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Abstract 

 

The enormous amount of remote sensing (RS) data available today at a range of 

temporal and spatial resolutions aid emergency management in volcanic crises. RS provides 

a technological solution for bridging critical gaps in volcanic hazard assessment and risk 

mitigation. Detection and measurement of high-temperature thermal anomalies enable 

eruption monitoring and new lava flow propagation forecasts, for example. The accuracy of 

such thermal estimates relies on the knowledge of input parameters, such as emissivity - the 

efficiency with which surfaces radiate thermal energy at various wavelengths and 

temperatures. Emissivity is directly linked to the measurement of radiant flux and therefore 

affects the mass flux estimate as well as any model-based prediction of lava flow behaviour.  

Emissivity is not commonly measured across the range of volcanic lava compositions 

and temperatures, and it is generally assumed to have a constant value between 1.0 and 0.80 

for basaltic lava. There is a lack of field and laboratory-based emissivity data for robust, 

more realistic modelling. To address this deficit, experiments on ‘aa’ lava samples were 

performed using data from Mount Etna (Italy), representing the range of its eruptive 

behaviour. In three sequential stages, emissivity was measured over the widest range of 

temperatures (294 – 1373 K) and wavelengths (2.17 - 15.0 µm) executable in the laboratory 

environment.  

The results show that emissivity is temperature, composition and wavelength 

dependent. Measured emissivity increases non-linearly with temperature decrease (cooling), 

exhibiting significant variations above 900 K with values considerably lower than the 

typically assumed 0.80. The measured and modelled emissivity values were applied to 

various remote sensing applications as input parameters for physical modelling of lava 

flows. This new evidence has significant impact on the computation of radiant heat flux from 

spaceborne data, as well as on modelling of lava flow ‘distance-to-run’ simulations. 

Furnished with improved input parameters (multicomponent emissivity), the novel approach 

developed here can be used to test an improved version of an unsupervised multi-platform, 

multi-payload volcano monitoring system. 
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1 Passive Remote Sensing of active volcanoes 

1.1 Introduction  

Since the late 1960s, satellite remote sensing (RS), has become an established 

technological solution for bridging critical gaps in volcanic hazard assessment and risk 

mitigation. The Earth Resource Technology Satellite (ERTS), launched by the U.S.A. in 

1972 (later renamed Landsat-1), was followed by the first Geostationary Operational 

Environmental satellite (GOES) in 1974; this arguably marked the start of a modern era of 

RS. It is important to note that none of the sensors employed to date were specifically 

designed to monitor active volcanoes. However, despite their primary purpose being focused 

on meteorological, agricultural or environmental observations, spaceborne data are 

successfully utilized in a wide range of volcano related research. Early examples of 

spaceborne detection of volcanic thermal anomalies span back to the late 1970s when 

National Oceanic and Atmospheric Administration - 5 satellite (NOAA-5) detected the 1978 

eruption of Mt Etna or when the Landsat-3 produced its first high-resolution imagery of 

Siera Negra volcano (Galapagos) lava flow in 1979 (Rothery et al., 1988).  

The enormous amount of RS data available today at a range of temporal and spatial 

resolutions can aid standard monitoring in ‘peace time’ as well as emergency management 

in volcanic crises involving very-high temperature thermal events. In this thesis, the primary 

focus will be on lava flows with surfaces ranging up to 1350 K in temperature, detected and 

measured using thermal remote sensing techniques. 

Almost 1500 active subaerial volcanoes around the world are known to have erupted 

in the last 10000 years (the Holocene Era), of which 700 have erupted at least once in 

historical times; every year about 60 volcanoes erupt on land (Sigurdsson et al., 2015; Siebert 

et al., 2010). Considering that fewer than 10% of active subaerial volcanoes are monitored 

regularly on the ground, RS provides an opportunity to increase coverage, providing a cost-

effective global surveillance. For remote or inaccessible sites, RS may be the only form of 

surveillance that is practical and safe.  

Satellite RS can either be passive or active. While the former provides a direct 

measurement of physical parameters (mainly linked to hot radiating bodies and rock textures 

or their proxies), the latter is used for observing geomorphological features and measuring 

near-vertical ground deformation. 
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A good example of a synoptic view available using satellite data are geostationary 

platforms, which maintain their position relative to the Earth’s surface at an approximate 

altitude of 36000 km. These can be used to detect short-lived effusive events and it has been 

demonstrated to be a valuable volcano monitoring tool (Harris et al., 2001, 1997). In contrast, 

most Low Earth Orbit (LEO) satellites are in sun-synchronous polar-orbits at heights of 600-

800 km, allowing for Earth observation (EO) at higher spatial resolutions, but at the expense 

of significantly poorer temporal resolution. 

Cloud cover permitting, both platforms play an important role even at the best 

monitored active volcanoes worldwide (e.g., Mt Etna in Italy and Kilauea in Hawaii), as well 

as providing data for remote volcanoes that are impossible to obtain using ground-based 

networks and/or methods due to accessibility or safety reasons. 

1.2 Thermal remote sensing of volcanic activity: background and theory  

Passive RS exploits the natural sources of external (mainly the Sun) and internal 

(thermal) radiation, within specific atmospheric windows (Table 1.1). Indeed, the Earth’s 

atmosphere is not transparent to electro-magnetic radiation at all wavelengths; it has 

absorption windows of high transmissivity, separated by regions of low transmissivity 

associated with the various atmospheric gases and aerosols. 

Table 1.1. Location of atmospheric windows and average transmissivity 

Atmospheric Window Location Exploitable Wavelengths 

(𝛍𝐦) 

Average transmissivity  

𝝉 (𝝀) 

Near Infra-Red (NIR) 0.7-0.89 

1.0-1.1 

0.90 

0.94 

Short Wavelength Infra-Red (SWIR) 1.18-1.31 

1.51-1.76 

2.03-2.36 

0.94 

0.96 

0.96 

Mid-Infra-Red (MIR) 3.44-4.13 0.94 

Thermal Infra-Red (TIR) 8.6-12.2 0.92 

*Wavelengths (μm) are used in this thesis   **Atmospheric windows beyond 15 μm are not considered here 

The mean spectral radiance (𝑅𝜆) is the central parameter measured by the satellite’s 

radiometer and it is linearly related to Digital Numbers (DN), where DN values in each band 

are ‘translated’ into the spectral radiance received at-satellite: 

𝑅𝜆 = 𝑆𝜆𝐷𝑁𝜆+𝐼𝜆                                                             (1)  
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where 𝑅𝜆  is at-satellite radiance, 𝐷𝑁𝜆  is digital number, 𝑆𝜆  is slope and 𝐼𝜆  is intercept for 

spectral band with central wavelength, so total at-satellite radiance can be written as: 

𝑅𝜆 = 𝜏𝜆(𝜀𝜆𝑅𝜆𝑆 + 𝜌𝜆𝑅𝜆𝐷) + 𝑅𝜆𝑈 + 𝑅𝜆𝑠𝑝                                         (2)  

in which 𝜏𝜆, 𝜀𝜆 and 𝜌𝜆 are atmospheric transmissivity, emissivity of the surface and spectral 

reflectivity of the surface at wavelength 𝜆 respectively; 𝑅𝜆𝑆  is surface radiation, 𝑅𝜆𝐷  and 

𝑅𝜆𝑈  are the downwelling and upwelling atmospheric radiances, and 𝑅𝜆𝑠𝑝  is the space 

contribution (generally ignored as insignificant).  

Therefore,  𝑅𝜆 is composed of the surface reflected radiance  𝑅𝜆𝐷, the upwelling path 

radiance 𝑅𝜆𝑈  and the surface thermal radiance L (𝜆, 𝑇) 

                                           𝑅𝜆 = 𝜏𝜆𝐿(𝜆, 𝑇) + 𝜏𝜆𝜌𝜆𝑅𝜆,𝐷 + 𝑅𝜆,𝑈                                    (3) 

           = 𝑅𝜆,𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑅𝜆,𝑛𝑜𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙  

where, 𝜏𝜆  is the atmospheric spectral transmission coefficient; 𝜌𝜆 is the spectral reflectivity 

of the target; 𝑅𝜆,𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is composed of 𝜏𝜆𝐿(𝜆, 𝑇)  and 𝑅𝜆,𝑛𝑜𝑛𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is composed of 

𝜏𝜆𝜌𝜆𝑅𝜆,𝐷 + 𝑅𝜆,𝑈. 

What can be ‘seen’ by spaceborne sensors and in which wavelength, essentially 

depends on three fundamental laws: Planck, Stefan-Boltzmann and Wien.  

These laws demonstrate that surfaces radiate in different regions of the electro-

magnetic spectrum, depending on their temperature. Planck’s radiation law defines the 

radiation released by a perfect radiator, a blackbody, and it can be calculated from the body’s 

surface temperature (Fig. 1.2): 

  𝑀𝜆 =
2𝜋ℎ𝑐2

𝜆5(𝑒
ℎ𝑐

𝜆𝑘𝑇−1)

                                                   (4) 

In Equation (Eq. 4), 𝑀𝜆  is spectral radiant exitance (W m−2μm−1), ℎ is Planck’s 

constant (6.626 × 10−34 J s), 𝑐 is the speed of light (2.9979246 × 108 m s−1), 𝑘 is Stefan-

Boltzmann’s constant (1.3806 × 10−23 JK−1), 𝑇 is absolute temperature (𝐾) and 𝜆 is the 

wavelength (μm).  

An emitted spectral radiance exists at all wavelengths. The wavelength at which 

blackbody temperature curve reaches a maximum (𝜆𝑚𝑎𝑥) is defined by Wien’s Displacement 

Law (Eq. 5 and Fig. 1.1, dotted line).  

𝜆𝑚𝑎𝑥 =
𝑏

𝑇
                                                   (5) 
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where T is the absolute temperature in K, b is a constant of proportionality, known as Wien’s 

displacement constant, equal to 2.898× 10−3 m K.  

Blackbody curves at different temperatures (K) 

                         
Figure 1.1 Blackbody curves at different temperatures (573-6273 K), derived from Eq. (4). The laws of Planck, 

Stefan-Boltzmann (shaded area under 573 K curve) and Wien (dotted line) are illustrated in this figure.  

These relationships mean that in shortwave infrared (SWIR) wavelengths 𝑅𝜆𝑆 will 

make a significant measurable contribution to 𝑅𝜆 , which is true for magmatic (and hot 

fumarole) temperatures. Coincidence of the SWIR window with 𝜆𝑚𝑎𝑥  for bodies at 

magmatic temperatures (~1100-1400 K) will contribute measurable 𝑅𝜆𝑆  (Fig. 1.2). 

Coincidence of the midinfrared (MIR) window 𝜆𝑚𝑎𝑥 for bodies at ~500-1000 K makes these 

wavebands sensitive to thermal emittance from high temperature bodies, such as lava flows.  

     Blackbody curves at typical magmatic and active crusted lava surfaces 

        

Figure 1.2 Blackbody curves derived from Eq. (4), at typical magmatic (1073-1473 K) and active crusted lava 

surface temperatures (533-1073K). 
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While daytime 𝑅𝜆𝑆  is mixed with reflected radiance in both SWIR and MIR, 

coincidence of the thermal infrared (TIR) window with 𝜆𝑚𝑎𝑥  for bodies at typical Earth 

ambient temperatures have negligible contribution of 𝜌𝜆𝑅𝜆𝐷, which makes this waveband 

useful for measuring 𝑅𝜆𝑆 from ambient temperatures.  

The reason for the direct relationship between thermal emission and volcanic activity 

is that all objects above absolute zero (0 K) emit electromagnetic radiation at a wavelength 

and intensity that are each function of the surface temperature and emissivity (radiating 

efficiency): 

                                                             𝐸 = 𝜎𝜀𝑇4                                                                             (6) 

where 𝜎 is Stefan-Boltzmann constant and 𝜀  is emissivity. According to the Stefan-

Boltzmann Law in Equation (Eq. 6) and Figure 1.1 (shaded area under 573 K curve), the 

radiance emitted by the surface will increase, as the temperature of the surface rises (fourth 

power of its temperature). As a hotter volcanic surface will radiate more energy and higher 

radiant flux density, and any variation in observed radiance will reflect a variation in 

volcanic activity on the ground. Therefore, these fundamental laws and their relationships in 

a volcanological context may demonstrate (Fig. 1.1) that surfaces of similar temperatures to 

the Sun (i.e., ~6273 K) will radiate most strongly in the visible region (VIS), whereas a high-

temperature (e.g., 1100-1400 K) thermal anomaly (active lava flow) will radiate most 

strongly in the SWIR region, and much cooler surfaces (e.g., solar heated ground) will 

radiate most strongly in TIR.  

However, a precise retrieval of the temperature and/or emissivity from the measured 

radiation data, using RS approach, reveals a non-linear relationship between the two (Rolim 

et al., 2016).  When a pixel is composed of two or more areas that differ in respect to 

temperature, then the average is composed of several different values (Harris, 2013a). 

Therefore, the single DN that represent the pixel does not accurately represent the values 

present. As a result, over a mixed pixel, spectral response will be integrated to form a pixel 

integrated temperature, that does not match the pure signature of the sub-pixel feature we 

wish to analyse (Harris, 2013a). Therefore, an effective temperature is needed (Eq. 9). 

Based on Planck’s radiation law, the spectral radiance (W m−2ster−1μm−1) of a pixel 

𝐿(𝜆, 𝑇) is a function of its integrated temperature (𝑇𝑖): 

𝐿(𝜆, 𝑇) =
𝜀𝜆𝑐1𝜆−5

𝜋 [exp (
𝑐2

𝜆𝑇𝑖
) − 1]

                                             (7) 
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where 𝑐1  and 𝑐2  are related constants; 𝑐1 = 1.19 × 10−16  W m−2 sr−1  and 𝑐2 = 1.44 ×

10−2 m K, respectively. 𝑐1 = 2𝜋 ℎ 𝑐2 where h is Planck’s constant and c is the speed of 

light; 𝑐2 = ℎ
𝑐

𝑘
 where k is the Stefan-Boltzmann constant; 𝜆 is the wavelength in m; 𝜀𝜆 is 

the emissivity of the radiative surface, and 𝑇𝑖 is the pixel integrated temperature at a specific 

wavelength. 

 Removing the effects of the atmosphere is the essential step necessary to use 

spaceborne imagery for absolute temperature studies. The emitted signal leaving a target on 

the ground is both attenuated and enhanced by the atmosphere. Therefore, an appropriate 

knowledge of the atmosphere is needed for specific dates, location and altitude, so that a 

radiative transfer model can be used to estimate the transmission, upwelling and 

downwelling radiance (Barsi et al., 2003). Obtaining these parameters for each date and 

location for scene analysed, the space-reaching radiance can be converted to a surface-

leaving radiance: 

𝐿𝑇𝑂𝐴 = 𝜏 𝜀 𝐿𝑇 + 𝐿𝑢 + (1 − 𝜀) 𝐿𝑑                                             (8) 

where 𝜏 is the atmospheric transmission, 𝜀 is the emissivity of the surface, 𝐿𝑇 is the radiance 

of a blackbody target of kinetic temperature 𝑇, 𝐿𝑢  is the upwelling or atmospheric path 

radiance, 𝐿𝑑 is the downwelling (sky radiance), and 𝐿𝑇𝑂𝐴 is the space-reaching top of the 

atmosphere (TOA) radiance measured by the instrument. Radiances are in units of W/m2 

ster µm and the transmission and emissivity are unitless. Radiance to temperature 

conversions are made using the Planck Equation (Eq. 4). The TOA temperature is not a good 

estimate of surface temperature, as neglecting the atmospheric correction will result in 

systematic errors in the predicted surface temperature. 

Assuming that the pixel is thermally pure (i.e., isothermal surface), the pixel 

integrated temperature should be the temperature of the target surface after being corrected 

for emissivity, atmospheric, and sensor response effects. However, a scene recorded over an 

active lava flow surface may contain a wide range of temperatures (and emissivities), so a 

single pixel will be a mixture of several thermal components. The pixel integrated 

temperature in Equation (Eq. 7) accounts for ‘static’ (constant) emissivity 𝜀𝜆  of the radiative 

surface at specific wavelength (not accounting for emissivity variation with temperature). In 

this thesis, a novel technique was used (Chapters 3 and 4), where traditional 𝜀𝜆  is replaced 

with 𝜀𝜆,𝑇 , which represent a multicomponent emissivity, variable with temperature (Chapter 

2), before applying fundamentals of ‘dual-band’ approaches (Harris, 2013a; Oppenheimer, 
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1993; Dozier, 1981; Matson and Dozier, 1981) to derive the so-called Effective Temperature 

(𝑇𝑒): 

𝑇𝑒 = [𝑓ℎ 𝑇ℎ
4 + (1 − 𝑓ℎ)𝑇𝑐

4]
1
4                                                    (9) 

In Equation (Eq. 9), pixel radiance values are computed as the weighted average of subpixel 

radiance emitted by two distinctly different temperature components: the ‘hot’ component 

at 𝑇ℎ representing melt, occupying a surface fraction 𝑓ℎ of the pixel, and the cooling ‘crust’ 

component, at temperature 𝑇𝑐, occupying the rest 1-𝑓ℎ of the pixel.  

Using 𝑇𝑒 for each radiant pixel the remotely sensed radiant heat flux (𝑄𝑅_𝑐𝑎𝑙𝑐) can be 

acquired (Wright and Pilger, 2008; Pieri et al., 1990): 

𝑄𝑅𝑐𝑎𝑙𝑐
= 𝐴 𝜀𝜆,𝑇  𝜎 𝜏 (𝑇𝑒

4 − 𝑇𝑎
4)                                             (10) 

where, A is the pixel surface area, 𝜀𝜆,𝑇  is emissivity (wavelength and temperature 

dependent), 𝜎  is Stefan-Boltzmann constant, 𝜏  is atmospheric transmissivity, 𝑇𝑒
4  is the 

effective temperature to the fourth power, and the 𝑇𝑎
4 is the ambient temperature to the 

fourth power. The 𝑄𝑅𝑐𝑎𝑙𝑐
 data is often used to calculate lava effusion rates (Hirn et al., 2009; 

Harris et al., 2007; Wright et al., 2001; Harris et al., 1997; Pieri and Baloga, 1986) from 

which lava flow ‘distance-to-run’ could be empirically estimated (Kilburn, 2015, 1996; 

Calvari and Pinkerton, 1998).  

A complete and comprehensive review of the main models and techniques on thermal 

RS of active volcanoes can be found in (Blackett, 2017; Harris, 2013a), among others. 

1.2.1 Uncertainty: Non-uniform emissivity 

The calculated temperature and radiant heat flux depend mainly on two factors: the 

wavelength  of observation, and the emissivity 𝜀  of the material. For these reasons, the real 

surface emissivity is required for accurate computation of surface energy budgets. 

Emissivity values are often assumed to be close to 1.0, which would reveal the 

‘brightness temperature’ (i.e., blackbody) and not the real surface temperature. A non-unity 

constant emissivity assumption (e.g., 0.80) may provide an improved first order 

approximation (Table 1.2) but could additionally introduce systematic errors if applied 

uniformly.  
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Table 1.2 Emissivity table of some common urban and natural materials. This is not a 

comprehensive list and should be taken as a reference only (Harris, 2013a; Jin and Liang, 2006) 

*Material 𝜺 **Material 𝜺 

Asphalt (paving) 0.97 Basalt (polished) 0.90 

Brick (red-rough) 0.93 Basalt (rough) 0.95 

Brick (silica -unglazed rough) 0.80 Olivine basalt 0.93-0.95 

Glass (smooth) 0.94 Andesite 0.91-0.94 

Gold (pure highly polished) 0.02 Rhyolite 0.94-0.95 

Granite (polished) 0.85 Rhyolitic obsidian 0.87-0.90 

*(Jin and Liang, 2006)   **(Harris, 2013a) 

Emissivity values are often taken from spectral libraries (laboratory or spaceborne) 

and used for identification and compositional discrimination of various materials (Hulley et 

al., 2015; Kotthaus et al., 2014; Gillespie et al., 1998). However, libraries usually refer to 

measurements carried out in standard or near-standard temperature and pressure conditions 

and are often constant average values.  

Recent development of multispectral thermal emission spectroscopy allows direct 

quantitative comparison between laboratory and RS data sets (Maturilli and Helbert, 2014). 

To extract reliable information about the surface composition from spaceborne data, a 

detailed laboratory spectroscopic study of Etnean lava flow samples’ spectral behaviour at a 

range of wavelengths and temperatures was performed. It was deemed necessary to obtain 

the information on wavelength position, shape and contrasts of reflectance and emission 

bands of volcanic rock minerals analysed here at the widest range of wavelengths (2.17-15.0 

m) and temperatures (294-1373 K) achievable in a laboratory environment (Chapter 2). 

This would allow surface compositional emissivity variation to be determined (Chapters 2 

and 5), as well as establish the degree of possible distinction between target(s) used in RS 

applications (Chapter 3). 

1.3 Application of Thermal Remote Sensing in Volcanology 

Using RS instruments to observe and monitor volcanoes has many advantages but one 

of major problems encountered when conducting RS of a volcanic target or set of targets is 

that associated with sensor saturation (Harris, 2013b). Saturation may occur when the 

amount of detected electromagnetic radiation from the observed high-temperature thermal 

anomaly (e.g., active lava flow) exceeds the instrument’s limit to record a meaningful value. 

Since none of the satellites launched to date were specifically designed to monitor volcanic 

features but intended for weather observation, this is expected.  
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In application to volcanic, high-temperature features, SWIR channels are appropriate 

to measure the thermal emission peak, as according to the Planck’s and the Wien’s laws 

(Figs. 1.1 and 1.2), the ideal wavelength to observe a lava flow with initial surface 

temperature between ~900 to 1400 K would be at approximately 2.20 m (SWIR).  

As the majority of RS instruments were designed to track weather patterns or intended 

to measure surface features using reflected solar radiation, many sensors are unable to cope 

with the amount of emitted radiation in SWIR from high-temperature volcanic features and 

become saturated. In the absence of SWIR data due to saturation, spaceborne TIR bands 

(8.0-15.0 m) can been employed to constrain thermal anomaly features (Harris, 2013a). 

This approach however, results in severe limitations in accurately deriving apparent lava 

surface temperatures, due to the position of TIR bands in the electromagnetic spectrum, as 

they are not as sensitive to high temperatures.   

Additionally, many of the satellite instruments are of a coarse spatial resolution, which 

may be sufficient to monitor weather patterns but may be of insufficient resolution (≥1 km 

pixel) to track the dynamic development of an active lava flow in detail, for example.  

It has been widely recognized that satellite thermal RS offers major benefits to volcano 

monitoring, such as global synoptic coverage, repeat and spectral capabilities with continuity 

of data acquisition from safe, reusable platforms. Several examples of such platforms 

available today to detect, map and assess active lava flows at a range of spectral, spatial and 

temporal resolutions are shown in Table 1.3 

Table 1.3 Selection of current optical satellite payloads suitable for lava observation 

Feature Need Resolution Observable Required Payload Mission Pixel (m) 

 

Magma at 

surface 

Detection 

and location 

High 

temporal  

(15 min to 

twice daily) 

Radiance 

 

TIR, MIR, 

SWIR 

SEVIRI 

MODIS  

VIIRS 

MSG 

Terra/Aqua 

NOAA 

3000 

1000   

375-750 

 

Lava 

flows 

 

Flow 

mapping  

 

High spatial 

(5-16 days) 

 

Radiance* 

 

TIR, MIR, 

SWIR, 

NIR 

ETM+ 

OLI 

Sentinel-2 

TIRS 

Lansat-7 

Landsat-8 

MSI 

Landsat-8 

30 

30 

20 

100 

Effusion 

rate 

monitoring 

High 

temporal 

(15 min to 

twice daily) 

 

Radiance* 

 

TIR, MIR, 

SWIR 

SEVIRI 

MODIS 

VIIRS 

MSG 

Terra/Aqua 

NOAA 

3000 

1000 

375-750 

*Advanced post-processing required 



  Nikola Rogic T3966511 

 

 

10 

1.3.1 High temperature thermal anomalies: lava flows 

It has been established that the Earth’s surface temperature and its composition can 

be derived from IR radiances measured by multispectral spaceborne instruments (Nash et 

al., 1993). Since early spaceborne missions were launched to study weather patterns, thermal 

anomalies have been identified at active volcanoes (Francis and Rothery, 2000). The most 

obvious application of measuring high-temperature thermal anomalies is to identify the 

hottest (most active) parts of a lava flow, which are potentially the most hazardous features. 

In addition to observable surface lava flows (or lakes), it has been indicated that spaceborne 

data can locate and identify the surface thermal expression of active sub-surface lava tubes 

(Flynn et al., 2001; Harris et al., 1998), the type of lava involved (‘pahoehoe’, ‘aa’ or 

‘blocky’), can contribute significantly to the final lengths during an effusive event. This is 

significant for civil protection, as some of world’s most active volcanoes are located in close 

proximity to high urban-density settlements (e.g., Mt Etna and Mt Vesuvius, Italy and Mt 

Merapi, Java, Indonesia). To ensure that meaningful temperatures are collected, satellite 

thermal data must be corrected for instrumental errors (USGS, 2019), atmospheric 

attenuation (Barsi et al., 2005, 2003) and emissivity of the surface (Chapters 2-5). This 

information can be used to extract both qualitative and quantitative information of the 

volcanic activity, which is crucial to constrain more advanced spaceborne data applications 

(Chapters 3 and 4) and for lava flow models validation (Chapters 3 and 5).  

It is widely recognized that RS data can be integrated with ground-based observations 

during volcanic crises to facilitate the estimation of thermal anomalies, and depending on 

spatial and temporal resolutions, forecast the progression of active lava flows. However, a 

developing lava flow is a complex surface to observe using either ground-based, as well as 

remote techniques, due to the presence of moving material at a range of temperatures, 

textures, vesicularities (Michael S. Ramsey and Fink, 1999), as well as variations that 

depend on viewing angles (Ball and Pinkerton, 2006).  

Several automated processes for detection and measurement of volcanic ‘hot-spots’, 

such as VAST (Higgins and Harris, 1997), MODVOLC (Wright et al., 2004, 2002), RAT 

(Di Bello et al., 2004), MyVOLC and MyMOD (Barbara Hirn et al., 2008b), among others, 

have been developed, tested and run to date. In particular, three projects have marked the 

development and awareness for a complete and global monitoring capacity: (i) the European 

Space Agency’s (ESA) pilot project GLOBVOLCANO (2008-2011), using high-spatial 

resolution RS (Borgström et al., 2008); (ii) the European Commission’s European Volcano 

Observatory Space Services (EVOSS, 2010-2016), centred on high-to very-high temporal 
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resolutions (Tait and Ferrucci, 2013), and (iii) the Disaster Risk Management volcano pilot 

project of the Committee on Earth Observation Satellite (CEOS), focusing on continuous 

monitoring of volcanic activity in the whole of Latin America and Caribbean (USGS, n.d.). 

These projects, among others, have demonstrated how access to RS data over volcanic 

regions can benefit the understanding of volcanic activity, enabling hazard mitigation and 

identification of developing trends in volcanic activity. 

Spaceborne RS may be considered as an exceptional tool in studying active volcanoes 

globally, as a single satellite image, depending on the orbit and resolution, may provide 

hundreds of square kilometres coverage, allowing assessment of the entire volcano and a 

record of volcanic activity (cloud cover permitting for optical instruments). Nonetheless, 

limiting either or both the temporal and spatial resolutions could prove to be disadvantageous 

in some cases, depending on the (spatial and temporal) dimensions of the target. For 

example, a lava flow may be only tens of metres wide and may progress at a rate of a few 

kilometres per hour. So, for effective monitoring, involving measurement and interpretation 

of volcanic behaviour, both high-spatial and high-temporal resolutions are required (Chapter 

6).  

1.3.2 A question of resolution: spatial and temporal 

A number of studies focus on high -spatial resolution (≤ 0.1 km) satellite imagery 

(Marchese et al., 2018; Hirn et al., 2008), whereas others exploit lower spatial resolution (≥ 

1.0 km) but high temporal RS data (Ferrucci and Hirn, 2016; Hirn et al., 2008; Harris et al., 

2001; Oppenheimer, 1998). 

Whereas weather satellites are intended to cover large areas as frequently as possible, 

Low Earth Orbit (LEO) instruments, provide images of higher resolution and greater detail.  

The time taken for a particular instrument to image the entire Earth’s surface is a 

function of the orbit and swath width of the instrument. For example, the Landsat series 

instrument (USGS, 2019) passes over the exact same location every 16 days, whereas 

instruments with a wider swath will complete the entire cycle in a shorter period. Moderate-

resolution Imaging Spectro-radiometer (MODIS) onboard the National Aeronautics and 

Space Administration (NASA) Earth Observation Systems, Terra and Aqua (WMO, n.d.), 

has a swath width of 2230 km and provides global coverage once (short-wave channels) or 

twice daily (long-wave channels). The higher-temporal resolution of MODIS (1-2 a day) in 

comparison to Landsat (16 days) had to be compromised with a lower-spatial resolution, as 

MODIS imagery has a scaled pixel area of 1.0 km2.  Whilst the Landsat family is a good 

example of high-spatial resolution (30-100 m) land surface data acquisition, spanning almost 



  Nikola Rogic T3966511 

 

 

12 

half of a century, it is now accompanied by the Copernicus Multi-Spectral Imager (WMO, 

n.d.) for Sentinel-2 pair (A and B), bringing the frequency of revisit down to as low as 5 

days. 

As hotter volcanic surfaces will radiate more energy and higher radiant flux density, 

any variation in observed radiance will reflect a variation in volcanic activity on the ground. 

Sensors having channels in MIR and TIR bands (e.g., MODIS) have been used widely for 

decades to detect volcanic thermal anomalies (Solikhin et al., 2012; Ramsey and Dehn, 

2004) and have proven to be a valuable tool for identifying general trends (derived from 

radiant heat and mass flux) and monitor broad volcanic activity (Ramsey et al., 2019; Harris, 

2013a; Harris et al., 2011; Hirn et al., 2008a; Wright et al., 2004; Wooster and Rothery, 

1997; Oppenheimer, 1993; Rothery et al., 1988). On the other hand, sensors such as the MSI 

(Sentinel-2) and Landsat-8 (OLI), having channels in NIR and SWIR, providing data at high-

spatial resolution, enable better identification detail of high-temperature thermal anomalies 

(e.g., lava flows) (Marchese et al., 2018; Hirn et al., 2008).  

1.4 Mount Etna, Italy: A Natural Laboratory 

The geological history of one of the most active basaltic volcanoes worldwide and 

the most active volcano in Europe, Mt Etna (3340 m a.s.l.) spans over 500 ka. Located along 

the Ionic coast of eastern Sicily (Italy), this large composite volcano has a maximum 

diameter of ~45 km and it covers an area of 1250 km2. The geology of Mt Etna volcano has 

been studied since the 19th century and suggests a complex evolution (Branca et al., 2011).  

Due to its persistent activity and relatively easy access, Mt Etna has been frequently 

targeted for studies involving ground-based investigations and applications of RS data to 

detect high-temperature thermal features and measure eruptive products, using various 

volcano monitoring approaches. Mt Etna has been displaying a quasi-continuous activity 

recently, at different locations on the volcanic edifice (e.g., summit, flanks) (Corradino et 

al., 2019; Acocella et al., 2016; Kahl et al., 2014; Cappello et al., 2013).  

The past two decades on Mt Etna have seen a range of summit and flank eruptions 

(Cappello et al., 2019), which appears to occur in a cyclic manner (Allard et al., 2006), 

exposing the large communities living in close proximity to the volcano (almost one million 

people) to a significant risk (Negro et al., 2013). Since the year 2000, Mt Etna has produced 

both short-lived and longer lasting destructive lava flow fields, which caused major damage 

to the local economy and nearby tourist facilities, situated on southern and northern flanks 

of Mt Etna (Neri et al., 2005). In 2004, 2006 and 2008–2009 several flank eruptions occurred 
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from fissures at the eastern base of the Southeast Crater. This effusive activity was directed 

towards the uninhabited Valle del Bove, a wide depression at the eastern flank of Mt Etna. 

Following the 2008–2009 eruption, which was the longest flank eruption since the 1991–

1993 event and the second longest since the 17th century (Behncke et al., 2016), Mt Etna 

developed more explosive behaviour (Ganci et al., 2012), characterized by a growing 

number of paroxysmal eruptions at the summit craters (Ganci et al., 2019). In just seven 

years (2011-2018), fifty-seven eruptive events occurred, characterized by lava fountaining, 

pyroclastic material, and short-lived lava flows (Cappello et al., 2019; Vicari et al., 2011), 

suggesting higher risk than previously anticipated (Negro et al., 2013).  

In this thesis, three distinct Mt Etna effusive events were investigated, occurring in 

2001, 2002-2003 and 2017 (Fig.1.3 and Table 1.4). 

   

Figure 1.3 (main) The location and actual extent of the 2001 (red), 2002-2003 (green) and 2017 (blue) lava 

flows are shown on Mt Etna Digital Elevation Model (DEM); (inset) a geological map of Sicily, Italy (Tarquini 

et al., 2007) and the location of Mt Etna volcano. Approximate location of collected samples (NRE.1S, NRE.3S 

and NRE.4S) are indicated with filled yellow circles. Note that only LFS1 (Coltelli et al., 2007), individual 

lava flow (18 July-09 August 2001) was used for the 2001 eruption analysis.  
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Table 1.4 Summary of the 2001, 2002-2003 and 2017 Mt Etna eruptions 

Eruption Location 
Start Date  

(dd-mm-yy) 

Stop Date 

(dd-mm-yy) 

Duration 

(days) 

Volume  

(× 106 m3) 

*Previous  

work 

2001 S flank 18/07/01 09/08/01 23 21.4-38 1, 2, 4, 5 

2002-2003 NE flank 27/10/02 05/11/02 9 11.8 3, 4, 5 

 S flank 27/10/02 29/01/03 94 32.7 3, 4, 5 

2017 SEC 15/03/17 09/04/17 26 7.96 6 

*Source: 1 (Coltelli et al., 2007); 2 (Behncke and Neri, 2003); 3 (Andronico et al., 2005); 4, (Harris et al., 

2011); 5 (Allard et al., 2006); 6 (Cappello et al., 2018) 

Previous research on Mt Etna has revealed that during the 20th century two main 

eruptive trends occurred; (i) 1900-1971 characterised with a moderate eruptive frequency 

and an average eruption rate of 0.2 m3s−1 ; and (ii) 1971-1999 characterised with a 

significant increase in eruption frequency with an average eruption rate of 0.8 m3s−1 (Allard 

et al., 2006; Andronico and Lodato, 2005; Wadge, 1981; Wadge and Guest, 1981). The 

former period (i) produced a cumulative lava volume of 436× 106 m3, whereas the latter (ii) 

produced 767× 106 m3 (Andronico and Lodato, 2005). 

However, the 2001 flank eccentric eruption displayed an anomalous degree of 

explosivity, which was followed by another highly explosive eccentric eruption in 2002 

(Spampinato et al., 2008), suggesting that eruption dynamics have changed on Mt Etna, 

triggered by the 2001 eruption (Allard et al., 2006; Behncke and Neri, 2003). This claim was 

evaluated using a multidecadal (1971-2010) assessment to define volumetric behaviour of 

this persistently active system (Harris et al., 2011). The study concluded that there was a 

variation in terms of frequency and duration of effusive activity. However, on a decadal scale 

volumes and mean output rate (~0.8 m3s−1) were in line with the typical rate for Mt Etna 

prior to the 2001 eruption (Harris et al., 2011). Furthermore, they argue that, although some 

changes have occurred in the shallow system which reflect on the eruption style producing 

short-duration high effusive phases, the output rates, controlled by supply from the deep 

system remained unchanged. 

The 2001 eruption, despite lasting only 23 days, gave rise to seven distinct fast-

developing lava flows (Coltelli et al., 2007). Although the 2001 eruption produced seven 

different lava flows, focus will be on the individual flow (LFS1) produced between 18 July 

and 9 August 2001 (Coltelli et al., 2007). It has been indicated that the total lava flow volume  

is significant in the recent eruptive history of Mt Etna (Coltelli et al., 2007), and the key 
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aspect for selecting it for RS analysis is that despite being almost two decades old at the time 

of writing, this eruption could be observed by three high spatial resolution multispectral 

payloads (TM onboard Landsat-5, ETM+ onboard Landsat-7, and ASTER onboard Terra).  

The 2002-2003 Mt Etna flank eruption occurred in two distinct locations, the North-

East rift (27 October to 04 November 2002) and two episodes at the South-East rift (28 to 

31 October 2002 and 13 November 2002 to 28 January 2003). This eruption apparently 

shared several features with the 2001 event (Andronico et al., 2005), such as south flank 

activity and a strongly explosive style. Magma viscosity is thought to be the key property  

(Giordano and Dingwell, 2003) driving magmatic processes (formation, transport, 

crystallization), which is closely associated with the type of volcanic activity (effusive 

and/or explosive). Both the 2002-2003 and 2001 flank eruptions occurred along the Etnean 

southern rift, exhibiting unusual explosivity due to the rise of volatile-rich magma reaching 

the surface bypassing the central conduits and producing eccentric eruptions (Spampinato et 

al., 2008; Guest and Duncan, 1981). 

The 2017 event is the most recent effusive event investigated in this thesis. It started 

at the old ‘saddle’ (Fig. 1.3), between the South-East Crater (SEC) and the New South-East 

Crater (NSEC) on the morning of 15 March 2017. The lava flow expanded to both the 

southeast and southwest, diverted by the eruptive cones during the 2002-2003 flank eruption. 

At the beginning of April 2017, the lava started flowing from two ephemeral vents that 

opened downstream. This eruption, which ended on 9 April 2017, emitted an estimated 7.96 

× 106m3 of lava (Cappello et al., 2018) over an area of 1.78 km2. 

The selected effusive events (Table 1.4) are used as case studies based on their 

diverse temporal advance (i.e., short-lived and long-term activity) and lava volumes 

produced, which are significant for Etnean recent eruptive history. Twenty samples (Fig. 1.3 

and Table 1.5) were collected for emissivity studies, representing Mt Etna’s 2001 (NRE.4S), 

2002-2003 (NRE.3S) and 2017 (NRE.1S) effusive events, in a grid scaled to dimensions in 

line with high-spatial resolution satellite sensors (~100 m). Moreover, spaceborne data was 

acquired by several high-spatial multispectral instruments and is accessible for assessment 

of representative sample collections. 

Sample series are colour coded according to the Figure 1.3 (i.e., NRE.1S - blue, 

NRE.3S - green and NRE.4S - red) and will be referred to according that colour-code 

throughout this thesis. 
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Table 1.5 Summary of sample locations from eruptions analysed 

2001 eruption 

Sample ID # 

Location 

Lat/Lon 

2002-03 eruption  

Sample ID # 

Location 

Lat/Lon 

2017 eruption 

Sample ID # 

Location 

Lat/Lon 

NRE.4.0 
37°41’51.12’’N 

14°59’43.11’’E 
NRE.3.11 

37°43’16.06’’N 

15°0’2.51’’E 
NRE.1.0 

37°44’17.21’’N 

15°0’3.68’’E 

NRE.4.1 
37°41’55.71’’N 

14°59’52.28’’E 
NRE.3.12 

37°43’8.97’’N 

14°59’44.29’’E 
NRE.1.1 

37°44’12.70’’N 

15°0’12.94’’E 

NRE.4.2 
37°41’55.96’’N 

14°59’58.68’’E 
NRE.3.14 

37°43’27.05’’N 

15°0’12.42’’E 
NRE.1.2 

37°43’59.50’’N 

15°0’24.02’’E 

NRE.4.3 
37°42’3.07’’N 

15°0’4.08’’E 
NRE.3.15 

37°43’24.26’’N 

15°0’8.17’’E 
NRE.1.3 

37°43’57.00’’N 

15°0’26.27’’E 

NRE.4.4 
37°42’8.33’’N 

15°0’8.57’’E 
NRE.3.16 

37°43’14.75’’N 

14°59’51.77’’E 
NRE.1.4 

37°43’55.47’’N 

15°0’30.07’’E 

NRE.4.5 
37°42’10.08’’N 

15°0’10.99’’E 
NRE.3.18 

37°42’47.62’’N 

14°59’41.37’’E 
NRE.1.5 

37°43’52.62’’N 

15°0’32.11’’E 

NRE.4.6 
37°41’59.21’’N 

15°0’10.86’’E 
NRE.3.20 

37°43’36.38’’N 

14°59’31.92’’E 
  

 

The XRF analysis of samples I collected, further provided the opportunity to determine 

the geochemical ‘uniqueness’of each sample to better determine the composition of erupted 

material (Table 1.6). Major elements of my samples were determined using fused glass 

beads, prepared from ignited powders sample to flux ratio 1:5, 80 % Li metaborate: 20 % Li 

tetraborate flux using X-Ray Fluorescence (XRF) technique on University of  Leicester, 

Department of Geology PANanalytical AXios Advanced XRF spectrometer (Table 1.6).  

Table 1.6 XRF major elements content, as a component oxide weight percent (wt.%) 

Major elements NRE.1S NRE.3S NRE.4S 

SiO2 47.49 47.85 48.15 

TiO2 1.63 1.53 1.53 

Al2O3 17.71 17.41 16.49 

Fe2O3 11.26 10.99 11.19 

MnO 0.17 0.17 0.17 

MgO 4.81 4.84 5.71 

CaO 10.36 9.73 10.48 

Na2O 3.65 3.77 3.52 

𝐾2O 1.72 1.85 1.70 

𝑃2O5 0.55 0.58 0.53 

SO3 0.005 0.004 0.005 

LOl -0.35 -0.41 -0.30 

Total 99.02 98.37 99.14 
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Figure 1.4 Derived Total Alkalis Silica (TAS) plot for the 3-eruption series analysed, superimposed on the 

standard field boundaries for igneous rocks (LeMaitre et al., 1989).  

XRF results indicate silica (𝑆𝑖𝑂2) and alkali (𝑁𝑎2𝑂 + 𝐾2𝑂) contents, consistent with 

previous research on Etnean lavas (Giordano and Dingwell, 2003), categorizing them all as 

trachy-basalts. The compositions (Table 1.6 and Fig. 1.4) for samples analysed here for each 

Mt Etna eruption are geochemically very simillar, plotting closely together and in the same 

field (trachybasalt) on the Total Alkali Silica (TAS) graph.  

1.5 Aim and structure of this thesis  

As indicated previously, spectral emissivity is not commonly measured for a range 

of materials and temperatures, and it is generally assumed to have a constant value between 

1.0 and 0.80 for basaltic lava (Harris, 2013a).   

Nonetheless, emissivity of molten basalts is recognised to be significantly lower than 

those of fully cooled counterparts (Thompson and Ramsey, 2020; Ramsey et al., 2019; Lee 

et al., 2013). Since there is a lack of laboratory-based data for robust inverse and/or forward 

modelling, this thesis addresses this deficit (Chapter 2). This involves a thorough experiment 

on ‘aa’ lava samples from three significant eruptions on Mt. Etna, which are representative 

of the range of its eruptive behaviour(s) (Cappello et al., 2019). Emissivity of samples is 

measured over the widest range of temperatures (~294-1373 K) and wavelengths (0.66-15.0 

µm) executable in laboratory environment to establish the role of emissivity in estimates 

from spaceborne data. 
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The thesis falls into two main sections. The first deals with past and current 

approaches to RS data processing and the need for laboratory-based data (Chapter 2) to 

determine the relevance of laboratory measured emissivity to the spectral radiance, a central 

parameter measured by the satellite sensor. Therefore, the aim in this thesis is to highlight 

the need for detailed emissivity assessment and relate the results and their physical meaning 

in terms of ‘at-satellite’ spectral radiance and its relationship to derived apparent lava surface 

temperatures, radiant heat flux and subsequent analyses that rely on the accuracy of this 

measurement. The net result is to establish how applicable these measurements (i.e., role of 

emissivity) may be to calibrate the target signal and to ’ground-truth’ the RS data. 

The second section centres on testing emissivity-temperature ‘trend(s)’, as input 

parameters, derived from the laboratory data presented in Chapter 2 to quantify uncertainty 

in the current approaches and the novel multicomponent emissivity method introduced here 

is then applied to spaceborne and modelling applications (Chapters 3-5). Spaceborne data 

from OLI and Sentinel-2 onboard Landsat-8 and MSI, as well as MODIS onboard Terra and 

Aqua were exploited as the best candidates for RS analyses to provide the required spatial, 

temporal and spectral coverage (SWIR, MIR and TIR), in an attempt to extract accurate 

apparent lava surface temperatures. These have an inherent influence on the computation of 

radiant heat and mass fluxes, which impact directly on the prediction of lava flow ‘distance-

to-run’ forecasts, as mass flux (effusion rate) estimates depend on measured radiant flux.  

Research question, on how can detailed laboratory-measured data on emissivity-

temperature trends (currently largely ignored) benefit spaceborne data analysis and 

interpretation to reduce uncertainty in calculated radiant heat flux has been discussed in this 

thesis. The main aim of this study is to answer this question through analysis of the role of 

emissivity in high-to-moderate spatial resolution satellite data, discussing implications of 

results for current modelling and spaceborne approaches and the selection of platforms for 

volcano monitoring. This may be summarised as: 

(a) Laboratory-based FTIR data analyses. Data covering several spectroscopy 

methods with diverse sensitivities are analysed to derive (a) emissivities of basaltic rock and 

(b) what reliable emissivity-temperature trends can be extracted. 

(b) Analysis of existing spaceborne emissivity data. Variation in emissivity 

acquired by ASTER GED, of the same target area is validated using laboratory measured 

data. Comparison of spectral signatures enable the value of this approach to be assessed.  

(c) Use of measured emissivity-temperature trends as spaceborne data input 

parameters. Techniques are employed using well established approaches with the key 
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difference that emissivity is wavelength and temperature dependent (multicomponent), 

rather than ‘static’. The novel approach developed in this thesis has been validated by the 

Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Catania, Italy with the expectation 

of it being implemented for future spaceborne and modelling applications to monitor Mt 

Etna. 

(d) Wider application. Emissivity-temperature trends developed for Mt Etna are 

compared with values obtained for volcanoes in different setting (Lascar, Chile and Kilauea, 

Hawaii) which are also analysed in this study. This offers a complementary view on global 

application of such trends.  

(e) Towards automation. Why and how can findings presented in this thesis be 

applied and incorporated into multi-platform, multi-payload automated system for volcano 

monitoring. 

During this study, opportunities to work with external collaborators were embraced, 

which allowed access to several external facilities and resulted in several presentations at 

international and national conferences and peer reviewed publications. Papers published are 

presented here in Appendices. As first author for these collaborative papers there is 

necessarily some inevitable repetition in the main body of the thesis.  
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2 Spaceborne and laboratory measured emissivity results 

Much of the material discussed in this chapter has been published in the papers by 

Rogic et al. (2019a) and Rogic et al. (2019b), which are reproduced in full as Appendices G 

and H. 

2.1 Introduction 

To measure the emissivity of the lava samples collected and analysed in this thesis, 

available satellite emissivity data from Advanced Spaceborne Thermal Emission and 

reflection Global emissivity Database (ASTER GED) and several Fourier Transform 

Infrared (FTIR) spectroscopy methods were used (Table 2.1). For clarity, different 

symbols are used (Table 2.1) to present results (Section 2.3) for each technique (e.g., 

empty circles for the FTIR analysis at 343 K).  

Table 2.1 Summary of techniques used to measure and assess emissivity 

Technique Section Symbol 
Sample  

ID 
Eruption 

Sample  

size 

*Temp. 

(K) 

Wavelength 

(m) 

Spaceborne 

ASTER GED 

2.2.1 

2.3.1 
 all (Table 1.5) 

2001 

2002-03 

2017 

100-m  

pixel 
- 

8.30, 8.65, 

9.10. 10.60, 

11.30 

Laboratory-based 

FTIR (reflectance) 

2.2.2 

2.3.2 
 

NRE.4.1; 4.4 

NRE.3.11; 3.14 

NRE.1.1; 1.5 

2001 

2002-03 

2017 

1000-3000 

(m) 
294  0.66-16.0 

Laboratory-based 

FTIR (radiance) 

2.2.3 

2.3.3 
 all (Table 1.5) 

2001 

2002-03 

2017 

Hand 

specimen 

~8.0 cm 

343  8.0-15.0 

Laboratory-based 

FTIR (radiance) 

2.2.4 

2.3.4 
 

NRE.4.1; 4.4 

NRE.3.11; 3.14 

NRE.1.1; 1.5 

2001 

2002-03 

2017 

1000-3000 

(m) 
400-900  5.0-15.0 

Laboratory-based 

FTIR (radiance) 

2.2.5 

2.3.5 
 

NRE.4.1; 4.4 

NRE.3.11; 3.14 

NRE.1.1; 1.5 

2001 

2002-03 

2017 

100-350 

(m) 
737-1373  2.17-15.0 

*Temperature in Kelvin (K) 

An introduction to the theory and methods of Fourier Transform Infrared (FTIR) 

spectroscopy can be found in (King et al., 2004), among others.  

The physical principle behind measuring emissivity from surface reflectance spectra 

(at ambient temperature) using the FTIR method is that ‘apparent’ emissivity values can be 

calculated from the measured reflectance (R) using Kirchhoff’s law (Korb et al., 1999). 

Source radiation from FTIR spectrometer was impinged on samples within an integrating 

sphere coated by a diffusely reflecting gold surface. By comparing reflected radiation from 

the sample, with that from a diffuse gold reference surface, directional hemispherical 

reflectance, and emissivity, through Kirchhoff’s law can be calculated.  
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Unlike the reflectance approach, retrieving ‘absolute’ emissivity from radiance does 

not require a separate source of infrared radiation; instead, the radiation emitted by the 

surface is compared with the amount of radiation emitted by a blackbody at the same kinetic 

temperature.  

The Michelson interferometer is central to any FTIR spectrometer. The 

interferometer splits the beam of incoming radiation into two paths: one path travels to a 

fixed mirror, whereas the other path travels to a moving mirror. The two paths of radiation 

are recombined at the detector producing an interference pattern. The temporal coherence of 

the radiation is recorded as a function of mirror position (path difference) at discreet time 

intervals to produce an interferogram. A cosine Fourier transform of the interferogram will 

produce a spectrum of energy intensity as a function of wavelength. Corrections are applied 

to account for the resolution and field of view of the instrument, as detailed in Griffiths 

(1975). 

 The simplest approach (the ‘reference channel’ method) which assumes that target 

emissivity is equal to that of a blackbody (unity) at a given wavelength in the measured 

spectrum (Murcray et al., 1970). Given that target radiance and emissivity are known at a 

specific wavelength, it is possible to derive surface temperature and calculate emissivity at 

all other wavelengths. Another approach assumes a known emissivity maximum at a 

specified waveband, rather than a specific wavelength (Kahle and Alley, 1992), where the 

temperature of the Planck’s curve with the closest ‘blackbody fit’ to the specified maximum 

emissivity is used to calculate emissivity for the remainder of the spectrum. The blackbody 

calibration method is used in this chapter to derive ‘absolute’ emissivity in all radiance FTIR 

approaches at a range of temperature (343-1737 K).   

2.2 Methods 

2.2.1 Spaceborne emissivity retrieval: ASTER GED 

The Global Emissivity Database (GED) built by NASA’s Jet Propulsion Laboratory 

(JPL) (Hulley and Hook, 2013) is currently the most detailed emissivity product available 

for Earth’s land surface, derived from spaceborne data. Emissivity, rescaled to 100 m from 

the original 90-m Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) TIR pixels, is an average of data acquired at five TIR central wavelengths (8.30 

μm, 8.65 μm, 9.10 μm, 10.60 μm, and 11.30 μm) every 16 days, from 2000 to 2008. It was 

obtained by NASA JPL by combining temperature emissivity separation (TES) algorithms 
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and water vapor scaling (WVS) atmospheric corrections coincident with MODIS MOD07 

atmospheric profiles and the MODTRAN 5.2 radiative transfer code (Hulley et al., 2015). 

2.2.2 Emissivity from Surface Reflectance Spectra at 294 K 

I measured reflectance spectra of samples measured at an ambient temperature (~294 

K), collected at the Planetary Emissivity Laboratory (DLR, Germany) by the Bruker Vertex 

80v FTIR spectrometer, using a gold integration sphere hemispherical reflectance accessory.  

The ‘apparent’ emissivity (𝜀′) values can be predicted from reflectance (R) derived 

from the FTIR measured reflectance data, using Kirchhoff’s law (Eq. 11). This approach 

provides an expected result precision of 0.005 (Korb et al., 1999), and is typically simplified 

as: 

                                               ε′ = 1 − R                                                    (11) 

It is important to note that Kirchhoff’s law is only valid for hemispherical reflectance 

measurements, and is used to approximate emissivity from reflectance data (Korb et al., 

1999); thus, the term ’apparent’ emissivity (𝜀′) is used here to contrast with the ‘absolute’ 

emissivity (𝜀) term used in radiance FTIR approaches. 

The experimental setup (Fig. 2.1) in this study and in Maturilli et al. (2018) measures 

the reflectance of samples in the visible to near-infrared (V-NIR), and MIR wavelength 

range. Reflectance is converted into an ‘apparent’ emissivity using Equation (Eq. 11). For 

MIR measurements, a wide-range Mercury Cadmium Telluride (HgCdTe) detector is used 

(1000 − 400 cm−1) in tandem with a wide-range germanium (Ge) on potassium bromide 

(KBr) beam splitter ( 12500 − 420 cm−1 ). For V-NIR measurements, conversely, an 

InGaAs Diode detector was used (12500 − 5800 cm−1) in tandem with a silicon (Si) on 

calcium fluoride (CaF2) beam splitter (15000 − 1200 cm−1). 

              

Figure 2.1 Reflectance FTIR experimental set-up (this study) to measure samples’ reflectance at ambient 

temperature (~294 K). Reflectance data were converted to ‘apparent’ emissivity using Kirchhoff’s Law (1-R). 
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Samples of 4 grams in particulate form (particle size 500–1000 μm) were placed into 

individual sample cups (2.5 cm diameter), which were positioned on the hemispherical 

reflectance accessory, and aligned. Prior to measuring samples, a gold reference target (Fig. 

2.1) was used to calibrate the instrument. Finally, individual sample spectra were normalized 

to the gold reference target spectrum results to obtain reflectance values. 

2.2.3 Emissivity from Surface Radiance Spectra at 343 K  

I measured samples at the Natural Environment Research Council (NERC) Field 

Spectroscopy Facility at the University of Edinburgh, U.K., using a MIDAC M2000 

spectrometer (MIDAC corporation, 2003).  

The experimental setup is shown in Figure 2.2, where TIR measurements (8.0-15.0 

µm) were taken at an approximate temperature of 343 ( ±10 K). The spectrometer is 

equipped with zinc selenide (ZnSe) optics and a mercury cadmium telluride (HgCdTe) 

sensor, giving a spectral range of a ~2.0-15.0 μm, with a selectable resolution of 32-0.5 

cm−1. A 75-mm gold front surface coated mirror attached on a rotary spindle is designed for 

viewing sample surfaces. The path from target to sensor was ~35 cm. A blackbody system 

built by Electron Systems is used for spectrometer calibration. The system consists of three 

blackbodies, two of which can be heated (or cooled) to user-selectable temperatures. 

Hemispheric down-welling radiance (DWR) measurements are made using diffuse gold 

highly reflective surface (InfraGold), with a reported emissivity of less than 0.06 (R>0.94).  

Prior to measuring the samples, a thermocouple was placed inside the spectrometer housing 

to monitor spectrometer temperature for 90 minutes. Solid samples (~8 cm) were grouped 

into two categories (i) naturally occurring ‘rough’ surface and (ii) cut ‘smooth’ surface (same 

sample sawn in half) and were heated to ~343 K (±10 K) using a convection oven to produce 

a spectral contrast with background radiation. The experimental step where samples were 

manually transferred from the oven to the measuring platform was less than ideal, as 

temperature stability (cooling) could not be controlled. The sample surface temperature was 

recorded using a contact temperature probe. Two blackbodies were set to 313 K (BB 1) and 

353 K (BB2), to ‘bracket’ the sample temperature, and were kept at constant temperatures 

using a Dual (+1) IR-301 Blackbody controller powered by an external battery. The third 

blackbody (BB3) was kept at ambient temperature (~294 K).  

Calibration spectra were firstly taken of two heated blackbodies (BB1 and BB2), 

followed by BB3 and a measurement of DWR using the InfraGold. Spectra were then 

collected for each sample. Each measurement co-added 32 spectra at a resolution of 2 cm−1. 
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A measurement time of ~10 seconds per sample, encompassed measurement of the naturally 

occurring ‘rough’ surface sample (Fig. 2.2 b), instantly followed by a measurement of the 

cut ‘smooth’ sample surface (Fig. 2.2 c) to keep the sample temperature conditions identical 

during both measurements. Calibration and DWR measurements were repeated at regular 

intervals (every 60 minutes) to account for changes in background radiance and spectrometer 

temperature. Raw spectrometer data were converted to radiance and absolute emissivity 

based on the empirical conversion approach of (Ruff et al., 1997).      

                  

Figure 2.2 (a) Emission FTIR experimental set up at 343 K and 8.0-15.0 𝜇m wavelength range, involved 

MIDAC M2000 spectrometer, including blackbody system consisting of 3 blackbodies (BB); BB1 at 313 K, 

BB2 at 353 K and BB3 at 294 K (ambient temperature), which were used for spectral calibration. Hemispheric 

down-welling radiance is measured using diffuse gold (InfraGold) highly reflective surface (𝜺 < 0.06). Samples 

were heated to ~343 K (±10 𝐾) using convection oven, while sample surface temperature was recorded using 

a contact temperature probe; (b) An example of a naturally occurring ‘rough’ sample surface (NRE.1.4R) and 

(c) sample cut in half to reveal freshly cut interior sample surface is termed ‘smooth’ (NRE.1.4S).  

2.2.4 Emissivity from Surface Radiance Spectra 400-900 K  

I measured thermal emission spectra of the samples at the Planetary Spectroscopy 

Laboratory (PSL) of the German Aerospace Center (DLR) in Berlin (Germany), using a 

Bruker Vertex 80V FTIR spectrometer operating in vacuum, with a liquid nitrogen cooled 

mercury cadmium telluride (HgCdTe) detector and potassium bromide (KBr) beam splitter. 

‘Absolute’ emissivity spectra were acquired between 5.0 and 15.0 μm, with a spectral 

resolution of 4 cm−1 and temperature range 400-900 K. The experimental setup (this study 

and (Maturilli et al., 2018; Maturilli and Helbert, 2014) uses an externally evacuated 

planetary ‘simulation chamber’, attached to the FTIR spectrometer (Fig. 2.3). The radiance 
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is collected by an Au-coated parabolic 90° off-axis mirror and reflected to the spectrometer. 

The emissivity chamber is equipped with an internal webcam and several temperature 

sensors to measure the sample/cup temperature, monitor the equipment, and record chamber 

temperatures. Both the cup and the sample in a particulate form (500–3000 μm) are heated 

uniformly by induction, and the temperature of the emitting surface is measured using a 

thermophile sensor in contact with the surface. Samples were heated successively from 400 

K at 100 K temperature steps (i.e., 400, 600, 700 800 and 900 K) and once the temperature 

was stabilized (5 minutes dwell time), emissivity was measured while the temperature was 

held constant (10 seconds) under a low vacuum (0.7 mbar). The heating cycle between 

temperature steps (e.g., 600-700 K) took approximately 20 minutes, plus the additional 5 

minutes dwell time.  Cooling-test of the same samples was performed once the maximum 

temperature was reached (i.e., 900 K) where that temperature was held constant with 15 

minutes dwell time before cooling-down measurements were taken (i.e., 900, 800, 700, 600 

and 400 K). The resulting data are calibrated using the emissivity spectrum of the blackbody 

material (Ferrari et al., 2014; Maturilli and Helbert, 2014) to provide the set(s) of ‘absolute’ 

emissivity data. 

                

Figure 2.3 Emission FTIR experimental set-up (this study and (Maturilli et al., 2018)) measured ‘absolute’ 

emissivity 400-900 K temperature and 5.0-15.0 µm wavelength range, using Bruker VERTEX 80V instrument. 

2.2.5 Emissivity from Surface Radiance Spectra 773-1373 K  

I measured thermal emission spectra, collected in the Image Visualization and 

Infrared Spectroscopy (IVIS) Laboratory, at the University of Pittsburgh, Pennsylvania, 
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U.S.A. The experimental set up (Fig. 2.4) to measure ‘absolute’ emissivity at very-high 

temperature uses the Nicolet Nexus 870 FTIR spectrometer, equipped with a potassium 

bromide (KBr) beam splitter, and a mercury cadmium telluride (MCT-B) detector (cooled 

with liquid nitrogen) with a spectral range of 4608 - 400 cm−1 (2.17 - 25.0 μm). Emission 

spectra were collected over 8 scans, at a spectral resolution of 2 cm−1, and averaged.  

A ‘glovebox’ adjacent to the spectrometer contains a custom-made furnace 

(University of Pittsburgh machine shop) and sample measuring apparatus. The ‘glovebox’ 

and spectrometer temperature and humidity are carefully monitored, resulting in high-

precision emissivity spectra. Both the spectrometer and the attached ‘glovebox’ are purged 

with dry air to limit spectral obscuration by H2O and CO2. Due to the time limitations and 

access to this external facility, a total of seven samples (two representative samples from 

each Mt Etna eruption and an additional sample erupted in 1993 at Lascar, in Chile, 

discussed in Chapter 5) were prepared for this analysis. All samples were crushed and sieved 

into ~100-350 μm size fractions. Approximately 1 gram of sample was poured into a 3.0 cm-

diameter platinum cup (to ~3 mm depth), which was manually placed into the furnace, 

located in a glovebox adjacent to the spectrometer and covered with a furnace lid (with 

viewing opening) and kept there for the duration of the experiment to maintain constant 

conditions.  

 

Figure 2.4 Experimental set up to measure emissivity at IVIS Laboratory, at the University of Pittsburgh 

(U.S.A.) at 773-1373 K and 2.17-15.0 𝜇m wavelength range, shows (top left) a power controller unit and 

Nicolet Nexus 870 FTIR spectrometer and (right) adjacent to the ‘glovebox’, which contains the furnace and 

sample measuring apparatus. Sample before and after measurement is shown (bottom left), as well as the 

blackbody used to calibrate the results.  
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The methodology used here relies on the energy from the heated sample as the source 

to obtain sample emittance. The IVIS Laboratory instrument measurements, by default will 

record temperatures in ℃, whereas in this thesis all temperatures are shown in K. For 

consistency and direct comparison, all temperatures were converted to K in the results 

section (Section 2.3). Sample measurement steps in both directions, heating-up (773 K to 

1373 K) and cooling-down (1373 K to 773 K) were set at 50 K intervals (e.g., 773 K, 823 

K, 873 K, 923 K) using a SCR power controller (Fig. 2.3), providing two sets of data for 

each sample. A four minutes dwell time was applied at each temperature step, to allow 

equilibration prior of the collection of the spectra (10 seconds), which is an important factor 

in attaining accurate emissivity spectra.  

Prior to the analysis, spectra were acquired from blackbody sources (Fig. 2.3) that 

are precision controlled to 50 K either side of sample measurement steps, also at 50 K 

intervals. The spectra of the blackbody targets allow for the instrument and environmental 

emission to be quantified and removed (Ruff et al., 1997). Measured radiance from the 

laboratory blackbody was subtracted from that of a calculated (theoretical) blackbody 

emitter. Calibration and conversion of raw data to absolute emissivity was carried out 

following the approach of (Ruff et al., 1997) and using an IDL code written by Thompson 

J.O. (University of Pittsburgh, U.S.A). Experimental error is reported in Appendix B. 

2.3 Results  

2.3.1 Spaceborne emissivity data: ASTER GED 

I downloaded twelve 1° × 1°  ASTER GEDv3 datasets (‘tiles’) from the NASA 

EOSDIS Land Processes DAAC (Hulley and Hook, 2013), centred on Sicily and Mount Etna 

(Section 2.2.1).  

I used existing spaceborne ASTER gedV3 data (Hulley and Hook, 2013) to create the 

emissivity map (Fig. 2.5) of Sicily (Italy), including Mt Etna. Conversion of downloaded 

Hierarchical Data Format Files (HDF), a standardised format for scientific data storage to 

georeferenced (GeoTiff) files, allowed extraction of emissivity values for targets analysed. 

The highest emissivities are shown in dark blue (~0.95-1.0); these correspond to the volcanic 

region of Mt Etna, which is consistent with the emissivity signatures relating to basaltic 

volcanic surfaces (Harris, 2013a). Sicily is geologically complex due to its regional 

tectonics; thus, green and red areas on the map with lower emissivities would represent 

compositionally different units of non-volcanic origin. 
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Mean spaceborne emissivity results (Table 2.2) for the location of all samples 

analysed, derived from 100 m spatial resolution product ASTER GEDv3 are shown in Figure 

2.6. ASTER GED mean emissivity values range from 0.90 to 0.96 in the TIR (8.30-11.30 

𝜇m) wavelength range. It is important to note that the ASTER GED emissivity values for 

the sample locations analysed here are nine-year average (2000-2008) at 100-m resolution. 

This may have resulted in inclusion of background emissivity, bordering with the target 

(specific lava flow) within the individual pixel. Furthermore, data on new lava may be 

averaged out against emissivities of underlying rock before the eruption occurred.  

 

Figure 2.5 ASTER GED emissivity map over Sicily, Italy at 100-m pixel resolution at 10.60 𝜇m and 4-3-1 

band red-green-blue (RGB) view. The colour ramp specifies the emissivity values (0.80-1.0). The highest 

emissivities are shown in dark blue (~0.95-1.0); which correspond to volcanic region of Mt Etna.  
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ASTER GED Spaceborne emissivity data 

 

Figure 2.6 Mean spaceborne emissivity results for the 3-eruption sample series location, derived from 100-m 

spatial resolution product ASTER GEDv3. (Fig. 2.5). Results for each sample series are shown at five 

ASTER TIR bands (8.30, 8.65, 9.10, 10.60 and 11.30 𝜇m).  

Table 2.2 ASTER GED mean emissivity at ASTER TIR bands for sample locations 

ASTER TIR bands 8.30 m 8.65 m 9.10 m 10.60 m 11.30 m 

ASTER GED NRE.1S 0.955 0.923 0.909 0.916 0.916 

ASTER GED error 0.002 0.008 0.009 0.007 0.009 

ASTER GED NRE.3S 0.959 0.951 0.947 0.956 0.955 

ASTER GED error 0.015 0.014 0.018 0.015 0.019 

ASTER GED NRE.4S 0.955 0.951 0.945 0.958 0.958 

ASTER GED error 0.011 0.006 0.005 0.007 0.008 

 

2.3.2 Emissivity from Reflectance at 294 K 

Since the IR emission spectroscopy (εFTIR) is complementary to the reflectance 

spectroscopy (R FTIR), this special relationship has been applied (Ruff et al., 1997) by use 

of Kirchhoff’s Law, where the central contrast between the two methods is in the source of 

IR energy (in εFTIR, the heated sample becomes the IR source). This rule generally holds 

(Korb et al., 1999; Henderson et al., 1996). 

Reflectance data measured at ambient temperature may be regarded as a preliminary 

estimate (first approximation) of surface emissivity. To extend the observable spectral range, 

two detectors (KBr at 0.66 to 2.50 μm and MCT at 2.50 to 16.00 μm) were used, so that the 

data could be merged at 2.63 μm to provide the best signal-to-noise (STN) ratio result for 

the entire range from V-NIR to TIR. The maximum difference in emissivity at any 

wavelength 0.66-14.0 μm, between the three-sample series is ≤0.03. 
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Figure 2.7 ‘Apparent’ emissivity results from reflectance data at 294 K (ambient temperature) and 

0.66  𝜇𝑚 to 16.3 𝜇𝑚 wavelength range. ‘Apparent’ emissivity was derived from reflectance data using 

Kirchhoff’s Law (1-R).  

However, it is important to note that there are several drawbacks in using reflectance 

measurements compared to emission measurements. For example, the temperature of the 

sample is not considered, and an isothermal sample is assumed, without accounting for its 

thermal gradient behaviour. Kirchhoff’s Law is used to approximate the emissivity of the 

sample, where the packing fraction of the particulate sample is also not considered. The 

incident rays from the spectrometer only interact with the surface layer, so it may not be 

representative of the bulk composition, and sample preparation may also influence the result.  

2.3.3 Emissivity from radiance data at 343 K 

Unlike the reflectance approach, retrieving emissivity from radiance does not require 

a separate source of IR radiation; instead, the radiation emitted by the samples’ surface is 

compared (calibrated) with the amount of radiation emitted by a blackbody at the same 

kinetic temperature.  

                         ‘Absolute’ Emissivity for NRE.1S at 343 K 
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Figure 2.8 Emissivity spectral signature results variation for (a & c) cut ‘smooth’ and (b & d) naturally 

occurring ‘rough’ sample surfaces, where ‘naturally rough’ surface samples display a range of spectral contrast 

(lower emissivity) and different spectral signature shapes from that of their cut ‘smooth’ counterparts. The 

example shown here (a & b) is for NRE.1 sample series, whereas examples shown in (c & d) are four select 

samples, exhibiting extreme variation between ‘naturally rough’ and cut ‘smooth’ results. 

The results showed that there is a marked difference in the spectral signatures of 

measured emissivity between naturally occurring ‘rough’ (Fig. 2.8 b and d) and cut ‘smooth’ 

surface samples (Fig. 2.8 a and c).  

All Mt Etna sample series show, to an extent, similar behaviour displayed in an 

example given in Figure 2.8 for NRE.1S, where several naturally occurring ‘rough’ surface 

samples (Fig. 2.8 d) display a range of spectral contrast (lower emissivity) and different 

spectral signature (shape) to that of its cut ‘smooth’ surface counterpart (Fig. 2.8 c).   

A typical basalt in TIR (8.0-15.0 µm) is expected to have a ‘U’ shaped feature 

(Harris, 2013a), with the distribution of emissivity minima at a specific wavelength (~10.65 

µm). This shape can be observed (Fig. 2.8 a & c) for all cut ‘smooth’ surface samples and 

some naturally occurring ‘rough’ samples but with higher spectral contrast and lower 

emissivity (Fig. 2.8 b & d). High SiO2 glass, such as obsidian would have very prominent 

feature and defined emissivity low at ~9.10 µm wavelength, which coincides with the 

absorption band diagnostic of a glass (Harris, 2013a). Samples NRE.1.7 and NRE.1.4 exhibit 

this feature (‘V’ shape), whereas samples NRE.1.1 and 1.1 show different feature (‘W’ 

shape).    

Etnean samples are not expected to be identical, as each eruption is compositionally 

unique, but they are of relatively similar chemical composition (Table 1.6 and Fig. 1.4), 

hence should produce comparable emissivity spectral signatures. Furthermore, this should 

hold true for the samples from the same eruption. This is the case for cut ‘smooth’ surface 

samples (Figs. 2.8 a & c), which show similar shapes (‘U’) for all samples. Considering that 
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inconsistent ‘V’ and ‘W’ shaped features can be observed in some naturally occurring 

‘rough’ surface samples but none in the ‘cut surface’ range series, it should be investigated. 

These features identified only in ‘rough’ surface sample results may be due to a complex 

surface mineralogical variation, possibly related to lava cooling and solidification processes, 

identified by the high resolution FTIR instrument (6 cm field of view), involving ~35 cm 

path from target to sensor. Spaceborne instruments, such as ASTER (Section 2.3.1) may not 

record compositional detail seen here, due to its spatial resolution or pixel size (90 m in TIR) 

and data acquisition altitude (705 km), hence spaceborne results may be comparable to bulk 

compositional emissivity signatures, provided by the cut ‘smooth’ surface sample results. It 

has been previously suggested (Ramsey and Fink, 1999) that physical properties, such as 

vesicularity or cooling fractures, clast size, amount of glass on exposed surfaces may 

contribute to the impact magnitude of effects causing variation in the naturally occurring 

‘rough’ surface emissivity results. However, these physical properties and their impacts on 

my results have not been assessed fully and/or accounted for in this basic analysis. 

In an attempt to confirm this hypothesis (although beyond the scope of this thesis), 

thin sections for NRE.1.4 naturally occurring ‘rough’ and cut ‘smooth’ surface (Fig. 2.9 and 

Appendix A) were created to identify features that may cause this spectral discrepancy.  

Thin sections were examined using the optical microscope (Leica Wild MZ8) 

equipped with polarizing filters and rotating stage for geological samples. It operates both 

in reflected and transmitted modes. The low power view in both plane-polarised light (Fig. 

2.9 a-b) and cross-polarised light (Fig. 2.9 c-d) shows that this is a fine-grained rock with 

microphenocrysts (500-2000 𝜇m) of plagioclase and olivine, enclosed in a fine-grained (< 

500 𝜇m) groundmass of minerals typical for basalt (plagioclase feldspar, clinopyroxene and 

olivine). 

 
Figure 2.9 A thin section for NRE.1.4 sample, showing an example of (a) naturally occurring ‘rough’ and (b) 

cut ‘smooth’ sample surface in plane polarized light (PPL) and (c-d) in cross polarized light (XPL). Thin 
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sections were analysed using optical microscope Leica Wild MZ8, equipped with polarizing filters for 

geological samples.  

Although this analysis could not confirm with confidence that the samples’ surface 

mineralogical variation may be responsible for producing the features identified (Fig. 2.8 b 

& d), it is evident that the shape and position of spectral signatures are markedly different 

for the two types of surfaces.  

For this reason, the naturally occurring ‘rough’ surface results were considered 

inadequate for the purpose of this study, due to significant discrepancies on several samples 

with inconclusive results, which could not be validated with confidence. Therefore, the cut 

‘smooth’ surface samples were identified as the FTIR analysis representatives at 343 K and 

only these are referred to in this and the following chapters.  

‘Absolute’ Emissivity range at 343 K (±10 K) 

 

                                 (a)                                                (b)                                                (c)  

                              

                                                                                              (d) 

Figure 2.10 ‘Absolute’ emissivity spectral signature range at 343 K (±10 K) for (a) NRE.1S (blue) (b) NRE.3S 

(green) and (c) NRE.4S (red), whereas (d) shows emissivity ‘fields’ for combined sample series range.  
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Emissivity results (Fig. 2.10) show a range of emissivity at the same temperature 

(343 K ± 10 K), which is particularly evident for the NRE.1 sample series. The spectral 

fields generated by several samples from the same eruption, show differences in emissivity 

of as large as 0.07. 

The maximum difference in emissivity at any wavelength between the NRE.1S series 

samples was ≤0.07; ≤0.04 for NRE.3S and ≤ 0.03 for NRE.4S. 

This difference (range) in results may be due to the samples’ temperature stability 

issue during measurement, detailed in the experimental set up. An error of  ± 10 K was 

allocated to account for this temperature instability. Nonetheless, the three-eruption series 

produced results with inconsistent emissivity values and considerable difference 

(uncertainty).     

Previous research suggests that the emission maximum, the so-called ‘Christiansen 

feature’, should be located at ~8.5 m (Hamilton et al., 2001) but due to either instrumental 

or calibration reasons, all samples at wavelengths less than 8.4 m and more than 8.0 m 

plot well above the expected emissivity maximum (i.e., 1.0), hence this feature could not be 

identified. These findings may affect the reliability of the results at 343 K.  

2.3.4 Emissivity from radiance data 400-900 K 

The spectral signatures for samples analysed using thermal emission analysis at 400 

K (Fig. 2.11) display ‘absolute’ emissivity values consistent with the preliminary reflectance 

data (Fig. 2.7) in the TIR region (8.0–15.0 μm), with a significantly improved signal-to-

noise (STN) ratio and optimal difference range (≤0.015) for the same series samples. 

In contrast to 294 K and 343 K data (Figs. 2.7 and 2.10), results for 400-900 K (Fig. 

2.11) show a steady decrease in emissivity with every temperature increase step (400–900 

K), with more significant change in emissivity 700-900 K. 

‘Absolute’ Emissivity variation at high temperature (400-900 K) 

              
(a) 
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(b) 

             
(c) 

    
 (d) 

Figure 2.11 ‘Absolute’ emissivity results at high temperature (400-900 K) for (a) NRE.1S (blue), (b) NRE.3S 

(green) and (c) NRE.4S at 5.0-15.0 µm and (d) emissivity difference with temperature change at 400 K (solid 

lines) and 900 K (dashed lines), the highest achieved temperature by the instrument. 

However, this trend could not be observed between 5.0–6.0 μm. This is attributed to 

the instrument sensitivity limitations in that region and for this reason, the results in TIR 

wavelengths (8.0–15.0 μm) appear to be stable enough. An additional ‘cooling test’ was 

performed by measuring the emissivity of the same series in the opposite direction (cooling), 

by decreasing temperature steps (i.e., 900–400 K), maintaining consistent sample conditions. 

The variation in emissivity values during the temperature increase (heating-up), shown in 



  Nikola Rogic T3966511 

 

 

36 

Figure 2.11 and same sample deviance for the temperature decrease (cooling-down) was 

≤0.02 at all wavelengths (8.0-15.0 μm) and temperatures, with no hysteresis deviation 

trend(s) in either direction. 

2.3.5 Emissivity from radiance data 773-1373 K 

Hyperspectral emissivity derived for Etnean trachy-basaltic samples at the highest 

variety of sample temperatures and wavelengths using thermal emission FTIR spectroscopy 

show significantly more complete trends for emissivity’s behaviour with temperature. 

Generally, the emissivity increased as the sample temperature decreased (cooling) and a 

glassy crust formed. The greatest and smallest increase in average emissivity were observed 

in MIR region (~30 %) and TIR region (~8 %), respectively, with the upper SWIR region 

having an increase of 15%. 

 Spectral signatures (Fig. 2.12) are consistent and relatively comparable with previous 

laboratory-based research of basaltic rocks (Hamilton et al., 2001) in TIR and low 

temperature. However, my new findings involve additional very-high temperatures and data 

in lower wavelengths (2.17-8.0 𝜇m) that are not available in the literature and demonstrate 

that emissivity depends not only on wavelength, but also on temperature.  

Observed trends in the upper SWIR (2.17–2.5 µm) and MIR (3.0–5.50 µm) show a 

marked difference and more complex spectral shapes (i.e., lower emissivity and different 

signature) from preliminary ambient temperature spectral signatures, obtained using the 

reflectance data approach (Fig. 2.7). This marked variation may be attributed to the 

instrument’s sensitivity, where the very-high temperature instrument reveals exceptionally 

detailed trends, not observed in previous analyses performed in this thesis at shorter 

wavelengths of the electromagnetic spectrum. 

Basalts generally have a 𝑆𝑖𝑂2  content of 45-52 % and hence have spectra that are 

dominated by absorption features associated with 𝑆𝑖𝑂2 bonds (vibrations and bending) (Lee 

et al., 2013, 2010). The strong absorption feature at ~4.0 µm is a result of silica overtone 

vibrations with the smaller feature at ~7.5 µm associated with Al-O bond vibrations. The 

main Si-O-Si bond vibration and bending results in the broad absorption feature between 8.0 

and 12 µm. The increase in emissivity observed during cooling and crustal formation of 

these samples is a consequence of the decrease in 𝑆𝑖𝑂2 bond vibrational and bending energy, 

reducing energy absorption by the sample (Lee et al., 2013, 2010).  
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       ‘Absolute’ Emissivity variation at very-high temperature (773-1373 K)     

              

Figure 2.12 ‘Absolute’ emissivity spectral signatures 773-1373 K for (a) NRE.4S (red) (b) NRE.3S (green) 

and (c) NRE.1S (blue). Data measured in upper SWIR (2.17-2.50 m), MIR (3.0-5.50 m) and TIR (8.0-14.0 

m) atmospheric windows, relevant for spaceborne applications are highlighted in grey.  

2.3.6 Satellite data validation using laboratory measured emissivity 

In this sub-section, the extracted ASTER GED spaceborne emissivity data for the 

eruptions investigated here (Fig. 2.6) and laboratory FTIR results (Figs. 2.7, 2.10, 2.11 & 
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2.12) of the same target area for all sample series are compared at ASTER TIR operating 

central-wavelength bands (8.30 μm, 8.65 μm, 9.10 μm, 10.60 μm, and 11.30 μm). 

A comparable trend can be observed in ‘apparent’ emissivity (Fig. 2.13), for NRE.3S 

and NRE.4S exhibiting the best data fit at 9.10 μm (≤0.01) and data difference of ≤0.02 at 

other wavelengths. The NRE.1S FTIR data have larger data difference (≤0.04) when 

compared to ASTER GED. This is to be expected, since ASTER GED data were created 

from all available ASTER data between 2000 and 2008. 

FTIR (1-R) results at 294 K and ASTER GED emissivity comparison 

                  

Figure 2.13 Comparison of reflectance FTIR derived ‘apparent’ emissivity results at 294 K (empty squares) 

with the spaceborne ASTER GED emissivity results for the same target area (black diamonds). A direct data 

comparison was made at five ASTER TIR bands. 

 FTIR results at 343 K and ASTER GED emissivity comparison 

 

Figure 2.14 Comparison of FTIR derived ‘absolute’ emissivity results at 343 K (empty circles) with the 

spaceborne ASTER GED emissivity results for the same target area (black diamonds). A direct data 

comparison was made at five ASTER TIR bands. Error bars show data range for all samples analysed. 
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This means that NRE.3S and NRE.4S samples, representing the 2001 and 2002-2003 

eruptions would be included in ASTER (9-year) dataset but the 2017 eruption would not. 

The emissivity recorded by ASTER at pixel locations of the NRE.1S targets, which was 

acquired prior to the 2017 eruption (ASTER data spans 2000-2008), does not show the target 

measured here, but it shows average emissivities of underlying rock before the 2017 eruption 

occurred. This is not the case for emissivity of NRE.3S and NRE.1S samples, which show 

reasonable similarities with ASTER data of the same target measured. The age of the surface 

that the 2017 lava was emplaced onto (recorded by ASTER GED for NRE.1S sample’s 

locations) could not be verified with confidence. 

The RS (ASTER GED) and ‘ground-truth’ (laboratory-based FTIR analyses) 

emissivities correspond reasonably well with the results from reflectance at 294 K, and 

emission at 343 K and 400 K (Figs. 2.13, 2.14 and 2.15a). It is evident that the emissivity at 

these (low) temperatures and spaceborne data appear to provide constant (‘static’) emissivity 

values, which may be related to the solidified (cooled) lava. 
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Figure 2.15 Comparison of FTIR derived ‘absolute’ emissivity results at (a) 400 K (filled squares) with the 

spaceborne ASTER GED emissivity results for the same target area (black diamonds). A direct comparison 

was made at five ASTER TIR bands. (b) FTIR measured emissivity 400-900 K comparison for NRE.3S (filled 

green squares) is shown with ASTER GED emissivity data (filled black diamonds) for the same target area at 

upper ASTER TIR bands (9.10, 10.60 and 11.30 μm). Whereas (c) is an example of emissivity temperature 

trends for NRE.3S at 400-900 K (filled green squares) and 773-1373 K (filled green triangles) at ASTER 10.60 

µm band. Data uncertainty for each method is indicated by error bars. 

However, Figures 2.15 b and c show that when thermal component is considered 

(i.e., temperature) emissivity increases at every measured temperature decrease (cooling), 

both 900-400 K and 1373-773 K measurement, demonstrating that emissivity is temperature 

dependent.   

These findings are consistent with several thermal emission studies of silicate glasses 

and basaltic lavas, suggesting that the emissivity of molten material may be significantly 

lower than that of the same material in a solid state (Thompson and Ramsey, 2020; Lee et 

al., 2013). 

Equally, the high-temperature thermal anomaly observed on Mt Etna for example, 

has an extrusion temperature of ~1350 K, so there is a need to account for changes in 

emissivity with temperature, as it is apparent from data above 900 K (Fig. 2.15 c) that 

emissivity increases further with continued temperature decrease (cooling). Therefore, based 

on the key findings (Table 2.3), only one approach, emissivity determined by means of 

radiance (Sections 2.2.5 and 2.3.5) can provide emissivity information at appropriate range 

of temperatures (773-1373 K) and wavelengths (2.17-15.0 m) that may be stable enough 

for spaceborne and modelling applications.  
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Table 2.3 Summary of key results for various techniques used to measure emissivity 

Technique Section # 
*Temp. 

(K) 

Wavelength 

(m) 
Key Results Comments 

Spaceborne 

ASTER GED 

2.2.1 

2.3.1 
- 

8.30, 8.65, 

9.10, 10.60 

11.30 

wavelength  

dependency 

evident 

Single (’static‘) 

emissivity for 100 m 

pixel in TIR with no 

temperature component 

Laboratory-based 

FTIR 

(reflectance) 

2.2.2 

2.3.2 
294  0.66-16.0 

wavelength  

dependency 

evident   

Emissivity at full range 

of wavelengths but only 

at ambient temperature 

(’static‘) 

Laboratory-based 

FTIR (radiance) 

2.2.3 

2.3.3 
343  8.0-15.0 

wavelength 

dependency 

evident 

Emissivity inconsistent 

(error ≥0.07), poor 

temperature stability 

Laboratory-based 

FTIR (radiance) 

2.2.4 

2.3.4 
400-900  5.0-16.0 

wavelength and 

temperature 

dependency 

evident 

Data in TIR only, as 5.0-

8.0 m data unstable. 

Highest temperature not 

sufficient to assess 

eruptive temperatures 

Laboratory-based 

FTIR (radiance) 

2.2.5 

2.3.5 
773-1373  2.17-25.0 

wavelength and 

temperature 

dependency 

evident 

Data in upper SWIR, 

MIR and TIR and full 

range of temperatures 

found in an active lava 

flow (including eruptive 

temperature) 

*Temperature in Kelvin (K) 

2.4 Discussion and conclusions 

The apparent land surface temperature derivation and the estimation of eruption rates 

from spaceborne data rely on accurate input parameters of lava flow emissivity. The majority 

of research on emissivity to date has been carried out on solid lava at ambient temperatures 

(Harris, 2013a), and it is anticipated that under certain conditions, target radiation emission 

in the TIR region of the electromagnetic spectrum is inversely proportional to its reflectance 

(Rolim et al., 2016). However, there are several drawbacks in using reflectance to derive 

emissivity values, as the temperature of the sample is not taken into account, and its spatial 

variation is not recorded. Nonetheless, ‘apparent’ emissivity data, calculated via Kirchhoff’s 

Law from laboratory-based reflectivity data has been used to provide a first approximation 

of emissivity estimate in the absence of ‘absolute’ emissivity information (Harris, 2013c). 

Most geologic studies that used reflectance and/or emission FTIR methods have 

focussed on crystalline minerals, as they have unique and identifiable spectral features (Lee 

et al., 2010) and have been used to determine compositional (Hamilton et al., 2001; Hamilton 

and Christensen, 2000) and other physical properties (Wright and Ramsey, 2006; Michael 

S. Ramsey and Fink, 1999; Walter and Salisbury, 1989; Salisbury and Eastes, 1985).  

It has been recognized that a wide range of geologic characteristics may influence 

identification and interpretation of reflectance and emission spectra of rocks, such as 
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variations in particle size, chemical composition and surface roughness, among many others 

(Osterloo et al., 2012). Therefore, spectral shape and depth presented here may be affected 

by one (or more) of these parameters, as well as range of methodologies used, which 

implicates an array of distinctive instrumental sensitivities and limitations.  

The ‘apparent’ emissivity spectral signatures, derived from reflectance data at ambient 

temperature are generally comparable to those of 343 K and 400 K emission FTIR data, as 

well as ASTER GED data. The difference in emissivity of ≤0.03 at all TIR wavelengths 

considered here, is broadly consistent with previous research on basaltic rock spectral 

signatures (Hamilton et al., 2001) in TIR at low temperatures. A certain amount of spectral 

contrast is observed between ‘particulate’ and solid sample specimens for 343 K results and 

can be attributed to the instrument’s sensitivity and/or the methodology used. This has been 

acknowledged in previous research (Sabol et al., 2009), suggesting the likely cause to be a 

result of the surface roughness (Danilina et al., 2009) and/or particle size and texture 

(Kirkland et al., 2003). It has also been recognised that absolute emissivity minima of 

roughened surface can be lower, with greater spectral contrast than that of the same sample 

in a particulate form (Osterloo et al., 2012). This spectral contrast trend has been interpreted 

as a decrease in scattering efficiency due to particle size, as well as porosity. Nonetheless, 

the results at 343 K produced a range of emissivity values with a difference of up to 0.07, 

which can be attributed to the samples’ temperature stability issues. Therefore, the results 

for 343 K may be considered inadequate to be included in further analyses to produce 

accurate input parameters for spaceborne and/or modelling application.  

The reflectance and emission FTIR results at ambient/low temperature, as well as 

ASTER GED data, correspond well for the same target area, with an exception of NRE.1S 

target (2017 Mt Etna eruption), since it occurred outside the range of ASTER GED 

measurement database (2000-2008). Nonetheless, the remaining sample series show good 

correlation at specific TIR wavelengths by exhibiting an emissivity difference of ≤0.03. 

However, this emissivity information is ‘static’, relating to the solidified (cooled) surface, 

not reflecting the range of temperatures involved in an active lava flow or the emissivity-

temperature trends seen in high or very-high temperature FTIR results above 700 K.   

The results from high and very-high temperature data suggest that it is essential to 

expand this study to assess the role and significance of emissivity, not only as a ‘static’ and 

uniform value across all wavelengths and temperatures, but also taking its response to 

thermal gradient and the emissivity-temperature link into account. This will determine the 

emissivity variation with temperature change, uncertainties and errors that may be 



  Nikola Rogic T3966511 

 

 

43 

introduced relating to emissivity as an input parameter and will provoke further investigation 

into the role and impact of emissivity in lava flow dynamic modelling and hazard mitigation, 

using spaceborne data. 

In order to make the emissivity a standard input parameter and develop a procedure for 

both spaceborne and modelling applications involving Mt Etna, 773-1373 K data is used in 

further analyses, as it appears to be most complete. It also covers the appropriate temperature 

and wavelength range used in RS. Therefore, 773-1373 K data were considered to be the 

most complete and sufficiently stable to support the development of ‘dynamic emissivity-

temperature’ trends, ‘rules’ and ‘look-up’ tables for advanced monitoring applications 

(Chapters 3-5).  
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3 Spaceborne approach to energy fluxes 

Much of the material discussed in this chapter has been published in the papers by 

Rogic et al. (2019a) and Rogic et al. (2019b), which are reproduced in full as Appendices G 

and H. 

How eruptive behaviour varies temporally and spatially can be monitored and 

quantified, using the enormous amount of spaceborne data freely available today. There is 

wide variety in local practices used for volcano surveillance (Cigna et al., 2020; Ramsey and 

Harris, 2013a; Sparks et al., 2011), and only a small fraction of potentially active subaerial 

volcanoes worldwide are monitored with any quality, frequency, or timeliness (Sigurdsson 

et al., 2015; Tait and Ferrucci, 2013). The lack of monitoring poses an objective and 

significant threat to communities (Brown et al., 2015; Komorowski et al., 2013), especially 

in countries lacking in infrastructure and with limited financial resources (Pallister et al., 

2019), creating a critical gap in hazard assessment and risk management (Hill et al., 2011).  

Satellites offer cost effective global volcano surveillance at a wide range of spatial 

and temporal resolutions (Corradino et al., 2019; Ganci et al., 2019; Cappello et al., 2018; 

Ferrucci and Hirn, 2016). They can be used to contribute significantly to operational eruption 

forecasting and hazard assessment (Bilotta et al., 2016; Del Negro et al., 2016; Cappello et 

al., 2015b, 2015a; Negro et al., 2013). 

Spaceborne TIR bands have been used widely for decades to monitor high-

temperature thermally anomalous volcanic phenomena on the ground (Solikhin et al., 2012; 

Ramsey and Dehn, 2004; Glaze et al., 1989) and had proven valuable for identifying volcanic 

activity trends (Harris, 2013a; Murphy et al., 2013; Wright et al., 2004; Wooster and 

Rothery, 1997; Oppenheimer, 1993), and volcano monitoring (Hirn et al., 2008; Di Bello et 

al., 2004; Wright et al., 2004, 2002; Higgins and Harris, 1997). The TIR bands are 

particularly sensitive to surface temperatures of 320-350 K. As for molten lava temperatures 

(>900 K), which may be more significant when observing high-temperature thermal 

anomalies on the ground, data from lower MIR and upper SWIR would be more appropriate 

(Harris, 2013a; Hirn et al., 2008b). This approach is explored further in this study, using 

high-to-moderate spatial resolution data (Chapters 3 and 4).  

To accurately compute the emissions of energy actually leaving surface, the radiant 

signal must also be corrected for the influence of the atmospheric transfer function (Barsi et 

al., 2005, 2003) and the emissivity of the radiating surface (Harris, 2013a). As characterised 

previously (Chapter 1), emissivity is defined as the ratio of the radiation emittance of a 
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surface to that of a same temperature blackbody. This parameter is not well quantified for 

molten materials and hot volcanic rocks, and the majority of authors adopt a constant value 

based on the rare published laboratory measurements and/or the TIR emissivity-temperature 

separation method (Sobrino et al., 2008), underlying the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Global Emissivity Database (ASTER GED)(Hulley et 

al., 2015), among others. 

However, several recent thermal emission studies of silicate glasses and basaltic 

lavas (Thompson and Ramsey, 2020; Ramsey et al., 2019; Lee et al., 2013) suggest that the 

emissivity of molten material is significantly lower than that of the same material in its solid 

state.  

Extensive laboratory measured emissivity analyses at very-high temperature 

presented in this thesis (Chapter 2) validate the argument that the emissivity of molten 

material is lower than that of the same material in its solid state. They also provide 

quantitative evidence that emissivity is not only wavelength dependent but can also be 

significantly temperature dependent, leading us to revisit its effect on experimental estimate 

of radiant heat fluxes. By applying multicomponent emissivity approach to modelling 

radiant heat flux, the uncertainty associated with ascribing a constant ‘representative’ 

emissivity can be established and quantified.   

3.1 Spaceborne measured Emissivity 

As established, emissivity of a target analysed can be extracted from existing global 

spaceborne libraries, such as ASTER GED (Hulley et al., 2015), or the NASA’s LP DAAC, 

MODIS Land Surface Temperature and Emissivity Product (LP DAAC).  

These libraries may only represent a ‘static’ mean emissivity value (Chapter 2). For 

example, the ASTER GED 100-meter pixel value is a nine-year average (2000-2008) and/or 

a larger (1000×1000 m) MODIS pixel would integrate values outside (background) the 

dimensions of the target investigated (i.e., lava flow), due its spatial resolution. These 

constant emissivity values, if applied uniformly, independent of the pixel size (i.e., 

independent of the nominal scale of observations) will produce variations in computed 

apparent surface temperatures and would not account for the range of temperatures (then, of 

emissivities) found in an active lava flow.  

In addition to spectral libraries, emissivity (and kinetic temperature) can be derived 

using the temperature emissivity separation (TES) method, developed for ASTER data 

(Sabol et al., 2009; Gillespie et al., 1998). However, a recent study aiming to quantify 

uncertainty of remotely acquired TIR data (Thompson and Ramsey, 2020) argued that a 
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more appropriate minimum emissivity for molten basaltic surface should be 0.66 rather than 

the higher (1.0-0.95), often used in previous studies (Harris et al., 2010, 2005). Therefore, 

the computation of surface temperature from spaceborne data and models that rely on 

temperatures to track cooling with time, introduce errors due to uncertainty in emissivity as 

an input parameter. The need to quantify the role of emissivity-temperature relationship was 

illustrated using ‘distance-to-run’ simulations for the 2001 Mt Etna eruption (Rogic et al., 

2019a). One of the limited number of studies investigating emissivity-temperature behaviour 

used thermo-rheological models to forecast lava flow emplacement (Ramsey et al., 2019), 

assumed the fraction of molten lava to cooled crust by using ‘two-components’ emissivity. 

The study made inference that the emissivity of molten lava could be as low as 0.60, while 

an emissivity of 0.95 corresponded to the computed, crusted fraction of the lava. A more 

sophisticated multicomponent approach, developed in this thesis, applies measured 

emissivity-temperature trends, using ‘thresholding’ approach (detailed in Section 3.2), to 

support computation of radiant heat fluxes from spaceborne data, acquired during the 2017 

effusive event on Mt Etna (this chapter).  

3.2 Methods 

For this analysis, two platforms were selected (Tables 3.1 and 3.2), hosting 

decametric resolution sensors operating at the time of the eruption: the Landsat-8 (Landsat 

Continuity Mission), launched by National Aeronautics and Space Administration (NASA) 

in April 2013 (USGS, 2019; World Metheorological Organisation, n.d.), and the Copernicus 

MSI for Sentinel-2, launched by the European Space Agency (ESA) in June 2015 (WMO, 

n.d.). 

Table 3.1 Characteristics of the Landsat-8 (OLI and TIRS) instrument 

Instrument Band Spectral Range [m] Spatial resolution [m] 

 1 0.43-0.45 30 

 2 0.45-0.51 30 

 3 0.53-0.59 30 

 4 0.64-0.67 30 

OLI 5 0.85-0.88 30 

 6 1.57-1.65 30 

 7 2.11-2.29 30 

 8 0.50-0.68 15 

 9 1.36-1.38 30 

TIRS 10 10.60-11.19 100 

 11 11.50-12.51 100 
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 Placed on a sun-synchronous orbit at 705 km altitude, Landsat-8 hosts two payloads, 

the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), with the overall 

capability of collecting data in 11 spectral bands (0.44-12.00 µm). They have 30 m to 100 

m spatial resolution global coverage (15 m panchromatic channel 8), and equatorial repeat 

cycle of 16 days, using a pushbroom technology with a swath of 180 km. It’s spectral 

response range in wavelengths (NIR and SWIR) relevant to this study is shown in Figure 

3.1. 

Landsat 8 – OLI’s Spectral Response in NIR and SWIR (relative to radiance) 

 
Figure 3.1 Landsat 8 – OLI’s spectral response in NIR (0.85-0.88 m) and SWIR (1.57-1.65 m and 2.11-

2.29 m respectively).  

Copernicus, the European Commission’s (EC) Earth Observation Program launched 

the Sentinel-2A and Sentinel-2B satellites in 2015 and 2017, respectively. The Copernicus 

program, formerly called the Global Monitoring for Environment and Security (GMES), 

started in 1998 with the overarching aim to become Europe’s operational Earth Observation 

monitoring system providing data and information services. An essential part of the program 

is the space component, which is managed by the ESA, responsible for the Copernicus 

Sentinel Satellite Constellations. One of them, the Copernicus Sentinel-2 optical mission 

(S2) systematically collects multispectral land surface imagery from two satellites with a 

revisit cycle of 5 days at 10 m, 20 m and 60 m spectral resolutions (Table 3.2). Their single 

instrument is the MSI that collects data in 13 spectral bands, using a pushbroom technology 

with a swath of 290 km. It’s spectral response range in wavelengths relevant to this study is 

shown in Figure 3.2. 
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Table 3.2 Characteristics of the MSI (Sentinel-2A) instrument 

Instrument Band Central wavelength [m] Spatial resolution [m] 

 1 0.443 60 

 2 0.490 10 

 3 0.560 10 

 4 0.665 10 

 5 0.705 20 

MSI 6 0.740 20 

Sentinel 2A 7 0.783 20 

 8 0.842 10 

 8A 0.865 20 

 9 0.945 60 

 10 1.375 60 

 11 1.610 20 

 12 2.190 20 

 

MSI – Sentinel 2A Spectral Response in NIR and SWIR (relative to radiance) 

 

Figure 3.2 MSI for Sentinel 2A spectral response in NIR (0.85-0.88 m) and SWIR (1.53-1.68 m and 2.08-

2.32 m respectively).  

Here, the specific, approach described in (Hirn et al., 2008b) was used, which is a 

systematized variant of the sub-resolution approaches (Dozier, 1981; Matson and Dozier, 

1981), and their application to high-temperature volcanic features (Blackett, 2014; 

Oppenheimer, 1993; Rothery et al., 1988). This approach allows the relative size and 

temperature of these thermal components to be resolved, following solutions, which depend 

on data availability (saturation) in each band (Harris, 2013e, 2013d). The mean spectral 

radiance measured by a satellite sensor as a digital number (DN) is converted into ‘at-

satellite’ spectral radiance 𝑅𝜆  (detailed in Chapter 1). It has been established that in the 
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SWIR region (1.5 and 2.5 𝜇m) upwelling path radiance (𝑅𝜆,𝑈) contribution is low (Harris, 

2013a), whereas the surface reflected radiation (𝑅𝜆,𝐷) can be estimated by subtracting the 

mean spectral radiance (𝑅𝜆) value of surrounding, clearly non-volcanic background pixels 

(bg(band) ) from the thermally anomalous pixels (Blackett, 2017, 2014). Therefore, for 

example, only pixels with radiance greater than (3× bg7)+ bg7 for OLI’s SWIR Band 7 were 

extracted as thermally anomalous, within the region of interest. Same approach is applied to 

both SWIR OLI’s bands (Band 6 and Band 7) and Sentinel-2A (Band 11 and Band 12). The 

background radiance values are also manually validated to ensure that pixels chosen for this 

purpose did not include the cooler volcanic plume and were truly representing the 

background. The total radiant heat fluxes (𝑄𝑟_𝑐𝑎𝑙𝑐  in W), associated with the thermally 

anomalous pixels isolated were computed using the Stephan Boltzmann Equation (Eq. 10). 

Night-time images, not available in this study for the 2017 Etna eruption, would be 

preferable, as they contain only the thermal component. It is important to note that MSI has 

no capability to acquire data at night, whereas Landsat-8 does.  

Here, all available (daytime) images acquired during the 2017 Mt Etna eruption were 

analysed, distributed by the Global Visualisation (GloVis) Viewer (U.S. Department of the 

Interior and U.S. Geological Survey, 2005) for Landsat-8, and Copernicus Open Access Hub 

(ESA, n.d.) for MSI Sentinel-2A to produce the time series of the radiant flux (𝑄𝑟_𝑐𝑎𝑙𝑐), 

retrieved by these two platforms between 16 March and 8 August 2017.  

The motivation for the 2017 Mt Etna study is to assess the role of emissivity in the 

determination of radiant heat fluxes and uncertainty, obtained from multiplatform 

spaceborne data, using methodological innovation (multicomponent approach) compared to 

previous methods (Harris, 2013a; Hirn et al., 2008b). 

To achieve this, the results from spaceborne data were compared, using three 

approaches; firstly, by applying a constant emissivity, where an assumed value (e.g., 0.95 or 

0.60) is applied to the entire thermal anomaly; and secondly, multicomponent emissivity is 

used, derived from very-high temperature laboratory FTIR data, in SWIR (Chapter 2). Using 

different emissivities acknowledges that Etnean trachy-basalts re-emit only a percentage of 

radiance incident upon them (not unity). This percentage would be denoted by the emissivity 

term and although previously never proved to be temperature dependent, its behaviour with 

temperature has been questioned (Flynn et al., 2000). 

It has been previously implied that volcanic anomalies are unlikely to entirely fill the 

30-m SWIR pixel (e.g., OLI) with a single source at a specific temperature (Flynn et al., 

2000), thus, two or more thermal components would likely be present and should be 
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accounted for. So, after radiometric and atmospheric data correction, procedures outlined in 

(Ferrucci and Hirn, 2016; Hirn et al., 2008b) and ‘dual-band’ approaches (Harris, 2013a; 

Flynn et al., 2001; Oppenheimer, 1993; Glaze et al., 1989; Rothery et al., 1988; Francis and 

Rothery, 1987; Dozier, 1981), applying modifications related to emissivity as input 

parameter were employed. Here, radiance data in SWIR (OLI’s Bands 6, 7 and Sentinel-2 

Bands 11, 12) are linked to an appropriate, measured emissivity value to compute pixel 

integrated temperature (𝑇𝑖) for each band, enabling derivation of an effective temperature 

(𝑇𝑒) for each radiant pixel of the high-temperature thermal anomaly analysed (Eq. 8). This 

‘thresholding’ approach, detailed in Figure 3.3 (and Appendix D), uses radiant pixels 

segmentation to link specific radiance range to an appropriate emissivity value to compute 

pixel integrated temperature (𝑇𝑖). Considering that emissivity also varies as a function of 

wavelength, the absence of FTIR data at 1.65 𝜇m (due to instrument limitations) and the 

close proximity of OLI and Sentinel-2 SWIR bands (1.65 and 2.20 𝜇m), similar behaviour 

is anticipated based on preliminary reflectance data (Fig. 2.7) and previous research (Flynn 

et al., 2000). 

 

Figure 3.3 A flowchart illustrating the semi-automated (steps 1-8) methods used to derive total radiant heat 

flux using high-spatial resolution data in two SWIR bands (Appendix D). 

Having obtained the Effective Temperature (𝑇𝑒) for each radiant pixel, the remotely 

sensed radiant heat flux (𝑄𝑟_𝑐𝑎𝑙𝑐) was computed (Eq. 10) (Wright and Pilger, 2008; Pieri et 

al., 1990).  

It is important to note that MSI for Sentinel 2A reflectance data was firstly converted 

to radiance (IDL code – courtesy of Hirn, personal communication), and the resulting 

radiance values from SWIR bands 11 (1.61 µm) and 12 (2.19 µm), extracted from thermally 
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anomalous pixels were exploited to compute total radiant heat flux for each scene analysed 

using both platforms.  

3.3 Results: High-spatial resolution spaceborne data  

Varying the emissivity and wavelength has an impact on the computation of pixel 

integrated temperatures (Eq. 8) and the consequent computation of total radiant heat flux 

(Eq. 10) of the high-temperature thermal anomaly investigated.  

To perform a quantitative evaluation on the impact of emissivity, as an input 

parameter on computation of total radiant heat flux, seven high-spatial resolution scenes 

available for the 2017 Mt Etna eruption (Fig. 3.4) were selected and processed, acquired by 

Landsat 8 (OLI) and MSI (Sentinel 2A) in SWIR (Bands 6, 7, and Bands 11, 12 

respectively), between 16 March and 08 April 2017. Panels are in chronological order (from 

left to right) for Landsat-8 (top panels) and MSI (bottom panels) scenes.  

 

Figure 3.4 (top) Spaceborne scenes acquired by Landsat-8 (18/03/2017 and 27/03/2017) and (bottom) 

scenes acquired by MSI (16/03/2017, 19/03/2017, 26/03/2017, 05/04/2017 and 08/04/2017). Each panel 

displays an area of approximately 7 km2.  

The isolated thermally anomalous pixels, corresponding to recorded radiances in 

OLI’s and Sentinel-2A SWIR bands (Appendix C) were used to compute total radiant heat 

flux following the method detailed in Figure 3.3 (and Appendix D). 

Figure 3.5 shows emissivity-temperature trends in SWIR, both measured and 

modelled for NRE.1 sample Series (Chapter 2, Fig. 2.12), relevant for this eruption. Mean 

emissivity values were extracted for upper SWIR wavelength and averaged over the SWIR 

spectral response range available (2.17 𝜇m to 2.30 𝜇m), relating to the temperature and 

radiance. Values reported in Table 3.3 were used as spaceborne data input parameters. These 

emissivity-temperature modelled values (Fig. 3.5 right and Table 3.3) were applied to both 
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OLI and Sentinel-2 SWIR bands and used as input values for computation of pixel integrated 

temperatures, to derive radiant heat flux values for each scene (Table 3.7). Uniform 

emissivity values (0.95 and 0.60) were applied to all radiant pixels in high-temperature 

thermal anomalies analysed, while multicomponent emissivity was computed using 

emissivity-temperature-radiance link values reported in Table 3.3.  

Emissivity-Temperature trend for NRE.1S in SWIR 

                         SWIR NRE.1S FTIR measured                        SWIR NRE.1S FTIR modelled 

 

Figure 3.5 SWIR emissivity-temperature trend(s): (left) FTIR measured (2.17-2.30 m and 773-1737 K) and 

(right) modelled data. Same emissivity values shown here are applied to both SWIR bands in computation of 

total radiant heat flux for each spaceborne scene analysed. Uncertainty is indicated by error bars. The best fit 

trendline used to model NRE.1S measured data is 𝑦 = −4 − 07𝑥2 + 0.0008𝑥 + 0.5079 and 𝑅2 = 0.7366.  

Table 3.3 Landsat 8 (OLI) and MSI (Sentinel 2A) measured ( FTIR) and modelled ( model) 

emissivity data at OLI’s channels 6 and 7 and Sentinel 2A channels 11 and 12.  

‘Rad’ is predicted satellite measured spectral radiance. 

𝝀 (𝝁m) Mode *773 823 873 923 973 1023 1073 1123 1173 1223 1273 1323 1373 

1.65 𝜀FTIR 0.80 0.87 0.83 0.84 0.86 0.81 0.81 0.78 0.82 0.78 0.73 0.76 0.73 

 𝜺model 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.81 0.79 0.77 0.76 0.74 0.72 

 Error 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 Rad 2.2 4.4 8.1 14.4 23.0 35.3 51.2 71.5 101.7 131.9 162.3 215.8 271.2 

2.22 𝜀FTIR 0.80 0.87 0.83 0.84 0.86 0.81 0.81 0.78 0.82 0.78 0.73 0.76 0.73 

 𝜺model 0.83 0.83 0.83 0.83 0.83 0.82 0.81 0.80 0.79 0.77 0.76 0.74 0.72 

 Error 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 Rad 4.3 7.6 11.4 17.5 25.4 33.4 44.8 56.3 75.8 90.5 104.4 130.8 151.3 

*Temperature in Kelvin (K) 

‘Rad’ is predicted satellite measured radiance 
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3.3.1 Radiant Heat Flux: Landsat 8 – OLI 

Radiance data for both SWIR bands (6 and 7) were extracted for this analysis and 

appropriate emissivity was allocated (linked) to each radiant pixel, based on its calculated 

predicted radiance (Table 3.3) using ‘thresholding’ method, to compute pixel integrated 

temperatures. Non-thermal radiance marked as Background (bg7=1.5) is related to daytime 

image reflectance and was subtracted from recorded radiance data to account for thermal 

component only.  Same Background value was subtracted from SWIR Band 6 (bg6=1.5). 

   

Figure 3.6 Landsat-8 scene (OLI’s Band 7) acquired on 18 March 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). Inset (centre): 

distribution of radiant pixels within the thermal anomaly analysed, using multicomponent emissivity 

‘thresholding’ approach.  

853 radiant pixels extracted from the Landsat-8 scene, acquired on 18 March 2017 

(Fig.3.6) were used to compute total radiant heat flux values of 3.02 GW and 3.57 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.6 centre, where emissivity of 0.85 

was applied to 352 pixels, 0.83 to 164 pixels, 0.81 to 92 pixels and 0.80 to 245 pixels, 

producing 3.22 GW.  

441 radiant pixels extracted from the Landsat-8 scene, acquired on 27 March 2017 

(Fig.3.7) were used to compute total radiant heat flux values of 1.85 GW and 2.18 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.7 centre, where emissivity of 0.85 
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was applied to 170 pixels, 0.83 to 109 pixels, 0.81 to 48 pixels and 0.80 to 114 pixels, 

producing 1.95 GW.  

 
Figure 3.7 Landsat-8 scene (OLI’s Band 7) acquired on 27 March 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 

3.3.2 Radiant Heat Flux: MSI – Sentinel 2A 

Radiance data for both SWIR bands (11 and 12) were extracted for this analysis and 

appropriate emissivity was allocated (linked) to each radiant pixel, based on its calculated 

predicted radiance (Table 3.3), using ‘thresholding’ method, to compute pixel integrated 

temperatures. Non-thermal radiance marked as Background (bg12=3.5) is related to daytime 

image reflectance and was subtracted from recorded radiance data to account for thermal 

component only.  Same Background value was subtracted from SWIR Band 11 (bg11=3.5). 
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Figure 3.8 MSI scene (Sentinel 2A, Band 12) scene acquired on 16 March 2017, showing all radiant pixels, 

with recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity 

(left) 0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 

1200 radiant pixels extracted from the MSI scene, acquired on 16 March 2017 

(Fig.3.8) were used to compute total radiant heat flux values of 2.88 GW and 3.41 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.8 centre, where emissivity of 0.83 

was applied to 121 pixels, 0.82 to 103 pixels, 0.81 to 682 pixels and 0.80 to 294 pixels, 

producing 3.02 GW.  

 

Figure 3.9 MSI scene (Sentinel 2A, Band 12) acquired on 19 March 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 

1390 radiant pixels extracted from the MSI scene, acquired on 19 March 2017 

(Fig.3.9) were used to compute total radiant heat flux values of 3.10 GW and 3.66 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.9 centre, where emissivity of 0.83 

was applied to 181 pixels, 0.82 to 155 pixels, 0.81 to 825 pixels and 0.80 to 229 pixels, 

producing 3.31 GW.  
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Figure 3.10 MSI scene (Sentinel 2A, Band 12) acquired on 26 March 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 

762 radiant pixels extracted from the MSI scene, acquired on 26 March 2017 

(Fig.3.10) were used to compute total radiant heat flux values of 1.76 GW and 2.09 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.10 centre, where emissivity of 0.83 

was applied to 168 pixels, 0.82 to 89 pixels, 0.81 to 285 pixels and 0.80 to 220 pixels, 

producing 1.87 GW.  

 

Figure 3.11 MSI scene (Sentinel 2A, Band 12) acquired on 05 April 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux at constant emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 
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717 radiant pixels extracted from the MSI scene, acquired on 05 April 2017 

(Fig.3.11) were used to compute total radiant heat flux values of 1.67 GW and 1.97 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.11 centre, where emissivity of 0.83 

was applied to 98 pixels, 0.82 to 114 pixels, 0.81 to 272 pixels and 0.80 to 233 pixels, 

producing 1.78 GW.  

  

Figure 3.12 MSI scene (Sentinel 2A, Band 12) acquired on 08 April 2017, showing all radiant pixels, with 

recorded spectral radiance (W μm−1), used for computation of total radiant heat flux using at emissivity (left) 

0.95 and (right) 0.60, as well as the (centre) multi-component emissivity approach (dynamic). 

746 radiant pixels extracted from the MSI scene, acquired on 08 April 2017 

(Fig.3.12) were used to compute total radiant heat flux values of 1.75 GW and 2.07 GW for 

constant emissivity 0.95 and 0.60 respectively. In contrast, computation of total radiant heat 

flux using multicomponent emissivity, involved automatic allocation of correct emissivity 

values based on radiance thresholds indicated in Figure 3.12 centre, where emissivity of 0.83 

was applied to 80 pixels, 0.82 to 93 pixels, 0.81 to 380 pixels and 0.80 to 193 pixels, 

producing 1.87 GW.  

3.3.3 Radiant Heat Flux Difference 

Radiant heat flux results presented in Figure 3.14 and Table 3.4 show an increase in 

calculated radiant heat flux of ~18.3 % (17.8-18.7 %) between endmembers (i.e., emissivity 

0.95 and 0.60) for all spaceborne scenes analysed. The multicomponent results, being 

composed of several different emissivities, are plotting in between endmembers (i.e., 

emissivity 0.95 and 0.60).  
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Radiant Heat Flux (𝑸𝒓) difference (driven by emissivity variation) 

           

Figure 3.14 Radiant heat flux results (difference) using different emissivity values; (i) constant values (0.95 

and 0.60), and (ii) multicomponent emissivity (HR mc). ‘HR’ signifies high-resolution data (combined OLI 

and Sentinel-2A spaceborne scenes).   

Table 3.4   Estimation of total radiant heat flux (𝑸𝒓) using high-spatial resolution data acquired by 

Landsat 8 (OLI) and MSI (Sentinel 2A) during the 2017 Mt Etna eruption 

Emissivity 

method 

16 

March 

(MSI-S2) 

18 

March 

(OLI) 

19 

March 

(MSI-S2) 

26 

March 

(MSI-S2) 

27 

March 

(OLI) 

05 April 

(MSI-

S2) 

08 April 

(MSI-

S2) 

Constant 0.95 2.88 3.02 3.10 1.76 1.85 1.67 1.75 

Multicomponent 3.02 3.22 3.31 1.87 1.95 1.78 1.87 

Constant 0.60 3.41 3.57 3.66 2.09 2.18 2.07 2.07 

*Values reported for each date indicate computed total radiant heat flux (GW) for constant or multicomponent emissivity 

3.4 Discussion and conclusions 

Sensors carried onboard Earth-orbiting satellites provide a means to obtain an 

instantaneous record of the thermal properties of an active lava flow, at regular high-to-

moderate or low repeat intervals, depending on their temporal resolution capabilities 

(Chapter 1). High-temperature thermal anomalies (i.e., lava flows) commonly stand out in 

near V-NIR or SWIR wavelengths (i.e., 0.7-2.5 𝜇m) satellite images and relatively easy to 

detect (Pieri and Abrams, 2005), although reflected solar radiation in daytime images can 

sometimes be confounding (Blackett, 2014; Harris, 2013a), thus, it was corrected here using 

bg(band) approach (Section 3.2). 
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Land surface temperature and land surface emissivity are two key parameters used as 

satellite input parameters, because they are closely linked to the Earth’s surface energy 

balance (Sobrino et al., 2008). As demonstrated in Figure 3.14, if emissivity corrections are 

neglected or simplified, the output data will result in systematic errors.   

Many studies to date use predominantly TIR satellite data to provide a range of 

volcanic applications for (near) real-time detection and monitoring of active volcanoes, 

regionally or globally (discussed in Chapter 5), while here, analyses using high-spatial 

resolution spaceborne data in SWIR was presented.  

Since 1972, the Landsat series have been providing a synoptic record of global land 

cover and land changes. Various studies have investigated capabilities and limitations using 

this platform, where its thermal information has been successfully used to identify and 

quantify thermal anomalies at active volcanoes for decades (Flynn et al., 2000; Francis and 

Rothery, 1987). Ability of Landsat platforms to provide data in two SWIR bands, which are 

sensitive to surfaces of magmatic temperatures means that they can be exploited to analyse 

lava flows using dual-band approach.  

The novel technique used here, applying multicomponent emissivity to SWIR imagery 

acquired during the 2017 Mt Etna eruption has indicated a radiant heat flux uncertainty 

≤16.8 % between constant emissivity endmembers (i.e., 0.95 and 0.60). Applying multi-

component approach to compute radiant heat flux can constrain this uncertainty.  

Remote sensing and laboratory based FTIR spectroscopy can be valuable tools when 

analysing the same target area (or sets of targets) on the ground. Spaceborne measured 

emissivity (ASTER GED) for the 2017 Mt Etna eruption (Section 2.3.1) was validated 

(‘ground-truthed’), corrected and expanded, using very-high temperature FTIR thermal 

emission results (Section 2.3.5). Spaceborne results indicate an increase in calculated radiant 

heat flux of ~18.3 % between endmembers (i.e., emissivity 0.95 and 0.60) for all spaceborne 

scenes, whereas, multicomponent results, being composed of several different emissivities 

indicate more plausible radiant heat flux results.  

For example, the scene acquired on 16 March 2017 (Table 3.4) produced a total 

calculated radiant heat flux of 2.88 gigawatts (GW) using constant emissivity of 0.95, and 

3.41 GW using constant emissivity of 0.60. Conversely, a ‘multi-component’ emissivity 

approach produced a total calculated radiant heat flux value of 3.02 GW, where several 

emissivity values were applied to different thermal components (i.e., range of crust and melt 

temperatures), expected to be found in this active lava flow.   
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A recent study (Lombardo et al., 2020) argues that spectral emissivity of Etnean basaltic 

melts does not vary significantly with temperature in SWIR spectral range, when compared 

to its solidified counterpart. This finding is based on a new Draping algorithm for 

temperature-emissivity separation, taking into account the non-uniform temperature 

distribution of the melt surface, and compared to emissivity measured using ‘lava simulator’ 

(Lombardo et al., 2020). Nonetheless, findings presented here (Chapters 2 and 3) indicate 

that emissivity of Etnean basalts in SWIR varies from 0.81 at 774 K to 0.74 at 1373 K. This 

variation has an inherent impact on computation of radiant heat and mass fluxes, as well as 

‘distance to run’ estimates (Chapter 4). 
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4 The view from above  

Much of the material discussed in this chapter has been published in the papers by 

Rogic et al. (2019a) and Rogic et al. (2019b), which are reproduced in full as Appendices G 

and H. 

High-spatial (low temporal) resolution of Landsat series data presented in previous 

chapter means that data is being acquired every 16 days, whereas MSI for Sentinel 2, 

provides data every 5 days, which increases observational data for the period analysed. The 

small number of usable cloud free data, as well as possible saturation due to sensor detection 

capabilities (Harris, 2013b) over high radiance targets may present additional restrictions for 

information extracted from high-spatial resolution data. Therefore, a data synergy (and 

validation), using moderate-to-low spatial resolution data, discussed in this chapter is a 

viable and practical option to aid the analysis, interpretation and constrain the uncertainty of 

computed radiant heat flux using multi-platform and multi-payload spaceborne data.   

4.1.1 High-to-moderate spatial resolution data of the same target area 

MODIS acquires data in 36 channels, daytime and 16 channels, night-time. Data 

acquired by for the 2017 Mt Etna eruption by MODIS channels (Table 4.1), onboard Terra 

and Aqua were processed using automated procedures ‘MyMOD’, detailed in (Hirn et al., 

2008b). MyMOD allows the automatic detection of anomalous pixels and sequential 

calculation of effective temperature, radiant heat flux and effusion rate from moderate 

spatial/temporal resolution multispectral data acquired by MODIS. It processes an at-

satellite radiance calculation, determines integrated TIR temperature (corrected for adiabatic 

cooling) and detects hot-spots in MIR window, using Normalized thermal Index (NTI) 

method  (Hirn et al., 2008b). Hot-spot detection using NTI method is computed using 

MODIS MIR (Channel 22) and TIR (Channel 32) data, with fixed thresholds. For example, 

NTI larger than -0.8 is a marker for subpixel thermal anomaly for night-time data, whereas 

this threshold is fixed at -0.6 for daytime MODIS data (Hirn et al., 2008b).   

Table 4.1 Radiometric and geometric characteristics of MODIS 

MODIS 

Channel 

Wavelength 

Range (m) 

Resolution at 

Nadir (m) 

Max T* (K) 

Terra 

Max. T* (K) 

Aqua 

MIR 21 3.93-3.99 1000 506 513 

MIR 22 3.93-3.99 1000 330 334 

TIR 31 10.78-11.28 1000 388 360 

TIR 32 11.77-12.27 1000 388 359 

*Maximum Brightness Temperature in Kelvin (K) 
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Measured FTIR data (Fig. 4.1 and Table 4.2) were applied to MyMOD, as input 

parameters, linked to radiance, to recalculate total radiant heat fluxes for 99 MODIS files, 

acquired during the 2017 Mt Etna eruption between 25 February 2017 and 28 April 2017.  

NRE.1S emissivity-temperature trend(s) in MODIS’ bands 

                      MIR (3.98 𝝁m)                                       TIR1 (11.0 𝝁m)                                  TIR2 (12.0 𝝁m) 

   

                                (a)                                                        (b)                                                       (c) 

Figure 4.1 Modelled emissivity-temperature trends for MODIS’ (a) MIR Band 21 (3.98m) (b) TIR band 31 

(11.0 m) (c) TIR band 32 (12.0 m)  

Table 4.2 MODIS-Aqua (MYD) and MODIS-Terra (MOD) temperature and radiance  

data linked to measured emissivity values at MODIS’ Bands 21, 31 and 32. 

 
**Rad is satellite measured spectral radiance 

Emissivity values (Table 4.2) were applied to MODIS data by reprogramming 

MyMOD code (courtesy of Hirn) to obtain radiant heat flux results (Fig. 4.2). 

This new recalculated total radiant heat flux, using multicomponent emissivity 

approach was compared directly with the high-spatial resolution data (Chapter 3) and shown 

in Figure 4.3. Multi-platform results (OLI, Sentinel 2A and MODIS) appear to be relatively 

comparable, considering the marked difference in temporal and spatial resolution.   
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Range of Radiant Heat Flux – MyMOD 

      

Figure 4.2 Computed total radiant heat flux results for MODIS (MyMOD), from 15 March to 10 April 2017, 

applying multicomponent approach.  

              Range and difference in Radiant Heat Flux – MyMOD vs high-spatial resolution 

       

Figure 4.3 Comparison in computed radiant heat flux values from15 March to 10 April 2017, derived from 

high-spatial resolution (HR OLI and Sentinel-2) and MODIS data (MyMOD), using multicomponent approach. 
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4.1.2 Low-moderate and high-spatial resolution data of the same target area 

Moderate-to-high temporal resolution satellite data processed using HOTSAT 

thermal monitoring system (Ganci et al., 2016, 2011), employed by the INGV (Catania, 

Italy) to monitor Mt Etna is used here for comparison and validation against the new 

multicomponent approach and determine extent of uncertainty in total radiant heat flux 

produced by different spaceborne platforms and different approaches (Figs. 4.4 and 4.5).  

The HOTSAT system is designed to automatically provide the location of the 

‘hotspot’ pixels, if present, and quantify their thermal anomaly by computing the associated 

radiant heat flux. It uses MODIS data providing images at 1.0 km spatial resolution up to 

four time per day and Spinning Enhanced Visible Infra-Red Imager (SEVIRI) data providing 

almost continuous monitoring (i.e., four times per hour and up to 5 minutes sampling interval 

in rapid scanning service mode) with a spatial resolution of 3.0 km at nadir (World 

Meteorological Organisation, n.d.). The radiant heat flux is computed for all pixels and 

classified as a true ‘hotspot’ by using the MIR radiance method (Wooster et al., 2003).  

Range and difference in Radiant Heat Flux - high vs moderate spatial resolution 

  

Figure 4.4 Comparison in computed radiant heat flux values from 15 March to 12 April 2017, derived from 

high-spatial resolution (HR OLI and Sentinel-2) and MODIS (MyMOD), using multi component approach, 

and MODIS (INGV), to derive min/max values, using constant emissivity (Wooster et al., 2003). 
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           Range and difference in Radiant Heat Flux - high-moderate-to-low spatial resolution 

    

Figure 4.5 Comparison in computed radiant heat flux values from 15 March to 12 April 2017, derived from 

high-spatial resolution (HR OLI and Sentinel-2) and MODIS (MyMOD), using multi component approach, 

and SEVIRI (INGV) to derive min/max values, using constant emissivity (Wooster et al., 2003).  

It is important to note that this method (Wooster et al., 2003) is using constant 

emissivity, hence the value of emissivity is considered equal to the emissivity in the MIR 

and it is usually simplified. Therefore, use of this emissivity assumption causes errors in the 

result when radiant heat flux is computed. It has been indicated that this approach may also 

introduce errors larger than 30% outside a range of temperatures ~600-1500 K (Wooster et 

al., 2003). 

 SEVIRI (INGV) and MODIS (INGV) data (Figs. 4.4 and 4.5) used to analyse the 

2017 eruptive activity on Mt Etna between 14 March and 09 April 2017, show that the higher 

spatial resolution provided by MODIS permits detection of less intense thermal anomalies. 

For example, both the first and the last thermal anomalies during this eruptive event were 

detected by MODIS, on 14 March (20:35 GMT) and on 9 April (21:14 GMT), respectively. 

The peak of activity occurred within the first five days of eruption, with a maximum radiant 

heat flux of 9.47 GW recorded on 17 March (00.40 GMT) by MODIS and 9.67 GW on 18 

March (14:15 GMT) by SEVIRI. Conversely, MyMOD approach using ‘multicomponent’ 

emissivity produced radiant heat flux value of 5.12 GW on 17 March (00:40 GMT) and 4.09 
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GW on 18 March (12:25 GMT). High-spatial resolution data was not available for 17 March 

and Landsat 8 (OLI) produced radiant heat flux of 3.22 GW on 18 March (09:41 GMT).  

 To illustrate the difference in computed radiant heat fluxes produced by various 

platforms (Figs. 4.2-4.5), data shown in Figure 4.3 indicates the range produced on a specific 

date/time. 

Table 4.3 Total radiant heat flux (in GW) comparison data acquired by high (OLI, Sentinel-2), 

moderate (MODIS) and low (SEVIRI) spatial resolution payloads during the 2017 Mt Etna eruption. 

Date 

(dd/mm/yy) 

Landsat-8 

(OLI) 

MSI 

(Sentinel 2) 

MODIS 

(MyMOD) 

**MODIS 

min-max 

**MODIS 

mean 

**SEVIRI 

min-max  

**SEVIRI 

mean 

16/03/17 - 3.02 2.71 2.15-5.36 3.76 2.95-7.38 5.17 

18/03/17 3.22 - 1.72 1.38-3.44 2.41 2.71-6.78 4.74 

19/03/17 - 3.31 3.66 2.55-6.36 4.46 2.86-7.14 5.00 

26/03/17 - 1.87 1.41 0.84.2.10 1.47 1.67-4.18 2.93 

27/03/17 1.95 - 1.91 1.02-2.55 1.79 1.43-3.58 2.51 

05/04/17 - 1.78 2.24 0.64-1.60 1.12 1.30-3.24 2.27 

08/04/17 - 1.87 1.22 1.03-2.57 1.80 1.73-4.32 3.02 

*Total radiant heat flux values (GW) computed for data acquired by all payloads ~09:30 UTM.   

**MODIS and SEVIRI data processed by the INGV (Catania, Italy) using HOTSAT approach (Ganci et al., 2011, 2016) 

for the 2017 Mt Etna eruption (extracted for specific dates from data shown in Figs. 4.4 and 4.5) 

 By comparing the radiant heat flux values obtained from moderate-to-high temporal 

resolution, namely SEVIRI and MODIS (data courtesy of INGV, Catania), and high-spatial 

resolution, namely OLI and Sentinel-2A, it is evident that the latter falls inside the region of 

admissible values retrieved from SEVIRI and MODIS images (Figs. 4.4 and 4.5). Moreover, 

the fact that the high-spatial resolution data and MyMOD results are reasonably close to the 

lower boundaries in most cases of the SEVIRI (INGV) and MODIS (INGV) data, suggests 

that emissivity does play a role in the computation of accurate radiant heat flux values from 

spaceborne data. This may, in this example, produce 28-176 % difference in computed 

radiant total heat flux, based on the lowest and highest mean values for each scene (Table 

4.3).  

4.2 Impact on Effusion Rates and predicted ‘distance-to-run’  

Varying the emissivity and wavelength will have an impact on the computation of 

integrated temperatures and radiant heat fluxes, and hence on the estimation of lava effusion 

rates and lava flow ‘distance-to-run’. This is critically important for civil defence and hazard 

mitigation efforts. 

Empirical derivation of effusion rates (Wright et al., 2001; Pieri and Baloga, 1986) and 

estimation of maximum ‘aa’ lava flow length (Kilburn, 2015, 1996; Calvari and Pinkerton, 
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1998) involves certain assumptions. The basis for each study, Kilburn (2015, 1996) and 

Calvari and Pinkerton (1998) are compared here to illustrate that they are independent, as 

former uses a physical model, while the latter is based on multiparametric statistics. The 

latter performs a multiple regression analyses, using main variables in their investigation to 

determine the maximum length of ‘aa’ lava flows, specific for Mt Etna. In contrast, the 

former (Kilburn, 2015, 1996), uses the main controlling lava flow development factors, such 

as the rate of magma supply, the lava’s physical properties, and the local environment.  

Often, the effusion rate can be calculated by exploiting ground-based observations, 

where the information on how the volume of an individual flow changes in a given time 

interval can be quite accurate. This is achieved by using information on the rate of advance, 

if the cross-sectional area of the flow front is known (i.e., width × thickness × rate of 

advance) or if the volume and time interval are known (length × width ×thickness ÷ time). 

The calculated eruption rate can be used to estimate the maximum potential lava flow length 

(Kilburn, 2015, 1996). However, this approach is not intended to forecast the exact final 

length of the flow, but its maximum potential value.   

The estimation of maximum lava flow length is most needed at the start of the eruption. 

This information would play an important role in hazard mitigation for densely populated 

areas in close proximity to an active volcano. An accurate estimation of effusion rate is 

considered to be a primary objective for monitoring efforts during on-going eruptions and 

studies that model lava flow propagation and development.  

A simplified quantitative evaluation performed on the best-quality night-time image 

acquired during the 2001 eruption, selected here, was chosen to avoid pixel saturation and 

the reflected radiances of daytime images in SWIR. This eruption was observed by three 

high-spatial resolution payloads on Landsat 5 (ETM), Landsat 7 (ETM+) and Terra 

(ASTER). The selected image data presented here were acquired by Enhanced Thematic 

Mapper + (ETM+) on 5 August 2001 at 20:34 UTM (Fig. 4.5). ETM+ is the multispectral 

scanning radiometer onboard Landsat-7, providing high-spatial resolution data (30 m in V-

NIR-SWIR and 60 m in TIR) in repeat cycles of 16 days. Launched in 1999 and still active 

at the time of writing, ETM+ provided very high-quality images until 2003, when the linear 

scan compensator developed a permanent fault affecting the whole image (black stripes).  

A simplified test, using 20% variation in emissivity (i.e., 1.0 and 0.80) is used to assess 

the sensitivity of computed radiant heat flux to variations in emissivity (Rogic et al., 2019a).  
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              (a)                                                   (b)                           (c)                            (d) 

Figure 4.6 (a) High temperature thermal anomaly scene, acquired for Mt Etna on 05 August 2001 by Landsat-

7 (ETM+), (b-d) showing fluctuation in computed pixel integrated temperatures for all radiant pixels of the 

same target area as in (a) TIR Band 6 and SWIR Bands 7 and 5 for emissivity of 1.0. The green square in (b-

d) marks the location of the pixel (37°39’28’’N and 14°59’48’’E), used to derive temperature values with 

emissivity variation given below (b-d) (from Rogic et al.(2019a)). 

After radiometric and atmospheric correction, the image (Fig. 4.6) was processed 

for all radiant pixels in SWIR and TIR, while applying uniform emissivity across the entire 

spaceborne scene (e.g., 1.0 or 0.80), following previously established procedures (Chapter 

3). A marked difference in calculated pixel integrated temperatures is evident when using 

different emissivity values (i.e., 1.0 and 0.80) in TIR and two SWIR channels. These 

values are ranging from as low as 325 K (brightness temperature 𝜀 = 1.0 at 10.45 𝜇m TIR 

wavelength) to as high as 745 K (𝜀 = 0.80 and 1.65 𝜇m SWIR). Overall, 20% emissivity 

change gives rise to pixel integrated temperature differences of the order of 15 K in SWIR 

and 30 K in TIR (shown in 4.5 b-d). 

Considering that varying emissivity (i.e., 1.0 or 0.80) impacts the computation of 

apparent lava surface temperatures, more accurate FTIR measured emissivity-temperature 

data obtained for the 2001 eruption were used (Chapter 2), in an attempt to improve deduced 

temperatures, using the novel multicomponent emissivity approach (Chapter 3).  

In this example, lower emissivity (0.60) has been used than previously (Fig. 4.6) to 

assess its lower boundary impact. 
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For each emissivity approach (i.e., 1.0, 0.60 and multicomponent), using calculated 

integrated temperatures, sub-resolutions were solved in SWIR (1.65 𝜇m and 2.20 𝜇m) to 

obtain the effective temperature (Eq. 9) and total radiant heat flux (Eq. 10), from which the 

lava effusion rate (Wright et al., 2001; Pieri and Baloga, 1986) 𝐸𝑟_𝑐𝑎𝑙𝑐  is estimated: 

𝐸𝑟_𝑐𝑎𝑙𝑐 =
𝑄𝑟_𝑐𝑎𝑙𝑐

𝜌(𝐶𝑝∆𝑇 + Φ𝐶𝐿)
                                                (12) 

 In Equation (Eq. 12), the 𝜌 is the lava density (2600 kg m−3); 𝐶𝑝 is the specific heat 

capacity (1150 J kg−1K−1); ∆𝑇 is the average temperature difference throughout the active 

flow (100-200 K), which is a significant parameter for estimating eruption rate; Φ is the 

average fraction of crystals (0.4-0.5) grown in cooling through ∆𝑇, and 𝐶𝐿 is the latent heat 

of crystallization (2.9× 105 J kg−1). It is important to note that while radiant heat flux 

Equation (Eq. 11) includes only observables and variable emissivity, the values used to solve 

effusion rate Equation (Eq. 12) are average values taken from various literature sources, 

which are specific for this type of lava and Mt Etna (Harris et al., 2007, 2000) and relate to 

key relationships between the imposed parameters (Pieri and Baloga, 1986). Therefore, the 

Equation (Eq. 12) is dependent on the flow composition and highly sensitive to both the 

eruptive and ‘lava-stop’ (advance cessation) temperatures.   

 Total radiant heat flux value for the entire thermal anomaly was used in computation 

of instantaneous effusion rate 𝐸𝑟_𝑐𝑎𝑙𝑐 (Eq. 12) to attempt a rapid estimation of the maximum 

lengths (𝐿𝑚) that an individual ‘aa’ lava flow can reach, using Kilburn (2015, 1996), general 

empirical approach, which can be simplified for basalts: 

𝐿𝑚 = 2.5 𝐸r
1

2⁄                                                           (13) 

where 𝐸𝑟  is effusion rate in m3s−1 (originally termed ‘Q’ representing mean rate of 

discharge (Kilburn, 2015, 1996) and 𝐿𝑚, the maximum potential length that an individual 

lava flow can reach is in kilometres. The maximum potential length is expected to increase 

with effusion rate.  

The relationship shown in Equation (Eq. 13) can be used to estimate the maximum 

potential length of an ‘aa’ flow, based on certain surface criterion (e.g., velocity, 

solidification) but it is indicated that this approach is not valid for ‘pahoehoe’ or ‘blocky’ 

flows, as they are more problematic to forecast (Kilburn, 2015, 1996), because they tend to 

lengthen until eruption stops, hence, to forecast length, volume of magma to be erupted must 
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be known. It is also important to note that observation in Kilburn (2015), suggests that Mt 

Etna’s ‘aa’ flows don’t extend beyond approximately 60% of the theoretical maximum (𝐿𝑚). 

Second approach (Calvari and Pinkerton, 1998) and the equation correction stated in 

(Wright et al., 2001) was also tested here, which is derived specifically for Mt Etna: 

𝐿 = 103.11𝐸𝑟
0.47                                                           (14) 

where 𝐸𝑟 is effusion rate in m3s−1 (originally termed ‘E’ representing the mean discharge 

rate (Calvari and Pinkerton, 1998), normally averaged for the whole time an individual flow 

was active). Here, the instantaneous 𝐸𝑟_𝑐𝑎𝑙𝑐, derived for the 5 August 2001 ETM+ scene is 

used. L is the final length of the single channel-fed flow in kilometres. 

Therefore, a total radiant heat flux spaceborne data results using constant (i.e., 1.0 and 

0.60) and multicomponent emissivity were exploited (Fig. 4.7) to project the impact of 

emissivity (and uncertainty) on computed effusion rates (𝐸𝑟_𝑐𝑎𝑙𝑐) and test ‘distance-to-run’ 

results to assess the effect emissivity may have on the final lava length in (Eq. 13 and Eq. 

14). Figure 4.7 shows that 40% variation in emissivity would produce 340 m (8%) 

uncertainty in ‘distance-to -run’ in this example. 

    

Figure 4.7 Shows ETM+ scene acquired on 5 August 2001, highlighting the high-temperature thermal anomaly 

in red, focusing on the an individual LFS1 flow (Coltelli et al., 2007) analysed, and detailing a flow chart of 

procedures followed to obtain the maximum potential lengths (𝐿𝑚) that LFS1 lava flow can reach, using 

general (Kilburn, 2015, 1996) and Mt Etna specific (Calvari and Pinkerton, 1998) empirical approaches.   
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The individual lava flow LFS1 analysed here reached its maximum length on or 

around 25 July 2001 with an estimated eruption rate of 18.33 m3s−1 (Coltelli et al., 2007). 

According to field estimates (Table 4.4), after that date, the effusion rate dropped, so lava 

did not extend along the whole flow length. 

Table 4.4 Volumes and effusion rates for the LFS1 2001 Mt Etna eruption (Coltelli et al., 2007) 

    

ETM+ data from 5 August 2001 produced calculated effusion rate between 2.43 

m3s−1and 2.88 m3s−1, which is in line with the rate drop observed for that time period, and 

corresponds well with field estimates of ~3 m3s−1 on 6 August 2001 (Table 4.4), reported 

by Coltelli et al. (2007). Used here to project an impact of calculated spaceborne radiant heat 

flux using different emissivity, a ‘snapshot’ data for 5 August 2001 highlighted an increase 

in 𝐿𝑚 of 9 % between emissivity endmembers (Fig. 4.7), and so may play a role in hazard 

mitigation at densely populated areas in close proximity to an active volcano, such as Mt 

Etna.  

Although, this data may provide useful ‘snap-shots’, indicative of the current 

(instantaneous) state of activity at the moment in time, and relatively accurate computed 

radiant (and mass) flux, an instantaneous ‘snap-shot’ data, such as the one presented here 

for is based on a limited number of infrequent observations (i.e., one scene). Therefore, it 

may not reflect the significant peak discharge rate or dynamic flow regimes that are known 

to change over timescales of days or less (Bailey et al., 2006; Lautze et al., 2004; Harris et 

al., 2000; Wadge, 1981) and cannot be used in as a stand-alone approach to estimate final 

lava flow lengths. Instantaneous effusion rate computed from high-spatial resolution scenes 

may provide the volume flux of erupted lava that is feeding the flow at any point in time, 

which may help constrain high-temporal (large pixels) data. For a complete activity 
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overview, high-spatial resolution data must be used in tandem with moderate-to-high 

temporal platforms, as well as ground observations to obtain a complete activity overview 

(discussed further in Chapter 6). 

Nonetheless, using the volume and eruption time information (Table 4.4) for period 

while flow was lengthening (18 to 25 July) would suggest an average effusion rate (i.e., 

cumulative volume divided by the acquisition time in seconds) of 22.9 m3s−1 and if using 

Equation (Eq. 13) would produce 𝐿𝑚 = 11.9 km. If, we then apply the observation (Kilburn, 

2015) suggesting that Mt Etna’s ‘aa’ flows do not extend beyond approximately 60% of the 

theoretical maximum, it will produce 𝐿𝑚 = 7.1 km, which is greater than and therefore 

consistent with the maximum potential length, as the observed (actual) LFS1 length was 6.4 

km. However, the second approach (Eq. 14) would produce shorter calculated length (L = 

5.6 km) than the observed, hence underestimating the actual LFS1 final length.   
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5 Emissivity-Temperature rule and Forward modelling 

5.1 ‘Dynamic Emissivity-Temperature Rule’ 

The ‘emissivity-temperature trends’ I measured and developed in this thesis for Mt 

Etna (Chapter 4), have been validated and employed by the INGV to improve on the ‘static’ 

(constant) emissivity approach to spaceborne and numerical modelling simulations, 

currently used operationally by the INGV (Catania, Italy). Findings presented in this thesis 

(Chapter 2) have provided substantial clarification on emissivity behaviour with 

temperature, with implications for procedures used by the INGV to monitor Mt Etna, which 

currently involve a constant emissivity approach (Wooster et al., 2003). A new approach, 

based on very-high temperature FTIR data (Section 2.3.5), providing reliable and exploitable 

predictive emissivity trends for both modelling and spaceborne applications at a range of 

temperatures and wavelengths is proposed here (Sections 5.1-5.3). 

Measured emissivity data at specific wavelengths and the temperatures (‘cooling-

down’) were used to derive a ‘law’ which relates emissivity to the temperature. Using a 

similar approach for both satellite remote sensing (Section 5.1) and lava flow modelling 

(Section 5.2), the INGV team modified the ‘thresholds’ approach presented in this thesis 

(Chapters 3 and 4), based on very-high temperature FTIR data (Chapter 2) to create a ‘law’ 

by computing a spectrum-integrated mean emissivity, which for any interval (𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥) 

can be calculated as described in the next sentence 

𝜀[𝜆min,𝜆max](𝑇) =
∫ 𝜀(𝜆, 𝑇)𝐵𝜆(𝜆, 𝑇)𝑑𝜆

𝜆max

𝜆min

∫ 𝐵𝜆  (𝜆, 𝑇)𝑑𝜆
𝜆max

𝜆min

                                     (15) 

where 𝐵𝜆  (𝜆, 𝑇) is Planck’s Radiation law (in wavelength). Since ε(λ,T) information is not 

continuous (in λ), the integral is used for piecewise linear interpolation between each pair of 

data points, and provide an approximation justified by the fine granularity of the 

wavenumber sampling in the data. More sophisticated results could be achieved with higher-

order reconstructions. Nonetheless, the results obtained using the simplified approach 

provides an uncertainty across samples that is of the same order as the FTIR measurement 

(experimental) error, reported in Appendix B. 

For satellite remote sensing application, the spectrum-integrated mean emissivity is 

computed over the spectral response wavelengths of each channel. For example, MODIS’ 

MIR channels (21 and 22) have bandwidth 3.929-3.989 µm, while the TIR channels (31 and 

32) have bandwidth 10.780-11.280 µm and 11.770-12.270 µm. 
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Fitting quadratic polynomials to the temperature range of available data gives the 

following ‘laws’ Equations (Eq. 16-18) for the mean emissivity as a function of temperature 

in Kelvin (K) for the MODIS sensor: 

𝜀𝑀𝐼𝑅(𝑇) =  0.839079 +  0.0000970901 𝑇 −  2.57376 ⋅ 10−7 𝑇2               (16) 

𝜀𝑇𝐼𝑅31(𝑇) =  0.912157 +  0.000152048 𝑇 −  1.24152 ⋅ 10−7 𝑇2              (17) 

𝜀𝑇𝐼𝑅32 (𝑇) =  0.92467 +  0.0001438 𝑇 −  1.20315 ⋅ 10−7 𝑇2                    (18) 

By computing the mean and maximum relative error between derived emissivity 

‘laws’ and the original data, observed values are within the measurement error range, thus 

use of the higher polynomial degrees is deemed unnecessary. 

5.2 Numerical Modelling: lava flow simulation (MAGFLOW) 

To evaluate impact of emissivity variation on the simulated ultimate lava flow 

lengths, a collaborative pilot study was undertaken (Rogic et al., 2019b, 2019a) with the 

INGV (Catania, Italy), which performed a sensitivity test by running a MAGFLOW cellular 

automaton propagator (Bilotta et al., 2016; Herault et al., 2009). The approach uses physical 

model accounting for both thermal and rheological evolution of flowing lavas and potential 

to significantly improve understanding of the dynamics of lava flow emplacement 

(Kereszturi et al., 2014) and assist with related hazard assessment and mitigation (Cappello 

et al., 2016, 2015b, 2015a; Pedrazzi et al., 2015; Del Negro et al., 2013; Negro et al., 2013).  

To model the lava flow path for the 2001 Etna eruption, MAGFLOW was run on a 

pre-eruptive Digital Elevation Model (DEM) using field-derived effusion rates (Coltelli et 

al., 2007) and the typical properties of Etnean basaltic rocks (density = 2600 kg/m3; specific 

heat capacity = 1150 J kg−1 K−1; solidification temperature = 1173 K; extrusion 

temperature = 1360 K). Three model runs, each with different emissivity values (i.e., 0.80, 

0.93, and 1.00) were introduced to the model, maintaining constant emissivity, unaffected 

by temperature changes throughout the simulation. This method was validated using the 

actual lava flow extent of the 2001 Mount Etna eruption (Fig. 5.1). 

Whilst the actual lava flow field is quite well reproduced by the MAGFLOW 

model for all three emissivity values, the simulation run with ε = 0.93 reaches the closest 

flow length (6.5 km versus the actual 6.4 km), which is the most critical factor for hazard 

analysis (Bilotta et al., 2019, 2012). 
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Figure 5.1 MAGFLOW simulation results with changing emissivity (i.e., 0.80, 0.93, and 1.00), showing a 

difference of up to 600 m (~10%) in lava flow length (from Rogic et al., (2019a)). The red outline is the 

actual limit of the real flow. 

The pilot was expanded using very-high temperature FTIR results (Section 2.3.5), 

providing a better understanding of the variation of emissivity with temperature and impact 

of emissivity on deduced temperature during active lava flow propagation (and cooling).  

For lava flow modelling, full spectrum of mean emissivity was used. Available data 

over SWIR-MIR-TIR range (2.17-25.0 𝜇m) has been validated (Section 5.1) to ensure the 

‘stability’ of mean emissivity in this range. 

The mean emissivity is considered to be sufficiently stable to approximate the 

emissivity over the available spectrum (personal communication with Giuseppe Bilotta, 

INGV, Catania). By fitting a quadratic polynomial to the temperature range of available data 

would provide the mean emissivity of lava as a function of temperature and used in 

MAGFLOW simulation (INGV approach):  

𝜀(𝑇) =  0.817587 +  0.000345885 𝑇 −  3.32996 ⋅ 10−7 𝑇2                    (19) 

 Using this approach, a synthetic test on a 20-degree inclined plane was performed 

(Fig. 5.2), using typical Etnean parameters (density = 2600 kg/m3; specific heat capacity = 

1150 J kg−1 K−1; solidification temperature = 1173 K; extrusion temperature = 1360 K), 

applying a constant (0.90) and variable emissivities (modelled emissivity law). 

 Simulation results (personal communication with Annalisa Cappello, INGV, 

Catania) show that constant emissivity (Fig. 5.2a) produced a lava flow length of 5.87 km, 

whereas modelled variable emissivity approach (Fig. 5.2b) produced 6.53 km flow. A 

difference of 10.6 % in computed lava flow length (0.66 km) demonstrates that emissivity, 
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as an input parameter, also plays an important role in lava flow modelling applications, since 

it impacts ‘distance-to-run’ estimates.  

               
                                      (a)                                                     (b) 

Figure 5.2 A synthetic MAGFLOW simulation on 20-degree inclined plane using (a) constant emissivity 

(0.90) and (b) using a modelled emissivity law in (Eq. 19) with variable emissivity, derived FTIR from 

measured trends (Section 2.3.5).  

5.3 Emissivity-Temperature Trends: Mt Etna and Global Application  

Validation results provided by the INGV (Sections 5.1 and 5.2) are consistent with 

comprehensive analyses, based on FTIR data (Chapter 2), applied to the 2017 and 2001 Mt 

Etna eruptions using spaceborne data (Chapters 3 and 4).  

Exploiting all available FTIR data (Chapter 2) for eruptions investigated, allows 

creation of Mt Etna ‘standard’ (3-eruptions mean) emissivity-radiance-temperature trends 

(Fig. 5.3) and ‘look-up’ tables (Table 5.1 and Appendix E) to serve as input parameters using 

‘thresholds’ approach, for spaceborne multi-platform analyses (e.g., OLI, Sentinel-2A, 

MODIS), specific for Mt Etna.  

Plotted ‘standard’ Mt Etna data, (Fig. 5.3), including errors (Appendix E) indicates 

that largest emissivity variation is in MIR (28 %), varying between 0.758 and 0.483 at 773 

and 1373 K respectively, whereas emissivity variation with temperature in upper SWIR 

(2.17-2.35 𝜇m) is 11% (0.817 at 773 K and 0.706 at 1373 K). Smallest emissivity variation 

(6%) was found in TIR, ranging from 0.964 to 0.912 at 773 K and 1373 K respectively.  

 



  Nikola Rogic T3966511 

 

 

77 

Table 5.1 Mt Etna ‘standard’ modelled Emissivity-Temperature Trends in SWIR, MIR and TIR 

SWIR (1.65 𝝁m and 2.20 𝝁m)

 

MIR (3.98 𝝁m) 

 

TIR1 (11.00 𝝁m) 

 

TIR2 (12.0 𝝁m) 

 

           Emissivity-temperature ‘universal’ trends (Mt Etna specific) 

                 SWIR (2.20 m)                    MIR (3.98 m)                      TIR1 (11.0 m)                     TIR2 (12.0 m) 

 
                    (a)                                      (b)                                      (c)                                     (d) 

Figure 5.3 Mt Etna specific ‘standard’ emissivity-temperature trends, derived from all available FTIR data 

(3-eruptions mean) to serve as spaceborne input parameters at (a) high-spatial resolution SWIR, as well as 

(b) MODIS’ MIR and (c-d) TIR bands wavelengths. 
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5.3.1 Variation in ‘Dynamic Trends’ driven by the composition 

To assess wider applicability of multicomponent emissivity-temperature behaviour, 

developed here for the trachy-basaltic Mt Etna, two additional and distinctly different sites 

were considered; an andesitic subduction volcano, Lascar (Chile) and an intraplate tholeiitic 

basalt volcano, Kilauea (Hawaii).  

I measured emissivity data, where emissivity was determined by means of radiance 

(method in Section 2.2.5) for Lascar volcano (sample courtesy of S. Self, OU, U.K.), from 

a 1993 lava. Lascar volcano in northern Chile is a subduction zone stratovolcano, with recent 

cyclic activity starting in 1984, which ended up producing its largest historical Plinian to 

sub-Plinian eruption in 1993 (Matthews et al., 1997). Emissivity data for Kilauea (Hawaii) 

were obtained from the February 2018 Puu Oo lava coastal plain lava flow field (sample 

data courtesy of the IVIS Laboratory, University of Pittsburgh). The lower East Rift Zone 

eruption and summit collapse are considered to be the largest event occurring in the last two 

centuries (Anderson et al., 2019). 

The chemical composition for Kilauea, Mt Etna and Lascar samples (Table 5.2) have 

been plotted to reveal a total alkali silica (TAS) content (Fig. 5.4).  

Table 5.2 Total Silica Alkali content in wt.% for volcanoes analysed 

Volcano Location Silica (𝑺𝒊𝑶𝟐) Alkali (𝑵𝒂𝟐𝑶 + 𝑲𝟐𝑶) 

Mt Etna, Italy 47.73 5.41 

Lascar, Chile 57.70 4.83 

Hawaii 49.93 2.46 

 

                       

Figure 5.4 Derived total alkali silica (TAS) content for Mt Etna, Italy (filled black circle), Lascar, Chile 

(filled black diamond) and Kilauea, Hawaii (filled black square). 
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These are consistent with previous compositional findings for the three sites 

investigated (Robidoux et al., 2020; Giordano and Dingwell, 2003; Wolfe and Morris, 1996). 

The three-sample series of different composition all show comparable variation in emissivity 

with temperature (Fig. 5.5 and Appendix F), which may support the claim that emissivity is 

composition dependent. Different volcanic settings, eruption styles and lava types for 

samples analysed are not discussed here, as results from this analysis are used solely to 

compare emissivity trends with temperature change for compositionally different sites. 

Emissivity-temperature trends presented here (Figs. 5.5 and 5.6), which I measured 

and determined by means of radiance (Section 2.2.5), have been derived for MODIS’ MIR 

and TIR wavelengths (3.98 𝜇m, and 11.0 𝜇m and 12.0 𝜇m respectively), extracted and 

modelled from very-high FTIR data (Appendix F).  

Emissivity-temperature trends comparison at MIR wavelengths 

 
                  (a)                                                          (b)                                                    (c) 

Figure 5.5 Emissivity-temperature trends in comparison in MODIS’ MIR (3.98 𝜇m wavelength) for (b) Mt 

Etna ‘standard’ (Table 5.1 and Fig. 5.2), (b) Lascar, Chile (1993 eruption) and (c) Kilauea, Hawaii (2018 

eruption).  

Emissivity trend (Fig. 5.5 a-c) in MODIS’ MIR band 21 (3.98 𝜇m) shows emissivity 

decrease with temperature increase (773-1373 K) by 24% for Kilauea (0.730-0.490), 28% 

(0.758-0.483) for Mt Etna and 35% for Lascar (0.735-0.390).  
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Emissivity-temperature trends comparison at TIR wavelengths 

 
                             (a)                                                       (b)                                                       (c) 

 

 
                             (d)                                                       (e)                                                       (f) 

Figure 5.6 Emissivity-temperature trends in MODIS’ TIR1 (a-c) and TIR2 (d-f) wavelengths (11.0 𝜇m and 

12.0 𝜇m respectively) for (a & d) Mt Etna ‘standard’ (Table 5.1 and Fig. 5.2) (b & e) Lascar, Chile (1993 

eruption) and (c & f) Kilauea, Hawaii (2018 eruption).  

Emissivity trend (Fig. 5.6 a-c) in MODIS’ TIR1 band 31 (11.0 𝜇m) shows emissivity 

decrease with temperature increase (773-1373 K) by 4% for Kilauea (0.893-0.856), 6% 

(0.964-0.904) for Mt Etna and 14% for Lascar (0.944-0.806). 

Emissivity trend (Fig. 5.6 d-f) in MODIS’ TIR2 band 32 (12.0 𝜇m) shows emissivity 

decrease with temperature increase (773-1373 K) by 5% for Kilauea (0.908-0.860), 6% 

(0.972-0.912) for Mt Etna and 12% for Lascar (0.964-0.846).  
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Emissivity-temperature trends comparison at MODIS’ MIR and TIR wavelengths 

                                                                  MIR (3.98𝝁m)   

                                                    
                                                                                         (a) 

                                 TIR1 (11.0 𝝁m)                                                 TIR2 (12.0 𝝁m) 

                 
                                             (b)                                                                        (c) 

Figure 5.7 Trends diversity in MODIS’ (a) MIR (3.98 𝜇m) and (b-c) TIR bands (11.0 𝜇m and 12.0 𝜇mm 

respectively). Distinct compositional trends can be identified for trachy-basalt (Mt Etna), andesite (Lascar) 

and basalt (Kilauea). 
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In MIR (Fig. 5.7 a) trachy-basalt (Mt Etna) is comparable to the more tholeiitic basalt 

(Kilauea), with a maximum difference ≤ 0.03, whereas andesite shows larger difference 

with both (basalt and trachy-basalt), especially with temperature increase (≤ 0.1). In TIR 

(Figs. 5.7 b-c), silica-rich andesite follows similar trend(s) seen in MIR, when compared to 

trachy-basalt, showing a difference ≤ 0.1, which increases at temperatures >900 K. The 

tholeiitic basalt shows markedly different (‘flat’) trend(s) in TIR, demonstrating that 

emissivity is both wavelength and composition dependent, as it produced a marked 

distinction in spectral signatures (≤ 0.1) between compositionally different sample groups. 

Since there are no reliable data available at the time of writing for Kilauea and Lascar 

in SWIR, this wavelength range could not be included into the compositional comparison 

analysis presented here. Nevertheless, this exercise clearly shows that emissivity is not only 

wavelength and temperature dependent, but it also depends on composition. Moreover, 

Figure 5.7 indicates that the most evolved lava sample, in this case andesitic Lascar, displays 

the largest change in emissivity with temperature, whereas the most primitive lava (Kilauea) 

has the smallest change.  

Future work to generalize the findings presented in this section (Fig. 5.7 and Appendix 

F), would involve measurements from extensive suites of samples representing different 

volcanic settings to complement and constrain the in-depth analyses and trends developed 

here for Mt Etna.  
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6 Automated volcano monitoring systems: 2020  

6.1 Space-based automated systems 

Currently operational space-based automated volcano monitoring systems, and systems 

discussed previously (Chapter 1) are employed to search the surface of the Earth for thermal 

emission signatures, which may imply changes in activity, or can simply provide information 

on volcano’s activity status (Ramsey and Harris, 2013).  

A few monitoring systems are established and operated by national and international 

monitoring agencies (e.g., USGS, NOAA, Copernicus EMS, Eumetsat, JMA) where the 

focus is either on observing specific regions of interest at various spatial and temporal 

resolutions, or on global/supracontinental monitoring in (near) real-time, and at low-to 

moderate spatial resolution. These are robust and enduring systems that may not specifically 

address volcanic activity but have a wider scope on land and atmospheric hazards, and 

emergency management support.  Additionally, a limited number of spaceborne systems 

with global volcano monitoring aimed at global volcano monitoring, mostly arising from 

successful research projects, have been developed and operated by universities and research 

institutions. Some of such systems in operation today are used for continuous and (near) 

real-time automated volcano monitoring. 

Examples of such system, based on MODIS data, where MODVOLC (Wright et al., 

2004) and MIROVA (Middle Infrared Observation of Volcanic Activity, (Coppola et al., 

2016) appear to be the most used for this purpose (Coppola et al., 2020) may provide 

synthetic information in regions which do not have resources to operate ground networks. 

MODVOLC (Wright, 2016; Wright et al., 2004) uses infrared satellite data acquired by 

NASA’s two MODIS sensors on Terra and Aqua satellites to detect and identify hot-spot 

pixels and measure radiant flux on a global scale by performing a single pixel fixed threshold 

analysis. This ‘always-on’ moderate-spatial and temporal resolution system has been used 

widely to detect and catalogue thermal emission signatures of volcanic unrests globally, by 

utilizing both MIR and TIR thermal channels to measure spectral radiance emitted by high-

temperature thermally anomalous targets on the ground. While principally used to observe 

wildfires, MODIS’ MIR channel has been successfully used to quantify the energy radiated 

by active lavas of significantly smaller dimensions than the instruments’ sampling size 

(Wright, 2016). Similarly, MIROVA is an automated volcano hot-spot detection system, 

also based on MODIS’ data, providing thermal flux time series for over 200 volcanoes 

worldwide (Coppola et al., 2020). In contrast, a spaceborne volcano monitoring system 

HOTVOLC (Gouhier et al., 2016), uses geostationary platforms (MSG-SEVIRI, MTSAT 
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and GOES-Imager), providing data every 15 minutes to monitor (near) real-time activity 

(hot-spots detection, lava flow volumes and discharge rates).  

In addition to several automated volcano monitoring systems developed over the last 30 

years to detect volcanic hotspots (Chapter 1), VAST (Higgins and Harris, 1997) and 

HOTSAT (Cappello et al., 2019; Del Negro et al., 2016) approaches consider the difference 

between the pixel’s temperature and that of its surrounding pixels. The latter shows how 

distinctly different spatial and temporal capabilities of MODIS and SEVIRI can be exploited 

for automated volcano monitoring and was tested on Mt Etna’s 2017 eruption (Chapter 4). 

One of the most successful satellite instruments, used for volcanic surveillance, ASTER 

(onboard Terra), has been effectively employed (2000-2008) for hotspot detection (Reath et 

al., 2019) and utilized its multispectral data for building the ASTER Volcano Archive (AVA, 

2020) for ~1500 recently active volcanoes worldwide.  

A more recent system, Monitoring Unrest from Space system (MOUNTS), based on 

Sentinel data (Sentinel-1, Sentinel-2 and Sentinel-5P) uses multi-platforms to provide a 

range of information on the unrest (Valade et al., 2019). Another new method (Massimetti 

et al., 2020) compares results from high-spatial resolution data with the existing operational 

approaches and has been developed for hot spot detection. This new approach uses high-

spatial resolution Sentinel-2 with MODIS-MIROVA thermal data and shows that multi-

sensors would increase monitoring capabilities if integrated into the currently operational 

automated systems. However, the purpose of that study using SWIR data was merely to 

detect the size, number and location of hot pixels of high-temperature thermal anomaly. 

Their approach does not involve calculation of pixel integrated temperatures or radiant heat 

flux. 

Despite being used for decades to study discrete active volcanism, a global volcano 

monitoring system using high-spatial resolution sensors (e.g., Landsat-class) has not been 

integrated into the existing automated systems. This may predominantly be due to the 

limiting temporal resolution of these sensors. Nonetheless, a recent study introduced a new 

semi-automated platform (Layana et al., 2020b, 2020a), Volcanic Anomalies Monitoring 

System (VOLCANOMS), exploiting high-spatial resolution Landsat series data in NIR and 

SWIR to detect volcanic thermal anomalies, compute effective temperatures, and total 

radiant heat and mass fluxes. This approach applied well-established methods (Blackett, 

2014) but it applies emissivity of a specific volcano based on ASTER 05 surface emissivity 

spaceborne data as an input parameter for seven volcanic sites, which has been identified as 

‘static’ (Chapter 2).  
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The current and future monitoring systems can benefit from a combination of 

payloads with high refresh rates and high-spatial resolution, which can be balanced by 

moderate temporal and spatial resolutions. This could be achieved by building upon the 

EVOSS project (Ferrucci et al., 2014), as one of several significant systems (Chapter 1) that 

had marked the development of a complete and global monitoring capacity (discussed in 

Section 6.2). 

6.2 The ‘ideal’ volcano monitoring system 

Various RS methods and automated projects to date (Chapter 1 and section 6.1) have 

fulfilled some requirements (to a varying degree) necessary to establishing an ‘ideal’ volcano 

monitoring system. Nonetheless, the lack of multi-platform, multi-payload integration to 

overcome large pixel, single-parameter methodologies in global volcano monitoring has 

been identified. The closest to an advanced multi-parameter, multi-technique integration was 

delivered in the EC-FP7 EVOSS project (2010-2013), with the developed system kept in 

automated-unsupervised operation from November 2011 until July 2016. 

EVOSS project demonstrated that the prospect of providing multi-parameters volcano 

monitoring service worldwide (and/or for specific individual targets) is feasible. The project 

provided a break-through in (near) real-time monitoring operations by using a multi-

technique approach, which focussed on multi-parameters results delivery at high-to-very 

high temporal resolution framework. The blend of advanced processing techniques for 

detecting and simultaneously analysing high-temperature features, syn-eruptive ground 

deformation, volcanic gases and volcanic ash at erupting (or unresting) volcanoes in Europe, 

Africa, the ocean islands and the Antilles covered ~150 volcanoes.  

For thermal analysis, both (i) geostationary and (ii) wide-swath LEO platforms were 

exploited. Most of the original platforms used for the EVOSS-style thermal, 𝑆𝑂2, ash and 

deformation retrievals are still operational and enhanced with certain upgrades, included in 

the outline here.  

Due to very-high refresh rate requirements (15-30 min) suitable candidates in 2010 

were (i) SEVIRI onboard (MSG), the Japanese Advanced Meteorological Imager (JAMI) 

onboard Multifunction Transport Satellite (MTSAT), and the Imager onboard Geostationary 

Operational Environmental Satellite (GOES). Today, SEVIRI is still operational at a time of 

writing and accompanied, in multispectral content, by GOES and HIMAWARI 3rd 

generation series, all of which are capable of EVOSS-style operations worldwide.  
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For (ii) polar satellites that provided daily revisits were exploited. In particular 

MODIS onboard Terra and Aqua, as well as Advanced Very High-Resolution Radiometer 

(AVHRR) onboard NOAA. In addition to these, Visible Infrared Imaging Radiometer Suite 

(VIIRS), also operated by NOAA with comparatively moderate-to-high spatial resolution 

(375-750 m) and global coverage twice daily, can be added to this category, as it has 

capability of detecting volcanic hot-spots and fires, among similar targets (Faruolo et al., 

2020). Although, Landsat 8 and MSI’s Sentinel-2A and 2B would greatly contribute and 

improve both spatial and spectral resolution thermal analyses.  

From the work presented in this thesis, the EVOSS-style thermal procedures (i.e., 

radiant and mass fluxes) remain relevant and with significant scope for improvement. The 

EVOSS approach prioritised high-to-very high temporal resolution data, primarily 

exploiting instruments equipped with at least one MIR and two TIR channels. Nonetheless, 

procedures including high-spatial resolution SWIR data (when available) have been 

developed for volcanic hotspot detection and computation of physical parameters, such as 

radiant and mass fluxes. Combining all these results presented in this thesis would provide 

(near) real-time and improved quality data for volcano monitoring, with a potential to 

include ground deformation and gas analyses.  

6.3 Discussion and Conclusions  

The volcano research science and the data user community have for many years 

relied on coarse spatial resolution (≥ 1 km) spaceborne data in MIR and TIR, overlooking 

the impact that input parameters, such as emissivity can have on monitoring active volcanoes 

(Chapters 2, 3 and 4). This may be driven both by lack of reliable information on emissivity’s 

behaviour with temperature and by dynamic nature of volcanic hazards, favouring higher 

repeat interval (temporal resolution) over the greater detail (spatial resolution).  

However, the large instantaneous field of view of high-temporal (low spatial) 

resolution sensors, such as SEVIRI for example tend not to favour target detection, as 

background radiance may dominate the signal from relatively small dimensions of a hot 

target on the ground (i.e., lava flow). For this reason, the approach developed in this thesis 

was not extended to geostationary platforms, as the pixels are too large and too 

heterogeneous, from the aspect of emissivity standpoint, in most non-desertic areas. 

Current operational satellite-based volcano monitoring systems appear to be lacking 

in (a) spatial resolution for volcanic products of smaller dimensions, which remains a major 

limitation for an accurate operational and tactical volcanic crises management, and (b) 
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appropriate input parameters. It has been established that the majority of studies to date use 

constant emissivity of the target from spectral libraries (e.g., ASTER GED), neglecting the 

thermal component. The need for improved methods for deriving appropriate and accurate 

emissivity data, proposed in this thesis is driven by its demonstrated variation with 

wavelength and temperature (Chapter 2), as well as the variation with composition (Chapter 

5).  

The accuracy of spaceborne thermal estimates and computation of apparent surface 

temperatures relies on these input parameters, which affect subsequent analyses that rely on 

the accuracy of this measurement.  

As pixels can also be occupied by more than one temperature component (and 

emissivity), an analytical (sub-resolutions) approach is commonly used to resolve effective 

temperatures. Therefore, sensors with high-spatial resolution SWIR data are most 

appropriate for monitoring applications (Chapters 3 and 4), as these they can provide 

improved information to constrain thermal phenomena and estimates related to volcanic 

radiant heat (and mass) flux, as well as other applications (Schroeder et al., 2016). 

Landsat-class instruments, complemented by missions of similar scope, such as 

Sentinel-2, as well as VIIRS are characterized by relatively high-spatial resolution (30, 20 

and 375 m respectively). Temporal resolution of these platform may vary from 16 days to 

twice daily but if incorporated, they have the potential of transforming an EVOSS-style data 

acquisition and analyses and improve volcano monitoring efforts. Collectively, the 

integration of appropriate available instruments can provide satellite-based spatially refined 

array of data at sufficient temporal and spatial resolutions to provide an improved support 

for volcanic hazard assessment and risk mitigation.  

A multi-sensor data approach, integrating IR observation from different spaceborne 

platforms, including SWIR data has been suggested to improve information for an individual 

target (Plank et al., 2019) and detection (e.g., Hotmap) of set of targets (Murphy et al., 2016). 

Nonetheless, although previously proposed (Marchese et al., 2019; Murphy et al., 2016), it 

appears that no operational system is currently actively using high-spatial resolution SWIR-

based data for volcano monitoring tasks or automated web-based volcanic detection systems, 

which could constrain MIR-TIR uncertainty for moderate-to-high-temporal, large pixel data 

(>1 km) to better interpret the thermal signals.  

Solitary high-spatial resolution images have been used here (Chapters 3 and 4) to assess 

uncertainty in radiant heat flux produced by moderate-to high resolution instruments. It is 

however beneficial to exploit the enormous amount of currently available high-temporal 
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resolution baseline data to quantify the natural variability of the volcanic systems under 

investigation, as solitary ‘snap-shot’ data alone cannot produce the temporal detail needed 

to track and monitor dynamic volcanic activity.  

Fully automated procedures currently available for (near) real-time volcano 

monitoring at high refresh rate is considered mandatory for maintaining consistent and 

reliable processing. On the other hand, fully automated processing of high-spatial resolution 

data may not be viewed as essential, given the acquisition rates (5-16 days). However, 

assimilation of results from these platforms would further improve efficiency and constrain 

multi-platform data uncertainty. This proposed tactical global volcano monitoring 

integration for automated high- moderate-to-low spatial resolution routines, previously 

operating (Ferrucci and Hirn, 2016; Tait and Ferrucci, 2013; Hirn et al., 2010, 2008), 

complete with updated information on input parameters (Chapters 2 and 5) can improve the 

strategic EO and monitoring efforts.  

Building on findings presented in this thesis both on emissivity behaviour with 

temperature and its impact on spaceborne and modelling applications, a methodology 

expansion is proposed to enhance the existing monitoring networks. Integration of IR 

satellite sensors currently available in SWIR-MIR-TIR bands would improve monitoring 

capabilities to characterize volcanic activity with an exceptional level of accuracy and detail. 

The multi-sensor approach would provide a joint contribution to investigate, monitor and 

characterize thermal volcanic activity, where high-to-moderate temporal resolution data 

(e.g., SEVIRI, MODIS) allows detection and onset of eruption, and high-spatial resolution 

data (e.g., Landsat-8 OLI, MSI Sentinel-2) would refine geometry and detail of active flow 

advance. Although extensively assessed solely for Mt Etna in this thesis, input parameters 

for other volcanoes (Chapter 5) appear to be sufficiently stable in MIR and TIR wavelengths, 

thus expected to be applicable globally. Nonetheless, further assessment using laboratory 

and RS applications should be applied to a wider range of volcanic targets to confirm and 

validate this claim.  

The concept of an EVOSS-style volcano monitoring system (Ferrucci et al., 2014; 

Tait and Ferrucci, 2013; Theys et al., 2013) outlined in Section 6.2 is paralleled with previous 

work on multi-platform, multi-payload high-temperature RS (Ferrucci and Hirn, 2016; 

Harris, 2013a; Hirn et al., 2010, 2009, 2008; Oppenheimer, 1993; Rothery et al., 1988). The 

existing gap in thermal RS procedures and uncertainty involving computation of radiant heat 

fluxes related to accuracy of spaceborne input parameters has been highlighted in this thesis. 

This can be rectified by an automatic processing of high-to moderate and low spatial 
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resolution payloads, acquiring appropriate emissivity through radiance-temperature links, 

according to ‘look-up’ tables or applying the ‘laws’ presented here for quantitative sub-

resolution processing. This will ensure coverage in both high-temporal and high-spatial 

resolutions.  

Remote analyses of the radiant heat flux conversion to mass flux requires a priori 

knowledge of several specific site dependent parameters (Wright et al., 2001), as does the 

‘distance-to-run’ approach (Kilburn, 2015, 1996; Calvari and Pinkerton, 1998), thus these 

approaches may remain a semi-quantitative estimate, based on average behaviour of molten 

lavas. 

Therefore, furnished with improved input parameters (multicomponent emissivity), the 

novel approach presented in this thesis can be tested fully by an improved version of an 

unsupervised EVOSS-style, multi-payload, multi-parameter volcano monitoring and 

modelling system. This is currently within reach for Mt Etna with a potential for global 

application, leveraging the sustainable data provision in the very long term by three major 

meteorological agencies (Eumetsat, JMA and NOAA), as well as the high-resolution USGS 

and Copernicus polar observing systems. 
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8 Appendices 

8.1 Appendix A: Surface variation: Rough vs Smooth 

Naturally occurring ‘rough’ vs cut ‘smooth sample surfaces 

In an attempt to confirm the hypothesis that samples’ surface mineralogy is 

responsible for different spectral shapes observed (Section 2.3.3, Fig. 2.8 – Fig. A2.1 

repeated here), thin sections for NRE.1.4 samples’ naturally occurring ‘rough’ and cut 

‘smooth’ surfaces were created to help identify features (Fig. A2.1 b & d) and clarify the 

cause of spectral discrepancy observed for the same samples’ surface types.                     

‘Absolute’ Emissivity for NRE.1S at 343 K 

 

Figure (2.8) A2.1 (a & c) An example of NRE.1S emissivity results variation for cut ‘smooth’ sample surfaces 

and (b & d) ‘naturally rough’ sample surfaces, where ‘naturally rough’ surface samples display a range of 

spectral contrast (lower emissivity) and different spectral signature shapes from that of their cut ‘smooth’ 

counterparts. 

Figure A2.2 shows an example of naturally occurring ‘rough’ (i) and (ii) cut 

‘smooth’ for NRE.1.4 sample at low magnification. Surfaces in plane polarized light (PPL) 

and in cross polarized light (XPL) are also shown. Images were taken using optical 

microscope Leica Wild MZ8, equipped with polarizing filters and rotating stage for 

geological samples. It works both in reflected and/or transmitted modes. 
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The low power view  in Figure A2.3 (a) shows that this is a fine-grained rock with 

micro phenocrysts (500-2000 𝜇m) of plagioclase and olivine (g & h), which are enclosed in 

a fine-grained (< 1 mm) groundmass of minerals typical for basalt (plagioclase feldspar, 

clinopyroxene and olivine). A higher magnification view of the same slide (f-h) show details 

of the olivine mineral. The different orientation in which olivine crystals are cut shown by 

the range of biofringence interference colours (purple blue) in cross-polarized views (f & 

h). 

 
(i) (ii) 

Figure A2.2 An example of naturally occurring ‘rough’ (i) and (ii) cut ‘smooth’ for NRE.1.4 sample at low 

magnification. 
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Figure A2.3 (a & c) An example of NRE.1S emissivity results variation for cut ‘smooth’ sample surfaces and 

(b & d) ‘naturally rough’ sample surfaces, where ‘naturally rough’ surface samples display a range of spectral 

contrast (lower emissivity) and different spectral signature shapes from that of their cut ‘smooth’ counterparts. 

Nonetheless, no firm evidence was found to confirm that the surface mineralogy for 

NRE.1.4 sample was responsible for producing inconsistent emissivity features identified. 

This may be due to the technique used (thin section), which potentially removed surface 

evidence (could not preserve it) or it could be due to insufficient expertise that I have in 

petrological investigation of geological samples.  

Although, this analysis could not confirm with confidence that the samples’ surface 

mineralogical variation may be responsible for producing the features identified in Figure 

A1 (b & d), it is evident that the shape and position of spectral signatures are markedly 

different for the two types of surfaces.  
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8.2 Appendix B: FTIR Experimental Error 

Experimental Error Data  

Data presented here shows the percentage errors associated with the data acquired at 

the University of Pittsburgh IVIS Laboratory with a FTIR spectrometer using the furnace 

experiment. (Chapter 2, Sections 2.2.5 and 2.3.5) Errors were calculated for each 

wavenumber (converted to wavelength) and account for all random and systematic errors, 

following (Ruff et al., 1997) method. 
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8.3 Appendix C: Thermal Anomalies: the 2017 Mt Etna data 

From the data of the isolated thermally anomalous pixels extracted for each 

spaceborne scene acquired between 16 March to 08 August 2017, radiances in OLI’s (Figure 

C1 a-b) and Sentinel-2A SWIR Bands (Fig. C1 c-g). These follow similar trends (Fig. C1 a-

g). SWIR and 6 and 11 (c.w. 1.61 𝜇m and 1.65 𝜇m) are plotted on the horizontal and Bands 

7 and 12 on the vertical axis (c.w. 2.22 𝜇m and 2.20 𝜇m). 

                           
                                                                            (a) 

                           
                                                                            (b)           

               
                                                                            (c)           
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                                                                 (d)                   

                              
                                                                 (e)                                                             

                  
                                                                 (f) 

                  
                                                                 (g) 

Figure C1 Spectral radiance trend(s) plotted using all isolated radiant pixels in the high-temperature thermal 

anomaly observed in (a-b) OLI’s SWIR Bands (6 and 7) and (c-g) Sentinel-2A SWIR Bands (11 and 12), 

acquired between 16 March 2017 and 08 April during the 2017 Mt Etna eruption. 
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8.4 Appendix D: Total Radiant Heat Flux: computation method 

 

The mean spectral radiance measured by a satellite sensor as a digital number (DN) 

is converted into ‘at-satellite’ spectral radiance 𝑅𝜆 . In SWIR region (1.5 and 2.5 𝜇 m) 

upwelling path radiance (𝑅𝜆,𝑈) contribution is low, whereas the surface reflected radiation 

(𝑅𝜆,𝐷)  can be estimated by subtracting the mean spectral radiance (𝑅𝜆)  value of 

surrounding, clearly non-volcanic background pixels ( bg(band) ) from the thermally 

anomalous pixels.  

Therefore, only pixels with radiance greater than (3× bg7)+ bg7 for OLI’s SWIR 

Band 7 were extracted as thermally anomalous, within the region of interest. Same approach 

is applied to both SWIR OLI’s bands (Band 6 and Band 7) and Sentinel-2A (Band 11 and 

Band 12).  

The total radiant heat fluxes (𝑄𝑟_𝑐𝑎𝑙𝑐 in W), associated with the thermally anomalous 

pixels isolated were computed using the Stephan Boltzmann Equation (Eq. 10).  

Spaceborne data were processed using three approaches; firstly by applying a 

constant emissivity, where an assumed value (e.g., 0.95 or 0.60) is applied to the entire 

thermal anomaly; and secondly, multicomponent emissivity is used, derived from very-high 

temperature laboratory FTIR data, in SWIR (Chapter 2, Section 2.3.5).  

Volcanic anomalies are unlikely to entirely fill the 30-m SWIR pixel (e.g., OLI) with 

a single source at a specific temperature, thus, two or more thermal components would likely 

be present and should be accounted for. So, after radiometric and atmospheric data 

correction, ‘dual-band’ procedure, with some modifications related to emissivity as input 

parameter were employed.  

Here, radiance data in SWIR (OLI’s Bands 6, 7 and Sentinel-2 Bands 11, 12) are 

linked to an appropriate, measured emissivity value to compute pixel integrated temperature 

(𝑇𝑖) for each band, enabling derivation of an effective temperature (𝑇𝑒) for each radiant pixel 

of the high-temperature thermal anomaly analysed (Eq. 8). This ‘thersholding’ approach, 

detailed in Figure D1 (and Fig. 3.3 in main text), uses radiant pixels segmentation to link 

specific radiance range to an appropriate emissivity value to compute pixel integrated 

temperature (𝑇𝑖). Considering that emissivity also varies as a function of wavelength, the 

absence of FTIR data at 1.65 𝜇m  and the close proximity of OLI and Sentinel-2 SWIR bands 

(1.65 and 2.20 𝜇m), similar behaviour is anticipated based on preliminary reflectance data. 
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Figure D1 (and Fig. 3.3 repeated here) A flowchart illustrating the semi-automated (steps 1-8) methods used 

to derive total radiant heat flux using high-spatial resolution data in two SWIR bands (Appendix D). 

Having obtained the Effective Temperature (𝑇𝑒) for each radiant pixel, the remotely 

sensed radiant heat flux (𝑄𝑟_𝑐𝑎𝑙𝑐) was computed (Eq. 10).  

 

The code presented here (courtesy of S. Eriksen, personal communication), was used to 

compute total radiant heat fluxes from the extracted radiant pixels (ENVI+IDL). The code 

was created in Jupyter Notebook, running on Python 3 platform.  

 

Notes: 

Starting equations of note; 

𝑅𝐴,𝑡ℎ𝑒𝑟𝑚𝑎𝑙=𝜏𝐴[𝑓ℎ𝐿(𝜆𝐴,𝑇ℎ)+(1−𝑓ℎ)𝐿(𝜆𝐴,𝑇𝑐)] 

𝑅𝐴,𝑡ℎ𝑒𝑟𝑚𝑎𝑙=𝜏𝐵[𝑓ℎ𝐿(𝜆𝐵,𝑇ℎ)+(1−𝑓ℎ)𝐿(𝜆𝐵,𝑇𝑐)] 

𝑅𝐴,𝑡ℎ𝑒𝑟𝑚𝑎𝑙=𝜏𝐶[𝑓ℎ𝐿(𝜆𝐶,𝑇ℎ)+(1−𝑓ℎ)𝐿(𝜆𝐶,𝑇𝑐)] 

 

Modified equations used here to cteate the code have been shown and discussed in the main text (Chapter 1) 

Equation 1: 

𝐿𝜆,𝑇

𝜀 × 𝐶1 × 𝜆−5

𝜋 × (𝑒
𝐶2

𝜆×𝑇𝑖 − 1)

 

Equation 2: Surface fraction 

𝑓ℎ =
𝐾 − 𝐿(𝜆, 𝑇𝑐)

𝐿(𝜆, 𝑇𝑚𝑒𝑙𝑡) − 𝐿(𝜆, 𝑇𝑐 𝑚𝑖𝑛)
 

𝐾 =
𝑅

𝜏
 

Equation 3: Integrated Temperature 

𝑇𝑖 =
𝐶2

𝜆 × ln (
𝜏𝜀𝐶1

𝜋𝜆−5𝑅
+ 1)
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Equation 4: Effective Temperature: 

𝑇𝑒 = [𝑓ℎ × 𝑇ℎ
4 + (1 − 𝑓ℎ)𝑇𝑐

4]
1
4 

         
where, 
 𝜏 = atmospheric spectral transmission coefficient 
 𝑓ℎ = surface fraction 
 𝜀 = emissivity of radiative surface 
 𝐶𝑥 = constants 
 𝑇 = temperature (K) 

 𝑅 = thermal radiance 
 
 

*Table D1 Emissivity-temperature ‘Look-up’ table 

using ‘therholds’ approach for OLI and Sentinel-2 input parameters in SWIR 

𝝀 (𝝁m) Mode *773 823 873 923 973 1023 1073 1123 1173 1223 1273 1323 1373 

1.65 𝜀FTIR 0.80 0.87 0.83 0.84 0.86 0.81 0.81 0.78 0.82 0.78 0.73 0.76 0.73 

 𝜺model 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.81 0.79 0.77 0.76 0.74 0.72 

 Error 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 Rad 2.2 4.4 8.1 14.4 23.0 35.3 51.2 71.5 101.7 131.9 162.3 215.8 271.2 

2.22 𝜀FTIR 0.80 0.87 0.83 0.84 0.86 0.81 0.81 0.78 0.82 0.78 0.73 0.76 0.73 

 𝜺model 0.83 0.83 0.83 0.83 0.83 0.82 0.81 0.80 0.79 0.77 0.76 0.74 0.72 

 Error 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 Rad 4.3 7.6 11.4 17.5 25.4 33.4 44.8 56.3 75.8 90.5 104.4 130.8 151.3 

*Table 3.3 in main text repeated here for guidance on input parameters  

 
 

 

Example of input parameters (emissivity-radiance link) using ‘thresholding’ approach in the code: 
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Define global constants 

In [1]: 

#emissivity = Varied 

transmissivity = 0.95 

c_1 = 374200000.0 

c_2 = 14388.0 

t_melt = 1323.0 

 

# arbitrary small number 

epsilon = 1e-6 

 

Equations as functions 

In [2]: 

import numpy as np 

 

def L(lam, temp, emissivity): 

    """ 

    Equation 1 above 

    @param lam wavelength 

    @param temp temperature in K 

    @param emissivity 

    """ 

    numerator = emissivity * c_1 * lam **-5 

    denominator = np.pi * (np.exp(c_2 / (lam * temp)) - 1) 

    return numerator / denominator 

 

def R(lam, temp, emissivity): 

    """Not actually used 

    Equation 1 times transmissivity 

    @param lam wavelength 

    @param temp temperature in K 

    @param emissivity 

    """ 

    return transmissivity * L(lam, tempm, emissivity) 

 

def calculate_fh(K, L_lam_T_c, L_lam_T_melt): 

    """ 

    Equation 2 above 

    @param K therm / transmissivity 

    @param L_lam_T_c L(lam, T_c_min) 

    @param L_lam_5_T_melt L(lam_5, T_melt) 

    """ 

    numerator = K - L_lam_T_c 

    denominator = L_lam_T_melt - L_lam_T_c 

    return numerator / denominator 

 

def calculateTi(r_therm, lam, emissivity): 
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    """Caculate integrated temperature 

    Equation 3 above. 

    @param R_therm therm 

    @param lam wavelength 

    @param emissivity 

    """ 

    log_num = transmissivity * emissivity * c_1 

    log_den = np.pi * lam**5 * r_therm 

    if log_num/log_den < 0 : 

        return None 

    return c_2 / (lam * np.log(np.fabs(log_num/log_den) + 1)) 

 

def calculateTe(f_h, t_h, t_c): 

    """Calculate the effective temperature 

    Equation 4 above. 

    @param f_h surface fraction 

    @param t_h magmatic temperature 

    @param t_c average temperature 

    """ 

    a = f_h * t_h ** 4  

    b = (1 - f_h) * t_c ** 4 

    return (a + b) ** 0.25 

 

def calculateQ(A, e, sigma, t): 

    """Calculate total radiant flux 

    """ 

    return A * e * sigma * t ** 4 

 

def same_sign(x, y): 

    """ 

    @param x  

    @param y  

    @return True is x and y are of the same sign, else False 

    """ 

    return (x > 0 and y > 0) or (x < 0 and y < 0) 

 

def find_tc(t_c_min, t_c_max, 

           l_tmelt_A, l_tmelt_B, 

           lambda_A, lambda_B, 

           k_A, k_B, 

           fh_min_A, fh_max_A, 

           fh_min_B, fh_max_B, 

           emissivity_A, emissivity_B): 

    """Recursive approach to finding tc     

    """ 

    if abs(t_c_min - t_c_max) > epsilon: 

        t_c_mid = (t_c_max + t_c_min) / 2.0 # Calculate mid point 

        fh_A_mid = calculate_fh(k_A, L(lambda_A, t_c_mid, emissivity_A), l_tmelt_A) 
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        fh_B_mid = calculate_fh(k_B, L(lambda_B, t_c_mid, emissivity_B), l_tmelt_B) 

             

        # If the both fh are the same sign 

        if same_sign(fh_A_mid - fh_B_mid, fh_min_A - fh_min_B): 

            # True if... 

            # Case 1: Both negative; fh_B_mid > fh_A_mid and fh_B_min > fh_A_min 

            # Case 2: Both positive; fh_A_mid > fh_B_mid and fh_A_min > fh_B_min 

            # Set low point to mid point 

            fh_min_A = fh_A_mid 

            fh_min_B = fh_B_mid 

            t_c_min = t_c_mid 

        else: 

            # If False 

            # Set high point to be mid point 

            fh_max_A = fh_A_mid 

            fh_max_B = fh_B_mid 

            t_c_max = t_c_mid 

             

        # Here is the recursion 

        t_c_min, t_c_max, fh_min_A, fh_max_A, fh_min_B, fh_max_B = find_tc(t_c_min, t_c_max, 

                                                                           l_tmelt_A, l_tmelt_B, 

                                                                           lambda_A, lambda_B, 

                                                                           k_A, k_B, 

                                                                           fh_min_A, fh_max_A, 

                                                                           fh_min_B, fh_max_B, 

                                                                          emissivity_A, emissivit

y_B) 

         

    return t_c_min, t_c_max, fh_min_A, fh_max_A, fh_min_B, fh_max_B 

 

def calculateTh(lambda_A, tau_A, t_c, r_A, f_h, emissivity): 

    """Rearrange starting equations to calculate t_h 

    @param lambda_A wavelength 

    @param tau_A 

    @param t_c 

    @param r_A 

    @param f_h 

    @param emissivity 

    """ 

    l_a = L(lambda_A, t_c) 

    l_th = ((r_A / tau_A) - (1 - f_h) * l_a) / f_h 

    t_h =  (c_2 / np.pi) * np.log((emissivity * c_1 * lambda_A ** -5) / (np.pi * l_th ) + 1) 

    return t_h 
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def getEmissivity(r, band): 

    """Calculate emissivity based on radiance values 

    """ 

    if band == '6': 

        if r <= 5: 

            emissivity = 0.83 

        elif r > 5 and r <= 21: 

            emissivity = 0.83 

        elif r > 21 and r <= 51: 

            emissivity = 0.82 

        elif r > 51 and r <= 71: 

            emissivity = 0.81 

        elif r > 71 and r <= 101: 

            emissivity = 0.79 

        else: 

            print('r_6 out of range. r =', r) 

             

    elif band == '7': 

        if r <= 5: 

            emissivity = 0.85 

        elif r > 5 and r <= 15: 

            emissivity = 0.85 

        elif r > 15 and r <= 25: 

            emissivity = 0.83 

        elif r > 25 and r <= 28.50: 

            emissivity = 0.81 

        elif r > 28.50 and r <= 34: 

            emissivity = 0.80 

        else: 

            print('r_7 out of range. r =', r) 

    else: 

        print('band', band, 'not defiend') 

     

    return emissivity 

 

Handle Output CSV 

In [3]: 

import csv # slightly easier to use than xlrd 

 

def create_csv(outname): 

    """Fill a row with titles 

    NOTE will overwrite any existing csv with the same name 

    Uses global variable row_titles 

    @param outname csv output name 

    """ 

    with open(outname, 'w', newline='') as csvfile: 

        thewriter = csv.writer(csvfile, delimiter=',') 

        thewriter.writerow(row_titles) 
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def insert_row(outname, rowinfo): 

    """Just insert info on the next line 

    @param outname csv output name 

    @param rowinfo list of information to fill that row with 

    """ 

    with open(outname, 'a', newline='') as csvfile: 

        thewriter = csv.writer(csvfile, delimiter=',') 

        thewriter.writerow(rowinfo)     

 

Dual Band 

In [4]: 

def pixelDualBand(rad_A, rad_B): 

    """Original code 

    Slightly rewritten to make easier to read 

    Loop over arrays and fill a row 

    Made generic by A and B 

    @param rawA array of radient pixel values 

    @param rawB array of radient pixel values 

    """ 

 

    for i in range(rad_A.size): 

         

        # Have to reset these after each loop 

        t_c_min =  356.0  

        t_c_max = 650.0 

         

        # raw_A 

        rad_pixel_A = rad_A[i] 

        rad_thermal_A = rad_pixel_A - bg_A # subtract background to leave thermal radience 

        emissivity_A = getEmissivity(rad_pixel_A, '5') 

        ti_A = calculateTi(rad_thermal_A, lambda_A, emissivity_A) # calculate integrated temperat

ure 

        r_A_saturated = rad_thermal_A > r_A_max # Determine if saturated 

        r_A_too_small = rad_thermal_A < r_A_min # Determine if too small 

        l_tmelt_A = L(lambda_A, t_melt, emissivity_A) # Do once as used multiple times 

        k_A = rad_thermal_A / transmissivity # Do once as used multiple times 

         

        # raw_B 

        rad_pixel_B = rad_B[i]         

        rad_thermal_B = rad_pixel_B - bg_B # subtract background to leave thermal radience 

        emissivity_B = getEmissivity(rad_pixel_B, '7') 

        ti_B = calculateTi(rad_thermal_B, lambda_B, emissivity_B) # calculate integrated temperat

ure 

        r_B_saturated = rad_thermal_B > r_B_max # Determine if saturated 

        r_B_too_small = rad_thermal_B < r_B_min # Determine if too small 

        l_tmelt_B = L(lambda_B, t_melt, emissivity_B) # Do once as used multiple times 

        k_B = rad_thermal_B / transmissivity # Do once as used multiple times         
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        # Starting points 

        fh_min_A = calculate_fh(k_A, L(lambda_A, t_c_min, emissivity_A), l_tmelt_A) 

        fh_max_A = calculate_fh(k_A, L(lambda_A, t_c_max, emissivity_A), l_tmelt_A) 

         

        fh_min_B = calculate_fh(k_B, L(lambda_B, t_c_min, emissivity_B), l_tmelt_B) 

        fh_max_B = calculate_fh(k_B, L(lambda_B, t_c_max, emissivity_B), l_tmelt_B) 

 

        # Find mid point 

        # Definately could be replaced by a scipy function 

        # Halve search region each time 

        t_c_min, t_c_max, fh_min_A, fh_max_A, fh_min_B, fh_max_B = find_tc(t_c_min, t_c_max, 

                                                                           l_tmelt_A, l_tmelt_B, 

                                                                           lambda_A, lambda_B, 

                                                                           k_A, k_B, 

                                                                           fh_min_A, fh_max_A, 

                                                                           fh_min_B, fh_max_B, 

                                                                          emissivity_A, emissivit

y_B) 

         

        # Once difference < epsilon     

        # t_c = midpoint 

        t_c = (t_c_min + t_c_max) / 2.0 

        t_c_min, t_c_max = 356.0, 650.0 # Reset variables 

         

        # Determine if there is convergence 

        if min(abs(t_c - t_c_min), abs(t_c - t_c_max)) < 2*epsilon: 

            # If No Convergence 

            # ie t_c - t_c_min/max < 2*epsilon 

            # Dual band solution fails 

            f_h = 0.0 

             

            if not r_A_saturated and not r_B_saturated and not r_B_too_small: 

                # If both bands are unsaturated and rad B is not too small 

                # t_central is integrated T of band B 

                t_c = ti_B 

            else: 

                # Else set t_c to integrated T of band A 

                t_c = ti_A 

                 

        else: 

            # If Convergence 

            # Calculate fraction 

            fh_A = calculate_fh(k_A, L(lambda_A, t_c, emissivity_A), l_tmelt_A) 

            fh_B = calculate_fh(k_B, L(lambda_B, t_c, emissivity_B), l_tmelt_B) 

            f_h = (fh_A + fh_B) / 2.0 

         

        # Calculate effective temperature 
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        if f_h > 0.0: # Solution found 

            t_h = t_melt 

            t_e = calculateTe(f_h, t_h, t_c)        

        else: 

            t_e = t_c 

             

        # Calculate Q 

        q = calculateQ(A, e_q, sigma, t_e) 

             

        # Create Row 

        rowinfo = [] 

        rowinfo.append(rad_pixel_A) 

        rowinfo.append(rad_pixel_B) 

        rowinfo.append(emissivity_A) 

        rowinfo.append(emissivity_B) 

        rowinfo.append(rad_thermal_A) 

        rowinfo.append(rad_thermal_B) 

        rowinfo.append(ti_A) 

        rowinfo.append(ti_B) 

        rowinfo.append('yes' if r_A_saturated else 'no') 

        rowinfo.append('yes' if r_B_saturated else 'no') 

        rowinfo.append('yes' if r_A_too_small else 'no') 

        rowinfo.append('yes' if r_B_too_small else 'no') 

        rowinfo.append(f_h) 

        rowinfo.append(1.0 - f_h) 

        rowinfo.append(t_c) 

        rowinfo.append(t_e) 

        rowinfo.append(q) 

     

        insert_row(outfile, rowinfo) 

 

Determine Pixel 

In [6]: 

def determinePixel(outfile, radA, radB, radC=[]): 

    """Control sequence allowing for situations where there  

    are two or three values 

    @param outfile name of csv to output 

    @param radA array of values 

    @param radB array of values 

    @param radC array of values or None 

    """ 

    global row_titles 

     

    if len(radC) > 0: 

        row_titles = ['RawA', 'RawB', 'RawC','R_A', 'R_B', 'R_C', 'T_i_A', 'T_i_B', 'T_i_C', 'R_A

_sat', 'R_B_sat', 'R_C_sat', 

                      'R_A_too_small', 'R_B_too_small', 'R_C_too_small', 'f_h', 'f_c', 'T_c', 'T_

e', 'Q'] 
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        create_csv(outfile) 

        pixelTriBand(radA, radB, radC) 

    else: 

        row_titles = ['Raw_5', 'Raw_7', 'Emissivity_5', 'Emissivity_7','R_5', 'R_7', 'T_i_5', 'T_

i_7', 'R_5_sat', 'R_7_sat', 'R_5_too_small', 'R_7_too_small', 

                      'f_h', 'f_c', 'T_c', 'T_e', 'Q'] 

        create_csv(outfile) 

        pixelDualBand(radA, radB) 

 

Running 

Dual Band 

In [7]: 

import pandas as pd 

 

data = pd.read_excel('data.xls') 

print(data) 

 

# Info is in column 5 and 6 named 'Unnamed: 5' and 'Unnamed: 6' 

# Use arrays (Can impliment most of the above in array form which will be much faster) 

rad_5 = data['Unnamed: 5'].dropna().to_numpy() 

rad_7 = data['Unnamed: 6'].dropna().to_numpy() 

 

# First 2 enteries are the titles so remove them 

rad_5_array = rad_5[2:].flatten() 

rad_7_array = rad_7[2:].flatten() 

     Unnamed: 0  Unnamed: 1  Unnamed: 2  Unnamed: 3  Unnamed: 4 Unnamed: 5  \ 

0           NaN         NaN         NaN         NaN         NaN        NaN    

1           NaN         NaN         NaN         NaN         NaN        NaN    

2           NaN         NaN         NaN         NaN         NaN        NaN    

3           NaN         NaN         NaN         NaN         NaN        NaN    

4           NaN         NaN         NaN         NaN         NaN        NaN    

..          ...         ...         ...         ...         ...        ...    

678         NaN         NaN         NaN         NaN         NaN     5.0033    

679         NaN         NaN         NaN         NaN         NaN     5.3071    

680         NaN         NaN         NaN         NaN         NaN     5.7123    

681         NaN         NaN         NaN         NaN         NaN     6.2525    

682         NaN         NaN         NaN         NaN         NaN     5.7322    

 

    Unnamed: 6   

0          NaN   

1          NaN   

2          NaN   

3          NaN   

4          NaN   

..         ...   

678     7.3846   

679     7.4208   

680     8.1217   
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681    10.1023   

682     8.8158   

 

[683 rows x 7 columns] 

 

Set parameters for Bands 5 and 7 ETM+ (6 and 7 OLI or 11 and 12 Sentinel-2) 

In [8]: 

lambda_A = 1.65; r_A_min = -7.67183; r_A_max = 92.90148; bg_A = 1.5 

lambda_B = 2.22; r_B_min = -2.58582; r_B_max = 31.31277; bg_B = 1.5 

 

# Not sure what to set these to 

e_q = 1  

sigma = 0.0000000567 

A = 900 

 

outfile = 'output2.csv' 

 

determinePixel(outfile, rad_5_array, rad_7_array) 

In [9]: 

xl = pd.read_csv('output2.csv') 

print(xl) 

       Raw_5    Raw_7  Emissivity_5  Emissivity_7      R_5      R_7  \ 

0     8.8016  10.4282           0.6           0.6   7.3016   8.9282    

1    17.1888  23.5415           0.6           0.6  15.6888  22.0415    

2    34.5969  31.3130           0.6           0.6  33.0969  29.8130    

3     9.2989  14.1339           0.6           0.6   7.7989  12.6339    

4    62.1923  26.6192           0.6           0.6  60.6923  25.1192    

..       ...      ...           ...           ...      ...      ...    

667   5.0033   7.3846           0.6           0.6   3.5033   5.8846    

668   5.3071   7.4208           0.6           0.6   3.8071   5.9208    

669   5.7123   8.1217           0.6           0.6   4.2123   6.6217    

670   6.2525  10.1023           0.6           0.6   4.7525   8.6023    

671   5.7322   8.8158           0.6           0.6   4.2322   7.3158    

 

          T_i_5       T_i_7 R_5_sat R_7_sat R_5_too_small R_7_too_small  \ 

0    643.947170  546.617225      no      no            no            no    

1    682.496010  591.717077      no      no            no            no    

2    724.845970  608.495346      no      no            no            no    

3    647.095758  563.105011      no      no            no            no    

4    763.320702  598.863356      no      no            no            no    

..          ...         ...     ...     ...           ...           ...    

667  610.820875  528.051308      no      no            no            no    

668  614.399985  528.315293      no      no            no            no    

669  618.809788  533.177913      no      no            no            no    

670  624.154234  544.908287      no      no            no            no    

671  619.016827  537.586478      no      no            no            no    

 

          f_h       f_c         T_c         T_e             Q   
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0    0.000000  1.000000  546.617225  546.617225  4.555739e+06   

1    0.002038  0.997962  497.474883  509.462309  3.437746e+06   

2    0.000000  1.000000  608.495346  608.495346  6.996077e+06   

3    0.001001  0.998999  502.730938  508.536652  3.412830e+06   

4    0.000000  1.000000  598.863356  598.863356  6.563516e+06   

..        ...       ...         ...         ...           ...   

667  0.000450  0.999550  477.936442  481.013118  2.731827e+06   

668  0.000493  0.999507  469.155423  472.712020  2.548075e+06   

669  0.000544  0.999456  474.503798  478.296747  2.670640e+06   

670  0.000604  0.999396  499.147275  502.752761  3.260194e+06   

671  0.000542  0.999458  488.757341  492.207850  2.995158e+06   

 

[672 rows x 17 columns] 
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8.5 Appendix E:  Mt Etna ‘Standard’emissivity-temperature trends 

Mt Etna ‘standard’ input parameters 

Using all available FTIR data for the three Mt Etna eruptions investigated (2001, 

2002-2003 and 2017), allowed creation of a ‘standard’ (mean) emissivity-temperature 

spectral signatures (Fig. E1). from these trends and ‘look-up’ tables (Tables E1 and 5.2 in 

main text) were extracted in SWIR (2.22 𝜇𝑚), MIR (3.98𝜇𝑚) and TIR (11.0 𝜇𝑚 and 12.0 

𝜇𝑚) wavelengths which can be applied to spaceborne multi-platform analyses for Mt Etna 

(e.g., OLI, Sentinel-2A, MODIS). 

Table E.1 Mt Etna ‘standard’ Emissivity-Temperature Trends 

SWIR (2.20 𝝁m) 

 

MIR (3.98 𝝁m) 

 

TIR1 (11.0 𝝁m) 

 

TIR2 (12.0 𝝁m) 
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8.6 Appendix F:  Variation driven by the composition 

 
To assess wider applicability of multi-component emissivity-temperature behaviour, 

developed here for the trachy-basaltic Mt Etna, two additional and distinctly different sites 

were considered; an andesitic subduction volcano, Lascar (Chile) and an intraplate tholeiitic 

basalt volcano, Kilauea (Hawaii).  

Figure F1 shows measured and modelled emissivity-temperature data for Mt Etna 

(‘standard’ mean), Lascar volcano, Chile (sample courtesy of S. Self, OU, U.K.) from a 1993 

lava and Kilauea (Hawaii) for sample obtained from the February 2018 Puu Oo lava coastal 

plain lava flow field (data courtesy of J.  O. Thompson, the IVIS Laboratory, University of 

Pittsburgh). Modelled only results are shown in the main text (Table 5.2). Figure 5.7 in main 

text is repeated here for clarity showing distinct compositional trends identified for trachy-

basalt (Mt Etna), andesite (Lascar) and basalt (Kilauea) from modelled data (Table F1 and 

5.7). 

Table F1 measured and modelled emissivity comparison: Mt Etna – Lascar – Kilauea 

Temperature (K) 773 823 873 923 973 1023 1073 1123 1173 1223 1273 1323 1373 

MIR Mt Etna FTIR 0.750 0.740 0.736 0.714 0.682 0.670 0.641 0.613 0.606 0.572 0.526 0.526 0.485 

MIR Mt Etna model 0.758 0.741 0.725 0.707 0.688 0.667 0.645 0.621 0.596 0.571 0.543 0.514 0.483 

MIR Lascar FTIR 0.727 0.708 0.702 0.675 0.636 0.628 0.584 0.554 0.530 0.495 0.451 0.432 0.402 

MIR Lascar model 0.735 0.710 0.687 0.663 0.635 0.613 0.585 0.557 0.523 0.493 0.460 0.423 0.390 

MIR Kilauea FTIR 0.727 - 0.703 - 0.669 - 0.627 - 0.621 - 0.506 - 0.516 

MIR Kilauea model 0.730 - 0.700 - 0.670 - 0.630 - 0.590 - 0.540 - 0.490 

TIR1 Mt Etna FTIR 0.965 0.959 0.956 0.951 0.945 0.943 0.936 0.934 0.925 0.922 0.918 0.908 0.904 

TIR1 Mt Etna model 0.964 0.959 0.956 0.951 0.946 0.942 0.937 0.932 0.927 0.921 0.916 0.910 0.904 

TIR1 Lascar FTIR 0.951 0.938 0.933 0.922 0.914 0.910 0.893 0.888 0.865 0.854 0.852 0.816 0.813 

TIR1 Lascar model 0.944 0.937 0.929 0.921 0.912 0.901 0.890 0.878 0.866 0.852 0.837 0.822 0.806 

TIR1 Kilauea FTIR 0.893 - 0.888 - 0.877 - 0.867 - 0.857 - 0.877 - 0.850 

TIR1 Kilauea model 0.893 - 0.885 - 0.877 - 0.870 - 0.864 - 0.860 - 0.856 

TIR2 Mt Etna FTIR 0.972 0.967 0.964 0.958 0.953 0.950 0.944 0.941 0.934 0.930 0.923 0.917 0.912 

TIR2 Mt Etna model 0.972 0.967 0.963 0.959 0.955 0.950 0.945 0.940 0.934 0.929 0.923 0.917 0.912 

TIR2 Lascar FTIR 0.966 0.957 0.955 0.945 0.938 0.935 0.920 0.915 0.898 0.888 0.882 0.854 0.848 

TIR2 Lascar model 0.964 0.959 0.953 0.947 0.940 0.931 0.922 0.911 0.901 0.888 0.875 0.861 0.846 

TIR2 Kilauea FTIR 0.908 - 0.902 - 0.890 - 0.879 - 0.870 - 0.879 - 0.855 

TIR2 Kilauea model 0.908 - 0.899 - 0.890 - 0.883 - 0.874 - 0.867 - 0.860 
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8.7 Appendix G:  Publication: (Rogic et al., 2019a) 
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8.8 Appendix H:  Publication: (Rogic et al., 2019b) 
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