
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/150660                                                                                 
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/150660
mailto:wrap@warwick.ac.uk


Adversarial Blocking Bandits

Nicholas Bishop
University of Southampton, UK

nb8g13@soton.ac.uk

Hau Chan
University of Nebraska-Lincoln, USA

hchan3@unl.edu

Debmalya Mandal
Columbia University, USA
dm3557@columbia.edu

Long Tran-Thanh
University of Warwick, UK

long.tran-thanh@warwick.ac.uk

Abstract

We consider a general adversarial multi-armed blocking bandit setting where each
played arm can be blocked (unavailable) for some time periods and the reward per
arm is given at each time period adversarially without obeying any distribution.
The setting models scenarios of allocating scarce limited supplies (e.g., arms)
where the supplies replenish and can be reused only after certain time periods. We
first show that, in the optimization setting, when the blocking durations and rewards
are known in advance, finding an optimal policy (e.g., determining which arm
per round) that maximises the cumulative reward is strongly NP-hard, eliminating
the possibility of a fully polynomial-time approximation scheme (FPTAS) for the
problem unless P = NP. To complement our result, we show that a greedy algorithm
that plays the best available arm at each round provides an approximation guarantee
that depends on the blocking durations and the path variance of the rewards. In
the bandit setting, when the blocking durations and rewards are not known, we
design two algorithms, RGA and RGA-META, for the case of bounded duration an
path variation. In particular, when the variation budget BT is known in advance,

RGA can achieve O(
√
T (2D̃ +K)BT ) dynamic approximate regret. On the other

hand, when BT is not known, we show that the dynamic approximate regret of
RGA-META is at most O((K + D̃)1/4B̃1/2T 3/4) where B̃ is the maximal path
variation budget within each batch of RGA-META (which is provably in order of
o(
√
T ). We also prove that if either the variation budget or the maximal blocking

duration is unbounded, the approximate regret will be at least Θ(T ). We also show
that the regret upper bound of RGA is tight if the blocking durations are bounded
above by an order of O(1).

1 Introduction

This paper investigates the blocking bandit model where pulling an arm results in having that arm
blocked for a deterministic number of rounds. For example, consider the classical problem of online
task allocation, in which new task requests arrive at each time step, waiting to be assigned to one
of many servers [Karthik et al., 2017]. Once a server is allocated to a task, it starts working on it,
and becomes unavailable for future tasks until that task is done. If there are no servers available
or none is allocated to the task at its arrival, the request will not be served and leave the system
forever. A more recent example comes from the domain of expert crowdsourcing (e.g., Upwork,
Outsourcely, etc.). In this setting, a job requester can sequentially choose from a pool of workers and
allocate a short-term job/project to the worker [Ho and Vaughan, 2012, Tran-Thanh et al., 2014]. The
stochastic version of this problem, where the rewards are randomly drawn from a distribution in an

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



i.i.d. manner, with the constraint that the blocking durations are fixed per arm over time, has been
studied in [Basu et al., 2019] and [Basu et al., 2020]. However, in many applications, the stochastic
setting is too restrictive and not realistic. For example, in the online task allocation problem, the tasks
can be heterogeneous, and both the value and the serving time of the tasks can vary over time in an
arbitrary manner. Furthermore, in the expert crowdsourcing setting, the time and quality workers
need to deliver the job are unknown in advance, can vary over time, and do not necessarily follow
an i.i.d. stochastic process. These examples demonstrate that for many real-world situations, the
stochastic blocking bandit model is not an appropriate choice.

To overcome this issue, in this paper we propose the adversarial blocking bandit setting, where both
the sequence of rewards and blocking durations per arm can be arbitrary. While the literature of
adversarial bandits is enormous, to the best of our knowledge, this is the first attempt to address the
effect of blocking in adversarial models. In particular, we are interested in a setting where the rewards
are neither sampled i.i.d., nor maliciously chosen in an arbitrary way. Instead, in many real-world
systems, the change in the value of rewards is rather slow or smooth over time (e.g., in the online task
allocation problem, similar tasks usually arrive in batch, or in the crowdsourcing system, workers
may have periods when they perform consistently, and thus, their performance slowly varies over
time). To capture this, we assume that there is a path variation budget which controls the change of
the rewards over time 1.

1.1 Main Contributions

In this paper, apart from the adversarial blocking bandit setting, we also investigate two additional
versions of the model: (i) The offline MAXREWARD problem, where all the rewards and blocking
durations are known in advance; and (ii) the online version of MAXREWARD, in which we see the
corresponding rewards and blocking durations of the arms at each time step before we choose an arm
to pull. Our main findings can be summarised as follows:

1. We prove that the offline MAXREWARD problem is strongly NP-hard (Theorem 1). Note that this
result is stronger than the computational hardness result in Basu et al. [2019], which depends on the
correctness of the randomised exponential time hypothesis.

2. We devise a provable approximation ratio for a simple online greedy algorithm, Greedy-BAA,
for the online MAXREWARD problem (Theorem 2). Our approximation ratio, when applied to the
stochastic blocking bandit model with fixed blocking durations, is slightly weaker than that of Basu
et al. [2019]. However, it is more generic, as it can be applied to any arbitrary sequence of rewards
and blocking durations.

3. For the bandit setting, we consider the case when both the maximal blocking duration and the path
variance are bounded, and propose two bandit algorithms:

• We design RGA for the case of known path variation budget BT . In particular, we show that

RGA can provably achieve O
(√

T (2D̃ +K)BT

)
regret, where T is the time horizon, K

is the number of arms, D̃ is the maximum blocking duration, and the regret is computed
against the performance of Greedy-BAA (Theorem 3).

• For the case of unknown path variation budget BT , we propose RGA-META that uses Exp3
as a meta-bandit algorithm to learn an appropriate path variation budget and runs RGA with
it. We prove that RGA-META achieves O((K + D̃)1/4B̃1/2T 3/4) regret bound where B̃ is
the maximal path variance within a single batch of the algorithm, and is in order of O(

√
T )

in the worst case (Theorem 4).

4. Finally, we also discuss a number of regret lower bound results. In particular, we show that if
either BT or D̃ is in Θ(T ) (or unbounded), then the regret is at least Θ(T ) (Claims 1 and 2). We also
discuss that if D̃ ∈ O(1), then there is a matching lower bound for the regret of RGA (Section 5).

1We will show in Section 5 that bounded variation budgets are necessary to achieve sub-linear regrets.

2



1.2 Related Work

Stochastic Blocking Bandits. The most relevant work to our setting is the stochastic blocking bandit
model. As mentioned before, Basu et al. [2019] introduce and study this model where the reward
per each time period is generated from a stochastic distribution with mean µk reward for each arm
k and the blocking duration is fixed across all time period for each arm k (e.g., Dk

t = Dk for all
t and k). In the optimization setting where the mean rewards and blocking durations are known,
they consider a simpler version of the MAXREWARD problem for their setting and show that the
problem is as hard as the PINWHEEL Scheduling on dense instances [Jacobs and Longo, 2014]
and provide that a simple greedy algorithm (see Algorithm 1) achieves an approximation ratio of
(1− 1/e−O(1/T )) where T is total time period. In the bandit setting, they provide lower and upper
regret bounds that depend on the number of arms, mean rewards, and log(T ). A very recent work
[Basu et al., 2020] extends the stochastic blocking bandit to a contextual setting where a context
is sampled according to a distribution each time period and the reward per arm is drawn from a
distribution with the mean depending on the pulled arm and the given context. Similar to the work
of Basu et al. [2019], Basu et al. [2020] derive an online algorithm with an approximation ratio
that depends on the maximum blocking durations and provide upper and lower α-regret bounds
of O(log T ) and Ω(log T ), respectively. However, the results from this models cannot be directly
applied to the adversarial setting due to the differences between the stochastic and adversarial reward
generation schemes.

Budgeted and Knapsack Bandits. Since the underlying offline optimisation problem of our setting,
MAXREWARD, can also be casted as an instance of the multiple-choice multidimensional knapsack
problem, it is also worth mentioning the line of work in the bandit literature that solve online knapsack
problems with bandit feedback. In these models, the pull of an arm requires the consumption of
resources in d ≥ 1 dimensions. The resource per arm is given either stochastic or adversarially in
each time period and a (non replenishable) total budget B = (B1, ..., Bd) is available at the initial
time period. The one-dimensional stochastic version of this setting is first studied in Tran-Thanh et al.
[2010, 2012], Ding et al. [2013] under the name budgeted bandits, and is later extended to multiple
dimensions (a.k.a. bandits with knapsack) by Badanidiyuru et al. [2013], Agrawal and Devanur
[2014], Badanidiyuru et al. [2014]. More recently, Rangi et al. [2019] and Immorlica et al. [2019]
initiate the study of adversarial knapsack bandits. Rangi et al. [2019] consider the d = 1 setting with
a regret benchmark that is measured based on the best fixed-arm’s reward to cost ratio. Under such a
regret benchmark, they show that sub-linear regret (with respect to B and k) is possible in both the
stochastic and adversarial settings. Immorlica et al. [2019] consider the d ≥ 1 setting with a regret
benchmark that is defined to be the ratio of the expected reward of the best fixed distribution over
arms and the policy’s expected reward. show that the ratio is at least Ω(log T ). However, none of the
techniques developed in these work can be applied to our setting, due to the following reason: The
results in the knapsack bandit models typically assume that the pulling costs are bounded above by a
constant, and the budget is significantly larger than this constant to allow sufficient exploration. In
contrast, when MAXREWARD is conversed into a knapsack model, many of its dimensions will have
a budget of 1, and the corresponding pulling cost for that dimension is also 1 (due to the blocking
condition).

Other Settings with Arm Availability Constraints. Other bandit models with arm availability
cosntrainsts include the mortal bandits [Chakrabarti et al., 2009], sleeping bandits [Kleinberg et al.,
2010, Kale et al., 2016], bandits with stochastic action sets [Neu and Valko, 2014], and combinatorial
semi-bandits [Neu and Bartók, 2016]. We refer readers to [Basu et al., 2019] for a discussion of these
models, including the relevance of the blocking bandit setting to online Markov decision processes.

Connection to the scheduling literature. Notice that there is a strong connection between MAXRE-
WARD and the interval scheduling problems. In particular, the MAXREWARD problem belongs
to the class of fixed interval scheduling problems with arbitrary weight values, no preemption, and
machine dependent processing time (see e.g., Kolen et al. [2007] for a comprehensive survey). This
is one of the most general, and thus, hardest versions of the fixed interval scheduling literature (see,
e.g., Kovalyov et al. [2007] for more details). In particular, MAXREWARD is a special case of this
setting where for each task, the starting point of the feasible processing interval is equal to the arrival
time. Note that to date, provable performance guarantees for fixed interval scheduling problems with
arbitrary weight values only exist in offline, online but preemptive, or settings with some special
uniformity assumptions (e.g., [Erlebach and Spieksma, 2000, Miyazawa and Erlebach, 2004, Bender
et al., 2017, Yu and Jacobson, 2020]). Therefore, to our best knowledge, Theorem 2 in our paper is

3



the first result which provides provable approximation ratio for a deterministic algorithm in an online
non-preemptive setting. Note that with some modifications, our proof can also be extended to the
general online non-preemptive setting, i.e., online interval scheduling with arbitrary weight values,
no preemption, and machine dependent processing time.

2 Preliminaries

Adversarial blocking bandit. In this paper we consider the following bandit setting. Let K =
{1, . . . ,K} be the set of K arms. Let T = {1, . . . , T} denote a sequence of T time steps, or decision
points faced by a decision maker. At every time step t ∈ T , the decision maker may pull one of the
K arms. When pulling an arm k ∈ K at time step t ∈ T , the reward Xk

t ∈ [0, 1] is obtained. In
addition, the pulled arm k is deterministically blocked and cannot be pulled for the next (Dk

t − 1)
time steps for some integer blocking duration Dk

t ∈ Z+. We also use the notation ∅ to denote the
action of not pulling an arm. In which case, X∅t = 0 and D∅t = 1 for each time step t.

We denote by Xk the sequence of rewards over T time steps associated with an arm k ∈ K such that
Xk = {Xk

t }Tt=1. In addition, we denote by X the sequence of vectors of all K rewards such that
X = {Xk}Kk=1. Similarly, we denote by Dk = {Dk

t }Tt=1 the sequence of blocking durations over T
time steps associated with an arm k and denote by D = {Dk}Kk=1 the sequence of vectors of all K
blocking duration vectors.

In our model, the rewards and blocking durations of each arm can change an arbitrary number
of times. We let D̃ (

˜
D) be the maximal blocking duration (minimal blocking duration) which is

the upper bound (lower bound) of the largest (smallest) possible blocking duration. We denote by
D = {1, . . . , D̃}K×T the set of all blocking duration vector sequences which are upper bounded by
D̃. Note that D is defined with respect to minimal blocking duration

˜
D = 1. It is sometime be useful

to define D for arbitrarily lower bound
˜
D.

Bounded path variation. Motivated by and adapted from a recent line of work in the bandit literature
(e.g., [Besbes et al., 2014]), we assume that there is a path variation budget on the sequence of the
rewards. In particular, the definition of path variation on the sequence of the rewards is defined to be

T−1∑
t=1

K∑
k=1

∣∣Xk
t+1 −Xk

t

∣∣ .
We refer toBT as the path variation budget over T . We define the corresponding temporal uncertainty
set as the set of reward vector sequences which satisfy the variation budget over the set of time steps
{1, . . . , T}:

B =

{
X ∈ [0, 1]K×T :

T−1∑
t=1

K∑
k=1

∣∣Xk
t −Xk

t+1

∣∣ ≤ BT}
Note that by setting BT = KT we can recover the standard unbounded version of our bandit model
(as all the rewards are from [0, 1]). Note that our analysis also works for other variation budgets such
as the maximum variation [Besbes et al., 2014] or the number of changes budgets [Auer et al., 2019].
See Section 5 for a more detailed discussion.

Arm pulling policy. Let U be a random variable defined over a probability space (U,U ,Pu) Let
π1 : U→ K and πt : [0, 1]t−1 × {1, . . . , D̃}t−1 × U→ K for t = 2, 3, . . . be measurable functions
With some abuse of notation we denote by πt ∈ K the arm chosen at time t, that is given by

πt =

{
π1(U) t = 1

πt(X
π
t−1, . . . , X

π
1 , D

π
t−1, . . . , D

π
1 , U) t = 2, 3, . . .

Here Xπ
t (resp. Dπ

t ) denotes the reward (resp. blocking duration) observed by the policy π at time
t The mappings {πt : t = 1, . . . , T} together with the distribution Pu define the class of policies
We define the class P of admissible policies to be those, at every time step, which choose an action
which is not blocked. That is,

P =
{

(π1, . . . , πT ) : πt /∈ {πj : j +D
πj
j − 1 ≥ t, ∀j ≤ t− 1}, ∀t ∈ {1, . . . , T}, X ∈ B, D ∈ D

}
.

4



In addition, let At(π1, . . . , πt−1) = K \ {πj : j + D
πj
j − 1 ≥ t, ∀j ≤ t − 1} denote the set of

available arms at time step t (we will also use At for the sake of brevity).

Objective. The cumulative reward of a policy π ∈ P is defined to be r(π) =
∑T
t=1X

π
t where

Xπ
t is the reward obtained by policy π at time step t. Our objective is to find π∗ ∈ P such that

π∗ ∈ arg maxπ∈P Eπ[r(π)], where the expectation is over all possible randomisation coming from
policy π.

Feedback. The difficulty of the optimisation problem depends on the information (or the feedback)
we have about the rewards and blocking durations of the arms. In this paper, we consider three
feedback models in increasing order of difficulty. In the simplest setting, we know the value of all Xk

t

and Dk
t in advance. We refer to this setting as the (offline) MAXREWARD optimization problem. In

the online version of MAXREWARD, we assume that Xk
t and Dk

t are not known in advance, but at
each time step t, the value of Xk

t and Dk
t for all k at that particular time step t is revealed before we

choose any arm to pull. Finally, in the (classical) bandit setting, we assume that only the reward and
blocking duration of the chosen arms are revealed after that arm is pulled2. We will refer to third
model as the adversarial blocking bandit problem.

3 The Offline and Online MAXREWARD Problems

We start with the analysis of the offline and online MAXREWARD problems. As a slight preview
of the next subsections, computing an optimal solution of the offline MAXREWARD problem is
strongly NP-hard even with bounded variation budget. Such result eliminates the possibility of a fully
polynomial-time approximation scheme (FPTAS) for the problem unless P = NP. In addition, for the
online MAXREWARD problem, we design an online greedy algorithm with provable approximation
guarantee.

3.1 The Computational Complexity of the Offline MAXREWARD Problem

To show that the MAXREWARD problem is strongly NP-hard, we reduce from the Boolean satisfia-
bility problem with three literals per clause (3-SAT), which is known to be strongly NP-complete
[Garey and Johnson, 1979]. In a 3-SAT instance, we are given m variables and n clauses. Each
clause consists of three literals, and each literal is either a variable or the negation of the variable.
The problem is to determine if there is a boolean true/false assignment to each variable so that the
given 3-SAT instance is true (i.e., each clause contains at least one true literal).

Theorem 1. Computing an optimal solution for the MAXREWARD problem is strongly NP-hard.
The hardness result holds even when the path variation is bounded.

3.2 Online MAXREWARD Problem with Bounded Variation Budget

In this section, we consider the online version of MAXREWARD. We devise a simple online greedy
algorithm, Greedy Best Available Arm (Greedy-BAA), in which, at each time step, the algorithm plays
an available arm with the highest reward. Algorithm 1 provides a detail description of Greedy-BAA.

Below, we show that Greedy-BAA provides an approximation guarantee to the offline MAXREWARD
problem that depends on the blocking durations and the variation budget.

Theorem 2. Let k∗ = arg maxk
Dkmax

Dkmin

denote the arm with the highest max-min blocking duration

ratio. Let π+ denote the solution returned by Greedy-BAA, and π∗ denote an optimal solution of the
offline MAXREWARD problem, respectively. We state that:(

1 +
Dk∗

max

Dk∗
min

)
r(π+) +

Dk∗

max

Dk∗
min

BT ≥ r(π∗),

That is, Greedy-BAA has an approximation ratio of
(

1 +
Dk
∗

max

Dk
∗

min

)−1 (
1− Dk

∗
maxBT

Dk
∗

minr(π
∗)

)
.

2In this paper, due to space limits, we do not deal with the full information feedback model, in which the
reward and blocking duration values of all the arms are revealed at each time step after the pull.

5



Algorithm 1: Greedy-BAA
Input : T , K, {Xk

t }k∈K,t∈T , {Dk
t }k∈K,t∈T - An instance of the MAXREWARD Problem

Output : π+ = (π+
1 , π

+
2 , ..., π

+
T ) ∈ P - A greedy solution to the MAXREWARD Problem

1 π+ = (∅, ..., ∅);
2 for j ← 1 to T do
3 Select π+

j ∈ arg maxkj∈Aj(π+
1 ,...,π

+
j−1)∪∅X

kj
j

# See the preliminary section for definitions
4 end
5 return π+

Note that as Dk∗

min ≥
˜
D and Dk∗

max ≤ D̃, the approximation ratio above can be further bounded above

by
(

1 + D̃

˜
D

)−1 (
1− D̃BT

˜
Dr(π∗)

)
.

Comparison to the result of Basu et al. [2019]. We note that Basu et al. [2019] has studied the
MAXREWARD problem with path variation budget BT = 0 (i.e., the reward values are fixed over
time) and homogeneous blocking durations per arm (i.e., when the blocking duration per arm do
not change over time). In that case, our proof provides an approximation ratio of 1/2 whereas Basu
et al. [2019] provides an approximation ratio of O(1− 1/e−O(1/T )). Their technique uses a much
complicated LP-bounding technique/proof that does not directly generalize to the case of BT > 0
with varying blocking durations. On the other hand, our approximation ratio result holds for the
general case. For example, if BT grows slower than r(π+) with T , our algorithm guarantees an
approximation ratio of (1 + 2 D̃

˜
D )−1.

4 The Adversarial Blocking Bandit Problem

Given the investigation of the (offline and online) MAXREWARD problems in the previous section,
we now turn to the main focus of our paper, namely the online MAXREWARD problem with bandit
feedback, a.k.a the adversarial blocking bandit problem. While the regret analyses are typically done
by benchmarking against the best fixed policy in hindsight, we can easily show that in our setting,
this benchmark would perform arbitrarily poorly, compared to the offline optimal solution. Therefore,
instead of following the standard regret analysis, we are interested in comparing the performance of
the designed algorithms to that of the offline optimal solution. Therefore, we will use the following
regret definition:

Dynamic approximate regret. We compare the performance of a policy with respect to the dynamic
oracle algorithm that returns the offline optimal solution of MAXREWARD .We define the α-regret
under a policy π ∈ P as the worst case difference between an (offline) α-optimal sequence of actions
and the expected performance under policy π. More precisely, let π∗ denote the arm pulling policy of
that dynamic oracle algorithm. The α-regret of a policy π ∈ P against π∗ is defined to be

Rαπ(BT , D̃, T ) = αr(π∗)− E[r(π)]

where the expectation is over all the possible randomisation of π. Note that this regret notion is
stronger than the regret against the best fixed policy in hindsight, as it is easy to show that the best
fixed policy can perform arbitrarily badly, compared to π∗.

4.1 Blocking Bandit with Known Path Variation Budget

We now turn to describe our new bandit algorithm, RGA, designed for the adversarial blocking bandit
problem. This algorithm can be described as follows:

1. We split the time horizon T into batches T1, . . . , Tm of size ∆T each (except possibly the last
batch):

Tj = {t ∈ {1, . . . ,∆T } : (j − 1)∆T + t ≤ min {j∆T , T}} , for all j = 1, . . . ,m

where m =
⌈
T

∆T

⌉
is the number of batches.

6



Algorithm 2: Repeating Greedy Algorithm (RGA)
Input: ∆T .

1 while 1 ≤ j ≤
⌈
T

∆T

⌉
do

2 Set τ = 1
3 while τ ≤ ∆T do
4 if (1 ≤ τ ≤ K) then
5 Pull arm k = τ mod K + 1

6 Receive reward and blocking duration (Xk
τ , D

k
τ )

7 Set X̂k
t = Xk

τ for all t ∈ [1,∆T ].

8 if (K + 1 ≤ τ ≤ D̃ +K) then
9 Pull no arms

10 if (D̃ +K + 1 ≤ τ ≤ ∆T − D̃) then
11 Pick arms according to

GREEDY-BAA(∆T − 2D̃ −K,K, X̂1, . . . , X̂K , D1, . . . , DK)

12 if (∆T − D̃ + 1 ≤ τ ≤ ∆T ) then
13 Pull no arms
14 τ ← τ + 1

15 j ← j + 1

2. Within each batch we spend the first K rounds pulling each arm. Without loss of generality, we
shall assume that arm k is pulled on round k. After this we spend the next D̃ rounds pulling no arms.
This ensures that all arms will be available when we next pull an arm.

3. Then, up until the final D̃ rounds we play Greedy-BAA using the rewards observed in the first K
rounds as the fixed rewards for each arm.

4. In the final D̃ rounds of each batch, we again pull no arms. This ensures that all of the arms are
available at the beginning of the next batch.

Theorem 3. Suppose that the variation budgetBT is known in advance and maximal duration D̃ ≥ 1

such that D̃BT ∈ o(T ). The α-regret of RGA, where α = ˜
D

D̃+
˜
D

, is at most O
(√

T (2D̃ +K)BT

)
when the parameter when ∆T is set to

⌈√
(T+1)(2D̃+K)

2BT

⌉
.

Note that this bound is sub-linear in T if D̃BT = o(T ) (e.g., D̃ is bounded above by a constant and
BT ∈ o(T )). It is also worth noting that while α = 1

1+D̃
might imply that RGA can perform better

than the worst-case performance of Greedy-BAA, with BT ∈ o(T ) it is not the case (see Section E in
the appendix for more details).

4.2 Blocking Bandit with Unknown Path Variation Budget

Note that RGA requires knowledge of BT in order to properly set ∆T . To resolve this issue we
propose META-RGA, a meta-bandit algorithm, where each arm corresponds to an instance of the RGA
algorithm whose ∆T parameter tuned for a different variation budget. The time horizon T is broken
into meta-blocks of length H . At the start of each meta-block an arm (i.e., an instance of RGA with its
corresponding budget) is selected according to the well known Exp3 algorithm [Auer et al., 2002].
The RGA is then played for the next H time steps with optimally tuned restarts (see Theorem 3 for
more details). At the end of the meta-block, the Exp3 observes a reward corresponding to the total
reward accumulated by the chosen RGA in this meta-block. The intuition of this idea is that the
meta-bandit will learn which budget will be the best upper bound for RGA.

In what follows, we shall denote the set of arms available to the Exp3 algorithm by J , and denote
the corresponding set of variation budgets by JB . The META-RGA algorithm uses dlog2(KT )e+ 1
meta-arms with budgets JB = {20, 21, . . . , 2dlog2(KT )e}. That is, the budget values are powers of 2

7



Algorithm 3: Meta Repeating Greedy Algorithm (META-RGA)
Input: T,K, γ ∈ (0, 1], batch length H .

1 Initialize: |J | = dlog2(KT )e+ 1, JB = {20, 21, . . . , 2dlog2(KT )e}, wi(1) = 1 for
i = 1, . . . , |J |.

2 for τ = 1, . . . ,
⌈
T
H

⌉
do

3 Set

pi(τ) = (1− γ)
wi(τ)∑|J |
j=1 wj(τ)

+
γ

|J |
i = 1, . . . , |J |

4 Draw iτ randomly according to the probabilities p1(τ), . . . , p|J |(τ)

5 Run RGA in batch τ with budget JB [iτ ] = 2iτ−1 and optimally tuned restarts
6 Receive reward xit(τ) ∈ [0, H] at the end of the batch
7 for j = 1, . . . , |J | do
8

x̂j(τ) =

{
xj(τ)
pj(τ) if j = iτ

0 otherwise

wj(τ + 1) = wj(τ)exp(γx̂j(τ)/(H|J |))

up to the smallest 2-power, which is still larger than KT , which is the ultimate upper bound of the
path variation budget (as BT ≤ KT ). In addition, let Bi denote the total path variance within batch
i, and B̃ = maxiBi. We state the following:
Theorem 4. Suppose that the variation budget BT is unknown in advance to us. In addition, suppose
that the maximal blocking duration D̃ ≥ 1 such that D̃BT ∈ o(T ). The α-regret of RGA-META,
where α = 1

1+D̃
, is at most

O
(
B̃1/2T 3/4(2D̃ +K)1/4 ln(KT )1/4 ln(ln(KT ))1/4

)
when the parameters of RGA-META are set as follows:

H =

√
T (2D̃ +K)

ln(KT ) ln(ln(KT ))
, γ = min

{
1,

√
ln(KT ) ln(ln(KT ))

(e− 1)T

}
.

Note that since B̃ ≤ HK by definition (the maximum path variance within a batch is at most

HK), by setting H =
√

T (2D̃+K)
ln(KT ) ln(ln(KT )) we always get sub-linear regret in T if D̃ ∈ O(1) (i.e.,

is bounded above by a constant). Otherwise we need to have B̃2D̃ ∈ o(T ). Furthermore, when B̃
is small, our regret bound tends to O(T 3/4). Thus, it is still an open question whether we can get a
tighter upper bound (e.g., O(

√
T )) for this case (i.e., when the variation budget is unknown).

5 Discussions

In this section we will provide some intuitions why we set BT and D̃ to be small in the previous
sections. In particular, we show that if either the variation budget or the maximum blocking duration
is large, the lower bound of the α-regret is Θ(T ). We also discuss a potential lower bound for the
α-regret of the adversarial blocking bandit problem in the case of BT ∈ o(KT ) and D̃ ∈ O(1).
Finally, we will also discuss how our results change if we use other types of variation budgets.

Large variation budget. Consider the case when BT ∈ Θ(T ). Theorem 3 indicates that the upper
bound of the α-regret is Θ(T ) where α = 1

1+D̃
as defined in Theorem 3. Indeed, we show that this is

the best possible we can achieve:
Claim 1. For any T > 0 and BT ∈ Θ(KT ), there exists a sequence of rewards and blocking
durations X and D such thatRαπ(BT , D̃, T ) = Θ(T ) for that particular (X,D).

8



Large blocking durations. If D̃ ∈ Θ(T ) and α is the approximation ratio of Greedy-BAA:

Claim 2. For any T > 0 and D̃ ∈ Θ(T ), there exists a sequence of rewards and blocking durations
X and D such thatRαπ(BT , D̃, T ) = Θ(T ) for that particular (X,D).

Note that our regret bounds only make sense if D̃BT ∈ o(T ). Thus, it is still an open question
whether we can achieve sub-linear α-regret bounds in T if both BT , D̃ ∈ o(T ) but D̃BT ∈ Ω(T ).

Almost matching regret lower bound for RGA. Consider the case when D̃ = O(1). This implies
that the α-regret bound of RGA is reduced to O(

√
KTBT ). This in fact matches the known lower

bounds of the 1-regret for the case of D̃ = 1 (i.e., no blocking) from the literature [Auer et al., 2019].
In particular, with D̃ = 1, the Greedy-BAA algorithm becomes optimal (see, e.g., Section 4.3 of Basu
et al. [2019] for the discussion of this), and thus, the α-regret notion becomes 1-regret. Therefore, if
there exists an algorithm which could achive an α-regret better thanO(

√
KTBT ) in our setting, then

it would be able to achieve O(
√
KTBT ) 1-regret for the standard (i.e., non-blocking) adversarial

bandit as well.

It is also worth noting that when D̃ is not bounded above by a constant, or the variation budget BT is
not known in advance, it is still not known what the regret lower bound would be.

Other variation budget definitions. There are a number of different variation budget definitions in
the literature [Besbes et al., 2014, Wei and Luo, 2018, Auer et al., 2019]. It is worth noting that our
analysis works in a similar way for the maximum variation budget Bmax

T and number of changes
budget LT , which can be defined as follows:

Bmax
T =

∑
t,t+1∈T

max
k∈K
|Xk

t+1 −Xk
t |, LT = #{t : 1 ≤ t ≤ T − 1,∃k : Xk

t 6= Xk
t+1}

If we use these variation budgets instead, the regret in Theorem 3 will be modified to

O
(√

(2D̃ +K)TBmax
T

)
and O

(√
(2D̃ +K)TLT

)
, respectively. Furthermore, the ap-

proximation ratio of Greedy-BAA will also change. In particular, it becomes
[ (

1 + D̃
)

+

D̃KBmax
T /r(π+)

]−1

and
[ (

1 + D̃
)

+ D̃KLT /r(π
+)
]−1

. We refer the reader to Section C in
the appendix for a more detailed discussion. It remains as future work to derive regret bounds for the
other variation budgets.

Broader Impact

The paper examines a novel multi-armed bandit problem in which the decision-making agent aims
to receive as many (cumulative) rewards as possible over a finite period subject to constraints. Our
focus and results are largely theoretical. In particular, our contributions advance our understanding
of multi-armed bandit models and its theoretical limitations and benefit the general (theoretical)
machine learning community, specifically the multi-armed bandit and online learning communities.
In addition, we do not expect that our theoretical findings can be directly used in more applied
domains.

Acknowledgments and Disclosure of Funding

Nicholas Bishop was supported by the ECS PhD scholarship scheme from the University of Southamp-
ton, UK. Debmalya Mandal was supported by a Columbia Data Science Institute Post-Doctoral
Fellowship.

References
Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks. In

Proceedings of the fifteenth ACM conference on Economics and computation, pages 989–1006,
2014.

9



Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best bandit arm with an
unknown number of distribution changes. In Conference on Learning Theory, pages 138–158,
2019.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks. In
2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 207–216. IEEE,
2013.

Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. Resourceful contextual bandits.
In Conference on Learning Theory, pages 1109–1134, 2014.

Soumya Basu, Rajat Sen, Sujay Sanghavi, and Sanjay Shakkottai. Blocking bandits. In Advances in
Neural Information Processing Systems 32, pages 4784–4793, 2019.

Soumya Basu, Orestis Papadigenopoulos, Constantine Caramanis, and Sanjay Shakkottai. Contextual
blocking bandits. arXiv, abs/2003.03426, 2020.

Marco Bender, Clemens Thielen, and Stephan Westphal. Online interval scheduling with a bounded
number of failures. Journal of Scheduling, 20(5):443–457, 2017.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Proceedings of the 27th International Conference on Neural Information
Processing Systems, pages 199–207, 2014.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Machine Learning, 5(1):1–122, 2012.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed bandits. In
Advances in neural information processing systems, pages 273–280, 2009.

Wenkui Ding, Tao Qin, Xu-Dong Zhang, and Tie-Yan Liu. Multi-armed bandit with budget constraint
and variable costs. In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Thomas Erlebach and Frits CR Spieksma. Simple algorithms for a weighted interval selection
problem. In International Symposium on Algorithms and Computation, pages 228–240. Springer,
2000.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowdsourcing markets. In
Twenty-sixth AAAI conference on artificial intelligence, 2012.

N. Immorlica, K. A. Sankararaman, R. Schapire, and A. Slivkins. Adversarial bandits with knapsacks.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
202–219, 2019.

Tobias Jacobs and Salvatore Longo. A new perspective on the windows scheduling problem. ArXiv,
abs/1410.7237, 2014.

Satyen Kale, Chansoo Lee, and David Pal. Hardness of online sleeping combinatorial optimization
problems. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 2181–2189. Curran Associates, Inc., 2016.

A Karthik, Arpan Mukhopadhyay, and Ravi R Mazumdar. Choosing among heterogeneous server
clouds. Queueing Systems, 85(1-2):1–29, 2017.

Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping
experts and bandits. Mach. Learn., 80(2–3):245–272, 2010.

Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma. Interval
scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.

10



Mikhail Y Kovalyov, CT Ng, and TC Edwin Cheng. Fixed interval scheduling: Models, applications,
computational complexity and algorithms. European journal of operational research, 178(2):
331–342, 2007.

Hiroyuki Miyazawa and Thomas Erlebach. An improved randomized on-line algorithm for a weighted
interval selection problem. Journal of Scheduling, 7(4):293–311, 2004.

Gergely Neu and Gábor Bartók. Importance weighting without importance weights: An efficient
algorithm for combinatorial semi-bandits. The Journal of Machine Learning Research, 17(1):
5355–5375, 2016.

Gergely Neu and Michal Valko. Online combinatorial optimization with stochastic decision sets
and adversarial losses. In Advances in Neural Information Processing Systems, pages 2780–2788,
2014.

Anshuka Rangi, Massimo Franceschetti, and Long Tran-Thanh. Unifying the stochastic and the
adversarial bandits with knapsack. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 3311–3317, 2019.

Long Tran-Thanh, Archie Chapman, Enrique Munoz de Cote, Alex Rogers, and Nicholas R Jennings.
Epsilon–first policies for budget–limited multi-armed bandits. In Twenty-Fourth AAAI Conference
on Artificial Intelligence, 2010.

Long Tran-Thanh, Archie Chapman, Alex Rogers, and Nicholas R Jennings. Knapsack based optimal
policies for budget–limited multi–armed bandits. In Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R Jennings. Efficient crowdsourcing
of unknown experts using bounded multi-armed bandits. Artificial Intelligence, 214:89–111, 2014.

Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In Conference On
Learning Theory, pages 1263–1291, 2018.

Ge Yu and Sheldon H Jacobson. Approximation algorithms for scheduling c-benevolent jobs on
weighted machines. IISE Transactions, 52(4):432–443, 2020.

11



A Proofs for Theorems from Section 3

Proof of Theorem 1. Given a 3-SAT instance of m variables, v1, ..., vm, and n clauses, C1, ..., Cn,
we construct an instance of the MAXREWARD (decision) problem as follows.

• For each variable vj , we create two arms kj and k̄j .

• For each variable vj , we set Xkj
j = X

k̄j
j = 1 and Dij

j = D
īj
j = T0 for some T0 > 0 (all

other rewards and blocking durations are set to zero and one, respectively, by default at this
point).

• For each clause Cl and each literal l(v) in Cl, we set X l(v)
m+l = 1. Note that all other rewards

and blocking durations are also zero and one, respectively, except those from the above.

• We let T0 = m+ n, V = n+m and BT0
= O(T0m).

Clearly, the constructed instance’s parameters are polynomial bounded. Given the MAXREWARD
(decision) problem instance, our goal is to find π∗ = (π∗1 , ..., π

∗
T ) ∈ P such that r(π∗) ≥ V .

Claim 3. There a solution to the MAXREWARD problem if only if there is a solution to 3-SAT.

Proof of Claim 3. 3-SAT solution =⇒ MAXREWARD solution. Suppose that we have a solution for
the 3-SAT problem. It follows that there is an assignment to each variable vi such that each clause is
true. To construct a solution to the MAXREWARD problem, we perform the following. For each
variable vj that is set to true (false) and for each clause Cl containing vj (v̄j), we play arm kj (k̄j) at
time m+ l to obtain a reward of 1, which corresponds to setting π∗m+l = kj (π∗m+l = k̄j). Since we
can only play an arm each time period, ties can be broken arbitrarily. From this partial solution, we
obtain a cumulative reward of n since all of the n clauses are satisfied by at least one literal. Observe
that for the remaining arm k̄j (kj) for the variable vj that is set to be true (false), it is valid to play
k̄j (kj) at time j to obtain a reward of 1, which corresponds to setting π∗j = k̄j (π∗j = kj). From
this partial solution, we obtain a value of m since there are m variables. It is not hard to see that the
constructed π∗ is a valid solution with r(π∗) ≥ n+m = V .

MAXREWARD solution =⇒ 3-SAT solution. Suppose now that we have a solution for the MAXRE-
WARD problem. It follows that there a solution i∗T such that r(π∗) ≥ V = n+m. Note that for any
feasible solution π, r(π) ≤ n+m as from time periods 1 to m and m+ 1 to m+ n we can obtain
at most a reward of m and n, respectively. Thus, r(π∗) = n + m. To obtain a reward of m from
time period j = 1, ...,m, we must play either kj or k̄j . To obtain a reward of n from time period
j = m+ 1, ...,m+ n, we must play exactly one of the arms corresponds to the clause Cj−m. Thus,
to construct an assignment for the 3-SAT instance, we let vj to be false (true) if kj (k̄j) is played at
time j. Such assignment ensures that, for each clause Cl, at least one of the literals is true, which
corresponds to having one of the (literal) arms played that isn’t blocked.

Together with the above claim, we have completed the reduction and showed that the MAXREWARD
problem is strongly NP-hard with bounded path variation. Note that in this proof, we relied on a
special set of problem instances where both T0 and BT0

are in the range of max delay D = n+m.
This might cause some issues for the other analysis in the paper (e.g., the performance guarantee in
Theorem 2 is designed for some more well behaved cases). Therefore, we still need to modify the
proof above to cover more generic cases.

Now, let k1, k2 ≥ 2 arbitrary integers. For each of the construction above of T0 time steps, we pad it
with another (k1−1)T0 time steps where each arm has blocking value 1 and reward value 0. Together
with the first T0 time steps, these form an interval of k1T0 time steps, called large blocks. We then set
T = k2k1T0 and concatenate k2 copies of these large blocks together. It is easy to see that the proof
of reduction above is still valid, but now we have time horizon T = k1k2D, and variation budget
B = k2D. By varying k1 and k2, we can set the relationship of T , B, and D to be arbitrary. This
concludes the proof.

Proof of Theorem 2. Let π∗ = (π∗1 , ..., π
∗
T ) ∈ arg maxπ∈P r(π) be an optimal solution. Let π+ =

(π+
1 , ..., π

+
T ) ∈ P be a solution returned by Greedy-BAA. Consider a time period t ∈ T where

12



π∗t 6= π+
t . There are two cases in which π∗t is not selected by Greedy-BAA. The first case is where

X
i∗t
t ≤ X

i+t
t . The second case is where Greedy-BAA played the arm π∗t at (the most recent) time

1 ≤ t′ < t and it is blocked for D
π+

t′
t′ time steps. Since π+

t′ = π∗t , we let π+
t′ = j ∈ K. The difference

of the reward is given by

|Xj
t′ −X

j
t | = |X

j
t′ −X

j
t′+1 +Xj

t′+1 −X
j
t | ≤ |X

j
t′ −X

j
t′+1|+ |X

j
t′+1 −X

j
t | ≤

t−1∑
t̄=t′

|Xj
t̄ −X

j
t̄+1|,

where the inequalities resulted from adding and subtracting the corresponding terms and applying the
triangle inequalities for the absolute value function repeatedly. Thus,

Xj
t′ +

t−1∑
t̄=t′

|Xj
t̄ −X

j
t̄+1| ≥ X

j
t

Let Blk(t′, j) be the set of time periods in which playing arm j is optimal in (π∗1 , ..., π
∗
T ), but arm j is

blocked by playing it at time t′ via Greedy-BAA. Note that |Blk(t′, j)| ≤ Djmax

Djmin

where where Dj
max

and Dj
min are the maximum and minimum blocking duration of arm j across all the time periods,

respectively. This is because in the time intervals from t′ + 1 to t′ +Dj
max arm j can be played at

most D
j
max

Djmin

times by any algorithm. This gives us

∑
t∈Blk(t′,j)

Xj
t ≤

∑
t∈Blk(t′,j)

(
Xj
t′ +

t−1∑
t̄=t′

|Xj
t̄ −X

j
t̄+1|

)
≤ Dj

max

Dj
min

Xj
t′ +

max(Blk(t′,j))−1∑
t̄=t′

|Xj
t̄ −X

j
t̄+1|

 .

Note that, for any t̄ 6= t′ such that πGt̄ = πGt′ = j, Blk(t′, j) ∩ Blk(t̄, j) = ∅.

As a result, each arm π+
t can be used to cover some part of the optimal solution under case 1 and/or

case 2 for each time period t ∈ T . It follows that

r(π∗) =

T∑
t=1

X
π∗t
t ≤

T∑
t=1

X
π+
t

t +

T∑
t=1

D
π+
t

max

D
π+
t

min

Xπ+
t

t +

max(Blk(t,π+
t ))−1∑

t̄=t

|Xπ+
t

t̄ −Xπ+
t

t̄+1|


≤

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

T∑
t=1

Xπ+
t

t +

max(Blk(t,π+
t ))−1∑

t̄=t

|Xπ+
t

t̄ −Xπ+
t

t̄+1|


=

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

 T∑
t=1

X
π+
t

t +

T∑
t=1

max(Blk(t,π+
t ))−1∑

t̄=t

|Xπ+
t

t̄ −Xπ+
t

t̄+1|


≤

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +
∑
i∈K

T−1∑
t=1

|Xi
t −Xi

t+1|

)

≤
T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +BT

)
≤

(
1 +

Dj∗

max

Dj∗

min

)
r(π+) +

Dj∗

max

Dj∗

min

BT ,

where the first inequality is from applying case 1 and case 2, the second inequality is from replacing

the ratio by Dj
∗

max

Dj
∗

min

, the arm j∗ with the highest max-min blocking duration ratio, the third equality by

distributing the summations, the fourth inequality by first grouping the time periods that each arm i is
played and then applying the sum (which is bounded by T ), and the fifth inequality is by definition.
Rearranging the terms, we obtain our claimed result.

B Proofs for Theorems from Section 4

Proof of Theorem 3. Recall that we want to compute the α-regret of RGA against the optimal offline
solution of MAXREWARD. Let π denote the policy generated by RGA, and recall that π∗ is the

13



policy of the optimal solution. For the sake of simplicity, we will refer to π∗ as ∗ in the indices. Let
α = ˜

D

˜
D+D̃

. The α-regret of RGA incurred in a batch Tj is given by:∑
t∈Tj

(αX∗t −Xπ
t ) (1)

In the first K rounds a loss of at most K can be accumulated. Similarly for the next D̃ time steps and
the last D̃ time steps, a loss of at most D̃ is accumulated. Let T ′j denote the time steps in batch Tj ,
excluding the first D̃ +K and the last D̃ rounds.∑

t∈Tj

(αX∗t −Xπ
t ) ≤ (2D̃ +K) +

∑
t∈T ′j

(αX∗t −Xπ
t ) (2)

Let X̂π
t denote the reward of the arm played by policy π at time step t which was observed in the

first K rounds of batch Tj and let Bj denote the path variance within this batch (i.e., batch Tj):

Bj =
∑
t∈Tj

∑
k∈K

∣∣Xk
t+1 −Xk

t

∣∣
Then we have∑

t∈T ′j

(αX∗t −Xπ
t ) =

∑
t∈T ′j

(αX̂∗t − X̂π
t ) +

∑
t∈T ′j

(αX∗t − αX̂∗t ) +
∑
t∈T ′j

(X̂π
t −Xπ

t )

≤
∑
t∈T ′j

|X∗t − X̂∗t |+
∑
t∈T ′j

|Xπ
t − X̂π

t |

≤
∑
t∈T ′j

2Bj

≤ 2∆TBj

(3)

The first inequality comes from the fact that α = 1
1+D̃

≤ 1 and RGA runs Greedy-BAA with fixed

estimates X̂t, which is α-optimal for an instance of MAXREWARD with fixed X̂k values (we apply
Theorem 2 with variation budget 0). Thus,

∑T
t∈T ′j

X̂π
t ≥ α

∑T
t∈T ′j

X̂∗t . The second inequality comes
from the following observation: For each ∈ T ′j and k ∈ K, we have

|Xk
t − X̂k

t | ≤
T∑

t,t+1∈Tj

|Xk
t+1 − X̂k

t | ≤ Bj (4)

Recall that X̂k
t is the value of first pull of arm k in the batch. Therefore, the difference between that

first observed value and Xk
t can be bounded above by the sum of reward changes from round to

round of arm k, which is further bounded above by the path variation budget Bj of that batch. The
third inequality in Eq. (3) comes from the fact that the length of the batch is at most ∆T . Replacing
Eq. (3) into Eq. (2) we get:

T∑
t∈Tj

(X∗t −Xπ
t ) ≤ 2∆TBj + (2D̃ +K)

Summing over all batches we have the following bound on regret:

Rαπ(BT , D̃, T ) ≤
m∑
j=1

2∆TBj +

⌈
T

∆T

⌉
(2D̃ +K)

≤ 2BT∆T +

⌈
T

∆T

⌉
(2D̃ +K)

≤ 2BT∆T +
T + 1

∆T
(2D̃ +K)

14



Since BT ≤ TK by definition and both D̃,K ≥ 1, we have
√

(T+1)(2D̃+K)
2BT

≥ 1, and

thus,
⌈√

(T+1)(2D̃+K)
2BT

⌉
≤
√

(T+1)(2D̃+K)
2BT

+ 1 ≤ 2
√

(T+1)(2D̃+K)
2BT

. By setting ∆T =⌈√
(T+1)(2D̃+K)

2BT

⌉
≤ 2
√

(T+1)(2D̃+K)
2BT

we obtain the desired result.

Proof of Theorem 4. Let π denote META-RGA. The α-regret of META-RGA can be expressed as fol-
lows:

d TH e∑
i=1

max(T,iH)∑
t=(i−1)H+1

(αX∗t −Xπ
t )

Let Bi denote the total path variance within batch i. Of all the RGA instances (i.e., meta-arms)
available to there must be an instance who is a associated with a candidate budget B̃ such that:

max
i
Bi ≤ B̃ ≤ 2 max

i
Bi (5)

Le π̃ denote the policy of this RGA instance. Using π̃ we can decompose the regret of META-RGA as
follows:d TH e∑

i=1

max(T,iH)∑
t=(i−1)H+1

(αX∗t −X π̃)

+

d TH e∑
i=1

 max(T,iH)∑
t=(i−1)H+1

X π̃
t

−
 max(T,iH)∑
t=(i−1)H+1

Xπ


 (6)

The second term of Eq (6) can be further bounded as follows. Note that the RGA instance with policy
π̃ might not be the best fixed meta-arm in hindsight, whose policy is denoted by π+. Thus, we have:d TH e∑
i=1

 max(T,iH)∑
t=(i−1)H+1

X π̃
t

−
 max(T,iH)∑
t=(i−1)H+1

Xπ


 ≤

d TH e∑
i=1

 max(T,iH)∑
t=(i−1)H+1

Xπ+

t

−
 max(T,iH)∑
t=(i−1)H+1

Xπ




The RHS of this is simply the difference between the rewards observed and accumulated by the
Exp3 meta-algorithm and the best available RGA meta-arm in hindsight. Thus we can bound the
second term with standard Exp3 regret bounds. Note that there are log2(KT ) arms available to
the Exp3 algorithm, T/H is number of batches, and the maximum reward a meta-arm can receive
within a batch is H (i.e., the length of each batch). Thus the second term can be bounded above by
O
(
H
√
T/H ln(KT ) ln(ln(KT ))

)
= O

(√
HT ln(KT ) ln(ln(KT ))

)
.

Now we turn to bound the first term of Eq (6). Each inner sum of the first term correspond to the
α-regret of policy π̃ over a block of length H . Our idea is to use Theorem 3 to bound the regret
of π̃ in each of batches i. In order to do so, we must check whether running RGA with budget B̃
in the batches (with time horizon H) will result in a valid ∆H , that is ∆H ≥ 1. From Eq (5) we
know that B̃ ≤ 2 maxiBi ≤ 2HK (the second inequality comes from the definition of the total
variance budget, which is at most HK for time horizon H). Therefore, from Theorem 3 we know

that ∆H ≥
√

(H+1)(2D̃+K)

2B̃
>

√
H(2D̃+K)

4HK ≥ 1 if D̃ ≥ 3K
2 . Now, since D̃ is an upper bound of the

maximal blocking duration, we can set it to be at least 3K
2 to make ∆H ≥ 1. Therefore, we can apply

Theorem 3 to each of the batches. In particular, the α-regret of π̃ over batch i of length at most H
and with optimally tuned restarts can be bounded as follows:

max(T,iH)∑
t=(i−1)H+1

(αX∗t −X π̃) ≤
√

2B̃(H + 1)(2D̃ +K)

≤ 2

√
B̃H(2D̃ +K)

15



Summing over all blocks we have:

d TH e∑
i=1

max(T,iH)∑
t=(i−1)H+1

(αX∗t −X π̃) ≤
(
T

H
+ 1

)
2

√
B̃H(2D̃ +K)

≤ 4
T√
H

√
B̃(2D̃ +K)

(7)

Combining Eq (7) with the regret bound of the Exp3 meta-bandit algorithm, we get that the α-regret
of META-RGA is at most

O
(

T√
H

√
B̃(2D̃ +K)

)
+O

(√
HT ln(KT ) ln(ln(KT ))

)
(8)

By setting H =
√

T (2D̃+K)
ln(KT ) ln(ln(KT )) we get the desired regret bound.

C Regret Analysis with Other Variation Budgets

In this section we show how our regret analysis can be adopted to the maximum variation budget
Bmax
T and number of changes budget LT . For the sake of convenience, we repeat the definition of

these budgets below:

Bmax
T =

∑
t,t+1∈T

max
k∈K
|Xk

t+1 −Xk
t |, LT = #{t : 1 ≤ t ≤ T − 1,∃k : Xk

t 6= Xk
t+1}

It is easy to show that BT ≤ KBmax
T ≤ KLT . Thus, by just replacing BT with KBmax

T and KLT
we can already get regret bounds with the other two variation budgets.

However, we show that we can further improve these bounds by order of
√
K as follows: We only

need to modify the way we estimate the regret in Eq (4). In particular, recall that for each ∈ T ′j and
k ∈ K, we have

|Xk
t − X̂k

t | ≤
T∑

t,t+1∈Tj

|Xk
t+1 − X̂k

t | ≤
T∑

t,t+1∈Tj

max
l∈K
|X l

t+1 − X̂ l
t| ≤ Bmax

j (9)

where Bmax
j is the maximum variation budget of batch j. Replacing this back to Eq. (3) we get:∑
t∈T ′j

(αX∗t −Xπ
t ) =

∑
t∈T ′j

(αX̂∗t − X̂π
t ) +

∑
t∈T ′j

(αX∗t − αX̂∗t ) +
∑
t∈T ′j

(X̂π
t −Xπ

t )

≤
∑
t∈T ′j

|X∗t − X̂∗t |+
∑
t∈T ′j

|Xπ
t − X̂π

t |

≤
∑
t∈T ′j

2Bmax
j

≤ 2∆TB
max
j

(10)

By following the same steps in the proof of Theorem 3, we get that the regret bound for RGA is

O
(√

(2D̃ +K)TBmax
T

)
if ∆T is optimally tuned to be

⌈√
(T+1)(2D̃+K)

2Bmax
T

⌉
.

Similarly, for number of changes LT , we can rewrite Eq. (9) as follows:

|Xk
t − X̂k

t | ≤
T∑

t,t+1∈Tj

|Xk
t+1 − X̂k

t | ≤
T∑

t,t+1∈Tj

I(Xk
t+1 6= X̂k

t )

≤
T∑

t,t+1∈Tj

I(∃l ∈ K : X l
t+1 6= X̂ l

t)

≤ Lj

(11)

16



where I(·) is the indicator function, and Lj is the total number of changes in batch j. The rest

is similar to the discussion above, and we can get O
(√

(2D̃ +K)TLT

)
regret bound for our

algorithm (with ∆T =
⌈√

(T+1)(2D̃+K)
2LT

⌉
).

Regarding the new values for the approximation ratio of Greedy-BAA, recall that the approximation
bound for Greedy-BAA can be calculated as follows:

r(π∗) =

T∑
t=1

X
π∗t
t ≤

T∑
t=1

X
π+
t

t +

T∑
t=1

D
π+
t

max

D
π+
t

min

Xπ+
t

t +

max(Blk(t,π+
t ))−1∑

t̄=t

|Xπ+
t

t̄ −Xπ+
t

t̄+1|


≤

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +
∑
i∈K

T−1∑
t=1

|Xi
t −Xi

t+1|

)
(12)

Note that the term
∑
i∈K

∑T−1
t=1 |Xi

t −Xi
t+1| from Eq (12) can be bounded above by KBmax

T and
KLT , respectively. This implies that:

r(π∗) =
T∑
t=1

X
π∗t
t ≤

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +
∑
i∈K

T−1∑
t=1

|Xi
t −Xi

t+1|

)

≤
T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +KBmax
T

)

≤

(
1 +

Dj∗

max

Dj∗

min

)
r(π+) +

Dj∗

max

Dj∗

min

KBmax
T (13)

Similarly, we have:

r(π∗) =

T∑
t=1

X
π∗t
t ≤

T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +
∑
i∈K

T−1∑
t=1

|Xi
t −Xi

t+1|

)

≤
T∑
t=1

X
π+
t

t +
Dj∗

max

Dj∗

min

(
T∑
t=1

X
π+
t

t +KLT

)

≤

(
1 +

Dj∗

max

Dj∗

min

)
r(π+) +

Dj∗

max

Dj∗

min

KLT (14)

Thus, we have the approximation ratio of
[ (

1 + D̃
)

+ D̃KBmax
T /r(π+)

]−1

for the usage of

maximum variation budget Bmax
T , and

[ (
1 + D̃

)
+ D̃KLT /r(π

+)
]−1

if we use the number of
changes budget LT .

D Proof of Claims 1 and 2

Proof of Claim 1. Consider the case of BT = KT . This implies that the rewards can change in an
arbitrary way. Now consider the case when Dk

t = 1 for all k ∈ K and t ∈ T (i.e., there is no blocking
at all). In this case, we have α = 1/2. The main idea of the proof is to randomly generate the
sequences of Xk

t in some way and prove that in expectation (over this randomisation), the α-regret is
large. In particular, for any arm pulling policy π we have that:

E
[
α
∑
t

X∗t −
∑
t

Xπ
t

]
= E

[
α
∑
t

max
k∈K

Xk
t −

∑
t

Xπ
t

]
≥ E

[
α
∑
t

max
k∈K

Xk
t

]
−max

k∈K
E
[∑

t

Xk
t

]
+ max

k∈K
E
[∑

t

Xk
t

]
− E

[∑
t

Xπ
t

]
≥ α

∑
t

E
[

max
k∈K

Xk
t

]
−max

k∈K
E
[∑

t

Xk
t

]
+ R̃πT

(15)

17



where R̃πT is the pseudo regret of π against the best fixed policy in hindsight. Now we use the
standard stochastic setup to prove the lower bound of the pseudo regret: e.g., the arms are drawn

from Bernoulli distributions with one arm to have reward mean of ε+
√

K
T , while the other arms

have reward mean of ε (see, e.g., [Bubeck and Cesa-Bianchi, 2012] for the technical details). By
doing so, we can prove that R̃πT ≥ 1

8

√
KT . In addition, we have that:

α
∑
t

E
[

max
k∈K

Xk
t

]
−max

k∈K
E
[∑

t

Xk
t

]
= αT

(
1− (1− ε)K(1−

√
K/T − ε)

)
− T (

√
K/T + ε)

= T
(
α
(

1− (1− ε)K(1−
√
K/T − ε)

)
−
(√

K/T + ε
)) (16)

Substituting α = 1/2 and β = (1− ε)K we further have:

T
(
α
(

1− (1− ε)K(1−
√
K/T − ε)

)
−
(√

K/T + ε
))

= T
(

(1− β)/2− (
√
K/T + ε)(1− β/2)

)
≥ T

(
(1− β)/2− ε

)
−
√
KT

(17)

Putting all these together we get:

E
[
α
∑
t

X∗t −
∑
t

Xπ
t

]
≥ T

(
(1− β)/2− ε

)
− 7

8

√
KT (18)

It is easy to show that for any K ≥ 2, with a sufficiently small ε, there exists a constant c > 0 such
that (1 − β)/2 − ε) > c. This implies that E

[
α
∑
tX
∗
t −

∑
tX

π
t

]
∈ Θ(T ), which concludes the

proof.

Note that the same proof works for any constant α > 0.

Proof of Claim 2. Note that in this claim, the value of α is defined by the approximation ratio of
Greedy-BAA, and not the value from Theorem 3. The reason for this modification is that α = 1

1+D̃

in this case becomes Θ(1/T ), which is not very meaningful. In particular, α = 1/T implies that, as
the optimal solution is bounded above by T , a policy with sub-linear 1

T -regret would only need to
achieve Θ(1) performance, which is not difficult to achieve.

Now, consider the following two instances of a 2-arm bandit model: In problem instance P1, we
have a bandit model with arms 1 and 2. For t = 1, we have X1

1 = 1 with D1
1 = 1, and X2

1 = 0 with
D2

1 = T , respectively. For t ≥ 2 we set X1
t = 0 with D1

t = 1, and X2
t = 1 with D2

t = 1 as well.
It is clear that in this instance Greedy-BAA will also be the optimal solution, with pulling Arm 1 at
t = 1 and repeatedly pulling Arm 2 afterwards (thus, the optimal performance is T ). If any policy
starts with pulling Arm 2 first, the total reward it can collect is 0 (as after pulling Arm 2 at t = 1,
from t = 2, the only feasible arm is Arm 1 with reward 0).

We also design problem instance P2 by swapping the rewards and blocking durations of the 2 arms in
P1 with each other. In this instance, the optimal solution is to pull Arm 2 first and then repeatedly
pull Arm 1. For both P1 and P2, the path variation budget is B = 2.

Now, consider an arbitrary policy π. Suppose that π pulls Arm 1 with probability p ∈ [0, 1].
For now, assume that p ≤ 1/2. In this case, if π is applied to P1, its expected reward will be
pT + (1 − p)0 ≤ T/2, implying that the difference between the performance of π and that of
Greedy-BAA is at least T/2. Similarly, if p > 1/2, we will consider P2. Putting these together we
can see that for any arbitrary policy π, there exists a problem instance on which the approximate
regret is at least T/2.

18



E Performance Comparison between Greedy-BAA and RGA

From Theorem 2 we have that:

r(π∗) ≤
(

1 +
Dk∗

max

Dk∗
min

)
r(π+) +

Dk∗

max

Dk∗
min

BT ≤

(
1 +

D̃

˜
D

)
r(π+) +

D̃

˜
D
BT

where r(π∗) is the (offline) optimal solution, and r(π+) is the performance of Greedy-BAA. This
can be rewritten as:

˜
D

˜
D + D̃

r(π∗)− D̃

˜
D + D̃

BT ≤ r(π+). (19)

For RGA, we know from Theorem 3 that

˜
D

˜
D + D̃

r(π∗)−O
(√

T (2D̃ +K)BT

)
≤ r(RGA). (20)

IfBT = o(T ), we have that
√
T (2D̃ +K)BT > BT , thus the LHS of Eq (19) is larger than the LHS

of Eq (20), which implies that the approximation ratio of Greedy-BAA is still a better performance
guarantee than that of RGA (i.e., the the α-regret bound).

We further demonstrate this by running a small numerical experiment as follows: In this experiment
we set T = 10000,K = 10, and the initial maximal path variationBT = 3 (our results show a similar
broad view for other parameter settings as well). We compare the performance of Greedy-BAA, RGA,
and a random algorithm (which uniformly and randomly pull a feasible arm at each time step).

We consider reward vectors that have a reward of 1 for one arm and 0 for the others. We then divide
the time horizon into switching blocks of fixed length. In each switching block the reward vector
switches to another reward vector uniformly at random. For each fixed switching block size, We run
the experiment 50 times, and plot the average performance in Figure 1 (the error bars with confidence
value of 0.95 are too small that they were removed from the plots for the sake of visualisation). In
particular, we plot the average collected reward value against the switching block size.

Note that for both the uniform random and Greedy-BAA algorithms the average reward is constant
regardless of the size of the block chosen. This makes intuitive sense as Greedy-BAA sees the reward
vector ahead of time so knows when to switch arms, whilst the random algorithm is just pulling
arms at random and makes no attempt to track the best arm. Note that making the switching blocks
large corresponds to reducing the variation budget. This is interesting as it seems, that as switching
block length increases, RGA begins to approach the performance of Greedy-BAA. When the switching
block size becomes too small the performance of RGA deteriorates and becomes equivalent to the
performance of the uniform random policy. But in all the cases, the average performance of RGA is
still below that of Greedy-BAA.

19



Figure 1: A performance comparison between Greedy-BAA (red), RGA (blue), and uniform random
(green).

20


	Introduction
	Main Contributions
	Related Work

	Preliminaries
	The Offline and Online MAXREWARD Problems
	The Computational Complexity of the Offline MAXREWARD Problem
	Online MAXREWARD Problem with Bounded Variation Budget

	The Adversarial Blocking Bandit Problem
	Blocking Bandit with Known Path Variation Budget
	Blocking Bandit with Unknown Path Variation Budget

	Discussions
	Proofs for Theorems from Section 3
	Proofs for Theorems from Section 4
	Regret Analysis with Other Variation Budgets
	Proof of Claims 1 and 2
	Performance Comparison between Greedy-BAA and RGA

