996; Schimel et al., 2001). 

However, many C offset calculations are based primarily on aboveground biomass in 

forests because we still have a limited understanding of belowground C storage and its 

response to changes in climate (Six et al., 2002). Additionally, despite the importance of a 

careful selection of tree species used in afforestation of land for environmental reasons, 

the main criteria for tree species selection are usually based on the economic value of the 

timber (Jenkins et al., 2011) and the effect of different species on soil C dynamics remains 
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unclear (Vesterdal et al., 2012), which can potentially reduce the effectiveness of 

afforestation as a tool to reduce CO2 emissions.  

In many temperate forests, the soil contains more than twice as much C as the 

aboveground biomass (Eswaran et al., 1993; Goodale et al., 2002). In these ecosystems, the 

effects of tree species on the storage of C should be given special attention because they 

help regulate forest functioning (Grigal and Ohmann, 1992; Yang et al., 2005). Different 

tree species, and particularly differences in trees functional traits, can have a large impact 

on forest processes (Bardgett and Wardle, 2010). Trait differences and their ecosystem 

implications have been widely discussed in ecology (e.g. Grime 1997; McGill et al., 2006; 

Wright et al., 2013), with studies demonstrating that conifers, which are usually adapted for 

low nutrient conditions, characteristically have low tissue production, lower leaf area, and 

lower leaf nutrient concentration compared to broadleaf trees (Wright et al. 2004; Aerts and 

Chapin 2000). Importantly, plant traits also define litter quality, whereby plant species 

adapted to low nutrient conditions generally produce litter with low concentrations of water 

soluble compounds and high concentrations of lignin and cellulose, compared to species 

adapted to high nutrient conditions (Bardgett and Wardle, 2010). Consequently, 

differences in tree species' functional traits will regulate the concentration of C and 

nutrients input into forest soils via leaf litter decomposition.  

During leaf litter decomposition, large quantities of C and nutrients enter the forest soil 

(McNaughton et al., 1989), which is estimated to contribute about 70% to the annual forest 

C flux, with leaf litter decomposition as the primary source of soil C and nutrients to the soil 

(Warembourg and Paul, 1977). During leaf litter decomposition, nutrients from organic 

materials are mineralised by microorganisms and made available for plant uptake, 

whereas C is either stabilised and stored in the soil or released back to the atmosphere as 

CO2 (Aber and Melillo, 1991; Schlesinger, 1997; Gartner and Cardon, 2004). The turnover, 

storage and release of C and nutrients during decomposition is the result of many complex 
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interactions, which are influenced by soil type, decomposer communities, climate 

conditions and tree species (Vesterdal and Raulund-Rasmussen, 1998; Côté et al., 2000; 

Callesen et al., 2003; Jandl et al., 2007; Prescott, 2010). At the same time, leaf litter 

decomposition facilitates the recycling of nutrients and chemical elements, and regulates 

forest restoration and productivity (Cleveland et al., 2011). The interaction of the physical 

and chemical environment (e.g., temperature, humidity), litter quality (e.g., C:N, lignin:N), 

and soil decomposers (e.g., bacteria, fungi, and invertebrates) regulate leaf litter 

decomposition (Hättenschwiler et al., 2005; Prescott, 2005). It follows that leaf litter from 

different tree species, which vary in their physical and chemical properties, will show 

differences in their rate of decomposition and therefore, affect soil processes differently. 

Additionally, it is still unclear the close interaction that exist between decomposer and 

substrate, which can often favour decomposition of certain species over other (Ayres et al., 

2009). 

 

A range of decomposers present in the soil play a key role in leaf litter decomposition as 

they may particularly be better at decomposing litter from a specific plant with which they 

are associated (Veen et al., 2015). Previous research suggests that litter may decompose 

faster in the habitat from which it was derived than in other habitats. This phenomenon has 

been called the ‘home-field advantage’ (HFA) effect (Gholz et al., 2000; Ayres et al., 2009).  

The HFA occurs after a competitive adaptation, in which soil decomposers and litter type 

create coexistence mechanisms, as litter is the main source of nutrients and energy for soil 

organisms (Lin et al., 2017) In this substrate–microbial interaction, plant species can 

influence the activity of the soil microorganism community directly through leaching or the 

release of exudates (Pfeiffer et al., 2013), or indirectly by affecting competitive interactions 

among soil decomposers (Cesarz et al., 2013; Austin et al., 2014). After a long term 
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interaction characterised by a continual input of substrate with same characteristics, 

microbial decomposers develop a preference for decomposing this particular kind of litter 

(Ayres et al., 2009), generating specificity of decomposers for a particular litter type.  

Ayres et al. (2009) calculated the magnitude of HFA in forest ecosystems, showing that 

positive HFA accelerated litter mass loss by approximately 8% using reciprocal transplant 

experiments. However, Gießelmann et al. (2011) showed that the microorganisms and 

mesofauna asociated to decomposition had no significant effects on HFA in an Atlantic 

rainforest. Similarly, St. John et al. (2011) found no HFA effect in a forest–grassland 

reciprocal transplant experiment and attributed the result to an adaptation of soil microbial 

communities to different litter resources. These studies suggest that the magnitude and 

direction of the HFA effect can vary and attribute a great part of this variation to litter quality 

(Ayres et al., 2009; Veen et al., 2015). Also, it has been shown that litter translocation will 

affect species decomposition rates. For instance, low-quality litter that contains recalcitrant 

or toxic secondary compounds may generate a large HFA because fewer soil communities 

can decompose these compounds (Austin et al., 2014; Chomel et al., 2015). By contrast, 

high-quality litter, which contains easily degradable compounds, could be expected to have 

a lower HFA because most soil decomposers can decompose them (Ayres et al., 2009; 

Austin et al., 2014; Veen et al., 2015b). Accordingly, it is expected that decomposition will 

vary according to litter quality of tree species, however it is unclear how decomposition will 

be altered following a transplantation of litter.  

Building on the work described in Chapter 3, the experiment I present here aimed to 

assess the whether the home-field advantage affects litter decomposition and soil 

respiration in situ, and to determine the impact of 'home' vs. 'foreign' litter on soil 

properties. I used a litter transplantation experiment in monoculture stands of three 

different tree species to test the following alternative hypotheses: 
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H1) The effect of decomposing litter on soil C dynamics will depend on litter quality, with 

high quality litter promoting higher respiration, regardless of litter origin. 

H2) The home-field advantage of litter decomposition will be reflected in soil respiration 

rates, whereby soil respiration will be higher for litter decomposing at “home" compared to 

litter decomposing "away". 

H3) The effects of “foreign litter” on soil properties will depend on litter quality, with high 

quality litter increasing MBC in response to fast litter decomposition.  

 

My results demonstrate how an informed selection of species for forestry rotations could 

affect soil C dynamics and provide an insight into the possible role of the HFA for 

increasing soil C stocks during forestry rotations.  

 
5.2. Methods 

 

5.2.1 Field site 

I conducted my study within a long-term tree growth trial established by Forest Research 

in 1955, which is located in Gisburn Forest, northwest England (henceforth "Gisburn"; 

Figure 1). The site is c. 35 km inland from the coast (54° 1′ N; 2° 22′ W), sloping slightly to 

the south-west with an elevation ranging from 260 to 290 m. The harvest of the first 

rotation was done after a heavy storm knocked down most of the adult trees in 1990. For 

the harvesting process, tree trunks were flown out by helicopter to reduce the impact 

cause by heavy machinery in the soil. Consequently, the soil in each plot has been under 

the influence of the same tree species or mixture of species for over 60 years and has 

remained undisturbed. The trial is currently in its second rotation (planted in April 1991), in 

which all plots were planted with the same tree species as the first rotation.  For the 

present study, I selected single-species plots (44.72-m x 44.72-m) of black alder (Alnus 

glutinosa L.; henceforth ‘alder’), sessile oak (Quercus petraea L.; henceforth ‘oak’) and 
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Scots pine (Pinus sylvestris L.; henceforth ‘pine’) replicated in three blocks for a total of 

nine plots. 

I collected freshly fallen litter of all species from two litter traps placed in each plot during 

October and November 2015. Litter traps were constructed using polypropylene tubes and 

mesh (1 m above the soil surface, 1-m2 area). Leaf litter samples were brought back to the lab 

and oven-dried to constant weight at 60 ºC. Litter used in field experiments was left intact, 

and litter used for decomposition bags was manually chopped and sieved to 1 cm. The 

remaining litter was ground using a ball mill (Retsch MM400, Hann, Germany) for chemical 

analyses.  

5.2.2. Treatment addition 

To determine how 'home' vs. ‘foreign’ litter affects soil C dynamics, I used a reciprocal litter 

transplantation experiment. Mesocosms were used to contain treatment effects within a 

discrete area and avoid disrupting long-term measurements at the sites. In each plot, I 

installed three mesocosms, consisting of polypropylene tubes (20-cm inner diameter and 12-cm 

height) that were sunk into the soil to 3-cm depth and at least 1-m from the nearest tree trunk. All 

 

 

Figure 5.1. Aerial photographs of Gisburn Forest, UK.: a) Gisburn Forest, Lancashire, UK. 

b) Diagram representing the distribution of plots and experimental set up at Gisburn 

Forest.  (Images were obtained from: Wytham Woods-Imagery ©2017 Infoterra Ltd & 
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Bluesky, Digital Globe, Map Data ©2017 Google; and Gisburn Forest-Imagery ©2017 

Getmapping plc, Map Data ©2017 Google). 

mesocosms were installed in May 2014 and the vegetation and litter within each 

mesocosm was carefully removed. All mesocosms were left undisturbed for one month 

before the start of measurements and checked monthly to remove growing plants. 

Two mesocosms per plot received equal quantities of ‘foreign’ litter inputs from each of the 

other two species, and the third mesocosm received litter (18 g) from the ‘home’ species. 

Litter addition followed a factorial design with all litter types decomposing within 

mesocosms on each soil type. I conducted a single litter addition in July 2015 and the 

experiment terminated in October 2016 for a total of 15 months of observations. To avoid 

naturally falling litter entering the mesocosms, wire mesh 'hats' were placed on top of each 

mesocosm.  

 

5.2.3. Soil respiration measurements  

To determine the effects of different litter types on soil respiration, I took monthly soil CO2 

efflux measurements over each mesocosm from using a soil survey system comprising an 

infrared gas analysed attached to a soil survey chamber (LI-8100A, LiCor BioSciences, 

Lincoln, Nebraska, USA). To eliminate the effects of turbulence from chamber closure, a 

15-sec post-purge period and a 15-sec dead band period were set for each measurement. 

To determine differences in initial soil respiration, I measured soil respiration monthly for 

three months before starting treatments (May-July 2015). I then made monthly 

measurements over the decomposing litter from August 2015 to October 2016, when the 

experiment ended. Soil respiration in December 2015 and January 2016 was not 

measured because the soil was frozen. 
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5.2.4. Litter processing 

To assess litter quality, I analysed leaf litter from composite samples of each study species 

(three analytical replicates per species, 9 samples in total). I determined the total C and N 

content and conducted fibre analysis of the litter samples following the Van Soest method 

(Van Soest 1963). I measured the C and N content of the leaf litter on oven-dried (60 ºC) 

ground subsamples using a Vario ELIII Element Analyser (Elementar, Hessia, Germany). 

Acid detergent lignin (ADL) and cellulose were determined on 1 g oven-dried (60 ºC) knife-

milled (1 mm) litter samples. I performed the extractions using a FibertecTM 1020 hot 

extraction unit (Foss, Hilleroed, Denmark). Briefly, each sample was placed in a glass 

crucible and 1-g of celite was added as a filtration aid. Total acid detergent fibre (ADF) was 

obtained after washing the samples with boiling acid detergent solution (0.5 M H2SO4 + 

CTAB) for 1 h, followed by a 5-min acetone soak; the resulting ADF samples were drained 

and oven-dried at 105 ºC for 5 h. Cellulose was then solubilized by soaking the ADF 

samples in H2SO4 for 3 h, followed by washing with hot deionised H2O (until acid-free). 

The remaining sample was dried for 2 h at 130 ºC and then ashed in a furnace for 3 h at 

525 ºC. Cellulose content was calculated from the mass loss after solubilization and lignin 

content was calculated from the mass of the residue.  

 

5.2.5. Litter decomposition experiment. 

I used litterbags to measure the rate of decomposition of leaf litter from my study species. 

Litterbags (10-cm x 10-cm) were made using nylon mesh (aperture 1-mm), filled with 3 g 

of single-species litter and placed in the field in July 2015. Vegetation and litter was 

removed from the soil and the litterbags were pinned in place to ensure good contact with 

the soil. I placed four litterbags per species in each plot within 1 m of the mesocosms. To 

determine mass loss over a six-month period, I collected two litterbags per species and 
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plot in September 2015 and two in January 2016. After collection, litter was extracted from 

bags, oven dried (60 ºC) and weight to calculate mass loss over time. 

 

 

5.2.6. Soil collection and analysis 

To measure soil properties in the study plots, I collected six soil samples at 0-10 cm depth 

using a 2.5-cm diameter soil corer and mixed them to create one composite sample per 

replicate plot. Following the same procedure, I collected three soil cores from within each 

mesocosm at the end of experiment to determine the effect of litter type on soil properties. 

All samples were sealed in plastic bags and brought back to the lab to be processed within 

24 h of collection or oven-dried for further analysis.  

 

5.2.7. Soil water content and pH. 

I determined gravimetric soil water content using 20-g subsamples of fresh soil. I 

measured the fresh weight of the soils within 24 h of collection and then dried the samples 

at 105 ºC for 48 h to calculate soil water content. I measured soil pH on a slurry of soil in 

deionised water (1:3 ratio) using a S220 Seven Compact pH meter (Mettler Toledo, 

Columbus OH, USA).  

 

5.2.8. Soil total C, total N and microbial biomass 

I measured the total C and N content of the soil on ground subsamples of oven-dried soil 

using a Vario ELIII Element Analyser (Elementar, Hessia, Germany). To determine soil 

microbial biomass carbon (MBC), I performed the chloroform fumigation extraction method 

on paired subsamples (8-g dry weight equivalent) of fresh soil following Vance et al. (1987) 

with modifications (Jones & Willet, 2006). Briefly, one subsample was fumigated with 

ethanol-free chloroform for 24 h and both subsamples were extracted in 40 ml 0.5M 
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K2SO4, shaken at 200 rpm for 1 h, centrifuged at 3000 rpm, and filtered. The extracts were 

refrigerated for c. 10 days until analysis for total C on a TOC-L combustion analyser 

coupled with a TNM-L unit (Shimadzu Corp, Kyoto, Japan). Soil MBC was estimated by 

the difference in C content between fumigated and unfumigated subsamples, without 

correction for extraction efficiency. 

5.2.9. Statistical analysis 

All statistical analyses were performed in R version 3.2.4 (R Core Team, 2016). I used 

Principle Components Analysis (PCA; rda function in the vegan package; Oksanen et al., 

2017) to explore the initial differences in soil properties among the three soil types. I 

included all soil variables measured (C, N, MBC, MBN, C:N ratio, pH, ammonium-N and 

nitrate-N)  and scaled them for direct comparison. The scores of the first two ordination 

axes (PC1 and PC2) were included as explanatory variables in linear mixed effects models 

(lmer function), to investigate the effect of initial soil properties on pre-treatment soil CO2 

efflux, whereby mean CO2 efflux was modelled as a function of PC1, PC2 and their 

interaction as explanatory variables and with block as a random effect. The models were 

assessed by comparing them using likelihood ratio tests, dropping terms until the best model was 

determined, using AICs and p values for comparison and model improvement. The best model was 

then compared to the corresponding null model and the model fit was then assessed using diagnostic 

plots (Pinheiro and Bates, 2000).  

I used linear mixed effects models to determine the influence of soil type and litter type on 

soil respiration from field mesocosms. In these models, I included soil type and litter type 

as fixed effects, and block and time as random effects. I also included soil temperature in all 

models as a covariate and selected the best model following the same steps as described above. 

To determine changes in soil properties within the mesocosms, I calculated the response ratio for 

each mesocosm using the equation: RR = ln(Rx / Rc); where ‘Rx’ is the value for each soil 

property at the end of the experiment; and ‘Rc’ is the value at the beginning of the 
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experiment, which were used as a control (REFERENCE). I then used linear models (lm 

function) to determine the influence of soil type and litter type on the response ratios of soil 

properties (C, N, MBC, MBN, pH, NO3, NH4, and C:N) using block as an error term. I also 

used linear models to determine the influence of soil type and litter type on decomposition 

rates, using block as an error term. In both cases, the full model included the interaction 

between soil type and litter type, and non-significant terms were dropped until the best-fit 

model was obtained (Crawley, 2007). 

 

5.3. Results 

 

5.3.1. Litter quality 

Litter properties varied among species (Table 5.1.): alder had the highest N content, but 

the lowest C:N and lignin to nitrogen (L:N) ratio. By contrast, pine had the highest C 

concentration, C:N ratio and L:N ratios. For the purpose of classifying litter in this study, I 

used the L:N ratios as an indicator of litter quality, whereby low values indicate high quality. 

Therefore alder is considered as high quality litter, oak as medium quality, and pine as low 

quality. 

 

5.3.2. Initial soil differences and respiration 

Ordination of initial soil properties revealed clear separation of plots planted with different 

tree species (Figure 5.2.). Plots planted with alder or oak were tightly grouped, whereas 

pine soils varied widely along the first ordination axis (PC1). Alder soils were separated 

from oak and pine along the second ordination axis (PC2), corresponding to differences in 

nitrate-N, pH and C:N ratios. Soils under alder and pine differed in their C and N content, 

with pine having the highest C and N content, whereas soils under alder had the highest 

NO3 concentrations (Table 5.1.). 
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Table 5.1. Leaf litter and soil properties of different tree species used in a litter translocation 

experiment at Gisburn Forest, UK. Analysis on freshly fallen litter from alder, oak and pine trees; 

showing carbon (C), nitrogen (N), lignin (L) cellulose content, C:N ratios and L:N ratios for n = 3 

analytical replicates. Soil properties were analysed from a composite sample per plot (n = 3 plots 

per species)  collected from single-species plots of alder, oak and pine.  (n = 3 replicates per 

species). 

  Total C 
(%) 

Total N 
(%) 

C:N 
ratio 

Lignin 
(%) 

Cellulos
e (%) 

L:N 
ratio 

  

Litter 

Alder 49.00 3.60 13.60 5.55 37.73 1.54   

Oak 47.01 1.19 39.64 8.20 10.79 6.89   

Pine 63.55 0.93 59.10 16.37 12.60 17.60   

          

  Total C 
(%) 

Total N 
(%) 

MBC MBN C:N ratio pH NH4-N NO3-N 

Soil 

Alder 9.24 0.5 280.25 55.06 18.76 4.03 68.31 20.11 

Oak 7.97 0.37 352.16 63.69 21.57 4.59 57.72 2.43 

Pine 12.94 0.67 383.19 69.83 20.78 4.35 80.12 3.12 

 

 

 

 

Soils under oak trees had the highest C:N ratio. Accordingly, second ordination axis also 

explained the variation in mean pre-treatment soil respiration values, (χ2 = 4.455, p = 

0.034; Figure 5.4.), where soils under the influence of alder showed a higher pre-treatment 

mean CO2 efflux (1.61 μg C g h-1), compared to oak (1.34 μg C g h-1) and pine soils (0.97 

μg C g h-1). 
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Figure 5.2. PCA ordination plot of initial differences in soil properties for plots planted with oak (O), 

alder (A) or pine (P) trees at Gisburn Forest, UK. Vectors show the relative influence of each soil 

property on the distribution of samples in ordination space, where C is carbon, N is nitrogen , pH is 

soil pH, NH4 is ammonium-N and NO3 is nitrate-N.  

 

 

5.3.3. The home-field advantage of litter decomposition  

Decomposition rates varied significantly as a result of the interaction between litter type 

and soil type (R2 = 0.96, p = 0.001). In alder soils, ‘home’ litter decomposed much faster 

than both types of ‘foreign’ litter, whereas in oak soils, the decomposition of ‘home’ and 

‘foreign’ litter was very similar. Finally, in the pine soils, the 'foreign' alder litter decomposed 

faster than either oak or pine litter.   
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Figure 5.3. Mass loss from decomposing alder, oak and pine litter during an in situ reciprocal 

transplant experiment using litterbags at Gisburn Forest. Dots represent mean values for 

decomposition rates (% mass loss per day) and error bars show standard errors for n = 3 per litter 

type, where A, O and P are soils within monoculture plots of alder, oak and pine, respectively; 

black dots indicate 'home litter' (CT) for each soil, and 'foreign' litter is shown as pink triangles for 

alder litter, yellow squares for oak litter and green crosses for pine litter.  

 

5.3.4. ‘Home’ and ‘foreign’ litter addition and their effect on soil CO2 efflux 

Decomposition rates varied significantly as a result of the interaction between litter type 

and soil type (R2 = 0.96, p = 0.001; Figure 5.3.). In alder soils, ‘home’ litter decomposed 

much faster than both types of ‘foreign’ litter, whereas in oak soils, the decomposition of 

‘home’ and ‘foreign’ litter was very similar. Finally, in the pine soils, the 'foreign' alder litter 

decomposed faster than either oak or pine litter.    

Control 
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Figure 5.4. Mean soil CO2 efflux in single species plots of alder (A), oak (O) and pine (P) as 

influenced by litter of the same species in a reciprocal transplant experiment at Gisburn Forest UK. 

Black dots indicate 'home litter' (CT) for each soil, and 'foreign' litter is shown as pink triangles for 

alder litter, yellow squares for oak litter and green crosses for pine litter. Mean monthly soil CO2 

efflux were calculated from 15 months of observations and error bars show standard errors for n = 

3 per litter and soil type. 

 

Similarly, the interaction between soil type and litter type significantly affected soil CO2 efflux (χ2 = 

37.72, p = 0.001). There was a strong seasonal pattern in soil CO2 efflux across all 

treatments (Figure 5.5), with higher respiration rates during autumn and summer. Overall, 

pine soils had lower rates of CO2 efflux than alder and oak soils. Evidence for the home-

field advantage was observed in alder and oak plots, where mesocosms containing ‘home’ 
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litter had higher respiration rates than foreign litter (Figures 5.3. and 5.4). By contrast, in 

pine plots the highest respiration rates were measured over oak litter.  

 

 

 

Figure 5.5.  Soil CO2 efflux during 15 months in single species plots of alder (A), oak (O) and pine 

(P), as influenced by litter of the same species in a reciprocal transplant experiment, where black 

dots indicate 'home litter' for each soil, and 'foreign' litter is shown as pink triangles for alder litter, 

yellow squares for oak litter and green crosses for pine litter. Symbols indicate mean monthly soil 

CO2 efflux and error bars show standard errors for n = 3 per litter and soil type.  
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Figure 5.6. Response ratios showing changes in soil properties in single-species plots of alder (A), 

oak (O) and pine (P) at the end of a reciprocal litter transplant experiment in field mesocosms at 

Gisburn Forest, UK. Dots and error bars represent means and standard errors (n = 3 plots per 

species) for response ratios of total carbon (C), total nitrogen (N), microbial biomass carbon 

(MBC), microbial biomass nitrogen (MBN), C:N ratio and pH after the addition of 'foreign' litter, 

where pink triangles for alder litter, yellow squares for oak litter and green crosses for pine litter 
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5.3.5. The effect of foreign litter on soil properties 

Different ‘foreign’ litters varied in their effect on soil properties (Figure 5.6). There was a 

significant increase in C, MBN and C:N response ratios with alder litter in pine plots (χ2 = 

7.97, p = 0.004; χ2 = 7.99, p = 0.004; χ2 = 8.10, p = 0.004; Figure 6) . In contrast, there 

were no significant changes in soil variables in alder plots except pH, which decreased 

with the addition of foreign litter. However, in oak plots MBC, MBN and pH increased and 

total C and total N decreased after the addition of both species of ‘foreign litter’.  

 

5.4. Discussion 

My experiments assessed how different litter from ‘foreign’ tree species affects C dynamics 

in temperate forest soils. Specifically, the study provides an insight into how species-

specific litter quality affects soil respiration and soil properties and demonstrates links 

between the ‘home-field-advantage’ of litter decomposition and soil respiration. 

 

Linking litter quality, soil properties and soil respiration. 

The ratio of lignin to nitrogen is a well-known predictor for litter quality, as it regulates litter 

decomposition and soil microbial (Taylor et al., 2014). Litter properties can also shape soil 

properties, which is evident from previous work characterising soils in single and mixed-

species plots (see Chapter 4, section 4.3.1.). In my study, this is particularly noticeable in 

soils under alder because alder roots association with the nitrogen fixing bacterium 

Frankia alni, helps converting atmospheric nitrogen into ammonium-N and nitrate-N 

(Tarrant and Trappe, 1971, Yiqi and Zhou 2010). Therefore, it is not surprising that the high 

concentrations of total N observed in alder litter are reflected in the nitrate-N content of 

alders’ soils. Additionally, high concentrations of N in the soil promote the activity and 

growth of the microbial communities (Taylor et al., 2014) and explain the higher soil 
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respiration observed in alder plots compared to oak and pine. At the same time, the 'low 

quality' of oak and pine litter, which can be mainly attributed to high concentrations of 

lignin, help explain the low pre-treatment rates of soil respiration in plots dominated by 

those species. Lignin is a recalcitrant structural component of leaf litter, which slows litter 

decomposition because only certain taxa can synthesise the enzymes needed to break 

down lignin into more labile C compounds (Sariyildiz et al., 2003). Hence, the litter 

properties of different species shape soil properties and 'condition' soil microbial 

communities.  The interaction between litter quality, soil properties and soil microbial 

communities produces the 'home-field advantage' (HFA) of litter decomposition, whereby 

litter is expected to decompose fastest in its location of origin (Gholz et al., 2000).  

 

Home-field advantage of litter decomposition  

The HFA of litter decomposition was not consistent among species (Figure 5.5.). Alder 

soils favoured the decomposition of ‘home’ litter, but the differences in the quality of 

‘foreign’ litter did not affect their rate of decomposition in alder plots. Many decomposer 

organisms may be adapted to break down particular litter types (Ayres et al. 2009), and 

there is growing evidence for species-specific decomposer communities on litter, 

suggesting that plant–decomposer interactions can favour the decomposition of ‘home’ 

litter that the soil communities are adapted to (Veen et al., 2014). Accordingly, it is likely 

that the HFA in alder plots was due to the preferential decomposition of ‘home’ litter via 

decomposers adapted to litter with high N and low lignin content.  By contrast, litter 

decomposition in pine plots seemed to be mainly driven by litter quality and there was no 

evidence of HFA, suggesting that the microbial community under pine is not highly 

specialised or that less recalcitrant foreign litter represents an attractive alternative 

resource to microbes. Surprisingly, ‘home’ and ‘foreign’ litter also had similar 

decomposition rates in oak, providing no evidence of HFA or preference of decomposers 
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for ‘high-quality’ litter. This contrasts with evidence that decomposition of litter from 

broadleaf trees is faster than decomposition of conifer litter (Prescott et al., 2000) and 

might be related to microclimate differences that influence decomposition (Perez-Suarez et 

al., 2011). 

 

‘Home’ and ‘foreign’ litter addition and their effect on soil CO2 efflux and properties. 

In support of my second hypothesis, the HFA of decomposition in alder plots was reflected 

in patterns of soil CO2 efflux, where alder soils favoured the decomposition of ‘home’ litter, 

and consequently promoted higher respiration rates than ‘foreign’ litter. However, the 

quality of ‘foreign’ litter did not influence soil respiration or soil properties of alder soils, 

contrary to my expectations. This might be explained by the very similar low rate of 

decomposition of oak and pine litter in alder soil. As litter decomposition is the main factor 

regulating the rate of carbon and nutrient inputs into the soil, slowly decomposing litter 

would result in lower inputs of C and nutrients into the soil during the study period, with 

only a minor effect on soil properties. 

The pattern in oak soils was less clear, as there was no HFA of decomposition for oak litter 

and yet soil respiration was higher for a large part of the experiment (Figure 5.4.). Finally, 

the largest increase in respiration rates in pine plots was measured over oak litter, which 

was not explained by the HFA or litter quality.  

I also observed links between changes in soil CO2 efflux and changes in soil properties 

with additions of 'foreign' litter. Interestingly, the increase in soil C in pine plots in response 

to the addition of alder litter (Figure 5.6.), goes in hand with the high decomposition rates 

of alder litter and low soil CO2 efflux from alder litter in pine plots. The increase in soil C 

can be attributed to a high input of C into the soil via decomposition, that is being 

incorporated to the soil rather than respired, suggesting that additions of ‘high-quality’ litter 

in pine soils could promote C storage. Finally, the increase in microbial biomass in oak 
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plots with the addition of pine or alder litter (Figure 5.6.) suggests that much of the C and N 

from the litter is being incorporated into the microbial biomass, rather than being respired. 

My results show that the HFA and the effects of ‘foreign’ litter addition vary among different 

combinations of soil and litter. Instead of general patterns of the HFA, I found that 

interactions between litter quality, soil type, and the balance between microbial activity vs. 

growth determine litter decomposition and soil C dynamics in different soil-litter species 

combinations. My results also highlight the importance of expanding our knowledge about 

the effect of species rotation on C stocks in managed temperate forest soils. 

 

Conclusions 

My experiments demonstrate differences in the way that litter decomposition and soil 

respiration respond to the addition of litter from ‘foreign’ tree species. The selection of tree 

species for rotation in forestry will affect forests emissions of CO2 and the interactions 

between ‘home’ soils and ‘foreign’ litter inputs present a potential option for rotating 

species in tree plantations to maximise C sequestration. Replanting a ‘foreign’ species in 

plots formerly dominated by alder or oak could reduce soil respiration rates and increase 

soil C sequestration. My results also suggest that a rotation of a ‘high litter quality’ species 

following a pine plantation might have similar effects in reducing soil respiration and 

increasing C sequestration. This intriguing possibility merits further attention in future 

research. 
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General Discussion 

 

Tree species identity plays a key role in the C dynamics of temperate forests (Aponte et 

al., 2013; Ahmed et al., 2016), whereby the quantity and quality of litter inputs into the soil 

directly influence rates of decomposition, soil respiration and soil properties (Aerts, 1997). 

Such plant-soil interactions regulate the belowground carbon (C) balance of forest 

ecosystems (Wardle et al., 2009), but we know little about how species-specific responses 

to global change will influence plant-soil interactions and soil C dynamics in future (Facelli 

and Steward, 2008). The work presented in this thesis aimed to investigate how species-

specific differences in litter quality shape soil properties and soil C dynamics, and how 

altered litter inputs could influence these processes.   

First, I established a laboratory microcosm experiment to study the interactive effects of 

litter quality and soil properties from stands of ash, oak, sycamore, and mixed stands of all 

species (Chapter 3). I found evidence of strong interactions between litter type and soil 

properties, which influenced both soil respiration (CO2 efflux) and the incorporation of C 

into the soil microbial biomass. I observed a direct relationship between litter quality and 

soil respiration, whereby peak soil respiration was greatest for sycamore with “high-quality” 

litter characterised by low lignin and high nitrogen (N) content, and lowest for oak, with had  

“low-quality” litter with high lignin and low N content. However, the magnitude of this 

response was modified by soil type. In particular, soil type largely explained changes in soil 

microbial biomass carbon (MBC) and pH after litter addition, regardless of litter type. As 

fast-growing tree species tend to have high-quality litter, these findings suggest that there 

could be a trade-off between above- and belowground C storage. In this trade-off, litter 

quality will influence soil C dynamics over the short-term via C and nutrient inputs, but tree 

species can also influence soil C storage over the long-term by modifying key soil 

properties, which modulate the response of the soils to different types of litter inputs. 
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Based on the key results of my initial laboratory study, I established an in situ mesocosm 

experiment to study the effects of altered litter inputs in single and mixed-species plots in a 

managed temperate forest in Gisburn, UK (Chapter 4). Litter inputs are likely to increase 

as rising levels of atmospheric CO2 enhance forest productivity (Prevost-Boure et al., 

2010), which could also alter litterfall patterns (Sayer et al., 2006). However, given the 

strong influence of species identity and litter quality on decomposition processes, it is 

unclear how altered litter inputs will affect soil C dynamics under different tree species. I 

explored this in a 61-year old forestry trial comprising single-species plots of alder, oak and 

pine; and mixed-species plots of all pairwise combinations of the same species. My results 

showed that litter properties varied among tree species, and consequently there was a 

clear separation in soil properties among plots planted with different species. The 

separation of soil types was mainly driven by differences in soil pH, carbon to nitrogen 

ratios and concentrations of available nitrate-N in the soil, which were linked to the 

presence of alder, a nitrogen fixing tree species. I then explored the interaction between 

soil properties and litter quality and their effect on litter decomposition and soil CO2 efflux, 

and determined that the rapid decomposition of “high-quality” litter promotes higher rates 

of soil respiration.  The response of soil C dynamics to altered litter inputs also varied 

strongly by species, whereby soil CO2 efflux declined with litter removal treatments in all 

plots except those in which pine was a constituent species, which has low-quality litter that 

decomposes slowly. At the same time, the effects of litter addition were inconsistent but the 

increase in soil CO2 efflux generally lasted longer in alder and oak compared to pine plots. 

Importantly, neither litter addition nor litter removal had a substantial effect on soil 

respiration in mixed species plots. Taken together, these findings suggest that the effects 

of changes in litter inputs are linked to litter quality and decomposition, and that the 

ecosystem response to altered patterns of litterfall under climate change will depend on 
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the dominant species. Interestingly, my results suggest that soil C dynamics in single-

species plots are more sensitive to increased litterfall than those planted with a mixture of 

species. It is possible that functional complementarity during decomposition processes 

may buffer changes in soil C dynamics in response to minor perturbations, and this 

intriguing possibility merits further study in future.  

 

Finally, I explored the interactions between litter and soil type in more detail using a 

reciprocal litter translocation experiment in mesocosms within the Gisburn experimental 

plots to study soil C dynamics in situ (Chapter 5). Understanding changes in soil C 

dynamics with different combinations of plant inputs and soil properties are particularly 

relevant for planning forestry rotations, as an informed selection of species could have an 

impact upon forest CO2 emissions and soil C stocks. My reciprocal transplant experiment 

compared the decomposition of ‘home’ vs. 'foreign' litter and then explored whether the 

'home-field advantage' or litter quality explained changes soil CO2 efflux and soil 

properties. Although there was great variation in litter decomposition among tree species, 

the variation was regulated by two key factors: i) the ratio of lignin to nitrogen in leaf litter, 

representing litter quality, and ii) the occurrence of the ‘home field advantage’ (HFA). There 

was a clear HFA in alder plots, whereas litter decomposition in pine plots seems to be 

driven by litter quality, favouring the decomposition of “high-quality” litter with no evidence 

of HFA. These patterns were largely mirrored in my measurements of soil respiration, 

where I observed a HFA in alder and oak but not in pine. Importantly, I measured an 

increase in soil C with the addition of alder litter in pine plots and greater microbial 

biomass in oak plots with additions of foreign litter. These results suggest that it might be 

possible to develop a planting scheme, using different species in rotation, to increase soil 

C stocks in plantations.  
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In conclusion, the body of work presented in this thesis demonstrates the influence of tree 

species on soil C dynamics. The links between litter quality, soil respiration and soil 

properties were similar in laboratory incubations, using soils and litter collected from 

natural woodland, and in field experiments within managed forestry plantations.  

Litter quality has a key role in the C cycle and a direct influence on decomposition rates, 

but the extent of the influence of litter quality varied across species and mixtures, and was 

further modified by soil properties. However, in most cases litter decomposition was a 

good predictor of soil respiration rates and litter quality appeared to regulate the response 

of soil C dynamics to altered litter inputs.  

My study also demonstrates that mixed-species plantations have lower soil respiration 

rates overall and also seem to be less sensitive to increased litter inputs, suggesting that 

the right mixture of species might be key to increasing soil C sequestration in future.  

Additionally, my results showed that an informed species selection in forestry rotation is 

crucial, as replanting a ‘foreign’ species in plots formerly dominated by alder or oak could 

reduce soil respiration rates and increase soil C sequestration. At the same time, this study 

suggests that a rotation of a ‘high litter quality’ species following a pine plantation might 

have similar effects in reducing soil respiration and increasing C sequestration.  

Although my experiments focussed on manipulating the quality and quantity of litter inputs 

to different soils, my results raise a number of new questions about the potential 

contribution of different tree species to reduce CO2 emissions and increase soil C stocks.  

In particular, the decomposition of root litter does not mirror leaf litter decomposition within 

temperate tree species (Hobbie et al., 2010), and additional work is needed to establish 

the influence of species-specific root traits on soil processes. Growth trials with saplings 

could be used to corroborate the patterns I have revealed with leaf litter treatments, and 

test further interactions between species and soils with whole plants. 
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Overall, the work presented in my thesis provides important knowledge to develop 

research into the role of tree species identity in forest functioning under climate change, 

which could inform forestry practices in future. 
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Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., … 

Zeng, N. (2014). Global carbon budget 2014. Earth System Science Data 

Discussions, 7(2), 521–610.  

 

Leyton,  L. (1848). Mineral nutrient relationships of forest trees. For. Abstr 9. 399-408. 

 



120 

 

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., 

Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of 

European forest ecosystems. Forest Ecology and Management, 259(4), 698–709.  

 

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, 

E., Hanewinkel, M. (2014). Climate change and European forests: What do we know, 

what are the uncertainties, and what are the implications for forest management? 

Journal of Environmental Management, 146, 69–83.  

Löhnis, F., 1926. Nitrogen availability of green manures. Soil Science 22, 253e290 

 

Lopez-Sangil, L., George, C., Medina-Barcenas, E., Birkett, A. J., Baxendale, C., Bréchet, 

  L. M., … Sayer, E. J. (2017). The Automated Root Exudate System (ARES): 

a    method  to apply solutes at regular intervals to soils in the field. 

Methods in    Ecology and  Evolution, 8(9), 1042–1050.  

 

Lucas-Borja, M. E., Candel, D., Jindo, K., Moreno, J. L., Andrés, M., & Bastida, F. (2012). 

  Soil microbial community structure and activity in monospecific and mixed 

forest   stands, under Mediterranean humid conditions. Plant and Soil, 354(1–2), 

359–370.  

 

Lutz, H., Chandler, R. (1946). Forest Soils. New York. J. Wiley & Sons. 

 

Malhi, Y., Balddochi, D. D., & Jarvis, P. G. (2015). The carbon balance of tropical, 

 temperate and boreal forests. Plant, Cell & Environment, 22(6), 715–740.  

 

Maleki, A., Mahdavi, A., & Bazgir, M. (2014). Estimation of carbon sequestration and 

micronutrient in oak high forest soils. Journal of Biodiversity and Environmental 

Sciences, 5(2), 244–250. 

 



121 

 

Mason, B. (2006). Forestry Commission Information Note 83: Managing Mixed Stands of 

  Conifers and Broadleaves, 1–6. 

 

McClaugherty, C., & Berg, B. (1987). Cellulose, lignin and nitrogen concentrations as rate 

regulating factors in late stages of forest litter decomposition. Pedobiologia, 30(2), 

101–112. 

 

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community 

ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185.  

 

McNamara, N. P., Black, H. I. J., Piearce, T. G., Reay, D. S., & Ineson, P. (2008). The 

influence of afforestation and tree species on soil methane fluxes from shallow organic 

soils at the UK Gisburn Forest Experiment. Soil Use and Management, 24(1), 1–7.  

 

McNaughton, S. J. et al. (1989). Ecosystem-Level Patterns of Primary Productivity and 

Herbivory in Terrestrial Habitats. Nature, 341, 189–92.  

 

Meier, C. L., & Bowman, W. D. (2008). Links between plant litter chemistry, species  

  diversity, and below-ground ecosystem function. Proceedings of the National 

   Academy of Sciences of the United States of America, 105(50), 

19780–5. 

 

Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood 

leaf litter decomposition dynamics. Ecology, 63(3), 621–626.  

 

Melillo, JM., Richmond, T., and Yohe, G. (2014). Climate Change Impacts in the United 

States: The Third National Climate Assessment. U.S. Global Change Research 

Program. 

 



122 

 

Mitchell, J. S., & Ruess, Æ. R. W. (2009). N 2 fixing alder (Alnus viridis spp . fruticosa) 

effects on soil properties across a secondary successional chronosequence in interior 

Alaska. Biogeochemistry, 95, 215–229.  

 

Mitchell, R. J., Hester, A. J., Campbell, C. D., Chapman, S. J., Cameron, C. M., Hewison, 

R. L., & Potts, J. M. (2010). Is vegetation composition or soil chemistry the best 

predictor of the soil microbial community? Plant and Soil, 333(1), 417–430.  

 

Nierop, K., Verstraten, J., Tietema, A., Westervel, J., & Wartenbergh, P. (2006). Short- and 

long-term tannin induced carbon , nitrogen and phosphorus dynamics in Corsican 

pine litter. Biochemestry, (79), 275–296.  

 

Nottingham, A. T., Griffiths, H., Chamberlain, P. M., Stott, A. W., & Tanner, E. V. J. (2009). 

  Soil  priming by sugar and leaf-litter substrates: A link to microbial groups. 

Applied   Soil Ecology,  42(3), 183–190.  

 

Oksanen, J. (2008). Vegan: an introduction to ordination. Management, 1, 1–10.  

 

Pacala, S., Canham, C. D., Saponara, J., Silander, J. A., Kobe, R. K., & Ribbens, E.  

  (1996). Ecological monographs. Ecological Monographs (Vol. 66). Ecological 

   Society of America. 

 

Pachauri, R. K., & Meyer, L. (2014). Climate change 2014. Synthesis Report, 133. 

 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. 

(2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 

333(6045), 988–993.  

 



123 

 

Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., … Woomer, P. L. 

(1997). Agricultural soils as a sink to mitigate CO 
2

 emissions. Soil Use and 

Management, 13(s4), 230–244.  

 

Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., … Mäkipää, R. 

(n.d.). Models in Country Scale Carbon Accounting of Forest Soils. 

 

Peng, Y., Thomas, S. C., & Tian, D. (2008). Forest management and soil respiration: 

Implications for carbon sequestration. Environmental Reviews, 16(NA), 93–111.  

 

Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J.H.C. et al. (2000).    
 Chemistry and toughness predict leaf litter decomposition rates over a  
 wide spectrum of functional types and taxa in central Argentina. Plant   
 and Soil. 218: 21. 
 

Perez-Suarez, M., Arredondo-Moreno, J. T., & Huber-sannwald, E. (2012). Early stage of 

single and mixed leaf-litter decomposition in semiarid forest pine-oak : the role of 

rainfall and microsite. Biochemestry, 108, 245–258. 

 

Pinheiro, J. C., & Bates, D. M. (2000). Linear Mixed-Effects Models: Basic Concepts and 

Examples. Mixed-Effects Models in S and S-PLUS, 3–56. 

 

Prescott, C. E. (2010). Litter decomposition: What controls it and how can we alter it to 

sequester more carbon in forest soils? Biogeochemistry, 101(1), 133–149.  

 

Prescott, C. E., & Grayston, S. J. (2013). Tree species influence on microbial communities 

in litter and soil: Current knowledge and research needs. Forest Ecology and 

Management, 309, 19–27. 

 



124 

 

Prescott, C. E., & Vesterdal, L. (2013). Tree species effects on soils in temperate and 

boreal forests: Emerging themes and research needs. Forest Ecology and 

Management, 309, 1–3. 

 

Prévost-Bouré, N. C., Soudani, K., Damesin, C., Berveiller, D., Lata, J. C., & Dufrêne, E. 

  (2010). Increase in aboveground fresh litter quantity over-stimulates soil 

respiration   in a temperate deciduous forest. Applied Soil Ecology, 46(1), 26–34.  

 

R Core Team. (2013). R: A language and Environment for Statistical Computing. R  

  foundation for statistical computing, Vienna, Austria. 

 

Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration 

and its relationship to vegetation and climate. Tellus B.  

 

Raich, J. W., & Tufekciogul, a. (2000). Vegetation and soil respiration: correlations and 

controls [review]. Biogeochemistry, 48(1), 71–90.  

 

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., … 

Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 

287–295.  

 

Reynolds, B. C., & Hunter, M. D. (2001). Responses of soil respiration, soil nutrients, and 

litter decomposition to inputs from canopy herbivores. Soil Biology and Biochemistry, 

33(12–13), 1641–1652. 

 

Richter, D. D., Markewitz, D., Trumbore, S. E., & Wells, C. G. (1999). Rapid accumulation 

and turnover of soil carbon in a re-establishing forest. Nature, 400(6739), 56–58.  

 



125 

 

Riutta, T., Slade, E. M., Bebber, D. P., Taylor, M. E., Malhi, Y., Riordan, P., … Morecroft, M. 

  D. (2012). Experimental evidence for the interacting effects of forest edge, 

moisture   and soil macrofauna on leaf litter decomposition. Soil Biology and 

Biochemistry, 49,   124–131.  

 

Rhoades, C., Oskarsson, H., Binkley, D., & Stottlemyer, B. (2001). Alder (Alnus crispa) 

effects on soils in ecosystems of the Agashashok River valley, northwest Alaska. 

Ecoscience, 8(1), 89–95.  

 

Robertson, S. M. C., Hornung, M., & Kennedy, V. H. (2000). Water chemistry of throughfall 

and soil water under four tree species at Gisburn, northwest England, before and after 

felling. Forest Ecology and Management, 129(1–3), 101–117. 

 

Royer-Tardif, S., and Bradley, R., Forest floor properties across sharp compositional 

boundaries separating trembling aspen and jack pine stands in the southern boreal 

forest. Plant and Soil, pp. 1-12. (2011). 

 

Sariyildiz, T., & Anderson, J. M. (2003). Interactions between litter quality, decomposition 

and soil fertility: A laboratory study. Soil Biology and Biochemistry, 35(3), 391–399. 

https://doi.org/10.1016/S0038-0717(02)00290-0 

 

Sayer, E. J. (2005). Using experimental manipulation to assess the roles of leaf litter in the 

functioning of forest ecosystems. Biological Reviews, 81(1), 1.  

 

Sayer, E. J., Tanner, E. V. J., & Cheesman, A. W. (2006). Increased litterfall changes fine 

root distribution in a moist tropical forest. Plant and Soil, 281(1–2), 5–13.  

 

Shibata, H., Hiura, T., Tanaka, Y., Takagi, K., & Koike, T. (2005). Carbon cycling and 

budget in a forested basin of southwestern Hokkaido, northern Japan. Forest 

Ecosystems and Environments: Scaling Up from Shoot Module to Watershed, 89–95. 



126 

 

 

Scherer-Lorenzen, M. (2008). Functional diversity affects decomposition processes in 

experimental grasslands. Functional Ecology, 22(3), 547–555. 

 

Schimel, J. P., & Gulledge, J. (2001). Microbial community structure and global trace 

gases. Global Change Biology, 4(7), 745–758.  

 

Schlesinger, W. (1977). Carbon Balance in Terrestrial Detritus. Annual Review of Ecology 

and Systematics, 8(1977), 51–81.  

 

Schlesinger, W., & Andrews, J. (2000). Soil respiration and the global carbon cycle. 

Biogeochemistry, 48(1), 7–20. 

 

Schulp, C. J. E., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree 

species on carbon stocks in forest floor and mineral soil and implications for soil 

carbon inventories. Forest Ecology and Management, 256(3), 482–490.  

 

Schwietzke, S., Pétron, G., Conley, S., Pickering, C., Mielke-Maday, I., Dlugokencky, E. J., 

… Schnell, R. C. (2017). Improved Mechanistic Understanding of Natural Gas 

Methane Emissions from Spatially Resolved Aircraft Measurements. Environmental 

Science & Technology, 51(12), 7286–7294.  

 

Seidl, R., Fernandes, P. M., Fonseca, T. F., Gillet, F., Jönsson, A. M., Merganičová, K., … 
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List of amendments by Eduardo Medina Barcenas to PhD thesis after corrections 
from examiners. 
 
 
 
General 
 

 The title of the thesis was changed to better fit the aims and results of the 
experiments. 

 A list of figures and tables was added. 

 The list of references was re-done. 

 The list of minor correction was amended. 
 
 

Chapter 1 
 

 The introduction was expanded, including a section on roots contribution on soil C 
dynamics. It also presents more examples (based on the literature) of the state of 
the art of how different tree species can affect soil C dynamics. Also, it includes and 
expanded section on the role of soil biota in litter decomposition. The discussion 
was amended to fit accordingly. 

 
Chapter 2 
 

 Methodology on soil moisture and soil temperature field measurements was added. 
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Chapter 3 
 

 The introduction was restructured and visits literature on similar studies that focus 
on short-term responses. The discussion is limited to frame results in a short term 
context and gives more clarity when long term extrapolation are used. 

 
Chapter 4 
 

 More clarity of key message in the introduction and hypothesis were re-structured. 
 
 
Chapter 5 
 

 The introduction was re-written with more focus on HFA and also highlighting the 
importance of litter quality for decomposition processes. The discussion was 
amended to fit accordingly. 

 

 

 

 


