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Abstract
In this paper, we define a quasi-order on the set of read-once Boolean functions and show
that this is a well-quasi-order. This implies that every parameter measuring complexity of
the functions can be characterized by a finite set of minimal subclasses of read-once func-
tions, where this parameter is unbounded. We focus on two parameters related to certificate
complexity and characterize each of them in the terminology of minimal classes.
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1 Introduction

A Boolean function f is called read-once if it can be represented by a Boolean expres-
sion using the operations of conjunction, disjunction and negation, in which every variable
appears exactly once. In many applications and theoretical studies of read-once functions,
including the present paper, the operation of negation is irrelevant, because the unique
occurrence of a negated variable x can be renamed as x.

Read-once functions constitute a small but remarkable class of Boolean functions. They
enjoy many nice properties and find applications across various fields, such as computa-
tional learning theory [2], circuit design [16], game theory [17], fault diagnosis [29], etc. A
subclass of read-once functions, known as linear read-once [26] or nested canalyzing [21]
functions, is important in biological applications. The importance of read-once functions is
also due to the fact that they are closely related to other mathematical structures, such as
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cographs [20], separable permutations [1], or series-parallel partial orders. For more infor-
mation on read-once functions we refer the reader to the book [13], which is one of the most
comprehensive sources of information on Boolean functions and which devotes a chapter to
this class.

All read-once functions have a simple structure, but not all of them are equally simple.
With a closer look at this class, we discover a complex world, where many parameters
measuring complexity of the functions, such as sensitivity or certificate complexity, can
be arbitrarily large. On the other hand, we observe that this world is well-organized. To
formalize this notion, we define a quasi-order on the functions in this class and show that
this is a well-quasi-order. This implies, in particular, that for every parameter, which is
unbounded in the class of read-once functions, there is a collection of “critical points”, i.e.
minimal subclasses where the parameter jumps to infinity.

The notion of critical classes, also known as critical properties [25], can be viewed as a
generalization of the notion of minimal obstructions, which is a customary way of describ-
ing downward closed partial orders (lower sets). In the land of permutations, lower sets are
known as pattern classes and every pattern class can be described in the terminology of
minimal permutations avoiding it. In the world of graphs, there exist different partial orders
(minors, topological minors, induced minors, vertex minors, subgraphs, induced subgraphs
etc.) and each lower set admits a characterization in terms of minimal obstructions (minimal
minors, topological minors, etc.). The universe of Boolean functions also admits different
types of orderings (see e.g. [12, 37]) and closed classes of functions admit various charac-
terizations in terms of minimal obstructions (see e.g. [38]). In particular, in [35] the reader
can find a characterization of the class of read-once functions in the terminology of minimal
subfunctions that do not belong to this class.

To emphasize the importance of the characterization of closed classes of combinatorial
structures in terms of minimal obstructions, let us consider the following example. In 1969
Journal of Combinatorial Theory published a paper entitled ‘An interval graph is a compa-
rability graph’ [19]. One year later, the same journal published another paper entitled ‘An
interval graph is not a comparability graph’ [14]. Each of the two classes is closed under
taking induced subgraphs, and for each of them, there is a list of minimal forbidden induced
subgraphs. Apparently, in 1969 this list was not available for at least one of them, because
forbidden graphs provide a simple way of comparing two classes.

Now let us shift our discussion from lower sets to families of lower sets and ask whether
a family A of sets, which is downward closed under the inclusion relation, can be char-
acterized in terms of minimal sets that do not belong to A. In a well-quasi-ordered world,
the answer to this question is ‘yes’. For instance, the graph minor relation is known to be a
well-quasi-order [33], and in the family of minor-closed classes of graphs the planar graphs
constitute a unique minimal obstruction for classes of bounded tree-width [32]. The pattern
containment relation defined on the set of permutations is generally not a well-quasi-order.
However, it may become a well-quasi-order when restricted to specific classes, such as sep-
arable permutations. As a result, any property of pattern classes of separable permutations
can be described by means of critical classes, i.e. minimal classes that do not possess this
property. In particular, in [1] the family of subclasses of separable permutations that have
rational generating functions has been characterized by means of two critical classes. Sim-
ilarly, in [8] the family of subclasses of cographs of bounded linear clique-width has been
characterized by means of two subclasses, where this parameter is unbounded.

In the present paper, we develop a similar approach to identifying critical properties
of read-once functions. Three most important complexity measures of Boolean functions
are sensitivity, block sensitivity and certificate complexity, denoted s(f ), bs(f ) and C(f ),
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respectively. It is known that for any Boolean function f we have s(f ) ≤ bs(f ) ≤ C(f )

and C(f ) ≤ bs(f )s(f ). Also, the solution [18] of a long-standing open problem, known
as sensitivity conjecture, shows that bs(f ) ≤ s(f )c for a constant c. Therefore, all three
parameters are equivalent in any class X of functions in the sense that either all of them
are bounded or all are unbounded in X. Moreover, in the universe of read-once functions
the three parameters coincide [27] and admit a simple characterization in terms of critical
classes: elementary disjunctions, i.e. functions of the form x1 ∧ . . . ∧ xk , and elementary
conjunctions, i.e. functions of the form x1 ∨ . . .∨xk are the only two unavoidable structures
in any read-once function of large certificate complexity. This conclusion has a Ramsey-
type flavour and can be derived directly from Ramsey’s Theorem by analogy with the fact
that cliques (complete subgraphs) and independent sets (edgeless subgraphs) are the only
two unavoidable structures in any graph of large order (the number of vertices).

We observe that Ramsey-type arguments is a typical approach to identifying unavoid-
able structures [36] and many graph parameters have been characterized in this way, see
e.g. [11, 24]. With the advent of parameterized complexity, the gallery of graph parameters
has been enriched with a myriad of new representatives, such as shrub-depth [15] or distin-
guishing number [4], that allow to distinguish various new graph properties and provide a
fine-grained analysis of their complexity.

To enrich the gallery of Boolean complexity measures, in this paper we introduce two
new parameters, both extending certificate complexity, and characterize each of them in
terms of critical properties of read-once functions. A graph-theoretic analog of one of these
two parameters has been recently shown to be responsible for the Ramsey number to be
linear in a class of graphs [6]. In the terminology of critical properties of functions this
parameter is characterized by two classes: read-once DNFs (disjunctive normal forms) and
read-once CNFs (conjunctive normal forms). Interestingly, translated to the language of
separable permutations, these two classes of functions coincide with the two classes of
permutations that are critical for classes with rational generating functions.

The organization of the paper is as follows. In Section 2, we introduce basic terminology
and notation. In Section 3, we define a quasi-order on the set of read-once functions and
show that this is a well-quasi-order. Section 4 is devoted to two new parameters and their
characterization in terms of minimal classes of read-once functions, where these parameters
are unbounded. Section 5 concludes the paper with a number of remarks and open problems.

2 Read-Once Formulas, Trees, and Functions

Let V be a countable set of variables.

2.1 Formulas

The notion of a formula over the basis {∨,∧} is defined as follows:

• A variable from V is a formula over the basis {∨,∧}.
• If F1 and F2 are formulas over the basis {∨,∧}, then the expressions (F1 ∨ F2) and

(F1 ∧ F2) are formulas over the basis {∨,∧}.
Note that in formulas, ∨ and ∧ are symbols of Boolean operators. A formula F over the

basis {∨,∧} is called a read-once formula if each variable, that appears in F , appears in F

exactly once. We will represent read-once formulas over the basis {∨,∧} by read-once trees
over the same basis.
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2.2 Trees

First, we define the notion of a binary tree with the output. This is a directed tree in which
we fix a node, called the output, and orient all edges towards the output. In this tree, each
node either

• has no entering edges, in which case we call it an input or
• has exactly two entering edges that are labelled with l and r , in which case we call it a

gate.

Each node of the tree with the exception of the output has exactly one leaving edge. The
output has no leaving edges.

Let v, v1, v2, v3 be nodes of a binary tree with the output. If two edges labelled with l and
r leave the nodes v1 and v2, respectively, and enter the node v, then we call v1 and v2 the
parents of v. The node v1 is called the l-parent of v and the node v2 is called the r-parent
of v. If an edge leaves the node v and enters the node v3, then we call v3 the child of v.

A read-once tree over the basis {∨,∧} (ROT) is a binary tree with the output in which
inputs are labelled with pairwise different variables from V and each gate is labelled with a
symbol of Boolean operator from the set {∨,∧}. A gate labelled with the symbol ∨ is called
a ∨-gate, and a gate labelled with the symbol ∧ is called a ∧-gate.

2.3 Correspondence Between Trees and Formulas

There is a one-to-one correspondence between read-once trees and read-once formulas over
the basis {∨,∧} that can be described as follows.

Let T be a read-once tree. With each node v of T we associate a formula Fv over the
basis {∨,∧}. If v is an input labelled with a variable x then Fv = x. Let v be a gate with
the l-parent v1 and the r-parent v2. If v is a ∨-gate, then Fv = (Fv1∨ Fv2). If v is a ∧-gate,
then Fv = (Fv1 ∧ Fv2). Let vo be the output of T . We associate with the read-once tree T

the formula FT = Fvo .
Conversely, with each read-once formula F over the basis {∨,∧} we associate a ROT TF

in the following way:

• If F = x, then TF contains only one node labelled with the variable x, which is
simultaneously the input and the output.

• If F = (F1 ∨ F2), then TF consists of ROTs TF1 , TF2 , a ∨-gate v, and two edges that
leave outputs of TF1 and TF2 and enter v, which is the output of T . These edges are
labelled with l and r , respectively.

• If F = (F1 ∧ F2), then TF consists of ROTs TF1 , TF2 , a ∧-gate v, and two edges that
leave outputs of TF1 and TF2 and enter v, which is the output of T . These edges are
labelled with l and r , respectively.

2.4 Functions

Let F be a formula over the basis {∨,∧}. We associate with the formula F a Boolean
function fF in the following way (∨ and ∧ are Boolean operators):

• If F = x, where x is a variable, then fF = x.
• If F = (F1 ∨ F2), then fF = fF1 ∨ fF2 .
• If F = (F1 ∧ F2), then fF = fF1 ∧ fF2 .
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Let x1, . . . , xn be all the variables that appear in the formula F . The domain of fF is
the set of valuations of these variables. We will write fF = fF (x1, . . . , xn) and say that fF

depends on variables x1, . . . , xn.
A Boolean function f is called a read-once function over the basis {∨,∧} (ROF) if

there exists a read-once formula F over the basis {∨,∧} such that f = fF . The latter
equality means that the functions f and fF depend on the same variables and have equal
values for the same valuations of these variables. If T is a read-once tree, we also denote
fT = fFT

.
We say that a variable xi is relevant for a Boolean function f = f (x1, . . . , xn) if there

exist two n-tuples ᾱ and β̄ in {0, 1}n such that ᾱ and β̄ are different only in the i-th digit
and f (ᾱ) �= f (β̄).

The following claim can be easily proved by induction on the number of symbols ∨ and
∧ in a formula F describing a read-once function f = fF .

Claim 1 If f is a read-once function depending on variables x1, . . . , xn, then each variable
xi is relevant for f .

Let f be a read-once function depending on variables x1, . . . , xn and F be a read-once
formula over the basis {∨,∧} such that f = fF . From Claim 1 it follows that x1, . . . , xn

are all the variables that appear in the formula F .

3 FromQuasi-Ordering toWell-Quasi-Ordering

A binary relation ≤ on a set W is a quasi-order (also known as preorder) if it is reflexive
and transitive. Two elements x, y ∈ W are said to be comparable with respect to ≤ if either
x ≤ y or y ≤ x. Otherwise, x and y are incomparable. A set of pairwise comparable
elements is called a chain and a set of pairwise incomparable elements an antichain. If
x ≤ y and y �≤ x, we write x < y. A chain x1 > x2 > . . . is called strictly decreasing.
A quasi-order (W,≤) is a well-quasi-order if it contains neither infinite strictly decreasing
chains nor infinite antichains.

In order to define a quasi-order on the set of read-once functions, we start by defining
the operation of removal of variables.

3.1 Removal of Variables from Read-Once Functions

The operation of removal of a variable is applicable only to functions depending on at least
2 variables. To define this operation, we consider a read-once function f and a variable x

on which f depends.
Assume first that f is given together with a read-once formula F representing it. Speak-

ing informally, the operation of removal of x from f can be viewed as the operation of
“erasing” x from F and then modifying F accordingly, to make it a read-once formula
again. In the terminology of read-once trees, this modification can be formally described as
follows.

Let T = TF and let vx be the input of T labelled by x. The removal of vx from T is the
operation that transforms T into another read-once tree, denoted T − vx, in the following
way. We denote by v1 the child of vx , by v2 the second parent of v1, and by v3 the child of
v1, if v1 is not the output. The removal of vx consists in removing the nodes vx and v1, and
the edges leaving the nodes vx , v2, and v1. If v1 is not the output in T , then we also add
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a new edge from v2 to v3 (see Fig. 1 for an illustration). If v1 is the output in T , then v2
becomes the output in T − vx .

This operation also is equivalent to substituting x with an appropriate constant, 0 or 1, in
F .

• If v1 is a ∨-gate, then the removal of vx from T is equivalent to the substitution of x

with 0, in which case the sub-formula (x ∨ Fv2) of F transforms into the sub-formula
Fv2 . According to Claim 1, all the n − 1 variables of the function obtained by this
substitution are relevant. Note that if we substitute x with 1, then all the variables from
the sub-formula Fv2 become irrelevant and the function obtained by this substitution
has strictly fewer than n − 1 relevant variables.

• If v1 is a ∧-gate, then the removal of vx is equivalent to the substitution of the variable
x with 1, in which case the sub-formula (x ∧ Fv2) transforms into Fv2 and all the n − 1
variables of the function obtained by this substitution remain relevant. On the other
hand, if we substitute x with 0, then all the variables from the sub-formula Fv2 become
irrelevant, i.e. the function obtained by this substitution has strictly fewer than n − 1
relevant variables.

Now we give a definition of the operation of removal of a variable from a read-once
function f , which is irrespective of the formula representing f . Let f = f (x1, . . . , xn).
For a variable xi , exactly one of the two functions

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) and f (x1, . . . , xi−1, 1, xi+1, . . . , xn)

depends on n−1 variables. We denote this function by f −xi and say that f −xi is obtained
from f by the removal of variable xi .

Remark 1 It is not difficult to see that f − xi = fT −vxi
for any tree T representing f .

3.2 Quasi-Ordering and Closed Classes of ROTs and ROFs

In this section, we define quasi-orders on the sets of read-once trees and read-once functions.
To this end, we need to introduce two more operations.

The operation renaming of variables applies to the variables attached to inputs and uses
only the variables from the set V . After renaming, all variables must be pairwise different.

Fig. 1 Removal of an input from a read-once tree
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The operation renaming of labels applies to the labels l and r attached to edges, and after
renaming any two edges entering the same node must have different labels, i.e. one edge
must be labelled with l and the other one with r .

Definition 1 We will say that a read-once tree T1 is a subtree of a read-once tree T2 if T1
can be obtained from T2 by a (possibly empty) sequence of three operations: removal of
inputs, renaming of variables and renaming of labels.

In a similar way, we define the notion of a subfunction. The only difference is that the
operation of renaming of labels is irrelevant in this case, since this operation applied to a
read-once tree T does not change the function corresponding to T .

Definition 2 We will say that a read-once function f1 is a subfunction of a read-once func-
tion f2 if f1 can be obtained from f2 by a (possibly empty) sequence of two operations:
removal of variables and renaming of variables.

The notions of subtree and subfunction define binary relations of the sets of trees and
functions, respectively. It is not difficult to see that these relations are reflexive and tran-
sitive, i.e. they are quasi-orders. However, they are not partial orders, since they are not
antisymmetric. Indeed, the following two functions

f1(x1, x2, x3) = x1 ∧ (x2 ∨ x3) and f2(x1, x2, x3) = x2 ∧ (x1 ∨ x3)

are subfunctions of each other, but f1 �≡ f2, because f1(0, 1, 1) �= f2(0, 1, 1).
The notions of subtree and subfunction naturally lead to the notions of (downward)

closed classes of trees and functions, respectively.

Definition 3 We will say that a set T of read-once trees is a closed class if T ∈ T implies
T ′ ∈ T for every subtree T ′ of T .

Definition 4 We will say that a set F of read-once functions is a closed class if f ∈ F
implies f ′ ∈ F for every subfunction f ′ of f .

Remark 2 When we talk about closed classes of trees, the actual labelling of the input nodes
and the edges of a tree is irrelevant, since all possible valid labellings of the tree are present
in the class. This allows us to consider partially labelled read-once trees, i.e. trees in which
the input nodes and the edges are not labelled. Each partially labelled ROT T describes a
set of ROTs obtained from T by labelling the inputs with pairwise different variables from
V and by labelling the edges so that any two edges entering the same node are labelled one
with l and the other one with r .

Let X be a set of read-once functions (trees). We denote by [X] the closure of X, i.e.
the set consisting of all functions (trees) in X and all their subfunctions (subtrees). If κ is
a numerical parameter defined on the functions (trees) in X, then we call X κ-bounded if
there is a constant c such that κ(f ) ≤ c for every function (tree) f in X.

3.3 Well-Quasi-Ordering of Read-Once Functions

In this section, we show that the quasi-order defined in Section 3.2 is a well-quasi-oder.
To this end, we use the notion of quasi-embedding that can be defined as follows. A map
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f : (X,≤) → (Y,
) is called a quasi-embedding if, for all a, b ∈ X, f (a) 
 f (b) =⇒
a ≤ b. It is known (and not difficult to see) that, if there exists a quasi-embedding X → Y ,
and (Y,
) is a well-quasi-order, then (X,≤) is a well-quasi-order too.

By mapping a read-once function to any read-once tree representing it we obtain a
quasi-embedding, which is not difficult to see. Therefore, it suffices to show that the set of
read-once trees is well-quasi-ordered under the subtree relation. This will be done by defin-
ing a quasi-embedding of this set into the set of all rooted trees well-quasi-ordered by the
topological minor relation.

To make the reduction easier, we assume, without loss of generality, that the edges of a
rooted tree are directed and that all of them are directed towards the root. A subdivision of
an edge x → y by a new vertex z is the operation of replacement of x → y with two new
edges x → z and z → y. A tree T is a subdivision of a tree T ′ if T can be obtained from
T ′ by a sequence of edge subdivisions. A rooted tree T1 is a topological minor of a rooted
tree T2 if there is a subdivision T ′ of T1 that can be obtained from T2 by deleting some
nodes.

If T1 is a topological minor of T2, then there is an injective mapping φ of the node set
of T1 into the node set of T2 such that for every edge x → y in T1 there is a directed path
from φ(x) to φ(y) in T2. Without loss of generality, we assume that if y is a child of x1
and x2 in T1, then φ(y) is the unique common node of the two directed paths connecting
φ(x1) and φ(x2) to φ(y) in T2. We also assume that the nodes of the trees are labelled by
elements from a well-quasi-ordered set (Q,≤) and require that φ maps a node x of T1 with
label l(x) ∈ Q to a node y of T2 with label l(y) ∈ Q such that l(x) ≤ l(y). We will say
that a mapping φ satisfying this property respects the labels. In this terminology the famous
Kruskal’s theorem for trees [22] can be stated as follows.

Theorem 1 The set of all rooted trees, whose nodes are equipped with labels from a well-
quasi-ordered set, is well-quasi-ordered under the topological minor relation that respects
the labels.

We now use this result in order to show that read-once trees are well-quasi-ordered under
the subtree relation. To define a labelling of the node set of a read-once tree T we use
symbols ∨ and ∧ for the gate nodes and symbol ∅ for the input nodes, and assume that
∅ ≤ ∨ and ∅ ≤ ∧, while ∨ and ∧ are incomparable.

Lemma 1 Let T1 and T2 be two read-once trees, whose nodes are equipped with labels
from {∨,∧,∅}. If T1 is a topological minor of T2 with a mapping φ that respects the labels,
then T1 is a subtree of T2.

Proof Without loss of generality we may assume that φ maps an input x of T1 to an input
φ(x) of T2, because if it is not the case, φ can be easily transformed into a mapping satisfy-
ing this property by replacing φ(x) with any input of T2 for which there is a directed path
to φ(x). Then the desired conclusion can be derived by induction on the number k of inputs
of T2 that do not belong to the set of images of φ. If k = 0, then there is a bijection between
the node set of T1 and the node set of T2, because both trees are binary. Therefore, since T1
is a topological minor of T2, the two trees coincide.

Assume now that k > 0 and let x be an input of T2, which is not an image of φ. The
removal of x transforms T2 into another read-once tree T ′

2, which is a topological minor of
T2. Indeed, the inverse operation can be viewed as a subdivision of an edge and addition of
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a node (examine Fig. 1 from right to left for an illustration). It is also not difficult to see that
T ′

2 contains T1 as a topological minor. Indeed, the child of x that disappears together with x

cannot be an image of any node of T1, because T1 is a binary tree and the inputs of T1 are
mapped to inputs of T2. By induction assumption, T1 is a subtree of T ′

2 and hence T1 is a
subtree of T2.

This lemma proves more than just well-quasi-orderability of read-once trees, because
Kruskal’s tree theorem admits various generalizations. In particular, Nash-Williams proved
in [31] that infinite (in addition to finite) trees are better-quasi-ordered, and this was later
strengthened by Laver (in [23], Theorem 2.2) to labelled infinite trees, provided the set of
labels is better-quasi-ordered (which is the case for any finite set).

The full definition of better-quasi-ordering is technical, and outside of the scope of
this paper (see, e.g., [3] for a short introduction). What is important to us is that a
quasi-embedding X → Y into a better-quasi-order (Y,
) implies that (X,≤) is a better-
quasi-order too (see, e.g., [3], Lemma 5.3). Thus Lemma 1 shows that the set of read-once
trees is better-quasi-ordered.

The additional strength of better-quasi-ordering can be summarised with the following
proposition (see, e.g., [3]), where (X,≤) is an arbitrary quasi-order and L(X) is the set of
downward closed sets of X.

Proposition 1 If (X,≤) is a better-quasi-order, then (X,≤) is a well-quasi-order and
(L(X),⊆) is a better-quasi-order.

The above discussion leads us to the following conclusion.

Corollary 1 The set of read-once functions is well-quasi-ordered under the subfunction
relation and the set of closed classes of read-once functions is well-quasi-ordered under the
inclusion relation.

One important consequence of well-quasi-orderability of the set of closed classes under
inclusion can be stated as follows.

Corollary 2 For every parameter κ , which is unbounded on the set of read-once functions,
there is a finite collection of minimal closed subclasses of read-once functions, where this
parameter is unbounded.

This result suggests a quasi-order on the set of parameters and a way of comparing two
parameters. For two parameters κ1 and κ2, we will write κ1 � κ2 if the family of κ1-bounded
closed classes contains the family of κ2-bounded closed classes.

Corollary 3 If κ1 and κ2 are two parameters, then κ1 � κ2 if and only if for every minimal
closed class F1, where κ1 is unbounded, there is a minimal closed class F2, where κ2 is
unbounded, such that F2 ⊆ F1.

Proof Assume first that for every minimal closed class F1 where κ1 is unbounded, there
is a minimal closed class F2 where κ2 is unbounded such that F2 ⊆ F1. Let X be a κ2-
bounded closed class and suppose that κ1 is unbounded in this class. Then X contains a
minimal class F1, where κ1 is unbounded, which in turn contains a minimal class F2, where
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κ2 is unbounded. This contradicts our assumption that X is κ2-bounded and proves that X
is κ1-bounded, i.e. κ1 � κ2.

Conversely, suppose κ1 � κ2, and let F1 be a minimal closed class where κ1 is
unbounded. Since κ1 � κ2, κ2 is also unbounded in F1, and by Corollary 2, F1 contains a
minimal closed class F2 where κ2 is unbounded, as required.

Finally, we observe that the quasi-order defined for parameters in the universe of read-
once functions is, in fact, a well-quasi-order due to better-quasi-orderability of the functions.

4 Parameters

As we mentioned in the introduction, three important complexity measures of Boolean func-
tions are certificate complexity, block sensitivity, and sensitivity. For read-once functions,
these three parameters coincide, as was shown in [27], and therefore, we define only one of
them.

Definition 5 Let f (x1, . . . , xn) be a non-constant Boolean function. The certificate com-
plexity C(f, δ̄) of the function f on the tuple δ̄ = (δ1, . . . , δn) ∈ {0, 1}n is the minimum
natural number m such that there exist indices i1, . . . , im ∈ {1, . . . , n} for which the func-
tion f is constant on the set of tuples {(σ1, . . . , σn) : (σ1, . . . , σn) ∈ {0, 1}n, σi1 =
δi1 , . . . , σim = δim}. The value C0(f ) = max{C(f, δ̄) : δ̄ ∈ {0, 1}n, f (δ̄) = 0} is called
0-certificate complexity of f . The value C1(f ) = max{C(f, δ̄) : δ̄ ∈ {0, 1}n, f (δ̄) =
1} is called 1-certificate complexity of f . The certificate complexity of f is C(f ) =
max{C0(f ), C1(f )}.

Informally, the certificate complexity of a Boolean function f defined on an n-
dimensional hypercube can be described as follows. On a Boolean point δ̄ the certificate
complexity equals n minus the dimension of a largest sub-hypercube containing δ̄ that
defines a constant function. Then C0(f ) is the maximum of this measure taken over 0 points,
C1(f ) is the maximum taken over 1 points, and C(f ) is the total maximum taken over all
points of the hypercube.

It is not difficult to see (in particular, it follows from Lemma 2 below) that in the class
of read-once functions certificate complexity can be arbitrarily large. By Lemma 2, this
parameter is unbounded even in the class F∧ of elementary conjunctions, i.e. functions of
the form x1 ∧ . . . ∧ xn, and in the class F∨ of elementary disjunctions, i.e. functions of the
form x1 ∨ . . . ∨ xn. On the other hand, any closed class of read-once functions excluding
at least one elementary conjunction and at least one elementary disjunction is finite, i.e.
consists of finitely many functions up to renaming of variables, which is not difficult to
see and which also follows from Lemmas 3 and 4 below. Therefore, the characterization of
certificate complexity in the terminology of minimal classes is trivial: certificate complexity
is bounded in a closed class F of read-once functions if and only if F contains neither F∧
nor F∨.

We observe that one more important parameter, known as deterministic decision tree
complexity, admits the same characterization in terms of minimal classes, because it is
bounded below by block sensitivity and above by the square of certificate complexity [9].
Therefore, deterministic decision tree complexity is bounded in a closed class F if and only
if F is finite up to renaming of variables in functions, similarly to certificate complexity,
block sensitivity, and sensitivity. In other words, all these four parameters are equivalent
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with respect to the quasi-order defined in the previous section. Moreover, all of them lie
at the bottom of the hierarchy that describes this quasi-order in the sense that there are no
parameters that lie strictly below them.

To extend this hierarchy, we introduce two new complexity measures of a Boolean
function f (x1, . . . , xn):

α(f ) = min{C0(f ), C1(f )} and β(f ) = n/C(f ).

These parameters are closely related to the complexity of nondeterministic decision
trees computing f . In deterministic decision trees, each internal node is labelled with
a variable and has two leaving edges labelled with 0 and 1, respectively. In nondeter-
ministic decision trees, the root is not labelled with a variable. In this node, we choose
nondeterministically the first query (variable). All other internal nodes are labelled with
variables, but each such node can have more than one leaving edge labelled with 0 and
more than one leaving edge labelled with 1. We distinguish conventional nondeterminis-
tic decision trees that accept all tuples from {0, 1}n, 0-nondeterministic decision trees that
accept only tuples δ̄ ∈ {0, 1}n for which f (δ̄) = 0, and 1-nondeterministic decision trees
that accept only tuples δ̄ ∈ {0, 1}n for which f (δ̄) = 1. Then C(f ) is the minimum
depth of a conventional nondeterministic decision tree computing f , C0(f ) is the mini-
mum depth of a 0-nondeterministic decision tree computing f , and C1(f ) is the minimum
depth of a 1-nondeterministic decision tree computing f . Note that 1-nondeterministic deci-
sion trees were studied in [28, 30] as decision trees computing Boolean functions strongly
nondeterministically.

If F is an α-bounded class of read-once functions, then for each function in F , there
is either a 0-nondeterministic or 1-nondeterministic decision tree of bounded depth. If
F is a β-bounded class, then there exists a positive constant t such that, for each func-
tion f (x1, . . . , xn) in F , n/C(f ) ≤ t and C(f ) ≥ n/t , i.e., the minimum depth of a
conventional nondeterministic decision tree computing f is at least n/t .

By definition, α is upper bounded by certificate complexity. It is also interesting to
observe that, for all read-once functions f , β(f ) ≤ α(f ). To see this, consider a read-once
function f on n inputs. Without loss of generality, suppose that C0(f ) ≤ C1(f ). Then,
by definition, C(f ) = C1(f ), α(f ) = C0(f ), and β(f ) = n/C(f ) = n/C1(f ). By
Lemma 7, we have n ≤ C0(f )C1(f ), and dividing through by C1(f ), we conclude that
β(f ) = n/C1(f ) ≤ C0(f ) = α(f ).

From the double inequality β(f ) ≤ α(f ) ≤ C(f ) we conclude that the family of C-
bounded classes is contained in the family of α-bounded classes, which in turn is contained
in the family of β-bounded classes. In fact, both containments are proper, i.e. neither C

can be upper bounded by a function of α, nor α can be upper bounded by a function of
β, which follows, in particular, from our characterization of these parameters in terms of
critical classes. We start with some auxiliary results.

4.1 Auxiliary results

Let T be a read-once tree. We denote C0(T ) = C0(fT ), C1(T ) = C1(fT ). It is clear that,
for each input v of the ROT T , C0(fv) = C1(fv) = 1. We can find values of C0(fv) and
C1(fv) for each gate v of T using the following statement.

Lemma 2 ([27], Lemma 2) Let T be a ROT, v be a gate of T , and v1, v2 be parents of v.
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If v is a ∨-gate, then
C0(fv) = C0(fv1) + C0(fv2),

C1(fv) = max{C1(fv1), C1(fv2)}.
If v is a ∧-gate, then

C0(fv) = max{C0(fv1), C0(fv2)},
C1(fv) = C1(fv1) + C1(fv2).

We denote by h∨(T ) the ∨-depth of the ROT T which is the maximum number of ∨-
gates in a path from an input to the output of T . We denote by h∧(T ) the ∧-depth of the
ROT T which is the maximum number of ∧-gates in a path from an input to the output of
T . The following statement gives us lower and upper bounds on the value C0(T ) depending
on the ∨-depth h∨(T ) of T .

Lemma 3 Let T be a ROT. Then h∨(T ) + 1 ≤ C0(T ) ≤ 2h∨(T ).

Proof We prove by induction on h∨(T ) that C0(T ) ≤ 2h∨(T ). Let h∨(T ) = 0. Then T

contains only ∧-gates. Using Lemma 2 and the fact that C0(fv) = 1 for any input v of T

we obtain C0(T ) = 1. Therefore the considered inequality holds if h∨(T ) = 0.
Let n ≥ 0 and C0(T

′) ≤ 2h∨(T ′) for any ROT T ′ with h∨(T ′) ≤ n. Consider a ROT T

with h∨(T ) = n + 1. This ROT contains at least one ∨-gate. Using Lemma 2 one can show
that C0(T ) ≥ 2. Let v be a gate of T for which C0(fv) = C0(T ) and the length of path from
v to the output of T is maximum. Let us show that v is a ∨-gate. Assume the contrary. By
Lemma 2, C0(fv) = C0(fv′) for a parent v′ of v, but this is impossible since v′ is a gate and
the length of path from v′ to the output is greater than the length of path from v to the output.
Therefore v is a ∨-gate. Let v1 and v2 be parents of v, and Tv1 and Tv2 be subROTs of T

with outputs v1 and v2, respectively. It is clear that h∨(Tv1) ≤ n and h∨(Tv2) ≤ n. Using
the inductive hypothesis we obtain that C0(Tv1) ≤ 2n and C0(Tv2) ≤ 2n. By Lemma 2,
C0(fv) ≤ 2n+1. Therefore C0(T ) ≤ 2h∨(T ).

Let us show that h∨(T )+1 ≤ C0(T ). To this end, we consider a path from an input of T

to the output which contains m = h∨(T ) ∨-gates v1, . . . , vm. Using Lemma 2 and the fact
that C0(fv) = 1 for any input v of T one can show that C0(fvi

) ≥ i + 1 for i = 1, . . . , m

and C0(T ) ≥ C0(fvm).

Similarly, we can prove the following statement which gives us lower and upper bounds
on the value C1(T ) depending on the ∧-depth h∧(T ) of T .

Lemma 4 Let T be a ROT. Then h∧(T ) + 1 ≤ C1(T ) ≤ 2h∧(T ).

4.2 Parameter α

In this section we study the parameter

α(f ) = min{C0(f ), C1(f )}
and characterize the family of α-bounded closed classes of read-once functions in terms of
minimal closed classes, where this parameter is unbounded.
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We start by characterizing α-bounded closed classes of read-once trees in Section 4.2.1
and then extend our results to α-bounded closed classes of read-once functions in
Section 4.2.2.

4.2.1 α-Bounded Closed Classes of Read-Once Trees

For a read-once tree T , we define α(T ) = α(fT ). The following result provides a criterion
for a set of read-once trees to be α-bounded.

Lemma 5 A set T of ROTs is α-bounded if and only if it can be represented in the form
T = T∨ ∪ T∧ where T∨ is h∨-bounded and T∧ is h∧-bounded.

Proof Let T be α-bounded and let a be a natural number such that α(T ) ≤ a for each tree
T ∈ T . Denote T∨ = {T : T ∈ T , C0(T ) ≤ a} and T∧ = {T : T ∈ T , C1(T ) ≤ a}. It is
clear that T = T∨∪T∧. From Lemmas 3 and 4 it follows that h∨(T ) ≤ a−1 for any T ∈ T∨
and h∧(T ) ≤ a − 1 for any T ∈ T∧. Therefore T∨ is h∨-bounded and T∧ is h∧-bounded.

Let T can be represented in the form T = T∨ ∪ T∧ where T∨ is h∨-bounded and T∧
is h∧-bounded. Then there exists a natural number b such that h∨(T ) ≤ b for any ROT
T ∈ T∨, and there exists a natural number c such that h∧(T ) ≤ c for any ROT T ∈ T∧.
From Lemmas 3 and 4 it follows that C0(T ) ≤ 2b for any T ∈ T∨ and C1(T ) ≤ 2c for any
T ∈ T∧. Denote a = max{2b, 2c}. Then α(T ) ≤ a for any ROT T ∈ T .

According to Remark 2, when we deal with closed classes of read-once trees, the actual
labelling of the input nodes and the edges of a tree is irrelevant, allowing us to consider
partially labelled read-once trees. For natural k and m, let us denote by �1(k,m), �2(k,m),
�3(k,m), �4(k,m) partially labelled read-once trees shown in Fig. 2. Note that each of the
partially labelled ROTs �1(0, 0) and �2(0, 0) consists of two inputs and one gate. Each of
the partially labelled ROTs �3(0, 0), �4(0, 0) consists of one input.

Denote
T1 = [{�1(k,m) : k,m = 0, 1, 2, . . .}],
T2 = [{�2(k,m) : k,m = 0, 1, 2, . . .}],
T3 = [{�3(k,m) : k,m = 0, 1, 2, . . .}],
T4 = [{�4(k,m) : k,m = 0, 1, 2, . . .}].

Using Lemma 5 we obtain that the classes T1, . . . ,T4 are not α-bounded.

Lemma 6 Let T be a closed class of ROTs which is not α-bounded. Then there exists
i0 ∈ {1, . . . , 4} such that Ti0 ⊆ T .

Proof Using Lemma 5 we obtain that, for each natural t , there exists a ROT Tt ∈ T such
that h∨(Tt ) ≥ t and h∧(Tt ) ≥ t . In the ROT Tt , there exist two paths π∨

t and π∧
t each from

an input to the output such that π∨
t contains at least t ∨-gates and π∧

t contains at least t ∧-
gates. Denote by v the first common node of π∨

t and π∧
t . Let π∨

t contain at ∨-gates before
v and bt ∨-gates beginning with v, and let π∧

t contain ct ∧-gates before v and dt ∧-gates
beginning with v. Then at + bt ≥ t and ct + dt ≥ t . We denote by τt the path in Tt from the
node v to the output of Tt , i.e. the common part of the paths π∨

t and π∧
t .

We now prove that, for each natural k, the class T contains a ROT �i(k, k) for some
i ∈ {1, . . . , 4}. To this end, we consider a number of cases.
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Fig. 2 Partially labelled ROTs �1(k,m), �2(k,m), �3(k,m), �4(k,m)

Case 1. Let the sequences a1, a2, . . . be not bounded from above. Then there exists an
infinite subsequence of this sequence aj1 , aj2 , . . . such that aj1 < aj2 < . . .. We now
consider two subcases of this case.

Case 1a. Let the sequence cj1 , cj2 , . . . be not bounded from above. Then there exists a
natural p such that ajp ≥ k and cjp ≥ k. By the removal of inputs, we can transform the
ROT Tjp into a ROT �i(k, k) with i ∈ {1, 2}. This ROT belongs to T .

Case 1b. Let the sequence cj1 , cj2 , . . . be bounded from above. In this case, the sequence
dj1 , dj2 , . . . is not bounded from above. Therefore there exists a natural p such that ajp ≥ k

and djp ≥ k. By the removal of inputs, we can transform the ROT Tjp into a ROT �3(k, k).
This ROT belongs to T .

Case 2. The case when the sequence c1, c2, . . . is not bounded from above can be
analyzed by analogy with Case 1.

Case 3. Let both sequences a1, a2, . . . and c1, c2, . . . be bounded from above. Then there
exists a natural m such that bt ≥ t − m and dt ≥ t − m for t = 1, 2, . . .. Let p be a natural
number for which bp ≥ 2k and dp ≥ 2k, and τp = v1, . . . , vl be the common part of the
paths π∨

p and π∧
p in the ROT Tp. Let j be the minimum number from the set {1, . . . , l} such

that the path v1, . . . , vj contains k ∨-gates or k ∧-gates. Assume without loss of generality
that the path v1, . . . , vj contains k ∨-gates. Then this path contains at most k − 1 ∧-gates.
Therefore the path vj+1, . . . , vl contains at least k + 1 ∧-gates. By the removal of inputs,
we can transform the ROT Tp into a ROT �i(k, k) with i ∈ {3, 4}. This ROT belongs to T .

From the above analysis. we now know that, for each natural k, there exists i ∈ {1, . . . , 4}
such that �i(k, k) ∈ T . Therefore, there exists i0 ∈ {1, . . . , 4} and an infinite sequence of
natural numbers k1 , k2, . . . such that k1 < k2 < . . . and �i0(kj , kj ) ∈ T for j = 1, 2, . . ..
Since T is closed under removal of inputs, we obtain Ti0 ⊆ T .

Theorem 2 Let T be a closed class of ROTs. Then T is α-bounded if and only if T contains
none of the classes T1,T2,T3,T4.
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Proof Let T be α-bounded. Then T contains none of the classes T1,T2,T3,T4 since,
according to Lemma 5, the classes T1,T2,T3,T4 are not α-bounded.

Let T contain none of the classes T1,T2,T3,T4. Then T is α-bounded, because
otherwise, by Lemma 6, T contains at least one class from the set {T1,T2,T3,T4}.

4.2.2 α-Bounded Closed Classes of Read-Once Functions

For all k, m = 0, 1, 2, . . . such that k + m ≥ 1, we define the following two read-once
functions:

ϕ1(k,m) = (x1 ∨ . . . ∨ xk) ∧ y1 ∧ . . . ∧ ym,

ϕ2(k,m) = x1 ∨ . . . ∨ xk ∨ (y1 ∧ . . . ∧ ym).

Also, for i ∈ {1, 2}, we denote Fi = [{ϕi(k, m) : k, m = 0, 1, 2, . . . , k + m ≥ 1}]. It is
not difficult to see that

F1 = [{fT : T ∈ T1}] = [{fT : T ∈ T3}],
F2 = [{fT : T ∈ T2}] = [{fT : T ∈ T4}].

Using Lemma 5 we conclude that the classes F1 and F2 are not α-bounded.

Theorem 3 LetF be a closed class of ROFs. ThenF is α-bounded if and only ifF contains
none of the classes F1,F2.

Proof Let F be α-bounded. Then F contains none of the classes F1,F2 since these classes
are not α-bounded.

Let F contain none of the classes F1,F2. We now show that F is α-bounded. Assume
the contrary: F is not α-bounded. Denote by T the set of read-once trees containing for
each function g ∈ F all trees T such that fT = g. It is clear that the set T is closed
under the operation of renaming of labels. Since the class F is closed under the operation
of renaming of variables, the set T is closed under the operation of renaming of variables.
Using Remark 1, we obtain that T is closed under the operation of removal of variables.
Therefore T is a closed class of ROTs. Since F is not α-bounded, the class T is not α-
bounded. By Lemma 6, T contains at least one of the classes T1,T2,T3,T4. Therefore, F
contains one of the classes F1,F2. This contradicts our initial assumption and completes
the proof of the theorem.

4.3 Parameter β

In this section, we study the parameter β(f ) that, for any Boolean function f with n relevant
variables, is defined in the following way:

β(f ) = n/C(f ).

To characterize the parameter β in the terminology of minimal closed classes of read-
once functions, which are not β-bounded, first we make the following observation, which
follows directly from the definition of certificate complexity.

Claim 2 C(T ′) ≤ C(T ) for any subtree T ′ of a read-once tree T .

We also quote the following result, which was proved in [27] (see Theorem 3) in the
terminology of read-once functions.
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Fig. 3 Partially labelled ROTs V(t) and �(t)

Lemma 7 If T is a read-once tree with n inputs, then

n ≤ C0(T )C1(T ).

Now we denote by V(t) and �(t) partially labelled read-once trees corresponding to
disjunction and conjunction of t variables, respectively, see Fig. 3, and prove a lemma
concerning read-once trees that do not contain either V(t) or �(t) as subtrees.

Lemma 8 If T is a read-once tree with n inputs that does not contain V(t) or �(t), then

n ≤ 2tC(T ).

Proof We prove the result for �(t), since for V(t) the proof is similar. Let v be the output
of T and let v1, v2 be the parents of v. We consider two subtrees T1 and T2 of T with
outputs v1 and v2, respectively, and denote the number of inputs in these trees by n1 and n2,
respectively.

If v is a ∨-gate, then applying Lemmas 2, 4 and 7, we obtain

n = n1 + n2 ≤ C0(T1)C1(T1) + C0(T2)C1(T2) by Lemma 7
≤ 2t (C0(T1) + C0(T2)) by Lemma 4
≤ 2t max{C0(T1) + C0(T2), max{C1(T1), C1(T2)}}
= 2tC(T ) by Lemma 2.

If v is a ∧-gate, then h∧(T1) ≤ t − 1 and h∧(T2) ≤ t − 1, since otherwise T contains
�(t). Applying Lemmas 2, 4 and 7, we obtain

n = n1 + n2 ≤ C0(T1)C1(T1) + C0(T2)C1(T2) by Lemma 7
≤ 2t−1(C0(T1) + C0(T2)) by Lemma 4
≤ 2t−12 max{C0(T1), C0(T2)}
≤ 2t max{max{C0(T1), C0(T2)}, C1(T1) + C1(T2)}
= 2tC(T ) by Lemma 2.

To prove the main result of this section we denote by 1(p, t) and 2(p, t) partially
labelled read-once trees represented in Fig. 4. Also, let

P1 = [{1(p, t) : p, t = 0, 1, 2 . . .}]
P2 = [{2(p, t) : p, t = 0, 1, 2 . . .}].



Critical Properties and Complexity Measures...

Fig. 4 Partially labelled ROTs 1(p, t) and 2(p, t)

Theorem 4 Let P be a closed class of read-once trees. Then P is β-bounded if and only if
P contains neither P1 nor P2.

Proof Let fn be a read-once function represented by a read-once tree 1(
√

n,
√

n) with
n+√

n+ 1 inputs. Then β(fn) = n/(
√

n+ 1)+ 1 and hence the parameter β is unbounded
in the class P1. Similarly, it is unbounded in the class P2, which proves the “only if” part
of the theorem.

To prove the “if” part, we fix natural numbers p, q, t and show that if T is a read-once
tree with n inputs containing neither 1(p, t) nor 2(q, t), then

n ≤ C(T )22(p+q+t).

Let v be the output of T and v1, v2 the parents of v. We consider two subtrees T1 and T2
of T with outputs v1 and v2, respectively.

Case 1: Assume that either

(a) v is a ∨-gate and neither T1 nor T2 contains �(t), or
(b) v is a ∧-gate and neither T1 nor T2 contains V(t).

In case 1(a) T does not contain �(t) and in case 1(b) T does not contain V(t). In both cases,
n ≤ 2tC(T ) by Lemma 8.

Case 2: Assume that either

(a) v is a ∨-gate and both T1 and T2 contain �(t), or
(b) v is a ∧-gate and both T1 and T2 contain V(t).

In case 2(a), we conclude that neither T1 nor T2 contains 1(p − 1, t), since otherwise T

contains 1(p, t). Now, applying induction on p + q we obtain

n = n1+n2 ≤ C(T1)2
2(p−1+q+t)+C(T2)2

2(p−1+q+t) ≤ 2C(T )22(p−1+q+t) ≤ C(T )22(p+q+t).

Case 2(b) implies the same conclusion by similar arguments.
Case 3: Assume that either

(a) v is a ∨-gate, T1 contains �(t) and T2 does not contain �(t), or
(b) v is a ∧-gate, T1 contains V(t) and T2 does not contain V(t).
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Then we define T ′ := T1 and apply to T ′ the above case analysis iteratively as long as we
are in Case 3. When we encounter either Case 1 or Case 2, we stop.

Assume first that the analysis has stopped, when we encountered Case 1. Then the origi-
nal tree T has been partitioned into subtrees of two types: subtrees that do not contain �(t)

and subtrees that do not contain V(t). The output of every subtree of the first type has a ∨-
gate as a child. Therefore, the union of all these subtrees, which we denote by T∨ and which
is a tree obtained from T by removing all inputs from the subtrees of the second type, does
not contain �(t). Similarly, the output of every subtree of the second type has a ∧-gate as a
child, and hence the union of all these subtrees, denoted T∧, does not contain V(t). Denoting
the number of inputs in T∨ and T∧ by n∨ and n∧ respectively, we obtain

n = n∨ + n∧ ≤ C(T∨)2t + C(T∧)2t ≤ 2C(T )2t ≤ C(T )22(p+q+t).

Finally, assume that the analysis has stopped at Case 2. Then the tree T has been par-
titioned into subtrees T∨ and T∧, defined in the previous paragraph, and two subtrees T ′

1
and T ′

2 that appear in Case 2. Assuming, without loss of generality that neither T ′
1 nor T ′

2
contains 1(p − 1, t), we conclude by induction on p + q that

n = n′
1 + n′

2 + n∨ + n∧ ≤ C(T ′
1)2

2(p−1+q+t) + C(T ′
2)2

2(p−1+q+t) + C(T∨)2t + C(T∧)2t

≤ 4C(T )22(p−1+q+t)

≤ C(T )22(p+q+t).

In order to translate Theorem 4 to the language of read-once functions, we denote

g1(p, t) =
p∨

i=1

(x(i−1)t+1 ∧ x(i−1)t+2 ∧ . . . ∧ x(i−1)t+t ),

g2(p, t) =
p∧

i=1

(x(i−1)t+1 ∨ x(i−1)t+2 ∨ . . . ∨ x(i−1)t+t ).

Also,
G1 = [{g1(p, t) : p, t = 0, 1, 2 . . .}],
G2 = [{g2(p, t) : p, t = 0, 1, 2 . . .}].

Theorem 5 Let G be a closed class of read-once functions. Then G is β-bounded if and
only if G contains neither G1 nor G2.

5 Concluding Remarks and Open Problems

In this paper, we defined a quasi-order on the set of read-once Boolean functions and showed
that this is a well-quasi-order. This conclusion defines a quasi-order on the set of parameters
that measure complexity of read-once functions and provides a uniform way of describ-
ing parameters through critical classes, i.e. minimal classes where the parameters jump to
infinity.

We observed in the paper that a number of important complexity measures, such as cer-
tificate complexity or deterministic decision tree complexity, are equivalent in the universe
of read-once Boolean functions and lie at the bottom of the hierarchy of parameters. To
extend the hierarchy, we have introduced two new parameters α and β related to certificate
complexity and characterized both of them by means of critical classes, showing that α lies
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strictly above certificate complexity and β lies strictly above α. We believe that the new
parameters will find applications in various aspects of the analysis of Boolean functions,
such as, for instance, parameter-efficient learning of Boolean functions [10].

There is a variety of other parameters that measure complexity of Boolean functions,
such as submodular goal value [5], average sensitivity [34], various nonlinearity measures
[7], etc. Characterizing them through critical classes remains a challenging open problem.

Acknowledgements Research reported in this publication was supported by the King Abdullah University
of Science and Technology (KAUST).

The authors are greatly indebted to anonymous reviewers for useful comments and suggestions, many of
which have been incorporated in the text.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Albert, M.H., Atkinson, M.D., Vatter, V.: Subclasses of the separable permutations. Bull. Lond. Math.
Soc. 43(5), 859–870 (2011)

2. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with queries. J. ACM 40, 185–
210 (1993)

3. Aschenbrenner, M., Hemmecke, R.: Finiteness theorems in stochastic integer programming. Found.
Comput. Math. 7, 183–227 (2007)

4. Atminas, A., Brignall, R.: Well-quasi-ordering and finite distinguishing number. J. Graph Theory 95,
5–26 (2020)

5. Bach, E., Dusart, J., Hellerstein, L., Kletenik, D.: Submodular goal value of Boolean functions. Discrete
Appl. Math. 238, 1–13 (2018)

6. Alecu, B., Atminas, A., Lozin, V., Zamaraev, V.: Graph classes with linear Ramsey numbers. Discrete
Math. 344, 112307 (2021)

7. Boyar, J., Find, M.G., Peralta, R.: On various nonlinearity measures for boolean functions. Cryptogr.
Commun. 8(3), 313–330 (2016)

8. Brignall, R., Korpelainen, N., Vatter, V.: Linear clique-width for hereditary classes of cographs. J. Graph
Theory 84, 501–511 (2017)

9. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theoret.
Comput. Sci. 288, 21–43 (2002)

10. Bystrygova, A.V.: Parameter-efficient learning of Boolean functions from closed post classes. (Russian)
Diskret. Mat. 31, 34–57 (2019)

11. Choi, I., Furuya, M., Kim, R., Park, B.: A Ramsey-type theorem for the matching number regarding
connected graphs. Discrete Math. 343, 111648 (2020)

12. Couceiro, M., Pouzet, M.: On a quasi-ordering on Boolean functions. Theoret. Comput. Sci. 396, 71–87
(2008)

13. Crama, Y., Hammer, P.L.: Boolean Functions. Theory, Algorithms, and Applications. Encyclopedia of
Mathematics and its Applications, 142. Cambridge University Press, Cambridge. xxii+687 pp. ISBN:
978-0-521-84751-3 (2011)

14. Fishburn, P.C.: An interval graph is not a comparability graph. J. Combin. Theory 8, 442–443 (1970)
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