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Abstract

Well recommended methods of forming confidence intervals for discrete distributions

parameter give interval estimates that do not actually meet the definition of a confi-

dence interval, in that their coverage is sometimes lower than the nominal confidence

level. The methods are favored because their intervals have a shorter average length

than the exact method, whose intervals really are confidence intervals. Comparison

of such methods is tricky as the best method should perhaps be the one that gives

the shortest intervals (on average), but when is the coverage of a method so poor it

should not be classed as a means of forming confidence interval.

As the definition of a confidence interval is being flouted, a better criterion for form-

ing interval estimates for discrete distributions parameters is needed. The aim of this

thesis is to suggest a new criterion: methods that meet the criterion are said to yield

locally correct confidence intervals. We propose a method that yields such intervals

and proves that its intervals have a shorter average length than those of any other

method that meets the criterion. We refer to the new estimator as the optimal locally

correct method or just the OLC method. The thesis begins by applying the new cri-

terion and method to the binomial parameter. Then we extend the method so as to

obtain locally correct confidence intervals for parameters of the Poisson distribution

and the negative binomial distribution.
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Constructing a confidence interval for a scaler parameter is one of the most

common analyses in statistical inference. When the interval is determined by

a sample statistic X, we let li and ui denote the lower limit and the upper

limit of the confidence interval when X = i. Before the value of x is observed,

the confidence interval is a random quantity and the probability that it will

contain the true value of the scalar parameter is referred to as its coverage.

This coverage may depend upon the true value of the scalar parameter and

will depend on the method used to form the confidence interval.

We will distinguish between two situations. Firstly, obtaining a confidence in-

terval when sampling is from a continuous distribution, such as a normal dis-

tribution. This is relatively straightforward and typically there is one method

of forming the confidence interval that is optimal. Often the method

(i) gives (1 − 2α) confidence intervals whose coverage is 1 − 2α, regardless

of the true value of the parameter of interest.

(ii) gives intervals that are as short as possible, subject to (i) holding.

The second case is where sampling is from a discrete distribution. Sampling

from binomial, Poisson and negative binomial distributions are the most com-

mon examples and are the ones considered in this thesis. The difficulty in

this task stems from the discrete nature of the sample space, which leads to

sharp fluctuations in the coverage probability for different values of the dis-

tribution parameter. This is illustrated in the top graph of Figure 1.1, which

gives the coverage for an upper one-sided confidence interval for the binomial

proportion p for one method of forming confidence intervals for discrete dis-

tribution (the mid-p method). The coverage is plotted as the blue line in

Figure 1.1. The coverage of an upper one-sided interval is calculated as the

Pr(p < ui) =
∑n

x=i Pr(X = x|p), for i = 0, . . . , n, where sampling is from
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a binomial (n, p) distribution. The coverage increases monotonically as p in-

creases from ui−1 to ui but when p moves from being just less than ui to being

just greater than ui, the coverage suddenly drops. That is, the coverage plot

has spikes at u0, u1, . . . , un. They occur because for any point of p, say p0, just

less than ui, the coverage probability is Pr(p < ui) =
∑n

x=i Pr(X = x|p = p0),

while for any other point of p, say p∗, just greater than ui, the coverage prob-

ability is Pr(p < ui) =
∑n

x=i+1 Pr(X = x|p = p∗). So the difference between

the coverage of the point p0 just before ui, and the coverage of the point p∗

just after ui, is Pr(X = i|p = ui). This probability gives the size of the spikes.

It does not equal zero in the case of a discrete distribution and this happens

at each ui. When the sampling distribution of x is continuous (rather than

discrete), the probability that the upper limit exactly equals any specfied value

is zero, so there are no sharp changes in coverage.

To give a specific example, we take the mid-p method for a binomial propor-

tion p. Suppose that we have 15 trials and that the upper one-sided limit

of a 97.5 % interval for p is required. When x = 4, the value of u4 (cor-

rect to 4 decimal places) is u4 = 0.5253. The coverage probability increases

from u3 to u4, reaching the highest point of a spike at u4. When p0=0.5252,

Pr(p0 < ui) =
∑15

x=4 Pr(X = x|p = 0.5252) ' 0.9892959. When p∗ =0.5254,

Pr(p∗ < ui) =
∑15

x=5 Pr(X = x|p = 0.5254) ' 0.9607177. As Pr(p < ui) is

the coverage at p, the coverage drops sharply from p0 to p∗. It is clear that

the drop is almost identical to Pr(X = 4|p = 0.5253) ' 0.0285782. The drop

happens because there is a point mass of probability that the confidence limit

is 0.5254.

Similar features arrise with the lower-tail coverage, as can be seen in the

lower graph of Figure 1.1. (The lower endpoints are obtained by inversion

of the upper endpoints). The coverage for the one-sided lower interval is
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Pr(p > li) =
∑i

x=0 Pr(X = x|p), for i = 0, . . . , n. This coverage decreases

montonically as the value of p increases from li−1 to li, but when p moves

from being just less than li to be just greater than li, the coverage suddenly

increases.
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Figure 1.1: Coverage of upper and lower one-sided 97.5% confidence interval

for the mid-p method for a fixed sample size (n) of 10 and success parameter

p. The blue lines show the coverage.

For the common discrete distributions, a good number of methods have

been proposed for forming a confidence interval for the unknown parameters of

the distribution. This is the case for a binomial proportion p, a Poisson mean

λ and a negative binomial proportion p. A number of methods are compared

in studies by: Newcombe (1998), Swift (2009), Vollset (1993) and Brown et al.

(2001), among many others. These studies are interested in methods that aim

to form equal-tailed confidence intervals. That is, methods that obtain two-

sided confidence intervals by constructing two one-sided intervals. If (l, u) is a

(1−2α) equal-tailed confidence interval, then (l, 1) and (0, u) are one-sided (1−
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α) confidence intervals. In general, when sampling from discrete distribution

we cannot form an interval (lx, ux) for which Pr(lx ≤ p ≤ ux) equals exactly

(1 − 2α). By definition (see, for example, Bickel and Doksum (1977), pages

154-155), the random interval (lx, ux) formed by a pair of statistics lx, ux with

lx ≤ ux is a level (1 − 2α) or a 100(1 − 2α)% confidence interval for p if, for

all p,

Prp(lx ≤ p ≤ ux) ≥ (1− 2α). (1.1)

The quantity on the left of this equation is the coverage probability of the in-

terval. If a method of forming confidence intervals satisfies (1.1) we will refer

to it as a strictly correct method and say it gives correct confidence intervals.

There are several methods of forming confidence interval that have been pro-

posed that do not satisfy (1.1). We will refer to these as approximate methods

and say they give approximate confidence intervals.

Strictly correct methods have been criticised as being conservative and giving

intervals that are relatively wider than the approximate methods. Approxi-

mate methods typically give intervals that are narrower on average over the

range of the discrete distribution parameter. However, this advantage leads

to the primary disadvantage of the methods: their coverage probabilities do

not satisfy (1.1) for all values of the discrete distribution parameter. It fol-

lows that these approximate methods do not actually give (1− 2α) confidence

intervals.

For the binomial distribution, the “gold standard” method of forming an equal-

tailed confidence interval is the Clopper-Pearson method [Pearson (1924)].

This is a good example of a correct method for discrete sampling distribu-

tions. Its interval estimators meet the definition of a confidence interval but

the method suffers from conservatism and in many papers it is suggested that

its intervals are too wide [Newcombe (1998), Brown et al. (2001), Dunnigan
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(2008)]. Its conservatism is illustrated in the left-hand diagram of Figure 1.2,

which plots the coverage (blue lines) of its 97.5% one-sided upper intervals

against p for sampling from a binomial (15, p) distribution. In the plot, the

saw-tooth pattern results from the discrete nature of the sample space and

arises with any method of forming a confidence interval for discrete distribu-

tion parameters as discussed before. It is clear that the coverage is commonly

above 98.5%, sometimes exceeding 99.5%. The right-hand diagram of Fig-

ure 1.2 shows the coverage of the Wald method, which is an example of an

approximate method. Its intervals do not meet the definition of a confidence

interval (for many values of p the coverage is below 97.5%) but it gives narrower

intervals. The coverage of the Wald method tends to be liberal for small values

of p and conservative for large values. Many other methods of forming equal-

tailed confidence intervals for a binomial proportion have been proposed, for

example, Wilson method [Boomsma (2005)] , Agresti-Coull method [ Brown

et al. (2002)] and mid-p method [Berry and Armitage (1995)]. These aim to

avoid the drawbacks of both Clopper-Pearson and Wald methods, but while

the average lengths of their intervals are shorter than those of the Clopper-

Pearson method, they only give approximate confidence intervals that do not

meet the definition of a confidence interval.

This suggests that the definition of a confidence interval does not meet our

needs when the sampling space is discrete. Hence a new definition of an inter-

val estimate is needed. For the definition to be useful there should be some

interval estimators that:

(i) satisfy the new definition,

(ii) give sensible intervals,

(iii) give intervals with an average length that is acceptably short.
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Figure 1.2: Coverage of upper one-sided 97.5% confidence interval for the

Clopper-Pearson and Wald methods for a fixed sample size (n) of 15 and

success parameter p. Short horizontal (red) lines show the average coverage

betweeen consecutive spikes.

Given a suitable definition, attention can be restricted to methods that

meet that definition and these methods can be compared on the basis of the

width of the intervals. A reasonable criterion as to which is the best interval

estimator would be the one with the shortest average length when averaged

over the probability scale with each value of p equally likely.

The main challenge is to find an appropriate definition. We propose a new

definition that reflects the saw-tooth pattern of coverage that is shown in

Figure 1.2. Our new definition is that, for one-sided intervals, the average

coverage between any pair of consecutive spikes must equal or exceed the nom-

inal level (1−α). Methods of forming intervals that meet this definition will be

referred to as locally correct methods and the intervals will be termed locally

correct confidence (LCC) intervals. In Figure 1.2, short horizontal (red) lines
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show the average coverage between pairs of consecutive spikes. It is clear that

Clopper-Pearson intervals are LCC intervals while those given by the Wald

method are not. The new definition leads us to propose a new method of con-

structing locally correct confidence intervals for a binomial proportion. The

method yields intervals with smaller average length than any other method

that gives locally correct confidence intervals. We refer to the new method as

the optimal locally correct method or just the OLC method. We then extend

the method so as to obtain locally correct confidence intervals for parameters

of the Poisson distribution and the negative binomial distribution.

This thesis consists of seven chapters. After this introductory chapter, Chapter

2 first gives a brief literature review of general methods of forming a confi-

dence interval for discrete sampling distributions. Then we discuss some of

the well-known methods of forming confidence intervals for the binomial suc-

cess parameter p, the Poisson parameter λ and the negative binomial success

parameter p and its mean µ. In addition, the advantages and disadvantages

of the different methods are reviewed. We also discuss the overall findings in

relation to the aims of this thesis.

In Chapter 3, a precise definition of a locally correct confidence interval for

the binomial success parameter p is given. Then a novel interval estimator

that yields locally correct confidence intervals is presented and it is proved

that the new OLC estimator yields intervals with a smaller average length

than any other interval estimator that yields LCC intervals. We also examine

whether intervals given by the new estimator have the desirable properties (i),

(ii) and (iii) that are mentioned above. For (iii), which concerns the length

of the intervals, the OLC method is compared with several other methods:

Clopper-Pearson, mid-p, Wilson, Wald, Agresti-Coul and Jeffreys methods.

In Chapter 4, some general results about the new interval estimator are de-
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volped. These results hold for any discrete distribution with an unknown

scaler parameter.

In Chapter 5, a locally correct estimator for a Poisson parameter λ is intro-

duced. Compared to the binomial distribution, the Poisson distribution is

simpler as it has only one parameter λ, whereas the binomial has two param-

eters n and p. However, a complication with the Poisson distribution that

does not arise with the binomial (for fixed n) is that the range of the param-

eter λ goes to infinity. This infinite range causes a problem in calculating

OLC intervals by using the new method and we adapt the method to handle

it. We also examine if the intervals given by the OLC method seem sensible

and if their average length is acceptably short. For the latter, we compare

the OLC method with the methods for a Poisson distribution that are most

recommended: Garwood, mid-p, Wald, score and Jeffreys methods. This com-

parison is made a little bit awkward by the infinite range of the parameter λ

because it is impossible to compare the average lengths as they are infinite.

Some previous studies determine the average width in the range 0-50 for λ.

Others give more than one average width, giving an average for λ in the range

0-2, another for λ in the range 2-5 and a third for λ in the range 5-50. This

can make it difficult to select a “best” method, so instead we determine a

weighted average width, using a weight function that gives a small weight for

large values of λ and results in a finite weighted average width. This gives a

single average for the full range of λ, 0 < λ <∞.

In Chapter 6, we discuss confidence intervals for the negative binomial dis-

tribution. This distribution has two parameters (p, r), where 0 < p < 1 and

r = 1, 2, . . ., but r is known. In applications, sometimes a confidence interval

for the parameter p is required, but quite often a confidence interval is required

for the mean µ of the negative binomial distribution, where µ = r(1 − p)/p.
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We use the OLC method to calculate LCC intervals for both p and µ. The

method is compared with alternative methods and directly gives good inter-

vals.

Concluding comments are given in Chapter 7 where some directions for fu-

ture research are also considered. The material reported in Chapter 4 and

appendices A to D is largely the work of my main PhD supervisor.
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Chapter 2

Literature review
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2.1 Introduction

Interval estimation for discrete distributions has been widely discussed in the

literature for more than fifty years. This chapter aims to review the recent

literature on common methods of forming a confidence interval for discrete

distributions. The emphasis here is on methods of forming two-sided, equal-

tailed confidence intervals, for the binomial proportion p, the Poisson mean λ

and the negative binomial distribution’s proportion p and mean µ.

Methods of forming a confidence interval for the binomial proportion are re-

viewed in Section 2.2. Section 2.3 reviews the most commonly used interval

estimators of the Poisson mean λ. Confidence interval estimators for both the

negative binomial proportion p and its mean µ are considered in Section 2.4.

In Section 2.5 some concluding comments are given.

2.2 Binomial distribution confidence intervals

Constructing a confidence interval for the binomial proportion is a task that

has attracted much attention in the literature. Many methods of constructing

such intervals have been proposed and compared in applied studies. The

methods are often classified in the literature as exact methods and approximate

methods, but there are two interpretations of the term “exact”. As Newcombe

(1998) mentioned, a method is somtimes called an exact method if

(i) it is based on exact sampling distributions, such as binomial or Poisson,

not on any asymptotic approximation.

And sometimes it is called an exact method if

(ii) it attains confidence intervals with a coverage probability equal to or
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greater than the nominal level 1− α for all values of p.

Both the Clopper-Pearson and mid-p methods, which will be discussed in

more detail in the next section, are exact in sense (i) but only the Clopper-

Pearson is exact in both the senses (i) and (ii). For clarity, throughtout this

thesis we will refer to a method as “exact” if it is exact in sense (i). We

refer to a method as “correct” if it is exact in sense (ii). Similarly, in the

literature a method is sometimes described as approximate because it is based

on asymptotic approximation, and somtimes because its average is a little

lower than the nominal confidence level for some parameter values. In this

thesis we differentiate between the cases as follows.

(i) If the method gives confidence intervals that are based on an asymptotic

approximation, we refer to it as an asymptotic method.

(ii) If the confidence intervals do not have a coverage probability that is

equal to or greater than the nominal level 1 − α for all values of p, we

refer to the method as an approximate method.

The Wald, Wilson and Agresti-Coull methods, which will be discussed in

details in Section 2.2.2, are asymptotic methods while both the mid-p and

Jeffreys methods are exact methods, but they all are approximate methods.

When the sample size is large, asymptotic methods can achieve good accu-

racy. The approximate confidence intervals are calculated using the normal

approximation to the binomial distribution.

Most of the methods described in Sections 2.2.1 and 2.2.2 are compared in

studies by Newcombe (1998), Pires and Amado (2008), Ghosh (1979) and

Vollset (1993). Comparison is generally made in terms of coverage probability

and average width. Both coverage probability and average width are sensible

criteria as high coverage and narrow intervals are desirable qualities. In Sec-
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tions 2.2.1 and 2.2.2, the methods that are most widely used in practice are

discussed. We are interested in reviewing methods that give two-sided inter-

vals with equal-tails, as equal-tailed intervals are much preferred in practice.

Desirable properties in methods of forming confidence regions are described

in Section 2.2.4. We briefly review methods that do not aim to give two-sided

confidence intervals with equal-tails in Section 2.2.5.

2.2.1 Correct methods

2.2.1.1 Clopper-Pearson method

Clopper and Pearson (1934) gave an exact method of forming two-sided con-

fidence interval for a proportion p by inversion of the equal-tailed binomial

test of the null hypothesis H0 : p = p0 against the alternative hypothesis

H1 : p 6= p0. The interval contains all values of p that are not rejected by the

test for a nominal confidence level (1 − α). Hence, if X is a binomial (n, p)

random variable with probability density

f(x|n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n,

then the lower limit, li, satisfies

n∑
x=i

(
n

x

)
(li)

x(1− li)n−x = α (2.1)

and the upper limit, ui, satisfies

i∑
x=0

(
n

x

)
(ui)

x(1− ui)n−x = α (2.2)

except that l0 is set equal to 0 and un is set equal to 1.
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Clopper-Pearson is an exact method as it is based on the exact cumula-

tive probabilities of the binomial distribution. Of the methods we consider,

it is the only one that is correct; it strictly meets the definition of a method

for forming confidence intervals and satisfies equation (1.1). A number of re-

searchers (e.g. Pearson (1924) and Brown et al. (2001)) showed that because

of the relationship between the cumulative binomial distribution and a beta

distribution, Clopper-Pearson confidence intervals can be written in terms of

quantiles of the beta distribution. If [lcp(x), ucp(x)] is the (1 − 2α) confidence

interval given by the Clopper-Pearson method, then lcp(x) is the α quantile of

a Beta (X,n−X + 1) distribution and ucp(x) is the (1− α) quantile.

The Clopper-Pearson interval is treated as a“ gold-standard” method among

the methods for forming confidence interval [Leemis and Trivedi (1996), Jo-

vanovic and Levy (1997)] because it guarantees that the coverage probability is

always equal to or greater than the nominal confidence level and gives shorter

intervals than any other method of forming equal-tailed intervals that has this

property. It is simple computationally and has been implemented in almost all

statistical software packages. However, for almost all values of p, the coverage

probability of its intervals is larger than the nominal level, which means that

it suffers from conservatism [Newcombe (1998), Brown et al. (2001), Dunnigan

(2008)]. It is clear in the top graph of Figure 2.1, which plots the coverage

of its 97.5% one-sided upper intervals against p for sampling from a binomial

(20, p) distribution, that the coverage is noticeably above 99 % almost all the

time, sometimes exceeding 99.5%.
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Figure 2.1: Coverage of upper one-sided 97.5% confidence interval for the

Clopper-Pearson, mid-p and Jeffreys methods for a fixed sample size (n) of 20

and success parameter p.

A conservative interval is wider than neccessary, so a common criticism of

Clopper-Pearson intervals is that they are too wide. This is reflected in the

number of approximate methods that have been proposed that give shorter

intervals than the Clopper-Pearson method. Some of these methods are de-

scribed in the following sub-sections.

2.2.2 Approximate methods

Neither the mid-p nor Jeffreys methods meet the definition of the confidence

interval in equation (1.1) but both are exact as they do not use asymptotic

approximations. The mid-p method reduces conservatism by using half of the

probability of the observed result, while Jeffreys method is a Bayesian credible

interval that uses a Beta (1
2 ,

1
2) distribution as the prior distribution.
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2.2.2.1 Mid-p method

To avoid the conservatism of the Clopper-Pearson method, Lancaster (1961)

suggested the mid-p method (Berry and Armitage (1995); Mehta and Walsh

(1992)). This method is similar to the Clopper-Pearson method except that

it halves the probability of the observed result. Specifically, to construct the

confidence interval (li, ui), the lower limit is chosen to satisfy

Pr(X > i|li) +
1

2
Pr(X = i|li) = α (2.3)

and the upper limit satisfies

Pr(X < i|ui) +
1

2
Pr(X = i|ui) = α (2.4)

except that lo = 0 when x = 0 and un = 1 when x = n, as otherwise the

coverage is 0 for p < pl and p > pu (Agresti and Gottard, 2005).

The mid-p method reduces the conservatism of the Clopper-Pearson method,

but it no longer guarantees that the minimum coverage is at least as large as

the nominal level (1− α). It is clear in the middle graph of Figure 2.1, which

plots the coverage of 97.5% one-sided upper interval for the mid-p method for

a bin (20, p) distribution, that the spikes spread fairly regularly around the

nominal level. This method still tends to be slightly conservative, but much

less than the Clopper-Pearson method. Agresti and Gottard (2007), New-

combe (1998), Agresti and Coull (1998) and Brown et al. (2001) recommend

the mid-p for practical purpose as it has good coverage (generally close to the

nominal level) and good length performance.
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2.2.2.2 Jeffreys method

Jeffreys method is a Bayesian approach. A significant difference between this

approach and the classical approach is that in the Bayesian approach the popu-

lation parameter, p, is considered to be a random varaible while in the classical

approach p is considered to be a fixed unknown constant. Beta distributions

are the conjugate priors for binomial distributions so it is quite common to

use Beta priors for inference on p (Berger, 1985). The Jeffreys intervals take

a Beta (0.5,0.5) as the prior distribution. This distribution is Jeffreys’ choice

of noninformative prior distribution for sampling from a binomial model. Its

density function is

f(p) =
1

π
√
p(1− p)

. (2.5)

Suppose that the sample consists of x successes in n trails, then the posterior

distribution for p is Beta (x+ 1
2 , n− x+ 1

2). The Jeffreys confidence interval

is the 1− 2α equal-tailed credible interval given by this posterior distribution,

except for setting l0 = 0 and un = 1 (Brown et al., 2001). Thus the 100(1 −

2α)% equal-tailed Jeffreys intervals are defined as

li = Betaα(i+ 1/2, n− i+ 1/2) (2.6)

and

ui = Beta1−α(i+ 1/2, n− i+ 1/2) (2.7)

where Betaα(i+ 1/2, n− i+ 1/2) is the α quantile and Beta1−α(i+ 1/2, n−

i+1/2) is the 1−α quatile of the Beta distribution, Beta (i+1/2, n− i+1/2)

for i = 1, . . . , n− 1.

As mentioned earlier, the endpoints of the Clopper-Pearson interval are the α

and 1−α quantiles of the Beta (X,n−X+1) distribution. It is pointed out in

Brown et al. (2001) that Jeffreys intervals are always within Clopper-Pearson

intervals, so it mitigates the conservativeness of the Clopper-Pearson interval.
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The coverage of 97.5% upper-tail intervals for the Jeffreys method is given in

the lowest graph in Figure 2.1. Its coverage is very similar to that of mid-p

intervals over most of the parameter space [0,1]. As noted in Brown et al.,

(2001, p.110):

“ Jeffreys confidence interval has an appealing connection to the

mid-p corrected version of the Clopper-Pearson “exact and correct”

intervals. These are very similar to Jeffreys confidence interval,

over most of the range, and have similar appealing properties.”

Brown et al. (2001) recommend the Jeffreys method as a serious and credible

candidate for practical use. However, it has the undesirable result that its

coverage has a fairly deep spike near p=0 and p=1. They proposed a modi-

fication to the Jeffreys method to avoid the unfortunate downward spikes in

the coverage near 0 and 1, but in this thesis we restrict our attention to the

original Jeffreys method.

2.2.3 Asymptotic methods

For large sample sizes (n), Wald, Wilson and Agresti-Coull methods are com-

monly discussed in the literature. These methods use an asymptotic approx-

imation to form the confidence interval, instead of using the discrete distri-

bution. They are approximate methods and do not meet the definition of a

confidence interval that the coverage probability should be equal to or greater

than the nominal level, 1 − 2α. However the methods generally give shorter

confidence intervals than the Clopper-Pearson method.

2.2.3.1 Wald method

The most widely used asymptotic method of forming a confidence interval for

the binomial proportion p is the Wald method. This is the method taught
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in introductory statistics courses. Agresti and Coull (1998) mention that this

standard confidence interval results from inverting the Wald large sample test

for p; that is, the interval is the set of p0 values for which H0 : p = p0 is not

rejected at the 2α significance level in favour of H1 : p 6= p0, when using the

test statistic z = (p̂− p0)/
√
p̂(1− p̂)/n. Historically, this is surely one of the

first confidence intervals proposed for any parameter (Laplace 1812, p.283).

The endpoints of Wald confidence intervals are defined as:

li = p̂− z1−α
√
p̂(1− p̂)/n (2.8)

and

ui = p̂+ z1−α
√
p̂(1− p̂)/n (2.9)

where p̂ is the point estimate of p, p̂ = i/n and z1−α is the 1 − α quantile of

the standard normal distribution.

In practice, the Wald method is commonly used because it gives intervals that

are easy to present and simple to compute. However, it produces intervals that

are too narrow when samples are small. Also, its coverage is usually far below

the nominal confidence level even for large sample sizes, especially when p is

near to 0 and 1 [e.g. Blyth and Still (1983), Vollset (1993)]. This seems clear

in Figure 2.2, as the coverage of Wald intervals tends to be liberal for small

values of p and conservative for large values, both when the sample size is

small (top graph, n=20) and when it is large (lower graph, n=200). Also, the

lower graph shows that the coverage has very slow convergence to the nominal

level as n grows.

Vollset (1993) mentioned that there are two modifications of the Wald

method that have been proposed to enhance the coverage performance. The

simpler one is a continuity correction that gives the Wald continuity correct

interval. The other one uses a different continuity correction and is given by
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Figure 2.2: Coverage of upper one-sided 97.5% confidence interval for the Wald

method for the success parameter p for (a) fixed sample size (n) of 20 and (b)

fixed sample size (n) of 200.

Blyth and Still (1983). The advantages and disadvantages of these corrections

are minor and we only examine the standard Wald method in this thesis.

2.2.3.2 Wilson (score) method

Wilson (1927) introduced an improved confidence interval that is similar to

the Wald method. The Wilson interval is based on the inversion of the score

test for p, so it is also known as the score interval. Whereas the Wald test is

based on the log-likelihood at the maximum likelihood estimate (p̂), the score

test is based on the log-likelihood at the null-hypothesis value of the parameter

(p0) (Agresti (1996); Agresti and Coull (1998)). The interval endpoints are

p =
1

1 + z2
1−α/n

(p̂+ z2
1−α/2n± z1−α

√
p̂q̂/n+ z2

1−α/4n
2). (2.10)

The score interval has favourable coverage and length properties relative

to the standard Wald interval. Brown et al. (2001) and Newcombe (1998)

compared Wald intervals with score intervals in terms of coverage probability
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Figure 2.3: Coverage of upper one-sided 97.5% confidence interval for the

Wald, Wilson and Agresti-Coull methods for a fixed sample size (n) of 20 and

sucess parameter p.
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and length. They found that the score intervals give a coverage probability

that is close to the nominal level and the intervals are acceptably short. They

recommend it over the Wald interval for all confidence intervals and sample

sizes. A plot of the coverage of 97.5% upper-tail intervals against p for a

binomial (20,p) distribution was given in the middle graph of Figure 2.3. The

coverage is a little conservative for small values of p and quite liberal for values

of p near 1, which means that it does not meet the definition of a confidence

interval. There is also a continuity corrected version of the score (SCC) interval

that is considered in Vollset (1993), but we will only examine the original score

interval.

2.2.3.3 Agresti-Coull method

The Agresti-Coull (AC) method is a comparatively new way of forming a

confidence interval. It was suggested by Agresti and Coull (1998) as a simple

adjustment to the Wald method that appreciably improves the coverage of

the 95% confidence intervals. The adjustment is to add two“successes” and

two “failures” to the sample and then use the formula for the Wald interval,

equation (2.8) and (2.9). Putting p̃ = (i + 2)/(n + 4), the endpoints of its

confidence interval are

p̃± z1−α

√
p̃(1− p̃)
n+ 4

. (2.11)

The AC interval has a reasonable minimum coverage probability on average

but its coverage is often less than the nominal level, so it also does not meet

the definition of the confidence interval and only gives approximate confidence

intervals. Figure 2.3 illustrates that this simple adjustment to the standard

Wald method reverses its tendancy to be liberal for small values of p and con-

servative for large values of p. In general, Agresti-Coull intervals are a little

more conservative than those of the score method. Both Agresti-Coull and

score intervals are centred on almost the same midpoint, p̃ = (i+ 2)/(n+ 4),
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and an Agresti-Coull interval can never be shorter than the corresponding

score interval - an Agresti-Coull interval always contains the corresponding

score interval, (Agresti and Coull, 1998). Brown et al. (2001) recommend

Agresti-Coull intervals as a simple method of forming confidence intervals for

a binomial proportion when the sample size exceeds 40.

2.2.4 Desirable properties of confidence intervals

The following properties have been proposed in the literature as desirable

attributes in a method of forming a confidence interval for the binomial pro-

portion [see, for example, Blyth and Still (1983) and Schilling and Doi (2014)].

Property 1. Interval valued. A confidence region should be an interval and

not a collection of disjoint intervals.

The remaining properties assume that the confidence region is a two-tail in-

terval. When X = x, the sample size is n and the confidence interval is 1−2α.

Denote this interval as (l(x, n, α), u(x, n, α)).

Property 2. Equivariance. As a binomail distribution is invariant under

the transformation X → n − x; p → 1 − p, a confidence interval should also

be invariant under this transformation. That is, if x generates the confi-

dence interval [l(x, n, α), u(x, n, α)], then n − x yields the confidence interval

[1− u(n− x, n, α), 1− l(n− x, n, α)] for x = 0, . . . , n.

Property 3. Monotonicity in x. For fixed n and α, the endpoints should be

increasing in x. This requires l(x + 1, n, α) > l(x, n, α) and u(x + 1, n, α) >

u(x, n, α). For example, when n = 20 and x = 7, both the upper and lower

endpoint should be greater than their corresponding values when n = 20 and

x = 6.
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Property 4. Monotonicity in n. For given x and α, there are two possi-

bilities: (a) If an additional trial resulted in success, both limits of the confi-

dence interval should increase. This requires l(x+ 1, n+ 1, α) > l(x, n, α) and

u(x+1, n+1, α) > u(x, n, α). For example when n=21 and x = 7, the endpoints

should be greater than their corresponding endpoints when n = 20 and x = 6.

(b) If an additional trial resulted in failure, x is fixed, the lower endpoint

should be non- increasing in n and the upper endpoint should be decreasing

in n. This requires l(x, n + 1, α) ≤ l(x, n, α) and u(x, n + 1, α) < u(x, n, α).

For example when n = 21 and x = 6, the lower endpoint should be less than

or equal to their corresponding values when n = 20 and x = 6 and the upper

endpoint should be less than their corresponding values when n = 20 and

x = 6.

Property 5. Nesting. If two confidence intervals have different confidence

levels then, for any given n and x, the interval with the higher confidence

level should contain the interval with the lower confidence level. Suppose we

have two confidence levels 1 − α1 and 1 − α2 with α1 < α2. Then this re-

quires (l(x, n, α2), u(x, n, α2)) ∈ (l(x, n, α1), u(x, n, α1)). For this to occur for

all confidence levels, as the level increases the lower limit for each x must be

non-increasing and the upper limit must be non-decreasing.

All the methods described earlier in this chapter give confidence intervals with-

out any disjoint points and hence have property 1. They also have property

2, the equivariance property, and property 3 the montonicity in x property.

However, while the Clopper-Pearson, mid-p and Jeffreys methods have prop-

erty 4, monotonicity in n, the Wald, Wilson and Agresti-Coull methods do

not have this property. The methods all have property 5.
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2.2.5 Other methods: Randomized confidence intervals and

unequal tails

To avoid the conservativeness of the Clopper-Pearson intervals, Stevens (1950)

suggested a randomized confidence interval. The method randomly gener-

ates a value, v say, from a uniform u(0, 1) distribution and adds this to

i, the observed number of success. The confidence interval is then deter-

mined from the value of i + v. As this is the value of a random variable

that has a continuous distribution, problem that arise with discrete distribu-

tion are avoided. Specifically, the upper point is the value of p that satisfies

(1 − v)(Pr(x < i|p)) + v(Pr(x ≤ i|p)) = α and the lower endpoint satisfies

(1 − v)(Pr(x ≥ i|p)) + v(Pr(x > i|p)) = α. These days statisticians regard

randomized inference as a tool for the mathematical convenience of achieving

exactly the confidence level with discrete data, but they do not consider actu-

ally implementing it in practice, (Agresti and Gottard, 2005). Stevens (1950)

stated,

“We suppose that most people will find repugnant the idea of

adding yet another random element to a result which is already

subject to the errors of random sampling. But what one is really

doing is to eliminate one uncertainty by introducing a new one.

The uncertainty which is eliminated is that of the true probability

that the parameter lies within the calculated interval. It is because

this uncertainty is eliminated that we no longer have to keep ‘on

the safe side’ and can, therefore, reduce the width of the interval.”

Other intervals have been designed to improve either coverage or length of the

Clopper-Pearson interval, by inverting two-sided tests that do not need to be

equal-tailed. Sterne (1954) proposed a confidence interval that inverts the ex-
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act binomial test whose acceptance region includes the most probable values of

the binomial variable. It does this by including the most probable one, then

the next most probable value, and so on until the total probability reaches

the desired confidence level. Although this approach results in nested inter-

vals that are shorter than the Clopper-Pearson interval, it sometimes produces

two separate intervals rather than one connected interval. Crow (1956) noticed

the problem of the Sterne interval and corrected it. But this modification of

Crow’s interval did not enhance the performance of the interval. To improve

performance, Blyth and Still (1983) started from the Sterne interval and, us-

ing a complicated method, constructed an interval that met further monotonic

and smooth conditions. Casella (1986) proposed a refinement procedure to the

Blyth and Still procedure, called the Blyth-Still-Casella interval. The method

is guaranteed to give the shortest exact interval, but has the strange property

that its intervals are not nested. Blaker (2000) proposed an exact nested in-

terval that is always contained in the Clopper-Pearson interval, but it is wider

than the Blyth-Still-Casella interval (Zhao, 2005).

There are other ways to handle the gap problem of Sterne’s procedure. One

of them is given by Reiczigel (2003), who simply fill the gaps by introduc-

ing a computer-intensive level-adjustment procedure to improve the Clopper-

Pearson method, but the method seems too hard to apply. Also, Schilling and

Doi (2014) presented an alternative strategy that avoids gaps in Sterne’s pro-

cedure and still produces a strict length minimizing procedure that maximizes

the coverage. It is called the LCO method, and manages to combine length

minimization with maximal coverage but, of course it gives unequal-tailed in-

tervals. Decrouez and Hall (2014) proposed a method of splitting the original

sample size n into two parts, n1 and n2 = n − n1. Usually the saw-tooth

pattern of the coverage probability is largely changed and removed, though
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this depends on the average of the means of these two subsamples.

Park and Leemis (2017) devised a confidence interval for p based on the actual

coverage function that combines several exciting approximate confidence inter-

vals. They combine five methods of forming confidence intervals that are part

of most statistical packages: the Clopper-Pearson, Wilson, Jeffryes, Agresti-

Coull methods and a method that uses the arcsine transformation (Anscombe,

1956). They found that the new combined method gave an ensemble confi-

dence interval that does not act as a good interval estimate when n is large,

but does well for small n, for example, n=10.

2.3 Poisson distribution confidence intervals

After the binomial distribution, the discrete distribution that has attracted

most attention in the literature is the Poisson distribution. A Poisson distri-

bution is simpler than the binomial distribtuion, as the latter is characterized

by the values of two parameters, n and p, whereas a Poisson has only one pa-

rameter, the mean which we denote by λ. Estimation of the Poisson mean λ is

required in a wide variety of phenomena that deal with counts of rare events,

especially in biomedical and epidemiology applications. There are fewer dif-

ferent methods of forming a confidence interval for a Poisson mean λ than for

a binomial proportion p. For only a few of these, which will be described in

the following sections, is much known about the methods. As with the bino-

mial distribution, the methods are often classified in the literature as exact

methods or approximate methods. Here the same interpretations will be used

as in the binomial section.

The data consist of a single observation of the random variable X that follow

28



the Poisson distribution with mean λ, where λ is a positive real number, so

Pr(X = x) =
e−λλx

x!
(2.12)

for x = 0, 1, 2, . . .. A (1 − α) equal-tailed confidence interval is required and

(λl, λu) is the interval that is constructed. [If more than one observation

is taken from a Poisson, the sum of the observations follows a Poisson, so

procedures to form a confidence interval based on the sum and are essentially

unchanged.]

The Garwood and mid-p methods, which will be discussed in more detail in

the next section, are exact in sense (i) but only the Garwood is exact in both

senses (i) and (ii). The Wald and score methods, which will be discussed in

details in Section 2.3.3, are asymptotic methods while both the mid-p and

Jeffreys methods are exact methods. Apart from the Garwood method, they

are all approximate methods.

Most of the methods that will be described in Sections 2.3.1, 2.3.2 and 2.3.3 are

compared in studies by Barker (2002), Byrne and Kabaila (2005), Swift (2009),

Patil and Kulkarni (2012) and Nadarajah et al. (2015). Because high coverage

and narrow intervals are desirable criteria, the comparison between methods is

based on coverage probability and average width. In Sections 2.3.1, 2.3.2 and

2.3.3, the methods that are most widely used in practice are discussed. We are

interested in reviewing methods that give two-sided intervals with equal-tails,

as equal-tailed intervals are much preferred in practice. Desirable properties

in methods of forming confidence regions are considered in Section 2.3.4. We

briefly review methods that do not aim to give two-sided confidence intervals

with unequal-tails in Section 2.4.5.
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2.3.1 Correct methods

2.3.1.1 Garwood method

A commonly used method for constructing two-sided confidence interval for

the Poisson mean λ is Garwood (1936). It is based on inverting an equal-

tailed test for the null hypothesis H0 : λ = λ0. The Garwood method is

an exact method as its intervals are constructed using the exact cumulative

probabilities of the Poisson distribution (Patil and Kulkarni, 2012).

With the Garwood method, when x = i the lower limit is given by the value

of λl such that

Pr(X ≥ i|λ = λl) =
i∑

x=0

(e−λλx)/x! = α (2.13)

and the upper limit is given by the value of λu such that

Pr(X ≤ i|λ = λu) =

∞∑
x=i

(e−λλx)/x! = α. (2.14)

In 1936, a problem with using this approach was the difficulty in computing

the cumulative Poisson probability. Garwood used the relationship

i∑
x=0

(e−λλx)/x! = Pr{χ2
v > 2λ}, (2.15)

where χ2
v is a random variable having a chi-sqaure distribution with v = 2(1 +

x) degrees of freedom (Sahai and Kurshid, 1993). Thus, we can solve the

equations

Pr(χ2
2x > 2λl) = 1− α (2.16)

and

Pr(χ2
2(x+1) > 2λu) = α (2.17)

to get the Garwood confidence limits,

λl =
1

2
χ2

2x,α (2.18)
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and

λu =
1

2
χ2

2(x+1),1−α. (2.19)

The Garwood method is an exact method, and it is the only method among the

methods considered here that is correct. It is defined as ” correct “ because

it strictly meets the defintion of a method for forming confidence intervals,

satisfying equation (1.1).

Its underlaying rationale is similar to that of the Clopper-Pearson method,

the gold standard method for the binomial case. Hence as one would expect,

the Garwood method has intervals whose coverage probability, for almost all

values of λ, is larger than the nominal level. Thus, it suffers from conservatism

[Garwood, 1936, Sahai and Kurshid,1993, Barke, 2002].

Figure 2.4 plots the coverage of its 97.5% one-sided upper interval in the

the top graph and its lower interval in the lower graph against λ for x =

0, 1, 2, . . . , 20. The coverage, for both upper and lower tails, is substantially

above 98.5% almost all the time, sometimes exceeding 99%.

Thus, although the Garwood method achieves the definition of a confidence

interval it is conservative and gives intervals that are wider than necessary.

This has led to alternative methods being suggested that are not exact in

sense (i), but which give shorter intervals than the Garwood method. Some

of these methods are described in the following subsections.

2.3.2 Approximate methods

As in the binomial case, neither the mid-p nor Jeffreys methods meet the

definition of a confidence interval in equation (1.1), but they are exact in

sense (ii) as they do not use asymptotic approximations. The mid-p method

reduces conservatism by using half of the probability of the observed result,
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Figure 2.4: Coverage of (a) upper one-sided 97.5% confidence interval in the

top graph, (b) lower one-sided 97.5% confidence interval in the lower graph

for the Garwood method for x = 0, 1, 2, . . . , 20.

while Jeffreys method forms a Bayesian credible interval starting with a non-

informative conjugate prior for the Poisson distribution.

2.3.2.1 Mid-p method

The mid-p that was used to form confidence intervals for the binomial dis-

tribution can, with slight modification, be used for a Poisson distribution.

Lancaster (1961) suggested it as a means of avoiding the conservatism of the

Garwood method (Cohen and Yang, 1994; Swift, 2009). As with the bino-

mial distribution, it halves the probability of the observed result and in other

respects is similar to the Garwood method (which has the rationale of the

Clopper-Pearson method). Thus, to construct the confidence interval [lx, ux],

the lower limit is chosen to satisfy

Pr(X > x;λ) +
1

2
Pr(X = x;λ) = α (2.20)
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and the upper limit satisfies

Pr(X < x;λ) +
1

2
Pr(X = x;λ) = α. (2.21)

(Equations (2.20) and (2.21) are essentially the same as equations (2.3) and

(2.4).)

The mid-p method reduces the conservatism of the Garwood method, but it

no longer guarantees that the minimum coverage is at least as large as the

nominal level (1 − α). The left-hand diagrams in Figure 2.5 and Figure 2.6

plot the coverage of the 97.5% one-sided upper interval and lower interval,

rescpectively, for the mid-p method. The spikes in the plots are spread fairly

regularly around the nominal level. This method still tends to be slightly con-

servative, but much less than the Garwood method. Cohen and Yang (1994)

and Swift (2009) recommended the mid-p method for practical purposes as

it has good coverage (generally close to the nominal level) and good length

performance.

2.3.2.2 Jeffreys method

Brown et al. (2003) presented Bayesian credible intervals constructed from

the non-informative Jeffreys prior, which is proportional to λ−1/2. The pos-

terior distribution of λ is λ|x ∼ Gamma(x+ 1
2 , 1) which is proper. Therefore

endpoints of the 100(1− 2α)% equal-tailed Jeffreys interval are given by

lx = Gamma(α, x+
1

2
) (2.22)

and

ux = Gamma(1− α, x+
1

2
). (2.23)

Thus lx is the α quantile and ux is the 1−α quantile of the Gamma distribution,

Gamma (x+ 1
2).

Jeffreys method gives intervals that are more liberal than the mid-p method.

This can be seen in the right-hand diagrams in both Figures 2.5 and 2.6.
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Figure 2.5: Coverage of upper one-sided 97.5% confidence intervals for the

mid-p and Jeffreys methods for x = 0, 1, 2, . . . , 20.

In particular, Jeffreys intervals have a lower coverage for small values of λ.

Brown et al. (2003) recommended the Jeffreys method as a good and credible

candidate for practical use because of its better length properties. However it

has the undesirable results that its coverage can be quite low for small values

of λ.
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Figure 2.6: Coverage of lower one-sided 97.5% confidence intervals for the

Mid-p and Jeffreys methods for x = 0, 1, 2, . . . , 20.

2.3.3 Asymptotic methods

A strand of literature suggests using the Wald and score methods, as in the

binomial distribution, e.g. (Brown et al., 2003), (Patil and Kulkarni, 2012).

These methods are a good choice for large values of λ, where they use an

asymptotic approximation to form the confidence interval. Although the meth-

ods do not meet the definition of the confidence interval, they generally give

shorter confidence intervals than the Garwood method.

2.3.3.1 Wald method

The simplest and most widely used method of obtaining the confidence in-

terval for a Poisson mean, as in the binomial case, is the Wald method. It is

introduced in a large number of introductory statistics courses. The idea of the

Wald method is to use the normal approximation to the Poisson distribution.

Its interval limits are given by Barker (2002) as

lx = x− Z1−α
√
x (2.24)
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and

ux = x+ Z1−α
√
x, (2.25)

where Z1−α is the (1−α)100% percentile of the standard normal distribution

(Liu, 2012).

In practice, the Wald method is commonly used because it gives intervals that

are easy to present and simple to compute. However, it produces intervals

that are too narrow when the value of λ is small. Also, its upper-tail coverage

usually tends to be far below the nominal confidence level at small values of

λ and close to the nominal level at large values of λ. Its lower-tail coverage

follows a similar pattern but in the opposite direction, as it tends to be far

above the nominal level for small values of λ and close to the nominal level

at large values of λ. This can be seen clearly in the top graphs of Figures 2.7

and 2.8.
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Figure 2.7: Coverage of upper one-sided 97.5% confidence intervals for the

Wald and score methods for x = 0, 1, 2, . . . , 20.
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Figure 2.8: Coverage of lower one-sided 97.5% confidence intervals for the

Wald and score methods for x = 0, 1, 2, . . . , 20.

Patil and Kulkarni (2012) mentioned that there are modifications to the

Wald method that have been proposed to enhance the coverage performance.

A simple modification is a continuity correction that gives the Wald continuity

corrected interval. Other modifications to the Wald method are given by

Barker (2002) and Khamkong (2012). The advantages and disadvantages of

these modifications are minor and we will only be interested in the standard

Wald method in this thesis.

2.3.3.2 Score method

The score method for the Poisson distribution is another method that uses a

normal approximation. Like the score method for the binomial distribution,

its interval is formed by inverting Rao’s hypothesis test for equality (Rao,

1973), which is now H0 : λ = λ0. The null hypothesis H0 is not rejected on

the basis of Rao’s score test if and only if λ0 is in the confidence interval.

Barker (2002) gives the endpoints of the score confidence interval as
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x+
z2

1−α
2
±

√
xz2

1−α +
z4

1−α
4

. (2.26)

The interval has favourable coverage and length properties in comparison

with the Wald interval. Barker (2002), Brown et al. (2003) and Patil and Ra-

jarshi (2010) compared score intervals with Wald intervals in terms of coverage

probability and length. They found that the score intervals give a coverage

probability that is close to the nominal level. Unlike the Wald method, the

upper-tail coverage of the score method tends to be a little conservative for

small values of λ and gets closer to the nominal level as the value of λ is

increased. The coverage of its lower-tail interval is somewhat below the nom-

inal level. That means the score method does not meet the definition of a

confidence interval. The coverage of both the 97.5% upper and lower tail in-

tervals given by the score method are plotted in the lower graphs of Figures 2.7

and 2.8, respectively.

Although the score method provides a major improvement in coverage com-

pared to the Wald method, it suffers from giving intervals that are a little too

long (Brown et al., 2003). Because it has sharp downward and upward spikes

for small means, Guan (2011) proposed a method that moves the score interval

to the left a little (about 0.04 units) to solve this problem. They called the

method the moved score method. However, we will only examine the original

score interval.

2.3.4 Desirable properties of confidence intervals

As noted in Section 2.2.4, a number of desirable properties in methods of form-

ing a confidence interval have been proposed. The properties assume that the

confidence region is a two-tail interval. When X = x and the confidence in-
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terval is 1− 2α, denote this interval as (l(x, α), u(x, α)).

All the methods described earlier in this section give confidence regions that

are single intervals and not a collection of disjoint intervals and so they have

Property 1. They also have Property 2, the monotonicity in x property. That

is l(x+1, α) > l(x, α) and u(x+1, α) > u(x, α). They also have the Property 3,

the nesting property: if α1 < α2, then (l(x, α2), u(x, α2)) ∈ (l(x, α1), u(x, α1)).

2.3.5 Other methods

Other methods have been designed to improve either coverage or length of

the Garwood interval, by inverting two-sided tests that do not need to be

equal-tailed. That means they do not achieve the strong condition that

Pl = Pu = α but achieve Pl + Pu = 2α, where Pl = Pr(X ≥ x|λ = lx)

and Pu = Pr(X ≤ x|λ = ux). To avoid the conservativeness of the Garwood

intervals, other researchers such as Sterne (1954), Crow and Gardner (1959),

Casella and Robert (1989), Kabaila and Byrne (2001) tried to shorten the

intervals as much as possible by using non-central confidence intervals. Sterne

(1954) used the same idea that is used with the binomial distribution, forming

a confidence interval by inverting the exact Poisson test with an acceptance

region that includes the most probable values of the Poisson variable. Thus

the interval icludes the most probable value, then the next one and so on until

the total probability reaches the desired nominal level (Swift, 2009). Crow

and Gardner (1959) considered values of λ from smallest to largest and, for

each value of λ, they found y and z values that would satisfy Pz,y(λ) ≥ 1−α,

where Pz,y(λ) = Pr(y ≥ X ≥ z|λ) (Byrne and Kabaila, 2005).

Casella and Robert (1989) gave a refinement method that works with an input

set of 1 − α confidence limits. The initial input set could be Garwood inter-
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vals, for example. The main point of the refinement method is to decrease

upper endpoints and increase lower endpoints until any movement in one of

them reduces the coverage probability to less than the nominal confidence level

(Swift, 2009). This method is considered to be a generalization of the Crow

and Gardner (1959) method.

Unlike Crow and Gardner (1959) and Casella and Robert (1989), Kabaila and

Byrne (2001) provided an algorithm that does not require refinement of an

existing confidence interval. It is a direct method as it yields endpoints of

the confidence interval that are strictly increasing functions of the observed

variable. But the interval cannot be shortened without the coverage proba-

bility falling below (1 − α). There is also Blaker (2000), who provided exact

(1− α) confidence intervals. He improved the Garwood intervals by using an

acceptability function. Garwood’s lower limits are increased while its upper

limits are decreased until the acceptability function reaches (1−α). Thus, the

resulting intervals are a smaller subset nested within the Garwood intervals

(Swift, 2009).

Holladay (2014) tried to find the optimal confidence interval for the Poisson

mean λ and introduced three new methods that are considered as optimal

methods according to the “Inability to be shortened property” of Kabaila

and Byrne (Byrne and Kabaila, 2005). These methods are modifications of

the Sterne method, the least cardinality percentage method and the modi-

fied Crow and Gardner method. To derive one of these methods, he follows

a different strategy to what would usually be done. He chooses the ideal

coverage probability function first and then find the confidence intervals that

would be given by this function. To achieve this, he created a specialized

coverage probability function through an exhaustive graphical examination of

all Poisson probability functions for a set of consecutive values. Then, confi-
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dence intervals for λ with any desired confidence level can be formed for all

possible values of an observed event x. After comparing these methods with

other common methods, he mentioned that no method is better than all oth-

ers concerning coverage and length. However, these methods deserve serious

consideration (Holladay, 2014).

Schilling and Holladay (2017) adapted the approach of Schilling and Doi (2014)

for the binomial distribution to make it suitable for the Poisson case. They

provided an alternative criterion, which is the minimal cardinality property,

for comparing the length performance of Poisson confidence procedures. Then

they identified an optimal minimal cardinality procedure depending on this

criterion and compared their method with the method of Crow and Gardner

(1959) and the modified Crow and Gardner methods (González et al., 2020).

2.4 Negative binomial distribution confidence inter-

vals

Our research extends to a third discrete distribution, which is the negative bi-

nomial distribution. The negative binomial distribution concerns the number

of Bernoulli trials that must occur in order to have a predetermined number

of successes. Galloway (1839) was the first to present the negative binomial

distribution as a probability distribution function, as given in equation (2.27).

We can see that the negative binomial distribution is related to the binomial

distribution and generalizes the geometric distribution. The negative binomial

distribution has two parameters (p, r), which is almost the same as a binomial

distribution but with one important difference; a binomial distribution counts

the number of successes in a fixed number of Bernoulli trials. With the bino-
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mial distribution the possible values of x are 0, 1, 2, . . . , n, where n is finite. In

converse, the negative binomial distribution is concerned with the number of

Bernoulli trials, y where y = r+x, where r is the number of successes and x is

the number of failures that must occur until we have r successes, so the values

of y are r, r + 1, r + 2, . . ., with no upper limit. The geometric distribution is

a special case of negative binomial, where the trials are stopped at the first

success r = 1.

A negative binomial distribution arises, most commonly, as the probability

distribution for the number of failures (x) that will occur before the rth suc-

cess is observed, when the probability of success on each trial is fixed at p and

y = r + x is the number of trials. Then

Prp[X = x|r, p] =

(
x+ r − 1

r − 1

)
pr(1−p)x, x = 0, 1, 2, . . . , r > 0, 0 < p < 1,

(2.27)

This distribution has two parameters and is denoted as negative binomial

(r, p). The mean of negative binomial is

µ =
r(1− p)

p
(2.28)

and its variance is

σ2 =
r(1− p)
p2

. (2.29)

Only a few different methods of forming a confidence interval for a neg-

ative binomial parameter p have been studied. Tian et al. (2009) compare

seven methods, Choi (2015) compares four methods and Young (2014) exam-

ines eight methods. We are interested in the five most common methods of

calculating the confidence interval for the negative binomial proportion p, and

these will be discussed in detail in the following sections. As well as p, we

are also interested in calculating confidence intervals for the negative binomial

mean µ, a task that has attracted some attention. Kabaila and Byrne (2001)
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present an algorithm for finding a 1− α confidence interval for µ. Also, Arefi

et al. (2009) present some common methods of calculating the confidence in-

terval for it.

As with binomial and Poisson distributions, the methods are often classified

in the literature as exact and approximate methods. Here these terms will

have the same interpretations as they were given in both the binomial and

Poisson sections. Both the Casella and McCulloch and mid-p methods, which

will be discussed in details in the next section, are exact in sense (i) but only

the Casella and McCulloch method is exact in both senses (i) and (ii). The

Wald and score methods, which will be discussed in details in Section 2.4.3,

are asymptotic methods while both the mid-p and Jeffreys methods are exact

methods. Apart from the Casella and McCulloch method, they are all approx-

imate methods.

Most of the methods, which will be described in Sections 2.4.1, 2.4.2 and 2.4.3,

are compared in terms of coverage probability and average width. We are inter-

ested in reviewing the methods that give two-sided intervals with equal-tails,

as that is the focus of this thesis. In Section 2.4.4, desirable properties in

methods of forming confidence regions are considered. Then, we briefly re-

view some other methods of constructing confidence intervals in Section 2.4.5.

These aim to improve either the coverage or length of intervals.

2.4.1 Correct methods

2.4.1.1 The Casella and McCulloch method

As mentioned earlier, the most well-known exact confidence interval method

was presented by Clopper-Pearson (1934) for the binomial parameter p. Then

Garwood (1936) used this method to develop an exact confidence procedure
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for the parameter of a Poisson distribution, λ. The method has also been

adopted by Casella and McCulloch (1984) to derive confidence interval limits

for the parameter p of a negative binomial (r, p) distribution. The method

guarantees a coverage probability of at least 1 − α for every value of p. The

(1− α)100% exact interval is defined as (lx, ux), where

lx =
1

1 + (x+1
r )F2(x+1),2r,α

(2.30)

and

ux =
r
xF2r,2x,α

1 + ( rx)F2x,2r,α
, (2.31)

where r is the number of success, x is the number of failures and Fdf1,df2,q is

the qth quantile of an F distribution with degrees of freedom df1 and df2.

The Casella and McCulloch method is an exact method, and it is correct, as

it strictly meets the definition of a method for forming confidence intervals,

satisfing equation (1.1). It is the only method among the methods considered

here that is correct.

As with the Clopper-Pearson method in the binomial case and the Garwood

method in Poisson case, the Casella and McCulloch method has intervals

whose coverage probability, for almost all values of p, is larger than the nom-

inal level. Thus it suffers from conservatism (Casella and McCulloch, 1984;

Liu, 2012).

Figure 2.9 plots the coverage of its 97.5% one-sided upper-tail interval in the

top graph and its lower interval in the lower graph against p for x=20. It is

clear that the coverage, for both the upper and lower tails, is above 98.5% for

almost all values of p and exceeds 99% for a few values of p. Hence, although

it meets the definition of a confidence interval, it has conservative intervals

which are usually wider than necessary. This leads to alternative methods

being suggested that give shorter intervals than the Casella and McCulloch
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Figure 2.9: Coverage of upper and lower one-sided 97.5% confidence intervals

for the negative binomial proportion p for the exact method when x=20

method. Some of these methods are described in the following subsections.

As we mentioned earlier, we also are interested in calculating the confi-

dence interval for the mean of the negative binomial, µ. Most researchers,

e.g. Liu (2012), calculate it by using the monotonic transformation from p

to µ, µ = r(1− p)/p, calculating the endpoints of the interval for µ from the

endpoints of the interval for p. Figure 2.10 plots the coverage of its 97.5% one-

sided upper-tail interval in the top graph and its lower interval in the lower

graph against µ for x=20. Although these intervals are as conservative as the

intervals constructed for p, they have the opposite pattern to the intervals of

p, because large values of p correspond to small values of µ, and vice-versa.

For both upper and lower tails, the coverage is substantially above 98.5% al-

most all the time and sometimes exceeds 99%. Thus, the intervals suffer from

conservatism and they are wider than necessary.
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Figure 2.10: Coverage of upper and lower one-sided 97.5% confidence intervals

for the negative binomial mean µ for the exact method when x=20

2.4.2 Approximate methods

As in both the binomial and Poisson cases, mid-p and Jeffreys methods do

not meet the definition of a confidence interval in equation (1.1), but they are

exact in sense (ii) as they do not use asymptotic approximations. The mid-p

method reduces the conservatism of the exact method by using half of the

probability of the observed result, while Jeffreys method is constructed as a

Bayesian credible interval, based on the Bayesian posterior distribution of p,

p|x ∼ Beta(r + 1
2 , x+ 1

2), using the prior p ∝ p−1(1− p)−1/2 (Cai, 2005).

2.4.2.1 Mid-p method

Although the mid-p method is a very common method in both the binomial

and Poisson cases, we find very limited work, e.g. Hepworth (2013), in which

it is used to construct confidence intervals for a negative binomial distribu-

tion. So, we calculated confidence intervasl using the mid-p method, using the
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bisection method to search for the lower points that satisfy

Pr(X > x|p) +
1

2
Pr(X = x|p) = α (2.32)

and to search for the upper points that satisfy

Pr(X < x|p) +
1

2
Pr(X = x|p) = α. (2.33)

The mid-p method reduces the conservatism of the Casella and McCulloch

method, but it no longer guarantees that the minimum coverage is at least as

large as the nominal level (1−α). The top graph of Figures 2.11 and 2.12 plot

the coverage of the 97.5% one-sided upper and lower interval, respectively, for

the mid-p method. The spikes in the plots are spread fairly regularly around

the nominal level. The coverage of its upper tail still tends to be slightly

conservative at large values of p, but to a much lesser extent than with the

exact method. In contrast, the coverage of its lower tail tends to be below the

nominal level for large values of p. However, it is one of the desirable methods

for practical purposes as it has good coverage ( generally close to the nominal

level) and good length performance.

Confidence intervals of the mid-p method for the negative binomial mean

µ are constructed by using the transformation from p to µ, that was discussed

in Section 2.4.1.1. The top graphs in Figures 2.13 and 2.14 plot the coverage

of the 97.5% one-sided upper and lower interval of the negative binomial mean

µ, respectively, for the mid-p method. The coverage is more variable for small

values of µ when it is also a little liberal. However, it does not seem to be

excessively liberal, so the mid-p is one of the desirable methods for practical

purposes in the case of the negative binomial mean µ.

2.4.2.2 Jeffreys method

The Jeffreys interval is constructed from the Bayesian posterior distribution
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Figure 2.11: Coverage of upper one-sided 97.5% confidence intervals for the

negative binomial proportion p for the mid-p and Jeffreys methods when x=20
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Figure 2.12: Coverage of lower one-sided 97.5% confidence intervals for the

negative binomial proportion p for the mid-p and Jeffreys methods when x=20
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with prior p ∝ p−1(1 − p)−1/2. The posterior distribution of p is p|x ∼

Beta(r, x + 1
2) (Brown et al., 2003). Hence, the upper and lower limit of

the Jeffreys interval for p are respectively

lx = Beta(α, x+ 1/2, r) (2.34)

and

ux = Beta(1− α, x+ 1/2, r). (2.35)

The limit lx is the α quantile and ux is the 1−α quantile of the beta distribution

Beta(r, x+ 1
2). Jeffreys method gives intervals that are more liberal than the

mid-p method. This is clear in the lower graphs of Figures 2.11 and 2.12. In

particular, Jeffreys upper-tail intervals have a low coverage for large values of

p while its coverage is close to the nominal level for small values of p. Jeffreys

method is recommended as a good alternative method for practical use because

it has better length properties (Cai, 2005). However, its coverage can be quite

low for large values of p.

Jeffreys method retains these characteristics in its confidence intervals for the

negative binomial mean µ. This can be seen in the lower graphs of Figures 2.13

and 2.14, where coverages of the 97.5% one-sided upper and lower intervals

are plotted against the negative binomial mean µ. Jeffreys upper-tail intervals

have a low coverage for small values of µ while its coverage is close to the

nominal level for large values of µ.

2.4.3 Asymptotic methods

2.4.3.1 Wald method

The Wald method is the simplest and very commonly used method in the lit-

erature for constructing a confidence interval for the negative binomial propor-

tion p. It is used most widely in practical statistical analysis and econometrics
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Figure 2.13: Coverage of upper one-sided 97.5% confidence intervals for the

negative binomial mean µ for the mid-p and Jeffreys methods when x = 20
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Figure 2.14: Coverage of lower one-sided 97.5% confidence intervals for the

negative binomial mean µ for the mid-p and Jeffreys methods when x = 20
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research. Its confidence interval formula is obtained by using the standardiza-

tion of the maximum likelihood estimator (MLE) of p, p̂ = r/x + r, where x

is the total number of failures before obtaining the predetermined number of

successes r (Lui, 2004). A 100 (1− α) % confidence interval for p is given by

lx, ux where

lx = max[p̂− z1−α

√
p̂2(1− p̂)

r
, 0] (2.36)

and

ux = min[p̂+ z1−α

√
p̂2(1− p̂)

r
, 1]. (2.37)

where z1−α is the (1−α)100% percentile of the standard normal distribution.

The Wald method is commonly used because it gives intervals that are simple

to compute. However its upper-tail coverage usually tends to be very conser-

vative for large values of p and close to the nominal level for small vales of p.

Its lower-tail coverage tends to oscillate far below the nominal level for large

values of p and is close to the nominal level for small values of p. This can be

seen clearly in the top graph of Figures 2.15 and 2.16, where the coverage of

its 97.5% one-sided upper and lower intervals is plotted against the negative

binomial proprtion p.

Unlike the mid-p method and Jeffreys method, confidence intervals of the Wald

method of the negative binomial mean µ are calculated directly by using its

own formula. So, the coverage probability of its confidence interval for the

upper tail is far below the nominal level for most values of µ. This is shown in

the top graph of Figure 2.17 where the coverage of its 97.5% one-sided upper

interval is plotted against µ.

2.4.3.2 Score method

Another method that uses the normal approximation is the score method.

Construction of the score interval is based on the score function S(p), which

51



0.5 0.6 0.7 0.8 0.9 1.0

0
.9

5
0
.9

7
0
.9

9

Wald

C
o
ve

ra
g

e

p

0.5 0.6 0.7 0.8 0.9 1.0

0
.9

0
0
.9

4
0
.9

8
Score

C
o
ve

ra
g
e

p

Figure 2.15: Coverage of upper one-sided 97.5% confidence intervals for the

negative binomial proportion p for the Wald and score methods when x = 20

is given by (Tian et al., 2009) as

S(p) =
r

p
− x

1− p
, (2.38)

and on the Fisher information I(p), which is given by

I(p) =
r

p2
− x

(1− p)2
. (2.39)

An approximate (1− α)100% confidence interval for p is lx, ux, where

lx = max

(2(x+ r)r − rZ2
1−α)−

√
r2Z4

1−α − 4(x+ r)r2Z2
1−α + 4(x+ r)2rZ2

1−α

2(x+ r)2
, 0


(2.40)

and

ux = min

(2(x+ r)r − rZ2
1−α) +

√
r2Z4

1−α − 4(x+ r)r2Z2
1−α + 4(x+ r)2rZ2

1−α

2(x+ r)2
, 1

 .
(2.41)

where r + x is the total number of trials.

Compared to the Wald method, the score method has favourable coverage

and length properties. The coverage of both 97.5% upper and lower tail inter-
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Figure 2.16: Coverage of lower one-sided 97.5% confidence intervals for the

negative binomial proportion p for the Wald and score methods when x = 20
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Figure 2.17: Coverage of upper one-sided 97.5% confidence intervals for the

negative binomial mean µ for the Wald and score methods when x = 20
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vals of the score method are plotted against p in the lower graphs of Figures

2.13 and 2.14, respectively. Looking at these figures, it can be seen that the

coverage of the upper-tail is generally somewhat below the nominal level while

the lower-tail coverage tends to be very conservative for all values of p. That

means the score method does not meet the definition of a confidence interval.

Although the score method improves the coverage of its intervals relative to

the coverage of Wald intervals, it suffers from giving intervals that are some-

times too long, with a coverage that tends to be very conservative for large

values of µ, as shown in the lower graph of Figure 2.17. These intervals are

calculated also directly as it is done in the Wald method.

2.4.4 Desirable properties of confidence intervals

As noted in Sections 2.2.4 and 2.3.4, there are a number of desirable properties

in methods of forming a confidence interval.

All the methods described earlier in this section give confidence intervals with-

out any disjoint points and hence have Property 1. They also have Property 2,

the monotonicity in x property, and they also have Property 5, the nesting

property.

2.4.5 Other methods

Using the negative binomial distribution in practical research is not as common

as using the binomial or Poisson distributions. Perhaps for this reason the

number of method of constructing a confidence interval for p and µ is quite

limited. Some methods have been proposed that aim to enhance the coverage

or length of the methods described earlier. Beginning with methods that
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aim to improve the performance of the Wald method, there are the Wald

confidence interval with continuity correction (WCC) and the Wald confidence

interval based on uniform minimum variance unbiased estimation (WUMVUE)

(Young, 2014). The WCC method applies continuity correction to the original

equations of the Wald method, equations (2.34) and (2.35). Whereas the

WUMVUE is based on the uniform minimum variance unbiased estimation

of p, which can be obtained by p̃ = r−1
x−1 , and the estimate of its variance,

which can be calculated by var(p̂) = r(1−p)
p2

. The WCC method tends to be

very conservative due to the correction factor. The WUMVUE performs well

for large values of y = r + x, but for small values of y it tends to be well

below the nominal level for p near to 0 and very conservative for p near to 1.

There is also a likelihood ratio based confidence interval (LR), based on the

likelihood ratio statistic 2[logL(p̂)− logL(p)], which asymptotically follows a

chi-square distribution with one degree of freedom. The LR method performs

well for large values of r + x, but for small values its coverage is far below

the nominal level (Tian et al., 2009). Also, Tian et al. (2009) introduced

a confidence interval that is based on a saddle-point approximation. It is

designed to approximate the tail probability of the distribution. The method

performs well, except that the oscillations of its coverage tend to be very large

as p gets close to 1 (Young, 2014).

2.5 Concluding Comments

In this chapter, some of the relevant research work has been reviewed on com-

mon methods of constructing a confidence interval for three discrete distribu-

tions: the binomial, Poisson and negative binomial distributions. The focus

was on methods of forming two-sided, equal-tailed confidence intervals, for the

binomial proportion p, Poisson mean λ and negative binomial distribution’s
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proportion p and mean µ. All these common methods will be compared with

a new method, which will be developed in the next chapters. Desirable prop-

erties in methods of forming confidence intervals have also been reviewed. In

addition, some methods that give confidence interval with unequal-tails were

also reviewed briefly.
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Chapter 3

Binomial confidence interval

methods
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3.1 Introduction

Most confidence interval methods for a binomial proportion that are well-

recommended in the literature do not meet the strict definition of a confidence

interval. The same holds for confidence intervals for other discrete distribu-

tions that have attracted attention. Thus it seems that the strict definition

of a confidence interval is not fit for purpose when the sample space is dis-

crete. A definition of an interval estimate is required that people are willing

to use. With an appropriate definition, there should be interval estimators

that satisfy the properties of giving sensible intervals and giving intervals with

an acceptably short average length. The definition must ideally yield an “op-

timal” method or, failing that, methods that have these properties. For a

binomial proportion, we equate an“optimal” method to the method that gives

intervals of minimum average width when the expected width of an interval is

averaged over p ∈ [0, 1].

The definition must place some restrictions on the coverage probabilities

of intervals. If there is no restrictions at all on the coverage probability, the

shortest interval could be taken as (p̂+ 0.0), where p̂ is a point estimate of p.

These nonsensical intervals would have the minimum possible width but would

have coverage probabilities of 0. Here we consider some alternative definitions

of an interval estimate that place different restrictions on the coverage of

intervals. So, in Section 3.2 we consider some alternative definitions of an

interval estimate that place different restrictions on the coverage of intervals.

In Section 3.3, we give a precise definition of a new type of interval: a locally

correct confidence interval.

In Section 3.4, we present a novel interval estimator that yields locally correct

confidence intervals. We refer to the new estimator as the optimal locally
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correct (OLC) method. We examine whether intervals given by the OLC

method seem sensible and examine whether the new estimator has properties

that have been proposed in the literature as being desirable. Also, we prove

that the OLC method yields intervals with a smaller average length than any

other interval estimator that yields locally correct confidence (LCC ) intervals.

In Section 3.5 we compare the OLC method with several methods that have

been recommended for forming equal-tailed confidence intervals (as noted in

the literature chapter). Concluding comments are given in Section 3.6.

3.2 New definitions of an interval estimate

3.2.1 Overall coverage restriction

We say that a method of forming interval estimates meets the overall coverage

restriction if, for any value of n and α, it yields intervals where the average

coverage over p ∈ [0, 1] is at least (1 − α). We explored the optimal method

under this definition (the method that gives the minimum average width while

meeting the restriction imposed by definition), by examining the confidence

intervals that would be formed for different values of n and x. Common sense

suggest that, for a given n, the endpoints of an interval should vary as x varies.

However, we found that some different values of x give the same endpoints, and

this can happen both when n is large and when it is small. For example in Fig-

ure 3.1, when n = 10 and α = 0.025, the endpoints U1, U2, U3, U4, U5, U6 and

U7 all have almost the same value (0.7108389, 0.718388, 0.710839, 0.7108391,

0.7108394, 0.7108398 and 0.7108405) and the endpoints U8, U9 and U10 have

almost the same value (0.9993905, 0.9993969 and 0.9993999). These endpoints

were calculated by optimization package Rsolnp in R (Ghalanos and Theussl,

2015). This seems very unsatisfactory as, intuitively, different x values should
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give different endpoints. Hence, this definition of an interval estimate seems

inadequate and is not considered again.

3.2.2 Restricting average coverage in fixed intervals

Under a second definition, the range of p is divided into equal subintervals, and

the requirements are imposed that the average coverage over each subinterval

must be greater than or equal to (1−α). Two variants of this definition were

considered.
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Figure 3.1: Endpoints and coverage of upper one-sided 97.5% confidence in-

tervals for n =10 and α= 0.025 when the overall average coverage must be at

least 1 − α. The red horizontal line show the overall avaerage coverage over

p ∈ [0, 1]

(a) No restriction on the number of spikes in each subinterval.

The endpoints are calculated by a search method over each subinterval. We

again find that, with the optimal method (shortest average width), different

values of x sometimes give the same endpoints. Also, when the number of
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subintervals is large relative to n, the average coverage suffers from almost as

much conservatism as with the Clopper Pearson method. This can be seen

in Figure 3.2, where n=10, the number of subintervals=50 and α=0.025. In

the definition’s favour the coverage is mostly above the nominal level, but this

does not adequately compensate for the other disadvantages.
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Figure 3.2: Endpoints and coverage of upper one-sided 97.5% confidence inter-

vals for n=10 and subintervals=50 when the average coverage in each subin-

terval must be no less than (1 − α). Short horizontal (red) lines show the

average coverage in each subinterval

(b) Adding the constraint that there is at most one spike in any

subinterval.

Under this restriction the number of subintervals must exceed n − 1, there

must be at most one spike in any subinterval, and the average coverage over

each subinterval must be greater than or equal to (1 − α). The endpoints
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under this restriction are exactly the same as the endpoints of the subintervals

themselves. This definition comes with problems, regardless of the number of

subintervals that are used. When the number of intervals is small (equal to n

or only a little larger than n), there is a contradiction between obtaining one

endpoint per subinterval and having an average coverage that is greater than

or equal to (1− α) over each subinterval. This can be seen in Figure 3.3, for

n = 20, subintervals=20 and α = 0.025, where the positioning of spikes is too

restrictive, and the average coverage does not meet the definition. Also, when

the number of subintervals is very large, the intervals become as conservative as

the Clopper-Pearson method. Hence, the definitions based on average coverage

restrictions over fixed intervals fail to fill our needs and will not be considered

further.

3.3 Locally correct confidence intervals

The results of the previous section indicate that a different restriction on

coverage is needed. We first consider upper-tail (upper one-sided) intervals.

Let X denote a binomial variate based on n trials with success probability p

and suppose an interval estimator gives (0, ux) as its upper-tail estimate for p

when x is the observed value of X. For a sensible estimator,

0 < u0 < u1 < . . . < un ≤ 1, (3.1)

and we assume that equation (3.1) holds. The coverage probability of the

interval estimator depends on the value of p and is the probability that the

random interval (0, ux) contains p.
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subintervals when n = 20 and the average coverage in each subinterval must

be no less than (1− α)
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We denote this coverage by Cu(p). When ui−1 < p ≤ ui,

Cu(p) = Pr(X ≥ i|p) =
n∑
x=i

(
n

x

)
px(1− p)n−x. (3.2)

For x = 0, 1, . . . , n, the difference between Cu(ux) and Cu(ux + δ) does not

tend to 0 as δ → 0, but equals
(
n
x

)
uxx(1− ux)n−x. This is the reason that the

coverages in all previous figures have a saw-tooth appearance (spikes). The

points of the spikes occur where p equals u0, . . . , un and the coverage drops by(
n
x

)
uxx(1 − ux)n−x at p = ux (Garthwaite et al., 2019). The question, is how

should Cu(p) vary with p for a good interval estimator? Looking at Figure 1.1,

if the nominal confidence level is (1 − α), then Cu(p) should exceed (1 − α)

when p is just before a spike, as Cu(p) follows a cycle with its largest values

just before spikes. If the estimator is not to be very conservative, then Cu(p)

should be less than (1 − α) when p is just after a spike, as then Cu(p) is

at the lowest part of its cycle. However, the extent to which the estimator

is liberal should be restricted. The restriction which we propose is that the

average coverage within each cycle - the interval between two spikes - should

exceed or equal the nominal confidence level (1 − α). The intervals are quite

small. Hence, while the coverage need not equal or exceed the nominal level

at individual values of p, it must do so on average over quite narrow ranges of

p. We say that an interval estimator that meets this requirement gives locally

correct confidence (LCC) intervals.

Definition 1. For the upper-tail intervals, suppose an interval estimator gives

(0, ux) as its upper-tail interval for p when X = x, that u0, . . . , un satisfy (3.1)

and that un=1. If, for i = 1, . . . , n

1

ui − ui−1

∫ ui

p=ui−1

Cu(p)dp ≥ (1− α) (3.3)

then the interval estimator gives upper-tail LCC intervals with confidence level

(1−α). We assume that un=1; otherwise the average coverage over the interval
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(un, 1) would be 0, which is not consistent with the required coverage in other

intervals.

Definition 2. For the lower-tail intervals, suppose an interval estimator gives

(lx, 1) as its lower-tail interval for p when X = x, and that 0 = l0 < l1 < . . . <

ln < 1. Define the coverage probability, Cl(p), by

Cl(p) = Pr(X ≤ i|p) =

i∑
x=0

(
n

x

)
px(1− p)n−x. (3.4)

for li < p ≤ li+1. If, for i = 1, . . . , n− 1

1

li+1 − li

∫ li+1

p=li

Cl(p)dp ≥ (1− α) (3.5)

then the interval estimator gives lower-tail LCC intervals with confidence level

(1− α).

Regarding two-sided equal-tail LCC interval estimators, we define it in terms

of one-sided LCC intervals as follows.

Definition 3. Suppose that, for x = 0, . . . , n, an interval estimator gives (lx, ux)

as its two-sided equal-tail intervals for p when X = x. Then it gives equal-tail

LCC intervals with confidence level (1 − 2α) if and only if, for x = 0, . . . , n,

the intervals (lx, 1), and (0, ux) are sets of one-sided lower-tail and upper-tail

LCC intervals, respectively, each with confidence level (1− α).

An interval estimator that gives equal-tail LCC intervals will be referred to as

a LCC interval estimator.

3.4 A new interval estimator

We propose an interval estimator that uses a straightforward iterative algo-

rithm to obtain one-sided interval estimates. By its construction, the algo-

rithm clearly gives LCC intervals. We first give the algorithm and then give

results about the average width of its intervals, which show that the method

is the optimal locally correct method provided α is less than 0.27.
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The algorithm is a sequential procedure and we give the steps for attaining

one-sided upper tail intervals. First we determine un, then un−1 is determined

given the value of un. Each ui is then determined given the value of ui+1.

This sequentionl procedure is continued until it determines u0. Specifically,

the steps of the algorithm are as follows.

1. Set un = 1 and put i = n− 1.

2. Given ui+1, use the bisection method to search for the value ui that

makes the average coverage over the interval (ui, ui+1) equal to 1− α:

(a) Put a = 0 and b = ui+1.

(b) Take u∗i = (a+ b)/2.

(c) Evaluate the integral over the interval (u∗i , ui+1) by using incom-

plete beta functions to calculate the average coverage, say m.

3. If m− (1− α) < 0 put a = u∗i and go to Step 2,

else if m − (1 − α) > ε , for a very small value of ε, put b = u∗i and go

to Step 2.

Else take ui = u∗i .

4. Repeat steps 2 and 3 for i = n−2, n−3, . . . , 1, 0 to obtain un−2, un−3, . . . , u1, u0.

From its construction, the method determines the endpoints of subinter-

vals that have an average coverage of 1−α. A hypothetical problem that could

arise is the following. After ui has been attained, it could be the case that

Pr(x ≥ i−1|p = ui) is less than 1−α, even though (ui+1−ui)−1
∫ ui+1

ui
Pr(x ≥

i|p)dp = 1− α. Then, given ui, there is no ui−1 (with ui−1 ≤ ui ) that meets

the requirement that (ui−ui−1)−1
∫ ui
ui−1

Pr(x ≥ i− 1|p)dp = 1−α. Hence the

following proposition is needed to underpin the algorithm.
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Proposition 3.1

Suppose 1 ≤ n ≤ 200 and α ∈ {0.001(0.001)0.27}. Suppose also that

1

ui − ui−1

∫ ui

p=ui−1

n∑
x=i

(
n

x

)
px(1− p)n−xdp = 1− α (3.6)

and ui > ui−1 for i = j + 1, j + 2, . . . , n; j = 0, . . . , n − 1. Then there is a

unique uj−1 such that uj > uj−1 > 0 and equation (3.6) holds when i = j.

We have been unable to prove the result in the proposition for a general n

and α as it is hard to show that
∑n

x=i

(
n
x

)
uxi (1 − ui)

n−x > (1 − α). But,

repetitive straightforward computation showed that the result in the propo-

sition holds if n is a positive interger less than 200 and α equals one of the

numbers 0.001, 0.002, . . . , 0.27. This covers the value of n and α of practical

interest. So, throughtout this chapter it is assumed that 1 ≤ n ≤ 200 and

α ∈ 0.001(0.001)0.27.

From Proposition 3.1, for an upper-tail interval, there is always a unique ui−1

for which equation (3.6) holds. The new interval estimator sets (0, ui) as the

upper-tail interval when X = i and we have that 0 < u0 < . . . < un = 1.

Then, under definition 1 the new estimator gives upper-tail LCC intervals.

Similar steps are followed to form lower-tail intervals. It begins by putting

l0 = 0 and then l1, . . . , ln are determined sequentially. Each li+1 is determined

given the value of li. Given li, the value li+1, for i = 0, . . . , n−1, is found that

satisfies

1

li+1 − li

∫ li+1

p=li

i∑
x=0

(
n

x

)
px(1− p)n−xdp = 1− α (3.7)

Under Definition 2 , the interval estimator gives lower-tail LCC interval, as

(li, 1) is the 1− α lower-tail interval when X = i.

Two-sided intervals are obtained by combining the endpoints of one-sided up-

per and lower- tail intervals. Thus, when x = i the new interval estimator

gives (li, ui) as the two-sided equal-tail interval for a confidence interval of
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1 − 2α. From its construction, the new estimator is an LCC interval esti-

mator. Different examples for the coverage of the new estimator are shown

in Figure 3.4, where the coverage is plotted against p for upper-tail intervals

with nominal confidence levels of 97.5% and 99.5% for sample sizes 8, 20 and

50. It is clear that the coverages are evenly spread around the nominal level,

so the new method gives sensible interval estimates. With the new method,

the average coverage between every two consecutive spikes always equals the

nominal level (1− α).
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Figure 3.4: Coverage of upper-tail LCC intervals given by the new estimator

for samples sizes of 8, 20 and 50, and nominal confidence levels of 97.5% and

99.5%

Moving to the most important feature of an interval estimator (after cov-

erage), we next consider the length of intervals. If an estimator gives (lx, 1) as
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its lower interval when X = x, then the expected length of its lower interval,

Ll(p), is

Ll(p) =
n∑
x=0

(1− lx)

(
n

x

)
px(1− p)n−x. (3.8)

Its average expected length (AEL), which is obtained by averaging over p, is

E[Ll(p)] =

∫ 1

p=0
Ll(p)dp. (3.9)

If an estimator gives (0, ux) as its upper interval when X = x, then the

expected length of its upper interval, Lu(p), is

Lu(p) =
n∑
x=0

(ux − 0)

(
n

x

)
px(1− p)n−x. (3.10)

Its average expected length (AEL), (averaging over p), is

E[Lu(p)] =

∫ 1

p=0
Lu(p)dp. (3.11)

For two-tail intervals, the expected length of its interval, Ln(p), is given by

Ln(p) =
n∑
x=0

(ux − lx)

(
n

x

)
px(1− p)n−x. (3.12)

and its average expected length (AEL), obtained by averaging Ln(p) over p,

is given by

E[Ln(p)] =

∫ 1

p=0
Ln(p)dp. (3.13)

We will refer to our new method of forming interval estimates as the opti-

mal locally correct (OLC) method because it has the optimality property given

in Proposition 3.2.

Proposition 3.2

Suppose 1 ≤ n ≤ 200 and α ∈ {0.001(0.001)0.27}. Then

(a) For one-tail intervals with confidence level (1 − α), the OLC method has

the smallest AEL of any estimator that gives one-tail LCC intervals.

(b) For an equal-tail interval with confidence level (1− 2α), the OLC method
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has the smallest AEL of any estimator that gives equal-tail LCC intervals.

The range of α, in Proposition 3.2, is necessarily restricted as the OLC method

does not give the smallest AEL if α is greater than 0.27.

The proof of the proposition 3.2 involves (i) deriving the conditions in equa-

tions 3.14 and 3.15 and (ii) checking numerically that the conditions hold for

the values of n and α given in the proposition.

Let (0, u∗x) be the confidence interval given by our algorithm when X = x.

We have that u∗0 < . . . < u∗x−1 < u∗x < . . . < u∗n, so p is contained in the

confidence interval if X = x. Let p∗x = (u∗x + u∗x−1)/2 and put ηx = u∗x − p∗x.

Also, let p#
x−1 be the value of p that satisfies gn(x − 1, p#

x−1) = 1 − α, where

gn(x, p) = Pr(X ≥ x|p). Let ξi = min(u∗x+1, u
∗
x−1 +u∗x−p

#
x−1). If An(x, p∗x, ηi)

denotes the average coverage over the interval (p∗x− ηx, p∗x + ηx), then our al-

gorithm gives the shortest interval if

An(x, p∗x, ηx) > An(x, p∗x, ξx) (3.14)

and

A′n(x, p∗x, ηx) < 0, (3.15)

where A′n(x, p∗x, ηi) is the differential of An(x, p∗x, ηx) with respect to ηx. For

a proof of these two conditions, see Theorem 1 in Appendix A.

We conducted a computational study to examine when these conditions are

satisfied. We found that they are satisfied for any sample size n if α is less than

0.27. Also, for small values of n they are satisfied for any value of α ≤ 0.5.

In practice, for confidence intervals, the most commonly used values of α for

one-sided interval are 0.005, 0.025, 0.05 and 0.1. The value α = 0.25 is also

important as it determines the upper quartile. The value α = 0.5 is also im-

portant, of course, as it gives the median, but methods of forming confidence

interval estimates will almost never set α greater than 0.27.
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Thus, in practice the OLC method should be the preferred method of forming

LCC intervals, provided it has standard properties that a well-behaved inter-

val estimator should have.

The following properties were mentioned in Chapter 2 as desirable qualities.

Property 1. Interval valued. A confidence region should be an interval and

not a collection of disjoint intervals.

The remaining properties assume that the confidence region is a two-tail inter-

val with confidence level 1− 2α, denote this interval as (l(x, n, α), u(x, n, α)) .

Property 2. Equivariance. As the binomial distribution in invariant under

the transformation X → n − x; p → 1 − p, confidence intervals should be

invariant under this transformation. That is, if x generates the confidence

interval [L(x, n, α), U(x, n, α)], then n−x should yield the confidence interval

[1− u(n− x, n, α), 1− l(n− x, n, α)] for x = 0, . . . , n.

Property 3. Monotonicity in x. For fixed n and α, the endpoints should be

increasing in x. This requires l(x + 1, n, α) > l(x, n, α) and u(x + 1, n, α) >

u(x, n, α). For example, when n = 10 and x = 5, both the upper and lower

endpoint should be greater than their corresponding values when n = 10 and

x = 4.

Property 4. Monotonicity in n. For fixed x and α, the lower endpoint should

be non-increasing in n and the upper endpoint should be decreasing in n. This

requires l(x, n+ 1, α) ≤ l(x, n, α) and u(x, n+ 1, α) < u(x, n, α).

Property 5. Nesting. If two confidence intervals have different confidence

levels then, for any given n and x, the interval for the higher confidence level

should contain the interval for the lower confidence level. Suppose we have

two confidence levels 1 − α1 and 1 − α2 with α1 < α2, then this requires

(l(x, n, α2), u(x, n, α2)) ∈ (l(x, n, α1), u(x, n, α1)). For this to occur for all

confidence levels, as the level increases the lower limit for each x must be non-
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increasing and the upper limit must be non-decreasing.

Suppose 1 ≤ n ≤ 200 and α ∈ {0.001(0.001)0.27}, so that Proposition 3.1

applies. Then our OLC method will give confidence intervals without any

disjoint points and hence it has Property 1. It also has Property 2, as it uses

equivariance procedures to construct the lower and upper intervals. Also, in-

terval endpoints increase as x increases so it achieves the montonicity in x

property in Property 3. Repetitive computation has shown Properties 4 and

5, monotonicity in n and nesting, are achieved when 1 ≤ n ≤ 200 and α, α1

and α2 are in {0.001(0.001)0.27}. Hence it seems clear that our OLC method

meets the previous requirments for being a resonable interval estimator.

3.5 Comparison with other methods

In this section, we compare the OLC method performance with the follow-

ing six methods of forming interval estimates, which have been described in

Chapter 2: Clopper-Pearson, mid-p, Jeffreys, Wald, Wilson and Agresti-Coull

methods. We compare them in terms of their coverage probability and ex-

pected length for sample sizes n = 8, 20 and 50 and for nominal confidence

levels 95%, 97.5% and 99.5%. These sample sizes and nominal levels give a fair

representation of the behaviour of intervals for other sample sizes and nominal

levels.

3.5.1 Coverage probability

We will restrict attention to upper-tail intervals and two-tail intervals. Men-

tioned in Section 3, Cu(p) is the coverage of an upper-tail interval estimator

and is the probability that the random interval (0, ux) contains p. To calculate

72



the coverage probabilities of all methods, we define the quantity Tu as

Tu =
1

1− u0

∫ 1

p=uo

Cu(p) dp, (3.16)

and refer to it as the truncated average coverage, where u0 is the endpoint of

x = 0. Because coverage equals 1 for values of p in the range (0, u0), we exclude

the interval (0, u0) when calculating the average coverage and calculate Tu, as

including that interval would distort the average. Instead, we give the values

of both Tu and u0, which is more informative. Other average coverages for the

values of p > u0 may be calculated from Tu and u0. For example, for one-tail

interval, the average coverage over the full range (0, 1) equals{(1−u0)Tu+u0}

and for two-tail intervals, the average coverage over the range (0, 1) equals

2{(1− u0)Tu + u0} − 1.

In Figure 3.5, Figure 3.6 and Figure 3.7, the coverage of 95%, 97.5% and

99.5% upper tail intervals of all the methods are plotted against p for sample

sizes 8, 20 and 50, respectively. It is clear that the coverage of the first

interval of u0 equals 1, which will be excluded in forming averages. For all

values of p and each combination of n and α, the OLC, Clopper-Pearson and

mid-p methods are giving LCC intervals, i.e. the average coverage between

consecutive spikes is at least (1-α). In contrast, the Wilson, Wald, Agresti-

Coull and Jeffreys methods do not give LCC intervals as the average coverage

between consecutive spikes is sometimes below (1-α). In particular, for the

Wald method the average coverage is far below the nominal level for almost

70% of the spikes. To make comparison of our OLC method and other methods

clearer, values of both Tu and u0 are given in Table 3.1. They are given for

α = 0.05, 0.025 and 0.005 and n = 8, 20 and 50. It is clear from Table 3.1

that the OLC method has good results. Its truncated average coverage equals

the nominal confidence level of 1 − α for all cases of n and α. In contrast,

the Clopper-Pearson method suffers from conservatism, the mid-p method
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Figure 3.5: Coverage of upper-tail 95% interval estimate for the Clopper-

Pearson, Wilson, Wald, Agresti-Coull, mid-p, Jeffreys and OLC methods,

plotted against p for n = 8. The horizontal red lines are the average cov-

erage between consecutive spikes.

suffers a little from conservatism, and the Agresti-Coull method is generally

conservative. The Wilson, Wald and Jeffreys methods are consistently liberal.

Turning to the values of u0, a small value is typically desirable, so that

the range over which the coverage equals 1 is small. On this basis, the Wald

method always does well as its u0 always equals 0. However, the coverage of

the Wald method is too liberal for it to be the preferred method of forming

confidence intervals. Based on the values of u0, the OLC method is a little

better than mid-p and much better than Clopper-Pearson, Agresti-Coull and

Wilson, but it is a little poorer than Jeffreys.
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Figure 3.6: Coverage of upper-tail 97.5% interval estimate for the Clopper-

Pearson, Wilson, Wald, Agresti-Coull, mid-p, Jeffreys and OLC methods, plot-

ted against p for n = 20.

75



0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Clopper−Pearson

C
o
ve

ra
g

e

p
0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Wilson

C
o
ve

ra
g

e

p

0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Wald

C
o
ve

ra
g

e

p
0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Agresti−Coull
C

o
ve

ra
g

e

p

0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Mid−p

C
o
ve

ra
g

e

p
0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

Jeffreys

C
o
ve

ra
g

e

p

0.0 0.2 0.4 0.6 0.8 1.0

0.990

0.994

0.998

OLC

C
o
ve

ra
g

e

p

Figure 3.7: Coverage of upper-tail 99.5% interval estimate for the Clopper-

Pearson, Wilson, Wald, Agresti-Coull, mid-p, Jeffreys and OLC methods, plot-

ted against p for n = 50.
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As mentioned, in the literature review in Chapter 2, the mid-p method does

not meet the definition of a confidence interval, but it does meet our new def-

inition of an LCC interval for n < 200 and α < 0.1. Although the range of α

for mid-p method (α < 0.1) is more limited compared to the OLC method, it

does include all the confidence levels that are commonly of interest in practice.

The result is giving in the following proposition

Proposition 3.3

For 1 ≤ n ≤ 200 and α ∈ {0.001(0.001)0.1}, the mid-p method gives LCC

intervals.

The results of this proposition have been verified by direct computation.

In Figure 3.5, the coverage of the 95% upper-tail interval for the mid-p method

for n = 8 is plotted against p in the third graph of the left-hand side. The

spikes in the plots are spaced fairly regularly and the actual coverage always

crosses the nominal coverage level between consecutive spikes. In fact, a lot of

researchers, e.g. Agresti and Gottard (2007), recommend mid-p as an excel-

lent method. Moreover, the mid-p method gives one-tailed confidence intervals

whose coverage is optimally close to the nominal level for any value of p. This

property does not seem to have been noted before, so we specify it formally

in Proposition 3.4, whose proof is given in Appendix B. This property is only

given for upper-tail intervals but an equivalent result holds for lower-tail in-

tervals.

Proposition 3.4

Consider the class of methods of forming upper-tail confidence intervals that

(i) do not involve randomisation (i.e. confidence interval are determined by x

and n, and do not involve the value of a further hypothetical random variable),

and (ii) satisfy 0 ≤ u0 ≤ . . . ≤ un = 1. Then the absolute error in the coverage

probability, |Cu(p) − (1 − α)|, is as small or smaller for the mid-p method as
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for any method in the class, for any value of p.

The class of methods in Proposition 3.4 includes all sensible methods of form-

ing equal-tail confidence intervals that were discussed in Chapter 2. The prop-

erty is quite strong because it relates to every value of p, and hence gives other

properties. In comparing methods of forming confidence interval, it is common

to examine the average absolute error in coverage or the root mean-square er-

ror in coverage, where averaging is over p ∼ U(0, 1). Under either of these

measures, Proposition 3.4 implies that the mid-p method would be the optimal

method of forming one-tail confidence intervals.

Table 3.1: Average coverage (Av.Cov) of upper-tail 1−α intervals and smallest

upper limit (u0) of seven methods of forming interval estimates, for α = 0.05,

0.025, 0.005 and sample sizes (n) of 8, 20 and 50.

α n statistic Clopper Mid-p Agresti Wilson Wald Jeff. OLC
Pearson Coull

0.05 8 Av.Cov 0.976 0.956 0.949 0.941 0.852 0.941 0.950
0.05 8 u0 0.312 0.250 0.293 0.253 0.000 0.208 0.239

0.05 20 Av.Cov 0.971 0.954 0.953 0.947 0.903 0.946 0.950
0.05 20 u0 0.139 0.109 0.141 0.119 0.000 0.091 0.105

0.05 50 Av.Cov 0.966 0.952 0.953 0.949 0.928 0.948 0.950
0.05 50 u0 0.058 0.045 0.062 0.051 0.000 0.038 0.043

0.025 8 Av.Cov 0.989 0.979 0.972 0.966 0.867 0.969 0.975
0.025 8 u0 0.369 0.312 0.372 0.324 0.000 0.262 0.297

0.025 20 Av.Cov 0.986 0.977 0.976 0.972 0.923 0.972 0.975
0.025 20 u0 0.168 0.139 0.190 0.161 0.000 0.117 0.133

0.025 50 Av.Cov 0.983 0.976 0.977 0.974 0.950 0.974 0.975
0.025 50 u0 0.071 0.058 0.085 0.071 0.000 0.049 0.056

0.005 8 Av.Cov 0.998 0.996 0.991 0.988 0.882 0.993 0.995
0.005 8 u0 0.484 0.438 0.509 0.453 0.000 0.379 0.417

0.005 20 Av.Cov 0.998 0.996 0.994 0.992 0.941 0.994 0.995
0.005 20 u0 0.233 0.206 0.289 0.249 0.000 0.177 0.196

0.005 50 Av.Cov 0.997 0.995 0.995 0.994 0.970 0.995 0.995
0.005 50 u0 0.101 0.088 0.139 0.117 0.000 0.075 0.084

As mentioned in the introduction, it has been argued that a good interval

estimator should (i) give short intervals, and (ii) give coverage probabilites
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that usually are close to the nominal level. To examine criterion (ii), Agresti

and Coull (1998) calculate the root mean-square error (RMSE) of coverage

probability to measure how the actual coverage probability typically varies

from the nominal confidence level. They argue that a good method of forming

confidence intervals should have a low value of RMSE. So, we will calculate

the RMSE of each method’s coverage, which is determined over the truncated

range (u0, 1). This RMSE is given by

RMSE =

[
1

1− u0

∫ 1

u0

{Cu(p)− (1− α)}2 dp
]1/2

, (3.17)

where 1 − α is the nominal confidence level. Table 3.2 shows the RMSE

of each method for α = 0.05, 0.025, 0.005 and n = 8, 20, 50. Proposition 3.4

implies that the mid-pmethod has the minimum possible RMSE of any method

of forming a confidence interval estimate that does not use randomisation.

Consequently, the mid-p method has the smallest RMSE in every row of Table

2. The new method, OLC, has the second smallest RMSE in every row and is

always only a little bigger, at most 20% bigger, than the mid-p method. This

is much better than the RMSE of the Clopper-Pearson, which is sometimes

more than 45% bigger than the RMSE of the mid-p method. Moreover, each

of the other methods has at least one RMSE that is more than 80% bigger

than the mid-p method, with the Wald method often doing extremely badly.

Hence, the OLC method has a very respectable RMSE, even if it is not the

optimal method.
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Table 3.2: Root mean-square error (RMSE) of coverage of upper-tail 1 − α
intervals for seven methods of forming interval estimates, for α = 0.05, 0.025,

0.005 and sample sizes (n) of 8, 20 and 50.

α n Clopper Mid-p Agresti Wilson Wald Jeff. OLC
Pearson Coull

0.05 8 0.0290 0.0224 0.0267 0.0313 0.2249 0.0314 0.0242
0.05 20 0.0235 0.0166 0.0188 0.0213 0.1481 0.0212 0.0175
0.05 50 0.0180 0.0119 0.0139 0.0151 0.0972 0.0144 0.0124

0.025 8 0.0153 0.0121 0.0177 0.0237 0.2334 0.0186 0.0134
0.025 20 0.0125 0.0091 0.0118 0.0157 0.1522 0.0123 0.0097
0.025 50 0.0097 0.0066 0.0088 0.0110 0.0983 0.0083 0.0069

0.005 8 0.0033 0.0027 0.0085 0.0147 0.2407 0.0051 0.0032
0.005 20 0.0028 0.0021 0.0041 0.0088 0.1557 0.0032 0.0023
0.005 50 0.0022 0.0015 0.0028 0.0057 0.0997 0.0021 0.0017
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Figure 3.8: Expected lengths of two-sided 95% interval estimates for the

OLC, Jeffreys, Wilson and Wald methods (left-hand panels) and the OLC,

Agresti-Coull, Clopper-Pearson and mid-p methods (right-hand panels), plot-

ted against p for sample sizes of 8, 20 and 50.

Turning to the length of the intervals, two-tail intervals are examined as

the length of one-tailed intervals varies too much with the value of p. The
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length of one-tail intervals is approximately proportional to p for upper-tail

intervals and to 1−p for lower-tail intervals. In Figure 3.8, the expected length

of 95% two-tailed intervals are plotted against p for n = 8, 20, 50 for the OLC,

Jeffreys, Wilson and Wald methods (left-hand panels) and the OLC, Agresti-

Coull, Clopper-Pearson and mid-p methods (right-hand panels), where OLC

method is included in all plots. For all values of p and each combination of

n and α, the expected lengths of the OLC, mid-p, Agresti-Coull, Wilson and

Jeffreys intervals are all very similar, and a little smaller than the expected

lengths of the Clopper-Pearson intervals. Wald intervals have a much smaller

expected length than other methods when p is quite large or quite small,

but it only achieves this by giving coverages that are well-short of the nominal

confidence level. This expected length is used to calculate the average expected

length (AEL) for each method as it is defined in equation (3.13).

Table 3.3 gives the AEL of the methods considered earlier for each combination

of α = 0.05, 0.025, 0.005 and n = 8, 20, 50. It is clear that, apart from the

Wald method and Clopper- Pearson, the AEL of the OLC method is usually

similar in size to that of the other methods, and is always shorter than the

mid-p method. An exception is for α = 0.005 and n = 8, when its AEL is

much poorer than the AEL of Wilson’s method. However, Table 3.1 shows

that Wilson’s method gives a poor coverage for this combination of α and n

(the non-coverage in the upper tail is 0.012 rather than the nominal value of

0.005). Hence, it is reasonable to conclude that the AEL of the OLC method

compares satisfactorily with that of other methods, so there is little cost in

requiring intervals to be locally correct. In fact, our results and conclusion

about the AEL for all compared methods, surely excepted our OLC method,

are matching with the results of Schilling and Doi (2014).
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Table 3.3: Average expected length (AEL) of two-tail 1−2α intervals for seven

methods of forming interval estimates, for α = 0.05, 0.025, 0.005 and n = 8,

20, 50.

α n Clopper Mid-p Agresti Wilson Wald Jeff. OLC
Pearson Coull

0.050 8 0.497 0.435 0.427 0.407 0.372 0.402 0.421
0.050 20 0.317 0.283 0.284 0.275 0.268 0.273 0.278
0.050 50 0.197 0.181 0.182 0.179 0.178 0.178 0.179

0.025 8 0.561 0.508 0.499 0.474 0.427 0.472 0.492
0.025 20 0.366 0.335 0.337 0.325 0.316 0.323 0.328
0.025 50 0.231 0.215 0.218 0.213 0.211 0.212 0.213

0.005 8 0.673 0.634 0.614 0.586 0.520 0.597 0.617
0.005 20 0.457 0.431 0.435 0.417 0.403 0.417 0.423
0.005 50 0.295 0.281 0.286 0.278 0.275 0.276 0.278

3.6 Concluding comments

The aim in this chapter was to find a satisfactory criterion for choosing an

interval estimator for a binomial proportion. As mentioned earlier, with an

appropriate criterion there should be some interval estimators that (1) satisfy

the new criterion, (2) give intuitively sensible intervals, and (3) give inter-

vals whose average length is acceptably short. As a criterion we proposed that

an interval estimator should yield locally correct confidence intervals, meaning

that the average coverage between any pair of consecutive spikes should at least

equal the nominal confidence level. Three of the methods that were examined

met this criterion: the Clopper-Pearson method, the mid-p method and the

new OLC method. The Clopper-Pearson method does not satisfy point (3),

as the conservative length of its intervals has motivated other researchers over

the years to construct many other methods of forming confidence intervals

for a binomial proportion. One of these other methods is the mid-p method,

which has been recommended because it gives shorter intervals (Vollset, 1993;

Agresti and Gottard, 1995). The mid-p method also gives intuitively sensible

intervals so it meets points (1)–(3) above.

Turning to the OLC method, in the examples given in Figure 2.1, the method
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gave end-points that are fairly evenly spaced with coverages that are balanced

around the nominal confidence level. This has also been the case in every

other example we have examined. Blythe and Still (1983) and Schilling and

Doi (2014) list some properties that are desirable in an interval estimator,

such as equivariance and monotonicity. It was shown that the OLC method

has these properties for the many combinations of n and α that were exam-

ined through extensive computation [1 ≤ n ≤ 200 and confidence levels in

{0.001(0.001)0.27}]. Hence it is reasonable to conclude that the new method

OLC gives sensible intervals and meets point (2). Regarding the third point,

expected length of intervals, six methods of constructing equal-tail confidence

intervals were compared in Section 3.5. The six methods include the mid-

p, Wald, Wilson, Agresti-Coull and Jeffreys methods, which have each been

recommended in preference to the Clopper-Pearson method because of the

lengths of their intervals. The intervals given by the OLC method had an

average expected length that was shorter than Clopper-Pearson intervals and

comparable to those given by other methods for all values of n and α that

were examined, except for the Wald method, which gave intervals whose cov-

erage was often much less than the nominal confidence level. Hence the OLC

appears to give intervals that are acceptably short and so it meets point (3).

As there are at least two methods that meet points (1)–(3), it can be concluded

that requiring intervals to be locally correct is a reasonable criterion to place

on an interval estimator. Choosing between the mid-p method and the OLC

method is tricky because each has an optimality property. On the one hand,

for any value of p, the coverage of one-tail intervals is as close to the nominal

level as possible when intervals are determined using the mid-p method (cf.

Proposition 3.4). On the other hand, the average expected length of intervals

is smaller with the OLC method than with any other method that gives locally
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correct intervals (cf. Proposition 3.2). However, in choosing between estima-

tors, both coverage and length of intervals are important. Hence either (i) a

restriction should be placed on coverage and methods should be distinguished

on the basis of interval width, or (ii) a restriction should be placed on interval

width and methods distinguished on the basis of coverage. Requiring an in-

terval to be locally correct places a restriction on coverage, so distinguishing

between methods on the basis of interval length seems appropriate, in which

case the OLC method is the preferred interval estimator.

The proposed algorithm for the OLC method in this chapter has made it

clear that the OLC confidence intervals for binomial proportions can easily

be calculated in practice for real datasets of applied importance. We give an

example here for calculating an OLC confidence interval for a binomial pro-

portion based on a dataset from an important medical application for which

the Wald confidence interval is calculated in a text book.

The Open University introduces a second level module, M248, on analysing

data. Activity 13 in Book B of this module (The Open University-M248, 2017,

p 165) discusses a clinical trial that examined the effect of taking a low dose

of penicillin for twelve months on the recurrence of leg cellulitis in patients

who had previously two or more episodes of leg cellulitis. The trial contains

136 patients of which 30 patients had a recurrence of leg cellulitis during the

twelve-month of treatment. In that activity, based on the given dataset, a 90%

Wald confidence interval is calculated for the proportion of patients with leg

cellulitis whose cellulitis recurred during the time they were taking penicillin.

The 90% Wald confidence interval is reported to be (0.162, 0.280).

The proposed algorithm for the OLC confidence intervals has been used with

the same dataset, for n = 136 and x = 30. This gives the 90% OLC confi-

dence interval for the proportion of patients with leg cellulitis whose cellulitis
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recurred during the time they were taking penicillin. The calculated OLC con-

fidence interval is obtained as (0.167, 0.283). It is obvious that the endpoints

of the OLC confidence interval are rather close to the corresponding endpoints

of the Wald confidence interval. This is due to the fact that the normal ap-

proximation used in the Wald confidence interval is accurate enough since the

sample size is large. However, the proposed OLC confidence interval is clearly

shorter.
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Chapter 4

General results for the OLC

method
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4.1 Introduction

In the previous chapter, the important task of forming an interval estimator for

a binomial probability was addressed. A new definition of an interval estimator

was defined and the OLC method was developed and shown to work well. The

saw-tooth pattern of the coverage occurs with any sampling distribution that

is discrete, so it is natural to try to extend this work without focusing on

any specific discrete sampling distribution, thus obtaining results that apply

more generally. The results will be used in Chapters 5 and 6, where interval

estimators for the Poisson distribution and negative binomial distribution are

considered.

There are two main issues to address:

1. With the binomial distribution, the OLC method starts by setting a

confidence limit equal to an endpoint of the range of the parameter

space when the sample statistic takes a value at the edge of its domain.

When determining an upper limit it starts by setting un equal to 1

(the upper endpoint of the range of p) and for a lower limit it starts

by setting l0 equal to 0 (the lower endpoint of the range of p). For

some discrete sampling distributions, the domain of the sample statistic

may be unbounded, when the range of the parameter space may also be

unbounded. For example, the sample value of a Poisson variate can be

any non-negative integer and the range of the Poisson parameter, λ, is

(0,∞). The first task is to modify the OLC so that it can be used with

unbounded sample spaces.

2. For the binomial distribution it was shown that the OLC method gave

intervals with the smallest average width of any method that gave locally

correct confidence intervals. The proof of this result is tough and will
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not generalise. Instead, conditions are given under which a weaker result

about average width holds. For many discrete sampling distributions,

the conditions are straightforward to check though it requires repetitive

computation.

These issues are examined in Sections 4.2 and 4.3. Also there is

3. As noted in Section 2.4.4, there are a number of properties that are

desirable in methods of forming confidence intervals. The extent to

which the OLC method generally holds these properties is examined

in Section 4.4.

4.2 Modifying the OLC method for unbounded sam-

ple spaces

The nature of the parameter space and the random variable X depends upon

the sampling distribution and the parametrization. Some distributions have

a parameter space and random variable with finite ranges e.g. the binomial

distribution, its parameter p ∈ [0, 1] and the observed value x of its random

variable takes a value from 0, 1, . . . , n. Other distributions have a parameter

space and a random variable with infinite range e.g. the Poisson distribution;

its parameter λ ∈ [0,∞) and the observed value x of its random variable can

be 0, 1, . . .. The range of both the parameter space and the random variable

affect the OLC method of calculating the endpoints of the confidence interval

for the parameter.

For clarification, in the case of a finite range with upper bound 1, if the value

of x is limited by the value of n, the endpoints of the confidence interval for

the upper tail are calculated by setting the last endpoint un = 1. Then the

method determines the previous endpoint un−1, which depends on the given

endpoint un, and so on. So, each ui can be only calculated after ui+1 has been
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obtained. A similar strategy is used to calculate the endpoints for the lower

tail. If the range of the parameter is bounded below by 0 and the smallest

possible value of x = 0, we set the first lower endpoint l0 = 0 and sequentially

calculate the following endpoints l1, l2, . . .. So, each li+1 is determined by li.

This is explained in detail in the case of the binomial distribution in Section 3.4

in Chapter 3. In the case where the range of the random variable x goes to

infinity, the OLC method must be modified.

Let θ denote the parameter of interest and suppose that the range of θ is

unbounded above. For definiteness, suppose an upper-tail (1− α) interval for

θ is to be constructed. To obtain the first confidence limit in the iteration,

we select a large value of x, which is denoted by N , and need to choose a

reasonable value for uN , the upper endpoint of the upper-tail interval when

x = N . This value can be calculated by using one of the classical methods of

constructing confidence interval, e.g. the mid-p or exact methods.

We take this upper limit as the upper limit of the interval given by the OLC

method. Then we determine uN−1 so that equation (3.1) is satisfied. Then

uN−2 is obtained using the value of uN−1, and so on until we get ux. An

important question is whether this method gives a value of ux that is somewhat

arbitrary. If we chose a different (large) value for N would we get a different

value for ux, where x < N? Would we get a different value if we used Jeffreys

method or some other method to obtain uN?

Suppose uN , uN−1, uN−2, . . . are the upper limits given by the OLC method

when the method starts with uN as the upper limit at x = N , and that

u∗N , u
∗
N−1, u

∗
N−2, . . . are the upper limits when it starts with u∗N as the upper

limit when x = N . Let Cu,i(θ) = Pr(X ≥ i|θ). When uN is the upper limit

at x = N , Cu,i(θ) is the coverage probability when θ ∈ (ui−1, ui) and, when

u∗N is the upper limit, Cu,i(θ) is the coverage probability when θ ∈ (u∗i−1, u
∗
i )
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Thus, for i = N,N − 1, N − 2, . . .,

1

ui − ui−1

∫ ui

θ=ui−1

Cu,i(θ) dθ = 1− α (4.1)

and

1

u∗i − u∗i−1

∫ u∗i

θ=u∗i−1

Cu,i(θ) dθ = 1− α. (4.2)

The coverage probability is generally an “S”-shaped function of θ and hence

concave for larger values of θ. (An exception is the binomial distribution

binomial(n, p) when X = n.) For almost all sampling models in which θ

has an unbounded upper limit, Cu,i(θ) will be a concave function of θ when

1− α > 0.7 and θ is greater than ui and u∗i . The following proposition shows

that |ui− u∗i | > |ui−1–u∗i−1| for i = N,N − 1, N − 2, . . ., provided the shape of

the coverage function is concave in the regions that are relevant to determining

the interval endpoints. Consequently, for a given value of x the value of ux

will not be arbitrary if N is sufficiently large N >> x, provided the conditions

of the proposition hold. Proof of the proposition is given in Appendix C.

Proposition 4.1

Suppose , Cu,i(θ) is a concave function of θ for θ > min(ui−1, u
∗
i−1). Then

|ui−1–u∗i−1| < |ui − u∗i |.

A similar approach is adopted for the lower endpoint if the value of X has

no lower bound. A large negative value (−M say) is chosen for X and the

lower endpoint of a 1−α lower-tail interval for θ is calculated using a standard

method of forming confidence intervals. This endpoint is taken as l−M and

then l−M+1, l−M+2, . . . are constructed sequentially using the OLC method

until lx is obtained.

4.3 Optimality properties for width of intervals

The width of interval estimates is of paramount importance – it is the reason

that so many different interval estimators have been proposed. For the bino-
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mial distribution it was possible to show that the OLC method gives intervals

with the shortest average expected length of any interval estimator that gives

locally correct confidence (LCC) intervals. Obtaining a result of this type that

holds for a number of discrete distributions is not possible. However, it is pos-

sible to give conditions under which slight changes to the endpoints given by

the OLC method will always increase the average expected length of intervals.

We shall refer to this as a locally optimum property, in the same way that

examining the first and second derivatives of a function can show that it is a

local minimum, but does not show that it is a global minimum.

For definiteness, we again suppose an upper-tail (1 − α) interval for θ is

required. We first consider the case where θ has a finite upper bound, Θ say,

and X is finite, taking one of the value 0, 1, . . . , n. For i = 0, . . . , n, let (0, ui)

be the upper-tail interval given by the OLC method and define p∗i by

p∗i =

∫ Θ

θ=0
Pr(X = i|θ) dθ. (4.3)

Then, if θ is equally likely to be any value in the interval (0,Θ), the average

expected length of the upper-tail interval is
∑
p∗iui.

As u0, . . . , un are the endpoints given by the OLC method, they satisfy equa-

tion (4.1) where, again, Cu,i(θ
∗) = Pr(X ≥ i|θ = θ∗). Let (u∗0, . . . , u

∗
n) be a

partition that gives locally correct confidence intervals and for which

|u∗i − ui| < δ for i = 0, . . . n. (4.4)

Proposition 4.2 gives necessary and sufficient conditions for
∑n

i=0 p
∗
iu
∗
i >∑n

i=0 p
∗
iui if δ is sufficiently small. That is, it gives conditions for the OLC

method to yield locally correct confidence intervals with an expected average

length that is a local minimum. For a specified sampling model it is usually

relatively straightforward to check whether the conditions of the proposition

hold for a specified value of α.
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Proof of the proposition is given in Appendix D.

Proposition 4.2

For i = 1, . . . , n, let hi = Cu,i(ui)− (1− α) and fi = Cu,i(ui−1)− (1− α). For

1 ≤ j ≤ l ≤ n, define ψjl =
∏l
i=j(hi/fi) and put φl = p∗l +

∑l
j=1 p

∗
j−1ψjl for

l = 1, . . . , n, where pi > 0 for i = 0, . . . , n.

(a) Suppose φl < 0 for some l ∈ (1, . . . , n−1). Then for any δ > 0 there exists

a partition (u∗0, . . . , u
∗
n) such that

n∑
i=0

p∗iu
∗
i <

n∑
i=0

p∗iui,

with (4.4) satisfied for i = 0, . . . , n. and

1

u∗i − u∗i−1

∫ u∗i

θ=u∗i−1

Cu,i(θ) dθ ≤ 1− α (4.5)

for i = 1, . . . , n.

(b) Suppose φl > 0 for i = 1, . . . , n− 1. Then there exists δ > 0 such that

n∑
i=0

p∗iui <
n∑
i=0

p∗iu
∗
i

if (4.4) holds for i = 0, . . . , n and (4.5) holds for i = 1, . . . , n.

The result in Proposition 4.2 is generally of little use when the range of the

parameter space has no upper bound and the domain of X is 0, 1, . . ., with no

upper bound. This is because the length of both one-tail and two-tail intervals

will typically increase without bound as X increases, becoming infinite, and

comparing the size of two infinite quantities is tricky. Rather than compare

methods on the basis of the average expected length of their intervals, it is

better to form some weighted average of the expected lengths of intervals. An

appropriate set of weights would give greater weight to the length of intervals

when X is small than when X is large, and weights would decrease sufficiently

quickly for the weighted average length of intervals to be finite.
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Suppose again that an upper-tail (1 − α) interval for θ is required but

now the possible values of X are 0, 1, . . . with no upper bound. Applying

the approach advocated in Section 4.2, a large value for n is selected and,

for i = n, n − 1, . . . , 0, the OLC method gives ui as the upper endpoint of

its interval when X = i. We suppose un is fixed but slight changes may be

made to u0, . . . , un−1, yielding a partition (u∗0, . . . , u
∗
n) that gives locally correct

confidence intervals and for which u∗n = un and equation (4.4) is satisfied.

Then the result of Proposition 4.2 can be applied to
∑n

i=0 piui, where p0, . . . pn

are now viewed as weights. This yield the following corollary.

Corollary 4.1.

Suppose the conditions given in Proposition 4.2 hold and, in addition, u∗n = un.

Then the result of the proposition holds for comparison of
∑n

i=0 piui with∑n
i=0 piu

∗
i .

4.4 Desirable properties in confidence intervals

A number of desirable properties in methods of forming confidence intervals

were discussed in Section 2.4.4. The generality with which OLC methods have

these properties is considered below. The properties are as follows.

Property 1. Interval valued. A confidence region should be an interval and

not a collection of disjoint intervals.

Property 2. Monotonicity in x. This monotonicity may be

• Montone increasing: For fixed α, if the point estimator increases mono-

tonically as x increases, then the endpoints of the confidence interval

should also increase monotonically. This requires l(x + 1, α) > l(x, α)

and u(x+ 1, α) > u(x, α).

• Monotone decreasing: For fixed α, if the point estimator decreases mono-

tonically as x increases, then the endpoints of the confidence interval
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should also decrease monotonically. This requires l(x + 1, α) < l(x, α)

and u(x+ 1, α) < u(x, α).

Property 3. Nesting. If two confidence intervals have different confidence

levels then, for any given random variable, say X, the interval for the higher

confidence level should contain the interval for the lower confidence level. Sup-

pose we have two confidence levels 1−α1 and 1−α2 with α1 < α2, this requires

(l(x, α2), u(x, α2)) ∈ (l(x, α1), u(x, α1)). For this to occur for all confidence

levels, as the level increases the lower limit for each random variable must be

non-increasing, and the upper limit must be non-decreasing.

The OLC method will not always be usable, For example, with the bino-

mial distribution x could not be used to form confidence interval if 1− α was

less than 0.4. When it is usable, by logic, from the way it forms confidence

intervals, it always gives confidence intervals that are a single interval and

hence the OLC method has Property 1. Similarly, its method of construction

means that its intervals always meet the monotonicity in x property. Checking

whether the OLC method has the nesting property is difficult. For the bino-

mial distribution, direct computation showed that it has the property when

1 ≤ n ≤ 200 and α1 and α2 are in {0.001(0.001)0.27}. This is a fine dis-

cretization, suggesting the OLC must have the property for 1 ≤ n ≤ 200 and

{0.001 ≤ α1, α2 < 0.27}. It seems likely that this type of result about nesting

will hold for many sampling models.

4.5 Concluding comments

This chapter has given a number of results that commonly hold for the OLC

method. Examples that exploit the results and illustrate their usefulness are

given in Chapters 5 and 6.
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Chapter 5

Poisson confidence interval

methods
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5.1 Introduction

There are fewer methods of forming interval estimators for a Poisson mean

than for a binomial proportion. The most important of these have been de-

scribed in the Poisson section of Chapter 2. Other than the Garwood method,

the methods that aim to give equal-tail intervals do not meet the strict def-

inition of a confidence interval. As with the binomial distribution, the main

obstacle facing the construction of confidence intervals for the Poisson mean

(λ) is the discrete nature of the sample space, which produces spikes. This

leads to wide fluctuations in the coverage probability as λ varies. In Chapter 3,

the notion of methods that give locally correct confidence (LCC) intervals was

introduced. Methods give LCC intervals if the average coverage between spikes

is at least as large as the nominal confidence level. For the binomial distri-

bution, methods could be found which met this definition and which (1) gave

sensible intervals and (2) gave intervals whose average width is acceptably

short. In this chapter a method that gives LCC intervals for a Poisson mean

is developed, examined and compared with other methods.

The Poisson distribution is simpler than the binomial distribution, as it has

only one parameter λ rather than the two parameters of the binomial (n and

p). However, additional challenges arise with the Poisson distribution because

the range of λ has no upper bound and because the values that x can take also

have no upper bound. In Section 4.2 a modification of the OLC method was

suggested that is designed to handle unbounded sample spaces. The modifi-

cation requires a large value for x to be chosen, N say, and the algorithm is

started by specifying an upper interval limit for the case x = N . Choice of

the value of N will be discussed in detail.

This chapter will examine methods over the range λ ∈ (0, 50], which is the
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range of λ that is considered in a number of references, e.g. Patil and Kulkarni

(2012), and it covers the values of λ that are usually of interval in practice.

When comparing methods here, this range of λ will be divided into three re-

gions, namely (0, 2), (2, 5) and (5, 50). The use of weighted average expected

length is also used to compare methods with a weight function that yields a

finite weighted average expected length. This provides an overall measure of

performance over the full range of λ.

In this chapter, we will apply the new approach of computing the confidence

interval for a binomial proportion to calculate the confidence interval for the

Poisson mean λ. In Section 5.2, we give a precise definition of a locally cor-

rect confidence interval that is appropriate for unbounded sample spaces. In

Section 5.3, we modify the interval estimator for the binomial distribution

and obtain the optimal locally correct (OLC) method for the Poisson sam-

pling distribution. We examine whether intervals given by the OLC method

seem sensible and examine whether the new estimator has properties that

have been proposed in the literature as being desirable. Also, it is shown that

the OLC method has an optimality property regarding the length of the in-

tervals it yields. In Section 5.4, the OLC method is compared with several

methods that have been recommended for forming equal-tailed confidence in-

tervals (as noted in the literature chapter). Concluding comments are given

in Section 5.5.

5.2 Locally correct confidence intervals

In this chapter, let X denote a Poisson random variable with mean λ and

suppose an interval estimator gives (0, ux) as its upper-tail estimate for λ

when x is the observed values of X. For a reasonable estimator,

0 < u0 < u1 < u2 < . . . . (5.1)
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The coverage probability is the probability that the random interval (0, ux)

contains λ, so it depends on the value of λ. We indicate this coverage proba-

bility by Cu,i(λ), when ui−1 < λ < ui

Cu,i(λ) = Pr(X ≥ i|λ) = 1−
i−1∑
x=0

e−λλx/x! (5.2)

The points of the spikes occur where λ equals u0, ......, u∞ and the coverage

drops by euxuxx/x!

The focus is again on methods whose average coverage between spikes is greater

than or equal to the nominal level. However the modified OLC method, pro-

posed in the next section, only determines endoints u0, u1, . . . , uN , where N

is a large number chosen by the user. This leads to a slightly less stringent

definition for an interval estimator to give LCC intervals.

Definition 1. For the upper-tail interval, suppose an interval estimator gives

(0, ux) as its upper-tail interval for λ when X = x for x = 0, . . . , N and that

u0, u1, . . . , uN satisfy equation (5.1). If, for i = 1, 2, . . . , N

1

ui − ui−1

∫ ui

λ=ui−1

Cu,i(λ)dλ ≥ (1− α) (5.3)

and then the interval estimator gives upper-tail LCC intervals with confidence

level (1− α) for x ≤ N .

Definition 2. For the lower-tail interval, suppose an interval estimator gives

(lx,∞) as its lower-tail interval for λ when X = x for x = 0, . . . , N and that

0 = l0 < l1 < . . . < lN . The coverage probability Cl,i is defined as

Cl,i(λ) = Pr(X ≤ i|λ) =

i∑
x=0

e−λλx/x! (5.4)

for i = 1, 2, . . . , N . If, for i = 0, . . . , N − 1

1

li+1 − li

∫ li+1

λ=li

Cl,i(λ)dλ ≥ (1− α) (5.5)

then the interval estimator gives Lower-tail LCC intervals with confidence level

(1− α) for x ≤ N .
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Definition 3. For the two-sided interval, suppose that, for x = 0, 1, . . . , N ,

an interval estimator gives a two-sided equal-tail intervals (lx, ux) for λ when

X = x. Then it gives equal-tail LCC intervals with the confidence level (1−2α)

for x ≤ N if and only if, for x = 0, 1, . . . , N , the intervals (lx,∞) and (0, ux)

are sets of one-sided lower-tail and upper-tail LCC intervals for x ≤ N , re-

spectively, each with confidence level (1− α).

For simplicity, an interval estimator that gives equal-tail LCC intervals for

x ≤ N will be referred as a LCC interval estimator unless the value of N is

important, when it will be referred to as an LCC interval estimator of domain

N .

5.3 The modified OLC method

We propose an interval estimator that uses a straightforward iterative algo-

rithm, similar to that used in the binomial case but with some differences, to

obtain one-sided interval estimates. The main difference is in the algorithm for

determining one-sided upper tail interval, as the infinite range of x affects the

way the upper endpoints are obtained. The algorithm implements the mod-

ification for unbounded sample space that was proposed in Section 4.2. The

modification requires a large value, N , to be chosen and then the algorithm

successively calculates uN , uN−1, uN−2, . . . , u0. We first give the algorithm

and then consider the choice of N . For an upper-tail interval with confidence

level 1 − α, the algorithm sets uN equals to a reasonable upper point. We

mentioned in Chapter 4, when the domain is finite for both x ≤ n and p ≤ 1,

the algorithm sets un (the last interval) equals to 1 (as in the binomial case).

But, in the case of an infinite domain for x = 0, 1, 2 . . . and 0 ≤ λ ≤ ∞, a

reasonable value must be chosen for the upper point of the last interval uN .
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This value can be calculated by using one of the classical methods and here

the mid-p method is used to calculate (uN.midp), before uN−1, uN−2, . . . , u0 are

determined using the same procedure used for the binomial. Specifically, the

steps of the algorithm for an upper-tail interval are as follows.

1. Set uN = uN.midp and put i = N − 1.

2. Given ui+1, use the bisection method to find the value ui that makes the

average coverage over the interval (ui, ui+1) equal to 1− α.

3. Repeat step 2 for i = N−2, N−3, . . . , 1, 0 to obtain uN−2, uN−3, . . . , u1, u0.

From its constructions, the method determines the endpoints of subinter-

vals that have an average coverage of 1− α. But, after ui has been attained,

it could be the case that Pr(X ≥ i − 1|λ) is less than 1 − α, even though

(ui+1 − ui)−1
∫ ui+1

ui
Pr(X ≥ i|λ)dλ = 1 − α. Then, given ui, there is no ui−1

(with ui−1 ≤ ui ) that meets the requirement that (ui−ui−1)−1
∫ ui
ui−1

Pr(X ≥

i− 1|λ)dλ = 1−α. Hence the following proposition is needed to underpin the

algorithm.

Proposition 5.1

Suppose 1 ≤ x ≤ 200 and α ∈ {0.001(0.001)0.3} , suppose also that

1

ui − ui−1

∫ ui

λ=ui−1

(
1−

i−1∑
x=0

exp−λ λx/x!

)
dλ = 1− α (5.6)

and ui > ui−1 for i = j + 1, j + 2, ......., 200, where 200 is the largest value of

x. Then there is a unique uj−1 such that uj > uj−1 > 0 and equation (5.6)

holds when j = i.

We have been unable to prove the proposition for all values of x from 0 to ∞.

It is easy to show that any uj−1 that satisfies equation (5.6) is unique, but

hard to show that 1 −
∑i−1

x=0 exp−λ λx/x! > (1 − α), which is a requirement
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for the existence of a uj−1 that satisfies the equation. Instead, we choose a

sufficiently large value of N , which will be discussed in the following section, to

determine the last upper point uN.midp. Then repetitive computation showed

that the result in Proposition 5.1 holds if x is a positive integer less than 200

and α is one of the numbers 0.001, 0.002, . . . , 0.3. So throughout this chapter

it is assumed that 1 ≤ x ≤ 200 and α ∈ {0.001(0.001)0.3}. From Proposition

5.1, we have that 0 < u0 < .....u200 = uN.midp. Consequently, under Definition

1 the new estimator gives upper-tail LCC intervals.

Forming the lower-tail intervals is essentially the same as forming the lower-

tail intervals in the case of the binomial distribution. That is because the

search starts by putting l0 = 0 and then l1, ...., l200 are determined sequentially.

Given li, li+1 will be calculated as follows. Assume that 1 ≤ x ≤ 200 and

α ∈ {0.001(0.001)0.3}. We find the value for li+1 that satisfies

1

li+1 − li

∫ li+1

λ=li

i∑
x=0

e−λλx/x!dλ = 1− α (5.7)

where i = 0, 1, ....199, then (li,∞) is the 1− α lower-tail interval when X = i

and the estimator gives lower-tail LCC intervals from Definition 2.

We obtain the two-sided intervals by combining the endpoints of one-sided

intervals. Consequently, when X = i the new estimator gives the two-sided

equal-tail interval (li, ui) for a confidence level of 1 − 2α, where (li,∞) and

(0, ui) are the lower-tail and upper-tail LCC intervals for a confidence level of

1− α, respectively. Thus, the new estimator is an LCC interval estimator (of

domain N).

Turning to the choice of N , this is allowed to depend on the observed value of

X. Let ux(n) be the upper limit of the 1− α upper-tail interval when X = x

and the algorithm starts at N = n. From proposition 4.1, as n→∞ the value

of ux(n) approaches some limit, say u∗x. In choosing N , the aim is to choose a

101



value that is sufficiently large for ux(N) to differ from u∗x by an amount that

is negligible. At the same time, it is computationally inefficient to use a value

for N that is unnecessarily large.

An adequate size for N will depend on the value of x. Table 5.1 and 5.2 com-

pare the values of upper points (ux(N)) for our new OLC method at different

values of N and x. It is clear that the changes in the value of x should influence

the value chosen for N . When x = 8, the difference between the upper points

for N = 42 and N = 100 appears from the third decimal place, while the

difference between the upper points for N = 100 and N = 200 arises the fifth

decimal place and difference between N = 200 and N = 1000 appears after

the fifth decimal place. So setting N equal to 42 will be enough when x = 8

as choosing N = 100, 200 or 1000 will only change the limit by a very small

amount. When x = 20, the difference between the upper points for N = 42

and N = 100 appears from the third decimal place, for N = 100 and N = 200

it appears from the fifth decimal place and, for N = 200 and N = 1000 it

does not appear before the sixth decimal place. This means that increasing

the value of N above 100 will make little difference to the values of the upper

points. So, N = 100 will be a good choice when x = 20. Also, when x = 40,

the difference between the upper points for N = 42 and N = 100 appears

in the second decimal place and, for N = 100 and N = 200, the difference

begins in the third decimal place, while the difference between N = 200 and

N = 1000 appears after the fifth decimal place. So, N = 200 is clearly large

enough when x = 40. Based on these results, setting N equals to the larger

of 40 and 5x should be a reasonable choice in practice. We refer to the new

method as the modified OLC method.
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Table 5.1: Upper points of the OLC method at different values of N for

0 ≤ x ≤ 20
x N = 42 N = 100 N = 200 N = 1000

1 2.22416 2.22414 2.22413 2.22413

2 4.03284 4.03289 4.03290 4.03290

3 5.61799 5.61791 5.61791 5.61791

4 7.09690 7.09701 7.09701 7.09701

5 8.51209 8.51194 8.51194 8.51194

6 9.88264 9.88283 9.88284 9.88284

7 11.22143 11.22119 11.22119 11.22119

8 12.53394 12.53423 12.53424 12.53424

9 13.82727 13.82691 13.82691 13.82691

10 15.10226 15.10269 15.10269 15.10270

11 16.36475 16.36423 16.36422 16.36422

12 17.61286 17.61347 17.61348 17.61348

13 18.85279 18.85206 18.85205 18.85205

14 20.08033 20.08118 20.08119 20.08119

15 21.30294 21.30196 21.30194 21.30194

16 22.51400 22.51514 22.51516 22.51516

17 23.72289 23.72158 23.72156 23.72156

18 24.92023 24.92174 24.92176 24.92176

19 26.11803 26.11631 26.11628 26.11629

20 27.30361 27.30557 27.30559 27.30559

Table 5.2: Upper points of the OLC method at different values of N for

21 ≤ x ≤ 40
x N = 42 N = 100 N = 200 N = 1000

21 28.49233 28.49011 28.49008 28.49008

22 29.66756 29.67007 29.67009 29.67010

23 30.84882 30.84599 30.84596 30.84596

24 32.01471 32.01789 32.01793 32.01793

25 33.18987 33.18632 33.18627 33.18627

26 34.34715 34.35113 34.35119 34.35119

27 35.51739 35.51295 35.51289 35.51289

28 36.66654 36.67149 36.67155 36.67155

29 37.83292 37.82742 37.82735 37.82735

30 38.97423 38.98034 38.98042 38.98042

31 40.13776 40.13100 40.13091 40.13091

32 41.27137 41.27884 41.27894 41.27894

33 42.43300 42.42474 42.42463 42.42463

34 43.55888 43.56797 43.56809 43.56809

35 44.71957 44.70955 44.70942 44.70942

36 45.83756 45.84856 45.84871 45.84871

37 46.99829 46.98619 46.98604 46.98604

38 48.10808 48.12132 48.12149 48.12149

39 49.26985 49.25534 49.25515 49.25515

40 50.37102 50.38686 50.38708 50.38707
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Figure 5.1: Coverage of upper-tail LCC intervals given by the modified OLC

method for observed values of 0 < x < 8, 0 < x < 20 and 0 < x < 50, where

N = 40, 100 and 250, respectively for each x and the nominal confidence levels

of 97.5% (α = 0.025) and 99.5% (α = 0.005)

To illustarate the coverage of the new estimator, examples are shown in

Figures 5.1 and 5.2, which plot coverage against λ for upper-tail intervals and

lower-tail intervals, respectively, with nominal confidence levels of 97.5% and

99.5% for observed values 0 < x < 8, 0 < x < 20 and 0 < x < 50. It is

clear that the coverage is always evenly spread around the nominal level and

appears to give sensible interval estimates. The average coverage between two

consecutive spikes always equals the nominal level (1− α).

Turning to a critical feature of an interval estimator, the length of its

intervals, is considered next. If (lx, ux) is an interval estimate when X = x,
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Figure 5.2: Coverage of lower-tail LCC intervals given by the modified OLC

method for observed values of 0 < x < 8, 0 < x < 20 and 0 < x < 50, where

N = 40, 100 and 250, respectively for each x and the nominal confidence levels

of 97.5% (α = 0.025) and 99.5% (α = 0.005)
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then the expected length of its interval, L(λ) is given by

L(λ) =

∞∑
x=0

(ux − lx) exp−λ λx/x! (5.8)

and averaging over λ gives the average expected length (AEL),

E(L(λ)) =

∫ ∞
λ=0

L(λ)dλ. (5.9)

This definition holds for two-tail intervals and for one-tail intervals. This

average expected length equals infinity for most methods of forming interval

estimates, so the average expected length is of limited use. Corollary 4.1 in

Chapter 4 gives conditions for a local optimality property that is suited to a

sampling method for which the length of intervals increases without bound.

Rather than consider the average expected length of intervals, it considers the

weighted average expected length of intervals.

To form a set of weights in a meaningful way, we choose a function w(λ) and

put

pi =

∫ ∞
0

Pr(X = i|λ)w(λ)d(λ) (5.10)

for i = 0, 1, . . ., where pi is the weight given to one or two-tailed intervals,

(0, ui) and (li, ui). For mathematical tractability, w(λ) is set equal to a

gamma(θ, β) distribution,

w(λ) =
βθ+1

Γ(θ + 1)
λθe−βλ for0 ≤ λ <∞. (5.11)

As Pr(X = i|λ) = e−λλi/i!, for i = 0, 1, . . .

pi =

∫ ∞
0

e−λλi

i!

βθ+1

Γ(θ + 1)
λθe−βλdλ

=
Γ(θ + i+ 1)

(β + 1)θ+i+1

βθ+1

Γ(θ + 1)

∫
(β + 1)θ+i+1

Γ(θ + i+ 1)
λθ+ie−(β+1)λdλ

=
Γ(θ + i+ 1)βθ+1

(β + 1)θ+i+1Γ(θ + 1)i!

(5.12)

We need to determine the weighting function by choosing the parameter

values (θ, β) of the Gamma(θ, β) distribution. When comparing methods, in
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the literature it is quite common to examine performance in each of a number

of subintervals of the range of λ. A common choice is the intervals (0, 2), (2, 5)

and (5, 50) (Barker, 2002; Patil and Kulkarni, 2012; Lui, 2012 ). When θ = 1

and β = 1/4, the weighting function w(λ) gives almost equal weight to each of

these intervals, so those are the values that will be used here. The condition

for Corollary 4.1 to hold are specified in Proposition 4.2. The following steps

were performed to examine whether the conditions held for the modified OLC

method with p0, p1, . . . , pN given by equation (5.14) and N set at 200. We

examined each α in {0.001(0.001)0.3}.

(1) Let (0, ui) be the confidence interval given by the modified OLC method

when X = i. Determine u0, u1, . . . , u200.

(2) By definition Cu,i(ui) = 1 −
∑i−1

x=0 e
−λλx/x! with λ = ui. For i =

0, 1, 2, . . . , 200, calculate hi = Cu,i(ui)−(1−α) and calculate fi = Cu,i(ui−1)−

(1 − α) for i = 1, 2, . . . , 201. Then calculate ψjl =
∏l
i=j(hi/fi) for j =

1, 2, . . . , 200 and l = j, j + 1, . . . , 200.

(3) Calculate pi = Γ(θ+i+1)βθ+1

(β+1)θ+i+1Γ(θ+1)i!
for i = 0, 1, 2, . . . , 200, θ = 1;β = 1/4.

(4) Calculate φl = pl +
∑l

j=1 ψjlpj−1 for l = 0, 1, . . . , 200.

If φl is always positive, it means that our algorithm satisfies the conditions

given in part (b) of Proposition 4.2. This was the case for each value of α that

was considered. Thus if any of u0, . . . , u199 are adjusted by a small amount

to give (u∗0, . . . , u
∗
199), while (u∗0, . . . , u

∗
199, u

∗
200) is a partition that gives locally

correct confidence intervals, then the weighted average expected length of in-

tervals is increased (i.e.
∑
piu
∗
i >

∑
piui).

The one-tailed lower confidence intervals have an upper bound of infinity and

hence are infinite. However, letting li denote the lower limit when X = i(i =

0, . . . , 200), the weighted average
∑
pili was examined as follows

(1) Cl,i(li) was set equal to
∑i

x=0 e
−λλx/x! with λ set equal to li for i =
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0, . . . , 200.

(2) Calculate hi = Cl,i(li)−(1−α) for i = 0, . . . , 200 and fi = Cl,i(li−1)−(1−α)

for i = 1, 2, . . . , 201.

(3) As in the procedure for the upper endpoints, calculate ψjl =
∏l
i=j(hi/fi)

for j = 1, 2, . . . , 200 and l = j, j + 1, . . . , 200 and put φl = pl +
∑l

j=1 ψjlpj−1

for l = 0, 1, . . . , 200.

The value φ0, . . . , φ200 was determined for equal α in {0.001(0.001)0.3} and it

was found that they were always negative. Hence adjusting any of l0, . . . , l199

by a small amount to yield a partition (l∗0, . . . , l
∗
199, l

∗
200) that gives locally

correct confidence intervals will result in
∑
pil
∗
i <

∑
pili. It follows that∑

pi(ui − li) >
∑
pi(u

∗
i − l∗i ) so the modified OLC method also gives two-

tailed interval whose average expected length is a local minimum.

Some desirable properties in interval estimators were reviewed in Section 2.2.4.

In Section 4.5, it was noted that an OLC method will always have Property

1 (a confidence region should be an interval and not a collection of disjoint

intervals) and Property 2 (montonicity in x ) from the way that intervals are

constructed. This is also true for the modified OLC method. Whether the

modified OLC method has Property 3 (the nesting property) is not self-evident

and may depend on the sampling method. The property states that, if two

confidence intervals have different confidence levels then, for any given x, the

interval for the higher confidence level should contain the interval with the

lower confidence level. Repetitive computation has shown that the modified

OLC method has this when 1 ≤ x ≤ 200 and the two confidence levels are in

{0.001(0.001)0.3}. It seems clear that the modified OLC method meets the

previous requirements for being a well-behaved interval estimator.
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5.4 Comparison with other methods

In this section, we compare the OLC method’s performance with the follow-

ing five methods of forming interval estimates, which have been described in

Chapter 2: Garwood, mid-p, Jeffreys, Wald and score methods. We compare

them in terms of their coverage probability for 0 < λ < 20 and 0 < λ < 50

and expected length for 0 < λ < 2, for 2 < λ < 5 and 5 < λ < 50 and nominal

confidence level 95%, 97.5% and 99.5%. The range of λ and these nominal

levels give a fair representation of the behaviour for other ranges of λ and

other nominal levels.

5.4.1 Coverage probability

Attention will be restricted to upper-tail and lower-tail intervals. As men-

tioned in Section 3, Cl,i(λ) and Cu,i(λ) are the coverage of the lower-tail and

an upper-tail interval estimator, respectively, and are the probability that the

random interval (lx,∞) and (0, ux) contain λ. We follow a similar structure to

the binomial case for calculating the average coverage of the upper-tail. But

there is a difference in that we do not calculate the average coverage for the

whole range of λ. We divide λ’s range as 0 < λ < 20 and 20 < λ < 50 and

calculate the average coverage for each range sepeartely. First, for 0 < λ < 20,

the quantity Tu is defined as

Tu =
1

20− u0

∫ 20

u0

Cu,i(λ)dλ (5.13)

and refer to it as the truncated average coverage. In calculating Tu for 0 <

λ < 20, the values of λ in the range (0, u0) are excluded as the coverage equals

1 when λ < u0. It means that the coverage for λ ≤ u0 is very different form

the coverage for λ > u0. Average coverage of an upper-tail interval over the

full range (0, 20) equals {(20− u0)Tu + u0}/20. Second, for 20 < λ < 50, the
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quantity Tu is defined as

Tu =
1

50− 20

∫ 50

20
Cu,i(λ)dλ (5.14)

A difference between the first and the second cases is that Tu is calculated for

the whole range of 20 < λ < 50 without excluding any value of λ. That is

because that the coverage never equals 1. Average coverage of an upper-tail

interval over the range of 20 < λ < 50 equals Tu.

In Figures 5.3 and 5.4, the coverage of 95% upper-tail intervals of all methods

are plotted against λ for 0 < λ < 20 and 20 < λ < 50, respectively. It is

clear, in Figure 5.3, that the coverage of the first interval u0 equals 1, which

will be excluded in calculating averages unlike the coverage of the intervals

in Figure 5.4 which never equals 1. For all combination of α and λ, the

OLC, Garwood and mid-p methods are giving LCC intervals, i.e. the average

coverage between consecutive spikes is at least 1−α. In contrast, the Jeffreys,

Wald and score methods do not give LCC intervals, as the average coverage

between consecutive spikes is sometimes below 1 − α. In particular, for the

Wald method, the average coverage is below the nominal level for almost all

values of λ.

To clarify the difference between our OLC method and other methods, values

of both Tu and u0 ae given in Tables 5.3 and 5.4. They are given for α =

0.05, 0.025 and 0.005 for both 0 < λ < 20 and 20 < λ < 50. The results show

that the OLC method is better than any of the other methods. From Tables

5.3 and 5.4, the OLC method has a truncated average coverage that equals

the nominal confidence level of 1−α for all cases of α and λ. In contrast, the

Garwood and score methods are very conservative and the mid-p is slightly

conservative, while, the Jeffreys and Wald methods are consistently liberal, i.e.

that truncated average coverage is below the nominal level of 1− α. A small

value of u0 is desirable and in that respect the Wald method does exceptionally
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Figure 5.3: Coverage of upper-tail 95% interval estimate for Garwood, mid-p,

Jeffreys, Wald, score and OLC methods plotted against λ, for 0 < λ < 20.

well, with u0 always equal to 0. However, the Wald method is not the preferred

method, as its coverage is too far below the nominal level. Based on the value

of u0, the OLC method is a little poorer than Jeffreys, but a little better than

mid-p and much better than Garwood and score.

Table 5.3: Average coverage (Av.Cov) of upper tail 1−α intervals and smallest

upper limit (u0) of six methods of forming interval estimates, for α = 0.05,

0.025, 0.005 and 0 < λ < 20

α statistic Garwood Mid-p Score Wald Jeff OLC

0.05 u0 2.9957 2.3026 2.7055 0.000 1.9207 2.2241

0.05 Av.Cov 0.9664 0.9517 0.9609 0.8673 0.9471 0.9500

0.025 u0 3.6889 2.9957 3.8415 0.000 2.5119 2.8653

0.025 Av.Cov 0.9841 0.9762 0.9846 0.8943 0.973 0.9750

0.005 u0 5.2983 4.6052 6.6349 0.000 3.9397 4.3838

0.005 Av.Cov 0.9972 0.9954 0.9985 0.9245 0.9943 0.9950
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Figure 5.4: Coverage of upper-tail 95% interval estimate for Garwood, mid-p,

Jeffreys, Wald, score and OLC methods plotted against λ, for 20 < λ < 50.

Table 5.4: Average coverage (Av.Cov) of upper tail 1 − α intervals of six

methods of forming interval estimates, for α = 0.05, 0.025, 0.005 and 20 <

λ < 50
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.959 0.9504 0.9555 0.9278 0.9497 0.950

0.025 0.9801 0.9754 0.9801 0.9565 0.9748 0.975

0.005 0.9962 0.9951 0.9973 0.9851 0.9949 0.995

Regarding the lower-tail interval, in contrast to the upper-tail interval, we

do not exclude any values of λ in the range (0, l0) as the coverage in this range

never equals 1. So, as defined in Section 5.2, Cl,i(λ) is the coverage of lower-tail

interval estimator and is the probability that random interval (lx,∞) contains

λ. For 0 < λ < 20, we define the quantity Av.Covl as
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Av.CovL =
1

20

∫ 20

0
Cl,i(λ)dλ (5.15)

and refer to it as the average coverage of the lower-tail. For 20 < λ < 50, we

define the quantity Av.Covl as

Av.CovL =
1

50− 20

∫ 50

20
Cl,i(λ)dλ (5.16)

Calculating the average coverage of the lower-tail for the ranges 0 < λ < 20

and 20 < λ < 50 does not exclude any values of λ because the coverage never

equals 1. Tables 5.5 and 5.6 give the values of Av.CovL for all methods

described earlier at α = 0.05, 0.025 and 0.005 for both 0 < λ < 20 and

20 < λ < 50. The results show that the OLC method is better than other

methods, with an average coverage that always equals the nominal level (1−α).

In contrast, the Garwood and Wald methods are very conservative, Mid-p is a

bit conservative, while the score and Jeffreys methods are consistently liberal

(i.e. their average coverages are below the nominal level (1 − α)). This can

be seen in both Figures 5.5 and 5.6, where the coverages of 95% lower-tail

intervals of all methods are plotted against λ for 0 < λ < 20 and 20 < λ < 50,

respectively.

Table 5.5: Average coverage (Av.Cov) of lower tail 1 − α intervals of six

methods of forming interval estimates, for α = 0.05, 0.025, 0.005 and 0 < λ <

20
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.9636 0.9520 0.9401 0.9787 0.9490 0.950

0.025 0.9823 0.9762 0.9651 0.993 0.9743 0.975

0.005 0.9966 0.9953 0.9891 0.9996 0.9948 0.995
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Figure 5.5: Coverage of lower-tail 95% interval estimate for Garwood, mid-p,

Jeffreys, Wald, score and OLC methods plotted against λ, for 0 < λ < 20.

Table 5.6: Average coverage (Av.Cov) of lower tail 1 − α intervals of six

methods of forming interval estimates, for α = 0.05, 0.025, 0.005 and 20 <

λ < 50
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.9575 0.9503 0.9453 0.9663 0.9498 0.9499

0.025 0.9791 0.9752 0.9705 0.9865 0.9749 0.9750

0.005 0.9960 0.9951 0.9926 0.9986 0.9950 0.9950

In the examples given so far, the mid-p method gave LCC intervals. Direct

computation showed it gives LCC intervals for x < 200 and α ∈ {0.001(0.001)0.1},

giving the following result.

Proposition 5.2.

For x ≤ 200 and α ∈ {0.001(0.001)0.1}, the mid-p method gives LCC inter-

vals.

In Figures 5.3 and 5.4, the coverage of the 95% upper-tail for the mid-p method
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Figure 5.6: Coverage of lower-tail 95% interval estimate for Garwood, mid-p,

Jeffreys, Wald, score and OLC methods plotted against λ, for 20 < λ < 50.
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is plotted against λ, in the first graph of the right-hand side, for 0 < λ < 20

and 20 < λ < 50, respectively. For this method, the spikes in both plots

are spaced fairly regularly and its actual coverage always crosses the nominal

coverage level between consecutive spikes. Moreover, the mid-p method in

the Poisson case has the same property as with the binomial distribution. It

gives one-tailed confidence intervals whose coverage is as close to the targeted

nominal level as the coverage of any method, for any value of λ. This property

is given in the following proposition.

Proposition 5.3.

The mid-p method has the smallest root-mean-sqaure error in the coverage

probability, |Cu(λ) − (1 − α)|, among these discribed methods for any value

of λ. By considering all sensible methods of forming equal-tailed confidence

interval that were discussed in Section 2.3, we found that the mid-p has the

smallest root-mean-sqaure error, |Cu(λ)− (1−α)| or |Cl(λ)− (1−α)|, among

any method of forming one-tailed confidence interval.

The proof of Proposition 5.3 is given in Appendix B. As mentioned earlier,

the average absoluate error in coverage or the root-mean-square error in cov-

erage over the range of λ is commonly used as a good measure to compare

different methods. It examines how the coverage probability of the interval

estimator typically varies from the nominal confidence level. So, we calculated

the RMSE of each method’s coverage for each range of λ.

For u0 < λ < 20, the RMSE is defined as

RMSE =

[
1

20− u0

∫ 20

u0

{Cu,i(λ)− (1− α)}2dλ
]1/2

(5.17)

where (1− α) is the nominal confidence level and for 20 < λ < 50, the RMSE

is given by

RMSE =

[
1

50− 20

∫ 50

20
{Cu,i(λ)− (1− α)}2dλ

]1/2

. (5.18)
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The RMSE of the upper-tail for each method is given in Tables 5.7 and

5.8 at α = 0.05, 0.025 and 0.005 for both 0 < λ < 20 and 20 < λ < 50, respec-

tively. The results of these tables emphasise the result in Proposition 5.3 as

the mid-p method has the smallest RMSE of any other method in every row.

The OLC method has the second smallest RMSE that is only a little bigger

than mid-p method, at most 12%. After the OLC method, Jeffreys method

almost always has the next smallest RMSE, but its RMSE can be more than

50% bigger than mid-p. The remaining methods have RMSEs that are at

least 79% bigger for some values of α and λ. The RMSE of the Wald method

is always very poor. Hence, although that OLC method is not the optimal

method, it has a very respectable RMSE.

Table 5.7: Root mean-square error (RMSE) of coverage of upper tail (1− α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and 0 < λ < 20
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.0191 0.0133 0.0153 0.1533 0.0173 0.0138

0.025 0.0104 0.0074 0.0109 0.1575 0.0103 0.0078

0.005 0.0024 0.0018 0.0036 0.1592 0.0028 0.0020

Table 5.8: Root mean-square error (RMSE) of coverage of upper tail (1− α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and 20 < λ < 50
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.01036 0.00578 0.00772 0.02378 0.00584 0.0058

0.025 0.00584 0.00336 0.00587 0.01952 0.0034 0.00338

0.005 0.00142 0.00086 0.00235 0.01029 0.00088 0.00087

The RMSE of each method’s coverage for lower-tail intervals is calculated

over the full ranges of λ. Thus, for 0 < λ < 20, RMSE is given by

RMSE =

[
1

20

∫ 20

0
{Cl,i(λ)− (1− α)}2dλ

]1/2

(5.19)

and for 20 < λ < 50, RMSE is given by

RMSE =

[
1

50− 20

∫ 50

20
{Cl,i(λ)− (1− α)}2dλ

]1/2

. (5.20)
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Tables 5.9 and 5.10 show the RMES of the lower-tail for each method,

which have the same features as the RMSE of the upper tail for all methods.

The mid-p always has the smallest RMSE, followed by the OLC method with

an RMSE that is a little bigger than the mid-p. After that, the Jeffreys and

Garwood methods have the next smallest RMSE, but their RMSE is typically

much bigger than that of the mid-p. The method with the worst RMSE is

Wald.

Table 5.9: Root mean-square error (RMSE) of coverage of lower tail (1 − α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and 0 < λ < 20
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.0162 0.0105 0.0181 0.030 0.012 0.011

0.025 0.0086 0.0057 0.0151 0.0184 0.0067 0.006

0.005 0.0019 0.0013 0.0088 0.0046 0.0016 0.0014

Table 5.10: Root mean-square error (RMSE) of coverage of lower tail (1− α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and 20 < λ < 50
α Garwood Mid-p Score Wald Jeff OLC

0.05 0.0086 0.00474 0.00698 0.01675 0.00478 0.00476

0.025 0.00469 0.00263 0.0055 0.01162 0.00266 0.00264

0.005 0.0011 0.00063 0.00259 0.00361 0.00064 0.00064

Turning to the length of intervals, the length of the two-tailed interval

is examined for all mentioned methods. In Figure 5.7, the expected length

of 95% two-tailed intervals for OLC method and other methods are plotted

against λ for 0 < λ < 2, 2 < λ < 5 and 5 < λ < 50. OLC, Jeffreys, score

and Wald methods are plotted on the left-hand panels, while OLC, mid-p and

Garwood methods are plotted on the right-hand panels. For all values of λ,

the expected length of the OLC, mid-p, score and Jeffreys intervals are all very

similar and a little smaller than the expected length of the Garwood interval.

Wald intervals have a much smaller expected length than the other methods,
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but that is because its coverage is well below the nominal confidence level.
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Figure 5.7: Expected length of two-sided 95% interval estimates for the OLC,

Jeffreys, score and Wald methods (left-hand panels) and the OLC, Garwood

and Mid-p methods (right-hand panels) plotted against λ, for 0 < λ < 2,

2 < λ < 5 and 5 < λ < 50

In comparing the length of intervals, three subintervals of the range of λ

were examined seperately: (0, 2), (2, 5) and (5, 50). There is clearly benefit in

also having a single measure that reflects performance over the full range of λ.

As noted in Section 5.3, this can be achieved by using a weight function and

forming a weighted average expected length of intervals. The weight function,

w(λ) was chosen as a gamma distribution,

w(λ) =
βθ+1

Γ(θ + 1)
λθe−βλ. (5.21)

The values of θ and β were chosen to make the probability under the gamma
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curve approximately equal for the intervals 0 < λ < 2, 2 < λ < 5 and

5 < λ < 50. This gave θ = 1 and β = 1
4 . So, w(λ)= 1

4e
−λ/4. The weighted

average expected length (WAEL) of a method’s intervals is given by

WAEL(l(λ)) =

∫∞
λ=0

∑200
i=0 pil(λ)dλ∫∞

λ=0
1
4e
−λ/4 , (5.22)

where l(λ) = (ui − li) is the length of an interval.

Table 5.11: Average expected length (AEL) weighted average expected length

(WAEL) of two-tail 1-2α intervals for six methods of forming interval esti-

mates, α = 0.05

measure λ Garwood Midp Score Wald Jeff OLC

AEL 0 < λ < 2 4.449 3.741 4.034 2.395 3.432 3.646

AEL 2 < λ < 5 7.117 6.341 6.504 5.799 6.129 6.231

AEL 5 < λ < 50 17.688 16.778 16.837 16.594 16.69 16.721

WAEL 0 < λ < 200 7.02 6.251 6.45 5.439 6.018 6.153

Table 5.12: Average expected length (AEL) weighted average expected length

(WAEL) of two-tail 1-2α intervals for six methods of forming interval esti-

mates, α = 0.025

measure λ Garwood Midp Score Wald Jeff OLC

AEL 0 < λ < 2 5.31 4.616 5.279 2.854 4.244 4.487

AEL 2 < λ < 5 8.379 7.628 8.048 6.909 7.383 7.5

AEL 5 < λ < 50 20.913 20.019 20.182 19.773 19.915 19.952

WAEL 0 < λ < 200 8.297 7.548 8.027 6.481 7.272 7.427

Table 5.13: Average expected length (AEL) and weighted average expected

length (WAEL) of two-tail 1-2α intervals for six methods of forming interval

estimates, α = 0.005

measur λ Garwood Midp Score Wald Jeff OLC

AEL 0 < λ < 2 7.204 6.522 8.227 3.751 6.036 6.332

AEL 2 < λ < 5 10.973 10.261 11.465 9.081 9.956 10.1

AEL 5 < λ < 50 27.26 26.395 26.903 25.987 26.261 26.309

WAEL 0 < λ < 200 10.941 10.221 11.525 8.518 9.867 10.057

Table 5.11 gives the AEL for the different ranges of λ [(0, 2), (2, 5) and

(5, 50)] and the WAEL for 0 < λ < 200, for α = 0.05. Tables 5.12 and 5.13

gives the equivalent information for α = 0.025 and α = 0.005, respectively.

The Wald interval has an actual coverage that is well below the nominal cov-

erage so that its intervals have the smallest AEL for each combination. The
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Garwood interval has the longest AEL of all methods for all combinations

because of its conservative coverage (except, when α=0.005, the score method

has the longest AEL for all values of λ). The score interval coverage suffers

from some conservatism which underlies its AEL being the longest after the

Garwood interval. Apart from these three methods (Wald, Garwood and score

methods) the AEL of the OLC method is usually similar in size to the remain-

ing methods and is always shorter than the mid-p method. The weighted

average expected length (WAEL) was calculated for 0 < λ < 200, but it was

also calculated also for λ > 200. It was found that the value of the WAEL for

all methods did not change appreciably as λ was increased, and the relative

performance of the methods was unchanged. So, the range of 0 < λ < 200

seems satisfactory. Comparing the WAEL with the AEL in the ranges 0-2,

2-5 and 5-50, the WAEL put the methods in the same order as AEL in every

case. Thus there is good agreement between the measures so the WAEL could

be used as an overall representative measure.

5.5 Concluding comments

The purpose of this chapter was to see whether the OLC method gave good

confidence intervals for the Poisson distribution. So, our work was extended

to show that the OLC method has broader application than just the bino-

mial distribution. It was shown that the OLC method gave end-points that

are fairly evenly spaced with coverages that are balanced around the nom-

inal confidence level. Also, the OLC method had other properties that are

desirable in an interval estimator, such as interval valued, monotonicity and

nesting. This was examined for many combinition of x and α: 1 ≤ x ≤ 200

and confidence levels is {0.001(0.001)0.3}. Regarding the expected length of

intervals, for all examined values of x and α the OLC method had the shortest
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average expected length compared to all other methods of constructing equal-

tail confidence intervals except for the Wald and Jeffreys methods. However,

the Wald method gave intervals with coverage that was often less than the

nominal confidence level. Even with the main challenge of the Poisson distri-

bution, which is the infinite range of λ and x, the estimation works well. As

the OLC method had the shortest weighted average expected length for large

values of λ, say 0 < λ < 200, except in some cases, Jeffreys does better.

Turning to comparable methods of constructing confidence interval, there are

similarites in the results for the binomial and Poisson distributions. The Gar-

wood and Clopper-Pearson methods are the gold standard methods and give

similar results: good coverage but poor length. The mid-p and Jeffreys meth-

ods also performed similarly for the two distributions. The mid-p method

again had a coverage that is a little conservative and had the smallest RMSE

among other methods, while Jeffreys method had a coverage that is some-

times far below the nominal level. The performance of OLC method had

similar characteristics for both distributions but the score method performed

much better for the binomial distribution than for the Poisson distribution.
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Chapter 6

Negative binomial confidence

interval methods

123



6.1 Introduction

The third sampling distribution examined in this thesis is the negative bi-

nomial distribution. Relative to both the binomial and Poisson parameters,

there are comparatively few methods of forming confidence intervals for the

negative binomial parameters. The most commonly used methods have been

described in the negative binomial section in Chapter 2. The methods that

give equal-tail intervals do not meet the strict definition of a confidence in-

terval, except for the exact method. That is because the negative binomial

sampling model has a discrete distribution, posing the same problems that

arise with the binomial and Poisson distributions. The discrete nature of its

sample space produces spikes, which leads to wide fluctuations in the coverage

probability as the parameter of interest varies. So, the new definition of an

interval estimator, based on average coverage between spikes, is applied to the

negative binomial distribution. Methods that meet this definition give locally

correct confidence (LCC) intervals. In this chapter, a method that gives LCC

intervals for negative binomial parameters is developed, examined and com-

pared with other methods.

The negative binomial distribution is similar to the binomial distribution as

both of them have two parameters. The negative binomial distirbution has

(p, r), where 0 < p < 1 and r = 1, 2, . . . and the binomial distribution has

(p, n). Usually r is known and that is the case considered here. The negative

binomial distribution faces a challenge similar to that faced by the Poisson dis-

tribution, as for both of them its values of x are not limited, but go to infinity.

However, unlike both the binomial and Poisson distributions, for the negative

binomial distribution we are interested in forming confidence intervals for two

different (but related) quantities: the negative binomial proportion p and the
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negative binomial mean µ. Intervals that meet the definition of LCC intervals

are constructed for both quantities. For the negative binomial proportion p, a

method giving intervals is “optimal” if it gives an interval of minimum average

width when the expected width of the interval is averaged over p ∈ [0, 1] and

for the negative binomial mean, the expected width must be mininmised when

averaged over µ ∈ (0,M), where M is sufficiently large.

In this chapter, we will apply our new approach to calculate confidence inter-

vals for both the negative binomial proportion p and mean µ. So, in Section

6.2, we give a precise definition of a local confidence interval for the negative

binomial proportion p and modify the interval estimator for the binomial and

Poisson distributions to obtain an optimal locally correct (OLC) method for

the negative binomial success parameter p. In Section 6.3, we give the same

definition of a local confidence interval for the negative binomial mean µ and

modify the optimal locally correct (OLC) method for the negative binomial

mean µ. We examine whether the OLC method gives intervals of both p and

µ that seem sensible and examine whether the new estimator has properties

that have been proposed in the literature as being desirable. Also, we show

that the OLC method has a locally optimum property. In Section 6.4, we

compare the OLC method with several methods that have been recommended

for forming equal-tailed confidence intervals (which are mentioned in the lit-

erature chapter). Concluding comments are given in Section 6.5.

6.2 The negative binomial proportion (p)

Firstly, we begin with the negative binomial proportion p. An estimate of p is

monotone decreasing in x unlike the situation in previous chapters, where the

estimate of the parameter of interest was monotone increasing in x.
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6.2.1 Locally correct confidence intervals

Let X denote the number of failures before r successes are observed. The

success probability is p. Put y = r + x, so y is the number of trials and

suppose an interval estimator gives an upper-tail estimate (0, ux) for p. We

assume that

0 < . . . < u2 < u1 < u0 ≤ 1 (6.1)

holds for a sensible estimator. The coverage probability of the interval esti-

mator depends on the value of p, as it is the probability that the true value of

the parameter p is included in the interval (0, ux). When ui+1 < p < ui, the

coverage probability is given by

Cu(p) = Pr(X ≤ i|r, p) =
i∑

x=0

(
x+ r − 1

r − 1

)
pr(1− p)x (6.2)

The points of the spikes occur where p equals u0, u1, . . . , u∞. At the point ui,

the coverage drops by
(
i+r−1
r−1

)
uri (1 − ui)i at p = ui. If the average coverage

between every two consecutive spikes exceeds or equals the nominal level, then

the estimator gives locally correct confidence (LCC) intervals.

Definition 1. For the upper-tail interval, suppose an interval estimator gives

(0, ux) as its upper-tail interval for p when X = x and that u0, u1, u2, . . . sat-

isfy equation (6.1). If for i=1,2, . . . .

1

ui − ui+1

∫ ui

p=ui+1

Cu(p)dp ≥ 1− α (6.3)

then the interval estimator gives upper-tail LCC intervals with confidence level

(1− α).
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Definition 2. For the lower-tail intervals, suppose an interval estimator

gives (lx, 1) as its lower-tail interval for p when X = x, and that 0 < lN <

. . . < l2 < l1 < l0 < 1 where N is large. (Because of the infinite nature of

the number of failures, we select a sufficiently large value for N). Define the

coverage probability, Cl(p), by

Cl(p) = Pr(X ≥ i+ 1|r, p) =

∞∑
x=i+1

(
x+ r − 1

r − 1

)
pr(1− p)x (6.4)

for li+1 < p < li. If, for i = 1, 2, . . . ,

1

li − li+1

∫ li

p=li+1

Cl(p)dp ≥ 1− α (6.5)

then the interval estimator gives lower-tail LCC intervals with confidence level

(1− α).

Definition 3. Suppose that, for x = 0, 1, 2, 3, . . ., an interval estimator gives

(lx, ux) as its two-sided equal-tail intervals for p when X = x. Then it gives

equal-tail LCC intervals with confidence level (1 − 2α) for x = 0, 1, 2, 3, . . . if

the intervals (lx, 1), and (0, ux) are sets of one-sided lower-tail and upper-tail

LCC intervals, respectively, each with confidence level (1 − α). The interval

estimator that gives equal-tail LCC intervals will be referred to as a LCC in-

terval estimator.

6.2.2 The OLC method

It is supposed that the interval estimator uses the same straightforward it-

erative algorithm, which was used before in the binomial case, to obtain one

sided interval estimates but with some differences. The main difference for

an upper-tail interval is that the algorithm begins by setting u0 = 1, while

with the binomial distribution the algorithm starts by setting un = 1. The

algorithm then sequentially determines u1, u2, . . . , ux, where x is the observed
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value of X. So, we determine ui, then ui+1 is determined given the value of ui

and ui+2 is determined by the calculated value of ui+1 and so on. Specifically,

the steps of the algorithm are as follows.

• Set u0 = 1.

• Given ui, use the bisection method to search for the value ui+1 that

makes the average coverage over the interval (ui+1, ui) equal to 1− α.

• Repeat the previous step for i = 2, 3, 4, . . . , x to obtain u2, u3, u4 . . . , ux.

The ordering of these calculated upper endpoints is shown clearly in Figure

6.1, where the coverage probability is plotted against the values of our param-

eter of interest, p. The biggest upper endpoint is u0 (for x = 0 when u0 = 1),

followed by u1 for x = 1, u2 for x = 2 and so on until we reach the value of ui

that is of interest, say u20 for x = 20.

From its construction, the method determines the endpoints of subinter-

vals that have an average coverage of 1 − α. But, after ui+1 has been at-

tained, it could be the case that Pr(X ≤ i + 1|p = ui+1) is less than 1 − α,

even though (ui − ui+1)−1
∫ ui
ui+1

Pr(X ≤ i|p)dp = 1 − α. Then, given ui+1,

there is no ui+2 (with ui+2 ≤ ui+1 ) that meets the requirement that (ui+1 −

ui+2)−1
∫ ui+1

ui+2
Pr(X ≤ i+ 1|p)dp = 1− α. The following proposition supports

the algorithm by showing that this does not happen for the values of N and

α that are of interest in practical circumstances.
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Figure 6.1: Coverage of upper one-sided 97.5% confidence interval of the new

estimator for the negative binomial success parameter p. The spikes occur at

the upper endpoint of the confidence intervals for x = 20, 19, . . . , 0.

Proposition 6.1

Suppose 1 ≤ x ≤ 200 and α ∈ {0.001(0.001)0.3}. Suppose also that

1

ui+1 − ui+2

∫ ui+1

p=ui+2

i+1∑
x=0

(
x+ r − 1

r − 1

)
pr(1− p)xdp = 1− α (6.6)

and ui+1 > ui+2 for i = j + 1, j + 2, . . . , 200. Then for j ≤ 200, there is a

unique uj such that uj > uj+1 > 0 and equation (6.8) holds for i = j − 1.

We could not prove the proposition for all values of x and α, but by repetitive

computation it was proved for the most common values of x and α in practical

research: where x is a positive integer less than 200 and α is one of the numbers

0.001, 0.002, . . . , 0.3. Throughout this chapter it is assumed that 1 ≤ x ≤ 200

and α ∈ {0.001(0.001)0.3}. From Proposition 1 and Definition 1, the new

interval estimator gives upper-tail LCC intervals.

Forming the lower-tail intervals differs from forming the upper-tail intervals

- its construction is very similar to finding upper end-points for the Poisson

distribution. We start with a large value of N , calculate lN using the mid-p
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method and set lN = lN.midp. Then we get lN−1 from lN using our method of

bisection search. We search from left to right. We then obtain li−1 from li (or

li from li+1) until we get l0 from l1. The steps of the algorithm are as follows.

(i) Set lN = lN.midp.

(ii) Given li, use the bisection method to search for the value of li−1 that

makes the average coverage over the interval (li, li−1) equal to 1− α.

(iii) Perform step (ii) for i = N , then for i = N − 1, then for i = N − 2, . . .,

and finally for i = 1.

Figure 6.2 displays the lower endpoints of our new interval estimator, where

the coverage probability is plotted against p for a 97.5% confidence interval.
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Figure 6.2: Coverage of lower one-sided 97.5% confidence interval of the new

estimator for the negative binomial success parameter p. The spikes occur at

the lower endpoint of the confidence intervals for x = 20, 19, . . . , 0.

In (ii), li−1 is calculated to satisfy

1

li−1 − li

∫ li−1

p=li

[
1−

i−1∑
x=0

(
x+ r − 1

r − 1

)
pr(1− p)x

]
dp = 1− α (6.7)
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so the method gives lower-tail LCC intervals from Definition 2.

Two-sided intervals are obtained by combining the endpoints of one-sided

upper and lower-tail intervals. So, the new estimator is an LCC interval

estimator as it gives (li, ui) as the two-sided equal-tail interval for a confidence

interval of 1−2α. We do not need to start with a large N for the upper limit-

we just set u0 = 1 and then calculate u1, u2, . . . , ux, where x is the observed

value of X.

The number of trials does not have an upper limit and it is not feasible to

evaluate the coverage probability or the interval limits for infinitely large y =

x+ r, where r is fixed and x has unbounded limit. This affects the calculation

of the lower limit. For lower limits we select a sufficiently large value for N , as

we did in the Poisson distribution case, and start the iterative procedure by

using a standard method (mid-p was used here) to attain a lower limit when

x = N . The values of N must be much larger than the observed values. As N

increases the lower limit (for X = x) changes less and less. The idea is that

the differences between starting at N or a value larger than N has almost no

effect on the lower limit when X = x. After comparing different values for N

and x, we found that for 0 ≤ x ≤ 100 putting N = 500 will be sufficiently

large. While for x > 100, putting N = 5x will be enough to represent the

infinite range.

The second most important feature of an interval estimator is the lengh of its

intervals. We define the expected length for two-sided intervals (lx, ux) but it

also defines upper-tail intervals by setting lx equal to 0 and lower-tail intervals

by setting ux equal to 1. The expected length is given by

L(p) =

N∑
x=0

(ux − lx)

(
x+ r − 1

r − 1

)
pr(1− p)x (6.8)
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and its average expected length (AEL) is given by

E(L(p)) =

∫ 1

p=0
L(p)dp. (6.9)

Proposition 4.2 in Chapter 4 gives necessary and sufficient conditions for the

OLC method to yield locally correct confidence intervals with average expected

length that is a local minimum for methods that yield locally correct confi-

dence intervals. In applying this proposition, there is a difference between the

Poisson and negative binomial distributions, as the parameter of the negative

binomial distribution, p, has a limited range from 0 to 1 while λ, the mean of

the Pisson distribution, is unbounded. We needed to check if the conditions

of the proposition held for commonly used values of α and x. The following

steps were performed to examine whether the conditions held for the OLC

method. Define pi =
∫ 1

0 Pr(X = i|p)dp for i = 0, 1, . . .. We examined each α

in {0.001(0.001)0.3} and x = 0, 1, . . .,200.

(1) Let (0, ui) be the confidence interval given by the OLC method when

X = i. Determine u0, u1, . . . , u200.

(2) By definition cu(p) =
∑i

x=0

(
x+r−1
r−1

)
pr(1 − p)x with p = ui. For i =

0, 1, 2, . . . , 200, calculate hi = cu(ui)−(1−α) and calculate fi = cu(ui−1)−(1−

α) for i = 1, 2, . . . , 201. Then calculate ψjl =
∏l
i=j(hi/fi) for j = 1, 2, . . . , 200

and l = j, j + 1, . . . , 200.

(3) Calculate φl = pl +
∑l

j=1 ψjlpj−1 for l = 0, 1, . . . , 200.

It was found that φl is always negative. This means that our algorithm sat-

isfies the conditions given in Proposition 4.2 for each value of α that was

considered. Thus if any of u0, . . . , u199 are adjusted by a small amount to give

(u∗0, . . . , u
∗
199), while (u∗0, . . . , u

∗
199, u200) is a partition that gives locally correct

confidence intervals, then the expected length of intervals using the partition

(u∗0, . . . , u
∗
199, u200) is greater than using the partition (u0, u1, . . . , u200).
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A similar startegy was used for the lower tail. We examined each α in

{0.001(0.001)0.3} as follows

(1) cl(li) was set equal to
∑∞

x=i

(
x+r−1
r−1

)
pr(1 − p)x with p set equal to li for

i = 0, . . . , 200. (The iteration procedure was started at N=1000)

(2) Calculate hi = cl(li)− (1−α) for i = 0, . . . , 200 and fi = cl(li−1)− (1−α)

for i = 1, 2, . . . , 200.

(3) Then, calculate ψjl =
∏l
i=j(hi/fi) for j = 1, 2, . . . , 200 and l = j, j +

1, . . . , 200 and put φl = pl +
∑l

j=1 ψjlpj−1 for l = 0, 1, . . . , 200.

The value φl was found to be always positive. Hence adjusting any of l0, . . . , l199

by a small amount to yield a partition (l∗0, . . . , l
∗
199, l200) that gives locally cor-

rect confidence intervals will result in
∑
pil
∗
i <

∑
pili. Thus we can say that∑

pi(ui− li) >
∑
pi(u

∗
i − l∗i ) so the OLC method also gives two-tailed intervals

whose average expected length are a local minimum.

Regarding the desirable properties in interval estimators that were discussed

in Section 4.5, we found that the OLC method will always have Property 1,

interval valued. Also, it has the properties of monotone decreasing in x, as

the interval end-points decrease monotonically as x increases. In addition it

has the Property 3, nesting, which states that if two confidence intervals have

different confidence levels then, for any given x, the interval for the higher con-

fidence level should contain the interval with the lower confidence level. By

achieving these properties, the OLC can be considered a well-behaved interval

estimator.

6.3 The negative binomial mean (µ)

As mentioned in the introduction, we are also interested in calculating con-

fidence intervals for the negative binomial mean µ = E(X), where µ is the

mean number of failures. There are some differences between the confidence
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intervals for both p and µ, as p ∈ [0, 1] while µ ∈ [0,∞]. Also, the coverage

probability function of the confidence interval of µ is monotone increasing in

x while the coverage probability function for the negative binomial parameter

p is monotone decreasing in x.

The lower and upper endpoints of the confidence interval for µ can be calcu-

lated by one of two approaches. By transforming the CI of p or by searching

directly for the endpoints, which will be mentioned in the following section.

The problem with using the transformation is that the transformed in terms

are not locally correct confidence intervals-the average coverage between the

transformed spikes will not necessarily exceed the nomial confidence level. Us-

ing the direct approach gives intervals that are LCC intervals and so it is the

method we adopt. To use the direct calculation, we search for the endpoints

of the confidence interval of µ such that the average coverage between every

two points equal to the nominal level (1 − α). So, in the following work, we

will follow the direct search for the endpoints of the confidence interval for µ.

6.3.1 Locally correct confidence interval

We first consider upper-tail intervals and suppose an interval estimator gives

upper-tail estimate (0, ux) for µ. We assume that

0 < u0 < u1 < u2 < . . . . (6.10)

The coverage probability is the probability that the random interval (0, ux)

contains µ. So, when ui < µ ≤ ui+1, the coverage probability is given by

Cu(µ) = Pr(X ≥ i+ 1|µ) =
∞∑

x=i+1

(
x+ r − 1

r − 1

)(
r

µ+ r

)r (
1−

(
r

µ+ r

))x
(6.11)
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We require the average coverage between every two spikes to exceed or equal

the nominal level (1− α).

Definition 4. For the upper-tail, suppose an interval estimator gives (0, ux)

as its upper-tail interval for µ when X = x and that u0, u1, u2, . . . satisfies

equation (6.12). If for i = 1, 2, . . ..

1

ui − ui−1

∫ ui

µ=ui−1

Cu(µ)dµ ≥ 1− α (6.12)

then the interval estimator gives upper-tail LCC intervals with confidence in-

terval (1− α).

Definition 5. For the lower-tail intervals, suppose an interval estimator gives

(lx,∞) as its lower-tail interval for µ when X = x and that 0 = l0 ≤ l1 ≤ l2 ≤

. . .. The coverage probability is defined as

Cl(µ) = Pr(X ≤ i|µ) =

i∑
x=0

(
x+ r − 1

r − 1

)(
r

µ+ r

)r (
1−

(
r

µ+ r

))x
(6.13)

for i = 0, 1, 2, . . ., if li ≤ µ < li+1. If for i = 0, 1, . . . .

1

li+1 − li

∫ li+1

µ=li

Cl(µ)dµ ≥ 1− α (6.14)

and then the interval estimator gives lower-tail LCC intervals with confi-

dence level (1− α).

Definition 6. For two sided intervals, suppose that, for x = 0, 1, 2, . . ., an in-

terval estimator gives (lx, ux) as its two-sided equal-tails intervals for µ when

X = x. Then it gives equal-tail LCC intervals with confidence level (1−2α), as

the intervals (lx,∞) and (0, ux) are sets of one-sided lower-tail and upper-tail

LCC intervals, respectively, each with confidence level (1− α).
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6.3.2 The OLC method

We search for the end-points of the confidence interval of µ such that the av-

erage coverage between every two consecutive spikes is equal to the nominal

level (1 − α). The interval estimator uses a similar algorithm to that used

previously with the negative binomial proportion p and parameters of other

distributions. The steps for obtaining one-sided interval estimates for µ are

almost the same as for obtaining the one-sided interval estimates for the Pois-

son parameter. We begin by specifying a large value for N and then choosing

a reasonable value of upper end-points to represent the last interval uN . The

Mid-p method can be used to calculate this value, which is uN.midp, and then a

simple numerical search is used to sequentially determine uN−1, uN−2, . . . , u0.

The value of N is set equal to N = 500 for small values of 0 ≤ x ≤ 100, and

N = 5x for x > 100. These values of N are sufficienlty large - increasing the

value of N has almost no effect on the upper endpoint for X = x. The steps

of the algorithm are as follows

1. Set uN=uN.midp.

2. Put i = N − 1 and, given ui+1, use the bisection method to search for

the value ui that makes the average coverage over the interval (ui, ui+1)

equal to 1− α:

3. Given uN−1, repeat step 2 for i = N − 2, N − 3, N − 4, . . . , 1, 0 to obtain

uN−2, uN−3, uN−4, . . . , u1, u0.

Figure 6.3 shows the coverage of the upper one-sided 97.5% confidence inter-

val of the negative binomial mean µ given by our new estimator, where the

coverage is plotted against µ. The calculated upper points are u0 < u1 <

u2 < . . . < uN . As we start with uN , which is calculated by using the mid-p

method, uN.midp=uN . Then uN−1, uN−2, uN−3, . . . , u0 are calculated in turn.
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Figure 6.3: Coverage of upper one-sided 97.5% confidence interval of the new

estimator for the negative binomial mean µ. The spikes occur at the upper

endpoints of the confidence intervals for x = 0, 1, . . . , 20

The following proposition supports the algorithm for values of x and α that

are most common in practical research. It was proved by direct computation.

Proposition 6.2

Suppose 1 ≤ x ≤ 200 and α ∈ {0.001(0.001)0.3}. Suppose also that

1

ui − ui−1

∫ ui

µ=ui−1

[
1−

i−1∑
x=0

(
x+ r − 1

r − 1

)(
r

µ+ r

)r (
1−

(
r

µ+ r

))x]
dµ = 1−α

(6.15)

and ui > ui−1 for i = j + 1, j + 2, . . . , 200. Then there is a unique uj−1 such

that uj > uj−1 > 0 and equation (6.19) holds when j = i. To calculate the

first upper endpoint we set N = 1000 and put u1000 = uN.midp.

From Proposition 6.2 and Definition 4, the new interval estimator for µ gives

upper-tail LCC intervals.

Forming the lower-tail intervals differs from forming the upper-tail intervals.

It is similar to forming the lower-tail intervals in the case of the binomial and

Poisson distributions. To form the lower-tail intervals, we begin with the first

interval by setting l0 = 0 and then l1, l2, . . . , lN are determined sequentially.
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Figure 6.4: Coverage of lower one-sided 97.5% confidence interval of the new

estimator for the negative binomial mean µ. The spikes occur at the lower

endpoints of the confidence intervals for x = 0, 1, . . . , 20

So, given li we can determine li+1. The coverage of the 97.5% lower-tail

intervals is plotted against µ in Figure 6.4. Given li, the value of li+1 is

calculated to satisfy

1

li+1 − li

∫ li+1

µ=li

i∑
x=0

(
x+ r − 1

r − 1

)(
r

µ+ r

)r (
1−

(
r

µ+ r

))x
dµ = 1− α

(6.16)

for i = 1, 2, . . . , 200. From Definition 5, the new interval estimator for µ gives

lower-tail LCC intervals.

Both upper and lower tail intervals are combined to give two-sided intervals.

Thus, the new estimator for µ is an LCC interval estimator as it gives (li, ui)

as the two-sided equal-tail interval for a confidence interval of 1− 2α.

Moving to the length of the confidence interval of the interval estimator, the

average expected length is infinite so instead we consider the weighted average

expected length. As the range of µ has no upper bound, we use Corollary 4.1

in Chapter 4 and check conditions for a local optimality property that is suited

to an estimator whose interval has unlimited length. The corollary considers
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the weighted average expected length of intervals for a specified weighting

function, w(µ) say. Put

pi =

∫ ∞
0

Pr(X = i|µ)w(µ)dµ (6.17)

for i = 0, 1, . . .. By definition, a random variable Z has a beta prime (a, b)

distribution if its probablilty density function is

f(Z) =
1

B(a, b)

Za−1

(1 + Z)a+b
. (6.18)

We suppose that w(µ) has the form

w(µ) =
1

r

1

B(a, b)

(µr )a−1

(1 + µ
r )a+b

. (6.19)

From equation (6.13), we find that

Pr(X = i|µ) =

(
i+ r − 1

r − 1

)(
r

µ+ r

)r (
1−

(
r

µ+ r

))i
.

=
(r + i− 1)!

i!(r − 1)!

(µr )i

(1 + µ
r )r+i

(6.20)

Then

pi =
1

B(a, b)

(r + i− 1)!

i!(r − 1)!

∫ ∞
0

(µr )i

(1 + µ
r )r+i

(µr )a−1

(1 + µ
r )a+b

1

r
dµ

=
1

B(a, b)

(r + i− 1)!

i!(r − 1)!

∫ ∞
0

(µr )i+a−1

(1 + µ
r )a+b+r+i

1

r
dµ

=
1

B(a, b)

(r + i− 1)!

i!(r − 1)!
B(a+ i, b+ r)

=
(a+ b− 1)!

(a− 1)!(b− 1)!

(r + i− 1)!

i!(r − 1)!

(i+ a− 1)!(r + b− 1)!

(a+ b+ r + i− 1)!
.

(6.21)

To determine the weighting function w(µ), we need to choose the param-

eter values (a, b) of the beta prime (a, b) distribution. We are interested in

finding values of the parameters a and b for which w(µ) gives more weight to

small vales of µ and less weight to large values of µ. After some trials, we

found that the values a = 2 and b = 3 seemed suitable. Specifically, when

the value of x is increased above 200, the increase in the value of weighted

average expected length is very small. So we will use these values throughout

this section. We examine if the conditions held for the OLC method with
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p0, p1, . . . , p200 given in equation (6.25) for each α in {0.001(0.001)0.3} and x

truncated at 200.

(1) Let (0, ui) be the confidence interval given by the OLC method when

X = i. Determine u0, u1, . . . , u200.

(2) By definition cu(ui) =
∑∞

x=i

(
x+r−1
r−1

)
( r
µ+r )r(1 − ( r

µ+r ))x with µ = ui.

For i = 0, 1, 2, . . . , 200, calculate hi = cu(ui) − (1 − α) and calculate fi =

cu(ui−1)− (1 − α) for i = 1, 2, . . . , 201. Then calculate ψjl =
∏l
i=j(hi/fi) for

j = 1, 2, . . . , 200 and l = j, j + 1, . . . , 200.

(3) Calculate pi = (a+b−1)!
(a−1)!(b−1)!

(r+i−1)!
i!(r−1)!

(i+a−1)!(r+b−1)!
(a+b+r+i−1)! for i = 0, 1, 2, . . . , 200,

a = 2; b = 3.

(4) Calculate φl = pl +
∑l

j=1 ψjlpj−1 for l = 0, 1, . . . , 200.

If φl is always positive, then our algorithm gives the locally shortest interval.

The computational study which was used considered each value of α from

0.001 to 0.3 and φl was always positive. Thus if any of u0, . . . , u199 are ad-

justed by a small amount to give (u∗0, . . . , u
∗
199), while (u∗0, . . . , u

∗
199, u

∗
200) is

a partition that gives locally correct confidence intervals, then the weighted

average expected length of intervals is increased (i.e.
∑
piu
∗
i >

∑
piui).

Also, the weighted average expected length of lower-tail intervals was exam-

ined for α in {0.001(0.001)0.3}. By letting li denote the lower limit when

X = i(i = 0, . . . , 200), we followed these steps:

(1) cl(li) was set equal to
∑i

x=0

(
x+r−1
r−1

)
( r
µ+r )r(1− ( r

µ+r ))x with µ set equal to

li for i = 0, . . . , 200.

(2) Calculate hi = cl(li)− (1−α) for i = 0, . . . , 200 and fi = cl(li−1)− (1−α)

for i = 1, 2, . . . , 200.

(3) As in the procedure for the upper endpoints, calculate ψjl =
∏l
i=j(hi/fi)

for j = 1, 2, . . . , 200 and l = j, j + 1, . . . , 200 and put φl = pl +
∑l

j=1 ψjlpj−1

for l = 0, 1, . . . , 200.
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The value of φl was always negative. Hence adjusting any of l0, . . . , l199

by a small amount to yield a partition (l∗0, . . . , l
∗
199, l

∗
200) that gives locally

correct confidence intervals will result in
∑
pil
∗
i <

∑
pili. It follows that∑

pi(ui − li) >
∑
pi(u

∗
i − l∗i ) so the OLC method also gives two-tailed inter-

vals whose average expected length is a local minimum.

We can say that the OLC method should be the preferred method of forming

LCC intervals because its average expected length is a local minimum and

it has the properties, discussed in Section 4.3, that a well-behaved interval

estimator should have. It will always have Property 1 ( a confidence region

should be an interval and not a collection of disjoint intervals). It also has

both Property 2 (monotonicity in x, monotone increasing) and Property 3

(the nesting property). Achieving these properties was examined by repeti-

tive computation for 1 ≤ x ≤ 200 and α in {0.001(0.001)0.3}.

6.4 Comparison with other methods

In this section we compare the OLC method performance for the negative

binomial proportion p with the following five methods of forming confidence

intervals, which have been discussed earlier in Section 2.4: exact, mid-p, Jef-

freys, Wald and score methods. This comparison is in terms of their coverage

probability and expected length for the number of failures x < 5000. The

cases examined are where the number of successes r = 1000, 1500 and 2000

and nominal confidence levels of 95%, 97.5% and 99.5% are considered.

6.4.1 Coverage probability

We will concentrate on upper-tail intervals and lower-tail intervals as they

are more informative than two-tail intervals. As mentioned earlier, Cu(p) and

Cl(p) are the coverage of an upper-tail interval estimator and the coverage of
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a lower-tail interval estimator, respectively. These are the probabilities that

the random interval (0, ux) or (lx, 1) contains p. They are defined in equations

(6.2) and (6.5).

We follow the same approach as for both the binomial and Poisson distribu-

tions to calculate the average coverage Av.Covu, where

Av.Covu =

∫ 1

0
Cu(p)dp. (6.22)

We calculate the average coverage for all the above methods for 50000 values

of p that covered the interval (0, 1).

In Figures 6.5, 6.6 and 6.7 , the coverage of 95%, 97.5% and 99.5% upper-

tail intervals of all methods are plotted against p for the number of success

r = 10, 30 and 50, respectively. It is clear that the Wald, score and Jeffreys

methods do not give LCC intervals, as the average coverage between consecu-

tive spikes is sometimes below the targeted confidence level. The OLC, exact

and mid-p methods are giving LCC intervals as the average coverage between

consecutive spikes is at least (1 − α). To make the comparison between our

OLC method and other methods clearer, the values of the average coverage for

the upper-tail of each method is given in Table 6.1. From the table, the OLC

method has good average coverage as it equals the nominal confidence level for

all cases of α and r. Unlike the exact method, which suffers from conservatism

and the mid-p method, which is a little bit conservative. The Wald method

is very conservative, unlike its liberal performance for both the binomial and

Poisson cases. Both the Jeffreys and score methods are consistently liberal.
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Figure 6.5: Coverage of upper-tail 95% for exact, Wald, score, Jeffreys, mid-p

and OLC methods plotted against p for r = 10. The spikes occur at the upper

endpoints of the confidence intervals for x = 20, 19, . . . , 0.
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Figure 6.6: Coverage of upper-tail 97.5% for exact, Wald, score, Jeffreys, mid-

p and OLC methods plotted against p for r = 30. The spikes occur at the

upper endpoints of the confidence intervals for x = 50, 49, . . . , 0.
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Figure 6.7: Coverage of upper-tail 99.5% for exact, Wald, score, Jeffreys, mid-

p and OLC methods plotted against p for r = 50. The spikes occur at the

upper endpoints of the confidence intervals for x = 100, 99, . . . , 0.
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Table 6.1: Average coverage (Av.Cov) of upper-tail 1 − α intervals of six

methods of forming interval estimates, for α = 0.05, 0.025, 0.005 and r = 10, 30

and 50.
α r Exact Wald Score Jeffreys Mid-p OLC

0.05 10 0.96045 0.96029 0.9338839 0.94889 0.95187 0.95000
0.05 30 0.95842 0.96097 0.9387851 0.94938 0.95109 0.95000
0.05 50 0.95766 0.96117 0.940652 0.94953 0.95086 0.95000

0.025 10 0.98050 0.97875 0.957938 0.97430 0.97605 0.97500
0.025 30 0.97950 0.98074 0.963569 0.97461 0.97563 0.97500
0.025 50 0.97915 0.98140 0.9656062 0.97470 0.97552 0.97500

0.005 10 0.99620 0.99421 0.98350 0.99481 0.99525 0.99500
0.005 30 0.99602 0.99587 0.9879458 0.99489 0.99517 0.99500
0.005 50 0.99595 0.99640 0.9893693 0.99491 0.99514 0.99500
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Regarding the lower-tail interval, in contrast to the upper-tail interval of

the negative binomial proportion and the lower-tail interval of the Poisson case,

we exclude the values of p in the range (l0, 1). That is because the coverage

when p is in this interval (l0, 1) equals 1. So, we calulate the truncated average

coverage Tl, which is defined as

Tl =
1

1− l0

∫ 1

p=l0

Cl(p) dp, (6.23)

where l0 is the endpoint of x = 0.

Figures 6.8, 6.9 and 6.10 show the coverage of 95%, 97.5% and 99.5% lower

tail intervals of all methods, plotted against p for the number of successes

r = 10, 30 and 50, respectively. It is clear that the coverage of the first inter-

val, from the right of l0, equals 1. For all tested values of r, α and for the whole

range of p, the OLC, exact and mid-p still keep on giving LCC intervals while

the Wald, score and Jeffreys methods do not give LCC intervals. The compar-

ison between all these methods are given in the Table 6.2. The Tl values are

given for combination of α = 0.05, 0.025 and 0.005 and number of successes

r = 10, 30 and 50. From the results in the table, the OLC method gives a

good result for all cases of α and r. The score method becomes conservative

as α increased and the exact method suffers also from conservatism as usual.

While the mid-p is a little conservative, both the Wald and Jeffreys methods

are liberal.
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Figure 6.8: Coverage of lower-tail 95% for exact, Wald, score, Jeffreys, mid-p

and OLC methods plotted against p for r = 10. The spikes occur at the lower

endpoints of the confidence intervals for x = 20, 19, . . . , 0.
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Figure 6.9: Coverage of lower-tail 97.5% for exact, Wald, score, Jeffreys, mid-p

and OLC methods plotted against p for r = 30. The spikes occur at the lower

endpoints of the confidence intervals for x = 50, 49, . . . , 0.
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Figure 6.10: Coverage of lower-tail 99.5% for exact, Wald, score, Jeffreys, mid-

p and OLC methods plotted against p for r = 50. The spikes occur at the

lower endpoints of the confidence intervals for x = 100, 99, . . . , 0.
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Table 6.2: Average coverage (Av.Cov) of lower-tail 1 − α intervals over the

range (l0, 1) for six methods of forming interval estimates, for α = 0.05, 0.025,

0.005 and r = 10, 30 and 50.

α r Exact Wald Score Jeffreys Mid-p OLC

0.05 10 0.96166 0.85573 0.97621 0.94613 0.95020 0.95000
0.05 30 0.95949 0.90252 0.96476 0.94825 0.95061 0.95000
0.05 50 0.95852 0.91348 0.96155 0.94878 0.95056 0.95000

0.025 10 0.98129 0.87858 0.99485 0.97259 0.97531 0.97500
0.025 30 0.98020 0.92891 0.98741 0.97388 0.97547 0.97500
0.025 50 0.97970 0.94045 0.98495 0.97422 0.97542 0.97500

0.005 10 0.99642 0.89861 0.99998 0.99433 0.99514 0.99500
0.005 30 0.99620 0.95305 0.99920 0.99467 0.99516 0.99500
0.005 50 0.99610 0.96533 0.99864 0.99477 0.99514 0.99500

According to all previous examples and figures in this section, the mid-p

method gives LCC intervals. Direct computation showed that it has this prop-

erty for x ≤ 200 and α ∈ {0.001(0.001)0.1}, a result recorded in the following

proposition.

Proposition 6.3

For x ≤ 200 and α ∈ {0.001(0.001)0.1}, the mid-p method gives LCC inter-

vals.

Its actual coverage is illustrated in Figure 6.5, as an example. The coverage

always crosses the nominal coverage level between consecutive spikes. In ad-

dition, it gives one-tailed confidence interval whose coverage is close to the

targeted nominal level for any value of p. In fact, it has the property given in

the following proposition.

Proposition 6.4

The mid-p has the smallest root-mean-square error in coverage probability,

|Cu(p)− (1−α)| or |Cl(p)− (1−α)| , among any method of forming one-tailed

confidence intervals.

The proof of Proposition 6.4 is given in Appendix B.

Root mean-square error (RMSE) in coverage over the range of p is considered

a good measure for comparing methods. A good method of forming confi-
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dence intervals should have a small RMSE, as it examines how the coverage

probability of the interval estimator typically varies from the nominal confi-

dence level. So, we calculated the RMSE of the upper-tail for each method’s

coverage over the whole range of p:

RMSE =

[∫ 1

0
{Cu(p)− (1− α)}2 dp

]1/2

, (6.24)

where (1− α) is the nominal confidence level. Table 6.3 shows the results for

each method for α = 0.05, 0.025, 0.005 and r = 10, 30 and 50. In accordance

with Proposition 6.4, the mid-p method has the smallest RMSE of any method

- the mid-p method has the smallest RMSE in every row of Table 6.3. The

OLC method has the second smallest RMSE in every row with an increase

of not more than 5% compared with the RMSE of the mid-p method. This

is much better than the RMSE of the other methods, as the RMSE of Jef-

freys method is sometimes more than 30% bigger than the RMSE of the mid-p

method, while other methods have at least one RMSE that is more than 70%

bigger than the mid-p method. Hence, we can say that the OLC method has

a very acceptable RMSE, even if it does not have the smallest RMSE.

Table 6.3: Root mean-square error (RMSE) of coverage of upper tail (1− α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and r = 10, 30 and 50.

α r Exact Wald Score Jeffreys Mid-p OLC

0.05 10 0.01321 0.01898 0.01787 0.00902 0.00862 0.00873
0.05 30 0.01106 0.01408 0.01679 0.00729 0.00696 0.00706
0.05 50 0.01017 0.01213 0.01609 0.00658 0.00631 0.00638

0.025 10 0.00695 0.01806 0.01098 0.00499 0.00462 0.00473
0.025 30 0.00587 0.01272 0.01009 0.00405 0.00377 0.00386
0.025 50 0.00545 0.01077 0.00977 0.00365 0.00343 0.00351

0.005 10 0.00151 0.01160 0.00416 0.00118 0.00103 0.00108
0.005 30 0.00131 0.00751 0.00279 0.00097 0.00086 0.00090
0.005 50 0.00122 0.00617 0.00257 0.00089 0.00079 0.00082
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The RMSE of the lower-tail for each method is calculated in the same way

as the RMSE of the upper tail except that it is determined over the truncated

range (l0, 1). This RMSE is given by

RMSE =

[
1

1− l0

∫ 1

l0

{Cl(p)− (1− α)}2dp
]1/2

. (6.25)

Table 6.4. shows the RMSE of lower-tail intervals for each method for α

= 0.05, 0.025, 0.005 and r = 10, 30 and 50. The results of this table confirm

that the mid-p method has a smaller RMSE than other methods. The OLC

method comes next as it has the second smallest RMSE, a little bigger than

mid-p method. Each of the other methods has an RMSE that is bigger, up

to about 80% bigger than the RMSE of the mid-p method. Lastly, the score

method records the biggest RMSE. Hence, the OLC method has an acceptable

RMSE relative to other methods.

Table 6.4: Root mean-square error (RMSE) of coverage of lower tail (1 − α)

intervals for six methods of forming interval estimates, α = 0.05, 0.025, 0.005

and r = 10, 30 and 50.

α r Exact Wald Score Jeffreys Mid-p OLC

0.05 10 0.01126 0.05600 0.02228 0.00961 0.00811 0.00815
0.05 30 0.01107 0.04344 0.01466 0.00839 0.00737 0.00753
0.05 50 0.01042 0.03789 0.01214 0.00758 0.00676 0.00699

0.025 10 0.00583 0.04681 0.01534 0.00524 0.00426 0.00445
0.025 30 0.00594 0.03743 0.01147 0.00473 0.00402 0.00453
0.025 50 0.00564 0.03270 0.00960 0.00430 0.00372 0.00393

0.005 10 0.00120 0.02794 0.00286 0.00118 0.00089 0.00091
0.005 30 0.00132 0.02424 0.00364 0.00115 0.00092 0.00096
0.005 50 0.00127 0.02125 0.00333 0.00106 0.00087 0.00092

6.4.2 Expected length

Turning to the length of the intervals, the length of one-tailed intervals varies

too much as the value of p is changed. Thus, we will restrict our attention to

two-tail intervals.

In Figure 6.11 , the expected length of 95% two-tailed intervals are plotted

against p for r = 10, 30 and 50 for the OLC, Jeffreys, score and Wald (left-
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hand panels) and the OLC, exact and mid-p methods (right-hand panels). It

is clear that the expected lengths of the OLC, mid-p and Jeffreys methods

are all very similar, and a little smaller than the expected length of the exact

method. Exact intervals have a bigger expected length than other methods

whereas the expected length of the Wald method is much smaller than the

expected length of the score method and other methods when p is quite large

or quite small.

The average expected length (AEL) for each method is calculated from its

expected length using equation (6.11). Table 6.3 gives the average expected

length (AEL) of all mentioned methods for each combination of α = 0.05, 0.025, 0.005

and r = 10, 30 and 50. The OLC method has a longer AEL than some of the

other methods, such as Jeffreys and Wald, but these methods do not give LCC

intervals. Although the Wald method has the smallest AEL for each combi-

nation, it sacrifices its coverage and is very liberal. The OLC method always

gives intervals with a shorter AEL than the AEL of the exact, score and mid-p

methods. It is noticeable that the AEL of these methods is decreased as the

number of sucesses r is increased.
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Figure 6.11: Expected length of two-sided 95% interval estimates for the OLC,

Jeffreys, score and Wald (left-hand panels) and the OLC, exact and mid-p

methods (right-hand panels) plotted against p for r = 10, 30 and 50.

Table 6.5: Average expected length (AEL) of two-tail 1− 2α intervals for six

methods of forming confidence interval estimates, for α = 0.05, 0.025, 0.005

and r = 10, 30 and 50.

α r Exact Wald Score Jeffreys Mid-p OLC

0.05 10 0.296674 0.252030 0.295737 0.267711 0.274075 0.272390
0.05 30 0.168441 0.155617 0.163425 0.157826 0.159477 0.158742
0.05 50 0.129374 0.122044 0.125535 0.122888 0.123719 0.123306

0.025 10 0.344405 0.296946 0.364656 0.316708 0.323758 0.321682
0.025 30 0.198082 0.184711 0.197303 0.187614 0.189515 0.188643
0.025 50 0.152652 0.145122 0.150820 0.146218 0.147185 0.146695

0.005 10 0.432957 0.379669 0.513717 0.408295 0.415893 0.413390
0.005 30 0.255137 0.240274 0.266858 0.245043 0.247324 0.246241
0.005 50 0.197749 0.189633 0.201908 0.191452 0.192642 0.192025

6.5 Concluding Comments

This chapter aimed to extend application of the OLC method to the negative

binomial distribution and examine wheter it gives reasonable confidence inter-
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vals. Unlike other chapters, the OLC method was applied to two quantities,

the negative binomial proportion p, and the negative binomial mean µ. For

both p and µ, the OLC method gave interval end-points that are reasonably

spaced with coverage that is balanced around the nominal confidence level. In

contrast to the binomial and Poisson distributions, the coverage probability

of the confidence intervals of p is monotone decreasing in x. But the coverage

probability of the confidence intervals of µ is monotone increasing in x, exactly

as with the two previous distributions. For the case of the negative binomial

proportion p, applying the new definition of an interval estimate yields the

optimal method, OLC, which gives an interval whose average expected width

over p ∈ [0, 1] is a local minimum. Also, for the negative binomial mean µ,

applying the same definition and including a weighting function for the length

(because of the infinite nature of the mean µ) resulted in an interval whose

weighted average expected width over µ ∈ [0,∞] is a local minimum.

There are other properties that are desirable in an interval estimator and these

were examined for 1 ≤ x ≤ 200 and α ∈ {0.001(0.001)0.3}. For both p and µ

we can say that the OLC method has these properties: interval-valued, mono-

tonicity and nesting. Hence, we can conclude that the OLC method gives

sensible intervals with an acceptably short average expected length.

As for the other methods of constructing a confidence interval that were exam-

ined, for the case of p, there are some similarities and differences in the results

for the negative binomial and those for the binomial and Poisson distributions.

Casella and McCulloch’s method (the exact method for the negative binomial

distribution) performed better in terms of average and expected length com-

parisons than its counterparts for the binomial and Poisson distributions, the

Clopper-Pearson and Garwood methods. However, Casella and McCulloch’s

method is not mentioned in the literature as a gold-standard method. The
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mid-p method’s performance was similar for the negative binomial distribution

as for other distributions. It had coverage that is just a little conservative, and

its RMSE is the smallest among all methods. Jeffreys method also performed

similarly for the negative binomial distribution as for other distributions. It

gave intervals with coverages that are far below the nominal level for some

values of the parameter of interest and close to the nominal level for other

values of the parameter. Wald’s method again has the shortest average length

but poor coverage performance, being very conservative for upper tail inter-

vals and very liberal for lower-tail intervals. For the negative binomial mean,

µ, we expect that the performance of the OLC method compared to the other

discussed methods will be the same as in the case of the proportion p. For the

negative binomial mean, µ, simulations were run to compare the performance

of the OLC method with other methods. Results were very similar to those

reported for the negative binomial proportion, p.

157



Chapter 7

Concluding comments and

directions for future research
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This chapter summarizes the main results and conclusions of the thesis.

We give the main conclusions of the thesis in brief points. Then, we discuss

each point beginning with the strong and weak sides of each method of forming

the confidence interval for each distribution. We also discuss the purpose of

proposing a new definition and the new method (OLC) briefly. Finally, some

extensions for further future research are given.

7.1 Conclusions

From all previous chapters, we can obtain the following conclusions:

1. Obtaining a confidence interval when sampling from a discrete distribution

faces special difficulties, as the discrete nature of the sample space leads to

sharp fluctuations in the coverage probability, which we call spikes.

2. A number of methods have been proposed for forming a confidence interval

for the parameters of interest for the binomial, Poisson and negative binomial

distributions. Most of the methods did not give intervals that met the def-

inition of a confidence interval, that the coverage probability of the interval

[lx, ux] ≥ (1 − 2α). Methods that meet the definition have the disadvantages

of conservative coverage and poor width.

3. The Clopper-Pearson, Garwood, and Casella and McCulloch methods for

the binomial, Poisson and negative binomial distributions, respectively, sat-

isfy the definition of a confidence interval. They give strictly correct confi-

dence intervals and are referred to as ” correct“ methods. The Garwood and

Clopper-Pearson methods are the gold standard and give good coverage but

poor width. The Casella and McCulloch method has not been referred to as

a gold standard, but it did better in term of expected length in comparison to

the Garwood and Clopper-Pearson methods.

4. The Mid-p is a good method. Its coverage is generally a little conservative
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and it has the smallest RMSE of any method.

5. Jeffreys method has a performance that is similar across the three distri-

butions. Its coverage is often far below the nominal level.

6. The Wald and Wilson (score) methods are used with the three distribu-

tions. These methods and the Agersti-Coull methods, which is only used with

the binomial distribution, do not give intervals that meet the definition of a

confidence interval. They gave similar results except that the score method

performs much better for the binomial distribution than the other two sam-

pling distributions.

7. When the sampling space is discrete, the definition of a confidence interval

does not meet our needs. A new definition was proposed which states that

the average coverage between any pair of consecutive spikes must be equal or

greater than the nominal level (1 − α). This led naturally to a new method,

the OLC method, which constructs locally correct confidence intervals.

8. Our research began by applying the OLC method to the most common

discrete distribution in the literature, the binomial distribution. It is a simple

and basic case for forming optimal locally correct confidence intervals. The

binomial distribution has two parameters (p, n), where p ∈ [0, 1] and n is a

fixed known number.

9. Applying the OLC method to the Poisson distribution differs from its ap-

plication to the binomial distribution. It faces the challenge of an unbounded

range for the Poisson mean λ, which is (0,∞) and the values of x go to infinity.

So, the OLC method was modified so that it could be used for constructing

a confidence interval for the Poisson mean, and any other parameter that has

infinite range.

10. Applying the OLC method to the negative binomial distribution has the

same challenge as with the Poisson distribution, as the values of x have an
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unlimited range. However, it is similar to the binomial distribution in that it

has two parameters, (p, r), where 0 < p < 1 and r = 1, 2, . . .. A difference is

that we are interested in forming a confidence interval for both the negative

binomial proportion p and the negative binomial mean µ.

11. For three distributions the OLC method yields locally correct intervals of

a minimum average expected length.

12. For λ and µ it was not possible to measure the performance of the inter-

vals over the full range, from 0 to ∞, because the expected length is infinite.

Instead, we determine a weighting function to calculate a finite weighted aver-

age expected length. In the case of λ, the weighting function is set equal to a

gamma (α, β) distribution. Whereas, in the case of µ, the weighting function

is set equal to a beta prime (a, b) distribution, with pdf as in equation (6.22).

7.2 Discussion

This thesis began by searching for a satisfactory definition for a new interval

estimator for a binomial proportion. We went through different restrictions

in this search. First, there was the overall coverage restriction, which means

that the average coverage for the intervals is at least (1 − α) over p ∈ [0, 1].

Second, we restricted the average coverage in fixed intervals in two cases. In

case (a) we did not put any restrictions on the number of spikes in each subin-

terval. In case (b) we imposed the restriction that there is at most one spike

in any subinterval. However, these restrictions failed to fill our needs. So,

the restriction which we proposed is that the average coverage between con-

secutive spikes should equal or exceed the nominal confidence level (1 − α).

We examined whether exisiting methods of forming confidence intervals met

this new definition and propsed the OLC method. Three of these methods,

Clopper-Pearson, mid-p and the OLC method met the definition for the values
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of α of interest in practice. Although the Clopper-Pearson method satisfies the

definition and gives locally correct intervals, it gives intervals with an average

expected length that is a little large. That is because its conservative coverage

affects the length of its interval, making them longer than intervals given by

other methods. The mid-p and OLC methods both have a coverage that is

close to the nominal level for any value of p. But from Table 3.3 and Figure

3.8, the OLC method has intervals with an average expected length that is

shorter than with the mid-p.

All other methods, Wald, Wilson, Agresti-Coull and Jeffreys, are recom-

mended in the literature as alternative methods to the gold standard method

because the length of their intervals is a little bit shorter even if they do

not meet our new definition. However, for all examined values of n and α,

the OLC method gives the shortest average expected length compared to any

method achieving our new definition. That is because the Wald method gives

intervals whose coverage is often much less than the nominal level. More-

over, by examination for any combination of n and α as 1 ≤ n ≤ 200 and

α ∈ {0.001(0.001)0.27}, the OLC method has the properties, such as equivari-

ance and monotonicity, that are listed by Blyth and Still (1983) and Schilling

and Doi (2014) as desirable properties for a good interval estimator. Also the

OLC method satisfies the new definition and gives reasonable intervals with an

average expected length that is acceptably short. Hence, we can say that the

OLC method is an alternative interval estimator for the binomial proportion.

Then, we applied the new definition and extended the proposed method for

the Poisson mean, giving a modified OLC method. Although constructing a

confidence interval for the Poisson mean faces the challenge of an infinite range

for the parameter λ, and x values can also be unbounded, there are similarities

in the results of the binomial and Poisson distributions. The modified OLC
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method gave intervals whose coverage is fairly spread around the nominal con-

fidence level. Also for all examined values of x and α, where 1 ≤ x ≤ 200 and

α ∈ {0.001(0.001)0.3}, the modified OLC method has the shortest average ex-

pected length comparable to any method achieving our new definition. Also,

for all examined values of x and α, the modified OLC method has the other

desirable properties which are mentioned in Section 4.5, such as interval val-

ued and nesting listed by Blyth and Still (1983) and Schilling and Doi (2014).

Regarding alternative methods of forming confidence intervals, the Garwood

method performs like the Clopper-Pearson method, its counterpart for the

binomial distribution, as it has good coverage but with poor length. Mid-p

obviously has the smallest RMSE among all methods in the Poisson case, as

it has the smallest RMSE for any discrete sampling distribution. However, it

is a little conservative in its coverage. The performance of Jeffreys method

is also the same for both distributions, with coverage that is sometimes far

below the nominal confidence level. The score method performs better for the

binomial distribution than for the Poisson distribution.

Our new OLC method is also applied to a third distribution, the negative

binomial distribution. For this distribution, we applied the new definition and

used the OLC method to construct confidence intervals for its proportion p

and its mean µ. The OLC method gave sensible locally correct confidence in-

tervals with an average expected length over p ∈ [0, 1] that is acceptably short.

Unlike the case with the binomial and Poisson distributions, the endpoints of

the confidence interval for the negative binomial proportion p are monotone

decreasing in x. The OLC method has the other desirable properties, such as

monotonicity and nesting.
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Comparing the results of the negative binomial case with those of other

methods of forming confidence intervals, we find that the exact method (the

Casella and McCulloch method) did better in terms of average expected length

than both the Clopper-Pearson and Garwood methods. While both the mid-p

and Jeffreys methods gave similar performance to their performance with the

two other distributions. The score method performed better in the case of the

binomial than Poisson and negative binomial distributions.

Constructing a confidence intervals for the negative binomial mean µ is tricky

as µ has an infinite range. Unlike the case of p, the coverage probability of

the confidence interval of µ is monotone increasing in x, the same as for the

binomial and Poisson distributions. Because of the unbounded range of µ,

we used a weighting function to weight the average expected length for the

intervals of µ. We could not prove our definition for all values of α, n and

x. That is because the average coverage between some spikes becomes below

the nominal level for the biggest values of α. In the case of the binomial

distribution the range of values for which the OLC method can be used is

α ∈ {0.001(0.001)0.27}, and for the Poisson and negative binomial it is α ∈

{0.001(0.001)0.3}. The value of x in the binomial case is limited by the value

of trials, n. We considered values of n up to n = 200, which is commonly

the highest value considered in the literature. In contrast, the value of x, in

Poisson and negative binomial distributions, does not have a limited range.

In this thesis it was assumed that observed sample value of x is less than 200.

Also, in the last two distributions, we needed to determine the value ofN which

is very useful and important in calculating the endpoints of the intervals. This

value is determined to be N = 500 for 0 ≤ x ≤ 100, while for x > 100, N = 5x

is enough to represent the infinite range. The reason for choosing these values

of N is that increasing the value of N above these values makes to almost
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no difference to the confidence interval for X = x. Because of the infinite

range of both λ and µ, we could not prove the definition for all their values.

So, the definition and methods are examined over the range λ ∈ (0, 50) and

µ ∈ (0, 50), where these values have attracted most attention in the practical

research. However, we would like to evaluate the performance of the methods,

especially the average expected length of the intervals of each method, over

the full range of λ and µ. So, we had to use a weighting function, which

is mentioned above in point 13, to weight the average expected length. The

tricky point in determining the weighting function is choosing the parameter

values (α, β) of gamma(α, β) and (a, b) of beta prime(a, b) distribution. We

tried to find the weighting function, that gives almost equal weight to each

interval. The values of the parameters that achieve our purpose are α = 1 and

β = 1/4 for the gamma distribution in the case of λ and are a = 2 and b = 3

for the beta prime distribution in the case of µ.

7.3 Future work

Future research in forming confidence intervals for the discrete distributions

may include the following points:

• More than one parameter (e.g difference between two proportions, risk

ratio and odds ratio). These three measurements are used commonly in

medical research to compare two treatments for a disease, for example.

– Difference (δ = p1 − p2) is perhaps the most direct methods of

comparison between the two event probabilities. This parameter is

easy to interpret and communicate. It gives the absolute impact

of the treatment. Many methods have been devised for comput-

ing confidence intervals for the difference between two proportions.
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These include the following seven methods: Score (Farrington and

Manning), Score (Miettinen and Nurminen), Score with correction

for Skewness (Gat and Nam), Score (Wilson), Score with continuity

correction (Wilson), Chi-Square with continuity correction (Yates)

and Chi-Square (Pearson)

– Ratio (φ = p1/p2) gives the relative change in the disease risk due

to the application of the treatment. It is also direct and easy to

interpret. Many methods have been devised for computing con-

fidence intervals for the ratio of two proportions. Amongst them

are the following six methods: Score (Farrington and Manning),

Score (Miettinen and Nurminen), Score with correction for Skew-

ness (Gat and Nam), Logarithm (Katz), Logarithm + 1/2 (Walter)

and Fleiss.

– Odds Ratio [ψ = (p1/q1)/(p2/q2) = (p1q2)/(p2q1)] is a relative mea-

sure for comparing outcomes. It has a direct relationship with the

regression coefficient in logistic regression. Although the odds ra-

tio is more complicated to interpret than the ratio, it is often the

parameter of choice. Many methods have been devised for com-

puting confidence intervals for the odds ratio of two proportions.

Eight of these methods are: Exact (Conditional), Score (Farrington

and Manning), Score (Miettinen and Nurminen), Fleiss, Logarithm,

Mantel-Haenszel, Simple and Simple + 1/2 (Agresti, 2003), (Fager-

land et al., 2015) and (Wang and Shan, 2015).
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All the proofs of results are the work of my main supervisor, Prof Paul

Garthwaite, the work is included in my thesis as it has not been published

elsewhere.

Appendix (A)

Conditions for our algorithm to give locally correct confidence in-

terval with the shortest average length (equations (3.16) and (3.17))

We observe the value of X where X ∼ bin(n, p) and aim to form an upper

one-tailed confidence interval for p with nominal confidence level γ = 1 − α.

Let (0, u∗i ) be the confidence interval given by our algorithm when X = i. As

i is an integer between 0 and n, our algorithm gives the partition (u∗0, . . . , u
∗
n)

where

0 < u∗0 ≤ . . . ≤ u∗i−1 ≤ u∗i ≤ . . . ≤ u∗n = 1. (7.1)

If p ≤ u∗i , then p is contained in the confidence interval if X ≥ i. Let gn(i, p) =

Pr(X ≥ i) when X ∼ bin(n, p). From our definition of a locally correct

confidence interval,

1

u∗i − u∗i−1

∫ u∗i

u∗i−1

gn(i, p) dp ≥ γ (7.2)

for i = 1, . . . , n.

The length of our confidence interval when X = i is u∗i so, given p, the

expected length of our confidence interval is

n∑
i=0

u∗iPr(X = i | p). (7.3)

When p is equally likely to take any value in the interval (0, 1), Pr(X = i) =

1/(n+1) for i = 0, . . . , n. From equation (7.3), the average length (when each

value of p is equally likely) is thus
∑n

i=0 u
∗
i /(n+ 1). We aim to show that our

algorithm gives a shorter average length than any other partition that yields

a set of locally correct confidence intervals.
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To this end, suppose the partition (b0, . . . , bn) is a partition that has the

minimum average length while satisfying

1

bi − bi−1

∫ bi

bi−1

gn(i, p) dp ≥ γ (7.4)

for i = 1, . . . , n, with

0 < b0 ≤ . . . ≤ bi ≤ bi+1 ≤ . . . ≤ bn = 1. (7.5)

We must show that

bi = u∗i for i = 0, . . . , n. (7.6)

Further conditions are needed for equation (7.6) to necessarily hold. These

conditions only involve the partition given by our algorithm and it is feasible

to examine them under ranges of values for n and α that effectively cover

all integer values of n and 0.00001 ≤ α ≤ 0.27. We prove the main result

in this section (Theorem 1) by induction, showing that if bi = u∗i for i =

n, n− 1, . . . , k+ 1 (k ≥ 0), then it also holds for i = k. To start the induction,

note that 1 = bn = u∗n. We first prove some preparatory results that place

bounds on the bi.

Lemma 1. If bk+1 = u∗k+1 then ( i) bk ≥ u∗k for any k = 0, . . . , n − 1,; (ii)

bk−1 ≤ u∗k−1 if k ≥ 1 ; (iii) b0 = u∗0 if b1 = u∗1; and (iv) u∗k−1 + u∗k ≥ bk−1 + bk

if k ≥ 1.

Proof. As gn(k + 1, p) is a monotonic strictly decreasing function of

p,
∫ u∗k+1
c gn(k + 1, p) dp/(u∗k+1 − c) <

∫ u∗k+1

u∗k
gn(k + 1, p) dp/(u∗k+1 − u∗k) for

any c < u∗k. Given u∗k+1, our algorithm chooses u∗k as the value for which∫ u∗k+1

u∗k
gn(k+1, p) dp/(u∗k+1−u∗k) = γ. Thus

∫ u∗k+1
c gn(k+1, p) dp/(u∗k+1−c) < γ

for any c < u∗k. By assumption, bk+1 = u∗k+1, so setting i = k+1 in (7.4) gives

result (i), that bk ≥ u∗k. For (ii), note that (b0, . . . , bk−1, u
∗
k, . . . , u

∗
n) would

be a partition that gave locally correct confidence intervals if bk−1 ≥ u∗k−1.
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Since
∑k−1

i=0 bi +
∑n

i=k u
∗
i =

∑n
i=0 bi + (u∗k − bk) and (from (i)) bk ≥ u∗k, this

would contradict the assumption that (b0, . . . , bn) is the partition of mini-

mum average length that satisfies (7.4), unless bk−1 = u∗k−1. Consequently,

bk−1 ≤ u∗k−1 if bk+1 = u∗k+1. For (iii), suppose that b1 = u∗1. Then the partition

(u∗0, b1, b2, . . . , bn) gives locally correct confidence intervals. As (b0, . . . , bn) is

the partition that gives locally correct confidence intervals with the shortest

average length, it follows that b0 ≤ u∗0 so, from (i), b0 = u∗0. For (iv), from (ii)

we have that bk − 1 ≤ ak−1, so the average coverage for p ∈ (bk−2, u
∗
k−1) is

not less than the average coverage for p ∈ (bk−2, bk−1). Hence, as (b0, . . . , bn)

is a partition that gives locally correct confidence intervals, so does the parti-

tion (b0, . . . , bk−2, u
∗
k−1, u

∗
k, bk+1, . . . , bn). Now (b0, . . . , bn) is the partition that

gives the shortest average length of locally correct confidence intervals, so we

have that bk−1 + bk ≤ u∗k−1 + u∗k. �

To place a further bound on bk−1, let p#
k−1 be the value of p for which

gn(k − 1, p) = γ. Analogous to equation (7.2) we have

1

bk−1 − bk−2

∫ bk−1

bk−2

gn(k − 1, p) dp ≥ γ, (7.7)

so bk−1 ≥ p#
k−1, since gn(k − 1, p) is a monotonically increasing function of p.

In combination with Lemma 1, this gives the following result.

Lemma 2. If bk+1 = u∗k+1 and k ≥ 1, then

u∗k ≤ bk ≤ min(u∗k+1, u
∗
k−1 + u∗k − p

#
k−1) (7.8)

where p#
k−1 is given by gn(k − 1, p#

k−1) = γ.

Proof. For the lower limit, u∗k ≤ bk from part (i) of Lemma 1. For the

upper limit, first bk ≤ bk+1 so bk ≤ u∗k+1. Also, from part (iv) of Lemma 1,

bk ≤ u∗k−1 + u∗k − bk−1, so bk ≤ u∗k−1 + u∗k − p
#
k−1. �
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We will require a quantity An(i, p∗, y) that is defined by:

An(i, p∗, y) =
1

2y

∫ p∗+y

p∗−y
gn(i, p) dp for 0 ≤ y ≤ min(p∗, 1− p∗). (7.9)

Thus An(i, p∗, y) is the average coverage given by gn(i, p) in the interval (p∗−

y, p∗ + y). Its differential with respect to y is denoted as A′n(i, p∗, y). The

following lemma gives an important characteristic of An(i, p∗, y) that underlies

conditions for our algorithm to yield locally correct confidence intervals with

minimum average length.

Lemma 3. Suppose that 0 < y1 < y2 ≤ min(p∗, 1−p∗) and thatAn(i, p∗, y1) >

An(i, p∗, y2). Then,

An(i, p∗, y1) > An(i, p∗, y) for any y ∈ (y1, y2] (7.10)

if A′n(i, p∗, y1) < 0.

Proof. Differentiation of An(i, p∗, y) with respect to y gives

A′n(i, p∗, y) = − 1

2y2

∫ p∗+y

p∗−y
gn(i, p) dp+

1

2y
{gn(i, p∗+y)+gn(i, p∗−y)}. (7.11)

For sufficiently small y, the smooth function gn(i, p) is approximately linear

for p in the interval (p∗ − y, p∗ + y), so An(i, p∗, y) does not vary as y → 0,

giving A′n(i, p∗, 0) = 0.

Let Qn(i, p∗, y) = 2y2A′n(i, p∗, y). Then the differential of Qn(i, p∗, y) with

respect to y is:

Q′n(i, p∗, y) = −{gn(i, p∗ + y) + gn(i, p∗ − y)}+ {gn(i, p∗ + y) + gn(i, p∗ − y)}

+ y {g′n(i, p∗ + y)− g′n(i, p∗ − y)}

= y {g′n(i, p∗ + y)− g′n(i, p∗ − y)}. (7.12)

Put h(y) = g′n(i, p∗ + y)/g′n(i, p∗ − y). The differential of h(y) with respect to

y is:

h′(y) = ψ(y)[c1 − c2y
2], (7.13)
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where

ψ(y) = 2(p∗ + y)i−2(1− p∗ − y)n−i−1(p∗ − y)−i(1− p∗ + y)−n+i−1.

c1 = p∗(1− p∗){i− 1− p∗(n− 1)},

and

c2 = p∗(n− 1)− n+ i.

The behavior of A′n(i, p∗, y) depends upon the signs of c1 and c2.

Case 1: c1 ≤ 0; c2 > 0 or c1 < 0 ; c2 = 0.

As ψ > 0 for all y, the following results follow sequentially.

(i) h′(y) < 0 for any y, so h(y) is a monotonic decreasing function of y.

(ii) As h(0) = 1, it follows that h(y) < 1 for all y > 0, so g′n(i, p∗ + y) −

g′n(i, p∗ − y) is negative for any y > 0.

(iii) Q′n(i, p∗, y) is negative for y > 0, so Qn(i, p∗, y) is a monotonic decreasing

function of y.

(iv) As Qn(i, p∗, 0) = 0, it follows that Qn(i, p∗, 0) is negative for any y > 0.

Thus A′n(i, p∗, y) is also negative for any y > 0.

(v) An(i, p∗, y) is a monotonic decreasing function of y, so An(i, p∗, y1) >

An(i, p∗, y) for any y > y1. Thus Lemma 3 holds if c1 ≤ 0 and c2 > 0,

or if c1 < 0 and c2 = 0.

Case 2: c1 ≥ 0; c2 ≤ 0.

Now h′(y) ≥ 0 for any y and reasoning similar to that for Case 1 shows that

An(i, p∗, y1) ≤ An(i, p∗, y) for any y > y1. Thus the conditions required by

Lemma 3 do not hold, so there is nothing to verify.

172



Case 3: c1 < 0; c2 < 0.

The following results hold.

(i) h′(y) < 0 for y < (c1/c2)1/2 and h′(y) > 0 for y > (c1/c2)1/2, so h(y) is

a ∪ -shaped function of y.

(ii) Suppose h(y) is below 1 until y = y∗. As h(0) = 1, it follows that

g′n(i, p∗ + y) − g′n(i, p∗ − y) is negative for 0 < y < y∗ and positive for

y > y∗.

(iii) Q′n(i, p∗, y) is negative for 0 < y < y∗ and positive for y > y∗, so

Qn(i, p∗, y) is a ∪ -shaped function of y.

(iv) Suppose Qn(i, p∗, y) is below 0 until y = y#. As Qn(i, p∗, 0) = 0

and Qn(i, p∗, y) = 2y2A′n(i, p∗, y), it follows that both Qn(i, p∗, y) and

A′n(i, p∗, y) are negative for 0 < y < y# and positive for y > y#. Hence,

An(i, p∗, y) is a ∪ -shaped function of y.

(v) If y2 > y1 andAn(i, p∗, y1) > An(i, p∗, y2), thenAn(i, p∗, y1) > An(i, p∗, y)

for any y ∈ (y1, y2). Thus Lemma 2 holds if c1 < 0 and c2 < 0.

Notes. In (i) it is assumed that (c1/c2)1/2 ≤ min(p∗, 1− p∗). If (c1/c2)1/2 >

min(p∗, 1− p∗), then h′(y) < 0 for all feasible values of y and Case 1 applies.

Similarly, in (ii), if h(y) never reaches 1, then Q′n(i, p∗, y) is always negative

and Case 1 again applies (c.f. Case 1, parts (iii)-(v)). Likewise, in (iv), if

Qn(i, p∗, y) is always below 0 for any feasible values of y, then Case 1 applies

(parts (iv) and (v)).

Case 4: c1 > 0; c2 > 0.

The following results hold.
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(i) h′(y) > 0 for y < (c1/c2)1/2 and h′(y) < 0 for y > (c1/c2)1/2, so h(y) is

a ∩ -shaped function of y.

(ii) Suppose h(y) drops below 1 at y = y∗. As h(0) = 1, it follows that

g′n(i, p∗ + y) − g′n(i, p∗ − y) is positive for 0 < y < y∗ and negative for

y > y∗.

(iii) Q′n(i, p∗, y) is positive for 0 < y < y∗ and negative for y > y∗, so

Qn(i, p∗, y) is a ∩ -shaped function of y.

(iv) Suppose Qn(i, p∗, y) drops below 0 at y = y#. As Qn(i, p∗, 0) = 0, it

follows that both Qn(i, p∗, y) and A′n(i, p∗, y) are positive for 0 < y < y#

and negative for y > y#. Thus, An(i, p∗, y) is a ∩ -shaped function of y.

(v) If A′n(i, p∗, y1) < 0, then An(i, p∗, y1) > An(i, p∗, y) for any y > y1. Thus

Lemma 2 holds if c1 > 0 and c2 > 0.

Notes. In (i) it is assumed that (c1/c2)1/2 ≤ min(p∗, 1− p∗). If (c1/c2)1/2 >

min(p∗, 1− p∗), then h′(y) > 0 for all feasible values of y and Case 2 applies.

Similarly, Case 2 applies if h(y) never drops below 1 in (ii) for any feasible

value of y, or if Qn(i, p∗, y) never drops below 0 in (iii).

This completes the proof of the lemma, as Cases 1 - 4 cover all combinations

of c1 and c2. �

Theorem 1. For i = 1, . . . , n−1, let p∗i = (u∗i +u∗i−1)/2 and let ηi = u∗i −p∗i .

Also, define p#
i−1 by gn(i − 1, p#

i−1) = γ and let ξi = min(u∗i+1, u
∗
i−1 + u∗i −

p#
i−1)− p∗i . Suppose

An(i, p∗i , ηi) > An(i, p∗i , ξi) (7.14)

and

A′n(i, p∗i , ηi) < 0 (7.15)
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both hold for i = 1, . . . , n−1. Then bi = u∗i for i = 0, . . . , n and (u∗0, . . . , u
∗
n) is

the partition that yields locally correct confidence intervals of shortest average

length.

Proof. We have that bn = u∗n and, from Lemma 1, b0 = u∗0 if b1 = u∗1.

Hence we must show that bi = u∗i for i = 1, . . . , n−1. We will prove the result

by induction: we assume that bi = u∗i for i = k + 1, . . . , n and will show this

implies that bk = u∗k.

By assumption, An(k, p∗k, ηk) > An(k, p∗k, ξk) and A′n(k, p∗k, ηk) < 0 so, from

Lemma 3, An(k, p∗k, ηk) > An(k, p∗k, y) for any y ∈ (ηk, ξk]. Also, An(k, p∗k, ηk) =

(2ηk)
−1
∫ p∗k+ηk
p∗k−ηk

gn(k, p) dp = (2ηk)
−1
∫ u∗k
u∗k−1

gn(k, p) dp = γ. Consequently,

γ > An(k, p∗k, y) for any y ∈ (ηk, ξk]. (7.16)

Put bk = p∗k + τk. From part (i) of Lemma 1, τk ≥ 0, and from part (iv),

bk−1 ≤ u∗k−1 +u∗k− bk = 2p∗k− bk = p∗k− τk. Hence, as gn(k, p) is a monotonic

strictly increasing function of p, we have

γ ≤ 1

bk − bk−1

∫ bk

bk−1

gn(k, p) dp ≤ 1

2τk

∫ p∗k+τk

p∗k−τk
gn(k, p) dp = An(k, p∗k, τk).

From equation (7.16), it follows that τk is not within the interval (ηk, ξk].

However, u∗k = p∗k + ηk so, from Lemma 2,

p∗k + ηk ≤ bk ≤ min(u∗k+1, u
∗
k−1 + u∗k − p

#
k−1) = p∗k + ξk.

Thus ηk ≤ τk ≤ ξk. It follows that τk = ηk, so bk = u∗k. �
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Appendix (B): Proof of proposition 3.4

Suppose p = p∗ and 0 ≤ u0 ≤ . . . ≤ un = 1. If 1 − 1
2P(X = 0 | p = p∗) ≤

1− α, put i∗ = 0. Otherwise, define i∗ by

P(X ≥ i∗ | p = p∗)− 1
2P(X = i∗ | p = p∗) ≤ 1− α (7.17)

and

P(X ≥ i∗ − 1 | p = p∗)− 1
2P(X = i∗ − 1 | p = p∗) > 1− α. (7.18)

The coverage of a method of forming confidence intervals must equal P(X ≥

i | p = p∗) for some i. The value midway between P(X ≥ i− 1) and P(X ≥ i)

is P(X ≥ i− 1)− 1
2P(X = i− 1). Similarly, P(X ≥ i)− 1

2P(X = i) is midway

between P(X ≥ i) and P(X ≥ i + 1). Hence, if i∗ ≥ 1, the feasible coverage

that is closest to equalling 1 − α is P(x ≥ i∗ | p = p∗). A method of forming

confidence intervals achieves this coverage if ui∗−1 < p∗ ≤ ui∗ . If i∗ = 0, the

coverage closest to 1− α is 1, which is the coverage when p∗ ≤ u0.

Let ũi denote the upper limit given by the mid-p method when X = i.

From equation (13) in the paper, ũi satisfies

P(X ≥ i | p = ũi)− 1
2P(X = i | p = ũi) = 1− α, (7.19)

for i ≤ n − 1. Suppose i∗ ≤ n − 1. Putting i = i∗ in (7.19) and comparison

with (7.17) yields

P(X ≥ i∗ | p = p∗)−1
2P(X = i∗ | p = p∗) ≤ P(X ≥ i∗ | p = ũi∗)−1

2P(X = i∗ | p = ũi∗),

(7.20)

so p∗ ≤ ũi∗ . Hence the mid-p method has the feasible coverage closest to 1−α

when i∗ = 0. As ũn = 1, we also have p∗ ≤ ũi∗ for i∗ = n. When i∗ ≥ 1,

putting i = i∗ − 1 in (7.19) and comparison with (7.18) similarly yields

P(X ≥ i∗ − 1 | p = p∗)− 1
2P(X = i∗ − 1 | p = p∗)
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> P(X ≥ i∗ − 1 | p = ũi∗−1)− 1
2P(X = i∗ − 1 | p = ũi∗−1),

(7.21)

so p∗ > ũi∗−1. Thus, when 1 ≤ i∗ ≤ n, we have that ũi∗−1 < p∗ ≤ ũi∗ . Hence,

for any p∗, the coverage of the mid-p method is as close to 1−α as the coverage

of any method that meets the conditions of Proposition 3.4. �

Appendix (C): Proof of Proposition 4.1

For definiteness, suppose ui < u∗i . Then from equations (4.1) and (7.2), ui−1 >

u∗i−1. Figure 7.1 is a diagram of the coverage probability Cu,i(θ) plotted against

θ for u∗i−1 < θ < u∗i . As the coverage function is concave, the average coverage

over the interval (ui−1, ui) is greater than Cu,i(ui) + Cu,i(ui−1)/2, so from

equation (4.1), Cu,i(ui) + Cu,i(ui−1)/2 < 1− α. Using the notation in Figure

7.1, it follows that the distance from B to C exceeds the distance from E to

H:

BC > EH (7.22)

As the average coverage over the interval (ui−1, ui) is 1 − α, the area

with vertexes BIC equals the area with vertexes IEH. Similarly, the aver-

age coverage over the interval (u∗i−1, u
∗
i ) is 1 − α, so the area with vertexes

AID equals the area with vertexes IFG. Consequently, area(AID)-area(BIC)

= area(IFG)-area(IEH), so the area with vertexes ABCD equals the area with

vertexes EFGH. From equation (7.22), BC > EH and the gradient of the

coverage function is greater between u∗i−1 and ui−1 than between ui and u∗i .

As area(ABCD) equals area(EFGH), it follows that the distance from A to

B is less than the distance from H to G. That is |ui−1–u∗i−1| < |u∗i − ui|, as

required.
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Figure 7.1: Figure for the proof of Proposition 4.1.

Appendix (D): Proof of Proposition 4.2

Let γ = 1− α. As (u∗0, . . . , u
∗
n) gives locally correct confidence intervals

1

u∗i − u∗i−1

∫ u∗i

θ=u∗i−1

Cu,i(θ) dθ ≤ γ (7.23)

for i = 1, . . . , n. When (7.23) is an equality we say that u∗i−1 is a tight lower

limit – (7.23) would no longer be satisfied if u∗i−1 was made smaller (with u∗i

fixed).

Preliminary lemma

Suppose that δ is small and let δi = u∗i − ui for i = 0, . . . n. If u∗i−1 is a tight

lower limit, then

δi−1 = δi{Cu,i(ui)− γ}/{Cu,i(ui−1)− γ}+O(δ2). (7.24)

Proof of lemma. For small δi−1, δi,

∫ u∗i

u∗i−1

Cu,i(θ) dθ =

∫ ui+δi

ui

Cu,i(θ) dθ +

∫ ui

ui−1

Cu,i(θ) dθ +

∫ ui−1

ui−1+δi−1

Cu,i(θ) dθ

= δiCu,i(ui) + (ui − ui−1)γ − δi−1Cu,i(ui−1) +O(δ2).

As
∫ u∗i
u∗i−1

Cu,i(θ) dθ = (u∗i − u∗i−1) γ = δi γ + (ui − ui−1) γ − δi−1γ, we have
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that δiCu,i(ui)− δi−1Cu,i(ui−1) +O(δ2) = δi γ− δi−1γ, and the result follows.

�

Proof of part (a) of proposition. Suppose φl < 0 for some l ∈ (1, . . . , n− 1).

Set u∗i = ui for i = l+1, . . . n. Choose ε > 0 such that | εψjl| < δ for j = 1, . . . , l

and put u∗l = ul + ε. As ε > 0, (7.23) holds for i = l + 1. Sequentially choose

u∗l−1, u
∗
l−2, . . . , u

∗
0 such that each is a tight lower limit. That is,

1

u∗i − u∗i−1

∫ u∗i

u∗i−1

Cu,i(θ) dθ = γ (7.25)

for i = l, l − 1, . . . , 1. Then (7.23) holds for i = 1, . . . , n. Also, from the

preliminary lemma, u∗i−1 − ui−1 = (u∗i − ui)hi/fi + O(δ2) for i = 1, . . . l.

Consequently,

u∗i−1 − ui−1 = (u∗l − ul)hlhl−1 . . . hi/(flfl−1 . . . fi) +O(δ2)

= (u∗l − ul)ψil +O(δ2)

= εψil +O(δ2)

for i = 1, . . . , l. Hence, to order O(δ2),
∑l

i=0 p
∗
i (u
∗
i −ui) = p∗l ε+

∑l−1
i=0 p

∗
i (u
∗
i −

ui) = p∗l ε+ ε
∑l

i=1 p
∗
i−1ψil, giving

l∑
i=0

p∗i (u
∗
i − ui) = εφl +O(δ2). (7.26)

If φl < 0, then
∑l

i=0 p
∗
iu
∗
i <

∑l
i=0 p

∗
iui, so

∑n
i=0 p

∗
iu
∗
i <

∑n
i=0 p

∗
iui.

Proof of (b). Suppose u∗0, . . . , u
∗
n) is a partition that satisfies equations (4.4)

and (4.5) and that (u∗0, . . . , u
∗
n) 6= (u0, . . . , un). As each of u0, . . . , un is a tight

lower limit, it follows that at least one of (u∗0, . . . , u
∗
n) is not. Let q be the

smallest value of i for which u∗i is not a tight lower limit. Put ε1 = u∗q − uq.

As equation (7.25) holds for i = 1, . . . , q, as in equation (7.26) we have that

q∑
i=0

p∗i (u
∗
i − ui) = ε1φq +O(δ2). (7.27)
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Sequentially choose bq, bq−1, . . . , b0 such that

1

u∗q − bq

∫ u∗q

bq

Cu,i(θ) dθ = γ (7.28)

and

1

bi − bi−1

∫ bi

bi−1

Cu,i(θ) dθ = γ (7.29)

for i = q, q − 1, . . . , 1. Let ε2 = bq − uq. Then analogous to equation (7.26),

q∑
i=0

p∗i (bi − ui) = ε2φq +O(δ2). (7.30)

Since equation (7.29) holds while (7.23) is a strict inequality when i = q + 1,

it follows that bq < a∗q , and so ε2 < ε1.

Now consider the partition (b0, . . . , bq, u
∗
q+1, . . . , u

∗
n). It gives locally cor-

rect confidence intervals and

(i) its confidence intervals have shorter expected average length than the par-

tition (u∗o, . . . , u
∗
n) – from comparison of equations (7.27) and (7.30);

(ii) it has one more tight lower limit than (u∗o, . . . , u
∗
n). Repeating the pro-

cess that gave (b0, . . . , bq, u
∗
q+1, . . . , u

∗
n), we can construct a partition that has

one more tight lower limit than (b0, . . . , bq, u
∗
q+1, . . . , u

∗
n) and which gives confi-

dence intervals with a shorter expected average length. This can continue until

we obtain a partition whose points are all tight lower limits. But that parti-

tion is u0, . . . , un). Thus (u0, . . . , un) gives confidence intervals with a shorter

expected average length than all preceding partitions, including (u∗0, . . . , u
∗
n).

That is,
∑n

i=0 p
∗
iui <

∑n
i=0 p

∗
iu
∗
i , as required. �
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