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Cliniciansworking in the field of acquired brain injury (ABI, an injury to the brain sustained

after birth) are challenged to develop suitable care pathways for an individual client’s

needs. Being able to predict psychosocial outcomes after ABI would enable clinicians and

service providers tomake advance decisions and better tailor care plans.Machine learning

(ML, a predictive method from the field of artificial intelligence) is increasingly used for

predicting ABI outcomes. This review aimed to examine the efficacy of using ML to make

psychosocial predictions in ABI, evaluate the methodological quality of studies, and

understand researchers’ rationale for their choice of ML algorithms. Nine studies were

reviewed from five databases, predicting a range of psychosocial outcomes from stroke,

traumatic brain injury, and concussion. Eleven types of ML were employed with a total of

75 ML models. Every model was evaluated as having high risk of bias, unable to provide

adequate evidence for predictive performance due to poor methodological quality.

Overall, therewas limited rationale for the choice ofML algorithms and poor evaluationof

the methodological limitations by study authors. Considerations for overcoming

methodological shortcomings are discussed, along with suggestions for assessing the

suitability of data and suitability of ML algorithms for different ABI research questions.

The variation in psychosocial outcomes after an acquired brain injury (ABI, an injury to the
brain sustained after birth including stroke and traumatic brain injury [TBI]) challenges

health and social care services to provide advice and guidance to the person, their family,

and for socioeconomic implications. Currently, ‘evidence-based practice’ relies almost

exclusively on the results of parametric analyses of group-level central tendency derived

from randomized clinical trials, which offers very little guidance for individualized care.

The study of clinical prediction rules to accurately predict an individual’s psychosocial

outcome at a future time point after ABI would serve timely resource allocation and risk
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management, as well as being able to adapt interventions for known risk factors to

maximize the likelihood of more favourable outcomes.

Machine learning (ML) is an evolving methodology in clinical research, offering a

possible solution to limitations with traditional methods of modelling and potentially
providing better applicability of research findings to individualized clinical decisions

through developing clinical prediction rules. Supervised ML learns from the data how to

best predict the outcome in question (Hastie, Tibshirani, & Friedman, 2009; Ch 2).Whilst

ML was predominantly employed by data scientists and statisticians, it is becoming an

increasingly popular approach for clinicians and clinical researchers to consider its use for

tackling the large and complex data sets typical of routine clinical data.

The clinical applications of ML have expanded from medical and genetic research, to

psychological research questions. Predicting psychosocial outcomes, such as the
likelihood of developing mood disorders or being able to return to work after an ABI,

typically have a higher degree of subjectivity than medical outcomes, and the

measurement around such variables can include higher proportions of noise (Mascolo,

2016). Despite growing popularity, howwellMLperforms at predicting such outcomes in

ABI is unknown.

To date, there has been no review or guidance for using ML to predict psychosocial

outcomes in ABI; however, a previous systematic review has shown superior power for

ML methodologies to predict neurosurgical outcomes (Senders et al., 2018). Unfortu-
nately, as no risk of bias (ROB) assessment was completed for the review it greatly limits

the applicability of their findings. In recent years, guidance has been developed for

prediction research (e.g., Moons et al., 2015; Wolff et al., 2019), allowing thorough

evaluation of prediction models. Without such guidance, common data mistakes can lead

to biased results. By evaluating psychosocial ABI research, clinicians will benefit from

being able to understand the effectiveness of using ML algorithms across ABIs, consider

the suitability of ML for data sets commonly available within services, and work towards

developing accurate prediction tools to assist clinical decision-making.

Objectives

This systematic review aimed to evaluate research employing ML to develop models for

the prediction of psychological, social, and/or functional outcomes after ABI.

In particular, this review set out to answer:

1. How effective is ML for making psychosocial predictions for people with ABI?

2. Which ML algorithms are most commonly used?
3. What is the rationale for the choice of ML algorithms, as stated by the study authors?

Method

Protocol and registration

The protocol of this systematic review was written in accordance with PRISMA-P (Moher
et al., 2015) and registered on PROSPERO on 15/July/2019, registration number

CRD42019140546 [available from: https://www.crd.york.ac.uk/PROSPERO/display_

record.php?RecordID=140546]. This review has been written in accordance with

PRISMA (Liberati et al., 2009).
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Eligibility criteria

Research reports were included with an English language version available in a peer-

reviewed journal. All reports up until the search date of 22/July/2019 were initially

considered for the review. Due to the large number of eligible studies identified, studies
were then limited to those published between 1st January 2016 and 22nd July 2019 to

cover articles published after the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) guidance (Moons et al., 2015).

Participants

Studies included participants with a diagnosis of ABI, such as TBI (mild, moderate, or

severe) or stroke. This review included people of any age, gender, or geographical
location. Studies which included conditions other than ABI (e.g., other types of physical

trauma or neurodegenerative conditions) in the same analysis with people with ABI were

excluded.

Exposures and comparators

Studies were included with at least one psychosocial predictor in the final model.

Psychosocial was defined as a measure of psychological or behavioural factors (e.g.,
cognition, mental health, challenging behaviours) or social factors (e.g., participation,

accommodation status, employment). Studies were excluded where predictors were all

biological (e.g., physical measurements, vital signs, or neuroimaging) or primarily all

impairment-based (e.g., Glasgow Coma Scale [GCS], Teasdale & Jennett, 1974). The

comparator was the absence of the exposure (predictor) or lower levels of the exposure

where measured on a dimensional scale.

Outcomes of interest

Studies predicting a psychosocial outcome were included, with psychosocial defined as

above. Studieswere excludedwhere predictors and outcomesweremeasured at the same

time point (e.g., questionnaire items predicting questionnaire outcome). This review

excluded outcomes designed specifically for disciplines other than psychology (e.g.,

speech and language therapy measures, physiotherapy measures), measures which are

primarily impairment-based (e.g., GCS) or neurological (e.g., neuroimaging, cere-

brospinal fluid).

Study design

Studies were required to be observational designs which reported the development of a

supervisedMLmodel.MLwas defined as ‘algorithms [which search] through a large space

of candidate programs, guided by training experience, to find a program that optimizes

the performance metric.’ (Bzdok, Krzywinski, & Altman, 2017 p. 1119). AnML technique

is ‘supervised’ if it uses known outcome data as part of model learning. Studies reporting
the application of a previously developed model and which did not include model

development results were excluded.
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Search and study selection

Published literature was reviewed from MEDLINE (PubMed), Web of Science, EMBASE

(OVID interface, 1990 onwards), CINAHL, and PsycINFO (EBSCOhost interface, 1990

onwards), up until the date of 22/July/2019. The full search strategy is presented in
Appendix S1. The search results were managed in the author’s EndNote library (www.

myendnoteweb.com). Duplicates were removed during database extraction, and then,

titles were screened to remove papers that were not eligible. This screening process was

repeated for abstracts and lastly full texts. A second reviewer independently repeated this

process for 50 records at the title/abstract stage, and 10 records at the full text stage to

check for consistency, showing 100% concordance.

Data collection process

A data extraction template was developed to extract relevant data from eligible studies

combined from the Joanna Briggs Institute critical appraisal checklist for cohort studies

(Briggs, 2017), TRIPOD (Moons et al., 2015), and additional items specific to the review

questions. A full list of extracted data items is available inAppendix S2. The data extraction

template was piloted by the primary author for five studies and then amended with two

additional items. The final data extraction template was used by the primary author for all

studies, and the second reviewer independently for three studies giving an inter-rater
agreement of 93.1% (calculated as the percentage of agreement between raters on items),

with discrepancies resolved by discussion.

Risk of bias in individual studies

The Prediction model Risk Of Bias ASsessment Tool (PROBAST, Wolff et al., 2019) was

used at study level to evaluate bias for each presentedMLmodel in each article, completed

by the first author for all included articles and by the second reviewer independently for 3
records to check for consistency. The PROBAST assesses risk of bias across four areas in

prediction studies (participants, predictors, outcomes, and analysis), rated by 20 items for

ROB and 3 items for applicability. Examples of PROBAST items include the appropriate-

ness of inclusion and exclusion criteria, or whether overfitting, underfitting, and model

optimism have been considered in the performance of the model. Inter-rater agreement

was 91.7%, indicating high consistency. Differences in opinion were discussed until

consensus was reached.

Summary measures and synthesis of results

A narrative synthesis was performed, presented in text and tables. To address the first

reviewquestion, performancemetrics are reported for both the internal validationmodels

and, if applicable, the external validation model, with the area under the receiver

operating characteristic curve (AUC, also known as the c-index) being the primary metric

of choice. Alternative metrics are reported for some studies. Performance metrics of

models were then evaluated as being reliable or unreliable dependent on the ROB ratings
of the models. To address the second review question, the frequency of the algorithms

used by researchers is reported. For the third reviewquestion, the rationale of the author’s

choice of methodology was summarized. The findings of these three questions are then

used to provide considerations for designing an ML study for predicting psychosocial

outcomes in ABI for future researchers.
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Results

Study selection
Figure 1 shows the flow diagram of the search procedure and the results.

Study characteristics

A total of nine studies were included for the systematic review, with brief abstracts

available in Appendix S3. Six were from the United States (Bergeron et al., 2019; Cnossen

et al., 2017; Gupta et al., 2017; Hirata, Ovbiagele, Markovic, & Towfighi, 2016; Stromberg

et al., 2019;Walker et al., 2018), one from Finland (Huttunen et al., 2016), one from Japan
(Nishi et al., 2019), and one from Iran (Shafiei et al., 2017). A brief review of study design

and analysis by study is included in Table 1.

One study predicted outcomes after concussive incidents (1611 incidents with

multiple concussions per person, Bergeron et al., 2019), and the remaining eight

predicted outcomes from 64,325 people with ABI in total, including cerebrovascular

accident (Gupta et al., 2017; Hirata et al., 2016; Huttunen et al., 2016; Nishi et al., 2019),

Records identified through 
database searching after duplicates 

removed
(n = 4929)

g ni neercS
ded ul cnI

ytilibigi lE
n oi tacifit nedI

Records screened by title
(n = 4929)

Records screened by abstract
(n = 288)

Records excluded
(n = 227)

Full-text articles assessed for 
eligibility
(n = 61)

Full-text articles excluded, with 
reasons
(n = 40)

No psychosocial features=23
Outcome is not psychosocial=2
Design is not observational=1
Population is not ABI only=1

Does not use ML prediction=5
No model development 

results=2
Predictor and outcome 

measured at the same time 
point=4

Not published in a peer-
reviewed journal article=1

Unable to source full text=1

Studies included in qualitative 
synthesis

(n = 9)

Studies 
restricted to 

those published 
since 

01/01/2016
(excluded n = 

12)

Records excluded
(n = 4641)

Figure 1. PRISMA flow diagram of the study selection process. Abbreviations: ABI = acquired brain

injury; ML = machine learning.
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mild TBI (Cnossen et al., 2017; Shafiei et al., 2017), andmoderate to severe TBI (Stromberg

et al., 2019; Walker et al., 2018). Two studies used the same database (Stromberg et al.,

2019;Walker et al., 2018), and therefore, the sameparticipantswere likely in both studies.

Outcomes included post-concussive symptoms (Bergeron et al., 2019; Cnossen et al.,
2017), functional outcome (Gupta et al., 2017; Nishi et al., 2019; Walker et al., 2018),

indicators ofmood andpsychological symptoms (Hirata et al., 2016; Huttunen et al., 2016;

Shafiei et al., 2017), and employment (Stromberg et al., 2019).

Across the nine studies, there were a total of 11 types of ML: regularized logistic

regression (RLR), support vector machine (SVM), decision trees (DT), naı̈ ve Bayes (NB),

K-nearest neighbours (KNN), random forest (RF), artificial neural networks (ANNs,

including multilayer perceptron, backpropagation, and radial basis function network),

lasso regularization with linear regression, and random forest used for feature selection
with logistic regression. Algorithm descriptions can be found in Table 2. Two studies

compared more than one type of ML algorithm (Bergeron et al., 2019; Nishi et al., 2019),

and five studies examined more than one time point or outcome (Bergeron et al., 2019;

Cnossen et al., 2017; Gupta et al., 2017; Stromberg et al., 2019;Walker et al., 2018), giving

a total of 75 ML models analysed.

Quality of the evidence
Quality ratings of the 75 models were aggregated by study since each model received the

same score within each study (reported in Table 3), with the rationale for ROB scores in

Table 4. Across the studies reviewed, each of the 75MLmodels scored as being high ROB,

with the main source of bias being the analysis. Every study failed to appropriately

evaluate the developed models with use of calibration metrics, meaning the model’s

performance for individual probabilities is unknown. One study reported no model

evaluation statistics for performance, discrimination, or calibration (Huttunen et al.,

2016). Other common causes for high ROB were improper handling of missing data, not
using appropriate techniques to account for model optimism and overfitting (such as

internal nested cross-validation or bootstrapping), and poor reporting for how models

performed after post-hoc refinement.

Only one study was high ROB for predictors and outcome (Bergeron et al., 2019), and

three studies did not provide enough information to make a conclusion for either

participant selection or variable handling (Shafiei et al., 2017; Stromberg et al., 2019;

Walker et al., 2018). The other studies were well designed with regard to participant

sources and measures to answer their research questions but failed to support their
conclusions due to introducing bias from either the conduct or reporting of their analysis.

How effective is ML for making psychosocial predictions for people with ABI?

A summary of the performance metrics of the models along with the related ROB

reliability ratings of the findings is included in Table 5. Models with an AUC of 0.80 or

above are considered to show ‘good’ performance, between 0.70 and 0.79 as fair, and

below 0.70 as poor (Safari, Baratloo, Elfil, & Negida, 2016). For linear algorithms, whilst it
is a heavily disputed subject, an approximate rule for interpretation of R 2 is 0.75 for a

substantial effect, 0.5 for moderate, and 0.25 for weak (Cruz-Cunha, 2013). However, due

to the unreliability of each model from the ROB ratings, this review was unable to

conclude which ML algorithm was most effective for predicting psychosocial outcomes.

Considerations for choosing an ML algorithm are presented in the discussion.

Reviewing machine learning in ABI 325



T
a
b
le

2
.
M
ac
h
in
e
le
ar
n
in
g
al
go
ri
th
m

d
e
fi
n
it
io
n
s

M
ac
h
in
e
le
ar
n
in
g
al
go
ri
th
m
s

D
e
fi
n
it
io
n

C
la
ss
ifi
ca
ti
o
n

R
e
gu
la
ri
ze
d
lo
gi
st
ic
re
gr
e
ss
io
n

A
cl
as
si
fi
ca
ti
o
n
al
go
ri
th
m

w
h
e
re
b
y
co
e
ffi
ci
e
n
t
w
e
ig
h
ts
ar
e
le
ar
n
e
d
u
si
n
g
an

it
e
ra
ti
ve

m
e
th
o
d
w
it
h
ad
ju
st
m
e
n
ts
w
it
h
in
a
lin
e
ar

al
go
ri
th
m

b
e
fo
re

b
e
in
g
tr
an
sf
o
rm

ed
to

p
re
d
ic
t
a
b
in
ar
y
o
u
tc
o
m
e
u
si
n
g
th
e
si
gm

o
id
o
r
lo
gi
st
ic
fu
n
ct
io
n
(N

ad
k
ar
n
i,
2
0
1
6
)

Su
p
p
o
rt
ve
ct
o
r
m
ac
h
in
e

M
o
st
co
m
m
o
n
ly
u
se
d
as

a
cl
as
si
fi
ca
ti
o
n
al
go
ri
th
m

w
h
er
e
b
y
ve
ct
o
rs

ar
e
m
ap
p
e
d
in
to

a
h
ig
h
-d
im
en
si
o
n
al
sp
ac
e
to

co
n
st
ru
ct

a

lin
e
ar

d
e
ci
si
o
n
su
rf
ac
e
(C

o
rt
e
s
&
V
ap
n
ik
,1
9
9
5
),
w
it
h
th
e
go
al
o
f
se
p
ar
at
in
g
tw

o
d
e
ci
si
o
n
ca
te
go
ri
e
s

D
e
ci
si
o
n
tr
e
e
s

D
e
ci
si
o
n
tr
e
e
s
cl
as
si
fy
p
re
d
ic
to
rs
b
y
th
e
ir
va
lu
e
s
am

o
n
g
a
se
ri
e
s
o
fd
e
ci
si
o
n
b
ra
n
ch
e
s,
u
n
ti
le
n
d
in
g
w
it
h
a
fa
ir
ly
h
o
m
o
ge
n
o
u
s
cl
as
s

o
f
th
e
ta
rg
e
t
va
ri
ab
le
(R
o
k
ac
h
&
M
ai
m
o
n
,2
0
0
8
)

N
aı̈
ve

B
ay
e
s

A
p
ro
b
ab
ili
ty
m
o
d
e
lb
as
e
d
o
n
B
ay
e
si
an

th
e
o
ry
,w

h
e
re

fe
at
u
re
s
ar
e
n
aı̈
ve

in
th
e
se
n
se

th
at
th
e
y
as
su
m
e
in
d
e
p
e
n
d
e
n
ce

fr
o
m
o
th
e
r

fe
at
u
re
s
in
a
gi
ve
n
cl
as
s
(R
is
h
,
2
0
0
1
)

K
-n
e
ar
e
st
n
e
ig
h
b
o
u
rs

(5
N
N
)

C
o
m
m
o
n
ly
u
se
d
as
a
cl
as
si
fi
ca
ti
o
n
al
go
ri
th
m
w
h
e
re

n
e
w
va
lu
e
s
ar
e
p
re
d
ic
te
d
b
as
e
d
o
n
th
e
re
su
lt
s
o
fo
th
e
r,
si
m
ila
r
in
st
an
ce
s
(o
r

n
e
ig
h
b
o
u
rs
).
It
is
co
m
m
o
n
to

ta
k
e
th
e
re
su
lt
s
o
fm

o
re

th
an

o
n
e
n
e
ig
h
b
o
u
r
(k
)f
o
r
cl
as
s
d
e
te
rm

in
at
io
n
(C

u
n
n
in
gh
am

&
D
e
la
n
y,

2
0
2
0
)

R
an
d
o
m

fo
re
st

A
n
e
n
se
m
b
le
al
go
ri
th
m

w
h
e
re

a
la
rg
e
n
u
m
b
e
r
o
f
d
e
ci
si
o
n
tr
e
e
s
ar
e
gr
o
w
n
,e
ac
h
w
it
h
a
ra
n
d
o
m

sp
lit

o
f
tr
ai
n
in
g
d
at
a
fr
o
m

th
e

o
ri
gi
n
al
d
at
a
w
it
h
re
p
la
ce
m
e
n
t,
u
si
n
g
ra
n
d
o
m
fe
at
u
re

se
le
ct
io
n
/n
o
d
e
sp
lit
s.
A
ft
e
r
w
h
ic
h
e
ac
h
tr
e
e
vo
te
s
fo
r
th
e
m
o
st
p
o
p
u
la
r

cl
as
s
at

in
p
u
t
x(
B
re
im
an
,2
0
0
1
).
T
h
e
go
al
h
e
re

is
to

p
ro
d
u
ce

a
st
ro
n
ge
r
m
o
d
e
lt
h
an

si
n
gl
e
d
e
ci
si
o
n
tr
e
e
s
al
o
n
e

A
rt
ifi
ci
al
n
e
u
ra
ln
e
tw

o
rk
s

N
o
n
-l
in
e
ar

cl
as
si
fi
ca
ti
o
n
m
e
th
o
d
s
w
h
ic
h
m
ak
e
n
o
u
n
d
e
rl
yi
n
g
as
su
m
p
ti
o
n
s
to

lim
it
th
e
ir
fi
t
to

th
e
d
at
a
(Z
h
an
g,
2
0
0
0
).
A
se
ri
e
s
o
f

in
te
rc
o
n
n
e
ct
ed

n
o
d
e
s
ar
e
lin
k
e
d
b
e
tw

e
e
n
p
re
d
ic
to
rs

an
d
o
u
tp
u
t
in
a
si
m
ila
r
w
ay

as
a
n
e
u
ra
ln
e
tw

o
rk

in
th
e
h
u
m
an

b
ra
in

R
e
gr
e
ss
io
n

L
e
as
t
ab
so
lu
te

sh
ri
n
k
ag
e
an
d
se
le
ct
io
n
o
p
e
ra
to
r
(l
as
so
)

re
gu
la
ri
za
ti
o
n
w
it
h
lin
e
ar

re
gr
e
ss
io
n

In
th
e
re
gr
e
ss
io
n
e
q
u
at
io
n
,l
as
so

se
ts
ce
rt
ai
n
co
e
ffi
ci
e
n
ts
to

0
,w

it
h
th
e
go
al
o
fi
n
cr
e
as
in
g
p
re
d
ic
ti
o
n
ac
cu
ra
cy

w
h
ils
t
m
ai
n
ta
in
in
g

in
te
rp
re
ta
b
ili
ty

(T
ib
sh
ir
an
i,
1
9
9
6
)

R
an
d
o
m

fo
re
st
fe
at
u
re

se
le
ct
io
n
,u
se
d
w
it
h
lin
e
ar

re
gr
e
ss
io
n

Fe
at
u
re
s
id
e
n
ti
fi
e
d
b
y
ra
n
d
o
m

fo
re
st
(a
s
d
e
sc
ri
b
e
d
p
re
vi
o
u
sl
y)

ar
e
u
se
d
to

e
n
h
an
ce

p
e
rf
o
rm

an
ce

o
f
st
at
is
ti
ca
lr
e
gr
e
ss
io
n

al
go
ri
th
m
s

326 Emma Mawdsley et al.



T
a
b
le

3
.
Su
m
m
ar
y
o
f
ag
gr
e
ga
te
d
ri
sk

o
f
b
ia
s
ra
ti
n
gs

u
si
n
g
P
R
O
B
A
ST

(W
o
lff
e
t
al
.,
2
0
1
9
)
b
y
st
u
d
y
(n

=
7
5
to
ta
lr
is
k
o
f
b
ia
s
ra
ti
n
gs
)

St
u
d
y

N
u
m
b
e
r

o
f

m
o
d
e
ls

e
va
lu
at
ed

w
it
h

P
R
O
B
A
ST

P
ar
ti
ci
p
an
ts

P
re
d
ic
to
rs

O
u
tc
o
m
e

A
n
al
ys
is

R
O
B

co
n
cl
u
si
o
n

fo
r

o
ve
ra
ll

as
se
ss
m
e
n
t

1
.1

1
.2

O
ve
ra
ll

2
.1

2
.2

2
.3

O
ve
ra
ll

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

O
ve
ra
ll

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

O
ve
ra
ll

1
.B

e
rg
e
ro
n
e
t
al
.
(2
0
1
9
)

N
=

6
0

Y
P
Y

L
o
w

N
N
I

Y
H
ig
h

P
N

P
Y

N
N
I

P
N

P
Y

H
ig
h

Y
N
I

N
I

N
I

Y
N
/A

N
Y

N
/A

H
ig
h

H
ig
h

2
.C

n
o
ss
e
n
e
t
al
.(
2
0
1
7
)

N
=

1
Y

Y
L
o
w

Y
Y

Y
L
o
w

Y
Y

Y
Y

Y
Y

L
o
w

P
Y

Y
N

Y
Y

N
/A

N
Y

P
Y

H
ig
h

H
ig
h

3
.G

u
p
ta

e
t
al
.
(2
0
1
7
)

N
=

2
Y

Y
L
o
w

Y
Y

Y
L
o
w

Y
Y

Y
Y

Y
Y

L
o
w

P
Y

Y
N

N
Y

Y
N

N
P
Y

H
ig
h

H
ig
h

4
.H

ir
at
a
e
t
al
.(
2
0
1
6
)

N
=

1
Y

P
Y

L
o
w

Y
N
I

Y
L
o
w

Y
Y

Y
Y

P
Y

Y
L
o
w

Y
P
Y

Y
N

Y
N
/A

N
N

N
/A

H
ig
h

H
ig
h

5
.H

u
tt
u
n
e
n
e
t
al
.
(2
0
1
6
)

N
=

1
Y

Y
L
o
w

P
Y

P
Y

Y
L
o
w

Y
Y

Y
Y

Y
Y

L
o
w

Y
N
I

Y
P
Y

Y
N
/A

N
N

P
Y

H
ig
h

H
ig
h

6
.N

is
h
ie
t
al
.(
2
0
1
9
)

N
=

3
Y

Y
L
o
w

P
Y

Y
Y

L
o
w

Y
Y

Y
Y

P
Y

Y
L
o
w

P
Y

Y
Y

N
Y

N
/A

N
Y

N
I

H
ig
h

H
ig
h

7
.S
h
afi
e
ie
t
al
.
(2
0
1
7
)

N
=

1
Y

Y
L
o
w

P
Y

Y
Y

L
o
w

Y
Y

Y
Y

N
I

Y
U
n
cl
e
ar

P
N

N
I

P
Y

P
Y

Y
N
/A

N
P
N

N
/A

H
ig
h

H
ig
h

8
.S
tr
o
m
b
e
rg

e
t
al
(2
0
1
8
)

N
=

3
Y

Y
L
o
w

Y
N
I

Y
U
n
cl
e
ar

P
Y

Y
Y

P
Y

P
Y

Y
L
o
w

Y
Y

P
Y

N
Y

N
/A

N
N

N
I

H
ig
h

H
ig
h

9
.W

al
k
e
r
e
t
al
.
(2
0
1
8
)

N
=

3
Y

Y
L
o
w

Y
N
I

Y
U
n
cl
e
ar

Y
Y

Y
Y

P
Y

Y
L
o
w

Y
Y

N
N

Y
N
/A

N
N

N
I

H
ig
h

H
ig
h

N
=

in
fo
rm

at
io
n
su
ffi
ci
e
n
t
to

co
n
cl
u
d
e
h
ig
h
R
O
B
;N

I
=

n
o
in
fo
rm

at
io
n
to

as
se
ss
R
O
B
;P
N

=
in
fo
rm

at
io
n
p
ro
vi
d
e
d
is
n
o
t
su
ffi
ci
e
n
t
to

co
n
fi
rm

h
ig
h
R
O
B
,b
u
t
d
u
e
to

o
th
e
r
im
p
o
rt
an
t
in
fo
rm

at
io
n
h
ig
h
R
O
B
ca
n
b
e
in
fe
rr
e
d
;P
Y
=

su
ffi
ci
e
n
t
in
fo
rm

at
io
n
h
as
n
o
t
b
e
e
n
p
ro
vi
d
e
d
to

co
n
cl
u
d
e
lo
w
R
O
B
b
u
t
d
u
e
to

d
e
si
gn

o
r
o
th
e
r
im
p
o
rt
an
t

in
fo
rm

at
io
n
lo
w
R
O
B
ca
n
b
e
in
fe
rr
e
d
;R
O
B
=

ri
sk

o
f
b
ia
s;
Y
=

su
ffi
ci
e
n
t
in
fo
rm

at
io
n
p
ro
vi
d
e
d
to

co
n
cl
u
d
e
lo
w
R
O
B
fo
r
th
e
it
e
m
.

P
R
O
B
A
ST

fi
n
d
in
gs

ar
e
ag
gr
e
ga
te
d
b
y
st
u
d
y
si
n
ce

e
ac
h
m
o
d
e
li
n
e
ac
h
st
u
d
y
h
ad

th
e
sa
m
e
ri
sk

o
f
b
ia
s
ra
ti
n
gs
.

Reviewing machine learning in ABI 327



T
a
b
le

4
.
R
at
io
n
al
e
fo
r
ri
sk

o
f
b
ia
s
ra
ti
n
gs

b
y
st
u
d
y
fr
o
m

an
ag
gr
e
ga
te
d
sy
n
th
e
si
s
o
f
e
ac
h
p
re
d
ic
ti
o
n
m
o
d
e
l

St
u
d
y

R
at
io
n
al
e
fo
r
R
O
B
co
n
cl
u
si
o
n

1
.B

e
rg
e
ro
n
e
t
al
.
(2
0
1
9
)

2
.1
.S
ym

p
to
m
s
ar
e
m
e
as
u
re
d
in
co
n
si
st
e
n
tl
y
b
y
e
it
h
e
r
ve
rb
al
d
is
cl
o
su
re

o
r
a
se
lf-
re
p
o
rt
ch
e
ck
lis
t

3
.1
.O

u
tc
o
m
e
lik
e
ly
to

in
cl
u
d
e
m
e
as
u
re
m
e
n
t
e
rr
o
r

3
.3
.P
re
d
ic
to
rs

w
e
re

n
o
t
e
x
cl
u
d
e
d
fr
o
m

o
u
tc
o
m
e
w
h
ic
h
w
as

ti
m
e
u
n
ti
la
b
se
n
ce

o
f
p
re
d
ic
to
rs

3
.4
.N

o
in
fo
rm

at
io
n
o
n
h
o
w
ti
m
e
u
n
ti
ls
ym

p
to
m

re
so
lu
ti
o
n
w
as

m
e
as
u
re
d

3
.5
.P
re
d
ic
to
r
in
fo
rm

at
io
n
lik
e
ly
to

b
e
k
n
o
w
n
d
u
e
to

o
u
tc
o
m
e
d
e
fi
n
it
io
n

4
.2
.P
re
-p
ro
ce
ss
in
g
o
f
p
re
d
ic
to
r
in
fo
rm

at
io
n
n
o
t
ad
e
q
u
at
e
ly
d
e
sc
ri
b
e
d

4
.3
.N

o
t
ad
e
q
u
at
e
ly
d
e
sc
ri
b
e
d

4
.4
.N

o
t
ad
e
q
u
at
e
ly
d
e
sc
ri
b
e
d

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

2
.C

n
o
ss
e
n
e
t
al
.(
2
0
1
7
)

4
.3
.A

lt
h
o
u
gh

p
ar
ti
ci
p
an
ts
w
e
re

e
x
cl
u
d
e
d
w
it
h
m
is
si
n
g
o
u
tc
o
m
e
s,
b
e
tw

e
e
n
-g
ro
u
p
d
iff
e
re
n
ce
s
w
e
re

e
x
p
lo
re
d
fo
r
m
is
si
n
g
o
u
tc
o
m
e
s,

sh
o
w
in
g
n
o
d
iff
e
re
n
ce

in
b
as
e
lin
e
ch
ar
ac
te
ri
st
ic
s
fo
r
lo
st
to

fo
llo
w
-u
p
,
th
u
s
m
in
im
iz
in
g
th
is
b
ia
s

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

3
.G

u
p
ta

e
t
al
.(
2
0
1
7
)

4
.1
.N

o
re
p
o
rt
in
g
o
f
e
ve
n
ts
p
e
r
ca
n
d
id
at
e
to

fu
lly

as
se
ss

d
im
e
n
si
o
n
al
it
y
o
f
d
at
a
w
h
e
n
sa
m
p
le
si
ze

is
sm

al
l

4
.3
.P
ar
ti
ci
p
an
ts
w
e
re

e
x
cl
u
d
e
d
w
it
h
m
is
si
n
g
p
re
d
ic
to
rs
an
d
o
u
tc
o
m
e
s;
b
e
tw

e
e
n
-g
ro
u
p
d
iff
e
re
n
ce
s
w
e
re

e
x
p
lo
re
d
fo
r
m
is
si
n
g
o
u
tc
o
m
e
s,

sh
o
w
in
g
n
o
d
iff
e
re
n
ce

in
b
as
e
lin
e
ch
ar
ac
te
ri
st
ic
s
fo
r
lo
st
to

fo
llo
w
-u
p
,
th
u
s
m
in
im
iz
in
g
th
is
b
ia
s

4
.4
.A

s
w
it
h
4
.3

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

4
.8
.I
n
te
rn
al
cr
o
ss
-v
al
id
at
io
n
w
as

n
o
t
u
se
d
to

ac
co
u
n
t
fo
r
o
ve
rfi
tt
in
g

4
.H

ir
at
a
e
t
al
.(
2
0
1
6
)

4
.4
.P
ar
ti
ci
p
an
ts
w
e
re

e
x
cl
u
d
e
d
fo
r
m
is
si
n
g
th
e
o
u
tc
o
m
e
va
ri
ab
le
.N

o
in
fo
rm

at
io
n
is
p
ro
vi
d
e
d
o
n
h
an
d
lin
g
o
f
m
is
si
n
g
p
re
d
ic
to
r

in
fo
rm

at
io
n

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

4
.8
.N

o
u
se

o
f
in
te
rn
al
o
r
e
x
te
rn
al
va
lid
at
io
n

5
.H

u
tt
u
n
e
n
e
t
al
.
(2
0
1
6
)

4
.2
.D

at
a
h
an
d
lin
g
n
o
t
ad
e
q
u
at
e
ly
d
e
sc
ri
b
e
d

4
.7
.N

o
m
o
d
e
le
va
lu
at
io
n

4
.8
.N

o
in
te
rn
al
o
r
e
x
te
rn
al
va
lid
at
io
n
to

ac
co
u
n
t
fo
r
o
ve
rfi
tt
in
g

6
.N

is
h
ie
t
al
.
(2
0
1
9
)

4
.1
.N

o
re
p
o
rt
in
g
o
f
e
ve
n
ts
p
e
r
ca
n
d
id
at
e
to

fu
lly

as
se
ss

d
im
e
n
si
o
n
al
it
y
o
f
d
at
a
w
h
e
n
sa
m
p
le
si
ze

is
sm

al
l

4
.3
.I
n
ap
p
ro
p
ri
at
e
e
x
cl
u
si
o
n
fo
r
p
e
o
p
le
w
it
h
m
is
si
n
g
p
re
d
ic
to
r
an
d
o
u
tc
o
m
e
d
at
a
w
it
h
n
o
im
p
u
ta
ti
o
n

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

C
on
tin
ue
d

328 Emma Mawdsley et al.



T
a
b
le

4
.
(C
on
tin
ue
d)

St
u
d
y

R
at
io
n
al
e
fo
r
R
O
B
co
n
cl
u
si
o
n

4
.9
.F
in
al
p
re
d
ic
ti
ve

al
go
ri
th
m
s
an
d
co
e
ffi
ci
e
n
ts
ar
e
n
o
t
re
p
o
rt
e
d

7
.S
h
afi
e
ie
t
al
.(
2
0
1
7
)

3
.5
.P
ro
sp
e
ct
iv
e
d
e
si
gn

an
d
n
o
in
fo
rm

at
io
n
o
n
b
lin
d
in
g
to

p
re
d
ic
to
r
va
ri
ab
le
s
d
u
ri
n
g
o
u
tc
o
m
e
d
e
te
rm

in
at
io
n

4
.1
.S
m
al
ls
am

p
le
si
ze

w
it
h
a
co
m
p
le
x
m
o
d
e
la
rc
h
it
e
ct
u
re

4
.2
.N

o
in
fo
rm

at
io
n
o
n
h
an
d
lin
g
o
f
p
re
d
ic
to
r
va
ri
ab
le
s

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

4
.8
.L
ik
e
ly
o
ve
rfi
tt
in
g
d
u
e
to

th
e
5
0
/5
0
tr
ai
n
in
g
te
st
sp
lit

fo
r
in
te
rn
al
va
lid
at
io
n
w
it
h
o
u
t
e
x
te
rn
al
va
lid
at
io
n
to

ac
co
m
m
o
d
at
e
,m

e
an
in
g

p
ar
am

e
te
r
e
st
im
at
e
s
h
av
e
le
ss

va
ri
an
ce

8
.S
tr
o
m
b
e
rg

e
t
al
(2
0
1
8
)

2
.2
.N

o
in
fo
rm

at
io
n
o
n
w
h
e
th
e
r
p
re
d
ic
to
r
as
se
ss
m
e
n
ts
w
e
re

m
ad
e
w
it
h
o
u
t
k
n
o
w
le
d
ge

o
f
o
u
tc
o
m
e
d
at
a

4
.4
.M

is
si
n
g
o
u
tc
o
m
e
e
x
cl
u
d
e
d
w
it
h
o
u
t
e
x
p
lo
ra
ti
o
n
fo
r
im
p
ac
t
o
n
R
O
B

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

4
.8
A
si
n
gl
e
sp
lit

8
5
/1
5
va
lid
at
io
n
w
as

u
se
d
in
cr
e
as
in
g
lik
e
lih
o
o
d
o
f
o
ve
rfi
tt
in
g
an
d
m
o
d
e
lo

p
ti
m
is
m

4
.9
.N

o
in
fo
rm

at
io
n
o
n
w
h
e
th
e
r
th
e
m
o
d
e
lw

as
re
fi
tt
e
d
af
te
r
p
ru
n
in
g

9
.W

al
k
e
r
e
t
al
.(
2
0
1
8
)

4
.3
.R

e
m
o
va
lo

f
p
ar
ti
ci
p
an
t
d
at
a
b
e
yo
n
d
th
o
se

st
at
e
d
b
y
e
x
cl
u
si
o
n
cr
it
e
ri
a

4
.4
.M

is
si
n
g
o
u
tc
o
m
e
an
d
m
is
si
n
g
co
va
ri
at
e
e
x
cl
u
d
e
d
w
it
h
o
u
t
e
x
p
lo
ra
ti
o
n
fo
r
R
O
B

4
.7
.I
m
p
ro
p
e
r
m
o
d
e
le
va
lu
at
io
n
,
n
o
t
as
se
ss
in
g
ca
lib
ra
ti
o
n

4
.8
A
si
n
gl
e
sp
lit

8
5
/1
5
va
lid
at
io
n
w
as

u
se
d
in
cr
e
as
in
g
lik
e
lih
o
o
d
o
f
o
ve
rfi
tt
in
g
an
d
m
o
d
e
lo

p
ti
m
is
m

4
.9
.U

n
cl
e
ar

if
p
re
d
ic
to
rs

in
th
e
fi
n
al
m
o
d
e
ls
co
rr
e
sp
o
n
d
to

re
su
lt
s
fr
o
m

an
al
ys
is
as

tr
ai
n
in
g
d
at
a
p
re
se
n
te
d
o
n
ly

Reviewing machine learning in ABI 329



T
a
b
le

5
.
Su
m
m
ar
y
o
f
p
e
rf
o
rm

an
ce

m
e
tr
ic
s
an
d
re
lia
b
ili
ty

o
f
fi
n
d
in
gs

u
si
n
g
m
ac
h
in
e
le
ar
n
in
g
to

p
re
d
ic
t
p
sy
ch
o
so
ci
al
o
u
tc
o
m
e
s
in
ac
q
u
ir
e
d
b
ra
in
in
ju
ry

M
ac
h
in
e
le
ar
n
in
g
al
go
ri
th
m
s

P
e
rf
o
rm

an
ce

m
e
tr
ic
s

R
e
su
lt
s
ar
e
ar
e
a
u
n
d
e
r
th
e
cu
rv
e
(A
U
C
)
u
n
le
ss

o
th
e
rw

is
e
st
at
e
d

O
ve
ra
ll
ri
sk

o
f
b
ia
s

M
o
d
e
ld
e
ve
lo
p
m
e
n
t

In
te
rn
al
va
lid
at
io
n

E
x
te
rn
al

va
lid
at
io
n

C
la
ss
ifi
ca
ti
o
n

R
e
gu
la
ri
ze
d
lo
gi
st
ic
re
gr
e
ss
io
n

(1
)
n
/a

(2
)
T
w
o
m
o
d
e
ls
d
e
ve
lo
p
e
d

ra
n
gi
n
g
fr
o
m

0
.7
4
to

0
.7
6

(6
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
3
to

0
.6
9

(2
)
n
/a

(6
)
0
.8
6

(1
)
n
/a

(2
)
n
/a

(6
)
0
.9
0

(1
)
H
ig
h

(2
)
H
ig
h

(6
)
H
ig
h

Su
p
p
o
rt
ve
ct
o
r
m
ac
h
in
e

(1
)
n
/a

(6
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
3
to

0
.6
9

(6
)
0
.8
6

(1
)
n
/a

(6
)
0
.8
9

(1
)
H
ig
h

(6
)
H
ig
h

D
e
ci
si
o
n
tr
e
e
s

(1
)
n
/a

(5
)
n
/a

(8
)
T
h
re
e
m
o
d
e
ls
d
e
ve
lo
p
e
d

ra
n
gi
n
g
fr
o
m

0
.7
0
to

0
.7
7

(9
)
T
h
re
e
m
o
d
e
ls
d
e
ve
lo
p
e
d

ra
n
gi
n
g
fr
o
m

0
.7
0
to

0
.7
3

(1
)
T
w
e
lv
e
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.5
9
to

0
.6
4
fo
r
C
4
.5
D

al
go
ri
th
m
s
an
d
0
.6
0
-0
.6
7

fo
r
C
4
.5
N

al
go
ri
th
m
s

(5
)
n
/a

(8
)
T
h
re
e
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.7
3
to

0
.7
7

(9
)
T
h
re
e
m
o
d
e
ls
d
e
ve
lo
p
e
d

ra
n
gi
n
g
fr
o
m

0
.6
9
to

0
.7
3

(1
)
n
/a

(5
)
n
/a

(8
)
n
/a

(9
)
n
/a

(1
)
H
ig
h

(5
)
H
ig
h

(8
)
H
ig
h

(9
)
H
ig
h

N
aı̈
ve

B
ay
e
s

(1
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
6
to

0
.7
4

1
.)
n
/a

(1
)
H
ig
h

K
-n
e
ar
e
st
n
e
ig
h
b
o
u
rs

(1
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
4
to

0
.6
9

1
.)
n
/a

(1
)
H
ig
h

R
an
d
o
m

fo
re
st

(1
)
n
/a

(4
)
n
/a

(6
)
n
/a

(1
)
T
w
e
lv
e
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
6
to

0
.7
3
fo
r

1
0
0
-t
re
e
m
o
d
e
ls
,
an
d

0
.6
6
-0
.7
4
fo
r
5
0
0
-t
re
e
m
o
d
e
ls

(1
)
n
/a

(4
)
n
/a

(6
)
0
.8
7

(1
)
H
ig
h

(4
)
H
ig
h

(6
)
H
ig
h

C
on
tin
ue
d

330 Emma Mawdsley et al.



T
a
b
le

5
.
(C
on
tin
ue
d)

M
ac
h
in
e
le
ar
n
in
g
al
go
ri
th
m
s

P
e
rf
o
rm

an
ce

m
e
tr
ic
s

R
e
su
lt
s
ar
e
ar
e
a
u
n
d
e
r
th
e
cu
rv
e
(A
U
C
)
u
n
le
ss

o
th
e
rw

is
e
st
at
e
d

O
ve
ra
ll
ri
sk

o
f
b
ia
s

M
o
d
e
ld
e
ve
lo
p
m
e
n
t

In
te
rn
al
va
lid
at
io
n

E
x
te
rn
al

va
lid
at
io
n

(4
)
A
cc
u
ra
cy

6
9
%

(s
p
e
ci
fi
ci
ty

7
0
%
an
d

se
n
si
ti
vi
ty

6
4
%
)

(6
)
0
.8
5

R
an
d
o
m

fo
re
st
fe
at
u
re

se
le
ct
io
n
,

u
se
d
w
it
h
lo
gi
st
ic
re
gr
e
ss
io
n

(3
)
T
w
o
m
o
d
e
ls
d
e
ve
lo
p
e
d

ra
n
gi
n
g
fr
o
m

0
.8
9
to

0
.8
9

(3
)
n
/a

3
.)
T
w
o

m
o
d
e
ls

d
e
ve
lo
p
e
d

ra
n
gi
n
g

fr
o
m

0
.7
5
to

0
.8
4

(3
)
H
ig
h

A
rt
ifi
ci
al
n
e
u
ra
l
n
e
tw

o
rk
s

M
u
lt
ila
ye
r
p
e
rc
e
p
tr
o
n

(1
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
3
to

0
.6
7

(1
)
n
/a

(1
)
H
ig
h

B
ac
k
p
ro
p
ag
at
io
n

(7
)
n
/a

(7
)
8
6
.9

(7
)
n
/a

(7
)
H
ig
h

R
ad
ia
lb
as
is
fu
n
ct
io
n

n
e
tw

o
rk

(1
)
n
/a

(1
)
Si
x
m
o
d
e
ls
ra
n
gi
n
g

fr
o
m

0
.6
1
to

0
.7
1

(1
)
n
/a

(1
)
H
ig
h

R
e
gr
e
ss
io
n

L
e
as
t
ab
so
lu
te

sh
ri
n
k
ag
e
an
d
se
le
ct
io
n
o
p
e
ra
to
r

re
gu
la
ri
za
ti
o
n
w
it
h
lin
e
ar

re
gr
e
ss
io
n

(2
)
2
1
%
o
f
th
e
va
ri
an
ce

(2
)
1
4
%
o
f
th
e
va
ri
an
ce

(2
)
n
/a

(2
)
H
ig
h

1
.B
e
rg
e
ro
n
e
t
al
.(
2
0
1
9
);
2
.C

n
o
ss
e
n
e
t
al
.(
2
0
1
7
);
3
.G

u
p
ta
e
t
al
.(
2
0
1
7
);
4
.H

ir
at
a
e
t
al
.(
2
0
1
6
);
5
.H

u
tt
u
n
e
n
e
t
al
.(
2
0
1
6
);
6
.N

is
h
ie
t
al
.(
2
0
1
9
);
7
.S
h
afi
e
ie
t
al
.(
2
0
1
7
);
8
.

St
ro
m
b
e
rg

e
t
al
.(
2
0
1
8
);
an
d
9
.W

al
k
e
r
e
t
al
.(
2
0
1
8
).

Reviewing machine learning in ABI 331



Which ML algorithms are most commonly used?

Decision trees methodology was most commonly used for predicting psychosocial

outcomes in the field of ABI over recent years with four studies using the technique

(Bergeron et al., 2019; Huttunen et al., 2016; Stromberg et al., 2019; Walker et al., 2018),
followed by RF (Bergeron et al., 2019; Hirata et al., 2016; Nishi et al., 2019) and RLR

(Bergeron et al., 2019; Cnossen et al., 2017; Nishi et al., 2019) with three studies each and

then SVM(Bergeron et al., 2019;Nishi et al., 2019) andANNs (Bergeron et al., 2019; Shafiei

et al., 2017) with two studies each.

What is the rationale for the choice of ML algorithms, as stated by the study authors?

The rationale for the authors’ choices inML algorithms is presented in Table 6. Therewas
no reported information for NB, radial basis function network, multilayer perceptron, or

KNN, as not all authors included a detailed rationale for their choices of ML algorithms

(Bergeron et al., 2019; Huttunen et al., 2016). For example, Bergeron et al. (2019) opted to

compare ten different algorithms due to the absence of published guidance for suitability

of different algorithms, and Nishi et al. (2019) chose three commonly used algorithms,

although with the further rationale that they benefited from ranking of features.

Of the nine studies, only one (Cnossen et al., 2017) provided an a priori consideration

for whether the type of analysis was suitable for their data (whether sample size was
appropriate for the algorithm to minimize risk of overfitting). One study (Gupta et al.,

2017) conducted a post-hoc power analysis; however since the findings scored at high

ROB, the power analysis would also be unreliable. A further four did consider the possible

implications of sample size in their limitations (Cnossen et al., 2017; Nishi et al., 2019;

Stromberg et al., 2019; Walker et al., 2018). Only four of the nine studies critically

evaluated the ML methodology in their limitations, as reported in Table 6. Some of these

reported limitations are considered in the discussion of this review as to how these could

have been overcome by more suitable study design, analysis, and model evaluation.

Discussion

The primary aim of this systematic reviewwas to evaluate the effectiveness of using ML to

predict psychosocial outcomes after ABI; however, no study reviewed had reliable

findings when assessed for ROB to allow a conclusion. Whilst this might make ML seems
like a dauntingmethod for clinicians, bias tended to be introduced from improper analysis

design relevant for ML and traditional predictive methods alike. The most common data

and analysis shortcoming was improper model evaluation without assessment of

calibration for nine out of nine studies. Calibration assessment can inform of likely over-

or underfitting to consider how the models will perform in new samples. This is

commonly quantified by the calibration slope (based on a plot of the observed outcomes

and model predictions), with values near 1 representing better calibration. If models are

poorly calibrated, findings may be inaccurate for new predictions, limiting the
applicability of the models for future clinical cases (i.e., the external validity). Further

data and analysis shortcomings included either inadequate reporting or improper

handling of missing data in six of the nine studies, five studies not fully accounting for

model optimism or overfitting, and four studies having excluded people inappropriately

from the analysis. The resulting high ROBmeant that this reviewwas unable to answer the
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primary review question of which algorithms are most effective for predicting

psychosocial outcomes in ABI.

Decision trees methodology was the most popular choice for psychosocial ABI

research over the review dates, being easy to interpret and lending well to clinical
decision-making. As noted above, the application of the technique was unfortunately too

poor to allow conclusions to be drawn regarding its efficacy. Stromberg et al. (2019) note

as a limitation to DTs that whenmodels are repeated, they are prone tomodelling the data

differently. This is actually true for all ML techniques (each time learning from the data). In

order to overcome this limitation, models should be thoroughly internally validated, a

process where multiple models are developed by dividing the data set into ‘training’ and

‘testing’ segments, where commonly, the model is trained using the data in one section,

and then tested in the reserved section of data, adjusting its algorithm based on the
accuracy of each tested prediction. The aim here is to minimize risk of overfitting and

adjust for model optimism; thus, the more times this process is repeated, the more the

model learns from its error to tune its performance. External validation then assesses the

generalizability of a given model by testing its performance in a novel data set.

To reduce bias, internal validation procedures with numerous repeats of model

development (e.g., nested cross-validation or bootstrapping) give a more stable and

reliable fit to the training data (Wolff et al., 2019). Three of the four DT studies reviewed

here employed improper techniques to internally validate their models (such as splitting
the data set once where 85% of the data was used for model development and the

remaining 15% reserved for validation, without repeating the process), leading to models

which are likely overly optimistic and without reliable predictor branching (Huttunen

et al., 2016; Stromberg et al., 2019; Walker et al., 2018). The other DT study did employ a

10-fold cross-validation procedure (Bergeron et al., 2019); however, it is unclear whether

this was a nested cross-validation to fully minimize risk of overfitting. The unfortunate

result means the produced models are unreliable for clinicians to be able to apply the DT

to clinical cases (the ultimate goal of clinical predictive modelling), being unable to make
use of this easily interpretable and time-efficient method for clinical decisions.

As well as DT methodology, RF, RLR, and SVM were commonly used approaches for

psychosocial ABI research, which collectively allow for prioritization of predictors in

order of importance (with RLR and RF having embedded feature selection). Feature

ranking serves obvious benefits for clinicians working with ABI, allowing easy

identification of risk factors for poor outcomes and, after further investigation, possibly

even serving as targets for intervention. ANNs were also used more frequently for

predicting psychosocial outcomes (Bergeron et al., 2019; Shafiei et al., 2017). ANNs
however are often described as being a ‘black box’ when it comes to interpretation,

informing little regarding predictors of value (Zhang et al., 2018). Methods with

embedded feature selection may therefore be preferable for many of the research

questions ABI clinicians have, inspecting a wider range of features for predictive power

than is possible with traditional statistical methods.

Further common sources of ROBcame fromexcludingpeople formissing the outcome

of interest in predictive models which can introduce bias if missing not at random (Wolff

et al., 2019). Two studies addressed this ROBby exploring differences between thosewith
and without outcome data, showing no significant differences (Cnossen et al., 2017;

Gupta et al., 2017). This benefits readers’ understanding, knowing how response bias

could impact on results and therefore how reliable the algorithmmight be for new clinical

cases.
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Additionally, every study reviewed here failed to evaluate ML models by calibration.

This omission in predictivemodelling is not unique to ABI research: a previous prediction

systematic review found that around 80% of studies did not assess calibration

(Christodoulou et al., 2019). Together, these limitations of poor calibration assessment,
inadequate validation procedures, and infrequent exploration around outcomes not

missing at random mean these models provide little evidence for their benefit for future

clinical decision-making.

Finally, authors often provided minimal information for their choice of ML algorithms.

This may be because guidance around ML for psychosocial predictions in ABI has

previously been limited. Among all studies reviewed, only one study reported an a priori

decision about the suitability of their data for the algorithm (Cnossen et al., 2017).

Although some ML algorithms handle high-dimensional data sets better than traditional
statistical modelling, such as with embedded feature selection, not every ML algorithm is

suitable for every data set. Just like traditional statistical modelling, ML algorithms cope

differentlywith the number of predictor variables in relation to number of patient cases, as

well as the noise in predictor variables (Guo, Graber, McBurney, & Balasubramanian,

2010). Whilst ML is often put forward as being a methodology with less concern of

overfitting and better capability for dealingwithmulticollinear andmultidimensional data

than traditional statistical techniques (Iniesta, Stahl, &McGuffin, 2016),ML is not immune

to these problems. Consideration of appropriateness of the analysis for the data, as well as
thorough model evaluation, is still required as part of study design to determine efficacy.

Limitations of the review

Whilst this review benefits from being the first to systematically review ML for making

psychosocial predictions in ABI, there are several limitations. Firstly, papers in this review

were restricted to those published from 2016. This was because the TRIPOD statement

(Moons et al., 2015) was not released until 2015 so it is likely there was a change in
publication quality in articles published after. Additionally, for using PROBAST (Wolff

et al., 2019) it is advised that a statistical expert fully reviews the articles; however, this

was not possible within the scope of this work. Finally, our screening and rating method

was completed for only a percentage of total articles by both raters. There is the possibility

of some differing opinions, but this shouldmostly beminimized due to the high inter-rater

concordance.

Future directions

This systematic review has identified a number of common omissions in ABI research

using MLwhich limit the applicability of the producedmodels for future clinical decision-

making. In addition to the more general guidance published in PROBAST (Wolff et al.,

2019) and TRIPOD (Moons et al., 2015), researchers in this field may benefit from the

following considerations when designing an ML study for predicting psychosocial

outcomes in ABI:

Data handling, pre-processing, and algorithm selection

1. Inspect and/or clean the data for issues that may affect algorithm performance (e.g.,

highly correlated predictor variables, predictors with little variance, patterns of

missing data, the ratio of predictor variables to patient cases). Consider either
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cleaning the data to remove these variables if applicable or to select an algorithm that

is less affected by the issues of a particular data set.

2. Calculate an a priori power analysis (e.g., events per variable) to ensure the model is

sufficiently powered to minimize risk of error.
3. Algorithm selection: Researchers should keep both the research question and

appropriateness for data in mind when choosing which ML algorithm to use (e.g., RF

or RLR for research questions aiming to understandmore about important predictors,

DT (with proper validationmethods) for studies aiming for easy translation to clinical

practice, or opting for simpler models for smaller sample sizes (e.g., linear models

over non-parametric models)).

4. Handling of missing data:

a. Outcome data:Whilst whole sample analyses are preferable for the external validity

of the model, these are not always possible with clinical data sets. With specific

methods, the outcome variable can be imputed, or otherwise if those with missing

outcome data are excluded, bias will beminimized through exploration ofwhether

data are missing at random (e.g., significance testing of differences in predictor
variables between those with and without the outcome of interest).

b. Predictor data: Where possible, missing data should be imputed rather than

excluded when appropriate quantities of complete data are available.

Model development and evaluation

1. Validation: Certain methods of internal validation commonly used in studies

reviewed are often prone to bias by not repeating the procedure multiple times to
reduce risk of overfitting or model optimism (e.g., cross-validation, or single split

train/test validation methods). Nested cross-validation (which also optimizes

hyperparameters) and bootstrapping are superior methods for internal validation.

External and/or temporal validation are important for assessing model accuracy for

clinical applicability, but these should be used in conjunction with, not instead of,

thorough internal validation procedures.

2. Model evaluation: Binary models are frequently evaluated by the AUC only;

however, this informs little for applying themodel to new clinical cases. Researchers
should evaluate models by discrimination, calibration, and power, and evaluate

limitations for transparent reporting.

Conclusions

Overall, this review was unable to provide a conclusion as to which ML algorithm was

most suitable for psychosocial ABI research; however, it has demonstrated current poor

methodological quality and a lack of rationale for use of ML algorithms by clinical
researchers. Researchers should consider which ML algorithms will be most suitable for

the purpose of the research question, as well as the suitability of their data for different

algorithms (such as appropriate sample sizes, power calculations, analysis ofmissing data,

and suitable validation methods for data size). More thorough post-hoc model evaluation

by calibration, discrimination, andwhere possible external validationwill greatly increase

the quality and reliability for the application of ML for new clinical predictions. Clearly,

moving to a more systematically planned application of ML rather than a ‘try it and see’
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approach is needed to ensure themethod and study design are able to answer the research

questions for future applications.
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