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Abstract

Noncentrosymmetric (NCS) superconductors lack a centre of inversion sym-
metry. This along with antisymmetric spin orbit coupling can result in an admixture
of singlet and triplet pairing in the superconducting state. This admixture can give
rise to several unconventional superconducting behaviours such as exotic supercon-
ducting gap functions, upper critical fields that violate the Pauli limiting field and
time-reversal symmetry breaking among others. In this thesis, the NCS supercon-
ductors Re6Zr, La7Pd3, La7Ir3, TaRh2B2 and NbRh2B2 have been studied using a
combination of low-temperature magnetisation, heat capacity, resistivity and muon
spin spectroscopy techniques (µSR).

High quality single crystal and polycrystalline samples have been prepared
by a variety of synthesis techniques. Polycrystalline samples of Re6Zr and La7Pd3

were prepared by arc melting. Polycrystalline samples of NbRh2B2 and TaRh2B2

have been synthesised by solid state reaction. Single crystal samples of La7Ir3 have
been prepared using the Czochralski process.

The superconducting and normal-state properties of the cubic NCS supercon-
ductor Re6Zr with Tc = 6.75(5) K have been investigated. The properties of Re6Zr
are observed to be dominated by the effects of disorder with electrical resistivity
measurements indicating poor metallic behaviour. Heat capacity measurements of
Re6Zr indicate that the superconducting gap is isotropic and s-wave in nature with
enhanced electron-phonon coupling.

La7Pd3 and La7Ir3 are hexagonal NCS superconductors with Tc of 1.46(5)
and 2.41(5) K respectively. Magnetisation, resistivity, heat capacity and transverse-
field µSR measurements of polycrystalline La7Pd3 reveal that it is a fully gapped
s-wave superconductor. However, zero-field µSR measurements indicate that time-
reversal symmetry is broken in the superconducting state. La7Ir3 single crystals
have been synthesised and characterised to look for evidence of anisotropy in the
superfluid density to explain the observation of time-reversal symmetry breaking in
polycrystalline samples.

TaRh2B2 and NbRh2B2 are isostructural chiral NCS superconductors with a
Tc of 6.05(5) and 7.58(5) K respectively. Both compounds have upper critical fields
that violate the Pauli limiting field which can not be modelled by the Werthamer-
Helfand-Hohenberg model. Evidence for multigap superconductivity has been found
in heat capacity and µSR measurements performed on TaRh2B2 and NbRh2B2.
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Chapter 1

Introduction and Historical

Overview of Unconventional

Superconductivity

1.1 The Discovery of Conventional Superconductivity

At the beginning of the 20th century Dutch physicist, Heike Kamerlingh Onnes,

discovered that when mercury is cooled down below 4.2 K the resistivity drops to

zero. This original phenomena was named by Onnes as “supraconductivity” which

is now better known as superconductivity [15]. A few years later it was discovered

that resistivity could be restored by applying a sufficiently large magnetic field or

current. In the following years several other metals were reported to exhibit the same

behaviour such as lead (Tc = 7.2 K) and with the highest superconducting transition

temperature being reported in Niobium at Tc = 9.2 K. The next big step in the

story of superconductivity was taken in 1933 when Franz Walther Meissner and

Robert Ochsenfeld noticed that when a superconducting material was cooled below

its transition temperature they observed perfect diamagnetism where the magnetic

flux is expelled from the interior of sample [16]. A year later Fritz and Heinz London

came up with the first phenomenological theory for superconductivity in which they

proposed a simple two fluid model. In this theory they explained the Meissner effect

and predicted one of the key characteristic properties of superconductors known

as the penetration depth λ [17]. Then in 1950 Vitaly Ginzburg and Lev Landau

devised the macroscopic theory of superconductivity which uses Landau’s theory

of second-order phase transitions [18]. Although a phenomenological model, it has

proved to be a powerful tool in understanding superconductivity.
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Seven years later two more major steps forward in understanding supercon-

ductors occurred. The first came from Alex Abriskosov who when applying external

magnetic fields determined there are two categories of superconductors: Type I

where all the magnetic flux is expelled from the superconductor below its critical

temperature and Type II where in large external fields the superconductor is par-

tially penetrated by the magnetic flux [19]. The second step, and potentially the

largest in the history of superconductors so far, was the proposal of a complete

microscopic theory of superconductors put forward by John Bardeen, Leon Cooper

and Robert Schrieffer. This theory now known as BCS theory suggested that below

the critical temperature of a superconductor an attractive interaction forms between

electrons close to the Fermi surface which is mediated by phonons [20]. The elec-

trons in fact form pairs known as Cooper pairs that have opposite momentum and

spin. The BCS theory for superconductivity has been so successful that it forms

the basis of present understanding of conventional superconductivity and forms a

reference theory for more unconventional superconductivity as shall be discussed in

this thesis. Until this point Matthias’ rules had been used to empirically explain the

variation in critical temperatures as well as excluding the possibility of supercon-

ductivity existing in non-metallic systems and rare earths with unpaired electrons,

and co-existing with ferromagnetism, anti-ferromagnetism [21, 22]. However, BCS

theory was able to qualitatively explain many of these rules. The crystal structure

of superconductors had never been thought of as one of the key components in de-

termining the properties of superconductors. In the years to come crystal structure

would be found to indeed play a vital role.

1.2 The Road to Unconventional Superconductivity

Having given an overview of the experimental and theoretical progression of “con-

ventional” superconductivity we now discuss “unconventional” superconductivity.

In this thesis we will define a superconductor to be classed as unconventional if the

pairing mechanism from which Cooper pairs form deviates from that of the BCS

description.

1.2.1 Superfluid 3He

While BCS theory proved to be a excellent theory for explaining and understand-

ing the behaviour of conventional superconductors it was found that it could be

applied to a multitude of interesting systems. The story leading to the discovery of

unconventional superconductivity in heavy fermion materials starts with superfluid
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3He. At the time it was understood that 4He undergoes Bose condensation at low-

temperatures when it enters its superfluid phase however it was not clear whether
3He had a superfluid phase. 3He is a fermion so to condense would need a pairing

mechanism, since 3He has a large hard core repulsion from the filled electron shell

it was speculated that a d-wave ordering parameter would allow sufficient nodes to

allow an attractive van der Waals tail to pair the fermions [23]. Hence it came as

rather a surprise to researchers when superfluid 3He was discovered [24] and even

more so when it was found to have p-wave superfluidity [25]. Further investigations

into the superfluid phase of 3He revealed two distinct phases: a B phase where the

pairing states form in a sphere i.e. kxx̂ + kyŷ + kzẑ where x̂ for example is the

projection of the Cooper pairs spin, indicating that the energy gap is isotropic [26].

In the A phase, however, the pairing state has the form (kx + ıky) ẑ which has nodes

in the Fermi surface giving an anisotropic energy gap [27]. For condensed matter

physicists 3He provided a simple system to investigate. Its parabolic dispersion with

weak spin-orbit interactions along with its normal-state parameter are well known

from experiments and easily described by simple Legendre polynomials [28, 29]. The

complexity in this system comes when looking at the contributions to the pairing

interactions; it turns out that everything contributes to the pairing including spin,

density and current fluctuations [30]. The investigations into these complexities laid

the vital ground work for the subsequent exploration of unconventional supercon-

ductors.

1.2.2 Heavy Fermion Superconductors

There was a staggered start to the discovery of heavy fermion superconductors. At

the time there was general consensus that magnetism and superconductivity could

not co-exist in a system [31, 32], although there were researchers who were not

captivated by the BCS theory, such as Matthias, that believed this was not the

case [33]. Superconductivity had been found in several uranium compounds such

at U2PtC2 [33] and UBe13 [34] although it was thought that the superconductivity

was due to filaments of α-U (a conventional superconductor). The first conclusive

proof of heavy fermion superconductivity came in 1979 with the discovery of su-

perconductivity below 0.5 K in CeCu2Si2 [35]. The two key properties of CeCu2Si2

are the enhanced electronic coefficient of the specific heat which is a 1000 times

that of copper (≈ 1 J/mol K2) and the jump in specific heat that is enhanced by

a similar factor. The enhancement to electronic contribution to the specific heat

can be explained as the result of the Kondo interaction due to the hybridisation of

the f electrons with the conduction band. The enhanced superconducting transi-
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Figure 1.1: Phase diagram of CePd2Si2 versus pressure. As the pressure is increased
the antiferromagnetic phase is suppressed until the appearance of a superconducting
dome at 20 kbar. Adapted from Ref. [1].

tion indicates that the Cooper pairs are formed of electrons within these “heavy”

hybridised bands. It was seen that the superconductivity in this system could be

easily suppressed by adding non-magnetic impurities. When considered together

these phenomena indicate that the quasiparticles in CeCu2Si2 are strongly inter-

acting. The properties of CeCu2Si2 were observed to be highly sample dependent

with some showing antiferromagnetic behaviour and other showing superconductiv-

ity [36]. In some cases both were seen. Closer inspection of CeCu2Si2 using muon

spin resonance measurements reveals the lack of microscopic coexistence of both

antiferromagnetism and superconductivity [37].

Soon after CeCu2Si2 more heavy fermion materials were discovered such

UPt3 [38] along with the (re)discovery of UBe13 [39] and U2PtC2 [40]. Many of the

properties of UPt3 were seen to be reminiscent of 3He encouraging many theorists

to transfer the theories from 3He to UPt3. Researchers soon realised this would

lead to a d-wave singlet pairing rather than p-wave triplet pairing. The question

then quickly turned to whether magnetic correlations are responsible for supercon-

ductivity in heavy fermion systems? A clearer picture started to emerge with the

discovery of CeIn3 and CePd2Si2 whose antiferromagnetic phase is found to be sup-

pressed with increasing pressure [1]. A quantum critical point was found when the
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antiferromagnetic order was suppressed to zero and a superconducting ’dome’ ap-

pears. This was taken as evidence for the attractive interaction between Cooper

pair electrons in these systems to be mediated by magnetic interactions rather than

phonon. The same behaviour was seen in CeXIn5 where X is a transition metal

with one slight difference that the superconducting phase overlaps with the antifer-

romagnetic phase [41, 42].

1.2.3 High-temperature Cuprate Superconductors

Up until 1986 the superconductor with the highest critical field discovered was

Nb3Ge with Tc = 23 K [43]. At this time reports started to appear of materials with

superconductivity with many turning out to be false. This lead to Bednorz-Muller’s

paper on superconductivity in Ba doped La2CuO4 [44] to go largely unnoticed.

When superconductivity was then verified by Tanake’s group six months later this

opened the way to the high temperatures cuprate superconductors. Many of these

superconductors had much higher critical temperatures than any other material with

YBa2Cu3O7−x having a Tc = 93 K [45] and Hg-Ba-Ca-Cu-O with a Tc = 164 K un-

der pressure [46]. The discovery of the cuprate superconductors came as much of a

surprise to the superconductor community as they clearly violate many of Matthais

rules being quasi-2D doped insulating oxides materials. A comparison of the phase

diagram of a cuprate superconductor highlights the similarities to the heavy fermion

materials with a antiferromagnetic phase being present at low hole doping that is

gradually suppressed with increased hole doping before a superconducting ’dome’

appears, as can be seen in Fig. 1.2. Analysis of the superconducting gap in cuprates

has revealed they host an anisotropic d-wave ordering parameter which is highly

contrasting to BCS theory that would predict a isotropic s-wave state [47].

1.2.4 Organic Superconductors

It had been speculated that superconductivity could exist in organic compounds [48]

but it was not until 1980 the first confirmation of superconductivity in quasi-1D

Bechgaard salt was reported by Denis Jerome’s group [49]. One example of a quasi-

1D organic superconductor is (TMTSF)2PF6 which was seen to have a spin density

wave at ambient pressures but develop superconductivity as pressure is applied.

These materials are of particular interest due to the tendency to exhibit anomalously

large upper critical fields far above the Pauli limit, this behaviour is seen as indicative

of triplet pairing [50]. While Buckminsterfullerene (C60 also known as Buckyballs)

were largely regarded as strong-coupling BCS superconductors. Recent work on the
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Figure 1.2: Schematic phase diagram as function of hole doping in a cuprate su-
perconductor. As the concentration of hole doping increases the antiferromagnetic
phase is suppressed. If hole doping is increased further a superconducting dome
appears. Figure taken from Ref. [2].

caesium variant indicates a superconducting diagram much like the heavy fermion

and cuprate superconductors [51] where superconductivity emerges under pressure

from an insulating antiferromagnetic phase.

1.2.5 Iron Pnictide Superconductors

More recently in 2008 came the first report of superconductivity in the iron arsenide

compound LaO1−xFxFeAs [52]. The most studied class of the iron pnictide com-

pounds have a 122 structure which is same structure of CeCu2Si2, a heavy fermion

superconductor. The similarities between the iron pnictides and other unconven-

tional superconductors does not stop there, like the cuprates the undoped variant

of a compound is seen to be a commensurate antiferromagnet but upon doping a

superconducting dome opens. An example of a phase diagram for an iron pnictide

superconductor can be seen in Fig. 1.3. There are some differences, the first being

that iron pnictides generally are metallic with a Dirac-like dispersion [53]. They

have also been found to exhibit a full energy gap with weak anisotropy which can

be seen in directional dependence of the upper critical field [54, 55]. Studies have

6



Figure 1.3: Phase diagram as function of Co doping in Ba(Fe1−xCox)2As2. As
the concentration of Co increases the antiferromagnetic phase is suppressed and a
superconducting dome comes up to meet it at x ≈ 0.06. Figure taken from Ref. [3]

ruled out the possibility of a phonon mediated pairing mechanism likely indicating

that the pairing involves antiferromagnetic spin fluctuations although this far from

being conclusively proved [56].

In the above section we have discussed many unconventional superconduc-

tors but one key feature that they all contain is that their crystal structures are all

centrosymmetric. For the rest of this thesis the discussion will be centred around

superconductors that lack a centre of inversion in their crystal structure. In cen-

trosymmetric compounds the inversion symmetry of the compounds means that

parity is a good quantum number. For superconducting systems this implies that

the Cooper pairs must form in either a spin singlet or triplet configuration. In the

case where a compound is noncentrosymmetric (NCS) and has a finite antisymmet-

ric spin-orbit coupling (ASOC) parity is no longer a good quantum number. The

superconducting state in these compounds can no longer be classified as either spin

singlet or triplet but rather an admixture of the two.

The discovery of superconductivity in noncentrosymmetric compounds was

in 1960 however the importance of this was not highlighted by the author [57, 58].
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Figure 1.4: Crystal structure of the heavy fermion noncentrosymmetric CePt3Si.
The Ce atoms are show in green, Pt atoms shown in grey and the Si atom shown in
blue. The absence of inversion symmetry is easily observable in this structure.

The discovery of superconductivity in CePt3Si triggered an intensive experimental

and theoretical response from the superconductivity research community [59, 60]. In

the next section, noncentrosymmetric heavy fermion superconductors shall be high-

lighted. Due to difficulties in separating the heavy fermion behaviour from that of

noncentrosymmetric superconductivity weakly correlated noncentrosymmetric sys-

tems are then discussed.

1.3 Heavy Fermion Noncentrosymmetric Superconduc-

tors

1.3.1 Superconductivity in CePt3Si

The first reported heavy fermion noncentrosymmetric compound was CePt3Si which

crystallises in the tetragonal crystal structure (space group P4mm) [61, 62] as shown

in Fig. 1.4. CePt3Si orders antiferromagnetically below 2.25 K [63] and is the seen to

have a superconducting transition below 0.75 K in polycrystalline samples. Evidence

for heavy fermion behaviour in CePt3Si is seen in the Kondo interaction causing a

substantial enhancement to the Sommerfled coefficient with γn ≈ 400 mJ/mol K2

and a measured ordered moment 0.16 µB/Ce which is much smaller than the ex-

pected 0.65 µB/Ce predicted by the crystal electric field scheme [63, 64]. µSR

measurements have shown the coexistence of both long-range magnetic ordering
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and superconductivity [65]. If the superconducting gap structure is isotropic a

BCS exponential temperature dependence is expected. If instead nodes exist in

the superconducting gap structure this gives rise to power law behaviour in the

low-temperature dependence of superconducting properties. A line nodal structure

to the superconducting gap has been detected in specific heat, penetration depth

and thermal conductivity due to the power law dependence of the low-temperature

superconducting properties in CePt3Si [66, 67, 68].

Several unconventional properties of the superconducting state have been

reported in CePt3Si which has stimulated much of the theoretical and experimental

research in this class of materials. The first of the unconventional properties of

CePt3Si is the anomalously large width of the superconducting transition. The

upper critical field for CePt3Si has also been reported to exceed the Pauli limit of

µ0Hp = 1.4 T with µ0Hc2 = 5 T [61]. This Pauli limit violation is normally taken

as evidence of spin triplet superconductivity. Other anomalous behaviour includes

nuclear magnetic resonance (NMR) experiments reporting that the electronic-spin

paramagnetic susceptibility χs remains constant across all orientations of the crystal

[69].

1.3.2 CeTX3 Family

After the first reports of noncentrosymmetric superconductivity in CePt3Si it was

soon discovered by Kimura that CeRhSi3 is a superconductor under pressure [70].

CeRhSi3 crystallises in the BaNiSi3-type tetragonal structure with noncentrosym-

metric space group I4mm. At ambient pressure CeRhSi3 is seen to order anti-

ferromagnetically with TN = 1.6 K. Kondo interactions class CeRhSi3 as a heavy

fermion superconductor as is seen in the enhancement to the Sommerfeld coeffi-

cient γN = 110 mJ/mol K2 [71]. Much like the centrosymmetric heavy fermion

superconductors as the pressure is increased TN is seen to increase to a maxima at

9 kbar before being suppressed and eventually connecting with a superconducting

dome. The superconducting transition temperature is seen to increase with increas-

ing pressure up to a plateau at 30 kbar where Tc = 1.05 K. The upper critical field

of CeRhSi3 is much larger than the Pauli limiting field with µ0Hc2 = 16 T reported

at p = 26 kbar [72]. Again this extraordinarily larger upper critical field is taken as

evidence for spin triplet superconductivity.

Several other members of the CeTX3 family, where T = transition metal and

X = Si or Ge, crystallise in the BaNiSi3-type tetragonal structure with space group

I4mm which lacks mirror symmetry along the c-axis. Of these only a few have

been reported to show superconductivity under pressure: CeRhSi3 (as discussed
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above), CeIrSi3 at p > 18 kbar [73], CeCoGe3 at p > 43 kbar [74] and CeIrGe3 at

p > 200 kbar [75].

CeIrSi3 is isotructural to CeRhSi3 so it is expected that the compounds will

exhibit similar superconducting and normal state behaviours. CeIrSi3 is reported

to have a higher ordering temperature TN = 5 K and a higher pressure necessary

for superconductivity. As pressure is increased TN is suppressed with superconduc-

tivity appearing at 18 kbar where is reaches its maximum transition temperature

at 25 kbar [73]. Heat capacity measurements performed under pressure show a very

sharp superconducting transition with ∆C/γcT = 5.7 which is much larger than

the BCS value of 1.43. This indicates strong coupling within the superconductor

and could go some way to explain the anomalously large upper critical field [76].

It is worth noting that is one of the largest values of ∆C/γcT reported in any

superconductor.

CeCoGe3 while isotructural to CeIrSi3 and CeRhSi3 presents a rather differ-

ent set of behaviours. CeCoGe3 has a higher antiferromagnetic ordering temperature

TN1 = 21 K than the previous compounds. Unlike the other compounds it has been

reported to have two more antiferromagnetic transitions. Under applied pressure

the antiferromagnetic phase is suppressed before superconductivity is detected be-

tween 54 and 75 kbar with a maximum Tc = 0.69 K. The Kondo interaction is also

seen to be diminished due to a small enhancement in the Sommerfeld coefficient

γn = 49 mJ/mol K2 [75, 77].

Many other compounds have been reported on in the CeTX3 family with

CeRhGe3 [71], CePtSi3 [78] and CePdSi3 [79] boasting antiferromagnetic ordering

at ambient pressures. No superconductivity has presently been found in these com-

pounds under pressure. In CeRuSi3, CeOsSi3 and CeCoSi3 no magnetic ordering or

superconductivity has been observed [78].

Heavy fermion noncentrosymmetric superconductors have proved to be a

bountiful resource for investigating the effects of strong correlations and the poten-

tial for singlet-triplet mixing. They have provided many challenges to the research

community. Most notably there are few discovered heavy fermion superconductors

with only CePt3Si, CeTX3 and UIr [80] having been reported. From an exper-

imental stand point only CePt3Si is a superconductor at ambient pressure, this

necessitates the use of pressure to access the superconducting regime which compli-

cates most experimental measurement techniques. From a theoretical stand point

it has proved challenging to isolate the behaviours caused by strong correlations

and those caused by singlet triplet mixing. Many of the results for CePt3Si take as

evidence for pair mixing can be explained through other means. For example; the
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line nodal order parameter can be explained by magnetic ordering in CePt3Si while

the constant spin susceptibility in all crystal directions can be explained by strong

correlations [81, 82]. Research has now turned to investigate the superconducting

properties of noncentrosymmetric systems which lack strong correlations.

1.4 Weakly Correlated Noncentrosymmetric Supercon-

ductors

Recently experimental and theoretical investigations have taken place into noncen-

trosymmetric superconductors without f or d electrons. A large number of non-

centrosymmetric superconductors without strongly correlated electrons have been

reported. A number of these compounds will discussed in this section with priority

given to those with chiral noncentrosymmetric structures and those where time-

reversal symmetry breaking has been reported.

1.4.1 Nodal Versus Nodeless Superconductivity in Li2-(Pd1−xPtx)3B

Due to the highly tunable nature of the spin-orbit coupling parameter

Li2(Pd1−xPtx)3B is one of the most interesting examples of noncentrosymmetric

superconductors with weak correlations [83, 84, 60]. By doping from Pd to Pt the

ASOC is increased due to the replacing 4d electrons with 5d electrons.

Li2 (Pd1−xPtx)3B crystallises in a cubic antiperovskite structure with the space

group P4332. This space group is both noncentrosymmetric and chiral. Super-

conductivity is observed across all doping concentrations in Li2 (Pd1−xPtx)3B with

Li2Pd3B and Li2Pt3B having superconducting transitions at 7 and 2.2 K respec-

tively. The small magnitude of the Sommerfeld coefficient with γN ≈ 7−9 mJ/mol K2

provides confirmation of the weak correlations in Li2 (Pd1−xPtx)3B [85]. Evidence

of the effects of ASOC on the superconducting state in Li2 (Pd1−xPtx)3B has been

seen in both thermodynamic and NMR measurements where Li2Pd3B is reported

to have fully gapped s-wave superconductivity [86, 87]. However, in Li2Pt3B these

measurements have indicated a line nodal structure to the superconducting gap.

Penetration depth measurements have also observed the same behaviour, with a ex-

ponential temperature dependence in Li2Pd3B and a linear temperature dependence

in Li2Pt3B, as shown in Fig. 1.5 [4]. The penetration depth data has been modelled

using a two-gap function which allows for the coexistence of spin singlet and triplet

pairing. Using this model it was found that by doping from the Pd to Pt the triplet

component is increased. While this is taken as strong evidence from singlet-triplet
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Figure 1.5: Normalised temperature dependence of the normalised penetration
depth and superfluid density in Li2Pd3B (left) and Li2Pt3B (right). The blue lines
indicate a fit to the data using a model of mixed singlet-triplet pairing. The near
linear superfluid density in Li2Pt3B is evidence of line nodes in the superconduct-
ing gap. The curved behaviour of the superfluid density in Li2Pd3B indicates an
anisotropic s-wave gap. Adapted from Ref. [4].

mixing other explanations have been offered for this behaviour. Electronic band

calculations have seen that when bands cross the Fermi level they have an enhanced

d-wave characteristic and show significant nesting. This would suggest that the gap

structure can be explained as s± state with accidental nodes [88]. Mo3Al2C also

crystallises in the cubic antiperovskite structure with the space group P4332 which

as previously mentioned is also chiral as well as noncentrosymmetric [89].

1.4.2 Line Nodal Superconductivity in Mo3Al2C

Mo3Al2C has a superconducting transition at Tc = 9.05 K. Evidence for uncon-

ventional superconducting behaviour is present in specific heat capacity measure-

ments showing a clear deviation from the exponential temperature dependence of

a BCS superconductor and rather shows a line nodal gap [90]. Enhancement to

the superconducting transition temperature under pressure suggests the presence of
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Figure 1.6: Muon spin relaxation rate of La2C3 (left) and Y2C3 (right) as a function
of temperature. The red line shows the fit to the data using a two-gap model. Insets
show the size of the two superconducting gaps for each compound. Adapted from
Ref. [5]

singlet-triplet mixing [91].

1.4.3 Multigap Superconductivity in Y2C3 and La2C3

Nodal structures in the superconducting gap are highly sought after for proof of

singlet-triplet mixing but they are not the only available superconducting gap con-

figuration to allow for an admixture to form. Two-band fully gapped structures are

also anticipated to host singlet-triplet mixing if these gaps are anisotropic. One ex-

ample of a weakly correlated noncentrosymmetric superconductors that may contain

two-gap superconducting band structures are Y2C3 [92] and La2C3 [93]. This pair

of superconductors crystallise in a body-centred noncentrosymmetric structure with

space group I 4̄3d. Y2C3 has a superconducting transition at Tc = 18 K [94, 95] and

La2C3 has a superconducting transition at Tc = 13.2 K [93] however, Tc is highly

sample dependent. Penetration depth measurements on Y2C3 show a linear temper-

ature dependence which indicates line nodes in the superconducting gap [96], unfor-

tunately no other technique has been able to replicate this result. Thermodynamic,

µSR and NMR measurements show a fully gapped s-wave superconductor [97, 98].

µSR and NMR measurements can also be modelled using a two-gap model with one

large superconducting gap dominating with a small contribution provided by a much
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smaller gap [5] as shown in Fig. 1.6. Tunnel diode oscillation (TDO) measurements

of the penetration depth can be modelled with a two-gap structure but below 10%

of Tc a noticeable difference can be seen between the two gap and the line nodal

models with the line nodal being the best fit to the experimental data. It is worth

noting that TDO measurements have been performed down to 90 mK while other

techniques have only measured down to 1.8 K. The upper critical field of Y2C3

µ0Hc2 ≈ 28 T is seen to slightly exceed the weak coupling Pauli limit [96, 99]. This

is normally taken as an indication of triplet pairing in a superconductor. There are

several other reasons for this slight enhancement to the upper critical field that do

not require singlet-triplet mixing. La2C3 plays host to two-gap superconductivity

which has been confirmed by µSR [5, 100] and photoemission spectroscopy [101].

Heat capacity measurements performed on La2C3 suggests the superconductivity is

dominated by a single gap s-wave model with strong electron-phonon coupling [102].

1.4.4 Coexistence of Magnetism and the Superconducting State

The observation of time-reversal symmetry breaking in noncentrosymmetric super-

conductors has intrigued both the experimental and theoretical research community.

Time-reversal symmetry breaking (TRSB) in noncentrosymmetric superconductors

is often taken as evidence of unconventional superconductivity since certain triplet

states will break time-reversal symmetry [103]. LaNiC2 was the first noncentrosym-

metric compound where the observation of time-reversal symmetry breaking was re-

ported [104]. LaNiC2 crystallises in the noncentrosymmetric orthorhombic CeNiC2

structure with space group Amm2 [105]. There has been some controversy from

heat capacity measurements, the first report showed a T 3 temperature dependence

to the heat capacity [105], this has since been found to be incorrect. With more

modern instrumentation a exponential BCS temperature dependence has now been

reported [106, 107]. Magnetic penetration depths measurements have also proved to

be similarly convoluted with both point node [108] and two gap s-wave structures

being reported [107]. The discrepancy seen in penetration depth measurements has

found to be due to magnetic impurities. µSR measurements have observed time-

reversal symmetry breaking in LaNiC2 [104]. Symmetry analysis on the crystal

structure of LaNiC2 reveals there are three possible non-unitary states though in

the presence of spin-orbit coupling these three states are disallowed [109]. The detec-

tion of time-reversal symmetry breaking in the centrosymmetric LaNiGa2 highlights

that the observed behaviour behind the superconducting state in LaNiC2 can not

be attributed to the noncentrosymmetric structure [110].

Recently a large body of experimental work has been published on the Re-
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Figure 1.7: (a) Zero-field µSR measurements of Re6Zr collected at 0.3 (red) and
8.0 K (black) where a faster decay in the asymmetry is observed below Tc. (b) The
temperature dependence of Kubo-Toyabe relaxation rate σ where there is a clear
increase at Tc and (c) the exponential relaxation rate Λ which remains constant. (d)
Zero-field µSR measurements of Re6Hf collected at 0.3 (black) and 9.0 K (orange)
where a faster decay in the asymmetry is observed below Tc. (e) The temperature
dependence of Kubo-Toyabe relaxation rate ∆ where there is a clear increase at Tc

and (f) the exponential relaxation rate Λ which remains constant. (g) Zero-field
µSR time spectra for Re0.82Nb0.18 above (red) and below (blue) the superconduct-
ing transition. The inset shows the temperature dependence of the Kubo-Toyabe
relaxation rate σ where there is a clear increase at Tc from measurements done at
ISIS and PSI. (h) Zero-field µSR time spectra for pure rhenium above (red) and
below (blue) the superconducting transition. The inset shows the temperature de-
pendence of the Kubo-Toyabe relaxation rate σ where there is a clear increase at Tc.
Figures (a, b, c) taken from Ref. [6], (d, e, f) taken from Ref. [7] and (g, h) taken
from Ref. [8]

based α-Mn noncentrosymmetric compounds. In this thesis the superconducting

and normal state properties of Re6Zr will be discussed. It is worth summarising the
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findings of these recent reports in this section. Re-based α-Mn noncentrosymmet-

ric compounds crystallise in the cubic noncentrosymmetric space group I 4̄3m [57].

These compounds have a particularly large unit cell with 58 atoms occupying 4 sites.

Re6Zr [6, 111, 112], Re6Hf [113, 114, 7], Re6Ti [115], Re24Ti5 [116, 117], Re3Ta [118],

Re3W [119, 120, 121] and Re1−xNbx [122, 123] are all bulk superconductors with

full gapped s-wave superconductivity measured by heat capacity and penetration

depth. NMR measurements have also confirmed the isotropic s-wave nature of the

superconductivity in Re6Zr. As a result of time-reversal symmetry breaking sponta-

neous magnetic moments are expect to arise below Tc which can be detected using

µSR. Re6Zr [6], Re6Hf [7], Re6Ti [115], Re0.82Nb0.18 [8] and Re24Ti5 [117], have

been observed to break time-reversal symmetry as shown in Fig. 1.7. Very recently

a paper has been published showing that pure Re is observed to break time-reversal

symmetry below its Tc suggesting that the origin of this behaviour is not due to

broken inversion symmetry but rather due to the inherent large spin-orbit coupling

strength of Re [8]. No time-reversal symmetry breaking has been observed in Re3Ta

and Re3W.

La7Ir3 a hexagonal noncentrosymmetric compound (space group P63mc) has

also been reported to break time-reversal symmetry breaking and to have fully

gapped s-wave superconductivity [124, 125]. The superconducting and normal state

properties of polycrystalline La7Ir3 shall be discussed later in this thesis along with

the synthesis and characterisation of single crystals of La7Ir3.

The multitude of experimental phenomena presented above gives an indica-

tion of the large range of exotic superconducting properties noncentrosymmetric su-

perconductors can exhibit. The results discussed above are summarised in Table 1.1

along with other noncentrosymmetric compounds that have not been discussed here.

It is clear that there is a need for high quality single crystals, more experimental data

on existing compounds and the discovery of new noncentrosymmetric compounds

with interesting superconducting properties to gain further understanding into the

role crystal structure plays on the superconducting state in these systems.

1.5 Thesis Overview

In this thesis experimental data from several weakly correlated noncentrosymmetric

systems will be presented and discussed. Below is summary of upcoming chapters

and their contents:

• Chapter 2, Theory of Superconductivity
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In this chapter a brief discussion of the theoretical background of supercon-

ductivity will take place. The chapter begins by examining the London model

for superconductivity before discussing the Ginzburg-Landau theory of super-

conductivity along with BCS theory.

• Chapter 3, Experimental Details

In this chapter the experimental techniques that have been utilised to grow

and characterise the materials present in this thesis are discussed in detail.

• Chapter 4, Superconducting and Normal-State Properties of Cubic

Noncentrosymmetric Re6Zr

The normal-state and superconducting properties of Re6Zr are presented in

this chapter along with neutron diffraction measurements. We compare our

results with the discovery of time-reversal symmetry breaking in pure cen-

trosymmetric rhenium.

• Chapter 5, Hexagonal Noncentrosymmetric Superconductors La7Pd3

and La7Ir3

This chapter begins by discussing the superconducting properties of La7Pd3

along with the detection of time-reversal symmetry breaking in this system.

Finally we discuss the single crystal growth and characterisation of La7Ir3. We

compare these results with other members of La7X family of superconductors.

• Chapter 6, Chiral Noncentrosymmetric Superconductors TaRh2B2

and NbRh2B2

TaRh2B2 and NbRh2B2 are new chiral noncentrosymmetric superconductors

previously reported to violate the Pauli limiting field. In this chapter, the

superconducting properties of TaRh2B2 and NbRh2B2 are characterised using

magnetisation, resistivity, heat capacity and muon spin resonance techniques.

Using these techniques the superconducting order parameter within these com-

pounds is investigated.

• Chapter 7, Summary and Conclusions

A summary of the key results and outcomes as well as a discussion on the

remaining challenges.
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Table 1.1: Normal-state and superconducting properties of some noncentrosymmet-
ric superconductors discussed in chapter 1. The superconducting gap is indicated
by F for fully gapped, PN for point nodes, LN for line nodal, U for unknown and 2
for indicating if two gaps are present.

Compound Space Tc γN µ0Hc2 Superconducting TRSB
Group (K) (mJ/mol K2) (T) Gap

CePt3Si P4mm 0.75 390 3.2 LN N
CeRhSi3 I4mm 1.05 120 30 U N
CeIrSi3 I4mm 1.6 125 45 LN N
CeCoGe3 I4mm 0.64 32 20 U N
UIr P21 0.13 49 0.026 U N
Li2Pd3B P4332 8 9 5 F2 N
Li2Pt3B P4332 2.8 7 2 LN N
Mo3Al2C P4132 9 17.8 15 PN N
Y2C3 I 4̄3d 18 6.3 30 LN/F2 N
La2C3 I 4̄3d 13 10.6 19 F2 N
BiPd P21 3.8 4 0.8 F2 N
LaNiC2 Amm2 2.7 7.7 0.5 F2 Y
Re6Hf I 4̄3m 5.96 27.2 12.2 F Y
Re3W I 4̄3m 7.8 15.9 12.5 F N
Re24Ti5 I 4̄3m 5.8 111.8 10.75 F Y
La7Ir3 P63mc 2.25 47 2 F Y
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Chapter 2

Theory of Superconductivity

2.1 Introduction

When a material known as a superconductor is cooled below its transition tem-

perature, Tc, it exhibits two distinctive experimental properties: 1) zero electrical

resistance [15] and 2) perfect diamagnetism [16]. Diamagnetism is a behaviour of a

material to weakly oppose an applied magnetic field. Superconductors exhibit per-

fect diamagnetism when cooled below Tc in a low applied field, the field is unable

to penetrate the material beyond the surface and all magnetic flux is expelled from

the bulk of the material. This behaviour is called the Meissner-Ochsenfeld effect

and it is the ultimate test of if a material is truly a superconductor. It is important

to note that the Meissner-Ochsenfeld effect does not come about as a result of the

material have zero electrical resistance. If zero electrical resistance was the cause of

this behaviour when a superconductor is cooled in an applied field, when the applied

field is then removed below the Tc eddy currents would persist and persevere the

trapped field in the interior of the superconductor. Expulsion of the magnetic flux

implies that the superconducting state is a true thermodynamic equilibrium state.

2.2 Elementary Phenomenological Theory

This section will outline some of the early attempts to phenomenologically explain

the key experimental behaviours of superconductors. The key ideas and results of

each of these theories will be highlighted.
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2.2.1 London Theory

The first attempt to explain Meissner-Ochsenfeld effect was with the London model.

The London model tried to reconcile Maxwell’s equations for electrodynamics with

a two fluid model for the superconducting state. The two fluids in question are

normal-state electrons n mixed with a fraction of anomalous superconducting elec-

trons ns. The model was incredibly successful in describing the two key properties

of superconductors. Although a phenomenological model the electrodynamic prop-

erties are captured by the two London equations [126]

∂Js

∂t
=
nse

2

me
E, (2.1)

∇× Js =
nse

2

me
B, (2.2)

where B and E are the magnetic flux density and the electric field respectively, me

is the mass of an electron, ns is the number density of superconducting electrons

and Js is the supercurrent density. Equation (2.1) describes the phenomenon of

zero electric resistance since any field applied to the superconducting electrons will

accelerate them rather than apply a sustained velocity against the resistance as

described in Ohm’s law. When Eq. (2.2) is applied to Ampere’s law the follow

result is found

∇2B =
B

λ2
L

, (2.3)

where the λL is the London penetration depth, an intrinsic property of the super-

conducting materials and describes the penetration of the magnetic field into the

superconductor in the superconducting state which is given by

λL =

√
mec2

4πnse2
. (2.4)

Now consider the case of a constant magnetic field B applied to an infinite super-

conducting slab the field distribution in the x direction is given by

Bx = −λ2
L

d2Bx

dx2
, (2.5)

one solution to this differential equation is

Bx (x) = Bx (0) exp

(
−x

λL

)
, (2.6)
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Figure 2.1: Schematic of the Meissner effect from the London interpretation of
superconductivity. The magnetic field is screened exponentially from the interior of
the slab with a penetration depth λL.

which describes the Meissner-Ochsenfeld effect where the applied magnetic field is

screened exponentially from the interior of the slab with a penetration depth λL as

shown in Fig. 2.1. One restriction of the London equations is that they have no

temperature dependence for the magnetic penetration depth which did not match

observed behaviour. By using the temperature dependence for the number den-

sity of superconducting electrons ns proposed by Gorter-Casimir [127] the London

penetration depth can given by

λ (T ) =
λ (0)√[

1−
(
T
Tc

)4
] . (2.7)

From Eq. (2.7) it can be seen that as the temperature increases towards the transi-

tion temperature the penetration depth trends to infinity.

2.2.2 Landau Theory of Second Order Phase Transitions

The limitations of the London model are very clear; the London equations no longer

hold when the number density of the superconducting electrons ns varies. It is

also desirable to have a more general framework through which ns can be related

to external parameters such as the applied field or the current. A better under-
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standing of superconductivity can be gained by considering the thermodynamics of

the superconducting phase transition. The Ginzburg-Landau theory use Landau’s

general theory of second order phase transitions to describe the change from an

disordered to an ordered state. A example of a second order phase transition that

can be modelled by Landau’s theory is that of a transition from a ferromagnetic to

paramagnetic phase. Here a spontaneous magnetisation M is seen below a critical

temperature Tc and vanishes above Tc. A minimum in the Helmholtz free energy F

must occur at the Tc with the conditions: For T > Tc, M = 0 and T < Tc, M 6= 0.

For a second order phase transition the Helmholtz free energy F is expressed as:

F (T,M) = F (T, 0) + a (T − Tc)M
2 + bM4 + c|∇M |2, (2.8)

where it is assumed that a and b > 0. It can be seen that if T > Tc, F is minimised

only for M = 0 but for T < Tc there is a non-zero solution:

M2 =
b (Tc − T )

2b
. (2.9)

This solution shows M grows perpetually from zero when cooled below the transi-

tion temperature. If Eq. (2.8) is differentiated it remains continuous at the phase

transition, however, if Eq. (2.8) is differentiated twice a discontinuity arises at the

phase transition. A discontinuity will therefore be seen in parameters that are de-

pendent on the second derivative of the free energy, for example, the anomaly in the

specific heat of the superconducting transition.

2.2.3 Ginzburg-Landau Theory of Superconductivity

In the Ginzburg-Landau theory of superconductivity instead of using spontaneous

magnetisation M as discussed above, Ginzburg and Landau postulated that an

order parameter ψ (r) can be used to explain the superconducting transition. The

wavefunction for this order parameter is defined as

ψ (r) = |ψ (r) | expiϕ(r), (2.10)

which has the following properties: 1) |ψ ∗ ψ| is interpreted as the number of su-

perconducting electrons at point r, 2) ϕ (r) is related to the supercurrent, and 3)

ψ 6= 0 below Tc and ψ = 0 above Tc. Using Landau’s theory of second order phase

transitions Ginzburg and Landau have defined the Helmholtz free energy with the

following form
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Fs = Fn + α|ψ|2 +
β

2
|ψ|4 +

~
2m

(∇|ψ|)2 +
1

2
|ψ|2mv2

s +
(B−Bapp)2

2µ0
, (2.11)

where vs is the superfluid velocity

vs =
1

m
(~∇ϕ− 2eA) . (2.12)

Here Fs is the superconducting state free energy density, Fn is the normal-state

free energy density, B is the total magnetic field, Bapp is the contribution from the

external magnetic field and A is the magnetic vector potential. The usefulness of

these Ginzburg-Landau equations quickly becomes apparent when you assume a ho-

mogeneous distribution. In this case the gradient terms equal zero and a minimised

solution can be found in a similar manner to Eq. (2.9). It can be seen that there is

a critical field above which the free energy of the Meissner state (B = 0) is greater

than the free energy of the normal-state implying there is a phase transition at a

critical field known as the thermodynamic critical field Bc. Phenomenologically it

was found that Bc follows a parabolic temperature dependence given by [128]:

Bc (T ) = Bc (0)

[
1−

(
T

Tc

)2
]
. (2.13)

The magnetic phase diagram for Eq. (2.13) is drawn in Fig. 2.2. Superconductors

that follow this behaviour are categorised as type-I superconductors. However, it

was found that samples existed that could maintain the superconducting state well

above Bc. These materials are categorised as type-II superconductors where above a

lower critical field Bc1, the superconductor enters a mixed state where magnetic flux

can penetrate through the superconductor. It was later predicted by Abrikosov that

the magnetic field penetration must be in the form of magnetic vortices containing

exactly one magnetic flux quantum of magnitude [19]:

Φ0 =
h

2e
= 2.07× 10−15Wb. (2.14)

There is then a further upper critical field Bc2 where the material returns to the

normal-state. The magnetic phase diagram for a type-II superconductor can be seen

in Fig. 2.3.

The Ginzburg-Landau theory gives rise to two important characteristic length

scales for superconductors. The first of these length scales is the effective penetra-

tion depth λGL which is proportional to the London penetration depth. The second
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Figure 2.2: The left hand panel shows a schematic magnetic phase diagram for
a type-I superconductor showing the Meissner state. The right hand panel shows
a schematic of the magnetisation versus field for a type-I superconductor. The
magnetisation has a gradient of -1 indicating complete flux expulsion up to the
critical field at which point superconductivity is destroyed.

characteristic length scale is the Ginzburg-Landau coherence length ξGL which mea-

sures the distance over which the superconducting order parameter establishes itself

(i.e. ψ rises from zero to its maximum over a distance ξGL). Both λGL and ξGL

can determined experimentally from critical field measurements using the following

relations

Borb
c2 =

Φ0

2πξ2
GL

, (2.15)

Bc1 =
Φ0

4πλ2
GL

lnκ, (2.16)

where Bc2 and Bc1 can be determined from magnetisation, resistivity and heat ca-

pacity measurements. Here, κ is the ratio of the two parameters giving the Ginzburg-

Landau parameter

κ =
λGL

ξGL
. (2.17)

The thermodynamic critical field can also be related to the two length scales by the

following equation

Bc =
Φ0

2
√

2πλGLξGL

. (2.18)

An important result can be found by relating Borb
c2 and Bc by combining Eqs. (2.15)
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Figure 2.3: The left hand panel shows a schematic magnetic phase diagram for a
type-II superconductor showing the upper and lower critical fields. The right hand
panel shows a schematic of a typical magnetisation versus field for a type-II super-
conductor. Initially the magnetisation has a gradient of -1 indicating complete flux
expulsion up to the lower critical field. Above this point the magnetic field pene-
trates into the superconductor forming the mixed state until the superconductivity
is destroyed at the upper critical field.

and (2.18) to give

Bc2 = κ
√

2Bc. (2.19)

From this we can see that the two types of superconductivity. When κ > 1/
√

2

this implies that Bc2 > Bc, therefore superconductivity can exist above Bc by the

creation of a mixed state which would classify the superconductor as type-II. In

the case where κ < 1/
√

2 then Bc2 < Bc which implies that the superconductivity

is destroyed above the Bc which would classify the superconductor as type-I. The

Ginzburg Landau parameter provides a useful way to classify superconductors using

their characteristic length scales.

Numerical calculations in Ginzburg and Landau’s original paper showed the

surface energies of the interfaces between the normal and the superconducting state

are positive if κ < 1/
√

2 and are negative if κ > 1/
√

2. They recognised that

an intermediate state would be formed in a type-I superconductor with a non-

zero demagnetisation factor though failed to realise any other distinctions between

the positive and negative surface energies. In 1957 Abrikosov found that upon

further inspection that a negative surface energy allows for nucleation of normal-

state regions within the superconducting state. Abrikosov predicted that these
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Figure 2.4: Left panel shows the local magnetic field distribution for a type-II
superconductor in the mixed state with three different penetration depths. Adapted
from Ref. [9]. Right panel shows the spatial magnetic field distribution for an
hexagonal flux line lattice shown in a contour plot. Adapted from Ref. [10]

normal-state regions would be formed of magnetic vortices containing exactly one

magnetic flux quantum. Each of these magnetic vortices is constructed of a normal

core surrounded by a swirling supercurrent which screens the magnetic field from

the superconducting region. It was further shown by Abrikosov that the magnetic

vortices must form in a square lattice configuration due to the mutual repulsion of

the vortices, these lattice configurations are known as the flux-line lattice. Later

it was shown that the lowest energy state for a flux-line lattice is in a hexagonal

configuration rather than a square [129].

By numerically solving the Ginzburg-Landau equations the magnetic field

profile and probability distribution can be obtained as shown in Fig. 2.4. The

probability distribution in Fig. 2.4 has a broad distribution with a peak in the in

the probability which corresponds to a saddlepoint in the magnetic field profile.

The maximum and minimum represent the vortex cores and the point which is

equidistant between the cores respectively. Fig. 2.4 also shows that as the magnetic

penetration depth increases the peak probability moves closer to the average field

〈B〉 and the overall distribution narrows.
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2.3 Microscopic Theory of Superconductivity

2.3.1 Bardeen, Cooper and Schrieffer Model

The microscopic theory of superconductivity known as BCS theory showed in brief

that electrons within a superconductor form pairs known as Cooper pairs. The

electrons pair up due to an attractive interaction arising from their interaction with

the lattice. The electron-phonon interactions allow for the pairs of electrons to have

a bosonic like nature where they can condense into a quantum ground state and no

longer interact with other electrons. The s-wave pairing symmetry is the simplest

form which is where the Cooper pairs form spin-singlets with zero orbital angular

momentum. A detailed summary of the BCS theory can be found in Refs. [20, 130,

131]. For this thesis it is worth summarising some important results of the BCS

theory. The ground state wave function for Cooper pairs in the s-wave state from

BCS theory is given by

|ΨBCS〉 =
∏
k

(
u∗k + v∗kc

†
k↑c
†
−k↓

)
|0〉, (2.20)

where |0〉 is the vacuum state, u∗k and v∗k are complex wavefunctions where |uk|2 +

|vk|2 = 1. c†k↑ and c†−k↓ represent the electron pair creation operators with crys-

tal momenta k and −k. The lowest energy configuration for the wave function

is spatially symmetric, isotropic interaction. To ensure that the overall pair wave

function is antisymmetric it is required that the electron pair have opposite spins.

The reduced Hamiltonian for the Cooper pair can then be given by summing the

energy band dispersion εk =
(
~2k
2m − µ

)
with chemical potential µ with the sum of

the attractive interaction between the electron pairs Vk,k′ . This gives the following

Hamiltonian

H =
∑

k,σ=↑↓
εkc
†
kσc
†
−kσ +

1

2

∑
k,k′

c†k↑c
†
−k↓Vk,k′c

†
k′↑c
†
−k′↓. (2.21)

By minimising the expectation value of the sum by equating it to zero the ground

state of the system can be found. This minimisation gives the quasiparticle excita-

tion energy

Ek =
√
ε2k + ∆2

k, (2.22)

where ∆k is the gap energy of the excitation spectrum or rather the energy required

to break up the pair electrons. At T = 0 the magnitude of the superconducting gap
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Figure 2.5: Normalised temperature dependence of the BCS energy gap from the
numerical [11] (dark green circles) and the approximate solution [12] (blue dashed
line) showing strong agreement between the two calculations.

is given by

∆0 = 1.764kBTc (2.23)

where kB is the Boltzmann constant. However at T 6= 0 an analytical solution can

not be found, it is instead necessary to calculate ∆(T ) numerically [11] or with the

approximation [12]

∆ = 1.764kBTc tanh

(
1.82

[(
Tc

T
− 1

)]0.51
)
. (2.24)

As shown in Fig. 2.5 the approximation and the numerical solution have good agree-

ment.

2.3.2 Multiband and Unconventional Superconductivity

The underlying assumption of BCS theory of superconductivity is that all the elec-

trons on the isotropic Fermi surface contribute equally to the pairing interaction

giving a single gap energy. Typical band structures are never normally that simple

with multiple bands lying close to the Fermi surface with different electron masses
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depending on the electron dispersion energies. For superconductors with multiple

bands lying close to the Fermi surface this can lead to different electron-phonon

coupling strengths therefore giving difference gap energies. Multiband supercon-

ductivity was proposed in the 1950s [132] and has been found to be successful in

explaining much of the physics in MgB2 [133, 134] and the Iron-pnictide supercon-

ductors [135, 136].

The two-band model is dependent upon the strength of the inter and intra-

band coupling with three different scenarios arising. In the case of weak interband

coupling the superconductor will have two separate distinct transition temperatures

for the two separate bands. In the case of strong interband coupling both super-

conducting transitions occur at the same temperature but still have different gap

energies. For intermediate interband coupling the superconducting transition still

occur at the same temperature but the full opening of the superconducting gap will

be suppressed to temperatures lower than the onset transition temperature.

So far we have only discussed the case of an isotropic s-wave superconduct-

ing state which has even parity (l = 0) ensuring a spin singlet state. It is however

possible for l = 0, 1, 2... and not require the electron-phonon interaction. In these

cases other pairing mechanisms are at play however the details of these other mech-

anisms will not be discussed in this thesis, further details can be found in Ref. [137].

When l = 1 the Cooper pairs form with odd parity so have a spin-triplet config-

uration, these are known as p-wave superconductors. Here there is possibility of

the Cooper pairs forming with different possible spin configurations that are par-

allel to each other. Therefore the triplet pairing state is described by the vector
~d = 1

2 (∆−− −∆++,−i (∆−− + ∆++) ,∆+− −∆−+) where the pseudospins are de-

noted by + and − and the gap energy is given by |~d|2 [138, 139, 140]. The super-

conducting gap is no longer required to be strictly isotropic with the potential for

zero points along the Fermi surface. These zeros can form as either point or line

node depending upon ~d. It is also possible for non-unitary triplet states to form

with partial polarisation of the Cooper pairs, this can lead to time-reversal symme-

try breaking. When l = 2 this results in higher ordered angular momenta singlet

states as l = 2 has even parity. Superconductors with l = 2 are known as d-wave

superconductors.

2.3.3 Noncentrosymmetric Superconductivity

So far we have only discussed the case of centrosymmetric superconductors where

the overall wave function is required to be antisymmetric under particle interaction.

This has then required that the orbital part of the wave function be either odd or
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even parity (either singlet or triplet pairing). Noncentrosymmetric superconductors

lack a centre of inversion symmetry, what this means for the superconducting wave

function is that parity is no longer a good quantum number [60]. A Rashba-type

antisymmetric spin-orbit coupling (ASOC) is allowed lifting the degeneracy of the

Fermi surface. The Hamiltonian of the ASOC has the form αgk · S where α is the

strength of the ASOC and gk is a vector dependent upon the crystal and electronic

structure of the compound. Cooper pairs now no longer form as purely singlet or

triplet pairs but rather an admixture of the two [141, 142]. The superconducting

gap ∆̂ can described by the following matrices which takes in account an s-wave

component and a d-vector that describes the triplet order parameter [143, 140]

∆̂ =

(
∆++ ∆+−

∆−+ ∆−−

)
=

(
−dx + idy dz + ∆s

dz −∆s dx − idy

)
(2.25a)

where the s-wave term is given by

∆s =
1

2

(
∆+− −∆−+

)
, (2.25b)

and where the d-vector that describes the triplet order parameter is given by

~d =
1

2

(
∆−− −∆++,−i

(
∆−− + ∆++

)
,∆+− −∆−+

)
. (2.25c)

Here it can be seen that the singlet case corresponds to ~d = 0 and the triplet

case corresponds to ∆s = 0. It can be seen that the gap for an admixture of

triplet and singlet superconductors results from the sum of the two components.

An interesting result can be seen when the triplet term is small. This will result in

a nodeless near isotropic gap making it experimentally difficult to distinguish from

a centrosymmetric s-wave superconductor.

2.4 The Clean and Dirty Limit

In most materials there is a level of intrinsic disorder from impurities and structural

inhomogeneities. In superconductors in the normal-state this will lead to changes in

the scattering rate. The ratio of the scattering rate 1/τ compared to the supercon-

ducting gap indicates whether the superconductor is in the clean or dirty regime. If a

superconductor is in the clean regime then 1/τ << 2∆ and if a superconductor is in

the dirty regime then 1/τ ≥ 2∆. Therefore as the scattering rate increases the sys-

tem becomes increasingly disordered. The clean and dirty limit are more commonly
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expressed as the ratio of the scattering length le and the BCS coherence length ξ0

which denotes the spatial extent of the Cooper pair inside the superconductor. The

BCS coherence length is given by [144]

ξ0 =
~νF

π∆
, (2.26)

where νF is the Fermi velocity. The clean limit can be expressed as ξ0/le << 1 and

the dirty limit as ξ0/le >> 1. Many superconducting parameters will be affected by

disorder for example the Ginzburg-Landau coherence length ξGL (T ) is reduced in

the dirty limit

ξGL (T ) = 0.85
√
ξ0le

(
Tc

Tc − T

)1/2

. (2.27)

Whereas in the clean limit the scattering is assumed to be negligible

ξGL (T ) = 0.74ξ0

(
Tc

Tc − T

)1/2

. (2.28)

The Ginzburg-Landau penetration depth λGL (T ) is seen to be similarly affected by

the scattering length where in the clean limit

λ (T ) =
λL√

2

(
Tc

Tc − T

)1/2

. (2.29)

However, increased scattering of the electrons leads to a lowering of the superfluid

density. Hence the penetration depth increases in the dirty limit due to less effective

screening of the magnetic fields

λ (T ) = 0.64λL

√
ξ0

le

(
Tc

Tc − T

)1/2

. (2.30)

The details of other superconducting parameters in the clean and dirty limit will be

discussed when required in later chapters of this thesis.

2.5 Pair-Breaking Mechanisms

For type-II superconductors there are two possible mechanisms for destroying the

superconducting state. The first pair breaking mechanism is known as the orbital

critical field, µ0H
orb
c2 [see Eq. (2.15)]. Here as the field increases more normal-state

vortex cores will be generated eventually the intervortex spacing decreases to a point

where the vortices begin to overlap. Once this happens the superconductivity is
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destroyed. The second mechanism is due to a paramagnetic limiting effect otherwise

know as the Pauli limiting field. When a magnetic field is applied to a band of

electrons a splitting into spin up and spin down bands is observed i.e. the Zeeman

effect. By equating the superconducting condensate energy with the Zeeman energy

the Pauli paramagnetic limit can be seen to be

µ0H
P
c2 =

√
2∆0

gµB

√
(1− χs/χn)

, (2.31)

where g = 2 for free electrons, χs and χn are the spin susceptibilities of the super-

conducting and normal-state respectively. The Clogston-Chandrasekhar limit can

be found for an s-wave superconducting state since χs = 0 giving

µ0H
P
c2 = 1.86Tc. (2.32)

In the case of triplet pairing however, χs = χn and therefore no Pauli limit exists.

The Werthamer, Helfand, Hohenberg model (WHH) theory of single-band,

dirty limit superconductors can be used to model the upper critical field taking into

account orbital and Pauli paramagnetic pair breaking effects. The WHH model will

be discussed in more detail in Chapter 4.
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Chapter 3

Experimental Details

3.1 Sample Preparation

3.1.1 Polycrystalline Growth

Arc Melting

Polycrystalline samples of Re6Zr, La7Ir3 and La7Pd3 were produced by arc melting

using a tri-arc furnace. Stoichiometric amounts of the constituent materials are

placed onto a water-cooled copper hearth in the sample chamber. A rotary pump is

then used to evacuate the chamber before being flushed with argon gas, this process

is repeated at least three times. The materials are melted by generating a high cur-

rent arc between the tip of a tungsten electrode and the copper hearth. To ensure

sample homogeneity the samples are flipped and remelted several times. The sam-

ples are then annealed by sealing the as-cast samples in an evacuated quartz tubes

and placing the tube in a box furnace for two weeks at a temperature determined

by the phase diagram of the material.

Solid State Reaction

Polycrystalline samples of TaRh2B2 and NbRh2B2 were produced by solid state

reaction method. In this method, powders of the constituent materials are mixed

and ground together before being pressed into a pellet. The pellet is wrapped in

tantalum foil and placed on an alumina boat. The samples are then placed into a

high vacuum furnace. The high vacuum furnace consists of an alumina tube that

can be sealed at either end, One end is typically attached to diffusion pump that is

backed by a rotary pump to achieve a vacuum of 106 mbar.
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Figure 3.1: Schematic diagram of the RF furnace used to perform single crystal
growth.

3.1.2 Single Crystal Growth

Single crystals are required to thoroughly understand the role of crystal structure

on the properties of noncentrosymmetric compounds. In the case of polycrystalline

samples the disordered nature of the crystal domains can dominate the properties, in

particular they make it very difficult to detect if there are any anisotropic behaviour

due to random orientation of the domains. We have used Czochralski process to grow

single crystals.

The Czochralski Process

Single crystals of La7Ir3 where produced by the Czochralski process using a radio

frequency (RF) furnace as shown in Fig. 3.1 [145]. Polycrystalline La7Ir3 was placed

in a tungsten crucible which is inserted into a quartz tube that is evacuated and

flushed with argon gas. The tungsten crucible and sample is then heated using a

radio-frequency furnace. The sample was heated to very close to its melting point

such that a skin can be seen to be forming over the melt. At this point a seed rod,
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consisting of either a pointed tungsten rod or a single crystal attached to a tungsten

rod, is lowered just below the surface of the melt. The tungsten crucible and sample

are then rotated in a clockwise direction while the seed rod is rotated in the opposite

direction. After 10 minutes the the seed rod is then raised at 10 mm/hr as the single

crystal is pulled from the liquid melt.

3.2 Powder X-ray Diffraction

When a wave scatters off a grating constructive interference can be seen at certain

angles producing a diffraction pattern. If the scatterers are planes of atoms these

act like a grating as well, however, the distance between the atoms determines the

wavelength of radiation required. The spacing between the atoms will be of the order

of angstroms so the required wavelength of radiation is in the x-ray regime. Unlike

a grating, crystals have many periodic three dimensional planes so the angle of

diffraction will be related to the overall structure of the crystal. X-ray diffraction is

a powerful tool to measure the structure of materials, Max von Laue first described

diffraction patterns of crystal using three vector dot products. A much simpler

model was proposed by William Henry Bragg which uses three crystallographic

planes as shown in Fig. 3.2. In the Bragg model the incident x-rays are reflected

by each of the crystallographic planes. When the incident x-ray is reflected off the

second and third plane it can be seen in Fig. 3.2 that they are required to travel a

further distance equal to ABC for the second plane. This implies that the phase will

shift with respect to the first wave giving rise to either constructive or destructive

interference. For constructive interference to be observed it is required that the

distance ABC is exactly an integer number of wavelengths nλ. This now allows us

to derive the Bragg law since

AB = dhkl sin θ, (3.1)

and when diffraction occurs AB = λ/2

λ = 2dhkl sin θ. (3.2)

The Bragg’s law underpins all scattering techniques and shows that from a x-ray

diffraction pattern the inter-plane spacing of the crystallographic structure can be

calculated. In the Laue description of x-ray diffraction we can define the following

wave vectors for the incoming and scattered x-rays as ki and kf . For elastic scattering

to occur the following must be true ki = kf = 2π/λ. Constructive interference of
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Figure 3.2: The diffraction process as described by Bragg’s scattering model for
uniformly spaced planes of atoms.

the wave vectors is necessary to observe diffraction is give the following relation

q = ki − kf = G (3.3)

where q is the scattering vector and G is the reciprocal lattice vector. The real space

lattice can be found by taking the Fourier transform of the reciprocal space lattice.

This means that by mapping out the positions and intensities of the reciprocal space

lattice the orientation and structure of the real space lattice can be obtained. By

using a Ewald sphere the conditions for diffraction can be more readily seen as

shown in Fig. 3.3. An Ewald sphere can be constructed by considering the wave

vectors ki and kf both originating from the same point with a length equal to 2π/λ.

All possible configurations of ki and kf will form a three dimensional Ewald sphere.

However, diffraction is only observed when the reciprocal lattice points intersect

with the Ewald sphere. A more detailed theory of x-ray scattering can be found in

Ref. [146]

Powder x-ray diffraction patterns were captured using a PANalytical X’Pert

PRO multi-purpose X-ray diffractometer (MPD) and a Bruker D5005 diffractometer.

The Panalytical X’Pert Pro MPD is equipped with a Johansson monochromator

giving a very high-resolution source of pure Cu Kα1 radiation. The Bruker D5005
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Figure 3.3: The diffraction process in reciprocal space where a plane of atoms are
denoted by a single point (purple spheres). When the diffraction condition is met
an Ewald sphere can be constructed shown by the dot-dashed line.

is a general purpose diffractometer equipped with Cu Kα sources and set up in the

Bragg-Brentano geometry where the detector is moved across a variety of scattering

angles 2θ and the scattering intensity is measured at each of these points. The

diffraction pattern consists of intensity as a function of scattering angle which can

then be fit using methods such Rietveld refinement. These structural refinement

methods allow for the theoretical diffraction pattern to be fit using variables such

as the lattice parameters, atomic positions and site occupancies [147].

3.3 Laue Diffraction

In order to orientate single crystal samples back-reflection Laue diffraction was used.

This method involves backscattering a beam of polychromatic x-rays sent from the

centre of a scintillator screen off a single crystal sample. When the x-rays backscat-

ter off the sample an image of the reciprocal space lattice can be obtained. The

images are captured using a Photonic Science charge-coupled device (CCD). To al-

low for easy orientation of the single crystal the samples are mounted on a triple

axis goniometer. A full description of this technique can be found in Ref. [148]
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3.4 Energy Dispersive X-ray Spectroscopy

Energy dispersive x-rays spectroscopy (EDX) is a technique used to determine the

stoichiometry of a material. EDX uses a scanning electron microscope (SEM) with

x-rays to excite electrons in the inner shell of the atom to higher energy outer shells.

An electron then decays from a higher energy outer shell back into the inner shell.

These decays emit x-rays with energies corresponding to the difference between the

two energy levels. The decay energy is unique to the atom’s electron configuration

so can be used to identify the elemental composition of a sample. More details about

the EDX technique can be found in Ref. [149].

3.5 Magnetisation

DC Susceptibility

Bulk magnetisation measurements were performed using a Quantum Design Mag-

netic Properties Measurement System (MPMS). The magnetometer consists of a

set of superconducting coils arranged in a second-order gradiometer configuration

connected to a superconducting quantum interference device (SQUID), as shown in

Figure 3.4. A small heater is used to drive the superconducting coil and SQUID

into the normal-state to quench any persistent supercurrents. Measurements can be

performed at temperatures from 1.8 to 400 K and in applied magnetic fields up 7 T.

The sample is mounted in non-magnetic straw which is attached to a sample rod.

This is then inserted vertically through the pick up coils inducing supercurrents.

The sample is scanned across a 4 cm length where the system takes 32 measure-

ments. The induced current at each of these 32 points is converted to a extremely

accurate voltage by the SQUID. The measured voltages are then fit with a model of

a dipole field. To obtain the magnetic susceptibility of an unknown sample the sys-

tem is first calibrated with a sample of well known magnetic susceptibility, usually

Palladium. A full description of the operation of MPMS can be found in Ref. [150].

For superconductors the DC magnetic susceptibility is measured in two

modes, zero-field-cooled warming (ZFCW) and field-cooled-cooling (FCC). In ZFCW

the sample is cooled in zero-field before a magnetic field is applied. This allows for

maximum field exclusion from the superconducting sample leading to a measure-

ment of the full Meissner fraction. In FCC mode a field is applied at temperatures

above the superconducting transition temperature and then cooled, this allows for

maximum field penetration but is the excluded on cooling through Tc.

In low magnetic fields it is necessary to take into account the shape of the
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Figure 3.4: Schematic diagram of the second-order gradiometer for the MPMS
SQUID magnetometer. The sample is vertically scanned through the second-order
gradiometer coils inducing a current in the superconducting wires. This induced
current is then converted to a voltage and detected very accurately by the SQUID
sensor. A magnetic field can be applied along the axis of the gradiometer coils. A
small heater can be used to quench the superconducting wires and SQUID to remove
any persistent supercurrents trapped in the circuit.

sample for demagnetisation effects. Unless otherwise stated the sample was orien-

tated in the field to minimise the effects of demagnetisation. All calculations of the

magnetic susceptibility include a demagnetisation factor which has been calculated

using Ref. [151].

Using an iQuantum 3He insert bulk magnetisation measurements can be

performed down to 0.5 K. The sample is placed inside a sealed pipe which is vertically

inserted into the sample space. 3He is then condensed inside the pipe allowing the

system to cool to 0.5 K. The system operates in “one-shot” mode meaning that only

ZFCW and field-cooled-warming measurements can be performed. Measurements

as a function of field can be made by holding the sample at a fixed temperature but

once the liquid 3He is evaporated temperatures become unstable and the 3He gas
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then needs to be recondensed for further measurements.

AC Susceptibility

AC susceptibility measurements where performed using the AC susceptibility op-

tion in the Quantum Design MPMS. In AC magnetisation measurements a small

AC drive magnetic field is applied on top of any DC field, causing a time-dependent

response in the sample. These responses induce supercurrents in the detection coils.

The detection circuit is configured to detect a narrow band of frequencies at the fun-

damental frequency of the driving AC field. AC magnetisation yields two quantities,

χ′ and χ′′ which are the in-phase and out-of-phase component respectively. While χ′

closely follows the response of the DC magnetisation χ′′ gives a indication of energy

losses in the system. A full description of the operation of the AC susceptibility

option for the Quantum Design MPMS can be found in Ref. [150].

Vibrating Sample Magnetometer

Bulk magnetisation measurements as function of field where performed using an

Oxford Instruments Vibrating Sample Magnetometer (VSM). Samples are mounted

vertically on a PEEK sample holder attached to a carbon-fibre sample stick which

is oscillated at a typical frequency of 55 Hz between two pick up coils. The induced

voltage in the coils due to the oscillation of the sample is measured by a lock-in

amplifier. Measurements where performed in fields up to 12 T and in temperatures

between 1.4 and 300 K. One of the advantages of using a VSM is that the magnetic

field does not need to be stabilised between measurements unlike in a SQUID mag-

netometer. This means that the flux dynamics of the systems can be more easily

observed when measuring the magnetisation as a function of field.

Pressure Cell

Magnetisation measurements as a function of pressure were performed using an

easyLab Mcell-10 hydrostatic pressure cell which can apply pressure up to 10 kbar.

Figure 3.5 shows a schematic diagram of the pressure cell which is designed for use

in a Quantum Design MPMS. The hydrostatic pressure is transmitted to the sample

via Daphne oil which is used to fill a PTFE capsule. Copper gaskets are inserted

on either side of the sealed PTFE capsule to form a loose seal inside the cell body.

The pressure is applied by the PTFE capsule through the ceramic piston and caps

by applying pressure using a hydrostatic pump. The pressure is then maintained

by tightening the upper locking nut. To measure the internal pressure of the cell in
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Figure 3.5: Schematic diagram of the exploded view of easyLab Mcell-10 hydrostatic
pressure cell.

situ a small piece of Sn, which servers as a manometer, is inserted into the PTFE

capsule along with the sample.

3.6 Resistivity

A Quantum Design Physical Properties Measurement System (PPMS) was used to

measure the resistivity. Measurements were performed in applied fields up to 9 T

and in temperatures from 300 to 1.8 K or down to 0.4 K using a 3He insert. Samples

were cut into bars with a well defined cross-sectional area and four silver wires of

0.05 mm diameter were attached using DuPont 4929N silver paste. The wires are

set up in the four-probe geometry which requires two outer wires to supply current

and two inner wires separated by length l to measure the potential difference as seen

in Fig. 3.6. The resistivity can then be calculated by

ρ =
RA

l
, (3.4)
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Figure 3.6: Schematic diagram of how the contacts are laid out for a four probe
resistivity measurement, where l is the distance between the two voltage contacts.

where A is the cross-sectional area of the sample and R is the sample electrical

resistance. By using this method the contact resistance can be neglected due to the

voltage leads drawing little current which allows for an accurate measurement of the

voltage.

3.7 Specific Heat

A Quantum Design PPMS was used to perform specific heat measurements between

1.8 and 400 K in applied field up to 9 T. A 3He insert was used to attain temperatures

down to 400 mK and a dilution refrigerator insert was used to measure down to

50 mK. Samples are mounted on a sapphire platform using Apiezon N grease and

to ensure good thermal contact the face of the sample in contact with the platform

is polished. The sample stage is suspended by wires attached to a copper heat sink

held at a constant temperature. The wires provide connections for the heater and

thermometer that are attached to the bottom of the platform while also providing

thermal link between the isolated stage and heat sink.

The heat flow diagram of the heat capacity puck is shown in Fig. 3.7. Here

the sample heat capacity is denoted by Cs and the combined platform, thermome-

ter, heater and grease heat capacity is denoted by Ca. There are also two thermal

conductivity parameters K1 and K2 which represent the conductivity between the

platform and the heat sink, and the platform and the sample respectively. The

sample, platform and heat sink have temperatures Ts, Tp and T0. Specific heat

measurements are performed by switching on the platform heater to warm the the

sample and platform. Here the heater provides power P to the platform assem-
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Figure 3.7: Heat flow diagram of the heat capacity puck. The platform is heated
by the attached heater while the temperature of the platform is measured. The
sample should be strongly thermally coupled to the platform (K2 >> K1) ensuring
Ts ≈ Tp.

bly such that the temperature rises by ∆T = P/K1. The following heat balance

equation is obtained when it is assumed that sample and the platform are strongly

coupled so that Tp ' Ts [152]:

P = (Ca + Cs)
dTp

dt
+K1 (Tp − T0) . (3.5)

After some period of time the the heater is switched off so that the sample and

platform relax back to the thermal bath temperature. The platform cools with an

exponential relaxation given by

Tp (t) = T0 + ∆T exp (−t/τ) (3.6)

where the time constant is given by

τ =
(Cs + Ca)

K1
. (3.7)

By performing an initial addendum measurement of Ca the sample heat capacity
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can then be measured and quantified using the method described above. However,

in reality there is imperfect thermal contact between the sample and the platform so

the assumption that Tp ' Ts no longer holds. For real systems it is then necessary

to use two exponential functions to model the thermal relaxation:

Tp (t) = T0 +A exp (−t/τ1) +B exp (−t/τ2) (3.8)

This is known as the two-tau model. In this model one relaxation is much faster

than the other. The fast relaxation is observed as the sample and platform reach

equilibrium. While the slower relaxation results from the sample/platform cool-

ing back to the temperature of the heat sink. A full description of how specific

heat measurements are performed on a Quantum Design PPMS can be found in

Refs. [153].

3.8 Neutron Scattering

3.8.1 Neutron Production

There are two methods of neutron production employed for neutron diffraction ex-

periments: spallation and a nuclear reactor. In this thesis neutron diffraction and

muon spectroscopy experiments were performed using the ISIS neutron spallation

source at the Rutherford Appleton Laboratory so spallation will be the only tech-

nique discussed.

The first step to produce neutrons at ISIS is to generate hydrogen ions using

a H− source where an arc is generated using a 50 A current source to make a plasma.

The H− ions are accelerated to 35 keV on leaving the source. The H− are then ac-

celerated using radio frequency quadrupole accelerators from 35 to 665 keV and

grouped into 1 ns long bunches at a frequency of 202.5 MHz. The H− are then ac-

celerated further to 70 MeV using a four-section drift tube linear accelerator. Before

entering the synchrotron the H− are stripped of the electrons by a thin alumina foil.

The protons are accelerated and focused around the synchrotron ring by bending

and focusing magnets and radio frequency electric field accelerators. After 10,000

revolutions the protons now have an energy of 800 MeV and have been collected into

two bunches of protons. Once the protons have reached the correct energy they are

then extracted from the synchrotron using a kicker. The protons are then directed

to a tungsten target to produce neutrons by spallation. When the proton bunches

bombard the tungsten target neutrons are produced at an approximate ratio of 15

- 20 neutrons per proton which implies the total number of neutrons generated per
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pulse is approximately 4 × 1014. The neutrons created in this process have similar

energies to the protons used to generate them. It is therefore necessary to slow the

neutrons down using a moderator that consists of liquid hydrogen (20 K), methane

(100 K) and water (290 K) which bring the energy of the neutrons down to meV.

Spallation neutron production allows for a high intensity of neutrons with minimal

heat production at the target. The layout of the H− source, linear accelerator,

synchrotron and target station at the ISIS neutron spallation source is shown in

Fig. 3.8 [13].

3.8.2 Neutron Diffraction

Neutrons are an excellent tool for studying the bulk crystal and magnetic structures

of materials. The versatility of neutrons stems from being highly penetrative and

their inherent spin-1
2 . Thermal neutrons that have a wavelength λ ≈ 2×10−10 m are

scattered by a point-like strong interaction with the nucleus which has an interaction

length ≈ 10−14 m. For neutrons this means they are scattered almost isotropically

from the atomic nuclei unlike x-ray scattering where the scattering is determined

by the charge density of the Fermi-sea. For neutrons the bound scattering length

b is both independent of incident angle and wavelength [154] and describes the

the interaction of a neutron with the entire atom which also includes contributions

from various electromagnetic interactions. The value of b is not well understood

but originates from a combination of the orientation of the nuclei’s spin and the

make up of the nucleus which makes it highly isotope dependent. If b is plotted as

function of atomic mass no clear trend can be seen, this provides clear advantage for

neutron over x-ray scattering [155]. For x-rays the scattering intensities are highly

dependent on the atomic number Z of the elements being measured where heavy

elements will provide strong scattering intensities and lighter elements will have

weaker scattering intensities thus making lighter elements more difficult to identify.

Similarly elements with Z that are in close proximity will produce very similar x-ray

scattering intensities making it difficult to distinguish between them. Since b is so

different from element to element and isotope to isotope for neutron scattering this

proves not to be a problem. There are several disadvantages to neutron scattering,

the first being that most elements also have an absorption cross section as well

as a scattering cross section, and for some elements such as the most abundant

isotope of gadolinium this is particularly problematic as absorption dominates over

scattering. It is therefore necessary to use an isotope with a lower absorption cross

section. Another disadvantage of neutron scattering is the requirement of either a

nuclear reactor or a spallation source which presents a host of resource and safety
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Figure 3.8: Schematic layout of the ISIS spallation neutron and muon source show-
ing the approximate locations of all the end stations. The GEM diffractometer is
highlighted by a red circle and the µSR end stations are highlighted by a blue circle.
Taken from [13].

complications.

46



Figure 3.9: Schematic of the GEM diffractometer showing the position of the detec-
tor banks around the central sample tank. Adapted from Ref. [14]

3.8.3 GEM Diffractometer

Powder neutron diffraction experiments were performed using the General Materials

(GEM) diffractometer at ISIS. The high intensity and high resolution of the GEM

diffractometer allows for the study of crystal and magnetic structure materials as

well as the study of structure of disordered materials such as liquids and glasses. The

diffractometer consists of 6 banks of detectors that are arranged at fixed positions

at a range of scattering angles from 1.1 to 169.3 o around an evacuated sample tank

as seen in Fig. 3.9. The arrangement of the detectors in this way means that bank 1

provides largest d spacing at the cost of resolution while bank 6 provides the highest

resolution but at the cost of d space. The incident flight path for GEM is 17 metres

and a neutron wavelength of ∼ 0.3 nm is produced by a series of choppers [14].

3.9 Muon Spectroscopy

Muon spin relaxation and rotation, collectively know as µSR, is a technique used

to probe the magnetic distribution of the vortex lattice inside a superconductor by

implanting positive muons and measuring the directional dependence of the emitted

positrons. Muons are a second generation lepton with spin-1
2 that are 207 me.

Positive muons are used to measure condensed matter systems since they behave

like light protons rather than heavy electrons in the negative muons case. When
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negative muons are implanted into the sample the muon will implant close to the

nucleus of the atom and will be captured by the nuclei giving a material dependent

life-time. However, when positive muons are implanted they stop in the interstitial

sites of the crystal structure so will be susceptible to the physics of the surrounding

electrons and will decay after a well-defined lifetime of 2.2 µs that is independent of

the material. The vital property of muons that make them so interesting for studying

condensed matter systems is their non-zero spin that makes them susceptible to the

local magnetic environment. The spin of the muon will precess in a magnetic field

with a well defined gyromagnetic ration of γµ/2π = 135.5 MHz T−1.

The muon spectroscopy data presented in this thesis was taken at the MuSR

instrument at the ISIS pulsed neutron spallation source. The production of muons

at this facility makes use of the proton beam used to generated neutrons. For muon

production a graphite target is placed in the proton beam and absorbs about 5% of

the beam’s power. At the graphite target high energy protons collide into carbon

atoms to produce a zoo of pions. To ensure the production of µ+ we need positive

pions, π+, which are produced through several decays channels [156]

p+ p→ π+ + p+ n, (3.9a)

p+ n→ π+ + n+ n, (3.9b)

as well as other less common decay channels. Pions are highly unstable and decay

into two bodies

π+ → µ+ + νµ, (3.10)

where νµ is muon-neutrino. Conservation of momentum for a two body decay dic-

tates that the muon and neutrino need to have equal and opposite momentum.

Similarly conservation of angular momentum requires that the muon and the neu-

trino spins are anti-parallel as the the π+ is a spin zero boson. For neutrinos the spin

and momentum vector will always be anti-parallel; this is due to parity violation

in the weak interaction. It therefore follows that the muon will have its spin and

momentum vector similarly anti-parallel. A beam of 100% spin polarised muons

can be ensured by selecting the π+ that are at rest in the surface of the graphite

target [103]. The muon is then guided and focused on to the sample by a series of

quadrupole magnets. These magnets also help clean the beam of muons removing

any other products from the pion production. When the muon is implanted into the

sample it quickly comes to rest dues to interactions with the surrounding electronic

environment in the crystal structure of the sample. Muons have a half-life of 2.2 µs
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which allows for the spin of the sample to detect and precess in the local magnetic

environment. When the muon decays it emits a positron e+ and two neutrinos:

µ+ → e+ + νe + ν̄µ. (3.11)

When the positron is emitted during the decay it can then be detected using scin-

tillation detectors. Again this decay involves the weak interaction meaning parity

violation dictates that the positron is preferentially emitted along the spin vector

direction. The angular dependence of the positron emission is given by

N (θ) ∝ 1 +A cos (θ) , (3.12)

where A is the strength of the asymmetry and θ is the angle between the muon spin

vector and the direction of the positron emission. The strength of the asymmetry

is dependent upon the energy of the emitted positron with low energy positrons

having zero asymmetry (A = 0) and high energy positrons having (A = 1). When

integrated over all energies an asymmetry of (A = 1/3) is found. In this thesis two

different muon spectroscopy techniques were utilised, transverse-field muon spin

rotation (TF-µSR) and longitudinal muon spin relaxation (LF-µSR). The MuSR

instrument at ISIS was used for all the experiments described in this thesis as

both of these techniques are available [157]. We will now briefly discuss the two

experimental configurations. A full description of µSR techniques can be found in

Refs. [158, 156, 159, 103, 157].

3.9.1 Transverse-field Muon Spin Rotation

In the TF-µSR configuration the external magnetic field is applied perpendicular to

the direction of the muon spin vector as shown in Fig. 3.11. The spin of a muon

in the presence of magnetic fields will begin to precess with the angular frequency

ωµ = γµB, where γµ/2π = 135.5 MHz/T is the gyromagnetic ratio for the muon.

It therefore follows that this technique is sensitive to the internal magnetic field

distribution of the sample. For type-II superconductors the flux line lattice leads to

a variation in the internal field inside the superconductors so that a muons that stop

at a vortex site will see a larger magnetic field than if the muon stopped in between

the vortices. The variation in the magnetic field due to the flux line lattice implies

that the muons stopping at different sites will precess at different frequencies leading

to a damping of the oscillatory signal. The magnetic penetration of a superconductor

can then be measured from the size of the damping of the oscillatory signal [159].

For a large magnetic penetration depth the field variation inside the superconductor
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Figure 3.10: An image of the muSR spectrometer at ISIS with the detectors in the
transverse-field configuration.

is small so a small damping of the oscillatory signal is seen. Where as for a small

magnetic penetration depth the field variation is large so a large damping is seen.

3.9.2 Longitudinal-Field Muon Spin Relaxation

In the LF-µSR the external magnetic field is applied parallel to the spin vector of

the muon as shown in Fig. 3.11. This magnetic field configuration can be used to

measure the time evolution of the muon spin polarisation along its original direction.

In the longitudinal field configuration the positrons are detected in either a forward

(F) or backward (B) detector as shown in Fig. 3.11. The number of positrons NF,B(t)

detected in the F and B is given by

NF,B(t) = NF,B(0) exp

(
−t
τµ

)
[1±A0Gz (t)] , (3.13)
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Figure 3.11: A schematic of a µSR spectrometer. Two detectors are shown in green
in the forward (F) and backward (B) positions. The grey arrows show the two
possible field directions for the transverse-field and the longitudinal-field. For the
muon the yellow dashed arrow indicates the momentum vector with the spin aligned
anti-parallel (red arrow).

where Gz is the time evolution of the muon polarisation along the z-axis and A0 is

the initial asymmetry. The experimental asymmetry A(t) is then given by

A(t) = A0Gz (t) =
NB − αNF

NB + αNF
, (3.14)

where α is a measure of the efficiency of the F and B detectors which is sample and

environment dependent.

By using the zero-field configuration the muons can be used to measure

very weak internal magnetic fields inside the sample. For superconducting systems

this can result in the detection of time-reversal symmetry breaking or magnetic

impurities in the sample. Zero-field µSR can be used to look for small internal

magnetic fields that result from ordering of magnetic moments or from randomly

orientated moments that are static or quasi-static in the lifetime of the muon. Zero-

field µSR allows for a much more sensitive probe of the internal magnetic fields than

is possible using magnetometer measurements.
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Chapter 4

Superconducting and

Normal-State Properties of

Cubic Noncentrosymmetric

Re6Zr

4.1 Introduction

Research has recently been focussed on the Re-based α-Mn family of intermetal-

lic superconductors due to the detection of time-reversal symmetry break in several

Re6T (where T = transition metals) compounds [6, 7, 115, 8]. In this chapter we will

focus our discussion on the characterisation of the superconducting and normal-state

properties of polycrystalline Re6Zr which crystallises in a noncentrosymmetric cubic

structure with the space group I 4̄3m, as seen in Fig. 4.1. The first report of super-

conductivity in these compounds was made 1961 but the lack of inversion symmetry

in the crystal structure was not noted by the authors [58, 57]. Here, we present

a comprehensive characterisation of the normal and superconducting states of this

intermetallic compound through studies by magnetisation, electronic transport, and

heat capacity. We estimate several normal-state parameters of Re6Zr such as the

electronic specific heat contribution γn, residual resistivity ρ0, and the hyperfine

contribution to the specific heat. Using the electronic-transport and heat capacity

measurements, we estimate the Debye temperature by using the parallel-resistor

model, the Debye lattice contribution to the specific heat at low temperature, and

the Debye-Einstein model. Several superconducting parameters, including the lower

and upper critical fields Hc1 and Hc2, the coherence length ξGL, and the penetration
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Figure 4.1: Crystal structure of Re6Zr with a noncentrosymmetric cubic structure
containing 58 atoms. The Re atoms are shown in grey and the Zr are shown in
green.

depth λGL are estimated. The specific heat jump ∆C/γnTc, the superconducting gap

∆0/kBTc, and the temperature dependence of the specific heat at low-temperature

suggest that Re6Zr is an isotropic, fully gapped s-wave superconductor with en-

hanced electron-phonon coupling. We also present evidence of unusual flux pinning

not normally seen in low-Tc systems.

4.1.1 Sample Preparation and Structural Analysis

Polycrystalline samples of Re6Zr were produced by arch-melting stoichiometric amounts

of the base elements together. The buttons were flipped and remelted several times

to ensure sample homogeneity. The buttons where wrapped in tantalum foil, inserted

inside an evacuated quartz tube and annealed at 900 oC for 9 days. The structure

of Re6Zr was checked by powder neutron diffraction measurements. These measure-

ments were carried out using the General materials Diffractometer (GEM) at ISIS

which uses the time of flight technique. Roughly 6 grams of sample where crushed

into a fine powder and placed inside a 6 mm diameter vanadium sample holder.

The sample was measured at several different temperatures between 5 K and room
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Table 4.1: Crystallographic and Rietveld refinement parameters obtained from pow-
der neutron diffraction data of Re6Zr.

Structure α-Mn-type
cubic

Space-group I 4̄3m (No. 217)
Formula units/unit cell (Z) 58
Lattice parameter
a(Å) 9.707(4) (at 300K)

Vcell(Å
3
) 914(1)

Atom Wyckoff Position Occupancy x y z

Re1 2a 0.8 0 0 0
Re2 24g 1 0.09146(3) 0.09146(3) 0.28541(4)
Re3 24g 0.98(1) 0.35901(3) 0.35901(3) 0.03813(4)
Zr1 8c 1 0.31572(7) 0.31572(7) 0.31572(7)
Zr2 24g 0.014(1) 0.35901(3) 0.35901(3) 0.03813(4)

temperature. Figure 4.1 shows the data taken at room temperature. The diffraction

patterns were Rietveld refined using TOPAS software which are shown by the red

lines along with the difference between the data and the Rietveld refinement which

are shown by the green lines below in Fig. 4.3. It was found that the patterns were

largely temperature independent with a small contraction in the lattice parameter,

this indicates there are no structural transitions in Re6Zr down to 5 K as shown in

Fig. 4.2. The results of the Rietveld refinement are shown in Table. 4.1.

4.1.2 Electrical Resistivity Measurements

Figure 4.4(a) shows the resistivity as a function of temperature ρ (T ) of a polycrys-

talline Re6Zr sample from 2 to 300 K in zero field. The small value of the residual

resistivity ratio, RRR ≡ ρ(300 K)/ρ(10 K) ≈ 1.09, and the high normal-state re-

sistivity at 10 K indicate poor metallic behaviour. This is comparable to other Re

compounds such as Re6Hf with a RRR quoted from 1.08 to 1.4 [113, 114], Re24Ti5

with RRR ∼ 1.3 [116], and Nb0.18Re0.82 with RRR ∼ 1.3 [122]. A sharp, zero-field

superconducting transition (∆Tc = 0.20 K) can be seen clearly in Fig. 4.4(b) at

Tc = 6.76(5) K. Tc is gradually suppressed with increasing applied magnetic field

[see Fig. 4.4(b)] and the transition is broadened so that ∆Tc = 0.28 K at 9 T.

At temperatures greater than ∼ 50 K the ρ (T ) of Re6Zr is seen to flatten.

This characteristic is similar to that seen in many superconductors containing d-

block elements including BiPd [160]. It has been proposed that in certain compounds
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Figure 4.2: Temperature dependence of the a lattice parameter. Linearly decreases
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at high temperatures the resistivity saturates at a value that corresponds to the

mean free path on the order of the inter-atomic spacing [161]. This idea was further

developed by Wiesmann et al. [162] who found empirically that ρ (T ) could be

described by the parallel-resistor model:

ρ(T ) =

[
1

ρsat
+

1

ρideal (T )

]−1

, (4.1a)

where ρsat is the saturated resistivity at high temperatures and is independent of T ,

and ρideal(T ) is the “ideal” contribution which according to Matthiessen’s rule is:

ρideal (T ) = ρideal,0 + ρideal,L (T ) . (4.1b)

Here ρideal,0 is the ideal temperature-independent residual resistivity and ρideal,L (T )

is the temperature-dependent contribution which can be expressed by the generalised

Bloch-Grüneisen model [163]

ρideal,L (T ) = C

(
T

ΘR

)n
×
∫ ΘR/T

0

xn

(ex − 1) (1− e−x)
dx, (4.1c)

where ΘR is the Debye temperature obtained from resistivity measurements, C is
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Figure 4.3: Powder neutron diffraction data of Re6Zr taken on the GEM diffrac-
tometer at room temperature. The solid red lines show the Rietveld refinement to
the data and the solid green line show the difference between the refinement and
the data.

a material-dependent pre-factor and n = 3 − 5 depending on the nature of the

carrier scattering. Fig. 4.4(c) shows the normal-state resistivity data from 10 to
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Figure 4.4: (a) Resistivity versus temperature ρ (T ) of Re6Zr in the range 1.8 ≤
T ≤ 250 K measured in zero applied magnetic field. The midpoint of the resistivity
drop was taken as the transition temperature. (b) ρ (T ) below 7.5 K shows the
suppression of the transition temperature under various applied fields µ0H from 0
to 9 T. (c) ρ (T ) data in the normal-state fit with the parallel-resistor model over
the temperature range 10 to 290 K.

290 K fit using Eq. 4.1a. It was found that a value of n = 3, which takes into

account Umklapp scattering between bands, achieved the best fit giving ρsat =

167(2) µΩ cm, C = 315(6) µΩ cm and ΘR = 237(2) K. The measured residual

resistivity, ρ0 = 142(2) µΩ cm, which is related to ρideal,0 and ρsat by

ρ0 =
ρideal,0ρsat

ρideal,0 + ρsat
, (4.2)

is consistent with the values of the fit. This electrical resistivity data is in close

agreement with that previously reported in Ref. [111].
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Figure 4.5: (a) C/T versus T 2 in different applied fields (µ0H in teslas), showing
the suppression in Tc for increasing field. (b) C/T versus T 2 with µ0H = 0 and 8 T.
The line is a fit using C/T = γn +β3T

2 +β5T
4 for all the C (T ) data collected above

Tc (H) in the different applied fields. The normal-state electronic contribution to the
specific heat γn = 26.9(1) mJ/mol K2, and the Debye temperature ΘD = 338(9) K.
(c) C versus T from 10 to 300 K. The line shows the fit using Eq. (4.5a), the Debye-
Einstein function. The residual plot underneath indicates the quality of the fit using
the Debye-Einstein function to the data.

4.1.3 Specific Heat Measurements

The temperature dependence of the heat capacity divided by temperature, C/T ,

versus T 2 from 2 to 10 K is shown in Fig. 4.5(a), where a sharp jump at 6.75(5) K

indicates a bulk superconducting transition. The sharpness of this peak gives an

indication of the high quality of the sample. We analysed the normal-state data
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C/T versus T 2 between 4.4 and 10 K at µ0H = 0 T using

C/T = γn + β3T
2 + β5T

4, (4.3)

where γn is the normal-state Sommerfeld electronic-heat-capacity contribution, β3

is the Debye law lattice-heat-capacity contribution, and β5 is from higher-order

lattice contributions. A fit using Eq. (4.3) can be seen in Fig. 4.5(b) which gives

γn = 26.9(1) mJ/mol K2, β3 = 0.35(2) mJ/mol K4 and β5 = 1.2(3) µJ/mol K6. The

Debye temperature, ΘD, can then be calculated using

ΘD =

(
12π4RN

5β

)1/3

, (4.4)

where R is the molar gas constant and N is the number of atoms per unit cell.

Eq. 4.4 gives ΘD = 338(9) K which is slightly higher than the previously reported

value [6].

Figure 4.5(c) shows the temperature dependence of the heat capacity up

to 300 K. There is no sign of any structural phase transition, and the value of C

at 300 K is 169.5 J mol−1 K−1, which is close to classical Dulong-Petit value for

Re6Zr of 174.6 J mol−1 K−1 and is consistent with ΘD > 300 K. We fit the normal-

state data using a Debye-Einstein function. It was found that by including the

additional Einstein term to the Debye model for lattice-heat-capacity the fit could

be significantly improved. Figure 4.5(c) shows heat capacity data from 10 to 300 K,

which was fit with [164]

C(T ) = γnT + nδCDebye

(
T

ΘD

)
+ n(1− δ)CEinstein

(
T

TE

)
, (4.5a)

where δ is the fractional contribution of CDebye, n is the number of atoms in a

formula unit (f.u.), CDebye is given by

CDebye

(
T

ΘD

)
= 9R

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2dx, (4.5b)

and CEinstein is given by

CEinstein

(
T

TE

)
= 3R

z2ez

(ez − 1)2 , (4.5c)

where z = TE/T and TE is the Einstein temperature. The fit was performed using

a fixed value γn = 26.9 mJ/mol K2 to help reduce the number of free parameters.
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We obtained δ = 0.912(2), ΘD = 258(1) K, and TE = 652(12) K. The difference

between ΘD and ΘR is also expected due to the limitations of the parallel-resistor

model.

In Fig. 4.5, at very low temperatures, an upturn in C/T appears in magnetic

fields above 6 T. This anomalous contribution to the specific heat is proportional to

T−2, which suggests that it is due to the high-temperature tail of a nuclear Schottky

anomaly. The specific heat of the measured Re6Zr can be expressed as

C(T,B) = Cel(T,B) + Cph(T ) + Chf(T,B), (4.6)

where Cel is the electronic contribution, Chf is the Schottky contribution, and Cph

is the phonon contribution. The high-temperature approximation of the nuclear

hyperfine contribution to the specific heat was modelled by Chf = A0T
−2, where A0

is a field-dependent parameter. A0 is estimated to be ∼ 1.4 mJ K mol−1 at 8 T,

which is consistent with the value previously obtained for pure rhenium [165, 166].

The results of this analysis raise a note of caution.

A hyperfine contribution to the specific heat has also been seen in other

Re-based α-Mn compounds, Nb0.18Re0.82 [123] and Re6Hf [114], as well as in pure

Re [165, 166], indicating that a Schottky anomaly may always be present in Re-

based superconductors at low temperatures. Mazidian et al. demonstrated that in

order to establish the presence of point or line nodes in the superconducting gap,

the heat capacity needs to be fit below Tc/10 [167]. Modifications by a magnetic

field below Tc to both Cel(T,B) and Chf(T,B) mean that a precise evaluation of the

temperature dependence of the electronic specific heat and hence the gap structure in

all Re-based NCS superconductors, including those with an α-Mn structure, may be

challenging, as this will require an accurate evaluation of the hyperfine contribution

to the specific heat.

4.1.4 Magnetisation and Lower Critical Field Measurements

Figure 4.6(a) shows the dc susceptibility data χdc (T ) taken in zero-field-cooled

warming (ZFCW) and field-cooled cooling (FCC) modes in an applied field of 1 mT.

These data confirm that Re6Zr is a superconductor with T onset
c = 6.70(5) K. The

sample exhibits a full Meissner fraction for the ZFCW. There is almost no flux

expulsion on re-entering the superconducting state during FCC. The strong pinning

is consistent with a disordered system. Magnetisation versus field sweeps in low

fields (0 to 16 mT) at several temperatures are shown in Fig. 4.6(b). The lower

critical field, Hc1 (T ), is determined from the first deviation from linearity of the
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Figure 4.6: (a) Temperature dependence of the dc magnetic susceptibility χdc (T )
collected in zero-field-cooled warming (ZFCW) and field-cooled cooling (FCC)
modes in an applied field of µ0H = 1 mT. (b) Lower critical fieldHc1 versus tempera-
ture for Re6Zr. The Hc1 values were taken as the fields at which initial magnetisation
versus field data shown in Fig. 4.6(b) first deviate from linearity (as shown in the
inset). The dashed line shows the fit using Eq. (4.7) giving µ0Hc1(0) = 10.3(1) mT.

61



initial slope as the field is increased. In Fig. 4.6(c) the resulting Hc1 (T ) values are

plotted against temperature. Ginzburg-Landau (GL) theory gives

Hc1(T ) = Hc1(0)

[
1−

(
T

Tc

2)]
. (4.7)

Fitting the data using Eq. (4.7), Hc1 (0) was estimated to be 10.3(1) mT.

The ac susceptibility versus temperature measurements χac (T ) shown in

Fig. 4.7 confirm the superconducting transition of Tc = 6.70(5) K. In dc bias fields

less than Hc1 (0) the sample exhibits a full Meissner fraction. The out-of-phase

component of the ac susceptibility χ′′(T ) contains a sharp maximum close to Tc

and falls to zero for lower temperatures. This is consistent with the strong flux

pinning seen in the low-field FCC M (T ) data. For applied fields much greater than

Hc1 (0), Tc is suppressed, and a full Meissner fraction is not seen due to partial flux

penetration. An anomalous dip can be seen close to Tc, suggesting flux is being

reexpelled from the sample due to unusual flux dynamics. At lower temperatures,

χ′′(T ) exhibits a broad maximum, indicating losses due to flux motion in dc applied

fields µ0H ≥ 2 T.

Further evidence of unusual flux pinning in Re6Zr can be seen in the M (H)

loops taken in the both the superconducting quantum interference device (SQUID)

magnetometer and the VSM (see Fig. 4.8), suggesting that the observed features

cannot simply be attributed to the significant movement of the sample in a magnetic

field or the magnetic field sweep rate. As is evident from Fig. 4.8(a), above Hc1,

Re6Zr exhibits the conventional behaviour for a type-II superconductor, with a

hysteresis in the magnetisation ∆M decreasing with increasing temperature and

magnetic field. For applied fields close toHc2 (T ) this hysteresis ∆M disappears, and

the magnetisation becomes reversible as vortices appear to become unpinned. The

inset in Fig. 4.8(a) shows how this irreversibility field HIrr varies with temperature.

These data were collected using a plate-shaped sample with the field applied in the

plane of the plate, i.e., with the demagnetisation factor of the sample minimised.

By changing the sample orientation with respect to the applied field a change in

vortex pinning is observed, as can be seen in Figs. 4.8(b) and 4.8(c), where the

demagnetisation factor was maximised. In Figs. 4.8(b) and 4.8(c) a clear secondary

maximum (fishtail) is observed. As the sample is cooled, there is a slight shift

to higher magnetic field in the onset and the peak of the fishtail. This behaviour

is not normally observed in low-Tc superconductors but is quite common in the

high-Tc oxides and in some two-dimensional superconducting materials, indicating

unconventional vortex states. The symmetry of the hysteresis in the field-increasing
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Figure 4.7: (a) Imaginary part of ac susceptibility versus temperature χ′′ (T ) in
various dc applied fields. (b) Real part of ac susceptibility versus temperature χ′ (T )
at various dc applied fields. In zero dc field, a sharp superconducting transition can
be seen at 6.70(5) K. In fields above Hc1 (0) an anomalous dip in the magnetisation
is seen close to the transition temperature.

and field-decreasing legs of the M (H) curves suggests that bulk pinning rather than

surface barriers may be the dominant mechanism leading to the fishtail. Assuming

the superconducting critical current is proportional to ∆M , the maximum pinning

force in the field of range 1 to 3 T, as reflected in the fishtail, and appears to be
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Figure 4.8: (a) Magnetisation versus magnetic field at several temperatures for
Re6Zr. The data were collected in a VSM on a plate-shaped sample with the de-
magnetisation factor of the sample minimised. The inset shows how HIrr varies
with temperature. (b) Magnetisation versus magnetic field at several temperatures
collected in a vibrating sample magnetometer with the demagnetisation factor of
the Re6Zr sample maximised. A secondary maximum (fishtail) can clearly be seen
in the magnetisation at around 1.25 T. The left inset shows the 5 and 6 K curves
between 0 and 3.5 T. HIrr and Hc2 are indicated in the right inset showing the
3.5 K curve between 2 and 10 T. (c) Magnetisation versus magnetic field at several
temperatures collected in the SQUID magnetometer. The fishtail can also be clearly
seen in a magnetic field of ∼ 1.25 T.

almost temperature independent between 3 and 5 K. It is suggested that the unusual

vortex states arise from the normal pinning centres such as grain boundaries within

the sample. A detailed study on the vortex states in high-quality single crystals of

Re6Zr is needed to explore the vortex physics further.
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Figure 4.9: (a) Normalised electronic heat capacity versus temperature in zero
field for Re6Zr across the superconducting transition. Here Cel is defined as Cel =
C − β3T

3 − β5T
5. The red line shows a fit across the superconducting transition

for a fully gapped superconductor as described in Sec. 4.1.5. From this it can
be see that the data are very well fit by the isotropic s-wave BCS model. (b)
Electronic-heat-capacity Cel versus temperature below 2.5 K showing various power
laws (anisotropic gap) and an exponential (isotropic gap) fit to the low-temperature
data. The residual is shown for the exponential fit.

4.1.5 Superconducting Gap

The jump in specific heat in zero-field indicates the onset of bulk superconductiv-

ity. The transition temperature is defined as the midpoint of the transition, giving

Tc = 6.75(5) K. The data in Fig. 4.9(a) were fit using the BCS model of the specific
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heat given in Ref. [11]. The entropy S was calculated from

S

γnTc
= − 6

π2

∆0

kBTc

∫ ∞
0

[f lnf + (1− f) ln (1− f)] dy, (4.8)

where f is the Fermi-Dirac function given by f = [1 + exp (E/kBT )]−1 and

E = ∆0

√
y2 + δ(T )2, where y is the energy of the normal-state electrons and δ(T )

is the temperature dependence of the superconducting gap calculated from the BCS

theory. The specific heat of the superconducting state is then calculated by

Csc

γnT
=
d(S/γnTc)

dt
, (4.9)

where t = T/Tc. The superconducting gap ∆0/kBTc was estimated to be 1.86(5),

which is in agreement with Ref. 6. For conventional BCS superconductors a value

of 1.76 is expected, and the larger value for Re6Zr indicates that the electron-

phonon coupling is slightly enhanced. ∆C/γnTc = 1.60(2) is also larger than the

1.43 expected for conventional BCS superconductors and agrees with the values

reported in Refs. [6] and [111]. A fit was also attempted using a two-gap model, but

it was found that ∆0/kBTc for the two gaps iterated to the same value, indicating

that the material has a single gap.

To determine whether the superconducting gap is isotropic (exponential) or

anisotropic (power law) it is necessary to determine the temperature dependence of

the electronic component of the heat capacity down to low temperature, as shown

in Fig. 4.9(b). Due to the difficulties in approximating the zero-field hyperfine con-

tribution in the specific heat this contribution has also been included in Fig. 4.9(b).

Figure 4.9(b) shows fits to several power laws of the form b × TN , where b is a

constant. Setting N = 2 or 3 the fits are poor, while N = 5.8 gives a good fit to

the data, although this provides no physical insight. The (Cel + Chf) data are best

described by an exponential temperature dependence, suggesting an isotropic fully

gapped s-wave BCS superconductor. To obtain the true nature of the supercon-

ducting gap heat capacity data well below Tc/10 need to be analysed [167]. From

Fig. 4.9(a) it can be seen that the specific heat is rather low. A more complete

understanding of the hyperfine term is required to make any further progress with

this analysis. Nuclear quadrupole measurements have been performed on polycrys-

talline Re6Zr along with London penetration depth measurements on single crystals

of Re6Zr both of which have report an s-wave gap structure with a moderate coupling

strength providing further evidence of a conventional BCS gap symmetry [168, 169].
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4.1.6 Upper Critical Field

In order to measure the upper critical field as a function of temperature Hc2 (T ),

the shift in Tc in magnetic fields of up to 9 T was determined from heat capacity

and resistivity data.

Figure 4.10 shows how Hc2 varies with T . At temperatures just below Tc

it is clear that Hc2 increases linearly with decreasing T , and this indicates that

the temperature dependence of Hc2 given by the Ginzburg-Landau formula is not

appropriate. Instead, the Werthamer-Helfand-Hohenberg (WHH) model was used.

This allows Hc2 (0) to be calculated in terms of the spin-orbit scattering and Pauli

spin paramagnetism [170] as it is expected that spin-orbit coupling may be strong
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due to the presence of the rhenium. Hc2 (T ) can be found by solving

ln

(
1

t

)
=

(
1

2
+
iλso

4γ

)
ψ

(
1

2
+
h̄+ 1

2λso + iγ

2t

)

+

(
1

2
− iλso

4γ

)
ψ

(
1

2
+
h̄+ 1

2λso + iγ

2t

)
− ψ

(
1

2

)
, (4.10)

where t = T/Tc, λso is the spin-orbit scattering parameter, αM is the Maki param-

eter, ψ is the digamma function, h̄ is the dimensionless form of the upper critical

field given by

h̄ =
4Hc2

π2

(
dHc2

dT

)−1

t=1

, (4.11)

and γ =
√

(αh̄)2 − (1
2λso)2. It is estimated that µ0Hc2 (0) = 11.2(2) T, close to the

value reported by Ref. [6] but below the Pauli paramagnetic limiting field µ0HPauli

of 12.35(9) T.

The WHH expression has three variables: the Maki parameter αM, the spin-

orbit scattering parameter λso, and the gradient at Tc. In their original work [170],

WHH state that αM is not an adjustable parameter and needs to be obtained from

experimental data; thus, αM was not varied during the fitting.

The Maki parameter can be estimated experimentally by using the WHH

expression

αM =
√

2
Horb

c2 (0)

HPauli
c2 (0)

, (4.12)

where Horb
c2 is the orbital limiting field given by

Horb
c2 (0) = −αTc

−dHc2(T )

dT

∣∣∣∣
T=Tc

, (4.13)

where α is the purity factor, which for superconductors is 0.69 and 0.73 in the dirty

and clean limit respectively. The initial slope −dHc2(T )/dT |T=Tc was found to be

2.44 T/K, giving µ0H
orb
c2 (0) = 11.41(5) T. From Eq. (4.12) we obtain αM = 1.31,

and the relative size of the Maki parameter indicates that the Pauli limiting field

is non-negligible. Fixing αM = 1.31 produced λso = 18(5). It was found that this

model is highly dependent on the starting values as an equally good fit, as judged by

the reduced χ2, could be obtained by allowing the Maki parameter to vary. αM was

found to drift towards zero in nearly all cases along with λso, which would also tend

to zero when allowed to vary. Unsurprisingly, the initial gradient −dHc2(T )/dT |T=Tc

was found to remain constant within error.
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In the first case with αM fixed, the value for the spin-orbit term seems un-

usually large. There are several reasons why the WHH model may misrepresent

what is happening in the system: (1) Two-gap superconductor. While the analy-

sis of the superconducting gap was assumed to be a single gap it is possible that

Re6Zr is a two-gap superconductor where the gaps are of a similar magnitude, and

this would give rise to some enhancement of Hc2 [171]. (2) Granularity. The poly-

crystalline sample of Re6Zr will contain grain boundaries. The upper critical field

will be increased above the bulk value once the grain size becomes smaller than

the coherence length [172] (the grain size is unknown, so contributions from this

source are unclear). (3) Spin-orbit coupling. Strong spin-orbit coupling effects can

yield large enhancements of Hc2 such that the temperature dependence of Hc2 can

become linear, although in the dirty limit this enhancement should be weaker [173].

In order to obtain a more accurate value for µ0Hc2 (0) high-field, low-temperature

measurements of Hc2 are needed in order to determine the form of the µ0Hc2 (T )

curve much closer to T = 0 K.

4.1.7 Properties of the Superconducting State

The results of resistivity, heat capacity, and magnetisation measurements can now

be combined in order to estimate some of the important superconducting properties

of Re6Zr. The Ginzburg-Landau coherence length ξGL(0) can be estimated using

µ0Hc2 (0) from [144]

Hc2 (0) =
Φ0

2πξ2
GL(0)

, (4.14)

where Φ0 = 2.07× 10−15 Wb is the magnetic flux quantum. We calculate ξGL(0) =

5.37(9) nm. µ0Hc1 (0) and ξGL(0) can be used to calculate the Ginzburg-Landau

penetration depth λGL (0) from the relation

Hc1 (0) =

(
Φ0

4πλ2
GL(0)

)
ln

(
λGL(0)

ξGL(0)

)
. (4.15)

Using µ0Hc1 = 10.3 mT and ξGL(0) = 5.37 nm, we calculated λGL(0) = 247(4) nm.

The Ginzburg-Landau parameter can now be calculated by Eq. 2.17 which yields a

value of κGL = 46.2(8). For a superconductor to be classed as a type-II supercon-

ductor κGL ≥ 1√
2
. It is clear that Re6Zr is a strong type-II superconductor.

The thermodynamic critical field Hc can be calculated using ξGL(0) and

λGL(0) using the relation

Hcal
c (0) =

Φ0

2
√

2πξGL(0)λGL(0)
, (4.16)
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from this Hcal
c (0) is estimated to be 175(3) mT. The thermodynamic critical field

can be experimentally estimated from the difference between the free energies per

unit volume of the superconducting and normal states ∆F by [144]

H2
c (T )

8π
= ∆F =

∫ T

Tc

∫ T ′

Tc

Cs − Cn

T ′′
dT ′′dT ′, (4.17)

where Cs and Cn are the heat capacities per unit volume. From Eq. (4.17) we obtain

Hexp
c (0) = 130(2) mT.

In order to calculate the electronic mean free path and London penetration

depth in Re6Zr the Sommerfeld coefficient can be written as [174]

γn =
(π

3

)2/3 k2
Bm
∗Vf.u.n

1/3

~2NA
, (4.18)

where kB is the Boltzmann constant, NA is the Avogadro constant, Vf.u. is the

volume of a formula unit, m∗ is the effective mass of quasiparticles, and n is the

quasiparticle number density per unit volume. The electronic mean free path `e can

be estimated from the residual resistivity ρ0 by the equation

`e =
3π2~3

e2ρ0m∗2ν2
F

, (4.19)

where the Fermi velocity νF is related to the effective mass and the carrier density

by

n =
1

3π2

(
m∗νF

~

)3

. (4.20)

In the dirty limit the penetration depth is given by

λGL(0) = λL

(
1 +

ξ0

`e

)1/2

, (4.21)

where ξ0 is the BCS coherence length and λL is the London penetration depth,

which is given by

λL =

(
m∗

µ0ne2

)1/2

. (4.22)

The Ginzburg-Landau coherence length is also affected in the dirty limit. The rela-

tionship between the BCS coherence length ξ0 and the Ginzburg-Landau coherence

ξGL at T = 0 is

ξGL(0)

ξ0
=

π

2
√

3

(
1 +

ξ0

`e

)−1/2

. (4.23)
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Table 4.2: Comparison of electronic properties of Re6Zr for λGL (Hc1) and
λGL (µSR).

Property Units Hc1 µSR

λGL(0) (nm) 247 356
m∗/me 10.1(1) 12.9(2)
m∗band/me 6.0(1) 7.7(1)
n (1027m−3) 15.2(2) 7.4(1)
ξ0 (nm) 3.28(5) 3.70(5)
`e (nm) 1.45(2) 2.36(3)
ξ0/`e 2.25(3) 1.56(2)
λL (nm) 136(2) 222(3)
νF (× 104 m/s) 8.8(1) 5.4(8)
TF (K) 2570(40) 1240(20)
Tc/TF 0.0026(1) 0.0054(1)

Equations (4.18) - (4.23) form a system of four equations. To estimate the param-

eters m∗, n, `e, and ξ0 this system of equations can be solved simultaneously using

the values γn = 26.9 mJ/mol K2, ξGL = 5.37 nm, and ρ0 = 142 µΩ cm. For

comparison, two values of λGL have been used; 247 nm is taken from Eq. (4.15), and

356 nm is taken from the µSR study in Ref. [6]. The results are shown in Table 4.2.

From the mean free path `e calculated in Eq. (4.19) and ξ0 calculated in Eq. (4.23),

it is clear that ξ0 > `e, indicating that Re6Zr is in the dirty limit. We find that

these values are in close agreement with those previously reported for Re6Zr [111].

The bare-band effective mass m∗band can be related to m∗, which contains

enhancements from the many-body electron-phonon interactions [175]

m∗ = m∗band (1 + λel−ph) , (4.24)

where λel−ph is the electron-phonon coupling constant. The electron-phonon cou-

pling constant gives the strength of the interaction between electron and phonons

in superconductors. This can be estimated from McMillan’s theory [176] from ΘD

and Tc,

λel−ph =
1.04 + µ∗ ln (ΘD/1.45Tc)

(1− 0.62µ∗) ln (ΘD/1.45Tc)− 1.04
, (4.25)

where µ∗ is the repulsive screened Coulomb parameter, which can have a value

between 0.1 and 0.15 but for intermetallic superconductors a value of 0.13 is typically
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used. Using Tc and ΘD taken from Fig. 4.5(b), a value of λel−ph = 0.67(2) is

obtained, suggesting this a moderately coupled superconductor. Using this value of

λel−ph and Eq. (4.24) a value for m∗band can be found, as seen in Table 4.2. Recently,

these parameters have also been determined for the related compound Re6Hf [113,

114]. By substituting Zr by Hf the spin-orbit coupling should be enhanced, and

it was hoped that this would provide an increase in the contribution of the spin-

triplet component in the superconducting ground state. From the measurements

performed in Refs. [113] and [114] it is clear that Re6Hf and Re6Zr are very similar

and that the spin-orbit-coupling strength seems to have little effect on the properties

of polycrystalline samples at least. Uemura et al. have described a method for

classifying superconductors based on the ratio of the critical temperature Tc to the

effective Fermi temperature TF [177]. The values of m∗ and n can used to calculate

an effective Fermi temperature for Re6Zr using

kBTF =
~2

2m∗
(
3π2n

)2/3
, (4.26)

and the result is presented in Table 4.2. It has been observed that the high-Tc,

organic, heavy-fermion, and other unconventional superconductors lie in the range

0.01 ≤ Tc/TF ≤ 0.1 [178, 179, 177]. However, Re6Zr lies outside of the range for

unconventional superconductivity, supporting the view that the superconducting

mechanism is primarily conventional.

4.2 Discussion and Summary

In summary, single-phase polycrystalline samples of Re6Zr were prepared by the

arc-melting technique. Powder neutron diffraction data confirmed the cubic, non-

centrosymmetric α-Mn crystal structure and the phase purity of the samples. The

normal-state and superconducting properties of Re6Zr were studied using magnetisa-

tion, heat capacity, and resistivity measurements. We have established that Re6Zr

is a moderately coupled superconductor with a transition at Tc = 6.75(5) K. In

the normal-state, resistivity measurements show that Re6Zr has poor metallic be-

haviour that is dominated by disorder. We showed that it is possible to fit these

data with a parallel-resistor model that considers contributions in addition to the

electron-phonon interactions. Specific heat measurements of the normal-state re-

veal no indication of any structural phase transitions down to low temperature and

were fit using a simple Debye-Einstein function. The jump in specific heat at Tc

is ∆C/γnTc = 1.60(2), while C (T ) below Tc was fit using the BCS model, giving
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∆0/kBTc = 1.86(5). Both values are well above those expected for a conventional

BCS superconductor, suggesting the electron-phonon coupling is enhanced in this

system. The mean free path `e is estimated to be 1.45(2) nm. The best approxima-

tion for Hc2 (0) was found using the WHH model. From Hc2 (0) the coherence length

was calculated with ξGL (0) = 5.37(9) nm, confirming that Re6Zr is in the dirty limit.

Using the magnetisation data, it was possible to estimate µ0Hc1 (0) = 10.3(1) mT

and so calculate the penetration depth λGL (0) = 247(4) nm. The Ginzburg-Landau

coefficient κGL (0) = 46.2(8) confirmed that Re6Zr is a strong type-II superconduc-

tor. A summary of all the experimentally measured and estimated parameters is

given in Table 4.3. From our measurements we can conclude the superconducting

order parameter is well described by an isotropic gap with s-wave pairing symme-

try and enhanced electron-phonon coupling, despite the observation of spontaneous

magnetisation associated with time-reversal symmetry breaking being observed at

temperatures below the superconducting transition in previous work [6]. This sug-

gests Re6Zr has a superconducting ground state that features a dominant s-wave

component, while the exact nature of the triplet component is undetermined. The

observation of time-reversal symmetry breaking in pure centrosymmetric Rhenium

now indicates that this phenomena in the ReT family is not necessarily due to the

noncentrosymmetric structure. Further evidence of the structure having little influ-

ence on time-reversal symmetry breaking comes from the measurements performed

two compounds that are isostructural to ReT , these being Mg10Ir19B16 [180] and

Nb0.5Os0.5 [181] where time-reversal symmetry is preserved. The number and size

of the spin-orbit coupling of the second element in ReT also seems to have little

influence on the strength of the time-reversal symmetry breaking so what is the key

component to this phenomena? In order to to investigate the superconductivity in

the ReT family, further experimental work on high-quality single crystals, as well as

further analysis of “clean” and “dirty” samples to examine the role grain boundaries

and impurities play in determining the superconducting behaviour of ReT , is vital.

Investigations into other Re-free compounds with an α-Mn structure are also of key

interest.
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Chapter 5

Hexagonal Noncentrosymmetric

Superconductors La7Pd3 and

La7Ir3

5.1 Introduction

The discovery of time-reversal symmetry breaking along with a isotropic s-wave gap

symmetry in polycrystalline La7Ir3 has opened up a new family of hexagonal super-

conductors to investigate for more unconventional behaviour [124, 125]. Additionally

time-reversal symmetry breaking has now been observed in La7Rh3 suggesting it is

a common feature of the La7T3 (where T = transition metal) family similar to the

Re6X family of noncentrosymmetric superconductors [182]. The superconducting

and normal-state properties have also been reported in single crystals of the non-

centrosymmetric superconductor La7Ni3 [183]. Nakamura et al. report conventional

BCS-like behaviour in La7Ni3 although no µSR results have yet been published.

La7Ir3 and La7Pd3 crystallise in the hexagonal Th7Fe3-type structure with

the space group P63mc. Pedrazzini et al. previously reported some of the super-

conducting and normal-state properties of La7Pd3 as well as other members of this

family of superconductors, however, no significance was drawn to the noncentrosym-

metric structure that is a common features of the family [184]. In this chapter we

present our detailed characterisation of the normal-state and superconducting prop-

erties of La7Pd3 using magnetisation, heat capacity and resistivity measurements.

µSR data will then be presented showing a conventional s-wave superconducting gap

symmetry before finally presenting evidence of time-reversal symmetry breaking in

La7Pd3. We also present single crystal synthesis of La7Ir3 and the characterisation
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Figure 5.1: La7Pd3 and La7Ir3 crystallise in the hexagonal Th7Fe3-type structure
with the space group P63mc. The La atoms are shown in Green and Pd/Ir atoms
are shown in yellow.

of these crystals by magnetisation, resistivity and heat capacity measurements. Sin-

gle crystals of La7Ir3 provide an excellent opportunity to look for any anisotropic

behaviour that may explain the unusual superconducting properties previously re-

port in polycrystalline samples. Finally the results of both La7Pd3 and La7Ir3 will

then be compared and discussed with those of La7T3 family.

5.2 Time-Reversal Symmetry Breaking in Polycrystalline

La7Pd3

In this section the synthesis and characterisation of polycrystalline samples of La7Pd3.

Superconductivity in La7Pd3 was first reported in Ref. [184] where a Tc = 1.48 K

was observed. Here we give detailed characterisation of the superconducting and

normal-state properties of La7Pd3. We also present evidence of time-reversal sym-

metry breaking in La7Pd3 from zero-field µSR measurements.

5.2.1 Sample Preparation

Several polycrystalline samples of La7Pd3 were prepared by arc melting stoichiomet-

ric quantities of La (3N) and Pd (3N) in an arc furnace under an argon atmosphere

on a water-cooled copper hearth. The sample buttons were melted and flipped sev-

eral times to ensure phase homogeneity. The observed weight loss during the melting
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Figure 5.2: (a) Zero-field-cooled temperature dependence of the dc magnetic sus-
ceptibility χdc for La7Pd3 measured in an applied magnetic field 1.2 mT showing
a superconducting onset temperature T onset

c = 1.46(5) K. (b) Lower critical field
Hc1 versus temperature for La7Pd3. The dashed line show the fit to the data from
Eq. (4.7) which gives µ0Hc1 (0) = 6.9(2) mT.

was negligible. The sample buttons were then sealed in an evacuated quartz tube,

and annealed for 5 days at 500 oC. The material is air sensitive and was noticed to

rapidly develop a orange surface discolouration if exposed to air. The sample was

stored in a glove-box under an argon atmosphere.

5.2.2 Magnetisation and Electrical Resistivity Measurements

To confirm bulk superconductivity in La7Pd3 magnetisation as a function of tem-

perature was measured in an applied field of 1.2 mT between 0.5 and 1.7 K as shown

in Fig. 5.2(a). A rectangular sample of La7Pd3 was cut from the sample button to

allow for the demagnetisation factor to be well defined [151]. Below 1.4 K a sharp

change in the gradient of the magnetisation is observed and between 0.5 and 1.1 K

a full Meissner fraction (χdc = −1) is clearly visible indicating bulk superconductiv-

ity in La7Pd3 and good sample quality. The superconducting onset temperature for

La7Pd3 was found to be T onset
c = 1.46(5) K. The lower critical field can be estimated

by measuring the first deviation from linearity in the magnetisation versus applied

field. Several magnetisation versus field loops were performed at different temper-

atures from 0.5 to 1.5 K in fields up to 10 mT. Figure. 5.2(b) shows the extracted

lower critical field from the magnetisation versus field loops, the temperature de-

pendence of which can be described by the Ginzburg-Landau formula, Eq. (4.7).

Using the Ginzburg-Landau formula yields µ0Hc1 (0) = 6.9(2) mT for La7Pd3.

The normal-state resistivity of La7Pd3 was measured between 10 and 300 K

77



0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6
0

1

2

3

� (
µΩ

 cm
)

T e m p e r a t u r e  ( K )

4 5 0  m T

0  m T

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
2
4
6
8

1 0
1 2
1 4  P a r a l l e l - r e s i s t o r  m o d e l

 L a 7 P d 3
� (

µΩ
 cm

)

T e m p e r a t u r e  ( K )

( a )

( b )

Figure 5.3: (a) Temperature dependence of the electronic resistivity of La7Pd3 be-
tween 1.8 and 300 K in zero applied field. The residual resistivity is measured to be
ρ0 = 3.1(2) µΩ cm and a RRR = 4 is observed to be comparable to other members
of Th7Fe3 family. The red dot dashed line shows the fit to the 5 to 300 K data
using the parallel resistor model. (b) Suppression and broadening of the resistive
superconducting transition in applied fields from 0 to 450 mT.

in zero applied field as shown in Fig. 5.3(a).The resistivity ratio is seen to be compa-

rable to other members of the Th7Fe3 family with RRR = 4 for La7Pd3, RRR ≈ 2.6

for polycrystalline La7Ir3 [125], RRR ≈ 3.6 for Th7Fe3 [184] and RRR ≈ 4.3 for

La7Ni3 [183]. The normal-state resistivity is seen to have the form typical of many

intermetallic d-block superconductors which starts to saturate at higher tempera-

tures. As discussed previously in Section 4.1.2 this behaviour can be modelled using

the parallel resistor model using Eqs. (4.1a) - (4.1c). The parallel resistor model pro-

vides a good fit to the data giving the following fit parameters ρsat = 22.0(3) µΩ cm,

C = 33.7(17) µΩ cm and ΘR = 179(5) K when the residual resistivity is fixed at

ρ0 = 3.1(2) µΩ cm. Further evidence of superconductivity in La7Pd3 is provided by

low-temperature resistivity measurements where a sharp superconducting transition

is seen at Tc = 1.47(5) K with a width of ∆T = 0.05 K in zero-applied field as shown

in Fig. 5.3(b). The suppression of the superconducting transition temperature for

different magnetic fields can also be seen in Fig. 5.3(b) the mid-points of these tran-

sitions can be extracted to give upper critical field values which will be discussed

later. The superconducting transition is also seen to broaden to ∆T = 0.23(1) K at

450 mT.
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Figure 5.4: (a) Temperature dependence of the zero-field heat capacity data for
La7Pd3 between 0.45 and 2.75 K showing a superconducting transition at Tc =
1.45(5) K. The shape of the C versus T is indicative of a typical type-II super-
conductor. By fitting Eq. (4.3) to the data above Tc the normal-state contribution
to the heat capacity was calculated γn = 50.17(16) mJ/mol K2. (b) C/T versus
T 2 data showing the suppression and broadening of the superconducting transition
when the applied field is increased from 0 to 450 mT. (c) Normalised electronic heat
capacity Cel/γnT versus normalised temperature T/Tc in zero applied field. The
dotted line shows the fit to the data for an isotropic s-wave gap as described in
Section 4.1.5.

5.2.3 Specific Heat Measurements

The temperature dependence of the heat capacity in La7Pd3 between 0.45 and 2.75 K

can be seen in Fig. 5.4(a). A sharp anomalous jump in the heat capacity is seen at

1.45(5) K indicating the onset of bulk superconductivity in La7Pd3. The supercon-

ducting transition is typical of that seen in type-II superconductors indicating the

La7Pd3 is a type-II superconductor. The normal-state heat capacity T > 1.45 K can

can be used used to extract a value for the Sommerfeld coefficient γn using Eq. (4.3).
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Using this equation the following values are obtained γn = 50.17(16) mJ/mol K2

and β3 = 4.86(4) mJ/mol K4. The Debye temperature can now be calculated

using Eq. (4.4) giving ΘD = 159(2) K. The large γn is quite unusual, with the

value for La7Pd3 surpassing some heavy fermion superconductors such as CeCoGe3

(γn = 32 mJ/mol K2) [74]. This suggests that there is an enhanced density of states

at the Fermi surface for La7Pd3. This value of γn is consistent with that seen in

other La7X3 [184, 125, 182, 183] compounds suggesting that this enhancement is

a common feature of this family of superconductors. The field dependence of the

superconducting transition for heat capacity can be seen in Fig. 5.4(b) where the

transition is seen to be suppressed and broadened with increasing magnetic field.

The midpoint of the superconducting anomaly for each of the fields can be used to

map out the upper critical field which is discussed later in this chapter.

The superconducting heat capacity in zero applied field can be used to look

for evidence of unusual superconducting order parameter by using the method de-

scribed in Section 4.1.5. Figure 5.4 shows that an isotropic s-wave gap can be fit

to the normalised electronic heat capacity data. The data and the fit are in good

agreement indicating that the superconducting gap is largely s-wave in nature. A

value of ∆0/kBTc = 1.67 (1) is obtained for La7Pd3, this value is less than the

expected 1.76 indicating a slightly diminished electron-phonon coupling strength.

5.2.4 Upper Critical Field

Upper critical field values for La7Pd3 can be estimated by extracting the temperature

and field values for the midpoint of the superconducting transition in the resistivity

data [see Fig. 5.3(b)] and the midpoint of the superconducting anomaly in the heat

capacity data [see Fig. 5.4(b)]. Figure 5.5 shows the upper critical field values as

a function of temperature it can be seen that the resistivity values curve upwards

near Tc. This behaviour is similar to the Ginzburg-Landau phenomenological model

for upper critical fields. A good fit to the resistivity data can be obtained by fitting

the Ginzburg-Landau model

Hc2 (T ) = Hc2 (0)

[
1− (T/Tc)

2
]

[
1 + (T/Tc)

2
] (5.1)

giving an estimated upper critical field value µ0Hc2 = 652(5) mT.

It is anticipated that due to lanthanum and palladium being the constituent

elements there would be a significant spin-orbit coupling contribution to the under-

lying physics of the superconducting state in La7Pd3. As previously discussed in
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Figure 5.5: Temperature dependence of the upper critical field for La7Pd3. The
transition temperatures were extracted from the midpoint of the anomaly in C (T )
and the midpoint of the resistive transition. The dashed-dotted and dotted line
show the expected µ0Hc2 from the WHH and GL models, respectively.

Section 4.1.6 the WHH model allows for the inclusion of small spin-orbit coupling in

the upper critical field calculations. A fit to the upper critical field was attempted

using the WHH model as shown by the orange dot-dashed line in Fig. 5.5 giving

a slight smaller µ0Hc2 = 620(3) mT. However, this model is unable to capture the

curvature of the upper critical field values.

5.2.5 µSR Measurements

The macroscopic superconducting state of La7Pd3 was probed using magnetisation,

resistivity and heat capacity however in superconductors the microscopic magnetic

environment formed by the vortex lattice can provide an essential insight into the

superconducting state. As previously discussed in Section 3.9 positive muons are

an excellent probe of the local magnetic environment when implanted into a su-

perconductor. The superconducting state of La7Pd3 has been investigated using

transverse, longitudinal and zero-field µSR.

Transverse-field µSR was performed on La7Pd3 in applied fields above the
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Figure 5.6: Transverse-field µSR spectra for La7Pd3 collected at 100 mK (top) and
2.25 K (bottom) in an applied magnetic field of 20 mT. The solid lines are fits to
data using Eq. (5.2). Below the superconducting transition temperature the field
distribution of the FLL causes the spectra to be significantly depolarised. Above
the superconducting transition temperature the randomly oriented array of nuclear
magnetic moments continue to depolarise the muons but at a reduced rate.

lower critical field ranging from 10 to 50 mT to ensure that the sample was in the

mixed-state. Transverse-field spectra were collected at temperatures between 0.1 to

2.75 K. In order to produce the most stable flux line lattice possible, the sample was

field cooled before starting the measurements. Figure 5.6 shows an example of the

asymmetry in the superconducting and normal-state at 0.1 and 2.75 K respectively.

In superconducting state the asymmetry can be seen to depolarise more quickly

this is due to the effects of the flux line lattice on the muon. A small amount of

depolarisation is visible in the normal-state due to nuclear magnetic moments of

the sample. The oscillatory signal of the muon spectra can be fit using a Gaussian

relaxation function coupled with two sinusoidal terms, one for the sample and one

for the silver plate:

GTF(t) = A1 exp

(
−σ

2t2

2

)
cos (γµB1t+ φ) +A2 cos (γµB2t+ φ) . (5.2)

Here A1 and A2 are the sample and background asymmetries, B1 and B2 are the

average fields in the superconductor and silver plate, φ is the shared phase offset,
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γµ/2π = 133.5 MHz T−1 is the muon gyromagnetic ratio and σ is total the depolari-

sation rate. By fitting Eq. (5.2) to all field and temperature spectra σ can be plotted

as function of temperature as shown in Fig. 5.7(a). The total depolarisation rate

is related to the depolarisation due to the flux line lattice(σFLL) and depolarisation

due to the nuclear moments σN by the following equation

σ2 = σ2
FLL + σ2

N. (5.3)

The nuclear depolarisation rate is found to remain constant over all temperatures at

σN = 0.162 µs−1. Due to the low upper critical field compared to the applied field

used in these measurements σFLL has a large field dependence. This is due to the

shrinking of the intervortex distances inside the flux line lattice. The effect of the

vortex cores and the expected field dependence of the second moment of the field

distribution have been calculated using different models. From calculations based

on the Ginzburg-Landau model the field dependence of σFLL can be described using

σFLL

[
µs−1

]
= 4.854× 104 (1− h)× {1 + 1.21

(
1−
√
h
)3
}λ−2

[
nm2

]
(5.4)

where h = H/Hc2 is the reduced field and λ−2 is the inverse squared penetration

depth. By taking isothermal cuts of Fig. 5.7(a) as denoted by the dashed line

Eq. (5.4) can then be fit to the data, as shown in Fig. 5.7(b), and the inverse

squared penetration depth can be extracted. The temperature dependence of λ−2

can be seen in Fig. 5.7(b). The superconducting gap of La7Pd3can be analysed from

λ−2. In the clean limit the magnetic penetration depth of La7Pd3 can be modelled

using the following

λ−2 (T )

λ−2 (0)
= 1 + 2

∫ ∞
∆(T )

(
∂f

∂E

)
EdE√

E2 −∆2 (T )
, (5.5)

where f = [1 + exp (E/kBT )]−1 is the Fermi function and the temperature depen-

dence of the gap for an isotropic s-wave model is ∆ (T ) = ∆0δ (T/Tc). Here ∆0

is the magnitude of the superconducting gap at zero kelvin and the temperature

dependence of the gap can be approximated by

δ (T/Tc) = tanh{1.82 [1.018 (Tc/T − 1)]0.51}. (5.6)

The fit produced by this model is shown by the dashed line in Fig 5.7(c). The

value of ∆0 = 0.30(4) was obtained, giving ∆0/kBTc = 2.40(13) which is above the

BCS value of 1.76 indicating that electron-phonon coupling is enhanced in La7Pd3
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Figure 5.7: (a) Temperature dependence of the total spin depolarisation for La7Pd3

collected in fields between 10 and 50 mT. Isothermal cuts (represented by dashed
line) are used to calculate the field dependence of σ in La7Pd3. (b) Field depen-
dence of the muon spin relaxation due to the flux line lattice at several different
temperatures. The solid lines are fits to the data using Eq. (5.4). (c) Temperature
dependence of the the superfluid density. The dashed line is a fit to the data using
Eq. (5.5).

although this contradicts with the value determined by heat capacity measurements.

The penetration depth at zero kelvin was calculated to be λ(0) = 495(4) nm.

Longitudinal-field and zero-field measurements were performed on La7Pd3

which can be seen in Fig. 5.8(a) to look for evidence of time-reversal symmetry

breaking in the superconducting state. The asymmetry above (2.75 K) and below

(0.1 K) the superconducting transition in zero-field mode are shown in Fig. 5.8(a).

Here it can be seen that there is a shift between the spectra indicating the presence

of small internal magnetic fields in the superconducting state. The absence of an

oscillatory signal rules out the possibility of there being magnetic impurities in
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the sample. Since there is a lack of atomic moments it can be assumed that this

behaviour comes from the presence of static randomly orientated nuclear moments.

These nuclear moments can be modelled by the Kubo-Toyabe model

GKT (t) =
1

3
+

2

3

(
1− σ2

ZFt
2
)

exp

(
−
σ2

ZFt
2

2

)
, (5.7)

where σZF measures the width of the nuclear dipolar field experienced by the muons.

The asymmetry above and below the superconducting transition can be modelled

by

G (t) = A0GKT (t) exp (−Λt) +Abg, (5.8)

where A0 and Abg are the sample and background asymmetries, respectively, and Λ

measures the electronic relaxation rate. The sample and background asymmetries

were found to be constant across all temperatures. σZF was found to linearly decrease

for increasing temperatures from 0.1 to 2.75 K [see Fig. 5.8(c)] while Λ was found

to be constant above the superconducting transition with a increase slightly below

the transition at T ≈ 1.4 K [see Fig. 5.8(b)].

To eliminate any possibility of the relaxation coming from spin fluctuations

due to a quantum critical point a small longitudinal field of 5 mT was applied, as

shown by the purple data points in Fig. 5.8(a). The complete decoupling of the

muons indicates that the spontaneous magnetic fields are static or at least quasi-

static over the lifetime of the muon. While normally the evidence presented above

would be taken as an observation of broken time-reversal symmetry in La7Pd3 the

fact that the increase in the Λ-channel is below the superconducting transition

temperature raises concerns as to the origin of the phenomena. The behaviour is

also seen in both La7Ir3 [124] and La7Rh3 [182] though neither author comments on

this. Potential sources for these behaviour are discussed at the end of the chapter.

5.2.6 Properties of the Superconducting State

Using the results of the magnetisation, resistivity, heat capacity and muon measure-

ments several superconducting properties of La7Pd3 can be evaluated. Following

the same calculations described in Section 4.1.7 the upper critical field can be used

to estimate the Ginzburg-Landau coherence length ξGL(0) = 23.1(5) nm and the

Ginzburg-Landau penetration depth can be estimated from the lower critical field

with λGL(0) = 235 nm. λGL(0) as calculated from the lower critical field is signifi-

cantly lower than measurement by µSR this is however expected as the method for

calculating this parameter from magnetisation is expected to overestimate the value
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Figure 5.8: (a) ZF µSR spectra collected at 0.1 (green) and 2.75 K (red), the
data is fit using the Gaussian Kubo-Toyabe model (dashed lines). (b) Temperature
dependence of the electronic relaxation rate Λ can be seen to increase below 1.3 K
which close to Tc.(c) Temperature dependence of the nuclear relaxation rate σ shows
no change at Tc.

of the lower critical field. The value obtained from µSR will be used for further

calculations. The Ginzburg-Landau parameter is calculated to be κGL = 21.4 indi-

cating that La7Pd3 is a type-II superconductor. The parameters m∗, n, `e and ξ0

can be calculated using the series of four equations Eqs.(4.18) - (4.23), the results

are shown in Table 5.1. The ratio of ξ0/`e indicates whether the La7Pd3 is in the

dirty (ξ0/`e � 1) or clean (ξ0/`e � 1) limit. From Table 5.1, ξ0/`e = 0.08(3) puts

La7Pd3 in the clean limit due to its long scattering length and short coherence length.

Finally the electron-phonon coupling constant and the Fermi temperature can be

estimated using Eq. (4.25) and Eq. (4.26) giving λel−ph = 0.55 and TF = 387 K. The

ratio of the superconducting transition and the Fermi temperature Tc/TF allows us

to use the Uemura classification for La7Pd3. It can be seen that La7Pd3 lies outside

of the region for unconventional superconductivity according the Uemura classifica-

86



Table 5.1: Superconducting properties of La7Pd3.

Property Units

λGL(0) (nm) 495
m∗/me 14.6(1)
n (1027m−3) 1.54(2)
ξ0 (nm) 24.4(5)
`e (nm) 301(2)
ξ0/`e 0.08(3)
λL (nm) 516(2)
TF (K) 387(40)
Tc/TF 0.004(1)

tion (0.01 ≤ Tc/TF ≤ 0.1) however the value is of the same order of magnitude as

Re6Zr.

5.3 Growth and Characterisation of Single Crystals of

La7Ir3

La7Ir3 has been of much interest to the research community since time-reversal

symmetry breaking was reported in polycrystalline samples [124]. More recently ev-

idence for conventional superconductivity in La7Ir3 was reported by Li et al. [125].

In this section we discuss the synthesis and characterisation of single crystal of

La7Ir3. The synthesis of single crystals of La7Ir3 allows for any anisotropy in the

superconductor to be explored to search for more conclusive evidence of exotic su-

perconductivity.

5.3.1 Sample Preparation and Structural Analysis

Single crystals of La7Ir3 were grown using the Czochralski process using a radio

frequency furnace where 20 g of material was prepared. More information on the

Czochralski process can be found in Section 3.1.2. Figure 5.9(a) shows the pulled

growth of La7Ir3, the growth was seen to tarnish quickly indicating that the sample

is are air sensitive. Laue x-ray diffraction was used to confirm the quality and

to orientate the crystals of La7Ir3. Single crystals of La7Ir3 were orientated along

the [101̄0] and the [0001] directions. An example of a Laue diffraction pattern for
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Figure 5.9: (a) Pulled growth of La7Ir3 by the Czochralski process. (b) Laue x-ray
diffraction pattern of La7Ir3 orientated along the [101̄0].

La7Ir3 is shown Fig. 5.9. Powder x-ray diffraction was performed using the Bruker

D5005 diffractometer with a sample vacuum chamber equipped to reduce oxidation

of the La7Ir3 powder. The results of the powder x-ray diffraction can be seen in

Fig. 5.10. The pattern was phase matched with the space group P63mc, where the

lattice parameters were calculated to be a = b = 10.243(8) Å and c = 6.475(6) Å

which is in strong agreement with previous reports [125, 185]. No impurities can

be seen within the resolution limit of the instrument. EDX was used to confirm

the stoichiometry and elementary variations across the single crystals of La7Ir3as

shown in Fig. 5.11. The stoichiometry of La7Ir3 was measured across the bulk

and at six sites. The bulk stoichiometry was measured to be 70.5% La and 29.5%

Ir. Measurements of the individual sites of the sample show a stable stoichiometry

across the sample. The largest variation of 1% increase in La is shown at spectrum 9

with a stoichiometry 71.2% La and 28.8% Ir. These results taken together with the

sharp Laue diffraction and powder x-ray diffraction are indicative of high quality

single crystals.

5.3.2 Magnetisation and Electrical Resistivity Measurements

Single crystals of La7Ir3 were initially characterised using magnetisation along two

crystal directions to investigate if there are any anisotropy in the superconducting

state. The temperature dependence of the magnetic susceptibility along the [0001]

and [101̄0] are shown in fig. 5.12(a). The samples were measured in ZFCW and FCC

mode between 1.8 and 2.8 K in an applied field of 1 mT. The onset of supercon-

ductivity is observed at T onset
c = 2.41(5) K, this is higher than the Tc = 2.25(5) K

which has previously reported in polycrystalline samples of La7Ir3 [124, 125]. A
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Figure 5.10: Powder x-ray diffraction of crushed single crystals of La7Ir3 measured
using the Bruker D5005 diffractometer. The black line shows the captured x-ray
pattern, the red line shows the phase match fit to the diffraction pattern and the
green line shows the difference between the fit and the data.
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Figure 5.11: (a) Scanning electron microscope image of the surface of a single crystal
of La7Ir3. EDX spectra were collected across the bulk of the La7Ir3 sample as well as
the six marked sites to check for local variance in elemental stoichiometry. (b) Bulk
EDX spectrum of La7Ir3 where the size and relative energies of the peaks indicate
the elemental composition of the sample. The bulk stoichiometry was measured to
be 70.5% La and 29.5% Ir.
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Figure 5.12: (a) Temperature dependence of the magnetic susceptibility for La7Ir3

with an applied magnetic field of 1 mT along the [0001] (blue) and [101̄0] (green)
directions. The samples were measured in ZFCW and FCC mode. (b) Lower critical
field as a function of temperature from [0001] (red) and [101̄0] (green) crystal direc-
tions. The dashed lines show fits to the data using the Ginzburg-Landau equation
[see Eq. (4.7)].
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full Meissner fraction of χdc = −1 is observed in the superconducting state indi-

cating bulk superconductivity in single crystals of La7Ir3 in both crystallographic

directions. When the sample is cooled in field a significant fraction of the field is

re-excluded with χdc = −0.9 in both directions. There is a noticeable offset between

the crystal directions suggesting a possible anisotropy in the critical field values.

The lower critical field for both the [0001] and [101̄0] crystal directions was inves-

tigated using magnetisation versus applied field. By looking for the first deviation

from linearity in the magnetisation versus field the lower critical field values can

be extracted. Figure 5.12(b) shows lower critical field values for two crystal field

directions. The lower critical field values for the two field directions have been fit by

the Ginzburg-Landau model given in Eq. (4.7) giving µ0Hc1(0) = 4.82(4) mT along

the [101̄0] direction and µ0Hc1(0) = 3.59(5) mT along the [0001].

The electrical resistivity of La7Ir3 was investigated in the normal and super-

conducting state. The temperature dependence of the electrical resistivity from 1.8

to 300 K with the current applied along the [011̄0] crystal direction can be seen in

Fig. 5.13(a). The shape of the electrical resistivity in the normal-state is seen to be

convex which is unusual for La-based superconductors. This shape has been previ-

ously report by Li et al. [125] in polycrystalline La7Ir3 and by Nakamura et al. [183]

in single crystals of La7Ni3. A similar curvature is also seen in other noncentrosym-

metric superconductors such as Re6Zr as discussed in Section 4.1.2. The normal-

state resistivity can be fit by the parallel resistor model [described in Section 4.1.2]

which is shown in Fig. 5.13(b). Using Eqs. (4.1a) - (4.1c) the parallel resistor model

gives ρsat = 2.31(1) µΩ cm, C = 13.96(6) µΩ cm and ΘR = 154.7(4) K when the

residual resistivity is fixed at ρ0 = 0.680(1) µΩ cm for La7Ir3. In single crystals of

La7Ir3 the residual resistivity ratio is 4 which is larger than the value reported for a

polycrystalline sample of La7Ir3 where RRR = 2.6 [125]. This is expected as there

will be less disorder in the single crystal samples of La7Ir3.

Figure 5.13(c) shows how the superconducting transition for La7Ir3 is sup-

pressed and broadened for applied fields from 0 to 2 T. In zero applied field a sharp

superconducting transition (∆T = 0.07 K) is seen at Tc = 2.38(5) K, in 1.7 T a

much broader transition (∆T = 0.7 K) is observed at Tc = 0.89(5) K. The mid

points of the superconducting transition can be extracted to plot how the upper

critical field behaves as a function of temperature which will be discussed in a later

section.
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Figure 5.13: (a) Temperature dependence of superconducting and normal-state re-
sistivity for La7Ir3 between 1.8 and 300 K with the current applied along the [011̄0]
crystal orientation. La7Ir3 has a superconducting transition at Tc = 2.38(5) K. (b)
Normal-state resistivity of La7Ir3 fit using the parallel resistor model as described
Section 4.1.2. (c) Electrical resistivity versus temperature for applied fields between
0 and 2 T. The field was applied along the [101̄0] direction and the current was
applied along the [011̄0] direction. The superconducting transition is seen to be
suppressed and broadened for increasing fields.

5.3.3 Specific Heat Measurements

In order to explore the symmetry of the superconducting gap in single crystals of

La7Ir3 the heat capacity was measured. The temperature dependence of the heat

capacity divided by temperature is shown in Fig. 5.14(a) where a sharp supercon-

ducting transition is observed at Tc = 2.39(5) K. The heat capacity above the

superconducting transition in Fig. 5.14(a) can be fit using Eq. (4.3) to obtain the

Sommerfeld coefficient and Debye temperature for the normal-state. The fit to the

data using Eq. (4.3) gives γn = 49.6(5) mJ/mol K2 and ΘD = 163(2) K. These

values are in close agreement with those reported by in polycrystalline La7Ir3 [125].
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Figure 5.14: (a) Temperature dependence of the heat capacity divided by the tem-
perature squared for La7Ir3. The dashed line shows a fit to the normal-state data
using Eq. (4.3). (b) Heat capacity versus temperature in various fields from 0 to
1 T applied along the [0001]. A sharp superconducting transition is observed at
Tc = 2.39(5) K in zero applied field. (c) Normalised temperature dependence of the
zero-field normalised electronic specific for La7Ir3. The data is found to be fit well
by an s-wave model with a superconducting gap ratio of ∆0/kBTc = 1.80(4).

The heat capacity as a function of temperature for various applied field be-

tween 0 and 1 T along the [0001] crystal direction is shown in Fig. 5.14(b). The

superconducting transition is seen to be suppressed and marginally broadened for

increasing field, the mid point of these superconducting transitions can be extracted

to plot the temperature dependence of the upper critical field as discussed in the

next section.

Below the superconducting transition the temperature dependence of the

heat capacity can be fit to investigate the symmetry of the superconducting gap.

Figure 5.14(c) show the electronic heat capacity divided by γn and the temperature

Cel/γnT versus the normalised temperature T/Tc. As described in Section 4.1.5 the
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Figure 5.15: (a) Temperature dependence of the upper critical determined from
the midpoint of the superconducting transition in heat capacity measurements with
the applied field along two different crystal orientation in La7Ir3. The dashed and
dashed dotted lines show fits from the WHH model giving µ0Hc2(0) = 1.01(5) T
along the [0001] direction and µ0Hc2(0) = 0.71(3) T along the [101̄0] direction (b)
Temperature dependence of the upper critical and the surface critical field. Surface
critical field points are taken from the midpoint of the superconducting transition
for the resistivity measurements.

superconducting gap can be fit using Eq. (4.8) and Eq. (4.9). The s-wave model

shows good agreement giving a superconducting gap value of ∆0 = 0.369(8) meV

which gives ∆0/kBTc = 1.80(4). This value is marginally larger than the BCS value

of 1.76 indicating a small enhancement of the electron-phonon coupling. While the

value of ∆C/γnTc = 1.25(3) is smaller than the expected BCS value of 1.43 which

may suggest anisotropy in the superconducting gap. These values do appear to

contradict each other as they are both indicators of the electron-phonon coupling

strength. The small ∆C/γnTc comes about due to the large γn and the small ∆C.

Where as the the large ∆0/kBTc come about due to ∆0 which is a more direct

measurement of the superconducting gap.

5.3.4 Upper Critical Field and Surface Critical Field

Upper critical field values were extracted from the midpoint of the superconducting

transition for heat capacity measurements where the field was applied along [0001]

[see Fig. 5.14(b)] and [101̄0] crystal direction in La7Ir3. Figure 5.15 shows the

temperature dependence of the upper critical field along the two crystal directions.

Fits to both crystal directions were done using the WHH model as described in

Section 4.1.6.

When the magnetic field is applied along the [101̄0] the gradient near Tc
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is determined to be dHc2(T )/dT |T=Tc = −0.445(5) T/K using Eq. (4.13) the or-

bital critical field can be evaluated Horb
c2 = 0.73(1) T. The Maki parameter can

then be calculated using Eq. (4.12) giving αM = 0.247(3). In the WHH model

Tc, dHc2(T )/dT |T=Tc and αM are all held constant during the fitting with only λso

allowed to vary. Following this procedure produces the fit as shown by the dot-

dashed line in Fig. 5.15(a). It is found that λso → 0 and the upper critical field is

evaluated at T = 0 K gives µ0Hc2(0) = 0.71(3) T. In the [0001] crystal direction

the gradient near Tc is determined to be dHc2(T )/dT |T=Tc = −0.620(10) and using

Eq. (4.13) the orbital critical field can be evaluated Horb
c2 = 1.08(2) T. The Maki

parameter can then be calculated using Eq. (4.12) giving αM = 0.345(5). The WHH

model can be fit well to the data as shown by the dashed line in Fig. 5.15(a). It

is found that λso → 0 and the upper critical field is evaluated at T = 0 K gives

µ0Hc2(0) = 1.01(5) T.

The upper critical field was also measured by electrical resistivity measure-

ments. By taking the midpoint of the superconducting transition in Fig. 5.13(c)

the following upper critical field points can be added to our phase diagram to pro-

duce Fig. 5.15(b). Interestingly the heat capacity and resistivity measurement are

in agreement until ∼ 2 K before the resistivity diverges substantially with µ0Hc2(0)

almost ×2.5 larger which would agree with previous polycrystalline measurements

of the upper critical field using resistivity [125]. Due to the nature of electrical

resistivity measurements it can be much more versatile in finding small channels

of superconductivity across the sample either through surface or granular effects.

However, heat capacity only measures bulk superconductivity.

5.3.5 Properties of the Superconducting State

Finally several superconducting properties of La7Ir3 along the two crystal directions

can be evaluated, the results of which are summarised in Table 5.2. Following the

process and the system of equations described in Section 4.1.7 the quantities λGL(0),

ξGL(0), κGL, ξ0, `e and λL are calculated. As shown in Table 5.2 La7Ir3 is a type-II

superconductor in the clean limit. The thermodynamic critical field was estimated

using Eq. (4.16) and the values for λGL(0) and ξGL(0) which gives µ0Hc(0) ≈ 35 mT

for both crystal directions. The electron-phonon coupling constant can also be

estimated using Eq. (4.25) and ΘD which gives λel−ph = 0.616.
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Table 5.2: Superconducting properties of La7Ir3.

La7Ir3 Crystal Directions
Property Units [101̄0] [0001]

µ0Hc1(0) (mT) 4.82(4) 3.59(5)
µ0Hc2(0) (T) 0.71(3) 1.01(5)
µ0Hc(0) (mT) 35.9(14) 35.5(18)
λGL(0) (nm) 301(12) 364(18)
ξGL(0) (nm) 21.6(9) 18.1(9)
κGL 13.9(6) 20.1(9)
ξ0 (nm) 21.3(9) 18.5(8)
`e (nm) 87(4) 108(5)
ξ0/`e 0.245(10) 0.169(8)
λL (nm) 270(12) 337(15)

5.4 Discussion and Summary

In summary, we investigated the superconducting properties of polycrystalline La7Pd3

and single crystals of La7Ir3. The superconducting properties of both La7Pd3 and

La7Ir3 are summarised in Table 5.3. Magnetisation, heat capacity, resistivity and

µSR measurements have revealed that La7Pd3 is type-II superconductor in the clean

limit. Heat capacity and transverse-field µSR measurements indicated the super-

conducting order parameter is dominated by BCS-like s-wave component. The

upper critical field of La7Pd3 is well fit by the Ginzburg-Landau phenomenological

model which provides further evidence of conventional superconducting behaviour.

However, longitudinal and zero-field µSR measurements show an increase in the

Λ-channel of the Gaussian Kubo-Toyabe model below T = 1.4 K. This is taken as

evidence of time-reversal symmetry breaking due to the lack of long-range order

in the sample and the presence of static or quasi-static spins over the lifetime of

the muon. However, the Λ-channel starting to increase below the superconduct-

ing transition temperature raises concerns about the true origin of the phenomena.

Multigap behaviour would allow for a lack of alignment with the superconducting

transition since one gap could open up where time-reversal symmetry is preserved

before a second gap opens with time-reversal symmetry breaking. No evidence for

multigap superconductivity has been seen in either the heat capacity and TF-µSR.

Although, as previously discussed if d (k) in Eq. (2.25a) it can prove experimentally

difficult to differentiate the admixture from that of a conventional s-wave pairing.

96



An increase in the Λ-channel is seen in Sr2RuO4 [186], LaNiC2 [104], Zr3Ir [187]

and SrPtAs [188] where this phenomena is also reported as time-reversal symmetry

breaking. Collectively time-reversal symmetry breaking has now been observed in

three members of the La7X3 family; La7Ir3 [124], La7Rh3 [182] and now La7Pd3

where an increase in Λ of a similar magnitude 0.0005 - 0.001 µs−1. σZF is also

observed to increase linearly in these compounds with a magnitude between 0.006 -

0.011 µs−1. The ∆Λ and ∆σZF values for each compound are listed in Table 5.3.

Time-reversal symmetry breaking can arise in superconductors for several reasons,

not just from triplet pairing. In Sr2RuO4 the time-reversal symmetry breaking is

thought to arise due to a degeneracy in the superconducting phase brought about

by non-zero spin and orbital moments. This in turn allows for the creation of spon-

taneous supercurrents near to grain boundaries and impurities from inhomogeneous

order parameters [186, 189, 190]. Conversely time-reversal symmetry breaking

in LaNiC2 is thought to arise due to hyperfine fields made by nonunitary spin

triplet pairs [104]. However, unlike LaNiC2 and Sr2RuO4 where unconventional

gap structures have been observed, La7Pd3 and La7Ir3 only exhibit BCS-like s-wave

gaps structures. It has been shown by Scheurer that it is not possible for a fully

gapped superconductor that is mediated by electron-phonon interactions to break

time-reversal symmetry [191]. This implies that an unconventional mechanism i.e.

electron-electrons interactions must be responsible for the pairing in La7Pd3, La7Ir3

and La7Rh3. The detection of a single s-wave gap in these compounds causes con-

cern but mixed pairing is allowed. A spin-split Fermi surface can look conventional

in nature if the magnitude of the two superconducting order parameters are simi-

lar. In order to distinguish parity mixing effects it is now necessary to study single

crystal of La7Pd3, La7Rh3 and La7Ir3. Further characterisation and time-reversal

symmetry breaking investigations are required on other members of this family of

superconductors. In particular a study of the centrosymmetric La7Ru3 will indi-

cate whether broken inversion symmetry is necessary for time-reversal symmetry

breaking in these compounds.

In this thesis we have begun to investigate single crystals of La7Ir3 along two

different crystal directions to look for evidence of mixed pairing in the superconduct-

ing order parameter. A combination of magnetisation, resistivity and heat capacity

have revealed that La7Ir3is a clean type-II superconductor. Measurements of the

superconducting gap using heat capacity have observed an isotropic s-wave gap

structure in La7Ir3. Heat capacity measurements have been found to show isotropic

fully gapped superconductivity in other compounds where unconventional gaps have

been seen through other techniques. Other measurements using muons and TDO
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are necessary to corroborate the results seen through heat capacity and to explore if

time-reversal symmetry breaking is preserved in single crystals of La7Ir3 as now the

sources i.e grain boundaries of supercurrents are no longer present. An anisotropy

has been observed in the lower and upper critical field of La7Ir3. As shown in

Table 5.2 the Ginzburg-Landau penetration depth are seen to be anisotropic as a

result. This in turn may lead to an anisotropy in the superfluid density. However,

the small difference between the Ginzburg-Landau penetration depths may indicate

that the superfluid density anisotropy are also small enough to be outside the de-

tection limit of our current experiments. Muons spin spectroscopy and tunnel diode

oscillations are a more sensitive probe of the superfluid density. The upper critical

field was measured using heat capacity and resistivity measurements. At T ≈ 1.8 K

the upper critical field as determined by resistivity is seen to diverge away from

those determined by heat capacity showing positive curvature close to the point of

divergence. Resistivity measurements are sensitive to surface effects implying that

source of the divergence comes from surface superconductivity. This is seen in other

noncentrosymmetric compounds such as LaPdSi3 and LaPtSi3 [192].
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Chapter 6

Chiral Noncentrosymmetric

Superconductors TaRh2B2 and

NbRh2B2

6.1 Introduction

In the preceding two chapters, the properties of cubic and hexagonally structured

noncentrosymmetric compounds were discussed. The recent discovery of two new

noncentrosymmetric superconductors with chiral structures, TaRh2B2 and NbRh2B2

[193] has added a new twist to an already exciting area of superconductivity research.

Noncentrosymmetric superconductors with a chiral structure are rare but examples

do exist. For example, Li2(Pd1−xPtx)3B (0 ≤ x ≤ 1) has an antiperovskite struc-

ture, (chiral space group P4332).

Li2Pd3B is an s-wave superconductor, while the stronger antisymmetric spin-orbit

coupling in Li2Pt3B enhances the triplet component, producing line nodes in the

gap, as revealed by the linear temperature dependence of the magnetic penetration

depth λ (T ) at low T [4, 87]. Mo3Al2C, (chiral space group P4132), is a strongly-

coupled superconductor with a Tc of 9 K. NMR and electronic heat capacity data,

along with a pressure enhanced Tc suggest Mo3Al2C has a nodal gap with singlet-

triplet mixing [90, 91].

Multigap superconductivity has been reported in several classes of super-

conductor including the iron pnictides [194, 135, 136] and the borides including

MgB2 [195, 134, 196, 135, 197]. There are several non-chiral noncentrosymmetric

superconductors that exhibit multigap behaviour. For example, Y2C3 is proposed

to have a double-gap, each with s-wave symmetry and interband coupling. Even
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in centrosymmetric materials, a combination of strong spin-orbit coupling and dis-

order can have profound effects on the superconducting properties. The R2PdxS5

(x ≤ 1) family of materials where R = Nb or Ta with the centrosymmetric space

group C2/m are particularly noteworthy in this regard [198, 199, 200]. Strong SO

coupling, along with Anderson localisation resulting from a level of disorder due to

Pd deficiency, leads to highly anisotropic upper critical fields that in some cases far

exceed the Pauli limit (e.g., Nb2Pd0.81S5 Tc ∼ 6.6 K and Hc2 (0) along the b axis of

37 T) [198].

TaRh2B2 and NbRh2B2 are both noncentrosymmetric superconductors with

a chiral structure and have the potential to exhibit similar exciting physics. The first

report on this material [193] shows TaRh2B2 and NbRh2B2 has a trigonal structure

(space group P31 ), with a Tc of 5.8 K and 7.5 K respectively and upper critical

fields that exceed the Pauli limit. In this chapter, we have used a combination of

muon spectroscopy, heat capacity, magnetisation, resistivity and pressure to probe

the nature of the superconducting state of TaRh2B2 and NbRh2B2. We report that

TaRh2B2 and NbRh2B2 can be best described using a two-gap (s+ s)-wave model.

It is clearly demonstrated that TaRh2B2 and NbRh2B2 are type-II superconductors

with upper critical fields of µ0Hc2 = 15.2(1) T and µ0Hc2 = 20.2(1) T that are

significantly higher than previous reported [193] and well above the Pauli limit.

We have also investigated if time-reversal symmetry is broken in zero-field µSR

measurements.

6.2 Multigap Superconductivity in TaRh2B2

Here we discuss the first of the two compounds TaRh2B2. This first synthesis of

TaRh2B2 was reported by Carnicom et al. [193]. They reported magnetisation, heat

capacity and resistivity measurements showing that TaRh2B2 has a superconduct-

ing transition temperature of Tc = 5.8 K and that the upper critical field exceeds

the Pauli limiting field. Here we have synthesised TaRh2B2 and characterised the

material in more detail using magnetisation, heat capacity, resistivity and muon

spin spectroscopy.

6.2.1 Sample Preparation and Structural Analysis

Polycrystalline samples were prepared by grinding together powders of elemental Ta

(3N, 324 mesh, Alfa Aesar), Rh (3N, NewMet) and B (2N, 324 mesh, Alfa Aesar)

in the ratio 1:1.9:2.1. The resulting powder is then pressed into pellets using a uni-

axial press. The pellets were wrapped in tantalum foil, placed in alumina crucible
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Figure 6.1: Powder x-ray diffraction data of TaRh2B2. The black line shows the
captured x-ray pattern, the red line shows the phase match fit to the diffraction
pattern and the green line shows the difference between the fit and the data. An
unknown impurity is marked with an asterisk.

and heated at 150 oC/hour to 1200 oC, reacted for 6 hours, and then furnace cooled

to room temperature, all under vacuum. Powder x-ray diffraction was performed

on TaRh2B2 to check for any phase impurities in the sample. The results of the

powder x-ray diffraction are shown in Fig. 6.1. The diffraction pattern was phase

matched with the space group P31, where the lattice parameters were calculated to

be a = 4.699(3) Å and c = 8.734(5) Å. One unknown phase impurity was found at

2θ ≈ 42 o. Both the lattice parameters and the impurity peak are consistent with

that reported in Ref. [193].

6.2.2 Magnetisation and Electrical Resistivity Measurements

The dc magnetic susceptibility, χdc (T ), of TaRh2B2 as a function of temperature

taken in zero-field-cooled warming (ZFCW) and field-cooled cooling (FCC) modes

in an applied field of 1 mT is shown in Fig. 6.2(a). These data indicate a on-
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Figure 6.2: Temperature dependence of the dc magnetic susceptibility χdc (T )
collected in zero-field-cooled warming (ZFCW) and field-cooled cooling (FCC) mode
in an applied field of µ0H = 1 mT.

set for superconductivity in TaRh2B2 at T onset
c = 6.05 (5) K. The sample exhibits

a full Meissner fraction, χdc (T ) = −1, for the ZFCW data. There is some flux

expulsion on re-entering the superconducting state during FCC. The behaviour is

consistent with a type-II superconductor with relatively strong pinning and some

disorder. There is no signature of any additional transitions (magnetic or super-

conducting) at very low temperature. The normal-state paramagnetic susceptibility

after subtracting the contribution due to the core diamagnetism is estimated to be

∼ χ = 2.2 × 10−8 m3/mol at 10 K. This value is just under half that reported for

the Stoner enhanced paramagnet Pd at 20 K [201]. The susceptibility is almost

temperature independent, although a small upturn on cooling just above Tc may

indicate the presence of a some localised moments. Several magnetisation loops

shown in Fig. 6.4 reveal TaRh2B2 exhibits the conventional behaviour of a type-II

superconductor, with a hysteresis in the magnetisation, ∆M , that decreases with

increasing temperature and magnetic field. This hysteresis ∆M disappears at ex-
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Figure 6.3: Lower critical field Hc1 versus temperature for TaRh2B2. The Hc1

values were taken as the fields at which magnetisation versus field data first deviate
from linearity. The inset shows the demagnetisation corrected residuals for linear
fit to M vs H at several temperatures. The solid line shows the fit using Eq. (4.7)
giving µ0Hc1(0) = 3.8 (1) mT.

actly Hc2 (T ) and there is no reversible region or unusual flux dynamics. The curves

are symmetric about M = 0. The lower critical field, Hc1 (T ) is determined from

the first deviation from linearity of the initial slope as the field is increased. Fig. 6.3

shows the resulting Hc1 (T ) values plotted against temperature. Fitting the data

using Eq. (4.7) Hc1 (0) is estimated to be 3.8 (1) mT. This is lower than the 9.6 mT

reported in Ref. [193] due to their incorrect usage of the demagnetisation factor in

their calculations.

The ac susceptibility versus temperature measurements, χac (T ), shown in

Fig. 6.5 confirm the onset of superconductivity is at Tonset = 6.05 (5) K. In zero-

field, the sample exhibits a full Meissner fraction. The out-of-phase component of

the ac susceptibility, χ′′(T ), has a sharp maximum close to Tc and falls to zero for

lower temperatures with a shoulder that is visible at around 5.6 K. For applied fields

greater than Hc1 (0), Tc is suppressed and a full Meissner fraction is not seen due
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Figure 6.4: (a) Magnetisation vs magnetic field at 1.65 K for TaRh2B2 exhibits
a behaviour typical for a type-II superconductor. The inset shows the M (H) data
close to the upper critical field of 3 T at 5 K. (b) Magnetisation vs magnetic field
at several temperatures for TaRh2B2. The data were collected in a VSM with the
demagnetisation factor of the sample minimised.

to partial flux penetration. At temperatures below Tc (H), χ′′(T ) exhibits a broad

maximum indicating losses due to flux motion in dc applied fields.

The temperature dependence of the resistivity, ρ (T ), from 2 to 300 K in zero

magnetic field for a polycrystalline sample of TaRh2B2 is shown in Figure 6.6(a).

The residual resistivity ratio, RRR ≡ ρ(300 K)/ρ(10 K) ≈ 0.97 is less than one.

This along with high normal-state resistivity indicate poor metallic behaviour. Im-

mediately below 300 K the resistivity decreases with a slope dρ/dT = 4.8 µΩ-cm/K

before reaching a minimum at 150 K and then increases with decreasing temperature
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Figure 6.5: (a) Imaginary part of ac susceptibility versus temperature, χ′′ (T ),
for TaRh2B2 in various dc applied fields. (b) Real part of ac susceptibility versus
temperature, χ′ (T ), for TaRh2B2 at various dc applied fields. In zero dc field, a
sharp superconducting transition can be seen at 6.00 (5) K. In fields above Hc1 (0)
the transition broadens slightly and shifts to lower T .

down to 10 K. The upturn may be due to a localisation of the charge carriers and dis-

order scattering [202], perhaps as a result of the small variations in the level of boron

throughout the sample (although there is no evidence for variations in B content

from the powder x-ray diffractogram). The polycrystalline samples have a density
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Figure 6.6: (a) Resistivity versus temperature, ρ (T ), of TaRh2B2 for 1.8 ≤ T ≤
300 K measured in zero applied magnetic field and a field of 9 T. The inset shows
an expanded view of the normal-state resistivity. (b) ρ (T ) below 7.5 K shows the
onset of superconductivity and the suppression of the transition temperature under
various applied fields, µ0H, from 0 to 9 T. The black (red) dashed line(s) are at
50% (95% and 5%) of the resistivity just above the superconducting transition. Tc is
taken as the midpoint of the resistive transition. (c) Resistivity versus applied field,
ρ(H), showing the suppression of the transition at several constant temperatures
down to 1.4 K.

that is around 50% of the full theoretical density of this material, so scattering from

grain boundaries as well as the presence of voids will also increase the residual resis-

tivity. The magneto-resistance at 10 K is just ρ9T−ρ0T
ρ0T

× 100% = +0.3%. A sharp

(∆Tc = 0.10 K), zero-field superconducting transition is seen at Tc = 6.00 (5) K [see

Fig. 6.6(b)]. Tc is only gradually suppressed with increasing applied magnetic field

and the transition is broadened so that ∆Tc = 1.0 K at 9 T. Resistivity measure-

ments were also performed at fixed temperature as a function of applied magnetic

field up to 15 T [see Fig. 6.6(c)]. Plotting the superconducting transition tempera-
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Reduced Chi-Sqr 10.02233
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Value Standard Error

heat capacity C

N 15 0
Fd1 0.54622 0.00335
theta 283.15507 0.81438
gamma 0.00558 0
Et1 583.35814 8.90532
Et2 1400 0
Et3 800 0
FE1 0.34046 0.00568
FE2 0.11332 0.02286
FE3 0 0
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Figure 6.7: (a) C (T ) /T versus T 2 for TaRh2B2 in different applied fields (µ0H in
tesla), showing the suppression in Tc for increasing field. (b) C (T ) /T versus T 2

with normal-state data from all the applied fields. The line is a fit using Eq. (4.3)
to all the C (T ) data collected above Tc (H) in the different applied fields. The
normal-state electronic contribution to the specific heat is γn = 4.29 (6) mJ/mol K2

and the Debye temperature is ΘD = 374 (2) K. (c) C versus T from 2 to 300 K.
The dashed line shows the fit using Eq. (4.5a), the Debye-Einstein function.

tures at T onset
c (95%), Tmidpoint

c (50%), and T zero
c (5%), as a function of the applied

magnetic field, H, along with Honset
c , Hmidpoint

c , and Hzero
c for the data collected

while sweeping the field at fixed temperature gave three curves that show the same

temperature dependence.

6.2.3 Specific Heat Measurements

Fig. 6.7(a) shows the squared temperature dependence of the heat capacity di-

vided by temperature, C (T ) /T , versus T 2 from 0.5 to 10 K in several fields.
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Figure 6.8: Zero-field normalised electronic specific heat of TaRh2B2 with a single-
gap isotropic s-wave (yellow), a line nodal d-wave (purple), an isotropic two-gap
(s+ s)-wave (dark red) and a two-gap (s+ d)-wave model (blue). The inset shows
a linear fit to the zero-field C (T ) /T vs T 2 indicating a T 3 dependence to the specific
heat.

The superconducting anomaly indicates the onset of bulk superconductivity in

TaRh2B2. The transition temperature, Tc = 6.00 (5) K, is taken as the mid-

point of the transition and in zero applied field the transition has a width ∆T =

0.35 K. The normal-state heat capacity divided by the squared temperature is

shown in Fig. 6.7(b). We analysed the normal-state data between 4.5 and 10 K

using Eq. (4.3) giving γn = 4.29 (6) mJ/mol K2, β3 = 0.19 (3) mJ/mol K4 and

β5 = 0.24 (3) µJ/mol K6. The Debye temperature ΘD can then be calculated us-

ing Eq. (4.4) giving ΘD = 374 (2) K. These values are in good agreement with the

earlier report [193]. Using the values of γn and Tc above, the jump in specific heat

at the transition temperature gives ∆C/γnTc = 1.57(2) which is larger than the

1.43 expected from conventional BCS superconductors, suggesting the presence of

a slightly enhanced electron-phonon coupling.

The temperature dependence of the heat capacity of TaRh2B2 from 300 down
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to 10 K is shown in Fig. 6.7(c). There is no sign of any structural phase transition and

the value of C at 300 K is 100 (2) J mol−1 K−1 which is below the classical Dulong-

Petit value for TaRh2B2 of 124.65 J mol−1 K−1 and is consistent with ΘD > 300 K.

We fit the normal-state data using a Debye-Einstein function. It was found that by

including the additional Einstein term to the Debye model for lattice heat capacity

the fit could be significantly improved. Fig. 6.7(c) shows a fit to the heat capacity

data between 30 and 300 K made using Eqs. (4.5a)-(4.5c). The fit was performed

using a fixed value γn = 4.29 mJ/mol K2 obtained below to help reduce the number

of free parameters. We obtained δ = 0.62 (1), ΘD = 301 (2) K and TE = 790 (30) K.

The fit could be improved still further by adding a second Einstein term with the

Einstein temperature fixed at 1400 K, but the values of δ, ΘD, and TE are comparable

to those for the two component fit. The observation that the C (T ) data cannot be

adequately described using a single Debye term, coupled with fact that the weighting

of the Debye:Einstein terms in the two and three component fits is around 3:2

suggests that the vibrational modes associated with the much lighter boron atoms

in TaRh2B2 differ significantly from those associated with the Ta and Rh.

The temperature dependence of the electronic specific heat, Cel (T ), provides

important information about the nature of the superconducting gap (see Fig. 6.8).

Immediately below Tc, Cel (T ) clearly deviates from a simple s-wave BCS-like be-

haviour instead exhibiting a T 3 dependence (see inset Fig. 6.8). A similar be-

haviour is seen in other two-gap superconductors including Lu2Fe3Si5 [203, 204] and

MgB2 [195, 197]. In these materials, a shoulder in Cel (T ) is followed by a rapid

fall at lower T as the second gap opens. As seen in Fig. 6.8 we observe a flattening

in Cel (T ) in TaRh2B2 at low-temperature due to a hyperfine contribution. The

temperature dependence of the electronic heat capacity Cel in the superconduct-

ing state was fit using the BCS and d-wave model of the specific heat discussed in

Refs. [11] and [205], combined with a phenomenological two-gap model [133] that

has been successfully applied to the analysis of the electronic heat of several two-gap

superconductors including MgB2 [195, 197], Lu2Fe3Si5 [203, 204] and the noncen-

trosymmetric superconductor Y2C3 [5]. The entropy (S) was calculated from

Si
γnTc

= − 3

π3

∫ 2π

0

∫ ∞
0

[f lnf + (1− f) ln (1− f)] dydφ, (6.1)

where f is the Fermi-Dirac function given by f = (1 + exp (E/kBT ))−1 and

E =
√
y2 + ∆0(T, φ)2, where y is the energy of the normal-state electrons and δ(T )

is the temperature and angular dependence of the superconducting gap function

calculated. For s-wave superconductivity ∆0,i (T, φ) = ∆0,i (T ) and for d-wave su-
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perconductivity ∆0,i (T, φ) = ∆0,i (T ) cos (2φ). The specific heat of the supercon-

ducting state is then calculated by

Csc,i

γnT
=
d(Si/γnTc)

dt
, (6.2)

where t = T/Tc. For the two-gap model the total electronic specific heat can be

considered a weighted sum of each gap calculated separately given by:

Cel (T ) = wCsc,1 (T ) + (1− w)Csc,2 (T ) . (6.3)

The zero-field Cel (T ) data to 1.5 K were fit using both a single-gap isotropic s-wave,

a line nodal d-wave, a isotropic two-gap (s+ s)-wave and a (s+ d)-wave model [11]

with the two-gap models producing a better fit to the data. The gap values for the

(s+ s) are ∆0,1/kBTc = 2.29(12), ∆0,2/kBTc = 1.1(3) with weighting 4:1. The larger

gap is above the BCS value of 1.76, again indicating slightly enhanced electron-

phonon coupling strength.

At very low temperatures, an upturn in C (T ) /T appears in zero field. This

upturn is also present in magnetic fields of up to 1 T but is no longer apparent

in a magnetic field of 2 T. Both Ta (µ/µN = 2.371) and B (µave/µN = 2.75) carry

a nuclear moment, and so a hyperfine contribution to the heat capacity may be

expected with an associated Schottky anomaly shifting to higher T as any applied

field is increased. This contribution to the specific heat may be the high-temperature

tail of such a Schottky anomaly, although the nuclear moments are small, so the

origin of this upturn is not clear. In order to clearly establish the presence of

point or line nodes in the superconducting gap, the heat capacity needs to be fit

below Tc/10 [206]. This upturn in C(T )/T is therefore problematic. Nevertheless,

we are able to clearly establish that the electronic heat capacity of TaRh2B2 does

not follow a simple BCS temperature dependence expected for a single-gap s-wave

superconductor.

6.2.4 µSR Measurements

Zero-field (ZF) muon spin relaxation spectra collected at temperatures above (7 K)

and below (0.3 K) Tc are shown in Fig. 6.9. In these experiments, any muons

stopped in the silver sample holder give a time-independent background. There is

no indication of a precessional signal ruling out the possibility of a large internal

field and hence long-range magnetic order in TaRh2B2 down to at least 300 mK. In

the absence of atomic moments, the muon spin relaxation is due to static, randomly
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Figure 6.9: Zero-field µSR time spectra collected at 0.3 (green) and 7.0 K (purple)
show time-reversal symmetry is preserved in TaRh2B2.

oriented local fields associated with the nuclear moments at the muon site. The

solid lines in Fig. 6.9 are fits using Eqs. (5.7, 5.8). The fact that the spectra above

and below Tc lie on top of each other confirms time-reversal symmetry is preserved

in TaRh2B2 in the superconducting state.

Transverse-field µSR experiments were performed in the superconducting

mixed state in applied fields of 30 and 40 mT, well above the µ0Hc1(0) ∼ 4 mT of

TaRh2B2. In this geometry, the detectors in the spectrometer were grouped in eight

blocks, each with a phase offset φ. In order to ensure the most uniform flux-line

lattice possible, the magnetic field was applied above Tc and the sample cooled to

base temperature. The data were then collected in field-cooled-warming mode. A

typical TF-µSR precession signal for TaRh2B2 in 30 mT at 300 mK is shown in

Fig. 6.10(a). Above Tc the signal decays with time because of the inhomogeneous

field distribution of the flux-line lattice. The depolarisation above Tc is reduced

but still persists due to randomly orientated nuclear magnetic moments. The TF

spectra were fit using a sinusoidal oscillating function with a Gaussian relaxation

with an oscillatory background term arising from the muons implanted directly into
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Figure 6.10: (a) Transverse field µSR time spectra for TaRh2B2 collected at 7.0
(top) and 0.3 K (bottom) in an applied field of 30 mT. The solid lines are fits using
Eq. (6.4). The Gaussian decay of the oscillatory signal shows the effect of the flux-
line lattice. (b) Inverse square of the London penetration depth, λ−2, as a function of
temperature for TaRh2B2. The lines are fits to the data using Eqs. (6.5) and (6.6)
for one- and two-gap models. The inset shows the low-temperature data on an
expanded scale.

the silver sample holder that do not depolarise:

G (t) = A1 exp

(
−σ

2t2

2

)
cos (2πv1t+ φ) +A2 cos (2πv2t+ φ) , (6.4)

where v1 and v2 are the frequencies of the muon precession signal and the back-

ground signal respectively, A0 is a flat background, and σ is the Gaussian muon-

spin relaxation rate. The superconducting contribution to the relaxation rate, σsc,

can be calculated from σsc =
√

(σ2 − σ2
n) where σn is the nuclear magnetic dipolar

contribution, which is assumed to be temperature independent.

For a type-II superconductor with a large upper critical field and a hexag-

onal Abrikosov vortex lattice, σsc is related to the magnetic penetration depth λ

by the expression σ2
sc(T )
γ2µ

= 0.00371
Φ2

0
λ4(T )

where γµ/2π = 135.5 MHz/T is the muon

gyromagnetic ratio and Φ0 = 2.068× 10−15 Wb is the magnetic-flux quantum. λ is

directly related to the superfluid density from which the nature of the superconduct-

ing gap can be determined. In the clean limit, the temperature dependence of the

London magnetic penetration depth, λ (T ), can be calculated using the following

expression:
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[
λ−2 (T,∆0,i)

λ−2 (0,∆0,i)

]
= 1 +

1

π

∫ 2π

0

∫ ∞
∆(T,φ)

(
∂f

∂E

)
EdE dφ√

E2 −∆i (T, φ)2
, (6.5)

where f = [1 + exp (E/kBT )]−1 is the Fermi function, and the temperature and

angular dependence of the gap is ∆ (T, φ) = ∆0δ (T/Tc) g (φ). Here g (φ) is the

angular dependence of the superconducting gap function and is 1 for an s-wave

gap and |cos (2φ)| for a d-wave gap where φ is the azimuthal angle along the Fermi

surface. ∆ (0) is the gap magnitude at zero kelvin and the temperature dependence

of the gap is approximated by [12] δ (T/Tc) = tanh
{

1.82 [1.018 (Tc/T − 1)]0.51
}

.

For the multigap analysis we have used a weighted sum of the two gaps given by:[
λ−2 (T,∆0)

λ−2 (0,∆0)

]
= w

[
λ−2 (T,∆0,1)

λ−2 (0,∆0,1)

]
+ (1− w)

[
λ−2 (T,∆0,2)

λ−2 (0,∆0,2)

]
, (6.6)

where w is the weighting factor. Figure 6.10(b) shows λ−2 (T ). We obtain good fits

to the data, as measured by χ2
norm and the form of the normalised residual, using a

two-gap (s+ s)-wave model [see Fig. 6.10(b)]. The λ−2 (T ) data were also fit using

a single isotropic s-wave, a d-wave, and an (s+ d)-wave model. The parameters

extracted from these fits are given in Table 6.1. There is little difference between

the quality of the fits for the (s+ s) and (s+ d) models, as measured by χ2
norm,

with the (s+ s)-wave model just preferred. Fig. 6.10(b) clearly shows that a single-

gap s-wave model does not produce a good fit. The value of the larger energy

gap for the (s+ s)-wave model is ∆0,1 = 1.16(4) meV giving a superconducting

gap ratio ∆0,1/kBTc = 2.28(8), which is higher than the 1.76 expected for BCS

superconductors; a further indication of the enhanced electron-phonon coupling in

the superconducting state of TaRh2B2. The (s+ s)-wave model gives a magnetic

penetration depth λ(0) = 648(5) nm, which is higher than the value calculated from

magnetisation [193]. The difference between the magnetic penetration depths is due

to method by which the lower critical field is approximated by magnetisation. The

method used leads to an overestimation of the lower critical field which in turn leads

to an underestimation of the magnetic penetration depth.

6.2.5 Upper Critical Field

The critical temperatures or upper critical fields extracted from the midpoint of

the resistive transition or the anomaly in C (T ) at the superconducting transition

are collected together in Fig 6.11. The upper critical field µ0Hc2 (T ) is almost
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Table 6.1: Superconducting gap parameters for TaRh2B2 extracted from the fits to
the penetration depth data using a BCS model in the clean limit.

Model Units d-wave (s+ s)-wave (s+ d)-wave

w 1 0.89(2) 0.51(2)
∆0,1 (meV) 1.92(7) 1.16(4) 1.30(6)
∆0,2 (meV) - 0.14(5) 1.44(5)
∆0,1/kBTc 3.78(14) 2.28(8) 2.56(11)
∆0,2/kBTc - 0.27(9) 2.83(9)
λ−2 (0) (µm−2) 2.44(2) 2.38(2) 2.37(4)
χ2

norm 1.81 1.18 1.35

linear in T at lower fields. The data deviate from the WHH model [170] at lower

T and so we use a phenomenological Ginzburg-Landau expression (see Eq. 5.1) to

estimate µ0Hc2 (0) = 15.2(1) T, which is well above the Pauli limit of µ0H
P [T] =

1.85× Tc [K] = 11.1(1) T which is also considerably higher than the value reported

by Ref. [193]. Note, however, that the µ0Hc2 (T ) data reported here are consistent

with higher temperature data shown in Ref. [193].

In our WHH model calculations the Maki parameter was estimated experi-

mentally by using Eq. (4.12). The initial slope −dHc2 (T ) /dT |T=Tc was found to

be 3.1 T/K giving µ0H
orb
c2 (0) = 12.9 (5) T. From Eq. (4.12) we obtain αM = 1.65

and the relative size of the Maki parameter indicates that the Pauli limiting field

is non-negligible. Fixing αM = 1.65 produced a λso that tended to infinity and

gave µ0Hc2 (0) = 13.0 (2) T. It was found that this model is highly dependent on

the starting values as an equally good fit, as judged by the reduced χ2, could be

obtained by allowing the Maki parameter to vary. αM was found to drift towards

zero in nearly all cases along with λso which would also tend to zero when allowed

to vary.

There are several reasons why the WHH model fails to capture the behaviour

of the upper critical field in TaRh2B2. Firstly the polycrystalline sample of TaRh2B2

will contain grain boundaries. The upper critical field could be increased above the

bulk value once the grain size becomes smaller than the coherence length [172], (the

grain size is unknown so contributions from this source are unknown). Spin-orbit

coupling effects can enhance of Hc2 although in the dirty limit this enhancement

should be weaker [173]. The presence of multiple gaps or a d-wave order parameter

can lead to an increase in µ0Hc2 [171]. Finally, a Stoner enhancement can lead

to an increase in Hc2 from a large paramagnetic component near Tc leading to an
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Figure 6.11: Temperature dependence of the upper critical field for TaRh2B2.
Points were extracted from the midpoint (50%) of the resistive transition and the
anomaly in C (T ) at the midpoint of the superconducting transition. The dashed and
dashed-dotted lines show the expected µ0Hc2 (T ) from the WHH and G-L models
respectively.

increased density of states near the Fermi surface.

6.2.6 Properties of the Superconducting State

The results of the characterisation measurements presented above can be combined

in order to estimate some important superconducting properties of TaRh2B2. The

Ginzburg-Landau coherence length ξGL(0), the Ginzburg-Landua penetration depth

λGL (0) and Ginzburg-Landau parameter κGL can be estimated using

Eqs. (2.17), (4.14), (4.15). We calculate ξGL(0) = 4.67 (6) nm, λGL(0) = 444 (5) nm

and κGL = 138 (1) indicating that TaRh2B2 is a strong type-II superconductor. The

thermodynamic critical field, Hc, can be calculated using Eq. (4.16) and from this

Hc (0) is estimated to be 92 (3) mT. A system of four equations can be formed using

Eqs. (4.18) - (4.23) to estimate the parameters m∗, n, `e, and ξ0. These equations
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Table 6.2: Electronic properties of TaRh2B2 for λGL (Hc1) and λGL (µSR).

Property Units Hc1 µSR

λGL(0) (nm) 444 648
m∗/me 4.31 (1) 5.66 (2)
n 1027m−3 6.2 (2) 2.7 (1)
ξ0 (nm) 1.62 (5) 1.92 (5)
`e (nm) 0.18 (2) 0.31 (3)
ξ0/`e 9.06 (3) 6.2 (2)
λL (nm) 140 (2) 241 (3)
TF (K) – 1460(12)
Tc/TF – 0.0040(3)

can be solved simultaneously using the values γn = 4.29 mJ/mol K2, ξGL = 4.67 nm,

and ρ0 = 2.20 mΩ cm. For comparison, two values of λGL have been used; 444 nm

is taken from Eq. (4.15) and 648 nm is taken from the µSR data. The results are

shown in Table 6.2. The mean free path `e can be calculated using Eq. (4.19) and ξ0,

calculated using Eq. (4.23), it is clear that ξ0 > `e indicating that TaRh2B2 is in the

dirty limit. We find that these values are in close agreement with those previously

reported for TaRh2B2 [193].

The electron-phonon coupling constant λel−ph can be used as another esti-

mate of the strength of the interaction between electrons and phonons in super-

conductors. This can be estimated from Eq. (4.25) using Tc and ΘD taken from

Fig. 6.7, a value of λel−ph = 0.63 (2) is obtained, suggesting this to be a moderately

coupled superconductor. The results of TaRh2B2 are summarised in Table. 6.5.

Where relevant the values presented are calculated from the London penetration

depth measured from µSR measurements.

By calculating the Fermi temperature using Eq. (4.26) we can calculate

whether TaRh2B2 is an unconventional superconductor under the Uemura classifi-

cation. For TaRh2B2 TF = 1460(12) K therefore the ratio Tc/TF = 0.0040(3). This

indicates that TaRh2B2 is outside of the range of unconventional superconductivity

under the Uemura classification (0.01 ≤ Tc/TF ≤ 0.1) [178, 179, 177]. However, the

value is consistent with that of other noncentrosymmetric superconductors reported

in this thesis.
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6.3 Superconductivity and Pauli Limiting Field Viola-

tion in NbRh2B2

We will now discuss the second of the two compounds NbRh2B2. This compound

was similarly first synthesised by Carnicom et al. [193]. They reported magneti-

sation, heat capacity and resistivity measurements showing that NbRh2B2 has a

superconducting transition temperature of Tc = 7.6 K and that the upper critical

field exceeds the Pauli limiting field. Here we have synthesised NbRh2B2 and char-

acterised the material in more detail using magnetisation, heat capacity, resistivity,

pressure and muon spin spectroscopy.

6.3.1 Sample Preparation and Structural Analysis

Polycrystalline samples were prepared by grinding together powders of elemental Nb

(3N, 324 mesh, Alfa Aesar), Rh (3N, NewMet) and B (2N, 324 mesh, Alfa Aesar)

in the ratio 1:1.9:2.1. The resulting powder is then pressed into pellets using a uni-

axial press. The pellets were wrapped in tantalum foil, placed in alumina crucible

and heated at 150 oC/hour to 1200 oC, reacted for 6 hours, and then furnace cooled

to room temperature, all under vacuum. Powder x-ray diffraction was performed

on NbRh2B2to check for phase purity and the absence of impurities as shown in

Fir. 6.12. The diffraction pattern was phase matched with the space group P31

giving the lattice parameters a = 4.7210(14) Å and c = 8.729 Å. Two unknown

impurity peaks are visible in the diffraction pattern.

6.3.2 Magnetisation and Electrical Resistivity Measurements

A polycrystalline sample of NbRh2B2 was first characterised by studying the tem-

perature dependence of the dc magnetic susceptibility χdc (T ). Zero-field-cooled

warming and field-cooled cooling data collected in an applied field of 1 mT are

shown in Fig. 6.13(a). The onset of the superconducting state in NbRh2B2 is ob-

served at T onset
c = 7.58(5) K which agrees with a previous report [193]. A full

Meissner fraction is observed at 5 K in the ZFCW data indicating complete flux

expulsion and bulk superconductivity in the sample. The FCC data show a small

amount of flux expulsion indicating moderate to weak pinning of the magnetic field

within NbRh2B2 in the superconducting state.

Figure 6.13(b) shows the lower critical field, Hc1, as a function of tempera-

ture. The lower critical fields were approximated by determining the point at which

the M (H) data first deviate from linearity (∆M = 90 A/m) in the low-field mag-
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Figure 6.12: Powder x-ray diffraction of NbRh2B2. The diffraction pattern (black
line) has been phase matched to the space group P31 (red line), the difference
between the two patterns is shown by the green line.
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Figure 6.13: (a) Temperature dependence of the dc magnetic susceptibility χdc (T )
for NbRh2B2 collected in zero-field-cooled warming and field-cooled cooling mode
in an applied field of µ0H = 1 mT. (b) Lower critical field, Hc1, versus temperature
for NbRh2B2. The Hc1 values were taken to be the fields at which the magneti-
sation versus field data first deviate from linearity. The dashed line shows the fit
using Eq. (4.7) giving µ0Hc1(0) = 4.6(1) mT. The inset shows the demagnetisation
corrected residuals for linear fit to M versus H at several temperatures.
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Figure 6.14: Magnetisation versus magnetic field at several temperatures for
NbRh2B2 exhibits a behaviour typical for a type-II superconductor. The data were
collected in a VSM with the demagnetisation factor of the sample minimised.

netisation loops at each temperature, as shown in the inset of Fig. 6.13(b). The data

in Fig. 6.13(b) were fit with the Ginzburg-Landau relation using Eq. (4.7) giving a

value of µ0Hc1 (0) = 4.6(1) mT. This value is significantly lower than the 13.5 mT

reported in Ref. [193].

The field dependence of the dc magnetisation for NbRh2B2 was measured at

several temperatures between 1.7 and 6.7 K as shown in Fig. 6.14. The magnetic

hysteresis loops show behaviour typical of a type-II superconductor. The M (H)

loops are symmetric about M = 0 suggesting bulk pinning plays a dominant role

in determining the overall form of the M (H) data. At higher fields and lower

temperatures there are discontinuities in the data due to flux jumps. These flux

jumps disappears at low fields and are not present in the data-set collected at 6.7

K. The hysteresis in M (H) initially decreases rapidly with increasing field, before a

much weaker trend is established at higher fields. The hysteresis in M (H) persists
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Figure 6.15: (a) Imaginary part of ac susceptibility versus temperature, χ′′ (T ),
for NbRh2B2 in various dc applied fields. (b) Real part of ac susceptibility versus
temperature, χ′ (T ), for NbRh2B2 at various dc applied fields. In zero dc field, a
sharp superconducting transition can be seen at 7.50 (5) K. In fields above Hc1 the
transition broadens slightly and shifts to lower T .

up to fields of the order of a tesla, (∼ 4 T at 1.7 K), and then vanishes (below the

resolution of the VSM). For higher fields the magnetisation becomes reversible. This

occurs at temperatures and magnetic fields well below the Hc2 (T ) values determined

from the resistivity and the heat capacity measurements. The width of the magnetic

hysteresis, ∆M , can be related to the critical current density, Jc, via the Bean critical

state model [207]. Therefore, in the reversible regime, where the vortex lattice is free

to move and can be thought of as liquid, the material may no longer carry a finite

bulk supercurrent. These results support the view that this sample of NbRh2B2

exhibits moderate to weak bulk pinning of the vortex lattice.

The temperature dependence of the ac magnetic susceptibility, χac(T ), in
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Figure 6.16: (a) Resistivity versus temperature, ρ (T ), of NbRh2B2 for 1.8 ≤ T ≤
300 K measured in zero applied magnetic field and a field of 9 T. The inset shows
an expanded view of the normal-state resistivity. (b) ρ (T ) below 8.2 K shows the
onset of superconductivity and the suppression of the transition temperature under
various applied fields, µ0H, from 0 to 9 T. Tc is taken as the midpoint of the resistive
transition.

several dc applied fields is shown in Fig. 6.15. The data in zero dc field confirm the

superconducting onset temperature of T onset
c = 7.58(5) K. The Tc of NbRh2B2 is

only slowly suppressed in field, falling to 5.7(1) K in an dc field of µ0H = 5 T. In

zero dc field the sample exhibits a full Meissner fraction. For dc bias fields of the

order of Hc1 (0) the out-of-phase component of the ac susceptibility, χ′′(T ), has a

sharp peak close to Tc which then falls to zero at lower-temperatures, indicating that

the flux lines are pinned. In higher dc fields of µ0H ≥ 3 T, a broad maximum is seen

in χ′′(T ) typical of flux motion within the sample, and a partial flux penetration

leads to a reduced Meissner fraction. Nevertheless, the in-phase component of the

ac susceptibility, χ′(T ), still exceeds 40% in an applied field of µ0H = 5 T.

NbRh2B2 is a poor metal as can be seen in Fig. 6.16(a). ρ (T ) decreases

below room temperature with a minimum in ρ (T ) at around 130 K. An upturn at

lower T suggests the carriers then become more localised. ρ300 K/ρ10 K = 1.09(1)

and the resistivity at 10 K, just above Tc, is ∼ 2 mΩ cm. This rather high value may

be due to a combination of strong electron-phonon scattering, disorder, and poor

connectivity between the grains of the polycrystalline samples. Spin-orbit scattering

may also play a role. In Ta2PdxS5, it is suggested that strong spin-orbit scattering

due to Pd deficiencies gives rise to a substantial increase in µ0Hc2 (0) [199]. The

behaviour of the resistive superconducting transition for increasing applied fields is

shown in Fig. 6.16(b).
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Figure 6.17: (a) C (T ) /T versus T 2 with normal-state data from all the applied
fields. The line is a fit using Eq. (4.3) to all the C (T ) data collected above Tc (H) in
the different applied fields. The normal-state electronic contribution to the specific
heat γn = 7.6 (4) mJ/mol K2, and the Debye temperature ΘD = 388 (9) K. (b)
C (T ) /T versus T 2 for NbRh2B2 in different applied fields (µ0H in Tesla), showing
the suppression in Tc for increasing field.

6.3.3 Specific Heat Measurements

Immediately above Tc, the normal-state data can be used to calculate the Sommer-

feld coefficient using Eq. (4.3) which gives γn = 7.6 (4) mJ/mol K2 for NbRh2B2,

as shown in Fig. 6.17(a). Similarly θD can be calculated using Eq. (4.4) giving

θD = 388 (9) K. In zero-field, the onset of bulk superconductivity is indicated by an

anomaly in the specific heat where the midpoint of the jump is defined as the tran-

sition temperature. For NbRh2B2, Tc = 7.46(5) K and ∆C/γnTc = 1.69. ∆C/γnTc

is larger than the 1.43 expected for a conventional BCS superconductor, again indi-

cating moderate to strong coupling. The temperature dependence of the electronic

specific heat below Tc/10 can be used to establish the nature of the superconducting

gap [206]. An exponential behaviour is expected for a conventional nodeless BCS

gap, while a power law temperature dependence indicates that there may be nodes

in the gap [91]. However, as seen in Fig. 6.18, we observe an upturn in Cel (T ) /γnTn

in NbRh2B2 at low-temperatures. This upturn is also present in applied magnetic

fields up to 1 T but is not observed at 2 T. There is no indication of any sizeable

magnetic moments present in the sample from the magnetic susceptibility in the

normal-state or the muon spectroscopy data so the upturn cannot be a precursor

due to magnetic ordering. An upturn in the heat capacity at low-temperature may

arise from a hyperfine contribution. Niobium and boron have nuclear moments of

µ/µN = 6.17 and µ/µN = 2.75 respectively, so a Schottky anomaly shifting with ap-
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Figure 6.18: Zero-field specific heat of NbRh2B2 with the phonon contribution sub-
tracted divided by γnT where γn is the Sommerfeld coefficient. Fits to the data
between Tc and 1.5 K are shown using a single-gap isotropic s-wave model (light
purple) and an isotropic two-gap (s+ s)-wave (purple) model. The inset shows that
the zero-field specific heat has a T 3 dependence as demonstrated by the linear fit to
specific heat divided by temperature as a function of T 2.

plied field may be expected. A similar feature with the same temperature and field

dependence is seen in TaRh2B2 [208]. In a simple case, any hyperfine contribution

to C (T ) is expected to follow a 1/T 2 dependence. The contribution observed at low-

temperature in Fig. 6.18 does not have this temperature dependence. It is possible

to model this upturn using a simple (arbitrary) 1/Tn temperature dependence, but

subtracting such a contribution necessarily leaves the temperature dependence of

the electronic component Cel (T ) uncertain. As a result of the upturn in C (T ) /T ,

it is not possible to definitively establish the nature of the superconducting gap

for NbRh2B2 from heat capacity measurements. Nevertheless, the data at higher

temperatures allow progress to be made. For the following analysis, the tempera-

ture region affected by the anomalous contribution is excluded. The temperature

dependence of the zero-field electronic specific heat Cel was fit using the BCS model
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of the specific heat [11] combined with a phenomenological two-gap model [133] as

described above for TaRh2B2. The zero-field Cel (T ) data between Tc and 1.5 K

were fit using a single-gap isotropic s-wave model and an isotropic two-gap (s+ s)-

wave model. The two-gap model produces a better fit to the data (see Fig. 6.18).

The gap values for the (s+ s) model are ∆0,1/kBTc = 2.16(1), ∆0,2/kBTc = 0.39(4)

with w = 0.801(3). The larger of the two gaps is above the expected BCS value

of 1.76 for a weakly-coupled superconductor, indicating a stronger electron-phonon

coupling. The observation of multigap behaviour in NbRh2B2 is consistent with

previous studies of isostructural TaRh2B2 [208].

As seen in the inset of Fig. 6.18 below Tc, Cel (T ) deviates from an s-wave

BCS-like behaviour and instead exhibits a T 3 dependence, suggesting the presence

of a node in the gap or multigap behaviour. This behaviour is also observed in

other noncentrosymmetric two-gap superconductors including TaRh2B2 [208] and

Mo3Al2C [90, 91], as well as several well-studied centrosymmetric superconducting

materials such as Lu2Fe3Si5 [203, 204] and MgB2 [195]. This power law dependence

and the multigap fit of the heat capacity in the superconducting state are reasonably

consistent with the values obtained for the two-gap fit to the muon spectroscopy

data, but at odds with the nodeless s-wave superconducting ordering parameter as

will be discussed in Section 6.3.4. The anomalous low-temperature contribution to

the heat capacity, therefore, leaves open the question of the precise nature of the

superconducting order parameter in NbRh2B2.

6.3.4 µSR Measurements

In order to measure the structure of the superconducting gap in NbRh2B2 transverse-

field µSR experiments were performed in applied fields of 18 and 30 mT, well above

the µ0Hc1(0) ∼ 4.6 mT to ensure the sample is in the superconducting mixed state.

The detectors in the spectrometer were grouped in eight blocks, each with a phase

offset φ, and the data were collected in field-cooled-warming (FCW) mode to en-

sure the most uniform flux-line lattice possible. Examples of the TF-µSR precession

signals above and below Tc are shown in Fig. 6.19(a). As described previously for

TaRh2B2 the superfluid density of NbRh2B2 can be obtained from the Gaussian

relaxation seen by the TF spectra. The superfluid density is directly related to

magnetic penetration depth so can be used to determine the superconducting gap

structure in NbRh2B2. In the clean limit, the temperature dependence of the mag-

netic penetration depth λ (T ) can be calculated using Eq. (6.5). Multigap analysis

was performed using a weighted sum of two superconducting gaps [see Eq. (6.6)].

The temperature dependence of the inverse penetration depth squared λ−2 (T ) is
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Figure 6.19: (a) Transverse field µSR time spectra for NbRh2B2 collected at 8.5
(top) and 0.3 K (bottom) in an applied field of 18 mT. The solid lines are fits using
Eq. (6.4). The Gaussian decay of the oscillatory signal shows the effect of the flux-
line lattice. Above Tc, the depolarisation is reduced and is due to the randomly
oriented array of nuclear moments. (b) Inverse square of the London penetration
depth, λ−2, as a function of temperature for NbRh2B2. The lines are fits to the
data using Eqs. (6.5) and (6.6) for one- and two-gap models. The inset shows the
low-temperature data on an expanded scale.

Gap ∆0,1/kBTc ∆0,2/kBTc w χ2
norm

s-wave 2.19(6) - 1 1.95
(s+ s)-wave 2.34(22) 0.85(76) 0.93(11) 1.87

Table 6.3: Superconducting gap parameters for NbRh2B2 extracted from fits to the
temperature dependence of the inverse penetration depth squared λ−2 (T ).

shown in Fig. 6.19(b). Both an isotropic s-wave model and the isotropic two-gap

(s+ s)-wave model produce good fits to the data (see Table 6.3). Attempts were

also made to fit λ−2 (T ) using a d-wave and an (s+ d)-wave model. The d-wave

produced a poor fit to the data and the fit using the (s+ d)-wave model did not

converge. There is little difference between the χ2
norm produced by the (s+ s)-

and s-wave models, although on this basis alone the (s+ s)-wave model would be

slightly preferred. However, the uncertainty associated with both the magnitude of

the smaller gap and the weighting, w, leaves open both possibilities.

The value of ∆0/kBTc = 2.19(6) for the s-wave model, and the ∆0,1/kBTc =

2.34(22) for the two-gap model, exceed the value expected for a Bardeen-Cooper-

Schrieffer (BCS) superconductor, ∆BCS/kBTc = 1.76 which suggests that there is

an enhancement in the electron-phonon coupling. The magnetic penetration depth

given by the s-wave model is λ(0) = 595(5) nm. This value is significantly larger
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Figure 6.20: Zero-field µSR spectra of NbRh2B2 above (10 K) and below (0.3 K)
the superconducting transition. No measurable difference in the relaxation of the
asymmetry between the two spectra indicates that time-reversal symmetry is pre-
served in NbRh2B2. The dotted and dashed line shows the fit to the two spectra
using a Gaussian Kubo-Toyabe function.

than the λ(0) calculated from magnetisation measurements in Ref. [193], where

λ(0) = 219(7) nm.

In order to investigate whether time-reversal symmetry is broken in NbRh2B2,

zero-field (ZF) muon spin relaxation spectra were collected in the normal and su-

perconducting state. Figure 6.20 shows the two spectra have a Kubo-Toyabe-like

form [see Eqs. (5.7, 5.8)] with no measurable difference between the two data sets,

indicating that time-reversal symmetry is preserved in NbRh2B2. The absence of

any oscillatory component or loss of initial asymmetry in the zero-field µSR spectra

shows that no magnetic ordering takes place in NbRh2B2 down to 300 mK.

6.3.5 Pressure Measurements

The change in Tc with hydrostatic pressure is shown in Fig. 6.21. The shift in the

transition temperature was determined from magnetisation versus temperature data

collected in an applied field of 1 mT. Tc was estimated by extrapolating the super-

conducting response at the transition slope and taking the intersection with a line
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drawn from the normal-state susceptibility at higher temperature. The supercon-

ducting transition decreases sharply as the initial pressure is applied before decreas-

ing more slowly thereafter. A linear fit to the data gives dTc/dP = −0.40(4) K/GPa.

The width of the transition is not seen to broaden noticeably across the available

pressure range. A decrease in Tc with pressure is typical for simple BCS supercon-

ductors, including the elements [209]. The dTc/dP for NbRh2B2 is the same order

of magnitude as that seen in pure Nb [−0.28 (2) K/GPa], Ta [−0.26 (1) K/GPa],

and V [−0.49 (5) K/GPa] which are all transition metals with very similar isother-

mal compressibility. The dTc/dP normalised to Tc is also very close to the value

of dTc/dP = −2.14 (6) K/GPa observed for the two-band boride superconductor

MgB2. Variations in Tc with pressure are typically driven by changes in the Debye

temperature or the density of states close to the Fermi energy [209]. Measurements

of resistivity under pressure would help to determine the change in θD with pressure,

while detailed calculations of the band structure may shed more light on the role

played by changes in N (EF). Other noncentrosymmetric superconductors also ex-

hibit a decrease in Tc with pressure. For example, La7Ir3 exhibits a dTc/dP = −0.15

K/GPa [125]. As noted above, the Tc of Mo3Al2C increases non-monotonically with

dTc/dP = +0.28(2) K/GPa close to Tc [91]. The more conventional behaviour

seen in NbRh2B2 suggests that the superconducting gap is dominated by an s-wave

component.

6.3.6 Upper Critical Field

The upper critical field as function of temperature, µ0Hc2 (T ), in NbRh2B2 was

obtained by measuring Tc from heat capacity up to 8 T [see Fig. 6.17(a)], and

resistivity up to 17 T, [see Fig. 6.16(b)].

The temperature dependence of µ0Hc2 determined from the resistivity and

heat capacity data is almost linear up to 9 T as shown in Fig. 6.22. µ0Hc2 (T ) with a

linear temperature dependence is often fit using the Werthamer-Helfand-Hohenberg

model, which allows µ0Hc2 (T ) to be calculated taking into account both spin-orbit

scattering and Pauli spin paramagnetism [170]. Niobium and rhodium are both

heavier elements where spin-orbit coupling may be expected to be significant and

therefore to have an influence on the value of µ0Hc2. Initially αM was estimated using

Eq. (4.12) to be ∼ 1.8, but in the subsequent fits of the WHH model both αM and λso

were allowed to vary and this resulted in αM → 0 and values for λso >> 1, well above

those expected for the WHH formalism [170, 210]. The fit using Eq. (4.10), shown

with the dot-dash line, produces the maximum value for the upper critical field,

µ0H
orb
c2 (0) ≈ 17 T that is consistent with the gradient of the data, dHc2 (T ) /dT ,
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Figure 6.21: Pressure versus transition temperature for NbRh2B2. A small decrease
in the transition temperature can be seen for increasing pressure.

close to Tc. This value for Hc2 (T ) is comparable to that reported in Ref. [193] and

well above the Pauli paramagnetic limiting field of 13.9 (2) T. However, the data

clearly deviate from the WHH model at lower T and do not provide a satisfactory

description of the data. We have also used the phenomenological Ginzburg-Landau

expression (see Eq. 5.1) to estimate µ0Hc2 (0) = 20.2(2) T, but this is clearly higher

than the value that would be estimated from a visual inspection of the Hc2 (T )

data. Neither model can fully explain the temperature dependence of the upper

critical field of NbRh2B2 suggesting that it is necessary to consider two-band effects

to describe the behaviour. A model proposed by Gurevich that considers intra-

and inter-band scattering has been used to successfully describe the T dependence

of Hc2 of several two-band superconductors [171]. The model includes several free

parameters, so any meaningful consideration of Hc2 (T ) for NbRh2B2 within this

framework requires a more complete knowledge of the intra- and inter-band scatter-

ing. Such an analysis needs single crystals. While multigap behaviour may explain

why the upper critical field of NbRh2B2 exceeds the Pauli limit, it is known that

strong pinning and energy gaps larger than the BCS value can also be responsible for
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increasing the Pauli limiting field [210, 211]. The magnetisation and susceptibility

data, however, indicate the pinning is rather weak in NbRh2B2. The magnitude of

the superconducting energy gap is larger than the BCS value, but an enhancement

of this kind can only increase the Pauli limit by around 30% [210].
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Figure 6.22: Upper critical field as a function of temperature for NbRh2B2 where the
Hc2 (T ) points were extracted from the Tc in heat capacity and electrical resistivity
as a function temperature and field. Fits using the WHH and GL models are shown
by the dashed and the dashed-dotted lines respectively.

6.3.7 Properties of the Superconducting State

As previously described in Section 4.1.7 the results of the characterisation measure-

ments presented above can be combined in order to estimate some of the important

superconducting properties of NbRh2B2 which are displayed in Table 6.4. The

electron-phonon coupling constant λel−ph can be estimated from Eq. (4.25) giving

a value of λel−ph = 0.67 (2). This suggests that NbRh2B2 is a moderately coupled

superconductor. By calculating the Fermi temperature TF it can be seen the that

NbRh2B2 is outside of the Uemera classification for unconventional superconductiv-

ity.
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Table 6.4: Electronic properties of NbRh2B2 for λGL (Hc1) and λGL (µSR).

Property Units Hc1 µSR

λGL(0) (nm) 409 (5) 595 (7)
m∗/me 5.86 (8) 7.69 (1)
n (1027m−3) 11.3 (1) 5.03 (5)
ξ0 (nm) 1.32 (2) 1.55 (2)
`e (nm) 0.13 (1) 0.22 (3)
ξ0/`e 10.5 (1) 7.21 (8)
λL (nm) 121 (2) 208 (2)
TF (K) – 1610(20)
Tc/TF – 0.0046(5)

6.4 Discussion and Summary

Muon spectroscopy, heat capacity, and resistivity measurements have been carried

out on the new chiral noncentrosymmetric superconductor TaRh2B2. We show

TaRh2B2 is a bulk type II superconductor with a Tc = 6.00(5) K driven by moderate

electron-phonon coupling. Zero-field µSR shows time-reversal symmetry is preserved

in the superconducting state. Our results clearly show strong evidence for multigap

superconductivity in TaRh2B2. The temperature dependence of both the electronic

heat capacity and the penetration depth, extracted from TF µSR data, reveal this

multigap nature, with either an isotropic (s+ s)-wave or an (s+ d)-wave order

parameter. For both models, the value of the larger gap ∆0,1/kBTc extracted from

the µSR and heat capacity data is higher than the BCS value of 1.76.

We determine a number of other important superconducting parameters for

this new noncentrosymmetric superconductor with a chiral structure. In particular,

we show that the upper critical field µ0Hc2 (0) exceeds the Pauli limit. There are

several potential sources for the suppression of paramagnetic pair breaking. Any

triplet superconducting component should be robust to paramagnetic pair break-

ing [60, 59], but TaRh2B2 appears to be a superconductor in the dirty limit with

considerable localisation of the carriers and perhaps some disorder due to variations

in the stoichiometry. This is likely to suppress any triplet component that may be

present. Strong-coupling can increase Hc2 (0). The fit to the Cel (T ) below Tc as well

the jump in heat capacity at Tc suggest the coupling is only moderately enhanced,

however, multigap behaviour can sometimes reduce the jump at Tc [204, 197]. Spin-
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orbit scattering associated with the presence of heavier elements Ta and Rh could

help to increase Hc2 (0) in TaRh2B2 (cf. Ta2PdxS5 and related R2PdxS5 materi-

als [198, 199]). Hc2 (0) can also be increased by a Stoner enhancement [212]. The

observed multigap nature of the superconductivity is also likely to play an important

role in augmenting the upper critical field [171].

We have investigated the superconducting properties of the chiral noncen-

trosymmetric superconductor NbRh2B2 using a combination of µSR, magnetisa-

tion, pressure, heat capacity, and resistivity measurements. We have shown that

NbRh2B2 is a bulk type-II superconductor with a superconducting transition at

7.46(5) K that is mediated by moderate electron-phonon coupling. The temperature

dependence of the penetration depth measured by TF µSR indicates that NbRh2B2

has a superconducting gap that can be fit by both an s-wave or an (s+ s)-wave

model. The magnetic penetration depth is λ(0) = 595(5) nm. The superconducting

gap measured by heat capacity data, although convoluted with an anomalous low-

temperature contribution, strongly indicates a multigap (s+ s)-wave dependency

with a conventional s-wave model providing a poor fit to the data. The decrease

in Tc with pressure suggests that the superconducting gap is dominated by an s-

wave component. We have also shown that the upper critical field of NbRh2B2

at low temperatures is not adequately described by either the WHH or GL mod-

els and that a two-band formalism may be required to more fully account for the

µ0Hc2 (0) behaviour. Strong spin-orbit scattering may also play an important role in

the physics of NbRh2B2 and more complete knowledge of the intra- and inter-band

scattering, including scattering due to non-magnetic defects, is required to complete

such an analysis. To gain a deeper understanding of the enhancement in µ0Hc2 (0)

and the nature of superconducting gap in NbRh2B2 (and TaRh2B2), high-quality

single crystals are urgently required. Tunnel-diode oscillator measurements of the

penetration depth may also help shed light on the form of the superconducting gap

in this interesting new family of superconductors.

A summary of the key superconducting and normal-state properties of TaRh2B2

and NbRh2B2 can be seen in Table 6.5. High-quality single crystals are urgently

required to further investigate the superconducting order parameter of TaRh2B2

and NbRh2B2 and to confirm the mechanism allowing for a Pauli-limit violation

in this compound. Further investigations of the superfluid density in TaRh2B2 and

NbRh2B2 that are not sensitive to the effects of hyperfine contributions are required

to understand the nature of the superconducting gap.
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Table 6.5: Comparison of the normal-state and superconducting properties of
TaRh2B2 and NbRh2B2.

Property Units TaRh2B2 NbRh2B2

Tc (K) 6.00 (5) 7.46 (5)
ρ0 (mΩ cm) 2.20 (1) 2.00 (1)
γn (mJ/mol K2) 4.29 (6) 7.6 (4)
β3 (mJ/mol K4) 0.187 (3) 0.166 (3)
β5 (µJ/mol K6) 0.24 (3) 0.12 (3)
λel−ph 0.63 (2) 0.67 (3)
ΘD (K) 374 (2) 373 (2)
µ0Hc1 (0) (mT) 3.8 (1) 4.57 (6)
µ0Hc2 (0) (T) 15.2 (1) 18.5 (5)
µ0Hc (0) (mT) 77 (3) 97 (1)
µ0H

orb
c2 (0) (T) 12.9 (1) 17.1 (1)

µ0H
P
c2 (0) (T) 11.1 (1) 13.9 (1)

ξGL (0) (nm) 4.67 (6) 4.05 (2)
λGL (0) (nm) 648 (4) 595 (7)
κGL (0) 138 (1) 147 (2)
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Chapter 7

Summary and Conclusions

Detailed research into noncentrosymmetric superconductors began with the discov-

ery of CePt3Si and the heavy fermion noncentrosymmetric superconductors. With

the lack of inversion symmetry in these compounds meaning that the Cooper pairs

may no longer form either singlet or triplet pairs but rather an admixture has led

to the experimental detection of many unconventional superconducting properties.

It has proved difficult to disentangle the strong correlations in these materials from

the expected behaviour due to the broken inversion symmetry. Weakly correlated

noncentrosymmetric superconductors allow for the isolation of these behaviours. In

this thesis we have studied Re6Zr, La7Pd3, La7Ir3, TaRh2B2 and NbRh2B2 all of

which are weakly correlated noncentrosymmetric superconductors. The detection of

time-reversal symmetry breaking in polycrystalline samples of Re6Zr and La7Ir3 has

prompted further study of the normal-state and superconducting properties of these

materials. The growth of single crystals of these materials has proved essential to de-

termine if any anisotropic behaviour exists. In this work we have also synthesised and

characterised several new noncentrosymmetric superconducting compounds with an

aim to find exotic behaviours. We have focussed on studying the nature of the su-

perconducting gap in these materials by heat capacity and muon spin spectroscopy

experiments. By exploring, both experimentally and theoretically, the large phase

space of noncentrosymmetric superconductors a broader understanding of the un-

derlying physics of these systems can be gained.

In chapter 4 we characterised the superconducting and normal-state proper-

ties the noncentrosymmetric compound Re6Zr using magnetisation, heat capacity

and electrical resistivity measurements. Re6Zr forms in a cubic noncentrosymmetric

α-Mn structure with space group I 4̄2m which was confirmed using neutron diffrac-

tion. The temperature dependence of the lattice parameter indicated no structural
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changes down to 5 K. Magnetisation, resistivity and heat capacity measurements

all showed a sharp superconducting transition at 6.75(5) K. Normal-state electrical

resistivity measurements show that Re6Zr is a poor metal which is dominated by

disorder. Heat capacity measurements performed in the normal-state also reveal no

structural or magnetic phase transition down to low temperatures. Heat capacity

measurements in the superconducting state in Re6Zr were fit using the BCS model

giving a superconducting gap ratio of ∆0/kBTc = 1.86(5) which is higher than the

BCS value. This suggests the electron-phonon coupling in Re6Zr is moderately en-

hanced. Several important normal-state and superconducting parameters were cal-

culated including the scattering length and the Ginzburg-Landau parameter which

indicate that Re6Zr lies in the dirty limit and is a strong type-II superconductor.

A significant number of other rhenium based α-Mn structured superconduc-

tors have also now been reported on. The strength of the spin-orbit coupling in

these compounds has been of the most interest in understanding the underlying

physics of these systems. The best compounds for this comparison are Re6Zr and

Re6Hf [113, 114] however the normal-state and superconducting properties are con-

sistent with each other suggesting the spin-orbit coupling strength does not play a

strong role in the underlying physics. Recently the detection of time-reversal sym-

metry breaking in pure centrosymmetric rhenium [117] has brought into question

the role of inversion symmetry in the physics of these systems. While this work has

provided an important paving stone in helping to map out some of the experimental

characteristics of these materials further work on new compounds in this structural

series both rhenium-based and rhenium-free is now required to understand the im-

portance of inversion symmetry breaking, spin-orbit coupling and disorder on these

systems.

To understand the role of inversion symmetry breaking in the hexagonal non-

centrosymmetric superconductor’s in the La7X family; we have researched another

compound, La7Pd3, in this series. We have also successfully grown single crystals

of La7Ir3 for the first time. La7Pd3 is a type-II superconductor with a transition

temperature of Tc = 1.46(5) K. Heat capacity measurements revealed BCS-like

s-wave ordering parameter and modelling of the temperature dependence of the

upper critical field using the Ginzburg-Landau model further suggests conventional

superconducting behaviour in La7Pd3. Transverse-field µSR further indicated an

isotopic s-wave superconducting gap. However, zero-field µSR measurements ob-

served spontaneous magnetisation below the superconducting transition indicating

the time-reversal symmetry is broken. This detection of time-reversal symmetry

breaking suggests the presence of triplet pairing inside the superconductor. Collec-
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tively time-reversal symmetry breaking has been seen in three members of the La7X

family; La7Ir3, La7Rh3 and now La7Pd3. In these compounds s-wave superconduct-

ing order parameters have been observed in both heat capacity and transverse field

µSR measurements. These two results appear to be at odds with each other, how-

ever, if ~d in Eq. 2.25a is sufficiently small then it will become difficult to distinguish

admixture behaviour from that of an s-wave superconductor. We need now require

high quality single crystals to investigate whether there are any subtle anisotropies

to the superconducting gap in the three compounds.

Single crystals of La7Ir3 were grown to investigate whether there is any

anisotropy in superconducting properties of this material as polycrystalline mea-

surements have shown only isotropic behaviour. A combination of magnetisation,

resistivity and heat capacity showed that La7Ir3 is a clean type-II superconduc-

tor with an isotropic s-wave superconducting gap. The superconducting transition

was found to be higher than previously reported in polycrystalline samples with

Tc = 2.38(5) K. When the samples were cooled in field through the superconducting

transition it was seen to re-exclude approximately 90% of the magnetic flux. Mea-

surements of the lower critical field showed that a field parallel to the c-axis gave

µ0Hc1 = 3.59(5) mT and a field parallel to the a-axis gave µ0Hc1 = 4.82(4) mT.

Similarly the upper critical was anisotropic in its behaviour with µ0Hc2 = 1.01(5) T

for µ0H‖c and µ0Hc2 = 0.71(3) T for µ0H‖a. The differences in values indicates the

presence of an anisotropy in the superfluid density although further confirmation is

needed by transverse-field µSR and tunnel-diode experiments. Zero-field µSR mea-

surements along both the a and c-axis are necessary to establish if time-reversal

symmetry breaking is still present and if it has preferred crystal direction.

Finally we investigated the role of chirality in the structure of noncentrosym-

metric superconductors by investigating TaRh2B2 and NbRh2B2. Only two other

noncentrosymmetric compounds Mo3Al2C and Li2(Pd1−xPtx)3B have been reported

with chiral crystal structures, however, the chirality of the structure was not high-

lighted by these authors. Both Mo3Al2C and Li2Pd3B have been reported to have

nodal superconducting gaps so chiral crystal structure may play an important role

in the properties of a superconductor.

TaRh2B2 was found to be a type-II superconductor with Tc = 6.05(5) K and

a moderate electron-phonon coupling strength. The upper critical field of TaRh2B2

was estimated to be µ0Hc2 = 15.2(1) T which exceeds the Pauli limiting field. Heat

capacity and TF-µSR measurements provide strong evidence for multigap (s + s)-

wave superconductivity in TaRh2B2 and the superconducting gap ratio of the larger

gap in each measurements is larger than the expected BCS value. NbRh2B2 was
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similarly found to be a type-II superconductor with a slightly higher Tc = 7.46(5) K.

TF µSR measurements indicated that the superconducting gap of NbRh2B2 can be

fit by both an s-wave and a (s + s)-wave model. The temperature dependence of

the heat capacity also indicates that the superconducting gap can be modelled by

an (s+ s)-wave model, however, an anomalous low-temperature contribution leaves

the true nature of the superconducting gap open to speculation. Attempts to model

the upper critical field of TaRh2B2 and NbRh2B2 using the WHH model showed the

upper critical field exceeds the maximum value that the model can produce given

the fixed initial gradients near Tc. It is speculated that the multiband WHH model

could be used to model the behaviour of the upper critical field in both TaRh2B2 and

NbRh2B2. To be able to fit the data using the multiband WHH model knowledge

of the inter- and intra- band scattering is required to help estimate the many free

parameters of this model.

Through the research efforts of the work presented in this thesis we have

expanded and explored part of the large phase space that is noncentrosymmet-

ric superconductors. We have presented a detailed characterisation of both the

normal-state and superconducting properties of Re6Zr, La7Pd3, La7Ir3, TaRh2B2

and NbRh2B2 in the effort to gain a better understanding of the conventional and

unconventional behaviours of these systems.
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