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Abstract

Aggregating service users’ personal data for analytical purposes is a common

practice in today’s Internet economy. However, distrust in the data aggregator, data breaches

and risks of subpoenas pose significant challenges in the availability of data. The framework

of differential privacy is enjoying wide attention due to its scalability and rigour of privacy

protection it provides, and has become a de facto standard for facilitating privacy preserving

information extraction. In this dissertation, we design and implement resource efficient

algorithms for three fundamental data analysis primitives, marginal, range, and count

queries while providing strong differential privacy guarantees.

The first two queries are studied in the strict scenario of untrusted aggregation

(aka local model) in which the data collector is allowed to only access the noisy/perturbed

version of users’ data but not their true data. To the best of our knowledge, marginal and

range queries have not been studied in detail in the local setting before our works. We show

that our simple data transfomation techniques help us achieve great accuracy in practice and

can be used for performing more interesting analysis.

Finally, we revisit the problem of count queries under trusted aggregation.

This setting can also be viewed as a relaxation of the local model called limited precision

local differential privacy. We first discover certain weakness in a well-known optimization

framework leading to solutions exhibiting pathological behaviours. We then propose more

constraints in the framework to remove these weaknesses without compromising too much

on utility.
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“I first met Steve (Feinberg) during a talk I was giving at Carnegie

Mellon in 2003 describing very early thoughts on a cryptography-

flavored approach to privacy in public databases. Some of these

ideas arose during Adam Smith’s internship with me at Microsoft.

Steve was critical (“Your utility is going to be in the toilet“), but

I think he was intrigued by the cryptographic approach, since

after the talk he proposed that we have a workshop (“Your bring

your guys and I’ll bring mine“). This occurred during the summer

of 2005 in the hillside town of Bertinoro, Italy. The workshop

almost broke down on the second day: the statisticians thought

the cryptographers, with their talk of the adversary” and its ar-

bitrary auxiliary information, were completely paranoid, while

the cryptographers were frustrated by the absence of a formal

notion of privacy and a measure of its loss in the statistical work.

Fortunately, there is little to do in Bertinoro at night, other than to

drink grappa in the piazza, and this eased the tension considerably.

Later in the workshop Steve proposed to Alan Karr and me that

we found a journal and, to paraphrase Gertrude Stein, we have

and this is it. ”— Cynthia Dwork [1]
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Chapter 1

Introduction

Large scale Internet based services have become ubiquitous and touch multiple facets of

human life. Due to significant progress in the storage/processing technologies, machine

learning science and exponential increase in the Internet penetration rate [2], these services

are becoming increasingly capable of gathering and analyzing large digital footprints left

intentionally/unintentionally by its users. This analysis is often used to distill valuable

information about an individual user’s service engagement bahaviors in order to improve the

quality of her experience. Some examples include, streaming services like BBC iplayer [3],

Youtube, Netflix, Spotify using user viewing/browsing history for promoting [4–6] new

content; using location information reported by mobile devices to create interactive traffic

maps and suggest less congested route [7]; digital telemetry systems [8–12] installed by

various browser and app venders like Microsoft, Mozilla, Google, Safari and Snap to gather

statistics.

While the utility of such large scale algorithmic data processing systems cannot

be argued, the sheer rush to exploit on their potential have always presented huge challenges

on the data privacy front that were largely ignored by the stakeholders for a long time. Time

and again, careless data stewardship has resulted into high profile data breaches and unethical

data usages including more recent Cambridge Analytica scandal [13] and Equifax data

breach [14]. A holistic treatment of privacy risks maps across the disciplines. While some

of the risks can be defined in a precise mathematical way, others require cross-disciplinary

approaches.

1.1 Statistical Disclosure Techniques

To mitigate the privacy risks and increase availability of data, many statistical disclosure

limitation techniques have been developed by the database/social science communities.

These techniques were widely accepted by social scientists, statistical agencies for masking,
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perturbing and generalizing the contributions of an individual in the dataset.

1.1.1 Data Anonymization

Anonymization removes personally identifiable information (e.g., social security number,

name, address, and phone number) from the dataset to be released for research/analytics

purposes with the intention of making it impossible for data consumers to identify the data

participants whose privacy is under question. This simple approach was motivated from the

following definition of privacy from Dalenius [15]. Dalenius in 1977 perceived privacy as a

following goal of a database system: anything that can be learned from the database about a

particular individual should be determined without the access to the database. The intuition

behind this definition was to ensure that the change in the adversary’s belief prior and

posterior to a particular dataset’s access remains small. However, satisfying this definition of

privacy is not possible in the existence of unforeseeable background knowledge the adversary

may possess. For example, in the late 1990s [16], Latanya Sweeney uniquely linked records

in a de-identified dataset to identified records in publically available datasets and was able to

disclose governor of Massachusetts’s medical information.

1.1.2 K-Anonymity

Samarati and Sweeney [17] in the follow-up study proposed k-anonymity to address the

drawbacks of simple anonymiziation scheme. A k-anonymized dataset satisfies that the

property that every individual contained in the record is similar to at least another k − 1

other records on the potentially identifying variables. k−anonymity is commonly achieved

by two ways.

• Generalization: Replace the attribute values by a broader range in the category.

• Suppression: Anonymize centrain attributes by replacing those with a symbol e.g. ∗.

Machanavajjhala et al. [18] demonstrated that k-anonymity does not prevent adversary with

arbitrary auxiliary information from improving his posterior knowledge significantly about

an individual in case sensitive attributes are not diverse enough. Moreover, it doesn’t offer

privacy to a group. A k-anonymous database may reveal information about a group if that

group is homogeneous with respect to some field.

1.1.3 l-Diversity

Since K-anonymity is vulnerable to inference attacks against sensitive attributes, Machanava-

jjhala [19] added additional layer of constraint on top of k-anonymity by proposing the

notion of l-diversity which requires that each tuple that shares identical quasi-identifiers (a
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set of attributes which could potentially identify an individual when used together) has at

least l well-represented values for the sensitive attribute. Li et al. [18] showed that while

l-diversity is robust against identity disclosure, it does not fully address the issue of attribute

disclosure. In fact it is possible to link sensitive attributes to another. Moreover, when dataset

has skewed distribution, perturbed and the original distributions could differ vastly.

1.1.4 t-closeness

Li et al. [18] refined the term l-diversity by adding another restriction. Li et al.proposed

a threshold t to upper bound the statistical distance (often measured by the earth mover

distance) between the distribution of the sensitive attribute values within an anonymized

group as compared to the global distribution of values. While t-closeness provides privacy

protection against attribute and identity disclosure attack, it may offer poor utility — meaning

the statistical properties of the original dataset may be lost in the process of anonymization.

In summary, the defence mechanisms proposed in response to linking attacks

including k-anonymity, l-diversity, and t-closeness suffer from one or more of the following

shortcomings.

• Privacy protection offered was syntactic in nature i.e. property of anonymized dataset.

Syntactic notions are typically protect against a particular inferencing strategy but

adversary can consider other sources of information. Naturally, these notions were

found to be vulnerable to more sophisticated linkage attacks in due course.

• Required identification of sensitive identifiers which is not always possible.

• Difficult to satisfy in case of multidimensional datasets.

• Provide unsatisfactory utility/accuracy.

• Privacy guarantees could only hold for datasets satisfying specific properties.

• Do not provide the worst case guarantees in the adversarial settings.

Understanding the limits of these techniques is still an area of active research.

Many de-anonymiziation attacks in wide range of domains: recommender

systems [5, 20], social networks [21, 22], location data [23, 24], browsing history [25] rely

on a simple principle — a small number of individually unidentifying data points about

an individual can collectively identify that individual. In fact, there is a simple theoretical

justification for this insight. The current world population of ~7.7 billion in 2019 can be

represented by ~33 bits1. This means the worst case probability for adversary for identifying
1To the best of our knowledge, this interesting fact is known to be first mentioned by Arvind Narayanan on

his blog https://33bits.wordpress.com
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a person is 1
233

. Any additional information known about that person e.g. gender (represented

by a bit) will reduce adversary’s uncertainy by half. Knowing his/her city (with population

1M) will further reduce this probability to ~ 1
212

.

1.2 Differential Privacy (DP)

The privacy guarantees of many privacy preserving disclosure technique were not compre-

hensive and rested on mere absence of known attacks. Repeated success of de-anonymization

attacks made a strong case against these techniques and favoured frameworks providing

formal mathematical guarantees. These attacks also showed that privacy techniques should

also provide meaningful privacy protection in scenarios where arbitrary amounts of external

information that may be available to adversary in the form of public datasets. This is because

as long as an adversary has enough computing resources, the canonical approach of hiding

an individual into a large enough crowd simply is insufficient as no dataset is large enough to

limit the information disclosure when auxiliary information about an individual is available.

The paradigm of DP [26] developed concurrently along with some of the previ-

ous methods stood-out compared to its predecessors/contemporaries due to its robustness to a

wide range of attacks (including those that are not even known at the time of deployment) and

most importantly, it provides guarantees regardless of the adversary’s background knowledge

by introducing a parameter ε (a.k.a. privacy budget) that captures the tension between privacy

and utility/accuracy. Informally, a randomized algorithm (a.k.a mechanism) satisfying DP

perturbs a dataset by adding controlled noise in such a way that the algorithm produces

similar outcomes irrespective of a specific individual’s participation in that dataset. In other

words, the worst case change in a DP compliant algorithm’s outcome after adding/removing

an individual’s record remains bounded. An immediate consequence of this property is that

when an adversary is presented with an outcome of a differentially private algorithm, his

degree of uncertainty on whether a specific individual’s record was included in the dataset

remains bounded irrespective of his background knowledge about that specific individual.

This means that individual is protected almost as if his/her information is excluded from

the analysis. A similar rationale holds when considering privacy of a group, however, at a

degraded privacy guarantee.

After more than a decade long rigourous development, DP is being accepted as

a gold standard for privacy in academic communities. Several organizations e.g. US Census

Bureau [27], Apple [28], Microsoft [9], Google [10, 29], Uber [30] have already deployed

products that use DP to privately aggregate telemetry data or generate synthetic data from

their private databases. In fact, DP is attracting interest in legal communities also and many

recent research/position articles including [31–33] recommend DP as a method of choice for
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Figure 1.1: Difference between trusted (centralized) and untrusted (local) aggregation in
case of DP.

designing privacy regulations (e.g. EU GDPR2, HIPAA3) compliant data analysis systems.

Untrusted Aggregation. While the original model of DP assumes that the data curator

(a.k.a. aggregator) is trusted and has access to the entire dataset, in many realistic settings

the data participants do not trust the aggregator and may not be comfortable in sharing their

sensitive data with the aggregator. Besides, collecting and storing large amounts of true user

data imposes undue risks at aggregator’s end which s/he may not be willing to take. This is

why a variant of DP known as local DP [34, 35] (LDP) has risen to prominence in recent

years. Under LDP, individuals retain control of their own private data, by revealing only

(noisy) randomized transformations of their input. Aggregating the reports of sufficiently

many users gives accurate answers, while preserving each individual’s privacy. This creates

a win-win situation for all parties involved. In fact, DP’s widespread industrial adoption can

be largely attributed to the recent development in the LDP techniques. Figure 1.1 shows

the difference between trusted and untrusted aggregation under DP. Note that in contrast

to LDP, the data perturbation step under traditional/centralized DP model happens at the

aggregator’s end. We focus most of this dissertation on facilitating untrusted aggregation of

basic statistics under local differential privacy guarantees.

1.3 Research Questions Of Interest

Motivated by the scenarios of untrusted aggregation, that are becoming increasingly com-

monplace (also due the increased scrutiny by regulatory bodies/legislation’s), this dissertation

mainly focuses on developing novel algorithms for various statistical problems while provid-

ing client side privacy. We address following research problems in this dissertation.

Marginal Queries. Many analysis and machine learning tasks require the availability of

joint distribution/marginal statistics on multidimensional datasets while providing strong
2General Data Protection Regulation
3Health Insurance Portability and Accountability
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privacy guarantees for the data subjects. Applications for these statistics range from finding

correlations in the data to learning sophisticated prediction models. We provide a set of

algorithms for materializing marginal statistics under LDP. We prove the first tight theoretical

bounds on the accuracy of marginals compiled under each approach, perform empirical

evaluation to confirm these bounds, and evaluate them for tasks such as modeling and

correlation testing. Our results show that releasing information based on (local) Fourier

transformations of the input is preferable to alternatives based directly on (local) marginals.

Range Queries. Counting the fraction of a population having an input within a specified

interval i.e. a range query, is a fundamental data analysis primitive. A simple baseline

mechanism is to aggregate a histogram privately using existing primitives and simply add

the counts in the relevant cells. This baseline provides highly unsatisfactory accuracy for

mid/longer sized range queries since the error in aggregation grows linearly with the interval

size. We describe and analyze two classes of approaches for range queries, based on the

hierarchical histograms and the Haar wavelet transform. We show that both have strong

theoretical accuracy guarantees on error. In practice, both methods are fast and optimal

in communication. Our experiments show that the wavelet approach is most accurate

in high privacy settings, while the hierarchical approach dominates for weaker privacy

requirements. To the best of our knowledge, ours is among the first non-industrial work to

provide simulations with domain sizes as large as 222.

Count Queries. The local model requires the randomized transformation of each item to be

indistinguishable from every other item’s transformation in the output space of the algorithm.

This requirement could be too strong or even unnecessary in some cases. It may be possible

to design more accurate algorithms for such settings if we relax the original definition of LDP.

Towards this goal, we focus on the core problem of count queries and design mechanisms

to release data associated with a group of n individuals. Prior works [36, 37] consider

formulating this problem as an optimization problem and use linear programs to obtain a

mechanism for a target objective function (e.g. avg./worst case error). However, solving such

optimization may have undesired consequences, leading to yielding mechanisms producing

pathological behaviours in practice. We eliminate these behaviours by suggesting additional

constraints in the linear programs. We demonstrate in a set of experiments on real and

synthetic data which is preferable in practice, for different combinations of data distributions,

constraints, and privacy parameters. Though we consider the centralized DP model in this

work for simplicity, the propositions of this contributions have found more applications in

the recently proposed relaxation of LDP [38].

Challenges. Considering these problems entails tackling several challenges, including:

1. Dealing with a highly restricted algorithmic design space. Most carefully thought

algorithms for data collection in the trusted aggregation settings exploit the fact the
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curator has access to the entire dataset. This is not the case under untrusted aggregation

environments. Each user can see only his/her data and aggregator can access only the

perturbed dataset.

2. Making these algorithms as resource efficient as we can since the devices (e.g. smart-

phones) on which the client DP mechanisms are deployed are often resource constrain-

ted i.e. have limited computational power, storage and bandwidth.

3. Providing formal mathematical privacy and utility guarantees for the developed al-

gorithms and confirming these with rigourous experimental evaluation on real/synthetic

datasets.

Potential Use cases. The main aim of this dissertation is to facilitate privacy preserving

aggregation of basic statistics regarding discrete valued datasets. The first two of our

solutions can easily find applications in the scenarios in which cloud based service providers

with potentially millions of subscribers intending to collect statistics about the activity of

their users and their client-side software. For example, a smartphone app based food delivery

service may be interested in understanding the most frequently ordered food combinations

from its users. Similarly, an online video content provider may want to log the genre type of

content users consume over a time period. In both the cases, user inputs can be encoded as

sparse vectors. These providers could promote new content/menu items by offering simple

"people who watched/ordered this also watched/ordered that" type suggestions. Towards this

goal, estimation of joint/marginal distributions of subsets of the features (chapter 4) is an

important prerequisite. The same video content service is capable of logging online traffic

related data (e.g number of users served/connections open every second) at high precisions

and intends to privately compute the fraction of load during a festive week handled by

their servers to optimize on resource allocation. A solution to this problem boils down to

answering range queries (chapter 5) over large time domains.

In another scenario, the food delivery service also computed the number of

female customers and would like to share a differentially private version of number with a

third party analytics company. Employing mechanisms presented in chapter 6 for releasing

count data would help achieve more utility for the same level of privacy under certain

conditions over baseline methods.

1.4 Thesis Contributions

The high level goal of this dissertation is to design and evaluate differentially private

mechanisms for answering various statistical queries while providing client side privacy in

case of untrusted aggregation. The first two algorithmic contributions satisfy local differential

privacy.
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1.5 Publications

Most work in this thesis has been led by me and performed in collaboration with Graham

Cormode and Divesh Srivastava. The three main chapters are based on the following research

articles. All authors are arranged in alphabetical order in these articles.

1.5.1 Main Publications

1. Answering Range Queries Under Local Differential Privacy [39], ACM Very Large

Databases (ACM VLDB), 2019

2. Marginal Release Under Local Differential Privacy Model [40], In Proceedings of the

International Conference on Management of Data (ACM SIGMOD), 2018

3. Constrained Private Mechanisms for Count Data [41, 42], In Proceedings Of IEEE

International Conference on Data Engineering (IEEE ICDE), 2018, IEEE Transactions

on Knowledge and Data Engineering (IEEE TKDE), 2019

1.5.2 Additional Contributions

1. Differentially Private Distributed Computation of U-Statistics [43], To appear in

International Conference on Artificial Intelligence and Statistics (AISTATS), 2020

2. Privacy at Scale: Local Differential Privacy in Practice [44], Co-presented a tutorial at

ACM SIG Knowledge Discovery And Data Mining (KDD), 2018. The slides can be

found at https://sites.google.com/view/kdd2018-tutorial/home

1.6 Thesis Structure

This thesis is organized as follows.

• Chapter 2 provides some background about various database queries, differential

privacy, relevant privacy preserving mechanisms and finally some machine learn-

ing/statistics concepts.

• Chapter 3 then surveys general prior work in local differential privacy and then specific

to the context of database queries of interest.

• Next, chapters 4, 5, and 6 based on publications [39–42] respectively contain the

technical contributions related to marginal, range, and count queries.

• Finally, chapter 7 concludes this dissertation by summarizing our findings and propos-

ing few potential future directions and limitations of our study.
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Chapter 2

Technical Preliminaries

This chapter summarizes various notions and technical tools used throughout this dissertation.

2.1 Terminologies

2.1.1 Client/User

The main goal of this dissertation is to develop privacy-preserving mechanisms for facilitating

data collection and crowdsourcing of various basic statistics.

Definition 1. (Client/User). A client/user is an electronic device participating in the data

aggregation process that holds an individual’s data.

We assume that the clients have sufficient computing, networking, and storage

capabilities to run mechanisms proposed in the dissertation. We also assume that the clients

are non-colluding and may not be aware of each other’s presence in the network. Since we

intend to cover a broad range of contexts, a client could be any device from a smartphone to

an orbiting satellite.

2.1.2 Databases

Definition 2. (Database). A database D is a multiset of N structured records with each

record belonging to an individual drawn from a fixed domain.

Definition 3. (Database Query). A query is a computational function applied to a database.

Often database records are viewed to be logically/physically stored and maintained in a

single location by a trusted curator. However, in the upcoming chapters, we also consider

a decentralized setting in which the database is distributed across individuals and they can

only access their own records. The curator in this case is not trustworthy and cannot access

or query the database records. We use the term database interchangeably with dataset

throughout this dissertation.
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2.1.3 Aggregator/Server

Definition 4. (Aggregator). An aggregator/server is an entity (a person or an organization)

that collects data from the clients for analysis and further consumption purpose.

In our case, aggregator is not trustworthy and/or obliged on legal/ethical grounds

to collect client data only in the perturbed format. We assume that privacy mechanisms

running at client/aggregator sides along with the parameters used is common knowledge.

However, aggregator cannot see client’s private coin tosses.

2.2 Database Queries Of Interest

2.2.1 Range Query

A range query R[a,b] counts the fraction of population N with their inputs within the

range [a, b]. More formally, for N individuals each with an item {zi ∈ [D]}Ni=1 and

a < b, a ∈ [D], b ∈ [D], a range query R[a,b] ≥ 0 is to compute

R[a,b] = 1
N

∑N
i=1 Ia≤zi≤b

where Ip is a binary variable that takes the value 1 if the predicate p is true and 0 otherwise.

Often the problem of computing/approximating range queries entails finding an efficient

datastructure that allows faster/succinct answers to queried intervals. Multidimensional

range queries are addressed by geometric data structures such as k-d trees or quadtrees [45].

As the dimension increases, these methods suffer from the curse of dimensionality, and

it is usually faster to simply scan the data. This dissertation focuses on answering one

dimensional queries which itself is a challenging problem to begin with under LDP.

Prefix Query. Prefix queries form an important class of range queries, where the left end of

the interval is fixed. We only consider the prefix queries with the left end fixed to the first

item in the domain i.e. 0.

Quantile Queries. Prefix queries are sufficient to answer quantile queries. The φ-quantile

for φ ∈ [0, 1] is the index j in the domain such that at most a φ-fraction of the input data lies

below j, and at most a (1− φ) fraction lies above it. If we can pose arbitrary prefix queries,

then we can binary search for a prefix j such that the prefix query on j meets the φ-quantile

condition.

2.2.2 Marginal Query

Put simply, a marginal query involving k attributes returns the table with the joint (empirical)

probability distribution for all combinations of those k-attributes. Thus, the contingency,
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Attribute Explanation

CC Has customer paid using credit card?
Toll Has customer paid toll?
Far Is journey distance ≥ 10 miles?

Night_pick Is pickup time ≥ 8 PM?
Night_drop Is drop off time ≤3 AM?

M_pick Is trip origin within Manhattan?
M_drop Is trip destination within Manhattan?

Tip Is tip paid ≥ 25% of the total fare?

Table 2.1: Attributes of NYC taxi dataset.

Trip/Attributes M_pick M_drop CC Tip . . .

1 Y N N Y . . .

2 N Y Y N . . .
...

...
...

...
...

...
... Y N Y N . . .

Table 2.2: A sample trip data.

or marginal, query is the workhorse of data analysis. These statistics are important in and

of themselves for understanding the data distribution, and identifying which attributes are

correlated. They are also used for query planning and approximate query answering within

database systems. A variety of fundamental inference and machine learning tasks also rely

on accurate marginals capturing the correlations. E.g. many algorithms in statistical language

modeling/predictive text [46] and association rule mining (market basket analysis) compute

low order marginals as a preprocessing step. Furthermore, for multivariate distributions

where direct sampling is in-feasible or too costly, low dimensional marginals serve as

building blocks [47, 48] to compute accurate approximations.

M_pick/M_drop Y N
Y 0.55 0.15
N 0.10 0.20

Table 2.3: An example of a 2-way marginal.

Motivating example: movement patterns. Consider the collection and release of statistics

on movement patterns of individual’s. Table 2.2 shows an example taxi trip dataset, where

each journey is described in terms of a number of (binary) attributes including origin and

destination, timings, tip, and mode of payment. Table 2.3 shows a sample marginal table

consisting of two attributes which confirms that most trips are short and originated and
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terminated within the Manhattan region and shows strong degree of correlation between

pickup and drop off locations.

Notations and preliminaries. We restrict our attention to marginals involving binary

attributes. We assume that each user’s record comprises of d binary attributes. It is often

more convenient to view the user’s data instead as an indicator vector zi of length D = 2d

with 1 at exactly one place ji and 0’s at remaining positions. We model each user i’s bit

vector zi ∈ I2d×2d as a vertex in a d-dimensional Hamming cube. This representation is

also called as the one hot encoding and captures correlation between multiple attributes

of zi. Then we can restrict our attention only on a subset of k dimensions of interest by

summing (marginalizing) out cells of non-essential dimensions. This is formally captured by

the following definition.

Definition 5 (Marginal operator). Given a vector z ∈ R2d , the marginal operator Cβ :

R2d ⇒ R2k computes the summed frequencies for all combinations of values of attributes

encoded by β ∈ {0, 1}d, where |β|, the number of 1s in β, is k ≤ d.

For example, for d = 4 and β = 0101 (which encodes our interest in the

second and the fourth attribute), the result of C0101(z) is the projection of t on all possible

combinations of the second and fourth attributes with remaining attributes marginalized out.

Each of the 2k entries in the vector C0101(z) stores the total frequency of combinations of the

k attributes identified by β. We make use of the � relation, defined as α � β iff α ∧ β = β.

For convenience of expression, we abuse notation and allow Cβ(z) to be indexed by {0, 1}d

rather than {0, 1}k, with the convention that entries α such that α 6� β are 0. Under this

indexing, the entries in a marginal can be written in the following way:

∀γ � β Cβ(z)[γ] =
∑

η:η∧β=γ z[η] (2.1)

The condition η ∧ β = γ selects all indices η ∈ {0, 1}d whose value on attributes encoded

by β are γ.

Example 2.2.1. Let d = 4 and β = 0101. Then, applying (2.1):

C0101(z)[0000] = z[0000] + z[0010] + z[1000] + z[1010]

C0101(z)[0001] = z[0001] + z[0011] + z[1001] + z[1011]

C0101(z)[0100] = z[0100] + z[0110] + z[1100] + z[1110]

C0101(z)[0101] = z[0101] + z[0111] + z[1101] + z[1111]

All indices in {0, 1}d contribute exactly once to one entry in C0101.

Definition 6 (k-way marginals). We say that β identifies a k-way marginal when |β| = k.

For a fixed k, the set of all k-way marginals correspond to all
(
d
k

)
distinct ways of picking

k attributes from d. We refer to the set of full k-way marginals as encompassing all j-way

marginals sets, ∀j ≤ k.
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2.3 Differential Privacy (DP)

As mentioned briefly in Section 1.2, the framework of DP provides a more compre-

hensive way of expressing and quantifying the notion of privacy than most of its pre-

decessors/contemporaries.

2.3.1 Definitions

Consider a database D in which each record zi ∈ D is contributed by an individual i ∈ [N ].

Each zi ∈ Domain(D) may consists of a fixed set of attributes.

Definition 7. (Neighborhood.) Two datasetsD,D′ of sizeN are in the neighborhood/adjacent

to each other if the following holds.

∃!(zi 6= z′i, zi ∈ D, z′i ∈ D′), i ∈ [N ]

i.e. D,D′ are neighbors if they differ by exactly one record.

Definition 8. (Pure Differential Privacy [49].) A randomized mechanismM is differentially

private if the following holds for every pair of neighboring datasets D,D′.

exp(−ε) ≤ Pr[O =M(D)]

Pr[O =M(D′)]
≤ exp(ε), O ∈ Range(M)

The definition of DP states that the ratio of probabilities outputting the response

for two neighboring datasets are bounded. This means the risk of information leakage born

by an individual is bounded whether or not s/he participates in the dataset. Therefore, that

individual can be assured that his/her participation would not drastically change the outcome

of the analysis. The notion of a participant’s inclusion and exclusion is encoded by the

definition of neighborhood and the bound is measured by the parameter ε. Larger the ε, more

the influence of an individual’s record on the analysis resulting into a weaker guarantee.

Similarly, smaller ε alludes to a smaller degree of sensitivity caused by any changes in an

individual’s record toM’s outputs. Since D,D′ can be switched interchangeably, the ratio

can be bound from the left side also.

A variant called approximate DP also allows a mechanismM to fail with a

small probability δ > 0.

Definition 9. (Approximate Differential Privacy [49].) A randomized mechanism M is

(ε, δ)-differentially private if the following holds for every pair of neighboring datasets

D,D′.

Pr[O =M(D)] ≤ exp(ε)× Pr[O =M(D′)] + δ,O ∈ Range(M)
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δ is set to a cryptographically small constant δ ≤ 1
Nω(1) in a dataset of size N . In this thesis,

we only design mechanisms satisfying pure DP.

A more nuanced understanding the definition can be gained by understanding

the capabilities of the adversary DP promises to defend against.

Threat Model. Assume a two party game between a trusted curator and an omniscient

adversary (with unbounded computing power). The curator draws D arbitrarily. The

adversary has the following knowledge.

• M, ε and the coins tossed byM.

• D¬i, i.e. D excluding a record zi sampled randomly.

• O ∈ Range(M), for O(domain(D)) queries ofM(D).

With these resources at disposal, adversary’s goal is to predict zi. The adversary’s best guess

for zi record is

arg max
zi∈Domain(D)

Pr[M(D¬i ∪ zi) = O]

In other words, the adversary should pick zi that maximizes the probability of producing

O which he can do by executing Pr[M(D¬i ∪ zi)] for O(domain(D)) number of times.

However, since the ratio between any probabilities for any pair neighboring datasets is

bounded, adversary’s probability of correctly guessing zi is also limited. This means, for a

small ε, it is nearly impossible for adversary to figure out changes made in a single record.

Next we study some important properties of DP.

Definition 10. (Composition Property [50].) Consider a set {Mj}Kj=1 of DP compliant

mechanisms each providing εj-DP.

1. Any cascading/composition ofMj’s on a dataset D satisfies
∑K

j=1 ε-DP.

2. Any cascading/composition ofMj’s over K partitions of D’s satisfies maxj∈[K]εj-DP.

Reasoning about the privacy guarantee of an intricate DP algorithm can be challenging. The

composition property enables us to design DP mechanisms in a modular fashion.

Definition 11. (Post-processing [50].) Given a ε-DP compliant mechanismM : X =⇒ Y

and any function F : Y =⇒ Z, the composition F (M(.)) is also ε-DP compliant.

This property suggests that the transformation made by a DP algorithm are not lost even

after further processing and the guarantee remains intact.
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Definition 12. (Global Sensitivity [50].) For a function F , pth norm Lp and all neighboring

pairs D,D′, the global sensitivity is defined as follows.

∆pF = maxD,D′ ||F (D)− F (D′)||p

The global sensitivity of a query function F measures the maximum change in the outcome

of F, a pair of neighboring datasets can cause. Differentially private mechanisms work by

perturbing the dataset with statistical noise. To mask identity of each participant, it is often

necessary to add noise calibrated by the sensitivity of the intended query function. Therefore,

a lot of work is usually dedicated in discovering clever ways of bounding the sensitivity of

the query function at hand.

2.3.2 Perturbation primitives satisfying ε-DP

Laplace Mechanism. One of the simplest mechanisms to perturb numeric attributes with

additive noise is the zero mean Laplace mechanism. The zero mean Laplace distribution

with scale b has the density function Pr[z; b] = 1
2b exp(−|z|b ).

Theorem 1. For any query function F with output O ∈ Rk, k ≥ 1, the Laplace mechanism

M(D) = F (D) + 〈L1, L2, .., Lk〉 satisfies ε-DP, where L1, .., Lk are i.i.d Laplace random

variables with density Lap(∆1F
ε ).

Exponential Mechanism [51]. McSherry and Talwar in [51] proposed the Exponential

Mechanism as a generic approach to design mechanisms. Let D be the domain of input

dataset andR the range of perturbed responses. The crux of the exponential mechanism is

in designing a quality function Q : D×R =⇒ R so that Q(d, r) measures the desirability

of providing output r for input d. This mechanism is particularly suitable when queries are

non numeric and we are required to encode our preference for output r when input is d. The

mechanism is then defined by setting

Pr[r ∈ R|d] = exp
(
εQ(d,r)
2∆pQ

)/∑
r′∈R exp

(
εQ(d,r′)
2∆pQ

)
(2.2)

where ∆pQ is the global sensitivity of function Q i.e. the amount by which changing an

individual’s input can alter the output of Q in the worst case. It is proved that this mechanism

obtains at least exp(−ε2 )-differential privacy.

2.4 Local Differential Privacy

Initial work on differential privacy assumed the participation of a trusted aggregator, who

curates the private information of individuals, and releases information through a DP al-

gorithm. In practice, individuals may be reluctant to share private information with the
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central data curator. Local differential privacy instead captures the case when each user

independently (but collaboratively) releases information on their input through an instance

of a DP algorithm. The original input never leaves user’s end.

Now we introduce this model more formally. In the simplest setting, we have

N non-colluding data-owners and each participant i ∈ [N ] has a private input zi drawn from

some global discrete or continuous distribution θ over a domain Z . Any two tuples zi and

z′i are considered adjacent, with ||zi − zi′ ||1 ≤ 2. Implicitly, there is also an (untrusted)

aggregator interested in estimating some statistics over the private dataset {zi}Ni=1.

Local Differential Privacy (LDP) [34, 35]. A randomized functionM is ε-locally differ-

entially private if for all possible pairs of zi, z′i ∼ Z and for every possible output tuple O in

the range ofM:

exp(−ε) ≤ Pr[O =M(zi)]

Pr[O =M(z′i)]
≤ exp(ε), O ∈ Range(M)

In this local instantiation of DP,M is applied to each input independently. In

contrast to the centralized model, perturbation under LDP happens at the user’s end. We now

compare the centralized and the local model in more detail.

• Neighborhood Definition. In LDP, all items in the input domain are neighbors of

each other whereas in the centralized setting, all datasets differing by a single record

are neighbors of each other.

• Sensitivity Calculation. It is not required in the local case due to modified neighbor-

hood definition.

• Perturbation Method. In contrast to the centralized case, only input perturbation is

allowed in LDP since user’s data are not allowed to leave its end.

• Error In Estimation. The main consequence of input perturbation in LDP is signific-

ant increase in noise level. Specifically, works including [52, 53] proved that for any

LDP compliant mean estimation mechanismM along with a post-processing function

f estimates the true mean µ with at least following error.

∣∣∣∑N
i=1 f(M(zi))

N
− µ

∣∣∣
∞

= Ω(
1

ε
√
N

)

On the other hand, this lower bound is 1
εN in the centralized case [54]. A similar bound

exists for histogram aggregation. This means quadratically more number of users are

required in the local case to match the accuracy level of the centralized model.
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• Algorithm Design. Compared to the centralized case, the algorithm design space is

limited in the local setting since the original dataset is not available. In fact, many

tasks that can be performed in the centralized setting are impossible to perform in the

local model with acceptable utility [34].

• Interactive Algorithms. In the local model, it is possible to design algorithms

involving multiple rounds of data collection. Each round however consumes some

amount of privacy budget since intermediate results are also required to satisfy LDP. In

the centralized case, accessing the dataset multiple times may not cost privacy budget

since only the final result is required to satisfy the DP guarantee. However, careful

accounting of privacy budget consumed is still needed in the both the cases.

• Resource Trade-off. As a consequence of previous factors, any LDP algorithm de-

signed should take into account, the communication/storage/computation trade-off

since these algorithms are often deployed on resource constrainted devices. Com-

munication overhead may not even exist in the centralized model. Managing stor-

age/processing trade-off is a relatively less important challenge compared to the local

model since perturbation and processing happens at aggregator’s side.

Standard perturbation primitives satisfying LDP. Research questions in LDP have mostly

focused around developing primitives for answering simple statistical queries such as mean

and histogram. The primitives proposed are used as building blocks in designing solutions

to more complex problems. In what follows, we will discuss some perturbation mechanisms

developed for mean and histogram. For mean estimation, we restrict our attention to only

the binary inputs case.

2.4.1 Mean Estimation

The simplest mechanism satisfying LDP, 1 bit randomized response [55] (RR) was proposed

much before the theory of DP was even built. Here, we consider a setting with N participants

each having a single bit zi ∈ {1, 0} of private information (an answer to a sensitive question).

The aggregator’s goal is estimate the approximation f̂ of the true fraction f of people

satisfying with input as 1.

Pertubation. Each user reports his true answer zi with probability p. Otherwise, s/he returns

a bit drawn uniformly at random. In order for this mechanism to satisfy LDP, we want that

Pr[1|1]

Pr[1|0]
=

Pr[0|0]

Pr[0|1]
=

p

1− p
≤ exp(ε)

Since the worst case ratio is exp(ε), we replace the inequality by equality. Thus, by setting

p = exp(ε)
exp(ε)+1 , this simple mechanism satisfies ε-LDP.
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Aggregation. Let O be the fraction of perturbed bits {z∗i }Ni=1 received by aggregator. We

have

O =

∑N
i=1 z

∗
i

N
= pf + (1− p)(1− f)

Rearranging the expression yields us a frequency estimator f̂ = O−p+1
2p−1 .

Lemma 1. f̂ is an unbiased estimator of f i.e. E[f̂ ] = f .

Proof.

E[f̂ ] = E[
O − p+ 1

2p− 1
] =

pf + (1− p)(1− f)− p+ 1

2p− 1
=
−p(1− f)− (1− p)(1− f) + 1

2p− 1

=
(1− f)(1− 2p) + 1

2p− 1
= f − 1 + 1 = f

Often the accuracy in estimation is measured via the mean squared error E[(f̂ − f)2]. We

know that the mean squared error can be expressed as sum of variance and bias. Since

estimation is unbiased, mean squared error is determined by variance. Now we measure the

variance in estimation.

Lemma 2. The scaled variance Var[f̂ − f ] = exp(ε)
(exp(ε)−1)2

.

Proof.

Var[f̂ − f ] = Var[f̂ ] = Var[
O − p+ 1

2p− 1
] =

Var[O]

(2p− 1)2

We know that the observed fractionO consists of two Bernoulli distributions with parameters

p and 1− p for fractions f and 1− f . Therefore,

Var[O]

(2p− 1)2
=
fp(1− p) + (1− f)(1− p)p

(2p− 1)2
=

p(1− p)
(2p− 1)2

=

exp(ε)
1+exp(ε) .

1
1+exp(ε)

( 2 exp(ε)
1+exp(ε) − 1)2

(2.3)

=
exp(ε)

(exp(ε)− 1)2
(2.4)

An asympotically similar expression can be derived for the case when user i holds zi ∈
{−1, 1} instead of {1, 0}.

As we will see in the next chapters, this classical idea is at the heart of many

industrial deployments. In fact, there are multiple variants of this general principle. For
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more involved mechanisms and usecases, the survey book [56] compiled by Chaudhari and

Mukerjee can be referred.

2.4.2 Point Queries and Frequency Oracles (FO)

A basic question in the LDP model is to answer point queries on the distribution: to estimate

the frequency of any given element z from the domain Z . Answering such queries form

the underpinning for a variety of applications such as population surveys, machine learning,

spatial analysis and, as we shall see, our objective of quantiles and range queries.

In the point query problem, each i holds a private item zi drawn from a public

set Z = {0, .., D − 1} = [D] using an unknown common discrete distribution θ. That is,

θz is the probability that a randomly sampled input element is equal to z ∈ Z . The goal is

to provide a protocol in the LDP model (i.e. steps that each user and the aggregator should

follow) so the aggregator can estimate θ as θ̂ as accurately as possible. Solutions for this

problem are referred to as providing a frequency oracle.

Several variant constructions of frequency oracles have been described in recent

years. In each case, the users perturb their input locally and send the result to the aggregator.

These noisy reports are aggregated and an appropriate bias correction is applied to them

to reconstruct the frequency for each item in Z . The error in estimation is once again

quantified by the variance since often estimators for these mechanisms are unbiased and

have the same variance for all items in the input domain. The mechanisms vary based on

their computation and communication costs, and the accuracy (variance) obtained. The

most practical mechanisms have the unscaled variance of O
(

exp(ε)
N(exp(ε)−1)2

)
. Some of

these mechanisms were proposed nearly concurrently in multiple communities such as data

management, privacy/security and information theory with different names.

Randomized Response On Input/Optimal Unary Encoding (INPRR/OUE) [57, 58]. It

is also possible to use a single bit randomized response to aggregate histograms. Once

again we assume that each user i’s input zi ∈ ID×D, where ID×D is the set of all one hot

encoded/identity basis vectors. The mechanism involves following transformation.

Perturbation. The bit at each j ∈ [D] is perturbed as follows.

Pr[z∗i [j] = 1] =

p, if zi[j] = 1

q, if zi[j] = 0

Each perturbed vector z∗i is sent to the aggregator. Note that in contrast with the version

discussed in Section 2.4.1, two separate probabilities are used in this perturbation. Intuitively,

since the index where the bit is 1 stores the original input, we expect p to as high as

possible. On the other hand, we want fewer 0’s to be flipped to 1’s. Therefore, q should
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be as low as possible. The LDP ratio is maximized when the numerator/denominator is

maximized/minimized i.e.

exp(ε) =
p(1− q)
q(1− p)

Rearranging gives p = q exp(ε)
exp(ε)q−q+1 .

Aggregation. The aggregator collects the noisy bit vectors z∗i for all users and adds them

to the noisy histogram T ∗ ∈ [D]. Similar to Section 2.4.1, for each item j ∈ [D] be the

observed fraction of 1’s is

T ∗[j] = pfj + (1− fj)q

The estimated fraction fj of item j is f̂j = T ∗[j]−q
p−q .

Lemma 3. The scaled variance Var[f̂j ] = O
(

exp(ε/2)
(1+exp(ε/2))2

)
,∀j ∈ [D]

Proof.

Var[f̂j − fj ] = Var[f̂j ] = Var
[T ∗[j]− q

p− q

]
=

Var[T ∗[j]]

(p− q)2
=
p(1− p)fj + (1− fj)q(1− q)

(p− q)2

=
fj(p− q)[1− p+ q] + q(1− q)

(p− q)2
=
fj [1− p+ q]

p− q
+
q(1− q)
(p− q)2

For small fj , which is often the case when D gets large, the variance is dominated by the

second term. Therefore, Var[f̂j ] ≈ q(1−q)
(p−q)2 . Plugging p gives,

Var[f̂j ] ≈
q(1− q)

( q exp(ε)
exp(ε)q−q+1 − q)2

=
((exp(ε)− 1)q + 1)2

(exp(ε)− 1)2q(1− q)
(2.5)

Next we have two choices.

1. p and q are symmetric i.e. p + q = 1. This simply leads to p = exp(ε/2)
1+exp(ε/2) and

q = 1
1+exp(ε/2) . The variance becomes

Var[f̂j ] ≈
exp(ε/2)

(exp(ε/2)− 1)2
(2.6)

2. p and q are not symmetric. In this case, we can attempt to obtain the values of p and q

20



that minimize 2.5. By differentiating the variance with q, we get

∂Var[f̂j ]

∂q
=
∂
(

((exp(ε)−1)q+1)2

(exp(ε)−1)2q(1−q)

)
∂q

=
1

(exp(ε)− 1)2

[ exp(ε2)

(1− q)2
− 1

q2

]
Setting the gradient above to 0 and solving for q produces p = 1

2 and q = 1
exp(ε)+1

And the minimum variance is

Var[f̂j ] ≈
4 exp(ε)

(exp(ε)− 1)2
(2.7)

Though the case of asymmetric p and q appears to be more genetic and provides an expression

for the minimum variance, the difference between 2.6 and 2.7 is not significant for the

most widely used values of ε. While OUE/INPRR is simple to implement and provides

best possible variance, it does not scale well to very large D due to large communication

complexity (i.e., D bits from each user), and the consequent computation cost for the user

(O(D) time to flip the bits).

Generalized Randomized Response(GRR)/Preferential Sampling (INPPS) [57–59]. It

turns out that randomized response can be extended easily to categorical inputs.

Perturbation. Each input zi reports the true value with probability p and with probability

1 − p, s/he reports z′i 6= zi sampled uniformly at random from [D]. The LDP ratio is

maximized when

exp(ε) =
Pr[j|j]
Pr[j|l]

=
p

1−p
D−1

, ∀j, l ∈ [D], j 6= l

Solving for p gives p = exp(ε)
exp(ε)+D−1 .

Aggregation. The aggregator populates a noisy histogram T ∗ ∈ RD upon collecting all

noisy responses.

T ∗[j] = pfj +
∑

k∈{[D]\j}

fk(1− p)
D − 1

= pfj +
(1− p)(1− fj)

D − 1
,∀j ∈ [D]

The true fraction fj for each item j ∈ [D] is estimated as

f̂j =
(D − 1)T ∗[j] + p− 1

(Dp− 1)
,∀j ∈ [D]

The main shortcoming of this method is that the probability of outputting the truth decreases

rapidly as D increases. For example, for ε = 1.1 and D = 100 the truth probability p is

only 0.02. This means, most of the times the mechanism reports a false random value. Let’s
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verify this observation by computing the variance.

Lemma 4. The scaled variance Var[f̂j ] = O
(

D exp(ε)
(exp(ε)−1)2

)
, ∀j ∈ [D]

Proof.

Var[f̂j − fj ] = Var[f̂j ] = Var
[(D − 1)T ∗[j] + p− 1

(Dp− 1)

]
=
( D − 1

Dp− 1

)2
Var
[
T ∗[j]

]
=
( D − 1

Dp− 1

)2[
p(1− p)fj +

p(1− p)(1− fj)
D − 1

]
=
( D − 1

Dp− 1

)2
p(1− p)

[
fj +

(1− fj)
D − 1

]
=
( D − 1

D exp(ε)
exp(ε)+D−1 − 1

)2( exp(ε)

exp(ε) +D − 1

)( D − 1

exp(ε) +D − 1

)(fj(D − 2) + 1

D − 1

)
=
( D − 1

(D−1)(exp(ε)−1)
exp(ε)+D−1

)2(exp(ε)[fj(D − 2) + 1]

(exp(ε) +D − 1)2

)
=

exp(ε)[fj(D − 2) + 1]

(exp(ε)− 1)2

≤ exp(ε)(D − 1)

(exp(ε)− 1)2

Where the last inequality comes by upper bounding fj ≤ 1.

As we can see, the variance grows linearly with D, which is an undesirable

feature for any mechanism. Nevertheless, Wang et al. in [57] showed that GRR/INPPS

is among the best approaches when D < 3 exp(ε) + 2. In chapter 4, we provide alternate

proofs to OUE/ INPRR and INPPS/GRR.

Optimal Local Hashing (OLH) [57]. Wang et al. [57] proposed the OLH mechanism to

deal with prohibitive communication cost. OLH aims to reduce the impact of dimensionality

on accuracy by employing universal hash functions1. More specifically, each user samples

a hash function H : [D] → [g] (g � D) u.a.r from a universal family H and perturbs the

hashed input.

Perturbation. User i samples aHi ∈ H u.a.r (principle D) and computes hi = Hi(vi). User

i then perturbs hi ∈ [g] using GRR. Specifically, each user reports Hi and, with probability

p = eε

eε+g−1 gives the true hi, else she reports a value sampled u.a.r from [g].

Aggregation. The aggregator collects the perturbed hash values from all users. For each hash

value hi, the aggregator computes a frequency vector for all items in the original domain,

based on which items would produce the hash value hi under Hi. All N such histograms

are added together to give T ∗ ∈ RD and an unbiased estimator for each frequency for all
1A family of hash functions H = {H : [D] → [g]} is said to be universal if ∀zi, zj ∈ [D], zi 6= zj :

PrH∈H[H(zi) = H(zj)] ≤ 1
g

i.e. collision probability behaves uniformly.
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elements in the original domain is given by the correction

f̂j = (T ∗[j]− 1

g
)
/

(p− 1

g
)

For g = exp(ε) + 1, OLH achieves the same variance as OUE/INPRR (i.e. 4 exp(ε)
(exp(ε)−1)2

) and

yet at more economical communication of O(log(D)) bits per user compared to D bits for

OUE/INPRR. However, a major downside is that it is compute intensive in terms of the

decoding time at the aggregator’s side, which is prohibitive for very large dimensions (say,

for D above tens of thousands), since the time cost is proportional to O(ND).

2.4.3 Limited Precision LDP

The definition of LDP requires a randomized mechanism to satisfy the same limited in-

formation disclosure guarantee on every pair of inputs in the domain of the mechanism.

This constraint can be too strong or even unnecessary or even insufficient in some contexts.

For example, consider users with sensitive documents and the aggregator wants to collect

histogram of word frequencies. Due to the large domain size of all possible words in a

language and heavy tailed distribution for word counts, the amount of noise added can

overwhelm the signal in the data.

While one line of research focuses on designing mechanisms tailored for

massive domain sizes, another proposes alterations in the original definition of LDP. Schein

et al. [38] proposed one such generalization of LDP for private Bayesian inference.

Definition 13. Limited Precision LDP (LLDP) [38]. A randomized functionM is (k, ε)-

limited precision locally differentially private if for pairs of zi, z′i ∼ Z such that ||zi−z′i||1 ≤
k and for every possible output tuple O in the range ofM:

exp(−ε) ≤ Pr[O =M(zi)]

Pr[O =M(z′i)]
≤ exp(ε), O ∈ Range(M)

When ||zi||1 ≤ k, ∀zi ∈ Z , (k, ε)−LLDP implies ε-LDP. This version was

originally introduced in the context of centralized DP by Flood et al. [60] to protect portfolios

of large firms. Andrés et al. [61] later extended it to protect location information.

Note that a (k, ε)-LLDP mechanism satisfies centralized ε-DP with global

sensitivity k. Therefore, at times it is convenient to consider the centralized setting while

designing LLDP algorithms.

Geometric Mechanism (GM) [36]. Ghosh et al. in their seminal work [36] proposed a

discrete equivalent of Laplace mechanism for count queries. They consider a simple trusted

aggregation with n participants each having a single bit of private information. A trusted

aggregator intends to develop a randomized mechanismM for releasing the sum of n bits
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privately.

Definition 14. Range Restricted Geometric Mechanism (GM) [36]. Let q be the true

(unperturbed) result of a count query. The GM responds with min(max(0, q + δ), n), where

δ is a noise drawn from a random variable X with a double sided geometric distribution,

Pr[X = δ] = (1−α)α|δ|

1+α for δ ∈ Z.

where α = exp(−ε∆1
), and ∆1 is the global sensitivity of the query function

under L1 norm. The global sensitivity ∆1 for count queries is 1 since flipping an individual’s

bit can only change the sum by 1. The GM adds noise from two sided geometric distribution

to the query result and remaps all outputs less than 0 onto 0 and greater than n to n. In fact

it is possible to find the closed form solution for GM.

Linear Programming Framework [36]). Ghosh et al. developed a linear programming

framework for designing mechanisms optimizing on a loss function for count queries. These

mechanisms can be viewed as a column/row stochastic matrix with every i, jth entry being

the probability Pr[i|j] of outputting i for input j. We describe their framework below.

Ghosh et al. ’s key observation was that the DP requirements can be written as

linear constraints over variables which represent the entries of the mechanism. The objective

function is also a linear function of these variables. Formally, we define variables ρi,j for

Pr[i|j], and write:

minimize:
n∑
j=0

wj

n∑
i=0

|i− j|pρi,j (2.8)

subject to: 0 ≤ ρi,j ≤ 1 ∀i, j ∈ [n] (2.9)
n∑
i=0

ρi,j = 1 ∀j ∈ [n] (2.10)

ρi,j ≥ αρi,j+1, and ρi,j+1 ≥ αρi,j ∀i ∈ [n], j ∈ [n− 1] (2.11)

The constraints can be understood as follows: (2.9), (2.10) ensure that the

entries of the matrix are probabilities and each column encodes a probability distribution,

i.e. sums to 1. Constraint (2.11) encodes the differential privacy constraints. Finally, (2.8)

encodes a loss function (cf. Definition 21) for the notion of utility we aim for. Common

choices for p are 0, 1 and 2 corresponding to L0,L1 and L2 norms.
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2.5 Statistics

In this section, we review some concepts that will be used in the later sections.

2.5.1 Chow-Liu Trees

Approximating a high dimensional joint distribution with d discrete variables is a classic

problem in statistics. The main motivation for approximation comes from difficulty (or at

times in-feasibility) in computing a large number of conditional and marginal probabilities

involved in the joint distribution.

Bayesian networks are often used to represent conditional dependencies in a

high dimensional distribution using a directed acyclic graph. It is possible to approximate a

joint distribution as a product of multiple second order marginal and conditional distribu-

tions. For example, the joint distribution illustrated by the variable dependency network in

figure 2.1(a) can be approximated in 2.1(b) as follows.

Pr[B,A,C,D,E] ≈ Pr[B] Pr[A|B] Pr[C|B] Pr[D|C] Pr[E|A]

In the equation above, each probability is conditioned on at most one variable. Therefore, the

problem of finding a second order approximation to a high dimensional distribution reduces

to approximating a directed acyclic graph with a directed tree that optimizes a particular

distance metric. Chow and Liu in [47] proved that a tree configuration that maximizes the

total mutual information among edges is an optimal approximation of the joint distribution

in question. This insight converts the intractable optimization problem of finding such tree to

an easy problem of finding a maximum weight spanning tree. Concretely, all we have to do

is treat all random variables as nodes in an empty graph and find a tree that maximizes the

total edge weight. Once a tree is learnt, any high dimensional joint distribution of interest

can be learnt by multiplying conditional probabilities that can found using marginals. The

centre piece of this algorithm is computation of mutual information between
(
d
2

)
pairs of

variables. Mutual information between two discrete variables A,B ∈ {0, 1} is given as

MI(A,B) =
∑

i,j∈{0,1}2
Pr[A = i, B = j] log

Pr[A = i, B = j]

Pr[A = i] Pr[B = j]

2.5.2 Association Testing

We often want to check if two variables A,B are independent or not i.e. we want to know

if Pr[A,B] ≈ Pr[A] Pr[B]. The χ2 test of independence compares the observed cell

counts to expected counts assuming the independence (null hypothesis) and compute the χ2

value (see e.g. [62] then compares this value to the critical value p for a given confidence
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(a) Dependency Graph (b) Approximated Tree

Figure 2.1: Approximation of a variable dependency network using trees.

interval (usually 0.95). If χ2 > p, we conclude that A,B are dependent (rejecting the null

hypothesis). For a 2-way marginal m involving binary random variables, the χ2 statistic is

∑
j∈{0,1}2

(m[j]− E[m[j]])2

E[m[j]]

where E[m[j]] is the expected value at m[j].

2.5.3 Area under the ROC Curve

In binary classification with class imbalance, the Receiver Operating Characteristic (ROC)

gives the true positive rate with respect to the false positive rates of a predictor at each

possible decision threshold. The Area under the ROC Curve (AUC) [63] is a popular

summary of the ROC curve which gives a single, threshold-independent measure of the

classifier quality corresponding to the probability that the predictor assigns a higher score

to a randomly chosen positive point than to a randomly chosen negative one. Formally, let

X ⊂ R × {−1, 1} and S = {(zi, yi)}Ni=1 where for each data point i, zi ∈ R is the score

assigned to point i and yi ∈ {−1, 1} is its label. For convenience, let S+ = {zi : yi = 1}
and S− = {zi : yi = −1} and let N+ = |S+| and N− = |S−|. The AUC is given by

AUC =
1

N+N−

∑
zi∈S+

∑
zj∈S−

Izi>zj . (2.12)

where Iσ is an indicator variable with value 1 if the predicate σ is true and 0 otherwise.
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Chapter 3

Related Work

In this chapter, we initially discuss prior works on the local differential privacy. Then we

restrict our attention to literature on the marginal, range and count queries. To the best of

our knowledge, since the problems of marginal and range queries have not been studied

before our attempts in the local DP settings, we only discuss prior treatment in the context of

the centralized model for those problems. We are aware that differentially private untrusted

aggregation can also be facilitated by combining DP with other contemporary technologies

including secure multiparty aggregation [64] and trusted execution environment [65], we

restrict our scope to only technologies involving LDP mechanisms.

3.1 Local Differential Privacy

The model of local differential privacy has risen in popularity in recent years in theory

and in practice as a special case of differential privacy. This model was first suggested by

Evfimievski et al. [66] under the name of γ-amplification, with an application to mining

association rules. Duchi et al. [35] studied a generalization of that model as a local version

of DP, and proposed a minimax framework with information theoretic bounds on utility.

Recently, a substantial amount of effort has been put into the question of collecting simple

popularity statistics, by adapting randomized response to handle a larger domain of pos-

sibilities [9, 28, 57, 67]. The current state of the art solutions involve a combination of

ideas from data transformation, sketching and hash projections to reduce the communication

cost for each user, and computational effort for the data aggregator to put the information

together [57, 67]. Building on this, there has been substantial effort to solve a variety of

problems in the local model in the last 5 years.
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3.1.1 Large-scale Deployments

Google [29, 68]. Erlingsson et al. in their pioneering work [68] presented the RAPPOR

system deployed in the Chrome browser to facilitate the collection of browser statistics such

as homepage settings, running processes in order to understand user experience and perform

malware detection. The core idea of RAPPOR hinges on perturbing each individual’s

information encoded in a bloom filter [69] via 1 bit randomized response. Fanti et al. in [29]

extended RAPPOR capabilities to collection of joint distributions between various categories

by providing an expectation maximization based decoding mechanism. Their complete

solution also enables the estimation of values which are not part of the initial dictionary.

Longitudinal Privacy: The problem of differentially private aggregation of data gathered

over time was studied by by Dwork et al. [70] in the centralized case. Since continual

observations are proven to be vulnerable to various attacks (e.g. [71]), longitudinal privacy

was among the main goals of these systems. RAPPOR proposed a heuristical memoization

scheme that asks users to memorize their noisy answers and repeat them in response to

the same queries about a data value. To prevent identification based on cached answers,

RAPPOR adds additional noise.

Apple [28, 72]. One of the shortcomings of Google’s deployments was suboptimal com-

munication complexity and inefficient use of privacy budget. Apple’s DP implementation

was announced in 2016, and is documented in a patent application [72] and subsequent

blog post [28]. Similar to Google’s usecase, they wanted Apple and app developers to

collect usage and typing history to train language models by aggregating frequencies of

the most frequently used words/emojies. Their techniques fixed the drawbacks observed

in RAPPOR by combining signal processing and data summarization techniques such as

count-sketch [73] and count-min sketch [74] to reduce the dimensionality of the massive

domain.

Microsoft [9]. Ding et al.’s work introduced a histogram primitive and a randomized

rounding based discretization scheme to collect data over time from fixed users. A more

general theoretical framework to estimate frequencies and heavy hitters under continual

observation has been proposed recently by Joseph et al. [75] and Erlingsson et al. [76].

Snap [12]. Pihur et al.considered the problem of building a massively distributed system for

training Generalized Linear Models (GLMs) in an asynchronous/lock-free fashion. In their

novel “draw and discard“ framework, server maintains k instances of the machine learning

model. Upon client request, a randomly sampled instance is sent to be updated. The client

updates and perturbs the received model and server replaces a uniformly sampled model

with this updated model at its end. This scheme facilitates asynchronous model update and

prevents injection of spam models from malicious clients. More interestingly, they prove
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that due to “draw and discard“ scheme, the expected intra-model variance remains constant

(kσ2 ) after infinite updates when made with a zero mean noise distribution with variance σ.

While deployments at such wide scale was a triumph for DP community, some

of them also faced criticism for their opaque implementation and privacy guarantees that

erode with time. While memoization schemes provide protection against data being directly

exposed, this protection deteriorates when answers to correlated data vary non independently.

A more rigourous study on longitudinal privacy was performed by Tang et al. in [77].

Through static and dynamic code analysis of macOS Sierra, they discovered that the value of

ε used per day for each user is as large of 16, which is much higher than typically accepted

values in academic circles.

3.1.2 Heavy Hitters

Most quantities (emojies, words, home pages etc.) these deployments tried to estimate had

a heavy-tailed distribution. Therefore, aggregating the full histogram was a sub-optimal

solution. Naturally, the abstract problem of identifying the most frequent k items a.k.a. heavy

hitters under local setting attracted a lot of attention in parallel. Bassily and Smith in [78]

provided an initial theoretical solution based on random projection matrix. These ideas were

generalized to approximate DP (definition 9) by Bun et al. [79]. However, these solutions

provided acceptable practical results only when the domain from which the items are drawn

is significantly larger than the population size. On practical fronts, [80, 81] proposed simple

interactive histogram frequency oracle based protocols in the case when each users holds

a set of items of unequal length. Sketching and dimensionality reduction techniques from

Apple’s work were refined and extended by Bassily et al. [67]. Their methods match the

state of art theoretical bounds on accuracy and offer various resource trade-offs. More

recently, work by Jia and Gong [82] propose a post-processing scheme that incorporates

prior knowledge about noise mechanism and the true frequencies and improves the estimates

of any heavy hitter algorithm.

3.1.3 Social Networks

Much sensitive individual data is best represented as a graph—either a simple graph between

users, or a bipartite graph between users and other entities. Recent work has aimed at

building accurate synthetic graph models under more relaxed edge LDP [83] that applies

to adjacency lists differing by an edge. In their multiround protocol, aggregator randomly

clusters users into k groups. Users know the frequency distribution of his neighbors for all

groups. Next users perturb their histograms with zero mean Laplace mechanism and send it

to the aggregator. In order to preserve structure, the nodes with similar histograms should be

clustered in the same group and vice versa. They iteratively improve the the quality of their
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clustering through multiple rounds of data collection. Once a good clustering is achieved, a

random graph generation model is used to assign inter/intra cluster edges. Novelty of this

work lies in finding the group size k that minimizes the error between true and perturbed

degree vectors.

3.1.4 Location Data

Service providers may be interested in estimating user density over a spatial domain without

learning the users’ true location. It’s easy to solve this problem using frequency oracles

mentioned in Section 2.4.2. However, this solution does not account for varying spatial

density. Moreover, users may have varying preferences over the granularity of data collection.

For example, some users would not mind sharing their true city but not their block number

while others may not be comfortable in providing any detail outside their state. Initial work

on this problem has extended LDP private frequency collection [84]. They impose a semantic

hierarchy over locations at the level of block, city, state and country. Users specify their

location at their choice of granularity and the data is collected using frequency oracles. It is

open to extend this to build more sophisticated user movement models.

3.1.5 Machine Learning

• Supervised Learning. A large body of research has focused on performing Empirical

Risk Minimization (ERM) via stochastic gradient descent (SGD) for various loss

functions including linear/logistic regression and support vector machines. One line

of research including [85–87] approached this general problem by designing more

accurate perturbation primitives for mean estimation for numeric data since the worst

case accuracy of gradient estimation depends mainly on the accuracy of such primitive

used. Shin et al. [88] used locally differentially private version of SGD proposed

in [85] to recommend unrated movies using matrix factorization while preserving

privacy of each user’s items and ratings. A similar matrix factorization based approach

has been developed in the context of crowd-sourcing platforms by [89] to predict the

answers to unanswered tasks.

On the other hand, more theoretical works studied the impact of interactive data

collection on accuracy [90] and came up with single round protocols [91–94] using

techniques from approximation theory under smoothness/bounded data assumptions.

• Unsupervised Learning.

Clustering. Nissim et al. [95, 96] studied the problem of finding a minimum enclosing

ball under DP. In this problem, given a set of points N points in RD, the task is to

find the ball of smallest radius with at least t ≤ N points. They provide local (and
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central) algorithms achieving constant factor approximation and apply them to solve

the problem of k-mean clustering.

Text and language modeling. Discovering frequently used words is one of the

basic problems in language modeling and was among the main goals of Google’s and

Apple’s deployment. The full details of Apple’s algorithm are unknown. RAPPOR

finds the frequency of heavy hitter N-grams and then uses a clique finding algorithm to

reconstruct a term from each clique. This algorithm provides unsatisfactory accuracy

due to overwhelming noise. Wang et al. [97] solved this problem by interactively

constructing the trie datastructure using familiar techniques used in private heavy

hitters identification problem.

Crowdsourcing. Platforms like Amazon Mechanical Turk (AMT) release tasks that

are easy for humans but remain difficult for computers. The workers complete these

tasks in exchange of a reward. Since tasks are completed at varying quality and often

most workers only provide answers to a very small fraction of the tasks, developing

methods to estimate worker quality (truth inference) and inferring the answers of

uncompleted tasks is a key challenge. Sun et al. [89] came up with a LDP version

of an existing expectation maximization based performing truth inference method

to LDP. Their solution also extended the randomized response method to handle the

missing values.

3.1.6 Shuffle Model

The large amount of noise required in the local model has motivated the development of other

models. For example, the Encode, Shuffle, Analyze (ESA) model introduced by Bittau [98]

involves a trusted shuffler that strips all the identifiers and permutes the user messages before

sending them to an untrusted aggregator. This model has been brought recently in the local

setting by various theoretical works [76, 99, 100] that develop mean and histogram primitives

and build a novel theory of privacy amplification due to the shuffle step. However, feasibility

of large scale implementation of a trusted shuffler is still an open problem.

3.1.7 Federated Learning

Distributed optimization with emphasis on protecting client privacy is a longstanding goal

pursued by many research communities including cryptography, databases, and machine

learning. The framework of federated learning (FL) introduced by McMahan et al. [101]

facilitates decentralized training of a machine learning algorithm under the coordination

of a centralized server in scenarios when data is distributed across multiple decentralized

edge devices. The key feature of this approach is that the raw local data samples are not
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exchanged with the server but instead, focused updates ready for immediate consumption

are used to accomplish the optimization objective at hand. To comprehensively understand

the challenges introduced by this framework and recent developments in this space, survey

paper compiled by Kairouz et al. [102] is recommended. Several recent works including

[103–105] couple this approach with DP. On the LDP front, while some of the previously

mentioned works such as [12, 85, 88, 97] are solving the learning task by loose federation

of clients, satisfying the local DP guarantees under FL framework limits the usecases of FL

to massive scale deployments due to large noise amounts. There is a need for a DP model

that provides utility guarantees between fully local and fully centralized DP model.

3.1.8 Hybrid Model

Local and central models were always considered incompatible until recently. Avent et

al. [106] proposed a practical hybrid setting in which a large fraction of users require local

privacy and others trust the aggregator and are willing to share their true data. Examples

of such type is internal beta testers/early adopters. They show that in such scenarios, one

can develop more accurate algorithms by leveraging the fact that a small amount of noise

is added into beta users’ data. Dubey et al. [107] later expressed this problem as a mixture

model and quantified the efficacy of the general framework via total error and optimal mixing

weight. The version of hybrid model both works adopted provides improvement of up to a

constant factor over full local and the centralized model for certain regimes of parameters.

While this improvement may not seem like much theoretically, constants matter in real world

deployments of DP. Understanding full capacities of this framework is an active area of

research.

3.2 Five principles for LDP

We abstract five key principles that we observe recurringly in applied LDP literature. Al-

though each individual idea may seem relatively simple, collectively they provide a complete

solution, and their combination yields novel results. In summary, these principles, which are

generally applicable to other problems as well, are as follows:

(A) Transform the input. Rather than work with the raw input, have users apply (linear)

transformation to the input to align it better with the intended application.

(B) Densify the representation. Since each user’s input is typically sparse, use techniques

from signal processing to densify it and reduce the communication cost.

(C) Compose transformations. Provided that they are linear, multiple transformations can

be composed in sequence to obtain the best properties of each.

(D) Use sampling. When multiple pieces of information are needed, the best results are

obtained by sampling which to gather from each user, rather than trying to measure them all.
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(E) Apply post-processing. Significant gains in accuracy are possible by post-processing

the global estimates, to take advantage of consistency and overlap.

3.3 Prior Work On The Problems Of Interest

Next we will discuss the prior work relevant to marginal, range and count queries.

3.3.1 Marginals Queries

Marginal tables arise in many places throughout data processing. For example, an OLAP

datacube is the collection of all possible marginals of a data set. Consequently, there has

been much work to release individual marginals or collections of marginals under privacy

guarantees. To the best of our knowledge, most of these assume the trusted aggregator

model. The motivations for these algorithms — accurate statistics collection, data analysis,

model building etc. — are just as compelling under the model of LDP which removes the

trusted aggregator. We discuss a representative set of approaches from prior works and check

whether they can be applied under LDP.

Laplace Noise. The baseline for differential privacy is the sensitivity and noise approach:

we bound (over all possible inputs) the “sensitivity” of a target query in terms of the

amount by which the output can vary as a function of the input. Adding noise from an

appropriate distribution (typically Laplace) calibrated by the sensitivity guarantees privacy.

This approach transfers to LDP fairly smoothly, since the sensitivity of a single marginal on

N users is easy to bound by O(1/N) [50]. A variant is to apply this to a transformation of

the data, such as a wavelet or Fourier transform [108, 109]. Our contribution is to refine and

analyze how to release marginals via transformations under the related guarantee of LDP.

Subset Marginal Selection. When the objective is to release many marginals — say, the

entire data cube — the above approach shows its limitations, since the sensitivity, and hence

the scale of the noise grows exponentially with the number of dimensions: 2d. Ding et

al. [110] compute low dimensional marginals by aggregating high dimensional marginals,

chosen via a constrained optimization problem and a greedy approximation. This solution

does not translate naturally to LDP, since each user has access to only her record and may

come up with a different subset locally compared to others.

Multiplicative Weights. Several approaches use the multiplicative weight update method

to iteratively pick an output distribution [111–113]. For concreteness, we describe a non-

adaptive approach due to Hardt et al. [111]. The method initializes a candidate output

uniform marginal, and repeatedly modifies it so that it is a better fit for the data. To ensure

DP, it uses the exponential mechanism [114] to sample a k-way marginal whose projection

at a certain point in the true data is far from the corresponding value for the candidate.
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The candidate is then scaled multiplicatively to reduce the discrepancy. The sampling and

re-scaling step is repeated multiple times, and the convergence properties are analyzed. The

number of steps must be limited, as the “privacy budget” must be spread out over all steps to

give an overall privacy guarantee. Applying the exponential mechanism in this way does not

obviously extend to the LDP model. In particular, every user’s single input is almost equally

far from any candidate distribution, so it is hard to coordinate the sampling to ensure that the

process converges. A natural implementation would have many rounds of communication,

whereas we focus on solutions where each user generates a single output without further

coordination.

Expectation Maximization. While materialization of marginals has not been the primary

focus of prior work, a work due to Fanti et al. does suggest an alternative approach for the

2-way marginal case [29] as a part of their solution. The central idea is for each user to

materialize information on all d attributes, and to use an iterative post-processing method on

the observed combinations of reported values to reach an estimate for a given marginal. We

present this idea in more detail and implement it in Section 4.3.4.

In summary, the problem of understanding correlations between a small subset

of variables has not been studied carefully under LDP settings by prior work and deserves a

fresh study.

3.3.2 Range Queries

Exact range queries can be answered by simply scanning the data and counting the number

of tuples that fall within the range; faster answers are possible by pre-processing, such as

sorting the data (for one-dimensional ranges). Multi-dimensional range queries are addressed

by geometric data structures such as k-d trees or quadtrees [45]. As the dimension increases,

these methods suffer from the “curse of dimensionality”, and it is usually faster to simply

scan the data.

Various approaches exist to approximately answer range queries. A random

sample of the data allows the answer on the sample to be extrapolated; to give an answer

with an additive ε guarantee requires a sample of size O( 1
ε2

) [115]. Other data structures,

based on histograms or streaming data sketches can answer one-dimensional range queries

with the same accuracy guarantee and with a space cost of O(1/ε) [115]. However, these

methods do not naturally translate to the private setting, since they retain information about

a subset of the input tuples exactly, which tends to conflict with formal statistical privacy

guarantees.

Private Range queries. In the centralized DP model, there has been extensive consideration

of range queries. Part of our contribution is to show how some of these ideas can be translated

to the local model, and to provide customized analysis for the resulting algorithms. Much
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early work on DP histograms considered range queries as a natural target [49, 116]. However,

simply summing up histogram entries leads to large errors for long range queries.

Xiao et al. [117] considered adding noise in the Haar wavelet domain, while

Hay et al. [118] formalized the approach of keeping a hierarchical representation of data.

Both approaches promise error that scales only logarithmically with the length of the range.

These results were refined by Qardaji et al. [119], who compared the two approaches and

optimized parameter settings. The conclusion there was that a hierarchical approach with

moderate fan-out (of 16) was preferable, more than halving the (squared) error from the Haar

approach. A parallel line of work considered two-dimensional range queries, introducing the

notion of private spatial decompositions based on k-d trees and quadtrees [120]. Subsequent

work argued that shallow hierarchical structures were often preferable, with only a few levels

of refinement [121].

While the range queries problem has been subject of interest for many works in

the centralized model, it has not been addressed at all in the local setting by any work.

3.3.3 Count Queries

The most relevant work to our interests is due to Ghosh et al. [36] who studied the problem

of designing mechanisms optimizing for expected utility. Their contributions are to introduce

a linear programming formulation of the problem, and to show that a certain mechanism

(denoted GM) emerges as the basis of other optimal mechanisms. Gupte and Sundararajan

proved a similar universality result for minimax loss functions and uniform weights wj [37].

They provided a simple test for when a given mechanism can be obtained by first applying

GM and then modifying the result (e.g. by randomly sampling from a distribution indexed

by the observed output from GM). Subsequent work by Brenner and Nissim [122] shows

that such universally optimal mechanisms are not possible in general for other computations,

such as computing histograms.

In this thesis, we limit our attention to Ghosh et al.’s expected utility model

and begin our study in chapter 6 by observing some anomalies in their framework when

employed in practice.
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Chapter 4

Marginal Queries

4.1 Chapter Outline And Our Contributions

In this chapter (based on [40]), we provide a general framework for marginal release under

LDP, with theoretical and empirical analysis.

•We first recall the setting in which we want to answer the marginal queries (Section 4.2).

We then describe a set of new algorithms that give unbiased estimators for marginals, which

vary on fundamental design choices such as whether to release information about each

marginal in turn, or about the whole joint distribution; and whether to release statistics

directly about the tables, or to give derived statistics based on (Fourier) transforms of the

data. For each combination, we argue that it meets the LDP guarantee, and provide an

accuracy guarantee in terms of the privacy parameter ε, population size N , and also the

dimensionality of the data, d, and target marginals, k (Section 4.3).

•We perform experimental comparison to augment the theoretical understanding in Sec-

tion 4.4, focusing mostly on the low-degree marginals that are of most value.

• Across a range of data dimensionalities and marginal sizes, the most effective techniques

are based on working in the Fourier (Hadamard) transform space, which capture more

information per user than methods working directly in the data space. The use of Hadamard

transform for materializing marginals was considered by early work in the centralized

differential privacy model, but has fallen from favour in the centralized model, supplanted by

more involved privacy mechanisms [110, 111, 123]. We observe that these other mechanisms

do not easily translate to the local model.

• Concurrent with the development of the work on which this chapter is based on, the

Hadamard basis has found application in protocols for LDP frequency estimation [28].

There, incorporating the transform preserves the accuracy guarantees, while reducing the

communication cost. In our setting, we show that the transform can both improve accuracy

36



and reduce communication cost. The endpoint of our evaluation is the application of our

methods to two use-cases: building a Bayesian model of the data, and testing statistical

significance of correlations. These confirm that in practice the Hadamard-based approach is

preferable and the most scalable in terms of communication and computation cost.

4.2 Model And Preliminaries

In line with prior work [109], our main focus is on data represented by binary variables. This

helps to keep the notation uniform, and highlights the key challenges.

In our setting, each user i has a private bit vector ji ∈ {0, 1}d that represents

the values of the d (sensitive) attributes for i. It is often more convenient to view the user’s

data instead as an indicator vector zi of length D = 2d with 1 at exactly one place ji and 0’s

at remaining positions. The domain of all such zi’s is the set of identity basis vectors I2d×2d .

This ‘unary’ view of user data allows us to model the full contingency table correspondingly

as a vector (histogram) of length 2d with each cell indexed by η ∈ {0, 1}d storing the count

of all individuals with that exact combination of attribute values. This encoding is also called

one hot encoding.

An untrusted aggregator (e.g. a pollster) is interested in gathering information

on these attributes from the population of users. Under the LDP model, the aggregator is not

allowed (on legal/ethical grounds) to collect any user i’s records in plain form. The gathered

data should allow running queries (e.g. the fraction of users that use product A,B but not C

together) over the interaction of at most k ≤ d attributes. We do not assume that there is a

fixed set of queries known a priori. Rather, we allow arbitrary such queries to be posed over

the collected data. Our goal is to allow the accurate reconstruction of k-way marginal tables

under LDP.

Definition 15 (Marginal release problem). Given a set of N users, our aim is to collect

information (with an LDP guarantee) to allow an approximation of any k-way marginal β

of the full d-way distribution z =
∑N
i=1 zi
N . Let Ĉβ be the approximate answer. We measure

the quality of this in terms of the total variation distance from the true answer Cβ(z), i.e.

1

2

∑
γ�β
|Ĉβ[γ]− Cβ(z)[γ]| = 1

2
‖Ĉβ − Cβ(z)‖

The marginals of contingency tables allow the study of interesting correlations

among attributes. Analysts are often interested in marginals with relatively few attributes

(known as low-dimensional marginals). If we are only concerned with interactions of up

to at most k attributes, then it suffices to consider the k-way marginals, rather than the full

contingency table. Since during the data collection phase we do not know a priori which of

the k-way marginals may be of interest, our aggregation should gather enough information
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Figure 4.1: Hadamard Transform Matrix for D = 8.

from each user to evaluate the set of full k-way marginals for some specified k. Our aim is to

show that we can guarantee a small total variation distance with at least constant probability1.

We will express our bounds on this error in terms of the relevant parameters N , d, k, and the

privacy parameter ε. To facilitate comparison, we give results using the Õ notation which

suppresses factors logarithmic in these parameters.

Marginals and Basis Transforms. Since the inputs and marginals of individual users are

sparse, the information within them is concentrated in a few locations. A useful tool to

handle sparsity and “spread out” the information contained in sparse vectors is to transform

them to a different orthonormal basis. There are many well-known transformations which

offer different properties, e.g Taylor expansions, Fourier Transforms, Wavelets, Chebyshev

polynomials, etc. Among these, the discrete Fourier transformation over the Boolean

hypercube—known as the Hadamard transform—has many attractive features for our setting.

Definition 16 (Hadamard Transformation (HT)). The transform of vector z ∈ R2d is θ = φz

where φ is the orthogonal, symmetric 2d × 2d matrix with φi,j = 2−d/2(−1)〈i,j〉.

Consequently, each row/column in φ consists of entries of the form ± 1
2d/2

,

where the sign is determined by the number of 1 bit positions that i, j agree on, denoted

as an inner-product 〈i, j〉. It is straightforward to verify that any pair of rows φi, φj satisfy

〈φi, φj〉 = 1 iff i = j, and the inner product is 0 otherwise. Hence φ is an orthonormal basis

for R2d . Figure 4.1 illustrates the Hadamard matrix of size D = 8. Given an arbitrary vector

z, we say that its representation under the HT is given by the 2d Hadamard coefficients

(denoted as θ) in the vector θ = φz. These properties of HT are well-known due to its role

in the theory of Boolean functions [124]. In our case when zi has only a single 1 (say at

index `), the Hadamard transform of zi amounts to selecting the `th basis vector of φ, and so

θj = φj,`. We rely on two elements to apply the Hadamard transform in our setting. The

first follows from the fact that the transform is linear:
1All our methods allow the probability of larger error to be made arbitrarily small.
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Lemma 5. φ(
∑n

i=1 zi/N) = 1
N

∑n
i=1(φzi)

That is, the Hadamard coefficients for the whole population are formed as the

sum of the coefficients from each individual. The second ingredient due to Barak et al. [109]

is that we can write any marginal β ∈ C as a sum of only a few Hadamard coefficients.

Lemma 6 ([109]). Hadamard coefficients Hk= {θα : |α|≤k} are sufficient to evaluate any

k-way marginal β. Specifically,

Cβ(t)γ =
∑
α�β
〈φα, t〉

∑
η:η∧β=γ

φα,η =
∑
α�β

θα

( ∑
η:η∧β=γ

φα,η

)
(4.1)

Considering Example 2.2.1, to compute the marginal corresponding to β =

0101, we just need the four Hadamard coefficients indexed as θ0000, θ0001, θ0100 and θ0101.

Moreover, to evaluate any 2-way marginal from d = 4, we just need access to the
(

4
0

)
+(

4
1

)
+
(

4
2

)
= 11 coefficients whose indices have at most 2 non-zero bits, out of the 24 = 16

total coeffcients.

4.3 Private Marginal Release

We identify a number of different algorithmic design choices for marginal release under

LDP. By considering all combinations of these choices, we reach a collection of six distinct

baseline algorithms, which we evaluate analytically and empirically, and identify some clear

overall preferred approaches from our subsequent study. We describe our algorithms in

terms of two dimensions:

View of the data. The first dimension is to ask what view the algorithm takes of the data. We

are interested in marginals, so one approach is to project the data out into the set of marginals

of interest, and release statistics about those marginals. However, since any marginal can be

obtained from the full input distribution by aggregation, it is also possible to work with the

data in this form.

How the information is released. The canonical way to release data under LDP is to apply

Randomized Response. As discussed in Section 2.4.2, when the user’s data is represented

as a sparse input vector, we can perturb all the cells in their table by applying Randomized

Response; or by reporting a single cell index (via the preferential sampling approach (INPPS)

from Section 2.4.2). The alternative approach we study is to apply the Hadamard transform:

the user’s table is now represented by a collection of coefficients, each of which can take on

one of two possible values. We can then sample one Hadamard coefficient, and report it via

randomized response (we call this the HT approach).
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4.3.1 Accuracy Guarantees

In order to analyze our algorithms, we make use of bounds from statistical analysis, in

particular (simplified forms of) the Bernstein and Hoeffding inequalities:

Definition 17 (Bernstein and Hoeffding inequalities). Given N independent variables Xi

such that E[Xi] = 0, |Xi| < Mi, and Var[Xi] = σ2 for all i. Then for any c > 0,

Pr
[
|
∑N
i=1Xi|
N > c

]
≤


2 exp(− Nc2

2σ2+ 2c
3

maxiMi
) (Bernstein inequality)

2 exp(− N2c2

2
∑N
i=1M

2
i

) (Hoeffding inequality)

These two bounds are quite similar, but Bernstein makes greater use of the

knowledge of the variable distributions, and leads to stronger bounds for us when we can

show σ2 < M = maxiMi.

Master Theorem for Accuracy. To analyze the quality of the different algorithms, we

provide a generalized analysis that can be applied to several of our algorithms in turn. We

assume that each user input is in {−1, 1} in the proof, but we will also be able to apply the

theorem when inputs range over other values.

Theorem 2. Let each zi be a sparse vector where one entry is {−1, 1}, and the rest are zero.

When each user i samples an input element j with probability ps and applies randomized

response with pr to construct z∗i , for c > 0 we have

Pr

[
|
∑N

i=1 z
∗
i [j]− zi[j]|
N

≥ c

]
≤ 2 exp

(
− Nc2ps(2pr − 1)

2pr(2
1−pr
2pr−1 + c

3)

)
Proof. We first consider the input of a single user subject to randomized response, and obtain

an unbiased estimate for their contribution to the population statistics. This lets us combine

the estimates from each user to compute an unbiased estimate for the population, whose

variance we analyze to bound the overall error.

Let zi[j] ∈ {−1, 1} be i’s unknown true input at location j and z∗i [j] be the

unbiased estimate of zi[j]. First, we derive the values we should ascribe to z∗ to ensure

unbiasedness, i.e. E[z∗i [j]] = zi[j].

1. When j is sampled (with probability ps) and zi[j] = 1, we set z∗i [j] = x/ps with

probability pr and z∗i [j] = y/ps otherwise.

2. When j is sampled (with probability ps), and zi[j] = −1, we set z∗i [j] = y/ps with

probability pr and x/ps otherwise.

3. When j is not sampled, we implicitly set z∗i [j] = 0.
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We can encode these conditions with linear equations:

prx+ (1− pr)y = −1 (4.2)

pry + (1− pr)x = 1 (4.3)

Solving, we obtain x = 1
(2pr−1) and y = − 1

(2pr−1) . As we require pr > 1
2 , we have x > 0

and y = −x < 0. We now analyze the (squared) error from using these parameters. Define

a random variable for the observed error as Yi[j] = z∗i [j]− zi[j]. Observe that E[Yi[j]] is 0,

and

|Yi[j]| ≤
1

ps

(
1 +

1

2pr − 1

)
=

2pr
ps(2pr − 1)

:= M.

Furthermore, |Yi[j]| is symmetric whether zi[j] = 1 or −1. Then:

Var[Yi[j]] = E[Y 2
i [j]]

=
prps
p2
s

∣∣ 1

2pr − 1
− 1
∣∣2 +

(1− pr)ps
p2
s

∣∣1 +
1

2pr − 1

∣∣2 + (1− ps)12

≤ pr
ps

(
2pr − 2

2pr − 1

)2

+
(1− pr)
ps

(
2pr

2pr − 1

)2

+ (1− ps)

=
4

ps(2pr − 1)2
(pr(1− pr)2 + (1− pr)p2

r) + (1− ps)

=
4pr(1− pr)
ps(2pr − 1)2

+ (1− ps) := σ2. (4.4)

Now we consider the effect of aggregating N estimates of the j’th population

parameter. Using Bernstein’s inequality (Definition 17), we can bound the probability of the

error being large based on the bound M on the absolute value of the Yi[j]’s.

Pr

[
|
∑N

i=1 Yi[j]|
N

≥ c

]
≤ 2 exp

(
− Nc2

2σ2 + 2cM
3

)

≤ 2 exp

(
− Nc2

2(
pr(1−pr)
ps(2pr−1)2

+1)+ 2cpr
3ps(2pr−1)

)

= 2 exp

(
− Nc2

2pr
ps(2pr−1)

(
2(1−pr)
(2pr−1)

+ c
3

)+2

)
(4.5)

This provides us with the statement of the theorem.

Intuitively, this theorem lets us express the (total variation) error in a marginal

as a function of parameters ps and pr. We will choose values of c that make this probability

constant — this implies (for example) that c should be chosen proportional to 1/
√
Nps.

Hence, we capture how the error decreases as N increases, and how it increases as the

number of items being sampled from increases.

41



4.3.2 Input Perturbation Based Methods

The three approaches which work directly on the input data require a two-step analysis:

first we consider the accuracy of reconstruction of some global information (e.g. the full

distribution), then we analyze the accuracy of aggregating this to give the required marginal

β. Throughout we assume that 2d is at least Õ(N), i.e. the number of users N participating

is at least proportional to the number of cells in the full distribution (2d). This is natural,

since it requires our methods which sample cells from the full input to have at least constant

probability of probing any given cell. Now we spell out the details of our input perturbation

based algorithms. For all of our algorithms, each user i uses the one-hot encoding for her

input, so zi ∈ I2d×2d .

Randomized Response On Input (INPRR/OUE). As described in Section 2.4.2, the most

direct application of LDP here is to add noise to all 2d locations.

Perturbation. Each user i perturbs their value zi at every index ` ∈ 2d using ε
2 -RR to get

z∗i ∈ Rd and sends it to the aggregator.

Aggregation. We reconstruct a version of the full input z∗ by simply unbiasing and summing

all these contributions (and dividing by N ); any desired marginal β is obtained by taking

Cβ(z∗), i.e. computing that marginal of the reconstructed input.

INPRR though simple, does not scale well with d as expected. It is also

potentially costly to apply, since each user needs to materialize and communicate 2d pieces

of information. Applying our general analysis allows us to bound the error (total variation

distance) in the returned marginal.

Theorem 3. With constant probability, INPRR/ OUE achieves ε-LDP and guarantees that

‖Cβ(z)− Cβ(z∗)‖1 = Õ
(2(d+k)/2

ε
√
N

)
Proof. We first analyze the accuracy with which each entry of the full marginal t[j] is

reconstructed, then combine these to obtain the overall result. Consider an arbitrary index

j ∈ 2d, since INPRR is symmetric across all indices. To achieve ε-LDP, we set pr =
exp(ε/2)

1+exp(ε/2) , and ps = 1. For the purpose of analysis only, we reduce the problem so that we

can apply Theorem 2, by applying a remapping from {0, 1} to {−1, 1}: we replace zi[j] with

z′i[j] = 2zi[j]− 1. Observe that the absolute error in reconstructing z′i[j] is only a constant

factor of that in reconstructing [j]. Writing α = exp(ε/2), then we have the variance of the
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local errors Yi[j] = (zi[j]− z∗i [j]) is (substituting these values of pr and ps into (4.4)):

Var[Yi[j]] ≤ 4
pr(1− pr)
(2pr − 1)2

+ 1− 1 = 4
( 1

1+α)(1− 1
1+α)

( 2
1+α − 1)2

= 4

α
(1+α)2

(1−α
1+α)2

=
4α

(1− α)2
=

4 exp(−ε/2)

(exp(ε/2)− 1)2
.

The reconstruction of the full input distribution is z∗ =
∑N

i=1 z
∗
i /N . We can

make use of the inequalities 1
exp(ε/2)−1 ≤

1
ε and 1 < exp(ε/2) < 4 for 0 < ε < 2 to bound

the variance and substitute into (4.5).

Pr[|zj − z∗j | > c] ≤ 2 exp

(
− Nc2

2 · (4 8
ε2

) + 2·8c
3ε

)

Setting c to 9N−1/2 1
ε

√
log 2d+1/δ bounds this probability to

2 exp

(
−

81 1
ε2

log 2d+1/δ

32
ε2

+ 16
3

9
ε2

√
2d log 2d+1/δ

N

)
< 2 exp

(
− 81 log(2d+1/δ)

32 + 48

)
≤ δ/2d

This ensures that this error probability is less than δ/2d for any index j. This limits the error

in each of the 2d estimates to being Õ(1
ε

√
1
N ), by applying a union bound.

We construct the target marginal β via the marginal operator, so Ĉβ = Cβ(z∗).

Each entry z∗[j] is an unbiased estimator for t[j] whose absolute value is bounded by c with

probability 1− δ. Conditioning on this event, we compute Ĉβ[γ] =
∑

α�γ z
∗[α], summing

over the 2d−k values of α � γ. The error in this quantity is then at most Õ(c
√

2d−k),

applying a Hoeffding bound (Definition 17). Finally, summing the absolute errors over all 2k

entries γ in the target marginal β, we have probability at least 1− δ that the total variation

distance is Õ(2k2(d−k)/2

ε
√
N

) = Õ(2(d+k)/2

ε
√
N

).

Preferential Sampling On Input/Generalized Randomized Response (INPPS/GRR).
Our second method uses preferential sampling described in Section 2.4.2 to report a (noisy)

index, so sends d bits.

Perturbation. Each user i samples the input signal index j with probability ps, then reports

the selected index to the aggregator.

Aggregation. The reconstructed distribution z∗ is found by applying the unbiasing to each

noisy report , and computing the average. As in the previous case, we can obtain any desired

marginal by aggregating the reconstructed distribution. We provide an alternate proof for

GRR’s estimator variance.
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Theorem 4. INPPS/ GRR achieves ε-LDP and guarantees that with constant probability

we have for a target k-way marginal β

||Cβ(t)− Cβ(z∗)‖1 = Õ

(
2d+k/2

ε
√
N

)
.

Proof. Similar to Theorem 2, we define random variables Yi[j] which describe the error in

the estimate from user i at position j. The proof is a bit more complicated here, since these

variables are not symmetric. Consider user i who samples a location under INPPS, such that

the correct location is sampled with probability ps, and each of the D = 2d − 1 incorrect

locations is sampled with probability (1− ps)/D. Following the analysis in Section 2.4.2,

we report D+ps−1
Dps+ps−1 for the location which is sampled, and ps−1

Dps+ps−1 for those which are

not sampled. For convenience, define the quantity ∆ = Dps + ps − 1. The choice of ps
(which depends on D and ε) ensures that ∆ > 0. There are two cases that arise:

(i) zi[j] = 1. With probability ps, location j is sampled. The contribution to the error at this

location is D+ps−1
∆ − 1 = 1

∆(D + ps − 1−Dps − ps + 1) = D
∆(1− ps).

Else, with probability 1−ps, j is not sampled, generating error ps−1
∆ −1 = ps−1−Dps−ps+1

∆ =
D
∆ps for |z∗i [j] = zi[j]|.
(ii) zi[j] = 0. With probability 1−ps

D , we sample this j, giving error D+ps−1
∆ − 0. Otherwise,

the contribution to the error is ps−1
∆ .

We define a random variable Yi[j], which is the error resulting from user i in

their estimate of zi[j]. Note that an upper bound M on Yi[j] is D/∆. We compute bounds

on Y 2
i , conditioned on zi[j].

E[Yi[j]
2|zi[j] =1] = ps

(D
∆

(1− ps)
)2

+ (1− ps)
(
ps
D

∆

)2

= ps(1− ps)
(D

∆

)2
≤ (1− ps)

D2

∆2

E[Yi[j]
2|zi[j] =0] =

1− ps
D

(
D + ps − 1

∆

)2

+

(
1− 1− ps

D

)(
ps − 1

∆

)2

=
1− ps

∆2

(
1

D
(D + ps − 1)2 +

D + ps − 1

D
(1− ps)

)
=

1− ps
D∆2

(D + ps − 1)(D + ps − 1 + 1− ps)

= (1− ps)(D + ps − 1)/∆2 ≤ (1− ps)D/∆2

To bound the error in z∗[j], we make use of the (unknown) parameter fj , the

proportion of users for whom zi[j] = 1. We subsequently remove the dependence on this
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quantity. We now write

E[Yi[j]
2] ≤ (1− ps)

D

∆2
(fjD + (1− fj)) := σ2

j

Using this in the Bernstein inequality (Definition 17), we obtain

Pr
[
|
∑N
i=1 Yi[j]|
N ≥cj

]
≤ 2 exp

(
−Nc2

j

/(
2σ2

j +
2cjM

3

))
= 2 exp

(
−

Nc2
j

2(1− ps) D∆2 (fjD + (1− fj)) +
2cjD
3∆

)

If we write Ψj =
√
fjD + 1− fj , then setting cj =

√
3D ln(2/δ)

∆
√
N

Ψj is sufficient to ensure

that this probability is at most δ.When we apply the marginal operator Cβ to the reconstructed

input z∗, each of the 2k entries is formed by summing up (D + 1)/2k (unbiased) entries

of z∗. Write f ′γ =
∑

j∧β=γ fj , and define Ψ′γ correspondingly as
√
f ′γ(D − 1) + D+1

2k
.

Applying the Hoeffding bound (Definition 17), we obtain that each Cβ(z∗)[γ] has error at

most
√

3D ln(2/δ)

∆
√
N

Ψ′γ with probability at least 1− δ.

We can now sum the error across all (D + 1)/2k indices γ. First,

∑
γ�β

ψ′γ =
∑
γ�β

(f ′γ(D − 1) +
D + 1

2k
)
1
2

≤
√

2k
(∑
γ�β

f ′γ(D − 1) +
D + 1

2k

) 1
2

=
√

2k+1 ·D

where the inequality is due to Cauchy-Schwarz, and we use that the f ′γs are a probability

distribution, and sum to 1. Then we have a bound on the total variational error error of

marginal construction by summing over all indices γ as

∑
γ�β

c′γ
2

=
1

2∆

√
D

N

√
3 ln 2/δ

∑
γ�β

Ψ′γ ≤
2k/2D

∆
√
N

√
3
2 ln 2/δ

We next simplify the term D/∆ as follows. Recall that theory sets ps = (1 +D exp(−ε))−1.

Then

D

∆
=

D

(D + 1)/(1 +D exp(−ε))− 1
=

D(1 +D exp(−ε))
D + 1− 1−D exp(−ε)

=
1 +D exp(−ε)
1− exp(−ε)

=
1

1− exp(−ε)
+

D

exp(ε)− 1

When D is very small, in particular when D = 1, this reduces to a similar error
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Algorithm 1 User’s routine for INPHT
1: procedure INPHT(zi)
2: Let ji ∈ {0, 1}d be the signal index of zi ∈ I2d×2d .
3: Randomly sample a coefficient index `i ∈ Hk.
4: θ̂i ← RR(−1〈ji,`i〉) . Randomized response on (scaled) θ`i
5: Send (θ̂i, `i)

Algorithm 2 Aggregator’s routine for INPHT

1: Θ∗[0] = 1 . 0th Hadamard coefficient is always 1.
2: Aggregator fills table H from tuples (θ̂i, `i) as Hi[`i] = θ̂i.
3: for all j ∈ T do
4: Θ∗[j]← 2−d

∑N
i=1H

∗
i [j]

Nj(2p−1) . . Nj is the frequency count of index j.

as for the RR case. Assuming that ε is at most a constant (say, 8), we can upper bound this

expression by O(D+1
ε ). Hence, the total variational error is bounded by Õ(2k/2(D+1)

ε
√
N

).

Consequently, we get a guarantee for INPPS/GRR in terms of total variation

distance of Õ
(

2k/22d

ε
√
N

)
. This exceeds the bound of the previous algorithm by a factor of

2d/2, so we expect the former to be more accurate in practice.

Random Sampling Over Hadamard Coefficients (INPHT). In this method, user i takes

the HT of her input and perturbs a uniformly sampled coefficient and releases it via Ran-

domized Response. According to Lemma 6, we do not need to sample from all coefficients;

we need only the set of coefficients T sufficient to reconstruct the k-way marginals. T

consists of those coefficients whose d-bit (binary) indices contain at most k 1’s. There are

|T | =
∑k

`=1

(
d
`

)
= O(dk) of these, which can be much smaller than the 2d parameters

needed to describe the full input.

Perturbation. Each i samples a coefficient index `i ∈ T uniformly and computes a scaled-

up version of the `ith Hadamard coefficient θi as θi = (−1)〈ji,`i〉. She then perturbs θi with

ε-RR as θ̂i and releases the tuple (`i, θ̂i).

Aggregation. The aggregator then unbiases, averages and re-scales each noisy coefficient θj
to estimate θ̂j . These can then be used to reconstruct any target marginal β via the application

of Lemma 6 to generate Cβ(z∗).

For completeness, Algorithms 1 and 2 spell out the transformation steps fol-

lowed by user and aggregator in INPHT. Note that the communication per user can be

encoded using 1 bit to describe the output of RR θ̂i, plus at most d bits to specify `i, the

sampled coefficient. We apply Theorem 2 to this setting to bound the total variation distance

between true and reconstructed marginals.
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Theorem 5. INPHT achieves ε-LDP, and with constant probability we have for any target

k-way marginal β

‖Cβ(z)− Cβ(z∗)‖1 = Õ

(
(2d)k/2

ε
√
N

)

Proof. The proof proceeds along the same lines as for Theorem 3. We set pr = exp(ε)/(1 +

exp(ε)) to ensure that INPHT meets ε-LDP. Recall that, from Lemma 5, our aim is to

compute Hadamard coefficients as the normalized sum of the coefficients from each user.

To apply the Master theorem (Theorem 2), we first multiply up each coefficient by the 2d/2

factor from the Hadamard coefficients θ (Definition 16). Since each user’s input vector has

only a single 1 entry, this ensures that each θi[j] is either −1 or +1. Now the θi and θ∗i s

represent the T necessary and sufficient (scaled up) Hadamard coefficients, and so we set

ps = 1/T . We write the variance of the errors in these estimates Yi[j], and obtain

Var[Yi[j]] = 4T
pr(1− pr)
(2pr − 1)2

+ 1 =
4Teε

(eε − 1)2
+ 1 = O(T/ε2) (4.6)

Substituting this variance bound into (4.5), we obtain

Pr
[ |∑N

i=1 Yi[j]|
N

≥ c
]
≤ 2 exp

(
− Nc2

O(T/ε2 + Tc
ε )

)

Setting c proportional to N−1/2 1
ε

√
T · log T/δ ensures that this probability is

at most δ/T for any given Hadamard coefficient j (again using that N is large enough). This

bound then holds for all T with probability 1− δ, using the union bound.

In order to translate this into a bound on the accuracy of reconstructing a

marginal, we make use of Lemma 6, that the marginal can be expressed in terms of a linear

sum of Hadamard coefficients. Adapting (4.1), we have that∑
γ�β
|Cβ[γ]− Ĉβ[γ]| ≤

∑
γ�β

∣∣∑
α�β

(θα − θ̂α)
∑
η∧β=γ

φα,η
∣∣

To bound this quantity, we observe that:

(i) There are 2k such γ � β to consider.

(ii) There are similarly 2k such α to consider, and the above analysis bounds (θα − θ̂α) ≤
c/2d/2, once we rescale the coefficients back down. Since the θ̂α are unbiased estimators

bounded by c2−d/2, by the Hoeffding inequality, we have that the sum of 2k of these is at

most 2k/2−d/2c with probability at least 1− δ.

(iii) Given γ � β, there are 2d−k such η to consider, and so we have |
∑

η∧β=γ φα,η| ≤
2d−k2−d/2 = 2d/2−k.
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Then the total variational error is (multiplying these three quantities together)

2k2k/2−d/2c2d/2−k = c2k/2 = Õ
(

2k/2
√
T

ε
√
N

)
.

Comparing this to the previous results, we observe that the dependence on

2k/2
/

(ε
√
N) is the same. However, our full analysis shows a dependence on

√
T in place

of
√

2d. Recall that T =
∑k

`=1

(
d
k

)
< 2d for k < d. For small values of k, this is much

improved. For example, for k = 2,
√
T < d in INPHT compared to a 2d/2 term for INPRR.

4.3.3 Marginal Perturbation Based Methods

Our next methods are the analogs of the Input perturbation methods, applied to a randomly

sampled marginal rather than the full input. We only provide the sketches of these proofs to

avoid repetition since they are adaptations of the previous proofs.

INPRR/OUE On A Random Marginal (MARGRR). In MARGRR, user i materializes a

random marginal βi ∈ C, then perturbs it using INPRR.

Perturbation. User i samples a random marginal βi ∈ C, and evaluates its 2k indices

(Cβ(zi)) on her input. Note that Cβ(zi) is also sparse. The user then perturbs each index of

Cβ(zi) with ε
2 -RR (INPRR) and sends the tuple 〈Cβ(z∗i ), βi〉 to the aggregator.

Aggregation. The aggregator sums up the perturbed marginals received from all users and

unbiases them.

Analysis (outline). As with INPRR, it is immediate that the method achieves ε-LDP, since

each perturbed marginal index is specific to the input, and is obtained via RR which is ε-LDP.

We require at most d bits to identify which marginal was chosen, plus 2k bits to encode the

user’s perturbed marginal. In terms of accuracy, the analysis is also very similar to INPRR.

The difference is that we are now considering sampling from
(
d
k

)
marginals, each of which

contains 2k pieces of information. So where before we had a dependence on 2d, the method

now also depends on 1/ps =
(
d
k

)
= O(dk). Thus, via Theorem 3, we obtain a bound on the

error in each entry of each marginal of Õ(
√
dk
/
ε
√
N). Summing this over the 2k entries in

the marginal, we obtain a total error of Õ
(

2kdk/2

ε
√
N

)
.

INPPS/GRR On A Random Marginal (MARGPS). As an alternative approach to MAR-

GRR, we can use preferential sampling (Section 2.4.2) to perturb the sampled marginal. We

can pick the entry in the randomly sampled marginal which contains the 1 and apply prefer-

ential sampling on it. For small marginals (i.e. small k), this may be effective. Otherwise

the algorithm is similar to MARGRR, and we build all the required marginals by averaging

together the (unbiased) reported results from all participants.

Analysis. The behaviour of this algorithm can be understood by adapting the analysis of

INPPS. Since we work directly with the marginal of size k, we now obtain a bound in

terms of 23k/2 where before we had 2d+k/2. However, the effective population size is split
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uniformly across the
(
d
k

)
different marginals. Consequently, the total variation distance is

Õ
(

23k/2dk/2

ε
√
N

)
. This exceeds the previous result by a factor of 2k/2, but for small k (such as

k = 2 or k = 3), this can be treated as a constant and the other factors hidden in the big-Oh

notation may determine the true behaviour. The user sends d bits to identify the sampled

marginal, plus k bits to identify the sampled index within it.

Hadamard Transform Of A Random Marginal (MARGHT). MARGHT also deviates

from MARGRR only in how the chosen marginal is materialized: it takes the Hadamard

transform of each user’s sampled marginal, and uses RR to release information about a

randomly chosen coefficient. These are aggregated to obtain estimates of the (full) transform

for each k-way marginal β. Note that this method does not share information between

marginals, and so does not obtain as strong a result as INPHT.

Analysis. Here, pr is the same as in INPHT, but we are now sampling over a larger set of

possible coefficients: each marginal requires 2k coefficients to materialize, and we sample

across T = O(dk) marginals. This sets ps = O((2d)−k). We obtain that σ2 = O((2d)k/ε2)

and M = O((2d)k/ε). Thus, we bound the absolute error in each reconstructed coefficient

by Õ
(
dk/2

ε
√
N

)
, by invoking Theorem 2 with these values and then applying the rescaling

by 2−k. We directly combine the 2k coefficients needed by marginal β, giving total error

Õ(23k/2dk/2

ε
√
N

), similar to the previous case. The communication cost is d bits to identify the

marginal, and k + 1 bits for the index of the Hadamard coefficient and its perturbed value.

Summary of marginal release methods. Although different in form, all three marginal

based methods achieve similar asymptotic error, which we state formally as follows:

Lemma 7. Two marginal-based methods (MARGPS and MARGHT) achieve ε-LDP and

with constant probability the total variation distance between true and reconstructed k-way

marginals is at most Õ(23k/2dk/2

ε
√
N

). For MARGRR, the bound is Õ(2kdk/2

ε
√
N

).

Comparison of all methods. Comparing all six methods, a dependence on a factor of 2k/2

ε
√
N

is common to all. Marginal-based methods multiply this by a factor of at least (2d)k/2, while

input based methods which directly materialize the full marginal (INPRR and INPPS) have a

factor of 2d. The input Hadamard approach INPHT reduces this to just dk/2. Asymptotically,

we expect INPHT to have the best performance. However, for the parameter regimes we are

interested in (e.g. k = 2), all these bounds could be close in practice. Hence, we evaluate the

methods empirically to augment these bounds. The time cost of all methods is linear in the

size of the communication: each user’s time cost is proportional to the size of the message

sent, while the aggregator’s time is proportional to the total size of all messages received,

to simply sum up derived quantities. Table 4.1 summarizes these bounds, showing the

communication cost (in bits), along with the leading error behaviour (supressing logarithmic

factors and the common factor of ε/
√
N ).
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Method Communication cost Error behaviour
INPRR/OUE 2d 2k/22d

INPPS/GRR d 2k/22d

INPHT d+ 1 2k/2dk

MARGRR d+ 2k 2kdk/2

MARGPS d+ k 23k/2dk/2

MARGHT d+ k + 1 23k/2dk/2

Table 4.1: Summary of communication and error bounds.

N d k ε Failed/Total Marginals
216 8 1 0.2 3/8
218 8 2 0.1 15/28
216 8 2 0.2 3/28
216 12 2 0.2 19/66
218 16 2 0.1 120/120
218 16 2 0.2 72/120
219 24 2 0.2 276/276

Table 4.2: Failure rate for INPEM on taxi dataset for small ε.

4.3.4 Expectation-Maximization (EM) Heuristic

We now discuss the details of Fanti et al.’s EM method mentioned briefly in Section 3.3.1.

In their scheme, each user independently perturbs each of the d (binary) attributes via

(ε/d)-randomized response by splitting the budget into d pieces. To reconstruct a target

marginal distribution, the aggregator applies an instance of Expectation Maximization (EM).

Algorithm 3 describes the EM loop to recover a 2-way marginal. Starting from an initial

guess (typically, the uniform marginal), the aggregator updates the guess in a sequence of

iterations. Each iteration first computes the posterior distribution given the current guess,

applying knowledge of the randomized response mechanism (expectation step). It then

marginalizes this posterior using the observed values of combinations of values reported

by each user, to obtain an updated guess (maximization step). These steps are repeated

until the guess converges, which is then output as the estimated distribution. While this is

a plausible heuristic, it does not provide any worst case guarantees of accuracy and more

importantly not guaranteed to converge. We compare this method, denoted INPEM, to the

algorithms above in our experimental study. In summary, we find that the method provides

lower accuracy than our new methods. In particular, we see many examples where it fails:

the EM procedure immediately terminates after a single step and outputs the prior (uniform)

distribution. Table 4.2 quantifies this in more detail for NYC taxi dataset (to be introduced

in Section 4.4.1), and shows some parameter settings where the method fails universally. We
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compare INPEM with best of our methods in Section 4.4.4.

Algorithm 3 INPEM Decoding Routine For Constructing 2-way marginal [29].

1: Let β be a 2-way marginal interest and γ ∈ {1, 0}2 denotes indices of β.

2: Pr0[γ] = 1
2 ,∀γ ∈ {1, 0}

2 . Initialize marginal probabilities.

3: Ω ∈ R (e.g. Ω = 0.00001) is a suitable tolerance threshold.

4: while ||Prτ+1[γ]− Prτ [γ]||∞ ≥ Ω do
5: Prτ [γ] = Prτ+1[γ]

6: Prτ [γ|γ′] = Prτ [γ′|γ] Prτ [γ]∑
γ∈{0,1}2 Prτ [γ′|γ] Prτ [γ] ,∀γ, γ

′ ∈ {1, 0}2 . Maximization: Bayes

theorem.

7: Prτ+1[γ] =
∑N
u=1 Prτ [γ|γ′u]

N ,∀γ, γ′ ∈ {1, 0}2 . Expectation: Marginalize the noisy

observed distribution.

4.4 Experimental Evaluation

We have two goals for our empirical study: (1) to give experimental confirmation of the

accuracy bounds proved above; and (2) to show that our algorithms support interesting

machine learning/statistical tasks using our marginal computing machinery as primitives.

We implement our methods with standard Python packages (Numpy, Pandas) and perform

tests on a standard Linux laptop. Our codebase is publically available [125].

4.4.1 Experimental Setting

Datasets used. We use two sample datasets for our experiments:

NYC Taxi Data [126]. This dataset samples trip records from all trips completed in yellow

taxis in NYC from 2013-16. Each trip record can be viewed a unique anonymous rider’s

response to a set of survey questions about her journey. Some of the attributes are GPS

co-ordinates/timestamps of pick-up/drop-off, payment method, trip distance, tip paid, toll

paid, total fare etc. From this (very large) data set, we select out the 3M records having

pickup and/or drop-off locations inside Manhattan. We obtain the 8 binary attributes for

each trip listed in Table 2.1. We observe in this dataset that most journeys are short, and

so attribute pairs such as pickup/drop-off locations/times, tip-fraction and payment mode

are strongly correlated. Meanwhile, most other attribute pairs are negatively correlated, or

only weakly related. Since our goal is to privately recover correlation between attributes via

marginal distributions, we first confirm its presence the dataset through another well-know

metric. The Pearson correlation coefficient [127] measures the linear correlations between a

pair of variables. The coefficient ranges from -1 to 1, where 1/-1 is total positive/negative

correlation and 0 signifies no linear correlation. Figure 4.2 gives a heatmap for the strength

of pairwise associations using the Pearson coefficient.
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Figure 4.2: Attribute correlation heatmap of NYC taxi dataset.

Movielens [128]. This dataset comprises over 20M records from over 150K anonymous

users who rate nearly 40K unique movie titles. Each title belongs to one or more of 17

genres such as Action, Comedy, Crime, Musical etc. From this, we derive a dataset to encode

“video viewing” preferences. We first find the top-1000 most rated movies in each genre. We

assign each user a vector of preferences zi ∈ {0, 1}d. For each user i, a bit at index j ∈ [d]

is 1 if i has rated at least one of the top 1000 movies of genre j and zero otherwise. In this

data, most attribute pairs are postively correlated.

Default Parameters And Settings. In each experimental instance, we uniformly sample

(with replacement) a set of random unique records/users (50K ≤ N ≤ 0.5M ) as a power

of 2 from the total available population. We vary ε from 0.2 (higher privacy) to 1.4 (lower

privacy). Note that the theory shows that ε and N are tightly related: decreasing ε means N

must be increased to obtain the same accuracy. Some prior work on LDP e.g. [129] studies a

smaller regime of ε values, at the expense of a much larger user population. We begin our

experimental study by sampling (without replacement) a small subset of dimensions d (3-8),

and increase to larger dimensionalities for our later experiments. As per our motivation, we

focus on small marginals (k = 1, 2, 3). We repeat each marginal reconstruction 10 times to

observe the consistency in our results, and show error bars.

4.4.2 Impact Of Varying Population Size N

We aim to understand how much a privately reconstructed marginal Cβ(z∗) deviates from its

non-private counterpart Cβ(t) when β is drawn from the set of k-way marginals. First, we
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Figure 4.3: Mean total variation distance for 1, 2, 3−way marginals over the movielens
dataset as N varies.

fix ε = 1.1 2 and vary N for different choices of d, k. For our initial comparison, we keep

d’s moderate ({4, 8, 16}), as this suffices to distinguish the methods which scale well from

those that do not.

Experimental Setting. Figure 4.3 shows plots for total variation distance in reconstruction

of k-way marginals as we varyN for all combinations of k ∈ {1, 2, 3} and d ∈ {4, 8, 16} on

the movielens dataset with ε = ln(3) ≈ 1.1 fixed throughout the experiment. Each grid point

shows the mean variational distance of all k = 1, 2, 3 marginals. The values of parameters d

and k vary across the rows and columns of the figure, respectively.

Experimental Observations. A high level observation across the board is how the error

reduces as N increases for all 6 algorithms. This agrees with the analysis that error should be
2ε = 1.1 is merely a representative value from the privacy parameter ranges that the prior works considered

acceptable .
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proportional to 1/
√
N , i.e. error halves as population quadruples. We also see an increase in

error along columns (rows) as k (d) increases, although the dependency varies for different

algorithms.

Our second observation is that the performance of INPPS decays rapidly as a

function of d, consistent with the accuracy bound of 2d. Typically, INPPS’s error does not

reduce as with N . This is because the probability of outputting the signal index becomes so

small for larger d’s that each user responds with a random index most of the time. This means

that the perturbed input distribution does not contain much information for our estimators to

invert the added noise with precision. One surrogate for the accuracy of the algorithms is the

number of statistics materialized in each case. For d = 8, k = 2, INPPS construct 28 = 256

values, while the marginal-based methods are working on
(

8
2

)
×2k = 112 values. As a result,

the number of data points per cell is proportionately more for MARGHT, MARGPS thus

improving their accuracy. On the other hand, the input-based method INPHT convincingly

achieves the lowest (or near lowest) error across all parameter settings.

Breaking the algorithms down by the cardinality of the marginal (k), note that

for k = 1 then the primitives INPRR and INPPS are effectively the same. Further, for

a given marginal, there is only one meaningful Hadamard coefficient needed, and so we

expect the Hadamard-based methods to behave similarly. Indeed, the methods MARGPS,

MARGRR, MARGHT, and INPHT are largely indistinguishable in their accuracy. For the

larger 2-way and 3-way marginals, we see more variation in behaviour. The input-based

methods do not fare well: INPPS has very large errors for even smaller d values (d = 4

and d = 8), and INPRR is similar once d = 16. We observe that MARGPS achieves better

accuracy than MARGRR. This supports the idea that the former method, which preferentially

reports the location of each user’s input value, can do better than naive randomized response,

even though this is not apparent from the asymptotic bounds. Interestingly, on this data we

see that the difference in performance of MARGPS and MARGHT is tiny, and MARGPS

turns out to be a better algorithm. For d = 16, MARGHT starts as a better algorithm but is

outperformed by MARGPS.

INPRR is among the better methods for smaller values of d and k’s. However,

we advise against INPRR for large d’s since it takes time proportional to 2d to perturb all cells

of each user. Similarly, the use of MARGRR is also hard to justify from an execution time

standpoint when k gets larger, since it materializes the full marginal and applies randomized

response to each cell.

Across all experiments, we find that INPHT achieves the best accuracy most

consistently, and is very fast in practice.

54



Figure 4.4: Effect of varying k.

Figure 4.5: Total variation distance for k = 2 on NYC Taxi Trips data with N = 219 for
larger d’s.

4.4.3 Impact Of Increasing Marginal Size k

In this dissertation, our main focus has been on relatively low order marginals (k ≤ 3), as

we find this setting most compelling. However, our algorithms work for any k ≤ d. In this

section, we allow k to vary, and again measure accuracy on the taxi data set.

Experimental Setting. In this experiment, we set N = 218, exp(ε) = 3, d = 8 and vary k

from 1 to 7 (Figure 4.4). Note that we expect to see the strongest results for INPHT when

k ≤ d
2 ; as k approaches d, we require more Hadamard coefficients, and the theoretical bound

converges to that of the other input based methods.

Experimental Observations. We observe that, in line with expectations, INPHT is the

method of choice for k ≤ d/2. For larger k, INPRR appears competitive in terms of

accuracy. However, there are some notable disadvantages to INPRR, as it carries with it a
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much higher communication cost: the method has to send the whole input distribution, rather

than a single Hadmard index and value. The aggregator’s work is consequently higher as

well. This ratio is 28 when d = 8, rising to nearly 4000 for d = 16. Other methods become

less accurate more quickly. The absolute error does start to grow as k increases, even in the

best case. However, note that a total variation distance of 0.125 in a marginal with k = 5

corresponds to an average absolute error of 0.125/32 ≈ 0.004 per entry.

4.4.4 Impact Of Increasing Dimensionality d

Experimental Setting. Now that we have established the relative performance of our

algorithms, we compare our best methods to Fanti et al.(Section 4.3.4) — the only prior

method available from the literature. We denote their method by INPEM. We consider a

larger range of values of the dimensionality d, (achieved by duplicating columns) and show

the results in Figure 4.5. For INPEM, we fix the convergence threshold to Ω = 0.00001, i.e.

stop when the change in the current guess is below Ω.

Experimental observations. We see that the INPEM gives reasonable results that improve

as ε is increased. However, the achieved accuracy is several times worse than the unbiased

estimators INPHT and MARGPS. There are additional reasons to not prefer INPEM: it

lacks any accuracy guarantee, and so is hard to predict results. It is also slow to apply,

taking several thousand or tens of thousands of iterations to converge. In some cases, the

convergence criteria are immediately met by the uniform distribution, which is far from the

true marginal. Weakening the convergence criterion (i.e. increasing the stopping parameter

Ω) even slightly led to much worse accuracy results than the alternative methods. In contrast,

our unbiased estimators are found instantaneously.

Remark. It is reasonable to ask whether EM decoding schemes can be developed for other

methods for recovering marginals. The answer is allallaffirmative. The Bayes theorem in

the maximization step uses the conditional probability expression of generating the noisy

output γ′ in response to the input γ. This probability is mechanism dependent. Therefore,

we can perturb marginals using our proposals and recover them using an EM scheme. We

performed a set of experiments on this approach. Our conclusion is that the EM decoder does

not provide any noticeable improvement in the accuracy compared to the direct construction

of unbiased estimators using the corrections proposed.

4.4.5 Impact Of Privacy Parameter ε

Experimental Setting. We fix N to 218 ≈ 0.25M movielens users (sampled with replace-

ment) and change ε. We increase d (resp., k) along columns (rows) and vary 0.4 ≤ ε ≤ 1.4

to see the effect on utility in Figure 4.6.
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Figure 4.6: Mean total variation for 1, 2, 3−way marginals for N = 256K movielens users
as ε varies.

Observations. We observe a decline in error as we increase the privacy budget ε. Once again

we see that INPPS, INPRR, MARGRR are unfavourable for k ≥ 2. MARGPS’s accuracy

gets better than MARGHT with increase in ε, although MARGHT is preferable to MARGPS

for small ε values when d and k are larger. Yet again, INPHT consistently outperforms all

other algorithms across all configurations. The main takeaway from these experiments is

the confirmation that the algorithms with the best theoretical bounds on performance are

borne out to be the best in practice. In general, INPHT is our first preference followed by

MARGPS and MARGHT.

4.4.6 Comparison With Frequency Oracles Developed Recently

As discussed in Section 3.1.1, there have been several recent works addressing the problem

of estimating population frequencies under LDP [57, 67, 72] by providing frequency oracles
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Figure 4.7: Effect of varying d with frequency oracles.

based on ideas from sketching, hashing and signal processing literature. A generic approach

to marginal materialization is to build a frequency oracle, and estimate marginal probabilities

by aggregating the estimated frequencies over the 2d items from the original domain and

then marginalize out the non-required attributes. In this section, we describe and compare

some representative instances of this generic approach.

A key consideration of frequency oracle design is to ensure that the message

sent by each user is small, compared to a possibly massive domain size. The following two

approaches achieve this by hashing the input items onto a smaller domain, and applying

LDP primitives to reveal information about the hashed values.

Optimized Local Hashing (INPOLH) [57]. Let’s recall the OLH primitive from Sec-

tion 2.4.2. OLH handles large domain size via universal hash functions. In summary, each

user i ∈ [N ] with a sparse input zi ∈ I2m×2m uniformly samples a hash function hi from a

familyH : [2m]→ [1 + exp(ε)] of universal hash functions and hashes the signal index ji
using hi. User i releases hi and a noisy index j′i perturbed using INPPS/GRR. For each user

report, the aggregator has to determine the probability that the response could have come

from each input value in turn, and update their beliefs accordingly. Thus, the communication

cost is reduced to O(ε) bits, but the aggregator’s time cost is O(2d) per user.

Private Hadamard Count-Min Sketch (INPHTCMS) [28]. The method deployed by

Apple adapts ideas from sketching, and is also similar to a related method [67]. In IN-

PHTCMS, a sketch data structure is defined with g hash functions each drawn from a

family of 3−wise independent hash functions mapping an input ji ∈ [m] to a much smaller
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domain w. User i with a sparse input zi ∈ I2m×2m uniformly picks one of the g hash

function to apply to their input, and releases a randomly sampled Hadamard coefficient of

the hashed input, using randomized response. The aggregator unbiases the user reports, and

uses them to reconstruct a sketch, which can be used as a frequency oracle with standard

sketch estimation methods. Note that here the Hadamard transform is used to reduce the size

of the communication, at the expense of a slight increase in error, in contrast to our results

which use Hadmard to reduce both error and communication cost.

Experimental Setting. We set eε = 3, so INPOLH hashes onto 4 possibilities. In IN-

PHTCMS, we use g = 5 hash functions each of width w = 256 as this minimized the error

observed in practice.

Experimental Observations. We applied our methods to synthetic (lightly skewed) data,

and again measured total variation distance of the reconstructed marginals as we varied

the dimension d (Figure 4.7). For small d, the INPOLH scheme is promising, and obtains

accuracy equivalent to INPHT. However, the decoding scheme is very slow in practice,

requiring the aggregator to perform a separate enumeration of the base domain for each

user’s response. We timed out our methods after 12 hours of computation, and so results

are absent for INPOLH for the relatively small d = 12 and d = 16. While INPHTCMS is

designed to accurately recover heavy hitter items (with large frequencies), it is not tuned

for low-frequency items, and so is not competitive in terms of accuracy, although it is fast.

Results were better when the input distribution was more skewed (results not shown). We

conclude that INPHT remains the method of choice for marginal materialization under LDP.

4.5 Applications and Extensions

Since each cell of a k-way marginal is a joint distribution of a set of k attributes and can

be used to determine conditional probabilities, marginals are useful in machine learning

and inference tasks. In this section, following our motivational use case, we perform (1)

association testing among attributes (2) dependency trees fitting. For both tasks, 1 and 2-way

marginals are sufficient. Based on the accuracy results, we use MARGPS and INPHT for

these tasks. Finally, we discuss how to apply our results to non-binary attributes.

4.5.1 Association Testing

Experimental setting. We use the taxi data for supporting this task since this dataset has a

good mix of correlated/weakly correlated attributes (Figure 4.2). There are strong positive

associations in the taxi data among the pairs 〈Night_pick, Night_drop〉, 〈Toll, Far〉 and 〈CC,

Tip〉 and expect the test to declare them as dependent. Similarly, we expect the test to declare

the pairs 〈M_drop, CC〉, 〈Far, Night _pick〉 and 〈Toll, Night_pick〉 to be independent.
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Figure 4.8: χ2 test values on N = 256K NYC taxi trips, ε = 1.1.

Figure 4.9: Total mutual information of trees for movielens dataset.

Experimental observations. Figure 4.8 compares privately and non-privately computed

χ2 values with the critical value (computed with 1 degree of freedom and with confidence

interval of 95%3) over log scale. We observe that non-private and private χ2 values are quite

close in most cases for INPHT (note the log scale on the y-axis, which tends to exaggerate

errors in small quantities). On the other hand, MARGPS often commits the type I error (thus

failing to reject the null hypothesis) for the pairs 〈Toll, Night_pick〉, 〈Far, Night_pick〉 and

occasionally for pairs 〈M_drop , CC〉, since the test statistic is close to the critical value in

these cases.
3Gaboardi et al. in [130] suggest increasing p since comparing a differentially private χ2 statistic to a noise

unaware critical value may not lead to a good significance level even for large N . We do not perform correction
in this test, and leave developing robust correlation tests under LDP for future work.
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4.5.2 Bayesian Modeling

Experimental setting. Note that the Chow-Liu algorithm described in Section 2.5.1 finds a

tree from the equivalence class of trees fitting the given data. Therefore, the optimal tree

returned is not necessarily unique. Moreover, there could be many others trees with different

topologies achieving near optimal MI score. Therefore, our aim in this section is to compare

total MI from privately and non-privately learnt trees. For this purpose, we use the movielens

dataset with d = 10.

Experimental observations. Figure 4.9 compares the total (true) MI from 200K users for

various ε values (error bars show variation over different subsets of sampled records). We

once again see that MI of trees computed with INPHT marginals is nearly the same as the

non-private computation. MARGPS is less accurate at low ε’s but catches up with INPHT as

ε increases. We conclude that INPHT gives a robust solution for this approach.

4.5.3 Categoric Attributes

We now consider how to apply these methods over more general classes of input – in

particular, over cases where the input is non-binary, but ranges over a larger set of possible

categories r > 2. Suppose now we have d categoric attributes with cardinalities (indexed

in order of size for convenience) r1 ≥ r2 ≥ . . . ≥ rd, and wish to find marginals involving

subsets of at most k attributes. We describe an approach to handling such data.

Binary encoding methods using our algorithms. Many of our algorithms such MARGRR,

MARGPS, INPPS/GRR, INPRR/OUE will generalize easily in this case, since they can

be applied to users represented as sparse binary vectors. The Hadamard-based methods

MARGHT and INPHT can also be generalized if we rewrite the input in a binary format, i.e.

we create a fresh binary attribute for each possible categoric value in an attribute (aka “one-

hot encoding”). However, we can more compactly encode an attribute value that takes on r

possible values using dlog2 re bits, and consider this as the conjunction of dlog2 re binary

attributes. Consequently, we state a result (based on our strongest algorithm for the binary

case) in terms of the effective binary dimension of the encoded data, d2 =
∑d

i=1dlog2 rie;
and the binary dimension of k-way marginals k2 =

∑k
i=1dlog2 rie:

Corollary 1. Using INPHT on binary encoded data, we achieve ε-LDP, and with constant

probability we have for any target k-way marginal β on binary encoded data,

‖Cβ(t)− Cβ(z∗)‖1 = Õ
(

(2d2)k2/2

ε
√
N

)
Consequently, this provides an effective solution, particularly for data with

low cardinality attributes. We can see the impact of this encoding from our experiments on

varying k (Figure 4.4). Observe that total variation distance over data encoded into k2 binary
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attributes is equivalent to total variation distance on binary data for a marginal of size k = k2

attributes. For example, the error on a 2-way marginal over attributes with four possible

values would look like that for a k = 4 attribute binary marginal (as in Figure 4.4).

4.6 Follow-up Works

We found two works that are directly influenced by our work [131] and solve the marginal

release problem using alternative approaches.

4.6.1 Consistent Adaptive Local Marginal (CALM) [132]

Motivated from our work, the problem of aggregating marginals under LDP was revisited

later by Zhang et al. [132]. They propose a framework consisting of a series of pre/post-

processing steps to improve the overall accuracy of aggregated marginals. They construct any

specified k-way marginal by combining information from multiple l-way (l ≥ k) marginals

that share the involved attributes. Specifically, they choose m sets of attributes such that

any combination of k attributes are included in at least one set. These sets are chosen by

modeling this task as an instance of packing and covering problem. This trick was first

proposed in the centralized setting in PriView [133]. Once the sets are selected, aggregator

requests users to provide noisy marginals from these sets. The marginals are then passed

through a post-processing step to ensure that they sum to the same value. Finally, the target

marginals are assembled based on maximum entropy estimation principle.

Discussion. While their solution experimentally outperforms INPHT, it is interactive

whereas our protocol works in a single round. Besides, they do not theoretically measure the

impact for their post-processing schemes on accuracy. Since the techniques from PriView do

not rely on the internals of a marginal computation method, it may be possible to boost the

accuracy of INPHT using these techniques.

4.6.2 ERM in Non-Interactive LDP: Efficiency and High Dimensional
Case [134].

Thaler et al. [123] in the centralized model proposed representing histogram as a multivariate

Chebyshev polynomial [135] whose coefficients can be perturbed. This approach was

extended by Wang et al. [134] as a part of their solution to answer marginal queries. However,

they do not provide any experiments and their theoretical results rely on multiple smoothness

assumptions. Hence, comparing with our approach with theirs is far from immediate.
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4.7 Hadamard Transformation + RR (HRR) as FO

While we targeted aggregating only the low order k-way marginals so far in chapter 4, the

Hadamard transform based solution can also serve as a frequency oracle (FO) to aggregate

an entire histogram when we use k = log2(D) = d. As mentioned previously, this method

achieves a good compromise between accuracy and communication since each user transmits

only d + 1 bits to describe the perturbed coefficient and its index. Though we sample

and perturb only a single coefficient, this method can be generalized to any t ≤ log2(D)

coefficients. Perturbing more coefficients simultaneously reduces the sampling error but

increases the error due to noise and vice versa. What value of t minimizes the total error?

Let’s explore this question.

Generalized Hadamard Transform (HRRt). In OLH, we hash an item from a large

domain D = 2d to a much smaller domain and use GRR/INPPS to perturb the hashed

value. Sampling t Hadamard coefficients can also be viewed as defining a hash function

h : {−1, 1}2d =⇒ {−1, 1}t. With this anology, we can use GRR/INPPS to perturb the

sampled Hadamard coefficients. We refer to this approach as HRRt.

Perturbation. User i takes the HT of zi and samples t coefficient indices {j1, j2, .., jt} u.a.r.

without replacement and perturbs ci = {φ[zi][j1], φ[zi][j2], .., φ[zi][jt]} ∈ {−1, 1}t, the

combination represented by t binary coefficients using GRR. User i then sends {j1, j2, .., jt}
and c′i = GRR(ci) to the aggregator.

Aggregation. The aggregator upon receiving c′i and the index list from each user, decodes

each c′i into binary coefficients and aggregates the Hadamard coefficient array as usual. Since

each c′i ∈ [2t − 1] has been decoded into t binary coefficients before aggregating, we use the

usual INPHT’s correction with a simple change while correcting the Hadamard coefficients

and not GRR’s correction.

It turns out that the probability pr of returning the truth remains the same for

each sampled coefficient. For any t ≤ log2(D), we have

pr = p+
2t−1 − 1

2t − 1
(1− p)

In the above expression, the first term p = exp(ε)
exp(ε)+2t−1 is the probability that a combination

of sampled coefficients is reported truthfully by GRR; the second term is the probability that

the coefficient remains unaltered even after choosing a random combination of coefficients.
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Figure 4.10: Total variation distance (L1
2 score) as a function of t for HRRt. HRR1 offers

the least variance.

Therefore,

pr =
exp(ε)

exp(ε) + 2t − 1
+

2t−1 − 1

2t − 1

(
1− exp(ε)

exp(ε) + 2t − 1

)
=

exp(ε)

exp(ε) + 2t − 1
+

2t−1 − 1

2t − 1

( 2t − 1

exp(ε) + 2t − 1

)
=

exp(ε) + 2t−1 − 1

exp(ε) + 2t − 1

Inheriting the notations of INPHT, any coefficient at location j can be recovered as

Θ∗[j] = N−1
j 2−d

∑N
i=1H

∗
i [j]

2( exp(ε)+2t−1−1
exp(ε)+2t−1 )− 1

=

∑N
i=1H

∗
i [j]

2dNj

(
exp(ε)−1

exp(ε)+2t−1

)
Plugging t = 1 yields the expression from Algorithm 2. Performing calculations similar to

step 2.3 in Lemma 2, for each coefficient at index j, the normalized variance is,

Var[E[Θ∗[j]]] ≤ O
(pr(1− pr)

(2pr − 1)2

)
= O

(2t−1(exp(ε) + 2t−1 − 1)

(exp(ε)− 1)2

)
This expression shows that the variance incurred while recovering each coef-

ficient increases with t and minimizes when t = 1. We experimentally verify this insight.

Figure 4.10 measures the error in reconstructing a synthetically generated histogram via total

variation distance between the true and recovered histogram for various values of t ∈ [4] and

D ∈ {28, 29, 210, 212} while fixing the N = 224 and exp(ε) = 3.0 (ε = 1.1). Each bar is
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produced after averaging 5 independent readings. We are interested in comparing bars for

t = 1, 2. We can confirm that HRR1 outperforms HRR2 in all cases. For D = 212, HRR3

appears to be more accurate than HRR1 and HRR2. This behaviour can be attributed to

sparsity of the original histogram. When the counts are too low to be accurately recovered,

the noise levels dominate the signal and such anomalous results are observed.
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Chapter 5

Range Queries

5.1 Chapter Outline And Our Contributions

In the chapter (based on [39]), we study the problem of range queries under the model

of local differential privacy. Our contributions in this chapters are as follows: Our core

conceptual contribution (Section 5.3) comes from proposing and analyzing several different

approaches to answering one-dimensional range queries.

• We first formalize the problem and show that the flat methods — simple approach of

summing a sequence of point queries entails error (measured as variance) that grows linearly

with the length of the range (Section 5.3.2).

• In Section 5.4, we consider hierarchical histogram (HH) approaches, generalizing the idea

of a binary tree. We show that the variance grows only logarithmically with the length of the

range. Post-processing of the noisy observations can remove inconsistencies, and reduces the

constants in the variance, allowing an optimal branching factor for the tree to be determined.

In Section 5.4.2, we propose a post-processing scheme to further improve the accuracy the

hierarchical method.

• The last approach is based on the Discrete Haar wavelet transform (described in Sec-

tion 5.4.3). Here the variance is bounded in terms of the logarithm of the domain size, and

no post-processing is needed. The variance bound is similar but not directly comparable to

that in the hierarchical approach.

• Once we have a general method to answer range queries, we can apply it to the special

case of prefix queries, and to find order statistics (medians and quantiles). We perform an

empirical comparison of our methods in Section 5.5.
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5.2 Model And Preliminaries

We use our usual LDP setting described in Section 2.4 and Section 4.2. For convenience,

we denote the domain size by D instead of 2d as in chapter 4. We use three representative

mechanisms HRR1 from Section 4.7, INPRR/OUE and OLH from Section 2.4.2 to im-

plement a frequency oracle. Each one provides ε-LDP, by considering the probability of

seeing the same output from the user if her input were to change. There are other frequency

oracles mechanisms developed offering similar or weaker variance bounds (e.g. [9, 29]) and

resource trade-offs but we do not include them since frequency oracles are not our main

focus. Since variance for all items in the input domain for any frequency oracle F is of the

same order, we denote it as VF (VF = 4 exp(ε)
N(exp(ε)−1)2

).

5.3 Range Queries

5.3.1 Problem Definition

Let’s recall the definition of a range query from Section 2.2.1. We assume N non-colluding

individuals each with a private item zi ∈ [D]. For any a < b, a ∈ [D], b ∈ [D], a range

query R[a,b] ≥ 0 is to compute

R[a,b] =
1

N

N∑
i=1

Ia≤zi≤b

where Ip is a binary variable that takes the value 1 if the predicate p is true and 0 otherwise.

Definition 18. (Range Query Release Problem) Given a set of N users, the goal is to collect

information guaranteeing ε-LDP to allow approximation of any closed interval of length

r ∈ [1, D]. Let R̂ be an estimation of interval R of length r computed using a mechanism F .

Then the quality of F is measured by the squared error (R̂−R)2.

5.3.2 Flat Solutions

One can observe that for an interval [a, b], R[a,b] =
∑b

i=a fi, where fi is the (fractional)

frequency of the item i ∈ [D]. Therefore a first approach is to simply sum up estimated

frequencies for every item in the range, where estimates are provided by an ε-LDP frequency

oracle: R̂[a,b] =
∑b

i=a θ̂i. We denote this approach (instantiated by a choice of frequency

oracle F ) as flat algorithms.

Fact 1. For any range query R of length r answered using a flat method with frequency

oracle F , Var[R̂−R] = rVF

1For brevity, we denote HRR1 as HRR
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Note that the variance grows linearly with the interval size which can be as large as DVF .

Lemma 8. The average worst case squared error over evaluation of
(
D
2

)
queries E is

O(DVF ).

Proof. There are D − r + 1 queries of length r. Hence the average error is

E =

D∑
r=1

r(D − r + 1)VF
/(D

2

)
=

(
D2(D+1)

2 − D(D+1)(2D+1)
6 +D

)
VF

D(D−1)
2

=
D(D+1)

2 (D − 2D+1
3 ) +D

D(D−1)
2

=

(
D(D2−1)

6 +D
)
VF

D(D−1)
2

=
D2 + 5

3(D − 1)
VF ≈ O(DVF ) when D →∞

5.4 Hierarchical Solutions

We can view the problem of answering range queries in terms of representing the frequency

distribution via some collection of histograms, and producing the estimate by combining

information from bins in the histograms. The “flat” approach instantiates this, and keeps

one bin for each individual element. This is necessary in order to answer range queries of

length 1 (i.e. point queries). However, as observed above, if we have access only to point

queries, then the error grows in proportion to the length of the range. It is therefore natural

to keep additional bins over subranges of the data. A classical approach is to impose a

hierarchy on the domain items in such a way that the frequency of each item contributes to

multiple bins of varying granularity. With such structure in place, we can answer a given

query by adding counts from a relatively small number of bins. There are many hierarchical

methods possible to compute histograms. Several of these have been tried in the context

of centralized DP [118–121]. To the best of our knowledge, the methods that work best in

centralized DP tend to rely on a complete view on the distribution, or would require multiple

interactions between users and aggregator when translated to the local model. This motivates

us to choose more simple yet effective strategies for histogram construction in the LDP

setting. We start with the standard notion of B-adic intervals and a useful property of B-adic

decompositions.

Fact 2. For j ∈ [logBD] and B ∈ N+, an interval is B-adic if it is of the form kBj ...(k +

1)Bj − 1 i.e. its length is a power of B and starts with an integer multiple of its length.

Fact 3. Any sub-range [a, b] of length r from [D] can be decomposed into ≤ (B −
1)(2dlogB re − 1) disjoint B-adic ranges.
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(a) Dyadic domain decomposition with internal node weights.

(b) Local views for two users i and j (zi = 1 and zj = 5) with corresponding root to leaf paths marked.

Figure 5.1: An example for dyadic decomposition (B = 2).

For example, for D = 32, B = 2, the interval [2, 22] can be decomposed into sub-intervals

[2, 3] ∪ [4, 7] ∪ [8, 15] ∪ [16, 19] ∪ [20, 21] ∪ [22, 22].

The B-adic decomposition can be understood as organizing the domain under

a complete B-ary tree where each node corresponds to a bin of a unique B-adic range. The

root holds the entire range and the leaves hold the counts for unit sized intervals. A range

query can be answered by a walk over the tree similar to the standard pre-order traversal

and therefore a range query can be answered with at most 2(B − 1)(2dlogB re − 1) nodes,

which is at most 2(B − 1)(logB D − 1) in the worst case.

5.4.1 Hierarchical Histograms (HH)

Now we describe our framework for computing hierarchical histograms. All algorithms

follow a similar structure but differ on the perturbation primitive F they use:

Input transformation. User i locally arranges the input zi ∈ [D] in the form of a full

B-ary tree of height h. Then zi defines a unique path from a leaf to the root with a

weight of 1 attached to each node on the path, and zero elsewhere. Figure 5.1 shows

an example. Figure 5.1(a) shows the dyadic (B = 2) decomposition of the input vector

[0.1, 0.15, 0.23, 0.12, 0.2, 0.05, 0.07, 0.08], where the weights on internal nodes are the sum

of the weights in their subtree. Figure 5.1(b) illustrates two user’s local views (zi = 1 and

zj = 5). In each local histogram, the nodes in the path from leaf to the root are shaded in
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red and have a weight of 1 on each node.

Perturbation. i samples a level l ∈ [h] with probability pl. There are 2l nodes at this level,

with exactly one node of weight one and the rest zero. Hence, we can apply one of the

mechanisms mentioned in Section 5.2. User i perturbs this vector using some frequency

oracle F and sends the perturbed information to the aggregator along with the level id l.

Aggregation. The aggregator builds an empty tree with the same dimensions and adds the

(unbiased) contribution from each user to the corresponding nodes, to estimate the fraction

of the input at each node. Range queries are answered by aggregating the nodes from the

B-adic decomposition of the range.

Key difference from the centralized case. Hierarchical histograms have been proposed

and evaluated in the centralized case. However, the key difference here comes from how we

generate information about each level. In the centralized case, the norm is to split the “error

budget” ε into h pieces, and report the count of users in each node; in contrast, we have

each user sample a single level, and the aggregator estimates the fraction of users in each

node. The reason for sampling instead of splitting emerges from the analysis in Theorem 6:

splitting would lead to an error proportional to h2, whereas sampling gives an error which

is at most proportional to h. Because sampling introduces some variation into the number

of users reporting at each level, we work in terms of fractions rather than counts; this is

important for the subsequent post-processing step.

In summary, the approach of hierarchical decomposition extends to LDP by

observing the fact that it is a linear transformation of the original input domain. This means

that adding information from the hierarchical decomposition of each individual’s input yields

the decomposition of the entire population. Next we evaluate the error in estimation using

the hierarchical methods.

Error behaviour for Hierarchical Histograms. We begin by showing that the overall

variance can be expressed in terms of the variance of the frequency oracle used, VF . In what

follows, we denote hierarchical histograms aggregated with fan-out B as HHB .

Theorem 6. When answering a range query of length r using a primitive F , the worst case

variance Vr under the HHB framework is Vr ≤ VF
∑α

l=1 2(B−1) 1
pl

where α = (dlogB re).

Proof. Recall that all the methods we consider have the same (asymptotic) variance bound

VF = O
( exp(ε)
N(exp(ε)−1)2

)
, withN denoting the number of users contributing to the mechanism.

Importantly, this does not depend on the domain sizeD, and so we can write VF ≤ ψF (ε)/N ,

where ψF (ε) is a constant for method F that depends on ε. This means that once we fix the

method F , the variance Vl for any node at level l will be the same, and is determined by Nl,

the number of users reporting on level l. The range query R[a,b] of length r is decomposed
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into at 2(B − 1) nodes at each level, for α = dlogB re levels (from leaves upwards). So we

can bound the total variance Vr in our estimate by

α∑
l=1

2(B − 1)Vl =
α∑
l=1

2(B − 1)VF /pl = 2(B − 1)VF

α∑
l=1

1

pl

using the fact that (in expectation) Nl = plN .

In the worst case, α = h, and we can minimize this bound by a uniform level

sampling procedure:

Lemma 9. The quantity
∑h

l=1
1
pl

subject to 0 ≤ pl ≤ 1 and
∑h

l=1 pl = 1 is minimized by

setting pl = 1
h .

Proof. We use the Lagrange multiplier technique, and define a new function L, introducing

a new variable λ.

L(p1, .., ph, λ) = (

h∑
l=1

1

pl
) + λ(

h∑
l=1

pl − 1)

Performing partial differentiation and setting to zero, we obtain λ = 1
p21

= 1
p22

= ... = 1
p2h

and
∑h

l=1
1
pl

= 1. Hence, pl = 1/
√
λ = 1/h.

Then, setting pl = 1
h in Theorem 6 gives

Vr ≤ 2(B − 1)VFhdlogB re. (5.1)

Hierarchical versus flat methods. The benefit of the HH approach over the baseline flat

method depends on the factor 2(B − 1)hα versus the quantity r. Note that (ignoring

rounding) h = logB D and α = logB r, so we obtain an improvement over flat methods

when r > 2B log2
BD, for example. When D is very small, this may not be achieved: for

D = 64 and B = 2, this condition yields r > 128 > D. But for larger D, e.g. D = 216 and

B = 2, we obtain r > 1024, which equates to ∼ 1.5% of the range.

Theorem 7. The worst case average (squared) error incurred while answering all
(
D
2

)
range

queries using HHB , EB , is (approximately) 2(B − 1)VF logB D logB

(
3D2

1+2D

)
Proof. We obtain the bound by summing over all range lengths r. For a given length r, there
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are D − r + 1 possible ranges. Hence,

EB ≤
∑D

r=1 Vr(D − r + 1)

D(D − 1)/2

=
(2(B − 1)VF logB D)

∑D
r=1 logB r(D − r + 1)

D(D − 1)/2

=
2(B − 1)VF logBD

[
(D + 1) logB(

∏D
r=1 r)−

∑D
r=1 logB r

r
]

D(D − 1)/2

We find bounds on each of the two components separately.

1. Using Stirling’s approximation we have

logBD! ≤ logB(D(D+ 1
2

) exp(1−D)) < (D + 1) logBD.

2. Writing P =
∑D

r=1 r = D(D+1)/2 andQ =
∑D

r=1 r
2 = D(D+1)(2D+

1)/6, we make use of Jensen’s inequality to get

D∑
r=1

r logB r = P

D∑
r=1

r

P
logB r ≤ P logB(

D∑
r=1

r
r

P
)

= P logB(Q/P ) = D(D + 1)/2 logB

(
1 + 2D/3

)
Plugging these upper bounds in to the main expression,

EB <
2(B − 1)VF logBD

[
(D + 1)2 logBD −

D(D+1)
2 logB

(
1+2D

3

)]
D(D − 1)/2

= 2(B − 1)VF logB D
[2(D + 1)2 logB D

D(D − 1)
− D + 1

D − 1
logB

(1 + 2D

3

)]
≈ 2(B − 1)VF logB D logB

( 3D2

1 + 2D

)
as D →∞.

Key difference from the centralized case. Similar looking bounds are known in centralized

case, for example due to Qardaji et al. [119], but with some key differences. There, the

bound (simplified) is proportional to (B− 1)h3VF rather than the (B− 1)h2VF we see here.

The difference arises because [119] scales the parameter ε by a factor of h,

which introduces the factor of h · h2 = h3 into the variance; in contrast, sampling each level

with probability 1/h scales the variance only by h2. Note however that in the centralized

case VF scales proportionate to 1/N2 rather than 1/N in the local case: a necessary cost to

provide local privacy guarantees.

Optimal branching factor for HHB . In general, increasing the fan-out has two con-

sequences under our algorithmic framework. Large B reduces the tree height, which
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increases accuracy of estimation per node since larger population is allocated to each level.

But this also means that we can require more nodes at each level to evaluate a query which

tends to increase the total error incurred during evaluation. We would like to find a branching

factor that balances these two effects. We use the expression for the variance in (5.1) to find

the optimal branching factor for a given D. We first compute the gradient of the function

2(B − 1) logB(r) logB(D). Differentiating w.r.t. B we get

∇ =
∂

∂B

[2(B − 1) ln(D) ln(r)

ln2B

]
= 2 lnD ln r

∂

dB

[B − 1

ln2B

]
=

2 ln(D) ln(r)

(ln2B)2

(
ln2B

∂

∂B
[B − 1]− (B − 1)

∂

∂B
[ln2B]

)
= 2 lnD ln r

(
ln2B − 2

B
(B − 1) lnB

)
/ ln4B

= 2 lnD ln r(B lnB − 2B + 2)/B ln3B

We now seek a B such that the derivative ∇ = 0. The numerical solution is

(approximately) B = 4.922. Hence we minimize the variance by choosing B to be 4 or

5. This is again in contrast to the centralized case, where the optimal branching factor is

determined to be approximately 16 [119].

5.4.2 Post-processing for consistency

There is some redundancy in the information materialized by the HH approach: we obtain

estimates for the weight of each internal node, as well as its child nodes, which should sum

to the parent weight. We observe that the accuracy of the HH framework can be further

improved by finding the least squares solution for the weight of each node taking into

account all the information we have about it, i.e. for each node v, we approximate the

(fractional) frequency f(v) with f̂(v) such that ||f(v)− f̂(v)||2 is minimized subject to the

consistency constraints. We can invoke the Gauss-Markov theorem since the variance of

all our estimates are equal, and hence the least squares solution is the best linear unbiased

estimator.

Lemma 10. The least-squares estimated counts reduce the associated variance by a factor

of at least B
B+1 in a hierarchy of fan-out B.

Proof. We begin by considering the linear algebraic formulation. Let H denote the n×D
matrix that encodes the hierarchy, where n is the number of nodes in the tree structure. For

instance, if we consider a single level tree with B leaves, then H =

 1D

ID

, where 1D is

the D-length vector of all 1s, and ID is the D ×D identity matrix. Let x denote the vector

of reconstructed (noisy) frequencies of nodes. Then the optimal least-squares estimate of
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the true counts can be written as ĉ = (HTH)−1HTx. Denote a range query R[a,b] as the

length D vector that is 1 for indices between a and b, and 0 otherwise. Then the answer to

our range query is RT[a,b]ĉ. The variance associated with query R[a,b] is given by

Var[RT[a,b]ĉ] = Var[RT[a,b](H
TH)−1HTx]

= RT[a,b](H
TH)−1HTCov(x)H((HTH)−1)TR[a,b]

= RT[a,b](H
TH)−1HTVF IDH((HTH)−1)T )R[a,b]

= VFR
T
[a,b](H

TH)−1(HTH)((HTH)−1)T )R[a,b]

= VFR
T
[a,b](H

TH)−1R[a,b]

First, consider the simple case when H is a single level tree with B leaves.

Then we have HTH = 1B×B + IB , where 1B×B denotes the B × B matrix of all ones.

We can verify below that (HTH)−1 = IB − 1B×B
B+1 .

(
IB −

1B×B
B + 1

)
HTH =

(
IB −

1B×B
B + 1

)(
1B×B + IB

)
= IB × 1B×B + IB −

1B×B × 1B×B
B + 1

− 1B×B × IB
B + 1

= 1B×B + IB −
B

B + 1
1B×B −

1

B + 1
1B×B

= IB +
(

1− B + 1

B + 1

)
1B×B = IB

From this we can quickly read off the variance of any range query. For

a point query, the associated variance is simply B/(B + 1)VF , while for a query of

length r, the variance equates to (rB − r(r − 1))/(B + 1)VF . Observe that the vari-

ance for the whole range r = B is just B/(B + 1)VF , and that the maximum variance

is for a range of just under half the length, r = (B + 1)/2, which gives a bound of

VF (B + 1)(B + 1)/(4(B + 1)) = (B + 1)VF /4.

The same approach can be used for hierarchies with more than one level.

However, while there is considerable structure to be studied here, there is no simple closed

form, and forming (HTH)−1 can be inconvenient for large D. Instead, for each level, we

can apply the argument above between the noisy counts for any node and its B children.

This shows that if we applied this estimation procedure to just these counts, we would obtain

a bound of B/(B + 1)VF to any node (parent or child), and at most (B + 1)VF /4 for any

sum of node counts. Therefore, if we find the optimal least squares estimates, their (minimal)

variance can be at most this much.

Consequently, after this constrained inference, the error variance at each node
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is at most BVFB+1 . It is possible to give a tighter bound for nodes higher up in the hierarchy:

the variance reduces by Bi∑i
j=0B

j
for level i (counting up from level 1, the leaves). This

approaches B−1
B , from above; however, we adopt the simpler B

B+1 bound for clarity.

This modified variance affects the worst case error, and hence our calculation

of an optimal branching factor. From the above proof, we can obtain a new bound on the

worst case error of (B + 1)VF /2 for every level touched by the query (that is, (B + 1)VF /4

for the left and right fringe of the query). This equates to (B + 1)VF logB(r) logB(D)/2

total variance. Differentiating w.r.t. B, we find

∇ =
∂

∂B

[
(B + 1) logB(r) logB(D)VF /2

]
= ln(r) ln(D)(B lnB − 2B − 2)/B ln3B

Consequently, the value that minimizes ∇ is B ≈ 9.18 — larger than without

consistency. This implies a constant factor reduction in the variance in range queries from

post-processing. Specifically, if we pick B = 8 (a power of 2), then this bound on variance

is

9VF log2(r) log2(D)/(2 log2
2 8) =

1

2
VF log2(r) log2(D), (5.2)

compared to 7
4VF log2(r) log2(D) for HH4 without consistency. We confirm this reduction

in error experimentally in Section 5.5.

We can make use of the structure of the hierarchy to provide a simple linear-time

procedure to compute optimal estimates. This approach was introduced in the centralized

case by Hay et al. [118]. Their efficient two-stage process can be translated to the local

model.

Stage 1: Weighted Averaging. Traversing the tree bottom up, we use the weighted average

of a node’s original reconstructed frequency f(.) and the sum of its children’s (adjusted)

weights to update the node’s reconstructed weight. For a non-leaf node v, its adjusted weight

is a weighted combination as follows:

f̄(v) =
Bi −Bi−1

Bi − 1
f(v) +

Bi−1 − 1

Bi − 1

∑
u∈child(v)

f̄(u)

Stage 2: Mean Consistency. This step makes sure that for each node, its weight is equal to

the sum of its children’s values. This is done by dividing the difference between parent’s

weight and children’s total weight equally among children. For a non-root node v,

f̂(v) = f̄(v) +
1

B

[
f̂(p(v))−

∑
u∈child(v)

f̄(u)
]
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Figure 5.2: DHT matrix for D = 8.

where f̄(p(v)) is the weight of v’s parent after weighted averaging. The values of f̂ achieve

the minimum L2 solution.

Finally, we note that the cost of this post-processing is relatively low for the

aggregator: each of the two steps can be computed in a linear pass over the tree structure.

A useful property of finding the least squares solution is that it enforces the consistency

property: the final estimate for each node is equal to the sum of its children. Thus, it does

not matter how we try to answer a range query (just adding up leaves, or subtracting some

counts from others) — we will obtain the same result.

Key difference from the centralized case. Our post-processing is influenced by a sequence

of works in the centralized case. However, we do observe some important points of departure.

First, because users sample levels, we work with the distribution of frequencies across each

level, rather than counts, as the counts are not guaranteed to sum up exactly. Secondly, our

analysis method allows us to give an upper bound on the variance at every level in the tree

– prior work gave a mixture of upper and lower bounds on variances. This, in conjunction

with our bound on covariances allows us to give a tighter bound on the variance for a range

query, and to find a bound on the optimal branching factor after taking into account the

post-processing, which has not been done previously.

5.4.3 Discrete Haar Transform (DHT)

The Discrete Haar Transform (DHT) provides an alternative approach to summarizing data

for the purpose of answering range queries. DHT is a popular data synopsis tool that relies

on a hierarchical (binary tree-based) decomposition of the data. DHT can be understood as

performing recursive pairwise averaging and differencing of our data at different granularities,

as opposed to the HH approach which gathers sums of values. The method imposes a full

binary tree structure over the domain, where h(v) is the height of node v, counting up from

the leaves (level 0). The Haar coefficient cv for a node v is computed as cv = Cl−Cr
2h(v)/2

, where
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Cl, Cr are the sum of counts of all leaves in the left and right subtree of v. In the local case

when zi represents a leaf of the tree, there is exactly one non-zero Haar coefficient at each

level l with value ± 1
2l/2

. The DHT can also be represented as a matrix HD of dimension

D ×D (where D is a power of 2) with each row j encoding the Haar coefficients for item

j ∈ [D]. We can decode the count at any leaf node v by taking the inner product of the

vector of Haar coefficients with the row of HD corresponding to v. Observe that we only

need h coefficients to answer a point query.

Answering a range query. A similar fact holds for range queries. We can answer any

range query by first summing all rows of HD that correspond to leaf nodes within the range,

then taking the inner product of this with the coefficient vector. We can observe that for an

internal node in the binary tree, if it is fully contained (or fully excluded) by the range, then

it contributes zero to the sum. Hence, we only need coefficients corresponding to nodes that

are cut by the range query: there are at most 2h of these. The main benefit of DHT comes

from the fact that all coefficients are independent, and there is no redundant information.

Therefore we obtain a certain amount of consistency by design: any set of Haar coefficients

uniquely determines an input vector, and there is no need to apply the post-processing step

described in Section 5.4.2.

Our algorithmic framework. For convenience, we rescale each coefficient reported by

a user at a non-root node to be from {−1, 0, 1}, and apply the scaling factor later in the

procedure. Similar to the HH approach, each user samples a level l with probability pl and

perturbs the coefficients from that level using a suitable perturbation primitive. Each user

then reports her noisy coefficients along with the level. The aggregator, after accepting all

reports, prepares a similar tree and applies the correction to make an unbiased estimation of

each Haar coefficient. The aggregator can evaluate range queries using the (unbiased but

still noisy) coefficients.

Perturbing Haar coefficients. As with hierarchical histogram methods, where each level is

a sparse (one hot) vector, there are several choices for how to release information about the

sampled level in the Haar tree. The only difference is that previously the non-zero entry in the

level was always a 1 value; for Haar, it can be a −1 or a 1. There are various straightforward

ways to adapt the methods that we have already (see, for example, [9, 78, 129]). We choose

to adapt the Hadamard Randomized Response (HRR) method, described in Section 4.7.

First, this is convenient: it immediately works for negative valued weights without any

modification. But it also minimizes the communication effort for the users: they summarize

their whole level with a single bit (plus the description of the level and Hadmard coefficient

chosen). We have confirmed this choice empirically in calibration experiments (omitted for

brevity): HRR is consistent with other choices in terms of accuracy, and so is preferred for

its convenience and compactness.
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Recall that the (scaled) Hadamard transform of a sparse binary vector ei is equivalent to

selecting the ith row/column from the Hadamard matrix. When we transform −ei, the

Hadamard coefficients remain binary, with their signs negated. Hence we use HRR for

perturbing levelwise Haar coefficients. At the root level, where there is a single coefficient,

this is equivalent to 1 bit RR. The 0th wavelet coefficient c0 can be hardcoded to N
D since it

does not require perturbation. We refer to this algorithm as HaarHRR.

Error behaviour for HaarHRR. As mentioned before, we answer an arbitrary query of

length r by taking a weighted combination of at most 2h coefficients. A coefficient u at

level l(u) contributes to the answer if and only if exactly one of the leftmost and rightmost

leaves of the subtree of node u intersects with the range. The 0th coefficient c0 is assigned

the weight r. Let OLu (ORu ) be the size of the overlap sets for left (right) subtree for u with

the range. Using reconstructed coefficients, we evaluate a query to produce answer R̂ as:

R̂ = rc0 +
∑
u

(OLu −ORu
2l(u)

)
ĉu

where, ĉu is an unbiased estimation of a coefficient cu at level l(u). In the worst case, the

absolute weight |OLu −ORu | = 2l(u)−1. We can analyze the corresponding varance, Vr, by

observing that there at most two coefficients used in each level:

Vr ≤ 2

h∑
l=1

(2l−1

2l

)2
VF =

h∑
l=1

1

2
VF =

1

2

h∑
l=1

VF
pl

Here, VF is the variance associated with the HRR frequency oracle. As in the

hierarchical case, the optimal choice is to set pl = 1/h (i.e. we sample a level uniformly),

where h = log2(D). Then we obtain

Vr =
1

2
log2

2(D)VF (5.3)

It is instructive to compare this expression with the bounds obtained for the

hierarchical methods. Recall that, after post-processing for consistency, we found that the

variance for answering range queries with HH8, based on optimizing the branching factor,

is log2(r) log2(D)VF /2 (from (5.2)). That is, for long range queries where r is close to D,

(5.3) will be close to (5.2). Consequently, we expect both methods to be competitive, and

will use empirical comparison to investigate their behaviour in practice.

Finally, observe that since this bound does not depend on the range size itself,

the average error across all possible range queries is also bounded by (5.3).

Key difference from the centralized case. The technique of perturbing Haar coefficients to

answer differentially private range queries was proposed and studied in the centralized case
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under the name “privelets” [117]. Subsequent work argued that more involved centralized

algorithms could obtain better accuracy. We will see in the experimental section that

HaarHRR is among our best performing methods. Hence, our contribution in this work is to

reintroduce the DHT as a useful tool in local privacy.

5.4.4 Prefix and Quantile Queries

Prefix queries form an important class of range queries, where the start of the range is fixed

to be the first point in the domain. We only consider the prefix queries with the left end fixed

to the zeroth item of the domain i.e. 0. Let’s recall the definition of a prefix query.

R[0,b] = 1
N

∑N
i=1 I0≤zi≤b

The methods we have developed allow prefix queries to be answered as a special

case. Note that for hierarchical and DHT-based methods, we expect the error to be lower

than for arbitrary range queries. Considering the error in hierarchical methods (Theorem 6),

we require at most B− 1 nodes at each level to construct a prefix query, instead of 2(B− 1),

which reduces the variance by almost half. For DHT similarly, we only split nodes on the

right end of a prefix query, so we also reduce the variance bound by a factor of 2. Note

that a reduction in variance by 0.5 will translate into a factor of
√

2 = 0.707 in the absolute

error. Although the variance bound changes by a constant factor, we obtain the same optimal

choice for the branching factor in B.

Prefix queries are sufficient to answer quantile queries. The φ-quantile is the

index j in the domain such that at most a φ-fraction of the input data lies below j, and at

most a (1− φ) fraction lies above it. If we can pose arbitrary prefix queries, then we can

binary search for a prefix j such that the prefix query on j meets the φ-quantile condition.

Errors arise when the noise in answering prefix queries causes us to select a j that is either

too large or too small. The quantiles then describe the input data distribution in a general

purpose, non-parametric fashion. Our expectation is that our proposed methods should

allow more accurate reconstructions of quantiles than flat methods, since we expect they will

observe lower error. We formalize the problem:

Definition 19. (Quantile Query Release Problem) Given a set of N users, the goal is to

collect information guaranteeing ε-LDP to approximate any quantile q ∈ [0, 1]. Let Q̂ be

the item returned as the answer to the quantile query q using a mechanism F , which is in

truth the q′ quantile, and let Q be the true q quantile. We evaluate the quality of F by both

the value error, measured by the squared error (Q̂−Q)2; and the quantile error |q − q̂|.
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Dataset Type Bucketing attribute Time span Bucket size N D
stackoverflow [136] time series posting/editing answers 2774 days 12 min. ≈ 221 218

movielens [128] time series user rating
random sample of users

from 1995 to 2018
32 min. ≈ 221 218

NYC yellow
taxi dataset [126]

time series pickup time 9/2017 to 12/2017 30 min. ≈ 224 217

Gowalla [137] location details check-in co-ordinates 02/2009 to 09/2010
geohash of length 5

(±2.4km error)
≈ 221 216

Table 5.1: Summary of datasets used.

5.5 Experimental Evaluation

Our goal in this section is to validate our solutions and theoretical claims with experiments.

We first test on synthetic data and then use real world datasets with our best performing

methods. To the best of our knowledge, since the problem of range/quantile queries has not

been dealt before in the local setting, we do not have any prior results to compare with.

Synthetic Dataset. We are interested in comparing the flat, hierarchical and wavelet methods

for range queries of varying lengths on large domains, capturing meaningful real-world

settings. Generating independent samples from well-known distributions conveniently allow

us to control the shape of input histograms. We have evaluated the methods over a variety of

real and synthetic data. Our observation is that measures such as speed and accuracy do not

depend too heavily on the data distribution. Hence, we present here results on synthetic data

sampled from Cauchy distributions. This allows us to easily vary parameters such as the

population size N and the domain size D, as well as varying the distribution to be more or

less skewed. We vary the domain size D from small (D = 28) to large (D = 222) as powers

of two.

Real Datasets. We use three popular time-series datasets and a location dataset summarized

in Table 5.1. In the time-series datasets, we divide the total timespan into slots of a fixed

length and bucketize the records at a suitably fine grain for queries, while ensuring that the

histogram have heavy intervals with large amounts of mass concentrated. For location data,

a standard hierarchical way of encoding GPS co-ordinates into a fixed length signature is to

geohash them [138]. The hash length determines the coarseness of a bucket. Points sharing

a common prefix are in a close proximity and included in a rectangle of that prefix. The

shorter a geohash is, the larger its rectangle.

Algorithm default parameters and settings. We set a default value of exp(ε) = 3 (ε =

1.1), in line with prior work on LDP. This means, for example, that binary randomized

response will report a true answer 3
4 of the time, and lie 1

4 of the time — enough to offer

plausible deniability to users, while allowing algorithms to achieve good accuracy. Since

the domain size D is chosen to be a power of 2, we can choose a range of branching factors

B for hierarchical histograms so that logB(D) remains an integer. The default population
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size N is set to be N = 226 which captures the scenario of an industrial deployment, similar

to [12, 28, 68]. Each bar plot is the mean of 5 repetitions of an experiment and error bars

capture the observed standard deviation. The simulations are implemented in C++ and

tested on a standard Linux machine. To the best of our knowledge, ours is among the

first non-industrial work to provide simulations with domain sizes as large as 222. Our

implementation is publicly available [139].

Sampling range queries for evaluation. When the domain size is small or moderate

(D = 28 and 216), it is feasible to evaluate all
(
D
2

)
range queries and their exact average.

However, this is not scalable for larger domains, and so we average over a subset of the

range queries. To ensure good coverage of different ranges, we pick a set of evenly-

spaced starting points, and then evaluate all ranges that begin at each of these points. For

D = 217, 218, 220, 221 and 222 we pick start points every 28, 210, 214, 216 and 217 steps,

respectively, yielding a total of 33.3M and 67.1M unique queries.

Histogram estimation primitives. The HH framework in general is agnostic to the choice

of the histogram estimation primitive F . We show results with OUE, HRR and OLH as the

primitives for histogram reconstruction, since they are considered to be state of art, and all

provide the same theoretical bound VF on variance. Though any of these three methods

can serve as a flat method, we choose OUE as a flat method since it can be simulated

efficiently and reliably provides the lowest error in practice by a small margin. We refer

to the hierarchical methods using HH framework as TreeOUE, TreeOLH and TreeHRR.

Their counterparts where the aggregator applies post-processing to enforce consistency are

identified with the CI (Constraint Inference) suffix, e.g. TreeHRRCI.

We quickly observed in our preliminary experiments that direct implementation

of OUE can be very slow for large D: the method perturbs and reports D bits for each

user. For accuracy evaluation purposes, we can replace the slow method with a statistically

equivalent simulation. That is, we can simulate the aggregated noisy count data that the

aggregator would receive from the population. We know that noisy count of any item is

aggregated from two distributions (1) “true” ones that are reported as ones (with prob. 1
2 )

(2) zeros that are flipped to be ones (with prob. 1
1+exp(ε) ). Therefore, using the (private)

knowledge of the true count θ[j] of item j ∈ [D], the noisy count θ∗[j] can be expressed as

a sum of two binomial random variables,

θ∗[j] = Binomial(θ[j], 0.5) + Binomial
(
N − θ[j], 1

1 + exp(ε)

)
Our simulation can perform this sampling for all items, then provides the sampled count to

the aggregator, which then performs the usual bias correction procedure.

The OLH method suffers from a more substantial drawback: the method is very

slow for the aggregator to decode, due to the need to iterate through all possible inputs for
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each user report (time O(ND)). We know of no short cuts here, and so we only consider

OLH for our initial experiments with small domain size D.

5.5.1 Impact of varying B and r

Experiment description. In this experiment, we aim to study how much a privately recon-

structed answer for a range query deviates from the ground truth. Each query answer is

normalized to fall in the range 0 to 1, so we expect good results to be much smaller than 1.

To compare with our theoretical analysis of variance, we measure the accuracy in the form

of mean squared error between true and reconstructed range query answers.

Plot description. Figure 5.3 illustrates the effect of branching factor B on accuracy for

domains of size 28 (small), 216 (medium), and 222 (large). Within each plot with a fixed D

and query length r, we vary the branching factor on theX axis. We plot the flat OUE method

as if it were a hierarchical method with B = D, since it effectively has this fan out from the

root. We treat HaarHRR as if it has B = 2, since is based on a binary tree decomposition.

The Y axis in each plot shows the mean squared error incurred while answering all queries

of length r. As the plots go top to bottom, the range length in each column increases from

1 to a constant fraction of the whole domain size D. The leftmost column of plots have

D = 28, and the rightmost column of plots have D = 222.

Observations. Our first observation is that the CI step reliably provides a significant

improvement in accuracy in almost all cases for HH, and never increases the error. Our

theory suggests that the CI step improves the worst case accuracy by a constant factor, and

this is borne out in practice. This improvement is more pronounced at larger intervals and

higher branching factors. In many cases, especially in the right three columns, TreeOUECI

and TreeHRRCI are two to four times more accurate then their inconsistent counter parts.

Consequently, we put our main focus on methods with consistency applied in what follows.

Next, we quickly see evidence that the flat approach (represented by OUE) is

not effective for answering range queries. Unsurprisingly, for point queries (r = 1), flat

methods are competitive. This is because all methods need to track information on individual

item frequencies, in order to answer short range queries. The flat approach keeps only this

information, and so maximizes the accuracy here. Meanwhile, HH methods only use leaf

level information to answer point queries, and so we see better accuracy the shallower the

tree is, i.e. the bigger B is. However, as soon as the range goes beyond a small fraction

of the domain size (ranges in the few tens in length), other approaches are preferable. The

second column of plots shows results for relatively short ranges where the flat method is not

the most accurate. Note that our methods as proposed are agnostic as to the workload of

range queries, and optimize across all range queries. If a workload were known, we could
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Figure 5.3: Impact of post-processing and branching factor B. In each plot, B increases
along X axis, and the Y axis gives the MSE for all range queries of length r. The second
row corresponds to the range size where HaarHRR outperforms the flat method.
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easily optimize for this by adjusting the sampling probabilities pl of the HH methods, for

example to give more accuracy on short queries if needed.

For larger domain sizes and queries, our methods outperform the flat method

by a high margin. For example, the best hierarchical methods for very long queries and large

domains are at least 16 times more accurate than the flat method. Recall our discussion of

OLH above that emphasized that its computation cost scales poorly with domain size D.

We show results for TreeOLH and TreeOLHCI for the small domain size 28, but drop them

for larger domain sizes, due to this poor scaling. We can observe that although the method

achieves competitive accuracy, it is equalled or beaten by other more performant methods,

so we are secure in omitting it.

As we consider the two tree methods, TreeOUE and TreeHRR, we observe that

they have similar patterns of behaviour. In terms of the branching factor B, it is difficult to

pick a single particular B to minimize the variance, due to the small relative differences.

The error seems to decrease from B = 2, and increase for larger B values above 24 (i.e. 16).

Across these experiments, we observe that choosing B = 4, 8 or 16 consistently provides

the best results for medium to large sized ranges. This agrees with our theory, which led us

to favour B = 8 or B = 4, with or without consistency applied respectively. This range of

choices means that we are not penalized severely for failing to choose an optimal value of B.

The main takeaway from Figure 5.3 is the strong performance for the HaarHRR

method. It is not competitive for point queries (r = 1), but for all ranges except the

shortest it achieves the single best or equal best accuracy. For some of the long range

queries covering the almost the entire domain, it is slightly outperformed by consistent HHB

methods. However, this is sufficiently small that it is hard to observe visually on the plots.

Across a broad range of query lengths (roughly, 0.1% to 10% of the domain size), HaarHRR

is preferred. It is most clearly the preferred method for smaller domain sizes, such as in the

case of D = 28. We observed a similar behaviour for domains as small as 25.

5.5.2 Impact of privacy parameter ε

Experiment description. We now vary ε between 0.1 (higher privacy) to 1.4 (lower privacy)

and find the mean squared error over range queries. Similar ranges of ε parameters are used

in prior works such as [132]. After the initial exploration documented in the previous section,

our goal now is to focus in on the most accurate and scalable hierarchical methods. Therefore,

we omit all flat methods and consider only those values of B that provided satisfactory

accuracy. We choose TreeOUECI as our mechanism to instantiate HH (henceforth denoted

by HHc
B , where the c denotes that consistency is applied) method due to its accuracy. We

do note that a deployment may prefer TreeHRRCI over TreeOUECI since it requires vastly

reduced communication for each user at the cost of only a slight increase in error.
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(a) D = 28

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 4.269 4.037 4.176 3.684
0.4 2.024 2.193 2.590 1.831
0.6 1.388 1.341 1.535 1.278
0.8 1.002 0.950 1.130 0.987
1.0 0.844 0.744 0.844 0.811
1.1 0.722 0.667 0.820 0.748
1.2 0.684 0.658 0.642 0.732
1.4 0.571 0.542 0.592 0.601

(b) D = 216

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 6.745 7.129 8.692 6.666
0.4 3.616 3.424 4.648 3.526
0.6 2.333 2.360 2.793 2.342
0.8 1.644 1.728 2.075 1.711
1.0 1.356 1.377 1.642 1.484
1.1 1.303 1.270 1.597 1.345
1.2 1.090 1.140 1.433 1.201
1.4 0.922 0.995 1.158 1.130

(c) D = 220

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 10.043 10.493 11.511 9.285
0.4 5.378 4.751 5.617 5.261
0.6 3.605 3.603 4.483 3.693
0.8 3.047 3.042 3.352 3.316
1.0 2.522 2.690 3.131 2.915
1.1 2.556 2.540 2.729 2.722
1.2 2.619 2.488 2.757 2.640
1.4 2.339 2.304 2.652 2.505

(d) D = 222

ε HHc
2 HHc

4 HaarHRR

0.2 8.629 8.889 8.422
0.4 4.546 4.951 4.470
0.6 3.181 3.420 3.085
0.8 2.657 2.692 2.462
1.0 2.247 2.358 2.254
1.1 1.979 2.252 2.139
1.2 2.120 2.066 1.946
1.4 1.650 1.885 1.990

Table 5.2: Impact of varying ε on mean squared error for arbitrary queries. These numbers
are scaled up by 1000 for presentation.

Plot description. Table 5.2 compares the mean squared error for HHc
2, HHc

4 HHc
16 and

HaarHRR for various ε values. We multiply all results by a factor of 1000 for convenience,

so the typical values are around 10−3 corresponding to very low absolute error. In each row,

we mark in bold the lowest observed variance, noting that in many cases, the “runner-up” is

very close behind.

Observations. The first observation, consistent with Figure 5.3, is that for lower ε’s,

HaarHRR is more accurate than the best of HHc
B methods. This improvement is most

pronounced for D = 28 i.e. at most 10% (at ε = 0.2) and marginal (0.01 to 1%) for larger

domains. For larger ε regimes, HHc
B outperforms HaarHRR, but only by a small margin

of at most 11%. For large domains, HHc
B remains the best method. In general, except for

D = 222, there is no one value of B that achieves the best results at all parameters but

overall B = 4 yields slightly more accurate results for HHc
B for most cases. Note that this B

value is closer to the optimal value of 9 (derived in Section 5.4.2) than other values. When
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(a) D = 28

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 4.306 2.968 4.282 2.857
0.4 1.859 1.439 1.828 1.377
0.6 1.366 0.957 1.758 1.031
0.8 0.937 0.778 0.896 0.758
1.0 0.802 0.561 0.637 0.613
1.1 0.684 0.533 0.666 0.626
1.2 0.658 0.437 0.670 0.568
1.4 0.573 0.420 0.478 0.494

(b) D = 216

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 7.701 6.172 7.014 5.870
0.4 3.266 3.101 3.744 2.880
0.6 2.402 2.176 2.426 2.018
0.8 1.663 1.503 1.834 1.511
1.0 1.338 1.220 1.426 1.244
1.1 1.202 1.051 1.259 1.120
1.2 1.080 0.978 1.147 1.054
1.4 0.973 0.848 0.981 0.973

(c) D = 220

ε HHc
2 HHc

4 HHc
16 HaarHRR

0.2 8.874 8.255 10.462 7.237
0.4 4.734 4.395 5.754 4.271
0.6 3.788 3.485 4.055 3.377
0.8 3.287 3.094 3.268 3.108
1.0 3.022 2.848 2.826 2.920
1.1 3.053 2.756 2.727 2.727
1.2 3.145 2.627 2.914 2.754
1.4 2.975 2.659 2.543 2.696

(d) D = 222

ε HHc
2 HHc

4 HaarHRR

0.2 8.620 8.638 8.099
0.4 4.181 4.330 4.233
0.6 2.932 3.077 3.063
0.8 2.215 2.590 2.528
1.0 1.958 2.246 2.326
1.1 1.777 2.319 2.181
1.2 1.929 2.174 2.205
1.4 1.613 1.868 2.156

Table 5.3: Impact of varying ε on mean squared for prefix queries. These numbers are scaled
up by 1000 for presentation. We underline the scores that are smaller than corresponding
scores in Table 5.2.

D = 222, HHc
2 dominates HHc

4 but only by a margin of at most 10%.

Comparison with DHT and HH based approaches in the centralized case. We briefly

contrast with the conclusion in the centralized case. We reproduce some of the results of

Qardaji et al. [119] in Table 5.4, comparing variance for the (centralized) wavelet based

approach to (centralized) hierarchical histogram approaches withB = 2, 16 with consistency

applied. These numbers are scaled and not normalized, so can’t be directly compared to

our results (although, we know that the error should be much lower in the centralized case).

However, we can meaningfully compare the ratio of variances, which we show in the last

two rows of the table.

For ε = 1, D = 28, the error for the Haar method is approximately 2.8 times

more than the hierarchical approach. Meanwhile, the corresponding readings for HaarHRR

and HHc
4 (the most accurate method in the ε = 1 row) in Table 5.2 are 0.787 and 0.763 — a
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D 28 29 210 211

Wavelet 221.62 306.31 410.29 536.32
(optimal) HHc

16 79.23 164.48 185.94 213.87
HHc

2 220.06 305.54 409.48 535.63
Wavelet
HHc16

2.7971 1.8622 2.20 2.5077
HHc2
HHc16

2.777 1.8576 2.202 2.5044

Table 5.4: Table 3 from [119] comparing the exact average variance incurred in answering
all range queries for ε = 1 in the centralized case.

deviation of only ≈3%. Another important distinction from the centralized case is that we

are not penalized a lot for choosing a sub-optimal branching factor. Whereas, we see in the

4th row that choosing B = 2 increases the error of consistent HH method by at least 1.8576

times from the preferred method HHc
16.

A further observation is that (apart for D = 222) across 24 observations,

HaarHRR is never outperformed by all values of HHc
B i.e. in no instance is it the least

accurate method. It trails the best HHc
B method by at most 10%. On the other hand, in the

centralized case (Table 5.4), the variance for the wavelet based approach is at least 1.86

times higher than HHc
B .

5.5.3 Prefix Queries

Experiment description. As described in Section 5.4.4, prefix queries deserve special

attention. Our set up is the same as for range queries. We evaluate every prefix query, as

there are fewer of them.

Plot description. Table 5.3 is the analogue of Table 5.2 for prefix queries, computed with

the same settings. We underline the scores that are smaller than corresponding scores in

Table 5.2.

Observations. The first observation is that the error in Table 5.3 is often smaller (up to 30%)

than in Table 5.2 at many instances, particularly for small and medium sized domains. The

reduction is not as sharp as the analysis might suggest, since that only gives upper bounds

on the variance. Reductions in error are not as noticeable for larger values of D, although

this could be impacted by our range query sampling strategy. In terms of which method

is preferred, HHc
2 for D = 222 and HHc

4 tend to dominate for larger ε, while HaarHRR is

preferred for smaller ε.
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(a) movielens (b) stackoverflow

(c) NYC yellow cabs data (d) Gowalla check-ins

Figure 5.4: Mean relative error on log scale.

(a) movielens (b) stackoverflow

Figure 5.5: Top row: value error; bottom row: quantile error.
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5.5.4 Heavy Intervals

Experiment description. We test the sensitivity of our best hierarchical methods to the

heaviness of intervals, i.e. we check whether “heavy hitter” range queries can be answered

more accurately than relatively lighter weight queries. In this experiment, we measure error

by computing the relative error (|R− R̂|/R) instead of MSE.

Plot description. In each subplot of Figure 5.4, we show the mean relative error for those

queries with mass at least x% on log scale. The X axis varies the threshold x from 10 to 90.

We include the flat method also for comparison.

Observations. Once again we confirm that the flat method is outperformed by the hierarch-

ical methods even on a different metric by a large margin. For example, in the movielens

dataset, the hierarchical methods answer all reasonably heavy queries (x ≥ 10%) with ≤ 2%

error. The main finding from this figure is that in all datasets, the relative error tends to

decrease as x increases. This is to be expected, since the absolute error per query is relatively

constant, and so the relative error decreases as the true weight increases.

5.5.5 Quantile Queries

Experiment description. Finally, we compare the performance of the best hierarchical

approaches in evaluation of the deciles (i.e. the φ-quantiles for φ in 0.1 to 0.9) for two real

datasets.

Plot description. The top row in Figure 5.5 plots the actual difference between true and

reconstructed quantile values (value error). The corresponding bottom plots measure the

absolute difference between the quantile value of the returned value and the target quantile

(quantile error).

Observations. The first observation is that the both the algorithms have low absolute value

error (the top row). For the domain of 218 ≈ 262K, even the largest error of ≈15K made by

HHc
4 is still very small, and less than 6%. The value error tends to be the highest where the

data is least dense: towards both the extremes for the movielens dataset and only towards the

left end for stackoverflow dataset. Importantly, the corresponding quantile error is mostly

flat. This means that instead of finding the median (say), our methods return a value that

corresponds to the 0.5002 and 0.5003 quantile, which are very close in the distributional

sense. This reassures us that any spikes in the value error are mostly a function of sparse

data, rather than problems with the methods.
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Chapter 6

Count Queries

6.1 Chapter Outline And Our Contributions

In this chapter (based on [41, 42]), we revisit a simple problem — privately releasing the

sum of individual’s input who satsify a certain property.

•We recall our problem statement, model and present terminologies introduced earlier in

more detail in Section 6.2.

• After recollecting the linear programming framework in Section 6.3, we present degen-

eracies observed in it. In Section 6.4, we present constraints that can be added to avoid these

degeneracies.

• In Section 6.5, we revisit the one user/one bit case (Local Differential Privacy), and show

that Randomized Response represents a natural convergence of multiple different approaches

to privacy.

• In Section 6.6, we observe that some existing approaches yield seemingly undesirable

results for small groups (with 1 or a few members), which motivates our further study of

differentially private mechanisms. Additional properties which constrain the output can be

obtained efficiently via solving a constrained optimization problem. We also propose an

explicit construction of a mechanism which provably achieves all our proposed properties,

and analyze the additional “cost” in terms of various measures of accuracy.

• Section 6.7 reports on our experiments on accuracy with synthetic and real data.

•We conclude this chapter by extending Ghosh et al.’s framework to LDP for histogram

aggregation in Section 6.8.
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6.2 Model And Preliminaries

The problem of count queries is yet another fundamental problem in private data release

that underpins many applications including SQL COUNT * queries. Our model assumes a

group of n participants, each of whom has some private information which is encoded as a

single bit. They share their information with a trusted aggregator, whose aim is to release

information about the sum of the values while protecting the privacy of each participant.

We simplify the description of the input to just record the true sum of values j, so we have

0 ≤ j ≤ n to capture the case of a count-query over a table. Our goal is to design a ε-DP

compliant mechanismM that, given input j produces output i, subject to certain constraints.

Our mechanism maps inputs in the range 0 to n to outputs in the same range.

While one could allow a different set of outputs, it is most natural to restrict to this range.

Consider for example, a downstream analysis step which expects counts to be integers

in the range [n]: we should ensure that this expectation is met by the result of applying

mechanisms. Rather than attempt to map different outputs to this range, it is more direct

to build mechanisms that cover this output set. It is therefore natural to representM as an

(n+ 1)× (n+ 1) square matrix P , where Pi,j = Pr[M(j) = i] = PrM[i|j]. For brevity,

we abbreviate this probability to Pr[i|j]. Note that therefore P is a column stochastic matrix:

the entries in each column can be interpreted as probabilities, and sum to 1.

We now rephrase the definition of differential privacy in the context of count

queries parameterized by α = exp(−ε∆1
). We adopt the α notation for conciseness and retain

consistency with the previous works. For count queries, the global sensitivity ∆1 = 1.

Definition 20 (Differentially Private Mechanisms). MechanismM is α-differentially private

for α ∈ [0, 1] if

∀i, j : α ≤ Pr[i|j]
Pr[i|j + 1]

≤ 1

α
.

Here α close to 1 provides a stronger notion of privacy and a tighter constraint on the prob-

abilities, while α close to zero relaxes these constraints. We know that a ε−DP mechanism

M with ∆1 = 1 satisfies (ε,1)-LLDP. We say that a DP constraint is tight if the relevant

inequality is met with equality.

Utility of a mechanism. The true test of the utility of a mechanism is the accuracy with

which it allows queries to be answered over real data. However, we aim to design mechanisms

prior to their application to data, and so we seek a suitable function to evaluate their quality.

Since there are many column stochastic matrices that satisfy DP, the problem of finding

a mechanism that provides the maximal utility can be framed as an optimization problem.

Specifically, we can encode our notion of utility as a penalty function, where we seek to

penalize the mechanism for reporting results that are far from the true answer.
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Definition 21 (Objective function value). We define the objective function Ot,⊕(P) of a

mechanism P as:

Ot,⊕(P) = ⊕j
∑
i

wj Pr[i|j]|i− j|t

where ⊕ is an operator like
∑

or max, and
∑

j wj = 1.

Observe that the weights wj can be thought of as a prior distribution on the

input values j. Then Ot,∑(P) gives the expected error of the mechanism, when taking

its output as the true answer, and |i − j|t penalizes the extent by which the output was

incorrect. When not otherwise stated, we take wj = 1
n+1 , i.e. a uniform prior over the inputs.

Common choices for t in the definition would be t = 2, corresponding to a squared error (L2

norm), t = 1, corresponding to an absolute error (L1 norm), and t = 0, corresponding to the

probability of any wrong answer (L0 norm). In what follows, we devote most of our attention

to the case L0. We argue that this is an important case: (i) maximizing the probability of

reporting the truth is a natural objective in mechanism design; we aim to ensure that the

reported answer is the maximum likelihood estimator (MLE) for the true answer, for use

in downstream processing (ii) due to the differential privacy constraints, maximizing the

probability of the true answer has the additional effect of making nearby answers likely,

as our experiments validate. (iii) our internal study shows that objectives like L1 and L2

often give pathological results, as seen in Figure 6.1. Working with L0 gives more robust

behaviour. We therefore initiate the study of constrained mechanism design for L0, and

give some initial results for other objectives. It is convenient to apply a rescaling of the loss

function by a factor of n+1
n : this sets the cost of a trivial mechanism to 1 (Definition 23). We

refer to this rescaled cost as L0, as this corresponds to a scaled version of O0,
∑ that sums

the probabilities of a wrong answer, and so

L0(P) =
n+ 1

n
− traceP

n
. (6.1)

Abusing notation slightly, we also define the objective function, L0,d =
n+1
n

∑n
i,j:|i−j|≥dwj Pr[i|j] which computes a rescaled sum of probabilities more than d

steps off the main diagonal, so that L0 = L0,0.

We have observed following following deficiencies in existing mechanisms.

Defining sampling probabilities: Exponential Mechanism. The framework of exponen-

tial mechanism [51] allows us to design mechanisms by specifying a quality function Q

mapping input output pairs to real valued scores. This mechanism encodes our preference

for providing an output for an input. However, although we can use Q to indicate that some

outputs are more desired than others, it is not possible to modify a givenQ to directly enforce

the properties that we desire, such as ensuring that the probability of returning the true output
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is at least as good as that of a uniform distribution (“weak honesty”, (6.8)).

Rounding numeric outputs: Laplace and Geometric Mechanisms. Perhaps the best

known differentially private mechanism is the Laplace mechanism, which operates by adding

random noise to the true answer from an appropriately scaled Laplace distribution. Note

that in order to restrict the output range to [n], it will be necessary to round and truncate

the output of the mechanism to the range [n]. Here, the Laplace mechanism does not easily

fit the requirements. Instead, the appropriate method is the discrete analog of the Laplace

mechanism, which is the (truncated) Geometric mechanism, introduced by Ghosh et al. [36],

who showed that it is the basis for unconstrained mechanisms.

Definition 22. Range Restricted Geometric Mechanism [36] (GM) Let q be the true (un-

perturbed) result of a count query. The GM responds with min(max(0, q + δ), n), where

δ is a noise drawn from a random variable X with a double sided geometric distribution,

Pr[X = δ] = (1−α)|δ|

1+α for δ ∈ Z.

That is, GM adds noise from a two sided geometric distribution to the query result and

remaps all outputs less than 0 onto 0 and greater than n to n. Though GM does not include

rows with all entries zero, we observe that each column distribution in GM has spikes at

the extreme values, which tend to distort the true distribution quite dramatically, as the next

example shows.

Example 1. Consider the case of n = 2, corresponding to a group of two individuals, with

a moderate setting of the privacy parameter α = 9
10 . For an input of 1 (i.e. one user has a

1, and the other has a 0), we obtain that the probability of seeing an output of 0 is ≈ 0.47,

and the same for an output of 2. Meanwhile, the probability of reporting the true output

is ≈ 0.05 — in other words, the chance of seeing the true answer is eighteen times lower

than seeing an incorrect answer. Meanwhile, if the input is 0, then output 0 is returned with

probability ≈ 0.53: so the mechanism is much more likely to report the true answer when it

is 0 than when it is 1. As we increase the privacy parameter α closer to 1 (more privacy),

the probability of outputs other than 0 and n approaches 0.

As observed in Example 1, an apparent weakness of GM for interpretability is that it can

give quite low probabilities for reporting accurate answers. In order to allow more sense to

be made of the outputs of the designed mechanisms, we can specify additional constraints to

guide the optimization to producing the best interpretable result. This prompts us to define a

collection of plausible properties that a mechanism can obey. We will show analytically and

empirically that these constraints do not significantly affect the obtained objective function

values (i.e. the raw utility), but considerably improve the interpretability of the resulting

mechanism. In particular, we demonstrate that it is possible to find a mechanism which

achieves all the given properties with only marginal increase in objective function value, and

improved interpretability.

93



Figure 6.1: Heatmaps of unconstrained mechanisms for α = 0.62.

6.3 Unconstrained Mechanism Design

Let’s recall Ghosh et al.’s formulation from Section 2.4.3 that models the interplay between

utility and privacy as a linear program.

minimize:
n∑
j=0

wj

n∑
i=0

|i− j|pρi,j

subject to: 0 ≤ ρi,j ≤ 1 ∀i, j ∈ [n]
n∑
i=0

ρi,j = 1 ∀j ∈ [n]

ρi,j ≥ αρi,j+1, and ρi,j+1 ≥ αρi,j ∀i ∈ [n], j ∈ [n− 1]

We refer to the mechanisms obtained from these set of constraints as BASICDP. The result is

a linear program with a quadratic number of variables, and a quadratic number of constraints,

each containing at most a linear number of variables. Therefore, solving the resulting LP

obtains a mechanism minimizing the given objective function with the desired properties, in

time polynomial in n.

Anomalies observed in the LP framwork. We found that the “optimal” mechanisms

obtained from Ghosh et al. ’s framework have some anomalous behaviour, such as never

reporting some values. Figure 6.1 gives some examples of this phenomenon in action. We

show four optimal mechanisms generated by solving linear program described before for

different input sizes (n) and loss functions (L0,L1 and L2), under fixed privacy parameter

α. Each column gives the probability distribution over the outputs in the range 0 to n, for a

given input count (also 0 to n). The case of optimizing the squared error (L2) is most striking:
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the “optimal” thing to do in this case is to ignore the input and always report ‘2’! But other

cases are also problematic: all these optimal mechanisms never report some outputs (gaps),

and disproportionately report some others (spikes). For example, minimizing the absolute

error for n = 7 has a chance of reporting the values 2 or 5 with at least 0.7 probability,

regardless of the input value. Similarly, if we try to minimize the probability of reporting

an answer that is more than 1 step away from the true input (denoted as L0 with d = 1),

there is an over 90% chance of reporting 1 or 4. Our studies found that similar undesirable

results were found across a range of choices of n, α and loss function. Simple attempts to

prevent these outcomes are not effective. For example, we can ensure that no entry is zero by

adding a constraint to the LP enforcing this. However, the consequence is that rows which

were zero are now set to be the smallest allowable value, which is unsatisfying. Instead, we

propose an additional set of properties to eliminate degeneracy and provide more structure

in our solutions.

6.4 Constrained Mechanism Design

We now propose a set of structural properties that help to control the objective function in

addition to meeting differential privacy. We believe that these constraints are natural and

intuitive and often observed in other mechanisms satisfying differential privacy. We present

properties of three types: those which operate on rows of the matrix, those which apply to

columns of the matrix, and those which apply to the diagonal.

Row Honesty (RH). A mechanism is row honest if

∀i, j.Pr[i|i] ≥ Pr[i|j] (6.2)

Row honesty means that a mechanism should have higher probability of reporting i when

the input is i than for any other input.

Row Monotone (RM). A mechanism is row monotone if

∀1 ≤ j ≤ i : Pr[i|j − 1] ≤ Pr[i|j]

∀i ≤ j < n : Pr[i|j + 1] ≤ Pr[i|j] (6.3)

This property generalizes row honesty: row monotonicity implies row honesty. It requires

that entries in row i are monotone non-increasing as we move away from the diagonal

element Pr[i|i]. Note that row monotonicity is independent of differential privacy: we can

find mechanisms that achieve DP but are not row monotone, and vice-versa.

Analogous to the row-wise properties, we define monotonicity and honesty

along columns also.
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Column Honesty (CH). A mechanism is column honest if

∀i, j : Pr[j|j] ≥ Pr[i|j]. (6.4)

Column honesty requires that the mechanism be honest enough to report the true answer

more often than any individual false answer. As demonstrated by Example 1, GM does not

obey column honesty.

Column Monotone (CM). A mechanism is column monotone if

∀1 ≤ i ≤ j : Pr[i− 1|j] ≤ Pr[i|j]

∀j ≤ i < n : Pr[i+ 1|j] ≤ Pr[i|j] (6.5)

As in the row-wise case, column monotonicity implies column honesty (but not vice-versa).

It captures the property that outputs closer to the true answer should be more likely than

those further away.

Fairness (F). A mechanism is fair when the probability of reporting the true input is constant,

i.e.

∀i, j : Pr[i|i] = Pr[j|j] := y. (6.6)

Example 1 shows that GM is not a fair mechanism. If a mechanism is fair and has row

honesty, then all off-diagonal elements are at most y, so the mechanism also satisfies column

honesty. Symmetrically, a fair and column honest mechanism is row honest. While this may

seem like a restrictive constraint, we observe that mechanisms proposed in other contexts

have this property, such as the staircase mechanism of [140].

Lemma 11. If a mechanism is required to be fair, then any mechanism that minimizes the

objective O0,
∑ is simultaneously optimal for all settings of weights wj .

Proof. Let the diagonal element of the fair mechanism be y. The objective function value is∑
j∈[n]

∑
i∈[n]

wj Pr[i|j](i− j)0 =
∑
j∈[n]

wj(1− y) = 1− y (6.7)

That is, the value is independent of the wjs.

Weak Honesty (WH). A mechanism satisfies weak honesty if

∀i : Pr[i|i] ≥ 1

n+ 1
(6.8)

We can consider this property a weaker version of column honesty, as CH implies WH: for
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any column j, summing the column honesty property over all rows i we obtain

(n+ 1) Pr[i|i] =
n∑
i=0

Pr[j|j] ≥
n∑
i=0

Pr[i|j] = 1

so after rearranging, we have Pr[i|i] ≥ 1
n+1 . Weak honesty ensures that a mechanism reports

the true answer with probability at least that of uniform guessing (formalized as the uniform

mechanism UM in Definition 23). It also ensures that the mechanism does not have any rows

that are all zero (corresponding to outputs with no probability of being produced). GM does

not always obey weak honesty, as is shown by Example 1.

The final property we consider is a natural symmetry property (formally, it is

that the matrix P is centrosymmetric):

Symmetry (S). A mechanism is symmetric if

∀i, j : Pr[i|j] = Pr[n− i|n− j] (6.9)

Since the input and output domains, and the objective functions are symmetric, it is natural

to seek mechanisms which are also symmetric. Our next result shows that symmetry is

always achievable without any loss in objective function.

Theorem 8. Given a mechanism M which meets a subset of properties P from those defined

above, we can construct a symmetric mechanism M∗ which also satisfies all of P and

achieves the same objective function value as M .

Proof. Our construction to achieve symmetry is simple. Define a matrix MS from M as

(MS)i,j = Mn−i,n−j . Then set M∗ = 1
2(M + MS). We first observe that M∗ is indeed

symmetric, since M∗i,j is equal to
1
2(Mi,j +Mn−i,n−j) = 1

2(Mn−i,n−j +Mn−(n−i),n−(n−j)) = M∗n−i,n−j
as required by (6.9). The (L0) objective function value is unchanged since (invoking (6.1))

trace(M∗) =
1

2
(trace(M) + trace(MS)) = trace(M)

For the other diagonal properties (fairness and weak honesty), it is immediate that if either of

these properties are satisfied by M , then they are also satisfied by M∗. We prove the claim

for row properties; the case for column properties is symmetric.

(i) Differential privacy: if we have α ≤ Mi,j/Mi,j+1 ≤ 1/α for all i, j, then this also

holds for MS
i,j/M

S
i,j+1. Summing both inequalities, and using that min (ab ,

c
d) ≤ a+c

b+d ≤
max (ab ,

c
d), this holds for M∗, hence M∗ satisfies differential privacy.

(ii) Row monotonicity: consider a pair i, j with 1 ≤ i ≤ j. Then we have Mj,i−1 ≤ Mj,i

(from (6.3)). It is also the case that n− j ≤ n− i < n, which means that Mn−j,n−i+1 ≤
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Mn−j,n−i (also from (6.3)). Then MS
j,i−1 ≤ MS

j,i. Combining these two inequalities, we

have that M∗j,i−1 ≤M∗j,i.
(iii) Row honesty: if ∀i, j.Mi,i ≥Mi,j , then MS

i,i ≥MS
i,j also. Summing both inequalities,

we obtain M∗i,i ≥M∗i,j as required.

Consequences of these properties. We first argue that these properties all contribute

to avoiding the degenerate mechanisms shown above. The (column, row) honesty and

monotonicity properties work to prevent the “spikes” observed when a value far from the

true input is made excessively likely. The (column) honesty properties do so by preventing a

far output being more likely than the true input; the (column) monotonicity properties do so

more strongly by ensuring that any further output is no more likely than one that is nearer to

the true input. Fairness, column honesty and weak honesty prevent gaps (zero rows): they

ensure that the diagonal entry in each row is non-zero, and then the DP requirement ensures

that all other entries in the same row must also be non-zero. We next show that there is an

efficient procedure to find an optimal constrained mechanism for any n > 1.

Theorem 9. Given any subset of the structural constraints, we can find an optimal (con-

strained) mechanism which respects these constraints in time polynomial in n.

Proof. We break the proof into two pieces. First, we argue that given any subset of structural

constraints we can create a Linear Program describing it, and second we argue that there

exists a mechanism satisfying them all. Observe that all seven properties listed above can be

encoded as linear constraints. For example, symmetry is written as

ρi,j = ρn−i,n−j ∀i, j ∈ [n]

while weak honesty is

ρi,i ≥ 1/(n+ 1).

Row monotonicity becomes

ρj,i−1 ≤ ρj,i ∀j ∈ [n], i < j

ρj,i+1 ≤ ρj,i ∀i ∈ [n− 1], j < i

Consequently, we can create a linear program of size polynomial in n, by

adding these to the BASICDP constraints (2.9), (2.10) and (2.11) established in Section 6.3.

This shows the first part of the proof. Next, we show that any such LP is feasible by defining

a trivial baseline mechanism:

Definition 23 (Uniform Mechanism, UM). The uniform mechanism of size n has Pr[i|j] =
1

n+1 , for all i, j ∈ [n].
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That is, UM ignores its input and picks an allowable output uniformly at random. It

demonstrates that all our properties are (simultaneously) achievable, albeit trivially. By

observation, the mechanism is symmetric and fair for any α′ ≤ 1. It meets the inequalities

specified for row monotonicity, column monotonicity and weak honesty with equality. UM
also satisfies differential privacy for all α ≤ 1.

Clearly, UM is undesirable from the perspective of providing utility. We easily

calculate that the objective function value O0,
∑ achieved by UM is n

n+1 , which is close to

the maximum possible value of 1. Note that we chose our definition of the L0 function to

assign this mechanism a (reweighted) score of 1.

6.5 Constrained Mechanisms: n = 1

In this section, we consider an important special case of our problem: where a single user

has a single private bit value. This is the limiting case of our setting, corresponding to

n = 1. It turns out to be an important scenario that has been studied over many decades, as

it asks each user to reveal a (noisy) version of their information for subsequent aggregation.

We briefly revisit this case in the light of the objectives and properties defined above. The

main conclusions we find are that for n = 1, all approaches to building DP mechanisms are

essentially the same, and trivially obey all our constraints, making this a starting point for

our subsequent study.

6.5.1 Randomized Response (RR)

Theorem 10. In the one bit (binary) case, RR is the unique optimal non-trivialα-differentially

private mechanism under any objective function Ot,∑ when α ≤ w1/w0 ≤ 1/α.

Proof. The objective function is to minimize

w0 Pr[1|0]1p + w1 Pr[0|1]1p = w0 Pr[1|0] + w1 Pr[0|1].

To achieve α-differential privacy, we must have

Pr[0|0] ≤ 1

α
Pr[0|1] and Pr[1|1] ≤ 1

α
Pr[1|0]. (6.10)

We can observe that in order to minimize the objective function (for non-negative w0 and

w1), it suffices to maximize Pr[0|0] and Pr[1|1], and so the inequalities in (6.10) become
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equalities. Thus, our objective function to minimize becomes:

w0(1− Pr[0|0]) + w1 Pr[0|1] = w0(1− 1

α
Pr[0|1]) + w1 Pr[0|1]

= w0 + (w1 −
1

α
w0) Pr[0|1].

In the case that w1/w0 < 1
α (or, symmetrically, if w0/w1 < 1

α ), the trivial solution is

Pr[0|1] = Pr[0|0] = 1, i.e. the mechanism ignores the input and always reports ‘0’ (in the

symmetric case, it always reports ‘1’).

Otherwise α ≤ w1/w0 ≤ 1/α, and we have

Pr[0|0] =
1

α
Pr[0|1] =

1

α
(1− Pr[1|1])

=
1

α
(1− 1

α
Pr[1|0])

=
1

α
(1− 1

α
(1− Pr[0|0]))

Rearranging, we obtain

Pr[0|0](1− 1

α

2

) =
1

α
(1− 1

α
)

and so Pr[0|0] = 1
1+α , and Pr[1|1] = 1− Pr[0|0]/α = 1

1+α .

Consequently, we obtain an instance of randomized response with p = 1
1+α .

Fact 4. For p ≥ 1
2 , RR satisfies all properties listed in Section 6.4

The fact follows immediately by representing RR as a 2 × 2 matrix below and visually

inspecting.

R =

 p 1− p
1− p p


This entails fairness and symmetry. All other properties reduce to the condition that p ≥ 1−p,

i.e. p ≥ 1
2 .

6.5.2 Exponential Mechanism

Theorem 11. In the one bit (binary) case, the Exponential Mechanism results in an instance

of Randomized Response with p = exp(ε/2)
1+exp(ε/2) .

Proof. In the binary case, we have D = R = {0, 1}. Without loss of generality, we can

assume that Q(0, 0) = Q(1, 1) := c; Q(1, 0) = Q(0, 1) := w (if not, this makes the privacy
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x xα xα2 xα3 · · · xαn

yα y yα yα2 · · · yαn−1

yα2 yα y yα · · · yαn−2

yα3 yα2 yα y · · · yαn−3

yα4 yα3 yα2 yα · · · yαn−4

...
...

...
...

. . .
...

xαn xαn−1 xαn−2 xαn−3 · · · x


Figure 6.2: Structure of GM, where x = 1

1+α and y = 1−α
1+α .

guarantee loose in one case). We also assume that c ≥ w, since we should make the true

response more likely than the incorrect response. Then, by definition, s = c − w. The

resulting mechanism has

Pr[0|0] =
exp(εc/2s)

exp(εw/2s) + exp(εc/2s)

=
exp(−wε/2s)
exp(−wε/2s)

exp(εc/2s)

exp(εw/2s) + exp(εc/2s)

=
exp(ε/2)

1 + exp(ε/2)

Meanwhile, Pr[1|0] = 1− Pr[0|0] = 1/(1 + exp(ε/2)), Pr[1|1] = Pr[0|0] and Pr[0|1] =

Pr[1|0]. Consequently, the mechanism is equivalent to R from Fact 4, and the privacy

guarantee is given by Pr[0|0]/Pr[1|0] = exp(−ε/2).

Note that this direct application of the exponential mechanism construction ac-

tually yields exp(−ε/2) privacy, stronger than specified, since it does not take full advantage

of the additional simple structure of this scenario.

6.5.3 Geometric Mechanism

Lemma 12. In the binary case, the Geometric mechanism results in an instance of Random-

ized Response with p = 1
1+α .

Proof. When n = 1, we can consider each input separately. On input 0, the output is 0 if

δ ≤ 0. From properties of the geometric distribution, we obtain

Pr[0|0] = Pr[X ≤ 0] =
1− α
1 + α

.(1 + α+ α2 + α3 + . . .) =
1

1 + α
.

Then, Pr[1|0] = Pr[X > 0] = α
1+α . The case for input 1 is symmetric. Hence the claim

follows.
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6.6 Constrained mechanisms: n > 1

For n > 1, it is not the case that all mechanisms automatically achieve all our enumerated

properties. In this section, we consider mechanisms achieving various combinations of the

structural properties.

6.6.1 The Geometric Mechanism

Next, we return to the GM (Definition 22). In Figure 6.2, we show the structure of the

mechanism, which can be derived by simple calculation from Definition 22. Below, we show

that it enjoys a number of special properties. In prior work, Ghosh et al. showed that GM
plays an important role, as it can be transformed into an optimal mechanism for different

objectives. Here, we argue a more direct result: that GM is directly optimal for a uniform

objective function1

Theorem 12. GM is the (unique) optimal mechanism satisfying BASICDP under the L0

objective function.

Proof. In order to prove the theorem, we define a modified form of a mechanism which is

row monotone and in which all the DP inequalities are tight. Given a mechanism P whose

leading diagonal is y = [y0, y1, . . . yn], define P ′ as the unique row monotone matrix where

all the DP inequalities are tight. That is,

P ′ =



y0 y0α y0α
2 y0α

3 · · · y0α
n

y1α y1 y1α y1α
2 · · · y1α

n−1

y2α
2 y2α y2 y2α · · · y2α

n−2

y3α
3 y3α

2 y3α y3 · · · y3α
n−3

...
...

...
...

. . .
...

ynα
n ynα

n−1 ynα
n−2 ynα

n−3 · · · yn


Note that P ′ is dominated by P , in the sense that P ′i,j ≤ Pi,j for all i and j.

This holds because, given yi, the DP constraints enforce that Pi,j cannot be less than yiα|i−j|,

which is exactly the value of P ′i,j . However, P is not strictly a mechanism, since it is not

guaranteed to be column stochastic: columns may sum to less than one. To address this, we

define a ‘slack vector’ s so that sj = 1−
∑n

i=0 P ′i,j . In finding an optimal mechanism P ,

we seek to maximize trace(P) (from (6.1)). Since trace(P) = trace(P ′) by definition, we

can concentrate on P ′ and seek to maximize its trace. We interpret the slack variables s as

“missed potential”. Observe that each sj represents probability mass that could (perhaps)

1Note that, compared to [36], we define mechanisms to enforce differential privacy along rows of P rather
than columns.
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be added to Pj,j to increase the trace. Therefore, in order to maximize the trace, we seek

to minimize the slack. Note that for any given slack vector s and parameter α, there is

at most one mechanism P ′ whose slack vector is s: there are n + 1 unknowns yj , and

n+ 1 constraints relating these to s. Specifically, let A(α) be the Toeplitz matrix such that

A(α)i,j = α|i−j|. Then given α and s, we seek the solution y to A(α)y = 1n+1 − s, where

1n+1 is the n+ 1 length vector whose every entry is 1.

We now show that there exists a feasible solution to this system with s = 0,

that is with no slack values. In this case, P = P ′ and is optimal as there is no remaining

slack potential that could increase the trace. From the first row of A(α), corresponding to

the first column of P ′, we have

y0 + ynα
n +

n−1∑
i=1

yiα
i = 1 (6.11)

Similarly, from the second column of P ′,

y0α+ ynα
n−1 +

n−1∑
i=1

yiα
i−1 = 1 (6.12)

so y0α
2 + ynα

n +
n−1∑
i=1

yiα
i = α (6.13)

Then, combining (6.11) and (6.13), we obtain

y0α
2 + ynα

n + (1− y0 − ynαn) = α

which yields y0 = 1
1+α . Following the same approach for columns n and n+ 1 of P ′, we

similarly obtain yn = 1
1+α . We find each remaining yi in turn, starting from y1. Taking

the linear combination which subtracts α times column i + 1 of P ′ from column i of P ′

eliminates yi+1 . . . yn−1. We then obtain

y0α
i(1− α2) + (1− α2)

i∑
j=1

yjα
i−j = 1− α.

Substituting the found value of y0, we obtain

αi

1 + α
+

i∑
j=1

yjα
i−j =

1

1 + α

i∑
j=1

yjα
i−j =

1− αi

1 + α
.

103



The base case i = 1 yields y1 = 1−α
1+α . Then, inductively, yi = 1−α

1+α . Assuming the inductive

hypothesis, we have
i−1∑
j=1

(1− α)αj

1 + α
+ yi =

1− αi

1 + α
.

Simplifying,
1− α
1 + α

i−1∑
j=0

αj − 1− α
1 + α

+ yi =
1− αi

1 + α
.

Using the standard expression for the sum of a geometric progression, the summation term

becomes 1−αi
1−α . Substituting this and cancelling, we find yi = 1−α

1+α .

To complete the proof, we observe that the resulting mechanism P = P ′

defined by the diagonal

y =

[
1

1 + α
,
1− α
1 + α

,
1− α
1 + α

. . . ,
1− α
1 + α

,
1

1 + α

]
is exactly GM, by comparison to Figure 6.2. Hence, the optimal mechanism OPT has a

unique form, which is GM.

Limitations of GM. Since GM is ‘optimal’ for L0, should we conclude our study here? The

answer is no, since GM fails to satisfy many of the desirable properties we identified in

Section 6.4, and as illustrated in Example 1. We have already observed that GM is not fair,

and does not in general satisfy column honesty (or column monotonicity) or weak honesty.

Next, we identify parameter settings for when they do hold.

Lemma 13. GM obeys weak honesty iff n ≥ 2α
1−α .

Proof. Weak honesty requires the diagonal elements to all exceed 1
n+1 . Since y < x, we

focus on y. We require y ≥ 1
n+1 i.e 1−α

1+α ≥
1

n+1 . This reduces to n+ 1 ≥ 1+α
1−α , giving the

requirement n ≥ 2α
1−α .

GM satisfies the column monotonicity condition for many i, j pairs. The

critical place in the matrix where it can be violated is between the first and second rows

(symmetrically, between penultimate and final rows). This corresponds to the problematic

behaviour of GM to report extreme outputs (0 or n) overly often in the increased privacy

regime (α > 1
2 ).

Lemma 14. GM achieves column monotonicity iff α ≤ 1
2 .

Proof. We require Pr[1|1] ≤ Pr[0|1], i.e. y ≤ αx or 1−α
1+α ≤

α
1+α . This gives the condition

α ≤ 1
2 . It is straightforward to check that this ensures monotonicity in all other columns.
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By inspection, GM is always symmetric, and row monotone. The (L0) objective function

value achieved by GM is

n+ 1

n

(
1− (n− 1)y + 2x

n+ 1

)
=
n+ 1

n

(
1− n− 1

n+ 1

1− α
1 + α

− 2

(1 + α)(n+ 1)

)
=

2α

1 + α

We next design a different explicit mechanism which achieves more of the

desired properties.

6.6.2 Explicit Fair Mechanism

Although we can achieve any desired combination of properties by solving an appropriate

linear program, it is natural to ask whether there is any non-trivial explicit mechanism that

achieves properties such as fairness with an objective function score comparable to that

of GM. We answer this question in the positive. First, we consider the limits of what can

be achieved under fairness. In the case of GM, all DP inequalities are tight. This is not

possible when fairness is demanded. A fair mechanism M with all DP inequalities tight

would be completely determined: Mi,j = yα|i−j| for some y. It is easy to calculate for

any such mechanism that there is no setting of y which ensures that all columns sum to

1, a contradiction. Hence, we cannot have a fair mechanism with all DP inequalities tight.

Nevertheless, trying to achieve tightness provides us with a bound on what can be achieved.

Lemma 15. Let F be a fair mechanism of size (n + 1) × (n + 1) with y as the diagonal

element. Then y ≤ 1−α
1+α−2α

n
2 +1 .

Proof. There are some slight differences depending on whether we consider odd or even

values of n. Without loss of generality, take n even. We will consider a fixed column j. For

all i, we are required to have Pr[i|i] = y for some y. Repeatedly applying the DP inequality,

we obtain an upper bound involving y as Pr[i|j] ≥ yαi−j when j < i and Pr[i|j] ≥ yαj−i

when i > j. Summing these for any given column j and equating to 1 provides an upper

bound on y. We get the tightest bound by picking column j = n
2 . Then y+2y

∑n
2
j=1 α

j ≤ 1,

so:

y ≤ 1

1 + 2
∑n

2
j=1 α

j
=

1− α
1 + α− 2α

n
2

+1
(6.14)

For n large enough, we can neglect the αn/2+1 term, and approximate this quantity by
1−α
1+α .

Note that for optimality under an objective function Ot,∑, we should make y

as large as possible. Hence, any optimal mechanism will have y as close to this value as

possible. Indeed, the above proof helps us to design an explicit mechanism EM that achieves

fairness. The proof argues that in column n/2, the smallest values we can obtain above and
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Figure 6.3: Explicit fair mechanism for n = 7.

below the y entry are αy, α2y and so on up to αn/2y. Then the sum of these terms is set to 1.

All other columns must also sum to 1; a simple way to achieve this is to ensure all columns

contain a permutation of the same set of terms. To ensure DP is satisfied, we should arrange

these so that row-adjacent entries differ in their power of α by at most one. Our explicit fair

mechanism EM is then defined as follows:

Pr[i|j] =

yα
|i−j| if |i− j| < min(j, n− j)

yαd
|i−j|+min(j,n−j)

2
e otherwise

(6.15)

Here, y is set to 1−α
1+α−2αn/2+1 , i.e. the value determined in Equation (6.14). From the proof

of Lemma 11 and (6.1), we have that the L0 score of this mechanism is n+1
n (1− y), as it

maximizes y subject to the bound of Lemma 11. Figure 6.3 shows the instantiation of this

mechanism for the case n = 7. Comparing to GM, we see that the diagonal elements are

slightly increased, with the exception of the two corner diagonals, which are decreased. It is

tempting to try to obtain the mechanism via the Exponential Mechanism, by using a quality

function applied to |i− j| similar in form to (6.15). Note however, that the constant factors

of 2 in its definition (2.2) leads to a considerably weaker result than this explicit construction,

equivalent to halving the privacy parameter ε. It is easy to check that in the n = 7 example,

the mechanism is symmetric, and meets all of the properties defined in Section 6.4. In fact,

this is the case for all values of n. The proof is rather lengthy and proceeds by considering a

number of cases.

Theorem 13. EM is an optimal mechanism under L0 that satisfies all properties listed in

Section 6.4.

Proof. That EM is fair follows by definition: for Pr[i|i], the definition gives yα0 = y in all

cases. Next, we argue that all column sums are 1, i.e. EM is a valid mechanism. Consider

some column j ≤ n. Observe that fixing j determines which of j and n − j is smaller.

Assume that it is j, i.e. j ≤ n/2 (the other case is symmetric), and assume n is even. Then
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we have

n∑
i=0

Pr[i|j] =
∑
|i−j|<j

yα|i−j| +
∑
|i−j|≥j

yαd
1
2

(|i−j|+j)e

=y +

j∑
i=1

2yαi +
n∑
i=j

yαd
1
2
ie = y +

n/2∑
i=1

2yαi

This sums to 1 given our choice of y. For n odd, the calculation is the same except there

is one additional term of yαdn/2e in the final sum (and we choose y to ensure that this sum

is 1). The mechanism meets our definition of symmetry (6.9), since according to (6.15),

Pr[n− i|n− j] is given by

yα|(n−i)−(n−j)| if |(n− i)− (n− j)| < min(n− j, n− (n− j))

yαd
|(n−i)−(n−j)|+min(n−j,n−(n−j))

2
e otherwise

Simplifying this expression, we observe that it is identical to (6.15).

Column Properties. Consider a fixed column j of the mechanism. As we look at neighbor-

ing entries i and i+ 1, we have four cases:

Case (1): |i− j| < min(j, n− j) and |i+ 1− j| < min(j, n− j).

Then Pr[i|j] = yα|i−j| and Pr[i+ 1|j] = yα|i+1−j|, so the probability either increases by a

factor of α (when j < i) or increases by a factor of α (when j ≥ i).

Case (2): |i− j| ≥ min(j, n− j) and

|i+ 1− j| ≥ min(j, n− j).

Then Pr[i|j] = yαd
|i−j|+min(j,n−j)

2
e, while Pr[i + 1|j] = yαd

|i+1−j|+min(j,n−j)
2

e. Depending

on the parity of i, the latter probability can only stay the same; increase by a factor of α

(only when i > j); or decrease by a factor of α (only when j > i).

Case (3): |i− j| ≥ min(j, n− j) but |i+ 1− j| < min(j, n− j).

Then we must have i < j for both conditions to hold. So we must have (combining the two

conditions)

j − i ≥ min(j, n− j) > j − (i+ 1)

We have Pr[i+ 1|j] = yαj−i−1 and

Pr[i|j] = yαd
(j−i)+min(j,n−j)

2
e ≥ yαd

2(j−i)
2
e = yαj−i

Similarly, we can show Pr[i|j] < yαj−i. Hence we have

αPr[i|j] ≤ Pr[i+ 1|j] ≤ Pr[i|j].

Case (4): |i− j| < min(j, n− j) but |i+ 1− j| ≥ min(j, n− j).
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Then we have j < i and

i− j < min(j, n− j) ≤ i− j + 1

We have Pr[i|j] = yαi−j and

Pr[i+ 1|j] = yαd
1
2

((i+1−j)+min(j,n−j))e ≥ yαd
2(i+1−j)

2
e = yαi+1−j

Similarly, we can show Pr[i|j] ≤ yαi−j . Hence αPr[i|j] ≤ Pr[i+ 1|j] ≤ Pr[i|j]

Summary of Column Properties. When i < j, the column-wise adjacent probabilities are

either the same or increase by a factor of 1/α as i increases; and when i ≥ j, then adjacent

probabilities either decrease by a factor of 1/α or stay the same. From these, we can conclude

that EM has column monotonicity (and hence is column honest).

Row properties. The analysis for the row properties (DP, and row monotone) follows the

pattern set by the column properties, based on a case analysis. Consider a fixed row i of the

mechanism. As we look at neighboring entries j and j + 1 we have four cases:

Case (1): |i− j| < min(j, n− j) and |i− (j + 1)| < min(j, n− j).

Then Pr[i|j] = yα|i−j| and Pr[i|j + 1] = yα|i−(j+1)|, so the probability either increases by

a factor of 1/α (when j < i) or decreases by a factor of 1/α (when j ≥ i).

Case (2): |i− j| ≥ min(j, n− j) and

|i− (j + 1)| ≥ min(j + 1, n− j + 1).

Then

Pr[i|j] = yαd
|i−j|+min(j,n−j)

2
e

while

Pr[i|j + 1] = yαd
|i−(j+1)|+min(j+1,n−(j+1))

2
e.

The subcases here are

(a) when j ≤ n/2 and j < i. Then

Pr[i|j] = yαd
i−j+j

2
e = yαdi/2e = Pr[i|j + 1] = yαd

i−j−1+j+1
2

e,

i.e. the probability is unchanged.

(b) when j > n/2 and j > i, then similarly

Pr[i|j] = yαd
1
2

(j−i+n−j)e

= yαd
1
2

(j+1−i+n−j−1)e

= Pr[i|j + 1]

Note that other potential cases, e.g. j < i and j ≥ n/2 are ruled out by the condition
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|i− j| ≥ min(j, n− j).

Case (3): |i − j| < min(j, n − j) but |i − (j + 1)| ≥ min(j + 1, n − j − 1). Working

through the subcases eliminates most options: if j < i we can derive 2(j + 1) ≤ i ≤ 2j, a

contradiction. This leaves j ≥ i, which leads us to

j − i < n− j

j + 1− i ≥ n− j − 1

Note that it must be that |i− (j + 1)| ≥ n− j, as the other possibility leads to i > 2(j + 1),

contradicting j ≥ i. Combining these two, we obtain j < n+i
2 ≤ j + 1. Subtracting i from

both sides, and applying the d·e operator, we obtain

dj − ie ≤ dn− i
2
e ≤ dj − i+ 1e

Since j and i are both integral, we conclude

j − i ≤ dn− i
2
e ≤ (j − i) + 1 (6.16)

Then we have Pr[i|j] = yαj−i, while

Pr[i|j + 1] = yαd
1
2

((j+1−i)+n−(j+1))e = yαd
n−i
2
e.

From (6.16), we conclude that in this case

αPr[i|j] ≤ Pr[i|j + 1] ≤ Pr[i|j].

Case (4): |i− j| ≥ min(j, n− j) but

|i− (j + 1)| < min(j + 1, n− j + 1).

This case starts similarly to the previous case. We cannot have i < j as this leads to a

contradiction, so we must have i ≥ j, and j < n− j. Then we deduce

i− j ≥ j

i− j − 1 < j + 1

These permit only two possibilities: i = 2j or i = 2j + 1. In the first of these, we obtain

Pr[i|j + 1] = yα2j−(j+1) = yαj−1

and Pr[i|j] = yαd
1
2

(j+j)e = yαj .
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Else, we obtain

Pr[i|j + 1] = yα2j+1−(j+1) = yαj

and Pr[i|j] = yαd
1
2

(j+1+j)e = yαj+1

In both cases, we have Pr[i|j] = αPr[i|j + 1].

Summary of Row Properties. From the cases analyzed above, we see that when i < j, then

adjacent probabilities are either the same or there is an increase by a factor of 1/α as j

increases; and when i > j, then adjacent probability either decreases by a factor of 1/α

as j increases, or stays the same. From these, we can conclude that EM meets differential

privacy, and is row monotone.

These collectively cover all defined properties (due to implications discussed in

Section 6.4, e.g. row monotonicity implies row-wise honesty).

6.6.3 Comparing mechanisms

In Section 6.4, we define 7 different properties, denoted as RH, RM, CH, CM, WH, F, and S.

We can seek a mechanism that satisfies any subset of these, suggesting that there are 128

combinations to explore. However, we are able to dramatically reduce this design space with

the following analysis based on the L0 score function.

First, we have shown by Theorem 13 that EM has the optimal L0 score of any

fair mechanism and has all other possible properties “for free”. Therefore, for any desired

set of properties that include F, we can just use EM. Second, we have shown by Theorem 12

that GM achieves symmetry and row monotonicity (and hence row honesty) at a cost which

is optimal for any mechanism (i.e. BASICDP). Hence for any subset of {S, RM, RH}, it

suffices to use GM.

In our experiments (Section 6.7.1), we show that there are only two remaining

behaviours: either we solve the LP for the WH property alone, or we solve the LP for WH

and CM properties. Both solutions come with symmetry (S) and row properties RH, RM at

no additional cost. However, as noted in Lemma 13, GM satisfies WH when n ≥ 2α
1−α , so

in this case, we can use GM. Last, from observations in Section 6.4, we have that CM⇒
CH⇒WH, so any demand that requires any of these properties (and not F) can be satisfied

by WM also. But in the weak privacy case that α ≤ 1
2 , GM has these properties, and so

subsumes WM.

To summarize this reasoning, in the case that α ≤ 1
2 , there are only two

competitive mechanisms: EM if fairness is required, and GM for all other cases. When

α > 1
2 , things are a little more complicated, so we show a flowchart in Figure 6.4: from 128

possibilities, there are only four distinct approaches to consider (two explicit mechanisms,

and two solutions to an LP with different constraints), and the choice is determined primarily
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Figure 6.4: Flowchart of properties for L0 objective (α > 1
2 ).

by whether the mechanism is required to satisfy fairness, column properties, weak honesty,

or none. We also consider the baseline method UM for comparison. We present a summary

of these four named mechanisms in Figure 6.5: the explicit GM, UM and EM, and WM
which is found by solving an LP. We write ‘—’ for a property when this depends on the

setting of the parameters (discussed in the relevant section). We see that EM has a very

similar objective function value L0 (recalling that we are trying to minimize this value), and

all the properties considered so far. We do not have a closed form for the L0 score of WM,

as it is found by solving the LP; however it is no less than that for GM (since GM satisfies a

subset of the required properties of WM), and no more than that of EM (since EM satisfies

all properties).

At this point, we might ask how different are these mechanisms in practice

— perhaps they are all rather similar? Figure 6.6 shows this is not the case for a small

group size (n = 4). For a moderate value of the privacy parameter α = 0.9, it presents

the three non-trivial mechanisms using a heatmap to highlight where the large entries are.

We immediately see that EM concentrates probability mass along a uniform diagonal (as
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Property GM WM EM UM
Symmetry (S) Y Y Y Y

Row Monotone (RM) Y Y Y Y
Column Monotone (CM) — — Y Y

Fairness (F) N N Y Y
Weak Honesty (WH) — Y Y Y

L0
2α
1+α ≥ 2α

1+α ≈ 2α
1+α ·

n+1
n 1

Figure 6.5: Properties of named mechanisms.

Figure 6.6: Heatmaps for GM, EM, WM with n = 4

required by fairness). Both GM and WM tend to favour extreme outputs (0 or 4 in this

example) whatever the input, although GM is very skewed in this regard while WM is more

uniform in allowing non-extreme outputs.

Last, we check that what we are doing is not a trivial modification of known

mechanisms. Prior work [36, 37] showed how optimal unconstrained mechanisms can

be derived from GM by transformations. Gupte and Sundarajrajan give a simple test: a

mechanismP can be derived from GM iff every set of three adjacent entries in the mechanism

satisfy

(Pr[i|j]− αPr[i|j − 1]) ≥ α(Pr[i|j + 1]− αPr[i|j])

We applied this test to mechanisms WM and verified that this condition is indeed violated

for n > 1. For EM, this condition is automatically broken for all n > 1: we have Pr[2|0] =

Pr[2|1] = yα, while Pr[2|2] = y. Then the condition is

yα(1− α) ≥ yα(1− α2) ≡ 1 ≥ (1 + α)

which is always false for α > 0. Hence, these mechanisms are not derivable from GM.
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(a) Varying group size (b) Varying α

Figure 6.7: Combinations of properties with Weak Honesty.

(a) α = 2
3

(b) α = 10
11

(c) α = 99
100

Figure 6.8: Final groups of mechanisms with distinct behaviours.

6.7 Experimental Evaluation

The purpose of our experimental study is two-fold. In Section 6.7.1, we substantiate our

earlier claims about properties of mechanisms satisfying weak honesty (but not fairness). In

what follows, we look at other measures of utility of these mechanisms, to understand their

robustness.

Default Experimental Settings. All experiments in this work were implemented in Python,

making use of the standard library NumPy to handle the linear algebraic calculations, and

PyLPSolve [141] to solve the generated LPs. Evaluation was made on a commodity machine

running Linux. We omit detailed timing measurements, as the time to solve the LPs generated

was negligible (sub-second).

Experimental Setting. We considered a variety of settings of parameter α (typical values

chosen are {1
2 ,

2
3 ,

10
11 ,

99
100} and group size n (ranging from 2 up to hundreds).

6.7.1 L0 Objective Function

Our first experiment analyzes the effect of weak honesty combined with other properties

drawn from {CH, CM, RH, RM}, including the empty set. There are 9 meaningful combina-

tions of properties to ask for, which we write as {∅, RH, RM, CH, CM, RH+CH, RH+CM,
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(a) Estimating young population (b) Estimating gender balance (c) Estimating income level

Figure 6.9: Empirical Error Probability on Adult Dataset for α = 0.9.

Figure 6.10: L0,1 score for Binomial data, for n = {4, 8, 12} and α = {0.91, 0.67}.

RM+CH, RM+CM}— other combinations reduce to these, since RM implies RH, and CM

implies CH.

As discussed in Section 6.6.3, there are cases when the solution found by

solving the LP has cost 2α
1+α and is identical to GM: these are when n ≥ 2α

1−α and only

row-wise properties are requested, consistent with Figure 6.4. This is borne out in Figure

6.7: we see that when WH alone is requested, or in combination with only row properties

(RH or RM) we get a lower L0 value than when any column properties (CH or CM) are

requested. Figure 6.7(a) shows the case for different values of n. When n > 2α
1−α , which

is 6.33 in this example (where α = 0.76), the cost of WH alone is 2α
1+α = 0.864, the cost

of GM. For large α (Figure 6.7(b)), the cost of all combinations of WH are the same, and

identical to the cost of EM; as α is decreased, we see two behaviours, where the lower L0

cost is that of GM. We confirmed this behaviour for a wide range of n and α values. From

now on, we use WM to refer to the mechanism with WH, RM and CM properties.

The relationship between the L0 scores for the three mechanisms is further

clarified in Figure 6.8. The plots show the L0 scores of GM, WM, EM and UM for different
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Figure 6.11: Histograms of L0,d scores for binomial data.

values of α. In Figure 6.8(a), α = 2
3 so the threshold 2α

1−α = 4. Then GM satisfies WH for

the whole range of n values shown, so WM converges on GM, while EM has a higher (but

decreasing) cost. For Figure 6.8(b), α = 10/11 so the threshold is 20. Indeed, we see that

the cost of WM converges with GM at n = 20. Last, in Figure 6.8(c), the threshold of 198 is

far above the range of n values shown, so WM does not converge on GM here. Rather, for

this high value of α, the y value for EM is above 1
n+1 for all n: so in this case EM has weak

honesty, and the cost of WM remains the same as that of the optimal fair EM.

Now we verify the performance of our mechanisms on real and synthetic

datasets. In these experiments, the users are partitioned into small groups and the goal is to

release the group totals privately under ε-DP/(ε, 1)−LLDP. Unlike LDP, our goal is not to

aggregate the histograms but only to verify the deviation of the perturbed values from the

truth by various error metrics.

6.7.2 Experiments On Real Data

We make use of the UCI Adult dataset, a workhorse for privacy experiments [142]. Our

instance of the dataset contains demographic information on 32K adults with 15 columns

listing age, job type, education, relationship status, gender, and (binary) income level. We cre-

ated three binary targets, treated as sensitive: income level (high/low), gender (male/female),

and young (age over/under 30). To form small groups, we gathered the rows (corresponding

to individuals) arbitrarily into groups of a desired size.
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Figure 6.12: Root mean square error plots for binomial data.

Figure 6.9 shows results for the L0 objective, that is, where we focus on the

fraction of times the mechanism reports an incorrect answer, as a function of group size.

Specifically, we count the number of groups whose noisy count for each target attribute is

not equal to their true count. We expect this quantity to be fairly high, as it measures how

often our mechanism is honest, i.e. returns the true input. Other experiments (not shown)

computed the corresponding probability for returning an answer that is close to the true one,

e.g. off by at most one, and showed similar patterns. The plot includes error bars from 50

repetitions of this process to show 1 standard error.

Observe first that the performance of UM is essentially independent of the

input data: the chance of it picking the correct answer is always 1 − 1
n+1 for a group of

size n, and indeed we see this behaviour (up to random variation). We would hope that

our optimized mechanisms can outperform this trivial method. Perhaps surprisingly, on

this data GM does appreciably worse. This highlights the limitations of GM. In this data,

the common inputs are around the middle of the group size (i.e. typically close to n/2).

It is on these inputs that GM does poorly, and only does well for inputs that are 0 or n,

which happen to be rare in this dataset (in other words, the data distribution does not match

the prior for which GM is optimal). The condition of weak honesty is not sufficient to

improve significantly over random guessing: for this data, we see that WM tracks UM
quite closely. It is only the most constrained mechanism that fares better on this evaluation

metric for this data: EM which achieves fairness gives the best probability of returning the

unperturbed input. In corresponding experiments with higher values of α in the range 0.9 to

0.99, corresponding to the strongest privacy guarantees adopted in prior work on differential

privacy, there is not much to choose between EM and WM, and it gets even harder to show

substantial improvement over uniform guessing. In order to understand the behaviours of

the mechanisms further, we next consider synthetic data, where we can directly control the
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Figure 6.13: Error histograms on group size 8 for p = 0.1 and p = 0.7, with α =
{0.91, 0.67}.

data skewness within groups.

6.7.3 Experiments On Synthetic Data

In our experiments with synthetic data we generate a population of 10, 000 individuals each

with a private bit and divide them into small groups of the same size, n. Each individual

has the same probability p of having their bit be one, so the distribution within each group

is Binomial. Hence, the expected count for each group is pn. Our experiments vary the

parameters p, n and α.

L0,1 Error. Our experiments so far have used the target objective function L0 to evaluate

the quality of the mechanism. This is sufficient to distinguish the different mechanisms, but

all mechanisms achieve a score which is still quite close to 1, obtained by uniform guessing.

To better demonstrate the usefulness of the obtained mechanisms, we use other functions

to evaluate their accuracy. Figure 6.10 uses the related measure of L0,1 i.e. the fraction of

groups which output a value differing from their true answer by more than 1, as we vary data

distribution (determined by p), group size n, and privacy parameter α. We stress that though

we use L0,1 for evaluation, we continue to use mechanisms designed for minimizing the L0

error. Each subplot in the figure represents a configuration of 〈α, n〉, describing how L0,1

error changes with input distribution parameter p. Each experiment is repeated 30 times and

we observe that the results have very small variance.

It is apparent that the shape of the input distribution has a pronounced effect on

the quality of the output. We confirm that GM can do well when the input is very biased

117



(p close to 0 or 1), which generates more instances with extreme input values. However,

when the input is more spread across the input space, the more constrained mechanisms

consistently give better results. For higher α, the constrained methods have similar behaviour,

and improve only slightly over UM (while GM is often worse than uniform). Enforcing

fairness tends to make EM less sensitive to the input distribution, except when the input is an

extreme value (0 or n). When α is lower (second row), the overall scale of error decreases

and WM and GM converge, as noted previously.

L0,d Error. In the previous experiment, we fixed d = 1 and evaluated our mechanisms for

variety of input distributions. Next we vary d while holding input size and input distributions

steady, and compute L0,d error. Figure 6.11 plots the fraction of population reporting a value

that is more than d steps away from the true answer for various d values with n = 8. This

captures the probability mass in the tail of each mechanism.

In the top row, we use a more proportionate input distribution. Here, EM
outperforms all other mechanisms, sometimes by a substantial fraction. Interestingly, the

margin between EM and GM only increases with larger d. Once again we see that for higher

α values, use of GM can yield accuracy worse than mere random guessing. For lower α’s

GM’s accuracy increases dramatically but still remains worse than EM’s.

In the bottom row, the input distribution is more skewed, which tends to favour

GM. However, EM does not do substantially worse than GM even for this biased input

distribution. The intermediate mechanism found by WM tends to fall between GM and EM.

We observed similar behaviour for other values of n.

Root Mean Square Error (RMSE). Our next set of experiments compute the RMSE error

(a measure of variance and bias of a mechanism) of estimates from small groups. Note that

none of our mechanisms are designed to optimize this metric, but we can nevertheless use it

as a measure of the overall spread of error. Figure 6.12 shows plots with error bars showing

one standard deviation from 30 repetitions.

As seen in previous experiments, a more symmetric input distribution (p closer

to 0.5) tends to be easier for most mechanisms — although we see cases where GM finds

this more difficult. Increasing the group size increases the RMSE, as there is a wider range

of possible outputs, and the constraints ensure that there is some probability of producing

each possible. Yet again, we see that increasing α tends to make GM less competitive and

find many cases where GM is worse than random guessing (UM). The interesting case may

be for fairly high privacy requirements (α = 0.91), where we observe that EM tends to give

lower error across all group sizes and input distributions.

Error Histograms. As previously discussed, the measure of error probability gives some

insight into the difference between mechanisms, but holds them to a high standard. This

probability is high for all mechanisms, as we do not expect them to give the exact correct
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Figure 6.14: Root mean square error plots on Binomial data for L1 objective function
mechanisms.

Figure 6.15: Root mean square error plots for binomial data for L2 objective function
mechanisms.

answer. To see the spread of error from another perspective, we plot error histograms for our

mechanisms — for a given input distribution, how often is the response correct, how often is

it an overestimate by one, and so on. For example, when an input of 1 is reported as 0, the

error is −1. Figure 6.13 shows the error histograms for a representative group size {8} with

p = 0.1 and p = 0.7 for two extreme α values. For each case, we show error histograms for

the three mechanisms EM, GM, and WM.

In the p = 0.12 case, the input does not permit significant underestimation

(most true answers are small). All mechanisms are more likely to give zero error. This is

enforced by the fairness (for EM) or weak honesty (WM) properties. For GM, we see that for

α = 0.91, there is a second peak corresponding to an output of n. So it tends to have a larger
2p is a parameter for producing synthetic input data introduced in 6.7.3.
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Figure 6.16: Line plots for L1,d scores for binomial data (p = 0.1 and p = 0.6).

Figure 6.17: Line plots for L2,d scores for binomial data (p = 0.1 and p = 0.6).

error when it does not output the true answer. We observe that the column monotonicity

properties of EM and WM tend to force a smoother error distribution.

Some similar behaviour is observed for p = 0.7. Here, the support of the input

distribution is broader, and hence so is the support of the error distribution. We still observe

that GM tends to have a bimodal error distribution for high α, with a dip around zero error.

As α decreases, the mechanisms become more similar, in particular WM tends to look more

like GM (as we have seen, they converge to the same mechanism for n ≥ 2α
1−α ). We have

observed similar trends for other n values.

6.7.4 L1 and L2 objective functions.

We have already seen that unconstrained mechanisms for L1 and L2 can have pathological

outcomes. In this section, we return to these objective functions, and study their behaviour

under the imposition of conditions. In contrast to the L0 case, we observed that the number

of distinct mechanisms obtained under selection of different subsets of conditions was quite
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large. In order to constrain the number of mechanisms under consideration, we restrict

our attention to a small number of options: enforcing Weak Honesty (denoted WM) or

Fairness (denoted FM) only; or requiring either no properties at all (the unconstrained

mechanism, UCM), or all properties simultaneously (the all properties mechanism, AM).

We also compare to the trivial uniform mechanism (UM) for calibration. Among these four

options, we expect UCM to obtain the lowest error since it can directly optimize the target

function, with the comensurate disadvantages discussed previously.

Root Mean Square Error (RMSE). Figures 6.14 and 6.15 show plots for the root mean

square error on binomially distributed input data, similar to Figure 6.12. For this measure

of accuracy, UCM provides among the best results. However, for small groups, we would

tend to prefer WM, since it provides a similar level of accuracy while avoiding the degerate

behaviours. AM performs well when the input distribution is close to the symmetric case

(p = 0.5), but has weaker results when the input is more skewed (smaller or larger p values).

FM is observed to do better as the group size increases.

L1,d and L2,d functions. Figures 6.16 and 6.17 show plots of the errors for the functions

L1,d and L2,d respectively, similar to Figure 6.11 for L0,d. When p = 0.1, most groups

have sums close to 0. For larger α’s and smaller d’s, UCM performs worst. This situation

is reversed as d increases. That is, the mechanism reduces the probability mass that is far

from the true answer, and the expense of increasing the mass close to the true answer but not

equal to it. It tends to map most inputs to outputs close to bn2 c. UCM is then the preferred

mechanism for more balanced distributions (p = 0.6). AM, FM and WM all behave quite

similarly to each other, and their lines almost overlap for smaller α. In summary, AM, FM are

slightly preferable for skewed input distributions and strong privacy requirements, whereas

WM is suitable in general for distributions with less bias.

6.8 Linear Programming Framework For LDP

It is possible to extend Ghosh et al.’s LP framework to LDP with a simple modification and

the returned mechanism can be used for histogram aggregation.

Model. We consider the local model once again. Each user has an item from {0, .., n− 1}. 3

Our goal is to design a LDP compliant n × n matrix that can be used as a mechanism to

estimate the frequency of each item j ∈ [n]. Equation 6.17 to 6.20 denote the LP framework

3We represent the domain size by n instead of D to remain consist with the notations used in this chapter.
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to design the LDP mechanisms for histogram aggregation.

minimize:
n∑
j=0

wj

n∑
i=0

|i− j|pρi,j (6.17)

subject to: 0 ≤ ρi,j ≤ 1 ∀i, j ∈ [n] (6.18)
n∑
i=0

ρi,j = 1 ∀j ∈ [n] (6.19)

ρi,j ≥ αρi,k, and ρi,k ≥ αρi,j ∀i, j, k ∈ [n] : j 6= k (6.20)

The first three equations remain the same in LDP. Note the difference in equation 6.20 due to

LDP constraints. Since any pair of numbers j, k ∈ [n] are in the neighborhood, the indices

in the conditional probabilities change. For p = 0, the LP solver returns the following

interesting mechanism.
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...
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. . .

...
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1−p
n−1

1−p
n−1

1−p
n−1 · · · p


Here p = 1

1+(n−1)α . Observe that this mechanism is equivalent to GRR. GRR already

satsifies all properties we have proposed without explicit enforcement. We observed that

forcing these properties did not change shape of the mechanism.

Remarks About GRR. An immediate question to think about is – despite its optimality,

why is GRR significantly inaccurate compared to other mechanisms such as OUE, OLH

and HRR? The answer lies in the formulation of the linear program. The above formulation

only optimizes for a given loss function in the space of mechanisms with the same domain

and the range size i.e. n4. And GRR is indeed the most accurate mechanism under this

constraint. However, none of the other mechanisms have this constraint. For example, OUE

maps an item i ∈ [n] (originally represented with log n bits) to a n bit vector. Similarly,

HRR summarizes an n bit item with a single bit.

Constrained Optimization Under LDP. Optimizing for L1 and L2 under LDP constraints

on the other hand produced pathological mechanisms similar to the ones in figure 6.1. It is

possible to remove these anomalies by forcing a subset of properties. However, this is not an
4This is why we can represent GM/GRR as a square matrix.
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immediately attractive avenue to pursue since the obtained mechanisms are only optimal for

a given loss function when the range and the domain are the same. We can always design

better mechanisms in local setting without this constraint as we have seen. It may be possible

to modify this framework to produce rectangular mechanisms but thorough understanding

of this direction requires a separate investigation.
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Chapter 7

Conclusions and Impact Statement

7.1 Summary and Future Work

7.1.1 Marginal Queries

In chapter 4, we have provided algorithms and results for the central problem of private

release of marginal statistics on populations. Our main conclusion is that methods based on

Fourier (Hadamard) transformations of the input are effective for this task, and have strong

theoretical guarantees in terms of accuracy, communication cost, and speed. Although the

technical analysis is somewhat involved, the algorithms are quite simple to implement and

so would be suitable for inclusion in current LDP deployments. Here is a direction worth

pursuing in future.

Orthogonal Decomposition. It is natural to ask whether there are alternative decomposi-

tions for categorical data which share many of the properties of the Hadamard transform

(orthogonal, requiring few coefficients to reconstruct low-order marginals). One such

approach is the Efron-Stein decomposition [143] which is a generalization of Hadamard

transform for non binary contingency tables. Similar to HT, it is possible to extract a set of

Efron-Stein coefficients necessary and sufficient to evaluate a full set of a k−way marginals.

One could then design an algorithm similar to INPHT that adds noise to a random coefficient,

allowing an unbiased estimate to be constructed by an aggregator. We conjecture that for low

order marginals, a scheme based on such decomposition will be among the best solutions.

7.1.2 Range Queries

In chapter 5, we have seen that we can accurately answer range queries under the model of

local differential privacy. Two methods whose counterparts have quite differing behaviour in

the centralized setting are very similar under the local setting, in line with our theoretical

analysis. We sketch four possible extensions for future work:
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Multidimensional range queries. Both the hierarchical and wavelet approaches can be

extended to multiple dimensions. Consider applying the hierarchical decomposition to

two-dimensional data, drawn from the domain [D]2. Now any (rectangular) range can be

decomposed into 4(B − 1)2 log2
BD B-adic rectangles (where each side is drawn from a

B-adic decomposition), and so we can bound the variance in terms of (B − 1)4 log4
BD.

More generally, we achieve variance depending on ((B − 1) logD)2d for d-dimensional

data. Similar bounds apply for generalizations of wavelets. These give reasonable bounds

for small values of d (say, 2 or 3). For higher dimensions, we anticipate that coarser gridding

approaches would be preferred, in line with [121].

Advanced data analysis. Many tasks in data modeling and prediction can abstractly be

understood as building a description of observed data density. The statistic of area under

curve (AUC) defined in Section 2.5.3 is one such example. Recall that the AUC statistic is

the empirical probability that a randomly sampled positively labeled score zi is larger than a

randomly sampled negatively labeled score zj .

Consider an environment with each user i holding a pair (zi, yi) ∈ [−d, d]×
{−1, 1}, d < ∞. We discretize the scores from [−d, d] to [D] and aggregate the score

histograms H+, H− ∈ RD corresponding to the two labels. Assuming that the bins in the

histograms are arranged in sorted order, the equation 2.12 can be rewritten as below.

AUC =

∑[D]
i=0

∑i−1
j=0H

+[i]×H−[j]∑[D]
i=0H

+[i]
∑[D]

j=0H
−[j]

(7.1)

In equation 7.1, we are simply multiplying the value of CDF [0, i−1] inH− to the frequency

of ith score in H+. Consider the local environment once again. Our goal is to estimate

the AUC in a non-interactive fashion under a LDP guaratnee. Assuming that the labels are

private too, a naive way could be to aggregate the flat joint histogram of size 2D using a

FO. The error in aggregation of AUC due to the noise is O(D2VF ). Alternatively, using HH

or HaarHRR to find the required CDF’s by answering the prefix queries would reduce the

error to O((B − 1)DVF log2
BD). VF here is the variance incurred in the estimation of the

multiplication of two bin counts. The discretization error however would remain the same

in both the approaches. Increasing D would reduce the discretization error but increase the

error due to noise. Therefore, the first key challenge is to analytically find an expression for

error in estimation as a function of D under suitable smoothness assumptions on the input

distribution. Then one can find a D that balances the two errors.

Range Mean Estimation In Key-Value Pairs Setting. Our proposals can also be extended

to the setting when the data are key-value pairs i.e. each user has a private integer valued key

zi ∈ [D] and a corresponding numeric value vi ∈ [−1, 1]. An interesting question to study

is to find the mean of values of the keys in a given range [a, b] under LDP constraints. More
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formally,

M[a,b] =

∑N
i=1 vi × Ia≤zi≤b∑N
i=1 Ia≤zi≤b

Note that the accuracy of mean estimation depends on the accuracy of range estimation.

Here is our flat baseline solution. We first have each user discretize the values into {−1, 1}
through this rounding scheme — Pr[v′i = −1|vi] = 1−vi

2 ,Pr[v′i = 1|vi] = 1+vi
2 . Then

we estimate the joint histogram of size 2D using a FO. Let f̂−1
j and f̂1

j denote estimated

frequency of −1’s and 1’s for a key j ∈ [D]. It is easy to see that an unbiased estimation for

the sum of the values corresponding to the key j is given by f̂1
j − f̂

−1
j . Therefore, the M̂a,b

is estimated as below.

M̂[a,b] =

∑
a≤b f̂

1
a − f̂−1

a∑
a≤b f̂

1
a + f̂−1

a

Once again, the variance of estimation in this flat approach increases linearly with the

range size. Instead, we can slightly modify HH to maintain 2`+1 bins (instead of 2`)

at each level ` ≤ logBD and evaluate the mean of a range of length r using atmost

4(B − 1) logB(r) logB D nodes. We conjecture that this solution will be among the best

performing ones. This problem becomes more challenging when users hold a set of key

value pairs of unequal lengths and requires a fresh investigation.

Range Queries In Itemset Setting. Throughout chapter 5, we have assumed for simplicity

that each user holds only a single item. In more realistic scenarios, users may have a set of

items of unequal lengths. Sets of differing sizes pose a great challenge at aggregator’s end

in estimation. We now sketch a first-cut approach to extend our solution to deal with this

requirement. Our goal in this case is to identify and evaluate only the heavy intervals.

Qin et al. [81] proposed an interative solution for finding top-k heavy hitters in

the set valued setting i.e. each user has a private set of items. We adapt some of the elements

of their total solution in our case. We can have each user pad their set si with dummy items

to ensure that all sets are of the same preagreed cardinality `1. Typically `1 is set to a value

larger than 90% of the set sizes. In the first round, each user perturbs a randomly sampled

item from si with budget ε2 using a FO. Based on the frequencies of the items, the aggregator

then prepares a set of potential heavy hitters items H and shares it with the users. In the next

round, users find the heavy hitter items they have by performing the intersection si ∩H and

append this list with additional items from H to be make it of length `2 = 2k. Finally, user

invokes HH or HaarHRR for a randomly sampled heavy hitter item with ε
2 . The aggregator

can set the count for the non heavy hitter items to 0 and ignore the queries that involve all

non-zero counts. This is a good baseline but there is a lot of scope for improvement since
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we are implicitely assuming that heavy intervals only consists of top-k elements which may

not be the case. Besides, theoretical measurement of the quality this heuristic is far from

immediate.

7.1.3 Count Queries

Chapter 6 proposed and studied several structural properties for privacy preserving mechan-

isms for count queries. We show how any combination of desired properties can be provided

optimally under L0 by one of a few distinct mechanisms. Our experiments show that the

“optimal” GM often displays the undesirable property of tending to output extreme values (0

or n). In practice, this means it is often not the mechanism of choice, particularly when α is

large (above 0.7), but can be acceptable for smaller privacy parameters. EM and WM are

quite different in structure, but are often similar in performance.

It is natural to consider other possible properties—for example, one could

imagine taking a version of the DP constraint applied to columns of the mechanism (in

addition to the rows): this would enforce that the ratio of probabilities between neighboring

outputs is bounded, as well as that of neighboring inputs. The next logical direction is to

provide a deeper study of mechanisms with various properties using L1 or L2 as objective

function, building on our empirical observations. It will be interesting to study tailor-made

linear programming mechanisms that aim to optimize other queries such as range queries.

7.2 Impact Statement

This thesis made some timely contributions to the large stream of works on differential

privacy that appeared in the last five years. Here is how we think the advancements proposed

in this thesis influence the overall landscape of DP.

• Through the case studies of Hadamard transform and discrete Haar transform, we

emphasize the importance of reconsidering the approaches previously proposed in the

centralized model. Both the transforms were originally proposed in the centralized

case but superseded by more sophisticated approaches. Interestingly, these discarded

transforms re-emerge and in fact become the most preferred methods in the local case.

• We establish and promote the Hadamard transform based solution as a generic histo-

gram aggregation primitive in chapter 5. We are confident that this primitive will be

used as the preferred method in the follow up works since it has the same accuracy as

OUE and OLH without their drawbacks.

• It is expected that both Hadamard and discrete Haar transform will find more applica-

tions in the LDP contexts due to their rich mathematical properties.
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• A line of research in DP attempts to seek the possibility of designing generic all

purpose mechanisms optimizing on a loss function such as expected utility. The idea

is that the data released via such mechanisms could be used for multiple potentially

independent analysis tasks hoping that these generic mechanisms will be fit for most

tasks. We build a strong case against such one-size-fits-all mechanisms by revealing the

weaknesses in GM and the linear programming framework. Our study demonstrates

the value of understanding the properties of the dataset (e.g. input distribution) before

employing of-the-shelf mechanisms and developing solutions tailored for the task at

hand.

Finally, we conclude this dissertation by spelling out the limitations of our study.

7.3 Limitations

• Our solutions developed for marginal and range queries require a large number of

users (or much larger privacy budgets) to achieve acceptable values of accuracy. This

means these methods are not suitable for smaller datasets. However, this in general is

a well-known limitation of the local model.

• Throughout the dissertation, we assume that each data point is generated independently

from the same distribution. Furthermore, each participant contributes exactly to a

single record in the dataset and the dataset does not undergo any updates once gathered.

While these assumptions are commonplace in a large body of LDP literature; it limits

the applicability of these solutions including ours. However, we conjecture that a

similar algorithmic building blocks will used in the solutions designed for the scenarios

where these assumptions are relaxed.

• The constrained mechanisms we proposed for L0 are most effective for small datasets

(n ≤ 20). As n gets larger, GM starts exhibiting most properties.

• The LP mechanisms are optimal for a given loss function. Identifying use cases for

each of the loss functions is not immediate and beyond the scope of our discussion.

Ghosh et al.’s LP framework provides mechanisms optimal when the range and the

domain are of equal size. As we have seen in the local case, one may be able to design

more accurate mechanisms with this restriction relaxed.
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