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A B S T R A C T   

The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These de-
vices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the 
plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since 
the development of the first stent, extensive research has investigated how further advancements in stent 
technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with 
models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent 
binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and 
neointimal growth are key features of the healing process following stent deployment. However, models which 
depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of 
cell growth, which predominantly emanate from cancer research, and available published data on SMC prolif-
eration, before presenting a series of mathematical models of varying complexity to detail the action of drug on 
SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of- 
the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a 
range of drug doses and exposure times. Our findings potentially have important implications on the interpre-
tation of current computational models and their future use to optimise and control drug release from DES and 
drug-coated balloons.   

1. Introduction 

1.1. Evolution of drug-eluting stents 

Drug-eluting stents (DES) were introduced over two decades ago to 
counteract the high in-stent restenosis (ISR) rates associated with their 
bare-metal (BMS) predecessors (Bell et al., 1992; Landau et al., 1994; 
van der Hoeven et al., 2005). Initial designs incorporated either siroli-
mus (SIR) or paclitaxel (PTX) within a durable polymer that was coated 
onto a stainless steel platform. The clinical results with these initial DES 
were remarkable, with the rate of ISR reducing from the 17–41% asso-
ciated with bare metal stents to below 10% (Moses et al., 2003; Park 
et al., 2003; Buccheri et al., 2016). Amid concerns regarding the 

increased stent thrombosis (ST) risk (2.2% for DES and 1.5% for BMS 
(Tada et al., 2013) and delayed arterial healing associated with these 
initial DES designs (Byrne et al., 2014; Nakazawa et al., 2008; Byrne 
et al., 2009; Holmes et al., 2010), further advancements in technology 
focused on improved biocompatibility and thinner struts (Akin et al., 
2011; Puranik et al., 2013). This second generation of DES resulted in a 
modest improvement in thrombosis and restenosis rates of 1% and 6%, 
respectively (Byrne et al., 2014; Whitbeck and Applegate, 2013). 

Further generations have featured alternative drugs, predominantly 
analogues of sirolimus (e.g. everolimus, zotarolimus, biolimus) and 
biodegradable polymer coatings, generally resulting in more favourable 
results when compared to PTX-eluting stents, yet non-inferior when 
compared to sirolimus (Stone et al., 2010; Navarese et al., 2014; Byrne 
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et al., 2011). Most recently, polymer-free stents and fully resorbable 
stents have been developed, with the Biofreedom stent an example of the 
former, a superior alternative to BMS in the context of high-risk bleeding 
patients requiring dual anti-platelet therapy (DAPT) (Urban et al., 
2015), whilst the Absorb stent (an example of the latter) has been 
removed from the market, amid ongoing safety concerns related to 
increased rates of thrombosis (Cassese et al., 2016). 

It is indisputable that DES work well in the majority of cases. How-
ever, despite all the aforementioned technological innovations, com-
plications continue to occur, with repeat revascularisation procedures 
still required in approximately 6% of cases within 2 years (Byrne et al., 
2015; Byrne et al., 2018), and even more so in cases associated with 
complex lesions (Serruys et al., 2009). 

Delayed healing has been a recurring problem in DES, where durable 
coatings were associated with hypersensitivity, impacting the re- 
endothelization process (Joner et al., 2006). Various efforts have pre-
sented alternate results, where the occurence of adverse events and 
neointima development is comparable between durable and resorbable 
coated DES in some studies (Byrne et al., 2011; Yuan et al., 2014; von 
Birgelen et al., 2016; Zocca et al., 2018; Guagliumi et al., 2018; Ker-
eiakes et al., 2019) yet inferior in others with respect to late-stent 
thrombosis and early strut coverage (Kobayashi et al., 2017; Nojima 
et al., 2019; Serruys et al., 2013; Stefanini et al., 2011). Conflicting 
evidence considering various DES, supported by a recent meta-analysis 
(Taglieri et al., 2020), suggests that the drug and release kinetics may be 
instrumental in cases of delayed arterial healing and late stent throm-
bosis (Nakazawa et al., 2008). 

1.2. Mathematical and computational modelling in DES research 

Over the past two decades, mathematical and computational 
modelling has emerged as a powerful tool to help understand the per-
formance of DES. Such research has predominantly focused on three key 
areas: (i) structural mechanics and computational fluid dynamics (CFD); 
(ii) drug elution kinetics, uptake and retention in tissue, and (iii) the 
arterial healing response. 

The most advanced models of type (i) are now capable of describing 
stent deployment and the subsequent alteration to arterial fluid dy-
namics in 3D patient-specific arteries. Moreover, these models have 
enabled correlations between haemodynamic indices, such as wall shear 
stress (WSS) and Oscillatory Shear Index (OSI) and clinical outcome (i.e. 
restenosis) (Morlacchi et al., 2011; Chiastra et al., 2013; Chiastra et al., 
2016; Colombo et al., 2020). 

State-of-the art models of type (ii) have elucidated the importance of 
drug release kinetics and retention on patient outcome (McGinty, 2014; 
Tzafriri et al., 2012; Rossi et al., 2012; McGinty and Pontrelli, 2016; 
Artzi et al., 2015; Zhu and Braatz, 2014; McKittrick et al., 2019). Whilst 
drug release and subsequent transport has been modelled extensively, in 
increasingly sophisticated modelling frameworks, the consequent effect 
of spatiotemporal drug levels on cell behaviour has largely been 
neglected, which is somewhat surprising given the key role that cells 
play in neointimal hyperplasia formation and the overall arterial healing 
response. 

Lastly, a series of models of type (iii) have emerged that aim to 
simulate the healing response of the artery following stent deployment. 
The majority of these consider agent based models (ABMs) (Tahir et al., 
2011; Tahir et al., 2013; Tahir et al., 2014; Tahir et al., 2015; Zun et al., 
2017; Pavel Zun et al., 2019; Boyle et al., 2010), whereby a set of rules 
are prescribed to dictate cell behaviour. In some cases, ABMs are 
coupled with discrete models of flow (Tahir et al., 2011; Tahir et al., 
2013; Tahir et al., 2014; Tahir et al., 2015; Zun et al., 2017; Zun et al., 
2019), enabling the calculation of flow indices such as wall shear stress 
(WSS) to be included within the rules. The most common alternative to 
ABMs is continuum models typically consisting of several coupled 
reaction–diffusion equations that depict how a number of species (e.g. 
growth factors, cells, etc.) contribute to the growth of restenotic tissue, 

either in the presence (Boland et al., 2019) or absence of flow (Lally and 
Prendergast, 2006; Boland et al., 2016; Boland et al., 2017; Escuer et al., 
2019; Fereidoonnezhad et al., 2017; He et al., 2020). Whilst these ABM 
and continuum models have been useful in gaining insight into the 
physical mechanisms of tissue remodelling following stent deployment, 
they lack the action of drug on species evolution; the key driver in 
preventing the re-occlusion of the vessel. 

1.3. Current models of smooth muscle cell proliferation inhibited by drug 

Currently, mathematical models which detail the effect of drug on 
cell proliferation predominantly emanate from cancer applications 
(Enderling and Chaplain, 2014), where the purpose of the drug and 
delivery method is somewhat different. In such scenarios, the drug is 
administered via a range of methods (orally, intravenously) routinely to 
kill tumour cells. In stents, the drug is applied through a sustained local 
delivery and is intended to induce a cytostatic response. 

Often emulating in vitro environments, the existing models aim to 
capture how the drug halts cell proliferation. The simplest approaches 
utilise coupled linear ordinary differential equations (ODE’s), stemming 
from the Skipper-Schabel models, investigating two cell types; resting 
and proliferating (Stein et al., 2018; Panetta, 1997; Skipper et al., 1970). 
Others consider a more complex approach to exhibit various effects, 
including: (i) the evolution of damage towards death of cells (Del Bene 
et al., 2009); (ii) cell-cycle progression (Sciumè et al., 2013; Benzekry 
et al., 2012; Roe-Dale et al., 2011); and (iii) drug resistance (Roe-Dale 
et al., 2011). More recent work suggests different models may be 
necessary to portray the effect different drugs have on cell growth 
(Jarrett et al., 2019). The reader is referred to recent review articles for 
further information on mathematical approaches aimed to applications 
in cancer (Enderling and Chaplain, 2014; Ribba et al., 2014; Jarrett 
et al., 2018). 

Over two decades ago, Schwartz et al. (1996) presented a simple 
model to describe exponential smooth muscle cells (SMCs) growth, 
considering the total number of cells and the number of proliferating 
cells. They achieved good agreement with ex vivo data from rat carotid 
arteries and noted that this behaviour is highly species-dependent. 
However, to the best of our knowledge, very few models exist that de-
pict the action of drug in the context of SMC growth, most of which have 
been based upon the large literature on cell proliferation in the context 
of cancer modelling, 

Rossi et al. (2012), as part of a more complicated model of bio-
resorbable stent kinetics, adopted a corpuscular approach and described 
the time evolution of number of cells through a population balance 
equation including terms to account for cell growth, replication by 
mitosis and death due to apoptosis and necrosis. They solved these 
equations using the method of moments, specifying a unimodal log- 
normal distribution function for cell masses and allowing cells to 
divide only when they reach some critical mass. Although the functional 
form of the growth, mitosis and death rates is not provided in the article, 
through a fitting procedure, Rossi et al. (2012) demonstrate reasonable 
agreement between their model and existing data of SMC proliferation 
subject to drug exposure in vitro. In line with their previous modelling of 
avascular tumour growth, the authors modelled the effect of drug on cell 
growth assuming a simple linear dependence, i.e. drug reduces the rate 
of growth of cells in proportion to concentration of drug via some rate 
constant. Rossi et al. (2012) proceeded to apply their model to the in vivo 
situation, simulating neointimal thickness as a function of time by 
relating the number of cells to the thickness of tissue they would produce 
through a simple equation involving the average radius of a single cell 
layer and the maximum number of cells allowed in each proliferating 
layer. 

More recently, Peddle et al. (2018) attempted to adapt models of 
cancer biology to model the biology of restenosis and the effect of drug 
elution. They presented a partial differential equation (PDE) model, 
detailing proliferating and quiescent SMC fractions as separate species. 
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Growth and death within each phase and transition between phases was 
accounted for by linearly combining a number of rate constants. Vessel 
thickening was then simulated by imposing a Stefan condition. The ac-
tion of the drug was described in one of two ways: either through a 
growth inhibition model or through a transition-blocking model. 

The state-of-the-art models of drug transport within arterial tissue 
include specific binding of drug to target cell receptors, following the 
pioneering works of Tzafriri et al. (2012), where it was implicated that 
specific receptor saturation was a key determinant of success (i.e. 
reducing excessive neointimal hyperplasia), at least for SIR. Similar 
nonlinear saturable binding models have been proposed for PTX (Tza-
friri et al., 2009). Whilst these non-linear binding models are now used 
routinely in computational studies investigating drug-elution and 
retention in tissue, there is a disconnect in that the aforementioned 
models of Rossi et al. (2012) and Peddle et al. (2018) assume the effect of 
drug on SMCs follows somewhat simpler kinetics. In this article we seek 
to test the ability of mathematical models of varying complexity to 
capture existing published experimental data of cell proliferation subject 
to drug delivery. 

1.4. Outline 

In Section 2 we discuss the role of anti-proliferative drugs on cell 
growth and provide an overview of existing experimental (in vitro) 
studies in the literature, before discussing in detail the specific data sets 
that we consider in this work. We then, in Section 3, present our 
mathematical models of cell growth in the absence and presence of drug. 
We discuss briefly how we solve the governing equations and outline our 
parameter estimation methodology. In Section 4 we provide results 
comparing each mathematical model to the experimental data. Finally, 
in Section 5 we discuss the implications of our work for both the 
mathematical modelling and experimental communities in the field. 

2. The role of anti-proliferative drugs on cell growth 

2.1. Brief Review of in vitro experimental data 

It has been well documented that drugs such as PTX and SIR inhibit 
cell growth in a dose-dependent manner in vitro (Oberhoff et al., 2002; 
Axel et al., 1997; Wessely et al., 2006; Blagosklonny et al., 2004; Wis-
kirchen et al., 2004). As illustrated by Fig. 1, these are cell-cycle specific 
drugs, predominantly exerting their effect at a single point in the cell 
cycle (Oberhoff et al., 2002; Shah and Schwartz, 2001). 

PTX and SIR are both thought to enter the cell membrane through 
rapid diffusion (Oberhoff et al., 2002; Ndungu et al., 2010). The former 
binds specifically to the β subunit of tubulin present on microtubules 
(Oberhoff et al., 2002; Axel et al., 1997); predominantly exerting its 

effect at the G2/M phase of the cell-cycle, but is also known to inhibit cell 
division at G0/G1 (Oberhoff et al., 2002; Waugh and Wagstaff, 2004; 
Blagosklonny et al., 2004; Scheller et al., 2003). SIR, on the other hand, 
binds to cytosolic protein FKBP12, subsequently hindering the func-
tionality of FKBP-rapamycin-associated protein (FRAP), interfering with 
the biological cascade occurring in the mTOR pathway as a result of 
growth factor stimulation. The rapamycin-FKBP12 (rFK) complex halts 
cell progression early, at the G1/S transition period through the syn-
thesis of cyclin dependent kinase inhibitors, even in growth stimulated 
cells (Oberhoff et al., 2002; Wessely et al., 2006; Edinger et al., 2003). 

Various studies have shown that these drugs inhibit cell growth in 
vitro. These include the demonstration of dose-dependent inhibition of 
cell growth by PTX for various exposure times (Axel et al., 1997; Scheller 
et al., 2003; Wiskirchen et al., 2004; Blagosklonny et al., 2004), where 
SMCs tend to be apoptosis-reluctant as PTX induces cell senescence, an 
irreversible arrest of the cell cycle through the stimulation of the p53 

tumour suppressor gene (Blagosklonny et al., 2004; Blagosklonny et al., 
2006). 

Similarly, literature illustrates that SIR (also known as rapamycin) 
markedly inhibits the growth and migration of SMCs, where the drug 
acts to prolong the G1 phase of the cell cycle (Marx et al., 1995; Poon 
et al., 1996). Unlike PTX, cells inhibited by SIR retain their re- 
proliferative potential at high doses (Blagosklonny, 2018). Further, 
Richard Gallo et al. (1999) were able to demonstrate that this inhibition 
occurred through increased levels of cyclin-dependent kinases. Lastly, 
Matter et al. (2007) compared SIR with tacrolimus (TAC), exhibiting 
that the former was more potent at inhibiting SMC growth and migra-
tion, while the latter was less potent at inhibiting endothelial cell (EC) 
growth, the fundamental issue in delayed arterial healing (Matter et al., 
2007). 

As improvements in ISR and ST rates are desired, other drugs have 
been studied besides PTX and SIR. Marra et al. (2000) considered the 
inhibitory effects of sodium salicylate (SAL) on cell proliferation, known 
to suppress cyclooxygenase-1 and 2 (COX-1, COX-2) transcription 
(Kenneth, 2000), where the latter is a significant mediator in the in-
flammatory response (Deng et al., 2001), inducing G1 cell-cycle arrest 
(Perugini et al., 2000). Recently, Sun et al. considered elemene, a drug 
which influences cell proliferation at the G2/M phase, similar to PTX 
(Sun et al., 2017). They presented positive results, where inhibition of 
SMC proliferation and migration was observed, whilst EC recovery was 
stimulated. Further analogues of SIR, such as everolimus, zotarolimus 
and biolimus were also shown to inhibit the growth and migration of 
SMCs in vitro (Lavigne et al., 2012; Chen et al., 2007; Kim et al., 2018). 

2.2. Selection of data sets for mathematical model calibration and 
validation 

2.2.1. Overview of in vitro data 
Whilst there are several data sets in the literature that consider the 

effects of various drugs on SMC growth, these are not always presented 
in a format that enables mathematical model calibration and quantita-
tive validation. For example, it is common for the action of drug on cell 
growth to be presented as a percentage of the control value, which is not 
stated (Axel et al., 1997; Matter et al., 2007; Lavigne et al., 2012; Chen 
et al., 2007; Zhu et al., 2009), or for information such as the initial and/ 
or final cell density to be omitted. Thus, the effect of the drug may only 
then be considered in a relative manner to the control case. Moreover, 
not all studies consider the effect of different drug doses, nor the influ-
ence of drug exposure time while these aspects are likely important in 
the context of arterial healing following stenting (Zhu et al., 2009; Sun 
et al., 2017; Kim et al., 2018). With this in mind, data sets that detail the 
effect of drug as % control and/or which do not consider the influence of 
multiple drug doses or drug exposure times have been neglected (Axel 
et al., 1997; Matter et al., 2007; Lavigne et al., 2012; Chen et al., 2007; 
Marx et al., 1995; Zhu et al., 2009; Sun et al., 2017; Kim et al., 2018). 

Fig. 1. Schematic depicting the specific locations where drug (PTX and SIR) 
targets the cell cycle to impede mitosis. 
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2.2.2. Data selected for analysis 
The data from two studies, those by Scheller et al. (Fig. 2) (Scheller 

et al., 2003) and Marra et al. (Fig. 3) (Marra et al., 2000) are considered 
for model calibration and validation. They consider two different drugs, 
PTX and SAL, which are reported to alter cell kinetics through intra-
cellular receptors. These data sets satisfy our selection criteria such that: 
(i) data is presented as cell number/density, and not as ‘% control’, 
absorbance, or % DNA synthesis with no reference to cell counts; (ii) 
multiple drug doses are considered; and (iii) drug retention is explored. 
However, we note that utilising data from two different studies does 
have some drawbacks, most notably in the interpretation of the results, 
where different experimental protocols and cell lines have been used. On 
the other hand, considering two different drugs holds the advantage of 
enabling us to consider whether the models presented are able to cap-
ture the data associated with drugs that have distinct physiochemical 
properties. 

Marra et al. (2000) studied the effects of SAL, a drug that has been 
previously utilised on cardiovascular devices (Jabara et al., 2008; Lee 
et al., 2014; Cysewska et al., 2019), and demonstrated the effect of three 
different doses of SAL on SMC proliferation for a 12 day incubation 
period. The authors also studied the effect of drug retention and sub-
sequent cell recovery after removing the highest dose of drug following 
four days of exposure. Scheller et al. (2003) considered two doses of PTX 
within a neutral contrast media, exposed briefly to cells for 3, 10, and 60 
min, where the supernatant was removed and SMC recovery was 
assessed across a 12 day period. 

3. Methodology 

3.1. Governing equations 

3.1.1. Modelling cell growth in the absence of drug 
We start by providing a model for the control case, where cells are 

allowed to grow in the absence of drug, limited only by space con-
straints. We describe the number of cells as a function of time, c(t), via 
the logistic growth equation: 

dc(t)
dt

= gc(t)
(

1 −
c(t)
K

)
, t > 0, c(0) = c0, (3.1)  

where g is the intrinsic growth rate, K is the carrying capacity and c0 the 
number of cells initially. Both g and K are taken to be constant: the 
former assumes that the cells are exposed to a constant growth stimulus 
for the duration of the experiment, while the latter may be related to the 
size of the culture plate. 

3.2. Modelling the effects of drug exposure and retention on cell growth 

We consider a series of models (D1, D2 and D3) of varying 
complexity to assess their ability to capture the effect of constant drug 
exposure on cell growth and, more importantly, the effect of drug 
retention on cell recovery (i.e. when the drug source is removed). Pa-
rameters that detail the action of drug (e.g. how quickly it (un) binds) 
are assumed to be drug dose independent. 

3.2.1. Model D1 
In our most sophisticated model, we assume that the level of drug 

bound to specific receptors dictates its effectiveness. Drug binding is 
modelled through a subtle amendment to the state-of-the-art nonlinear 
binding kinetics (Tzafriri et al., 2012), while (3.1) is modified to account 
for the effect of bound drug on cell growth: 

db(t)
dt

= kf cd(Bc(t) − b(t)) − krb(t), t > 0, b(0) = 0, (3.2)  

dc(t)
dt

= gc(t)
(

1 −
c(t)
K

)(

1 −
b(t)

Bc(t)

)

, t > 0, c(0) = c0. (3.3)  

In (3.2), b(t) is the bound drug concentration as a function of time; kf 
and kr are the binding-on and binding-off rates, respectively; cd is the 
concentration of drug in the media, assumed to be homogeneously 
distributed and time-independent and; B is the average receptor density 
per cell. While the state-of-the-art nonlinear binding kinetics model 
(Tzafriri et al., 2012) assumes a constant density of binding sites through 
time (i.e. no proliferation of cells), the present model allows the 
maximum binding site density, Bc(t), to vary as a function of time in 
proportion to the current number of cells, i.e. when b(t) = Bc(t) all 
binding sites are occupied by drug, in other words, the receptors are 
saturated. Since receptor saturation has been linked to efficacy (Tzafriri 
et al., 2012), in (3.3) we assume the drug exerts its maximum effect on 
cell growth when bound drug levels are at their greatest, i.e. when b(t)
= Bc(t) growth is completely halted. On the other hand, when b(t) = 0, 
the drug has no effect and growth is assumed to be logistic as in (3.1). All 
parameters are detailed in Table 1. 

3.2.2. Model D2 
Model D2 assumes instead that drug undergoes a simple cell inter-

nalisation process and elicits its effect through Hill kinetics, which have 
been used extensively in the literature to describe the dose-dependent 
effect of drugs (Gardner, 2000; Tham et al., 2008; Goutelle et al., 
2009; Clairambault, 2009; Bernard et al., 2012; Ribba et al., 2014; 
Clarelli et al., 2020): 

dbI(t)
dt

= α
(

cd −
bI(t)
KP

)

, t > 0, bI(0) = 0, (3.4)  

dc(t)
dt

= gc(t)
(

1 −
c(t)
K

)(

1 −
kmaxbI(t)

bI(t) + k50

)

, t > 0, c(0) = c0. (3.5)  

In (3.4), bI(t) represents the internalised bound drug concentration as a 
function of time; α is the internalisation rate and; KP is the non- 
dimensional partition coefficient such that, in equilibrium, bI = KPcd. 
In (3.5), kmax is the maximum effect the drug has on cell growth and k50 
is the drug concentration at which the effect is half-maximal. This term 
establishes a non-linear relationship between bI (and the applied dose cd, 
via (3.4)) and its influence on cell growth, where the parameters kmax 
and k50 are dictated by the specific drug considered. We observe that 
when bI(t) = 0, the drug has no effect and growth is assumed to be lo-
gistic as in (3.1). All other parameters are as before, listed in Table 1. 

3.2.3. Model D3 
Our simplest model completely neglects drug internalisation and 

binding processes and replaces bI(t) in (3.5) with the applied dose, cd. 

Fig. 2. PTX at 14.6 μM exposed to bovine SMCs for 3, 10, and 60 min, and for 
60 min at 1.46 μM. Acquired from (Scheller et al., 2003) with permission as it 
satisfies our selection criteria. 
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This model represents a special case of (3.4–3.5), obtained by letting α→ 
∞ and KP = 1. Whereas models D1 and D2, by their design, are able to 
account for the effects of drug retention after removal of the drug source, 
selecting cd = 0 in this model would simply return the logistic growth 
Eq. (3.1), meaning that the drug has no lasting effect. To account for this 
anomaly, we assume that when drug is removed from the media at time 
t = τ, the drug concentration associated with effect decays exponen-
tially with associated decay rate kd. The model can then be separated 
into two parts, with (3.6a) describing cell growth while in the presence 
of drug and (3.6b) describing subsequent cell growth when drug has 
been removed: 

3.3. Numerical solution of mathematical models 

Prior to solving numerically, models D1, D2 and D3 were non- 
dimensionalised for numerical convenience. For full details of the non- 

dimensionalisation procedure we refer the reader to the Supplemen-
tary Data (Section 1). All of the ordinary differential equations (ODEs) 
were solved using MATLAB’s built-in ‘ode15s’ routine (Shampine and 
Reichelt, 1997), which integrates the equations over a specified time 
range with user-defined initial conditions. 

3.4. Inverse estimation of model parameters 

The data in Marra et al. (2000) comprises measurements of the total 
number of cells at various time points during no drug exposure (Cm

12), or 
a constant exposure of either a low (Lm

12), medium (Mm
12) or high (Hm

12) 
dose of drug. In an additional experiment (Hm

4 ), the high dose of drug 
was removed after day 4 and subsequent cell growth was measured. 
These data are summarised in Table 2. 

Unlike Marra et al. (2000), the experiments performed in Scheller 

et al. (2003) do not expose the cells to drug for a prolonged period of 
time. Instead, cells are exposed to a low dose of drug for 60 min (Ls

60) or 
a high dose of drug for either 3 min (Hs

3), 10 min (Hs
10) or 60 min (Hs

60), 
with subsequent cell proliferation assessed up to 12 days. In a control 

Fig. 3. A: Human saphenous SMCs exposed to 3 doses (0.1 mM, 1 mM, and 5 mM) of SAL for 10 days. B: 5 mM of SAL removed at day 4, illustrated by the arrowhead, 
depicting cell recovery upon the removal of drug. Experimental data reproduced from (Marra et al., 2000) as it satisfies our selection criteria. 

Table 1 
Description of the parameters and variables of the mathematical models.  

Parameter Description Unit 

c(t) Number of cells at time t no. of cells  

c0  Initial number of cells no. of cells  

g Intrinsic growth rate s− 1  

K Maximum cell number (carrying capacity) no. of cells  
b Bound drug concentration M  
cd  Drug concentration in the media M  
kf  Binding-on rate s− 1  M− 1 

kr  Binding-off rate s− 1  

B Average receptor density per cell M
no. of cells  

bI  Internalised bound drug concentration M  

α  Internalisation rate s− 1  

KP  Non-dimensional partition coefficient – 

kmax  Maximum effect drug has on cell growth – 
k50  Drug concentration at kmax/2  M  
kd  The decay of the drug’s effect on cell growth s− 1   

Table 2 
Summary of the five data sets provided by Marra et al. (2000). The first three 
data sets involve constant exposure of either a High (5 mM), Medium (1 mM) or 
Low (0.1 mM) dose of SAL for a period of 12 days. The fourth data set involves 
constant exposure of the high dose of SAL for 4 days, before the drug is removed 
from the medium, the cells washed, and the cells allowed to recover for the 
remaining 8 days. The final data set involves the control case where the cell 
growth in the absence of drug is measured over a period of 12 days.  

Data set 
label 

Days 0–4 Days 4–12 

Hm
12  High dose, constant exposure High dose, constant exposure 

Mm
12  Medium dose, constant 

exposure 
Medium dose, constant 

exposure 
Lm

12  Low dose, constant exposure Low dose, constant exposure 
Hm

4  High dose, constant exposure No drug exposure 
Cm

12  No drug exposure No drug exposure  
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experiment, Scheller et al. (2003) also consider cell proliferation in the 
absence of drug for a period of 12 days (Cs

12). These data are summarised 
in Table 3. Scheller et al. (2003) do not provide data on number of cells 
and instead measure cell density. In the absence of any information in 
the paper regarding the surface area of the plates used, we assumed 48 
well plates and converted the cell density data at each time point to cell 
number, for consistency with the Marra et al. (2000) data. 

It is important to note that Scheller et al. (2003) do not provide any 
measurement data during their short drug exposure times (3, 10 or 60 
min), with the first measurement taken after 3 days. This poses an 
additional challenge in terms of estimating the model parameters. Our 
approach is to run a forward simulation for the period of drug exposure, 
then export the number of cells and bound drug concentrations (for 
models D1 and D2) at the end of this period. These then form the new 
‘initial conditions’ for the subsequent simulation of cell recovery in the 
absence of a drug source, where we then select cd = 0 in the models. 

We implement a least squares approach within Matlab’s ‘fminsearch’ 
routine and minimise the error (ε) given by the sum of the squares of the 
difference between model simulated data points (cj) and the experi-
mental data points (ce

j ): 

ε =
∑N

j=1

∑T

i=1

(
cj(ti) − ce

j (ti)

ce
j (ti)

)2

, (3.7)  

where ti, i = 1,2,…,T, are the measurement time points. The subscript 
j, j = 1,2,…,N, denotes the number of data sets considered as part of the 
fitting process, with N the total number. When j = 1 we refer to an ‘in-
dividual fit’, whereas when j > 1 we refer to a ‘multi-fit’. 

The ‘fminsearch’ routine adopts an error minimisation approach 
based upon the simplex method, such that the simplex consists of n+1 
points, where n is the dimension of the problem. The routine executes 
various transformations (contraction, reflection, etc.) such that the final 
simplex comprises of parameters that present the smallest error (ε) 
within some tolerance limit (10− 4). In the absence of reliable literature 
estimates of the model parameters, we adopt an unconstrained param-
eter estimation approach, i.e. we do not stipulate that the best-fitting 
parameters have to lie within a particular range. 

Since the initial number of cells, c0, is known from the experimental 
data sets, the cell growth model (3.1) contains only two parameters, g 
and K, to be inversely estimated. For each study (Marra et al. (2000) and 
Scheller et al. (2003)) we inversely estimate the values of g and K such 
that the growth model given by (3.1) best fits the experimental data. The 
best-fitting parameters are then utilised in the subsequent models of cell 
growth subject to drug exposure (models D1, D2 and D3) which require 
varying numbers of additional parameters to be inversely estimated. In 
order to test the robustness of the models and parameter fitting pro-
cedure, we perform individual fits and multi-fits as well as predictions, 
as summarised schematically in Fig. 4. 

4. Results 

4.1. Comparison between models and Marra et al. (2000) data 

Our results demonstrate that the logistic growth model (3.1) is 
capable of capturing cell growth in the absence of drug (Fig. 5a). The 
best fitting intrinsic growth rate and carrying capacity were found to be 

Table 3 
Summary of the five data sets provided by Scheller et al. (2003). The first three 
data sets involve exposure of a High (14.6μM) dose of PTX for 60 min, 10 min, 
and 3 min, respectively, followed by no drug exposure up to 12 days. The fourth 
data set involves constant exposure of the Low (1.46μM) dose of PTX for 60 min, 
followed by no drug exposure up to 12 days. The final data set involves the 
control case where the cell growth in the absence of drug is measured over a 
period of 12 days.  

Data set label Dose of drug Duration of drug exposure 

Hs
60  High 60 min 

Hs
10  High 10 min 

Hs
3  High 3 min 

Ls
60  Low 60 min 

Cs
12  n/a No drug exposure  

Fig. 4. Schematic of the parameter fitting process, broken into 3 main steps. Step 1: Fit the growth model (Eq. (3.1)) to the control dataset, where parameters g and K 
are acquired and inputted as fixed parameters into step 2 and 3. Step 2: Fit to each of the drug doses in each dataset separately (Eq. (3.7), j = 1) and subsequently 
predict the other responses based on the best-fitting parameter values obtained. Step 3: Fit multiple data sets simultaneously (Eq. (3.7), j > 1) to attain best-fitting 
parameters, and use these to make predictions of cell growth for a different drug dose. This process is performed for each study (Marra et al. (2000) and Scheller et al. 
(2003)) separately. 
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g = 0.204 s− 1 and K = 130, 777, respectively, with the error between 
the model and the data of ε = 0.0301. 

We then proceeded to test the ability of the drug exposure and 
retention models (D1, D2 and D3) to capture the Marra et al. (2000) data 
when the cells were exposed to drug for the duration of the experiment. 
We observe in Fig. 5b-d that each of the models are able to capture the 
data well, when the parameter estimation is performed using each data 
set (Hm

12, Mm
12 and Lm

12) and model (D1, D2 and D3) separately. While the 
errors for each drug dose are found to be similar across the models, it is 
notable that using this method of fitting to the data sets separately, the 
best-fitting parameters vary not only across the various doses for a given 
model, but also between the models (Supplementary Data Table S1). 
This could suggest that the model parameters are in fact drug-dose 
dependent and not independent of drug dose as had been assumed in 
the model formulation. Other possible explanations could be that the 
parameters are not uniquely identifiable given the parameter estimation 
methodology we have used, or alternatively, that the models are 
unsatisfactory. 

To probe this further, we then considered the case where the High 
drug dose is removed from the media after 4 days and the cells are 
allowed to recover (Hm

4 ). For Models D1 and D2, we utilised the best- 
fitting parameters for each model based upon our fits to the Hm

12 data 
set, and implemented cd = 0 from day 4 onwards to predict the cell re-
covery (Fig. 6a and 6c). Our results demonstrate that the prediction 
using model D1 is extremely poor (ε = 0.6746), with the cell recovery 

severely underestimated. The prediction from model D2 is, however, 
substantially better (ε = 0.0603). One possible explanation for the 
poorer performance of model D1 is that the unbinding rate parameter 
(kr) had been estimated under constant exposure conditions, where it 
may be expected that binding-on dominates. We therefore amended our 
parameter estimation approach by finding the model parameters that 
best-fit the following two data sets simultaneously: Hm

12 and Hm
4 . As can 

be seen in Fig. 6b this results in a substantially better fit (ε = 0.0125) for 
model D1 to data set Hm

4 without adversely affecting the fit to data set 
Hm

12 (ε = 0.0259). This approach was repeated for model D2 (Fig. 6d), 
resulting in a modest improvement in (the already good) agreement 
with the data (ε = 0.0161). Given the nature of model D3, predictions 
are not possible without the further estimation of the parameter asso-
ciated with cell recovery (kd). In this case, we utilised the best-fitting 
parameters based upon our fit for model D3 to the Hm

12 data set and 
performed a further parameter estimation step to obtain the value of kd 
that best fits data set Hm

4 , whilst all other fitted parameters (kmax,k50) are 
kept fixed. Fig. 6e demonstrates that this model is able to capture the 
data very well (ε = 0.0358). Unfortunately, Marra et al. (2000) do not 
provide any further data where the drug source is removed after a period 
of time for other drug doses, to enable us to make any more predictions 
to further validate the models. 

We next sought to test the ability of the models D1, D2 and D3 to 
predict cell growth under constant exposure of drug. Our aforementioned 
results suggest that the quality of the prediction will depend heavily on 
the data set(s) initially used to obtain the best-fitting parameters of the 

Fig. 5. Comparison between mathematical models (curves) of cell growth and the data (dots) provided by Marra et al. (2000), where c0 = 17, 100 (a) The logistic 
growth model (3.1) with best-fitting parameters g = 0.204 and K = 130,777 captures the control data where cells are grown in the absence of drug. The error 
associated with the fit is ε = 0.0301. (b-d) Using the inferred parameters from (a), a best-fit was performed for each dose of constantly-exposed drug (Hm

12, Mm
12, Lm

12) 
for each model (D1, D2 and D3) separately, with the best-fitting parameters reported in Supplementary Data Table S1. The error associated with the fits are denoted 
by ε (b) Model D1 (Eq. (3.2)–(3.3)): εHm

60
= 0.0229, εMm

60
= 0.0163, εLm

60
= 0.0455. (c) Model D2 (Eq. (3.4)–(3.5)): εHm

60
= 0.0235, εMm

60
= 0.0163, εLm

60
= 0.0455. (d) 

Model D3 (Eqs. (3.6a)–(3.6b)): εHm
60

= 0.0273, εMm
60

= 0.0294, εLm
60

= 0.046. 
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respective models. For each model, we firstly utilised the best-fitting 
model parameters for the Lm

12 data set and then adjusted the drug dose 
parameter cd to predict the effect of medium and high drug doses on cell 
growth. This was then repeated for the case where the model parameters 
were obtained from the fit to the Mm

12 data set (with the response to high 
and low drug predicted) and finally where the model parameters were 
obtained from the fit to the Hm

12 data set (with the response to medium 
and low drug predicted). As expected, the quality of predictions were 

generally poor (Supplementary Data Table S2), owing to the wide 
variation in best-fitting parameters, depending on the data set used to 
perform the fit. In order to improve the predictions, we subsequently 
performed a series of multi-fits, where multiple data sets were used as 
part of the parameter fitting procedure, and then the model used to 
predict a remaining data set. We found that the best predictions using 
models D1 and D2 were obtained when the Mm

12, Hm
12 and Hm

4 data sets 
were used simultaneously to find the best fitting model parameters, with 

Fig. 6. Comparison between data (dots) provided by Marra et al. (2000) and mathematical models (curves) of cell growth and recovery when drug is applied for a 
fixed period before drug removal at day 4, where c0 = 17, 100. (a, c) Model predictions of cell recovery by setting cd = 0 from day 4 and utilising parameters 
estimated from cell growth under a constant exposure of high drug in models (a) D1 and (c) D2. (b, d) Multi-fit of models (b) D1 and (d) D2 to the following two data 
sets simultaneously: Hm

12 and Hm
4 . (e) Model D3 is able to capture the data well, albeit with the requirement to estimate a further parameter (kd) associated with cell 

recovery. (a) Model D1 (Eqs. (3.2)–(3.3)): εHm
4
= 0.6746. (b) Model D1 (Eqs. (3.2)–(3.3)): εHm

4 
= 0.0125, εHm

12 
= 0.0259. (c) Model D2 (Eqs. (3.4)–(3.5)): εHm

4 
= 0.0603. 

(d) Model D2 (Eqs. (3.4)–(3.5)): εHm
4 
=0.0161, εHm

12 
= 0.0237. (e) Model D3 (Eqs. (3.6a)–(3.6b)): εHm

4 
=0.0358. 
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the effect of the low drug dose predicted (Fig. 7a-b) (Supplementary 
Data Table S3). The best prediction using model D3 was obtained when 
the Hm

12 and Mm
12 data sets were used simultaneously to find the best 

fitting model parameters, with the effect of the low drug dose predicted 
(Fig. 7c) (Supplementary Data Table S3). As before, model D3 still 
required a subsequent fitting step using the Hm

4 data set to estimate the 
parameter (kd) associated with drug retention. As can be observed in 
Fig. 7a-c, model D1 performs poorest, while models D2 and D3 generally 
perform well. 

4.2. Comparison between models and Scheller et al. (2003) data 

Our results demonstrate that the logistic growth model (3.1) is 
capable of capturing cell growth in the absence of drug (Fig. 8a). The 
best fitting intrinsic growth rate and carrying capacity were found to be 
g = 0.5074 s− 1 and K = 86, 238, respectively, with the error between 
the model and the data of ε = 0.00382. 

We then proceeded to test the ability of the drug exposure and 
retention models (D1, D2 and D3) to capture the Scheller et al. (2003) 
data (Hs

60, Hs
10, Hs

3 and Ls
60). We observe in Fig. 8b-d that each of the 

models are able to capture the data well, when the parameter estimation 
is performed using each data set (Hs

60, Hs
10, Hs

3 and Ls
60) and model (D1, 

D2 and D3) separately. Similarly to the Marra et al. (2000) data sets, we 
observe that while the errors associated with the fitting to each data set 
are found to be similar across the models, the best-fitting parameters 
vary depending on the data set and the model used (Supplementary Data 
Table S4). This could again suggest that the model parameters are in fact 

drug-dose dependent; the parameters are not uniquely identifiable given 
the parameter estimation methodology we have used, or; that the 
models are unsatisfactory. 

We then tested the ability of the models D1, D2 and D3 to predict cell 
growth. For each model, we firstly utilised the best-fitting model pa-
rameters for the Hs

60 data set and then adjusted the exposure time to 
predict the shorter exposure cases (Hs

10 and Hs
3) before adjusting the 

drug dose parameter (cd) to predict the Ls
60 case. This was then repeated 

for each data set in turn, with the best-fitting parameters based on a 
given data set used in the predictions of the remaining cases. As ex-
pected, the quality of predictions were generally very poor (Supple-
mentary Data Table S5), owing to the wide variation in best-fitting 
parameters, depending on the data set used to perform the fit. In order 
to improve the predictions, we subsequently performed a series of multi- 
fits, where multiple data sets were used as part of the parameter fitting 
procedure, and then the model used to predict the remaining data sets. 
In particular, we considered the following three cases, with the data sets 
used as part of the multi-fit specified: (i) Hs

60 and Ls
60 (Supplementary 

Data Table S6); (ii) Hs
60 and Hs

3 and; (iii) Hs
60, Ls

60 and Hs
10 We found that 

the best predictions were obtained for case (i) and model D3 where the 
60 min exposure of low and high drug dose data sets were used simul-
taneously to find the best fitting model parameters, with the effect of the 
shorter exposure times of the high drug dose predicted (Fig. 9c). As can 
be observed in Fig. 9a-b, even with this multi-fit approach, models D1 
and D2 still result in a very poor prediction of the shorter high drug dose 
exposure times. 

Fig. 7. Comparison between data (dots) provided by Marra et al. (2000) and mathematical models (curves) of cell growth and recovery when a multi-fit is used to 
obtain the best fitting model parameters before the effect of the low drug dose is predicted (illustrated by the dashed line). Here, c0 = 17,100. (a) Model D1 (Eqs. 
(3.2)–(3.3)): εHm

12
= 0.1482,εMm

12
= 0.1879,εLm

12
= 0.0784,andεHm

4
= 0.0489. (b) Model D2 (Eqs. (3.4)–(3.5)): εHm

12
= 0.0505,εMm

12
= 0.0208,εLm

12
= 0.0548,andεHm

4
=

0.078. (c) Model D3 (Eqs. (3.6a)–(3.6b)): εHm
12

= 0.0348, εMm
12

= 0.0303, εLm
12

= 0.0531, andεHm
4
= 0.0358. 
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5. Discussion 

The first two drugs coated on commerical DES, PTX and SIR, were 
already being used in other applications and were not designed specif-
ically to counteract restenosis. Drug dosing for these early stents was 
based upon in vitro cell-based studies and the effectiveness observed in 
animal studies that followed. The subsequent success in humans at 
mitigating against restenosis has led to a general acceptance that the 
drug types and doses used on commercial DES are adequate, with the 
community predominantly focussing subsequent research efforts on new 
stent materials and geometrical designs. PTX, SIR and, more commonly, 
analogues of SIR are still the preferred drug choice for DES and there is 
only a modest variation in drug dose and release kinetics provided by 
existing commercially available stents. The current restenosis rates, 
while low, still equate to hundreds of thousands of patients worldwide, 
and with only modest improvement in patient outcomes despite the 
astronomical investment in innovative stent designs over the years, it is 
certainly worth revisiting the drug aspect of DES. 

Surprisingly, little attention has been devoted in the literature to 
mathematically modelling the effect of drug on SMC proliferation, 
despite the fact that this process is a key driver of restenosis. A useful 
starting point is to develop mathematical models based upon in vitro 
data: while this represents a hugely simplified setting, any model which 

shows predictive power in this setting can be taken forward to the more 
complex in vivo situation with some confidence. To our surprise, while 
there exists several in vitro experimental studies in the literature, few 
provide sufficient details to enable quantitative comparison with 
mathematical models. In this paper, we identified two appropriate 
existing experimental studies and tested the ability of three mathemat-
ical models of varying complexity to describe their cell proliferation 
data. We now summarsie the key findings. 

5.1. The logistic growth model well-describes cell proliferation in the 
absence of drug 

Literature suggests that the logistic growth model is adequate in 
portraying cell growth in vitro (Jin et al., 2017). For each data set 
considered, Marra et al. (2000) and Scheller et al. (2003), we have 
demonstrated that the logistic growth model captures the cell prolifer-
ation data very well (Figs. 5a and 8a). While neither Marra et al. (2000) 
nor Scheller et al. (2003) provide any details related to the size of culture 
plates used, we note that our with inferred carrying capacities (K) are 
consistent with the range of cell capacity for most commonly used cell 
culture plates (Useful Numbers for Cell Culture thermo fisher, 2020). 
Our results illustrate a clear difference in cell growth between the two 
data sets. It is known that cell proliferation from species-to-species is 

Fig. 8. Comparison between mathematical models (curves) of cell growth and the data (dots) provided by Scheller et al. (2003), where c0 = 11,704 (a) The logistic 
growth model (3.1) with best-fitting parameters g = 0.5074 and K = 86, 238 captures the control data where cells are grown in the absence of drug. The error 
associated with the fit is ε = 0.0038. (b-d) Using the inferred parameters from (a), a best-fit was performed for each drug exposure data set (Hs

60, Hs
10, Hs

3 and Ls
60) for 

each model (D1, D2 and D3) separately, with the best-fitting parameters reported in Supplementary Data Table S4. εH60 εH10 , εH3 , and εL60 correspond to the error 
associated with the fit for each drug exposure data set (b) Model D1 (Eqs. (3.2)–(3.3)): εHs

60
= 0.0632,εHs

10
= 0.0286,εHs

3
= 0.0536,εLs

60
= 0.0069. (c) Model D2 (Eqs. 

(3.4)–(3.5)): εHs
60

= 0.0786,εHs
10

= 0.0284,εHs
3
= 0.0356,εLs

60
= 0.0052. (d) Model D3 (Eqs. (3.6a)–(3.6b)): εHs

60
= 0.0549,εHs

10
= 0.0593,εHs

3
= 0.0346,εLs

60
= 0.0048. 
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different, which could provide justification to the fact that the growth 
rates (g) and K vary between the studies (Schwartz et al., 1996; Char-
lebois and Balázsi, 2019). Moreover, these differences may be explained 
by variations in experimental protocols (e.g. the size of culture plate 
used, not reported). While the Scheller et al. (2003) data appears to be 
reaching a clear plateau, the same cannot be said for the Marra et al. 
(2000) data: experimental data at further time points would shed light 
on this. If a plateau has indeed been reached, as Marra et al. (2000) 
suggest, then our inferred value for the carrying capacity may be an 
over-estimate. 

5.2. Each model is capable of capturing all of the drug exposure data sets, 
but predictions are generally poor 

We have demonstrated that when parameter fitting is performed on 
each data set and model separately, the agreement between each model 
and data set is generally very good (Fig. 5b-d and Fig. 8b-d), seemingly 
suggesting that each model is adequate. However, probing further, we 
found that the best-fitting model parameters varied widely across the 
different data sets (Supplementary Data Table S1 and S4). As a conse-
quence, accurately predicting any given data set based on model pa-
rameters fitted to another data set, proved challenging. Indeed, we were 
only able to make acceptable predictions when multiple data sets were 
used as part of the fitting process. Such an approach may be justified by 

the fact that certain model parameters (for example unbinding rates) 
may not be uniquely identifiable given the available data. For example, 
in the case of constant exposure, binding-on may dominate over binding- 
off. A key disadvantage of the multi-fit approach is that it then limits the 
number of available data sets available to predict. Our results suggest 
that our model parameters may well be drug-dose dependent and future 
experiments should be geared towards testing this hypothesis. 

5.3. The simplest model out-performs the state-of-the-art non-linear 
binding model 

For each data set, Marra et al. (2000) and Scheller et al. (2003), our 
simplest model D3 performs best in terms of both the goodness of fit to 
the data and also the ability to make accurate predictions, albeit after 
model parameters have been obtained following a multi-fit procedure 
(Figs. 7c and 9c). We now explain why this may be the case. 

It is notable that the Scheller et al. (2003) data indicates no signifi-
cant difference in cell proliferation regardless of whether the cells are 
exposed to the high dose of PTX for 3 min, 10 min or 60 min. In other 
words, even with a short exposure time to the high dose of PTX, the 
effect of the drug is long-lasting. To probe this further, we plotted the 
corresponding normalised bound drug concentrations for models D1 and 
D2 over the first 60 min (Fig. 10a-b). Fig. 10a-b demonstrate clearly that 
model predictions of normalised bound PTX concentration are different 

Fig. 9. Comparison between data (dots) provided by Scheller et al. (2003) and mathematical models (curves) of cell growth and recovery when a multi-fit is used to 
obtain the best fitting model parameters to the Hs

60 and Ls
60 data sets simultaneously before the effect of shorter exposure times of the high drug dose is predicted (Hs

10 

and Hs
3). Here, c0 = 11,704. (a) Model D1 (Eqn. 3.2–3.3): εHs

60
= 0.2227, εHs

10
= 8.0249, εHs

3
= 31.517, εL60s = 0.0325. (b) Model D2 (Eqn. 3.4–3.5): εHs

60
= 0.1261,

εHs
10

= 8.0965,εHs
3
= 29.66,εLs

60
= 0.0188. (c) Model D3 (Eqn. 3.6a–3.6b): εHs

60
= 0.127,εHs

10
= 0.1018,εH3 = 0.4506,εLs

60
= 0.0189. Note, the blue and pink lines are 

indistinguishable from the red line in (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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at the end of the different drug exposure periods for the high PTX dose 
(3 min, 10 min and 60 min). Since the effect of the drug on cell prolif-
eration is directly related to the bound drug concentrations in model D1 
and model D2, it therefore follows that these models are incapable of 
capturing the similar response to these different drug exposure times 
that is observed experimentally. More specifically, for Model D1 to be 
able to capture these data we would require a similar level of receptor 
saturation to be achieved after drug exposure times of 3 min, 10 min and 
60 min. For this to be achievable and at the same time capture the effect 
of the low dose drug, we would require the model parameters to be drug- 
dose dependent. While reliable estimates are unavailable in the litera-
ture for the majority of the parameters of our models, there are some 
estimates of kf and kr available for PTX (Tzafriri et al., 2009; Indolfi 
et al., 2016; Escuer et al., 2020). We have verified that using these values 
in model D1 results in a response indistinguishable from the control 
case, further questioning the applicability of the saturable receptor 
binding model to in vitro data. Model D3, on the other hand, completely 
neglects the drug binding process, with the effect of the drug instead 
related to the applied dose cd. This likely explains why model D3 out-
performs models D1 and D2. 

Turning to the Marra et al. (2000) data, we note that the low dose of 
SAL has a very small effect on cell proliferation, making it difficult to 
distinguish form the control (no drug) case, while the high dose of SAL 
almost completely inhibits cell growth. Estimating model parameters 
based on fitting to these data-sets and then making predictions of the 
remaining data set (the medium dose) is therefore less than ideal. It is 
notable that when SAL is removed from the media, the cells recover at a 
rate comparable to the control case, indicating that, unlike PTX, hy-
drophilic SAL has minimal lasting effect on the cells, suggesting that it 
not as strongly retained as PTX and that a dynamic binding/unbinding 
model may not be suitable. Fig. 7a shows that Model D1, even when a 
multi-fit is performed using the medium and high SAL data set, is unable 
to simultaneously capture the medium SAL dose data set and predict the 
low SAL dose data set. Models D2 and D3 neglect the drug binding 
process and any associated delay before the drug has any effect, which 
likely explains the better performance of these models for this data set. 

5.4. Implications for future computational modelling and experiments to 
improve DES treatment 

Our results put into question the applicability of the existing state-of- 
the art model (D1) of drug kinetics following stenting, which assumes 
that efficacy is determined by nonlinear binding to cell receptors. While 
this model may be applicable to certain drugs, we have shown here that 
it is not capable of describing the effect of varying doses and exposure 

times of SAL or PTX on SMC proliferation in vitro. It is desirable to extend 
our analysis to sirolimus and analogues, which have become the drugs of 
choice for DES, but for the reasons mentioned in Section 2.2, we have 
been unable to identify any published studies involving these drugs 
where the data is presented in a format that readily allows comparison 
with mathematical models of the type presented here. Notwithstanding, 
PTX in particular is still widely used, especially on drug-coated balloons 
(DCB) for use in peripheral artery disease and coronary artery disease. 
With the safety of PTX recently being brought into question, particularly 
with respect to peripheral artery disease (Katsanos et al., 2018), the need 
to better understand the mode of action of this drug has never been more 
urgent. It may be that different models are required for different drugs, 
as has previously been suggested in the literature (Jarrett et al., 2019). It 
is also worth noting that our models do not include equations for non- 
specific binding to tissue components, given the focus here is on in 
vitro studies. It may well be that drug effectiveness is dictated by some 
combination of specific and non-specific binding, which could at least 
partially explain any discrepancy with existing models. 

While models of drug uptake and drug binding are typically para-
meterised using in vitro or ex vivo data, they are frequently utilised 
within more complex multiphysics models aimed at simulating the in 
vivo environment, where other effects such as blood flow, drug transport 
(from DES or DCB) and arterial healing are considered. Our results 
highlight that inversely estimating model parameters based on one dose 
of drug, then using the model to make predictions related to other drug 
doses without further validation may lead to inaccurate predictions. 
Thus, we strongly recommend parameterising models of the effect of 
drug on cell proliferation based on experimental data across multiple 
drug doses and exposure times, before incorporating within more 
complex models. In order to optimise the release of drug from DES, it is 
important to develop a clear understanding of the effect of different drug 
doses and exposure times on SMC proliferation since the in vivo situation 
dictates that SMCs will be exposed to spatiotemporal concentrations of 
drug, i.e. cells at different spatial locations will be exposed to different 
concentrations of drug at different times. Taken together, our results 
suggest that further experimental research, in tandem with mathemat-
ical modelling, is required to better understand the influence of varying 
doses of drug on cell proliferation, and ultimately the arterial healing 
response. Future experimental and modelling work should seek to 
address some of the limitations highlighted in this work by considering 
the possibility of model parameters being drug dose dependent; the cell- 
cycle specific nature of the drugs and; introducing spatiotemporal gra-
dients of drug. Ideally, details of future experimental protocols should be 
provided to a level that allows quantitative comparison with mathe-
matical models, including information on the size of culture plates used 

Fig. 10. Model predicted normalized bound drug concentrations when a multi-fit is used to obtain the best fitting model parameters to the Hs
60 and Ls

60 data sets 
simultaneously before the effect of shorter exposure time of the high drug dose is predicted (Hs

10 and Hs
3). (a) Model D1, Scaled bound drug (b*) versus time (b) Model 

D2, Scaled bound drug (bI∗) versus time. Details of the scalings used in the non-dimensionalisation are provided in the Supplementary Data Section 1. 
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as well as measurements on cell number or cell density provided. 
Finally, it is of interest to pursue reliable estimates of the various model 
parameters. This would enable a more robust parameter-fitting 
approach through the imposition of constraints and ultimately aid in 
uniquely identifying the various model parameters. 

6. Conclusions 

In this work we have devised mathematical models of varying 
complexity to probe their ability to capture in vitro SMC proliferation 
subject to drug exposure. Our results question current thinking about the 
mechanisms through which drugs coated on stents attenuate SMC pro-
liferation, a key component of the arterial healing process. Future 
research should focus on assessing the translatability of cell based 
studies and associated mathematical models, to the reality of the in vivo 
situation. Such research should ideally involve mathematical modelling 
and experiments in tandem. 
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Axel, Dorothea I., Kunert, Wolfgang, Göggelmann, Christoph, Oberhoff, Martin, 
Herdeg, Christian, Küttner, Axel, Wild, Doris H., Brehm, Bernhard R., 
Riessen, Reimer, Köveker, Gerhard, Karsch, Karl R., 1997. Paclitaxel inhibits arterial 
smooth muscle cell proliferation and migration in vitro and in vivo using local drug 
delivery. Circulation 96 (2), 636–645. 

Bell, M.R., Berger, P.B., Bresnahan, J.F., Reeder, G.S., Bailey, K.R., Holmes, D.R., 1992. 
Initial and long-term outcome of 354 patients after coronary balloon angioplasty of 
total coronary artery occlusions. Circulation 85 (3), 1003–1011. 
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Charlebois, Daniel, Balázsi, Gábor, 2019 Modeling cell population dynamics. In Silico 
Biol., 13:21–39. 

Chen, Yung-Wu, Smith, Morey, Sheets, Michael, Ballaron, Steve, Trevillyan, James, 
Burke, Sandra, Rosenberg, Teresa, Henry, Cindy, Wagner, Rolf, Bauch, Joy, Marsh, 
Kennan, Fey, Thomas, Hsieh, Gin, Gauvin, Donna, Mollison, Karl, Carter, George, 
Djuric, Stevan, 2007. Zotarolimus, a novel sirolimus analogue with potent anti- 
proliferative activity on coronary smooth muscle cells and reduced potential for 
systemic immunosuppression. J. Cardiovasc. Pharmacol., vol. 49, pp. 228–235. 

Chiastra, Claudio, Morlacchi, Stefano, Gallo, Diego, Morbiducci, Umberto, Cárdenes, 
Rubén, Larrabide, Ignacio, Migliavacca, Francesco, 2013. Computational fluid 
dynamic simulations of image-based stented coronary bifurcation models. J. Royal 
Soc., Interface/Royal Soc., 10, 20130193. 

Chiastra, Claudio, Wu, Wei, Dickerhoff, Benjamin, Aleiou, Ali, Dubini, Gabriele, Otake, 
Hiromasa, Migliavacca, Francesco, LaDisa, John F., 2016. Computational replication 
of the patient-specific stenting procedure for coronary artery bifurcations: From oct 
and ct imaging to structural and hemodynamics analyses. J. Biomech., 49(11): 
2102–2111. Selected Articles from the International Conference on CFD in Medicine 
and Biology (Albufeira, Portugal – August 30th - September 4th, 2015). 

Clairambault, J., 2009. Modelling physiological and pharmacological control on cell 
proliferation to optimise cancer treatments. Math. Model. Nat. Phenom., 4(3):12–67. 

Clarelli, Fabrizio, Liang, Jingyi, Martinecz, Antal, Heiland, Ines, Abel zur Wiesch, Pia, 
2020. Multi-scale modeling of drug binding kinetics to predict drug efficacy. Cell. 
Mol. Life Sci. CMLS, 77. 

Colombo, Monika, Bologna, Marco, Garbey, Marc, Berceli, Scott, He, Yong, Matas, Josè 
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