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Abstract 19 

The portable and inexpensive hand rehabilitation robot has become a practical rehabilitation device 20 

for patients with hand dysfunction. A pneumatic rehabilitation glove with an active trigger control 21 

system is proposed, which is based on surface electromyography (sEMG) signals. It can trigger 22 

the hand movement based on the patient's hand movement trend, which may improve the 23 

enthusiasm and efficiency of patient training. Firstly, analysis of sEMG sensor installation position 24 

on human’s arm and signal acquisition process were carried out. Then according to the statistical 25 

law, three optimal eigenvalues of sEMG signals were selected as the follow-up neural network 26 

classification input. Using the back propagation (BP) neural network, the classifier of hand 27 

movement is established. Moreover, the mapping relationship between hand sEMG signals and 28 

hand actions is built by training and testing. According to individual differences, the corresponding 29 

BP neural network model database of different people was established. Finally, based on sEMG 30 

signal trigger, the pneumatic glove training control algorithm was proposed. The combination of 31 

the trigger signal waveform and the motion signal waveform indicates that the pneumatic 32 

rehabilitation glove is triggered to drive the patient's hand movement. Preliminary tests have 33 

confirmed that the device has high accuracy rate of trend recognition for hand movement. In the 34 

future, clinical trials of patients will be conducted to prove the effectiveness of this system. 35 

 36 

Introduction 37 

Approximately two million people suffer from stroke every year in China, and about three-fourths 38 

of stroke patients have neurological defects and hand movement disorders [1-2]. Moreover, the 39 
A



other neurological disorders, such as multiple sclerosis or motor neuron disease, also show 40 

abnormal hand movements. Patients with damaged hands are unable to complete various actions 41 

in daily life due to lack of muscle strength and fine control of the fingers. Rehabilitation robot is 42 

playing an increasingly important role in training patients instead of rehabilitation physicians, 43 

which can improve the motor function of damaged hands and reduce the possibility of permanent 44 

disabilities [3-5]. At present, the popular hand rehabilitation robots at present can be divided into 45 

finger exoskeleton rehabilitation robot [6-7], flexible rehabilitation robot gloves (FRRG) and end 46 

traction finger rehabilitation robot [8-9]. Compared with other types of hand rehabilitation robots, 47 

FRRG has some advantages, including good flexibility, small size, large working space, light 48 

weight, safety and reliability [10-12]. Polygerinos, et al. developed the rehabilitation gloves, which 49 

include a molded elastomer chamber and a fiber reinforcement that produces specific bending, 50 

twisting and extending trajectories under fluid pressure to match and support the different ranges 51 

of motion of a single finger [13]. Wang, et al. proposed a pair of antagonistic pneumatic muscles 52 

which are very similar in action to human muscles, can be used for hand passive training [14]. A 53 

new kind soft pneumatic glove with five segmented PneuNets bending actuators is made of 54 

elastomer, whose actuator driving the corresponding finger to bend [15]. A new portable and 55 

inexpensive pneumatic rehabilitation glove is proposed in this paper. 56 

Rehabilitation training, which is based on limb movement trend of patients, can improve the 57 

efficiency of recovery [16]. The methods for trend recognition of human limb movement include 58 

biomechanical signal [17] and bioelectrical signal [18]. However, due to the structure and wearing 59 

characteristics of FRRG, it is expensive to install biomechanical sensors on the gloves, which make 60 

it difficult to use for patients with financial problems in their families. For patients with finger 61 

dysfunction caused by stroke, biomechanical sensors are not suitable for them and not easy to 62 

collect the biomechanical signals of their hands [19]. On the contrary, bioelectrical signals are 63 

generated before movement, and the corresponding relationship between signals and movement 64 

can be obtained by collecting and decoding bioelectrical signals of human body, which provides 65 

an extremely important means for the prediction of human limb movement trend. There are many 66 

mature methods of limb movement intention recognition based on bioelectrical signals, including 67 

electrocorticogram (ECoG), electroencephalogram (EEG), magnetoencephalo-graphy (MEG) and 68 

electromyography (EMG). Due to the high cost of collecting ECoG, EEG or MEG signals, EMG 69 

is chosen as the bioelectrical signal for hand movement trend recognition in this paper. 70 

EMG signals can be divided into two types, surface electromyography (sEMG) and needle in 71 

electromyography (nEMG). Compared with nEMG, sEMG has the advantages of noninvasive and 72 

simple operation. The signal collected by sEMG sensor is the sum of the potential generated by 73 

muscle activity in the area where the electrode is located on the skin surface. Selecting the 74 

appropriate muscle group of arm is very important and different muscle groups have different 75 

effects, which is reflected in the amplitude change of sEMG signals [20]. The larger the amplitude 76 

change, the more conducive to the identification of hand movement trend. The control based on 77 

bioelectrical signal from patient muscle, mainly includes sEMG trigger control [21] and sEMG 78 

continuous control [22]. In this paper, a new pneumatic glove trigger control system for paralysis 79 



patients’ hand is developed. The trigger control is used to identify the movement trend of the 80 

patients, and then the assisting to complete the rehabilitation training is realized. 81 

 82 

Construction of Pneumatic Rehabilitation Glove Trigger Control 83 

System Based on sEMG 84 

Pneumatic rehabilitation glove trigger control system based on sEMG consists of one pneumatic 85 

gloves, an air pump, a Stm32f103 microprocessor equipped with an ARM chip, two electric relays, 86 

a Myoware sEMG sensor, two-position three-way solenoid valves and a host computer as shown 87 

in Figure 1. Pneumatic rehabilitation gloves can well wrap the patients' fingers, palms and hand 88 

back. Air pump provides power for pneumatic gloves. sEMG sensors are used to collect patient’s 89 

sEMG signals. The Stm32f103 microprocessor equipped with an ARM chip is used to process the 90 

original sEMG signals collected by sEMG sensors. It is also used as the driver of air pump and 91 

transmits the processed sEMG signals to the host computer. The host computer is developed with 92 

QT software (Cross-platform software development framework for the development of apps and 93 

devices, developed by QT Group) as the development environment. It judges the movement trend 94 

of the hand by analyzing the collected sEMG signals. According to the movement trend of the 95 

hand, it also sends related instructions to the air pump driver. Then the air pump driver controls 96 

pneumatic rehabilitation gloves to flex and extend. The above hardware platform can be divided 97 

into an acquisition layer, a decision-making layer, a driving layer and an execution layer as shown 98 

in Figure 1. The RS232-USB (RS232 to USB) serial port is adopted between the acquisition layer 99 

and the decision layer, the decision-making layer and the drive layer. The high and low level 100 

control of the IO port pins is used between the drive layer and the execution layer. The host 101 

computer uses the QSerialPort component (Function pack of QT) to receive the sEMG signals 102 

through the RS232-USB serial port, and stores the received sEMG data in an Excel table to 103 

facilitate the subsequent static data processing. 104 

 105 

Processing and Selection of Optimal Eigenvalues of sEMG Signals 106 

Acquisition and processing of the sEMG Signals 107 

In order to facilitate the collection of sEMG signals, the muscle group on the forearm is selected 108 

as the collection object. The muscle groups of the forearm mainly include palmar longus, flexor 109 

carpi radialis, brachioradialis, teres pronatorus, extensor carpi radialis longus, extensor digitorum 110 

and flexor digitorum superficialis. The flexor carpi radialis is a flexor wrist muscle located on the 111 

inner side of the forearm. It starts from the medial epicondyle of the humerus and the olecranon, 112 

and ends at the proximal end of the second metacarpal bone. The flexor superficialis is mainly 113 

responsible for flexing the metacarpophalangeal joint and proximal interphalangeal joint of the 114 

2nd to 5th fingers. The extensor digitorum can extend the metacarpophalangeal joint of the four 115 

fingers. The original sEMG signals are collected by dual-channel sEMG sensors. Each sEMG 116 

sensor has two detection electrodes and one reference electrode. The detection electrode is attached 117 

to the central part of the muscle belly of the target muscle, and the reference electrode is attached 118 



to the muscle not participating in the test exercise. The processed sEMG signal amplitude varies 119 

from 0 to 3.3V and the original sEMG signal acquisition and processing process is shown in Figure 120 

2. 121 

Three healthy volunteers were recruited in this experiment with the informed consents of all 122 

volunteers and the Ethical Approval (No. [2020]LLSP(12)). Volunteer 1: Male, weight 64 kg, 123 

height 175 cm, 24 years old; Volunteer 2: Male, weight 73 kg, height 177 cm, 26 years old; 124 

Volunteer 3: Male, weight 75 kg, height 180 cm, 20 years old. Using sEMG sensors and Stm32f103 125 

microprocessor, the original sEMG signals are digitally filtered, amplified, rectified and smoothed 126 

[23-24]. After repeated experiments and comparing the amplitudes of the sEMG signals of different 127 

muscle groups collected during the same hand action, the extensor digitorum and flexor digitorum 128 

superficialis are finally selected as the muscle groups for sEMG signal collection. Volunteer 1 uses 129 

dual-channel sEMG sensors to collect the actual sEMG signals during the flexion and extension 130 

movement of his hand, as shown in Figure 3. The total signal collection duration is about 90 131 

seconds, of which the sEMG signal curves do not fluctuate much in the first 3 seconds, as the 132 

volunteer is in a state of inactivity. During the movement of the subject’s hand, the corresponding 133 

to the hand sEMG signal curves have changed, and the waveform in the figure appears to be 134 

convex. By observing the sEMG signals of the two channels, it can be seen that the signals of the 135 

two channels fluctuate synchronously when the subject hand is moving, but there are certain 136 

differences in the waveforms of each channel. 137 

 138 

Selection of optimal eigenvalues of the sEMG signals 139 

Figure 4 shows the obtained eigenvalues of sEMG sensor’s channel 1. It is necessary to use the 140 

law of statistics to find the accurate physical quantities that best represent the essence of the surface 141 

EMG signal, that is, the extracting eigenvalues of sEMG signals. The original sEMG signal after 142 

amplification, rectification and rectification integration loses a lot of frequency domain 143 

characteristics of the original signal. By directly analyzing and processing the sEMG signal in the 144 

time domain, it will be intuitive and accurate. In the time domain, the sEMG signal can be 145 

approximated as a Gaussian distribution. At present, the most commonly used time domain 146 

eigenvalues of the signal are the root mean square value (RMS), peak value (PV), mean value 147 

(MAV), wavelength average (WAV), form factor (FF) and Willison amplitude (WAMP). The 148 

number of eigenvalues selected is positively correlated with the accuracy of the information 149 

representation contained in the sEMG signals, but too many eigenvalues will affect the speed of 150 

the computer to make decisions, which is manifested in the deterioration of the follow ability of 151 

the pneumatic gloves to the patient's intention. On the contrary, if the selected number of 152 

eigenvalues of the sEMG signal is too small, the pneumatic rehabilitation glove control system 153 

cannot accurately recognize the patient's movement intention. xi represents the amplitude of the 154 

signal, and n represents the extracted step size. First, N(N= 30) groups of sEMG signals are 155 

extracted to form sEMG samples with empirical steps n=100, n=150, n=200 in the continuously 156 

collected sEMG signals respectively as W1, W2, and W3. And then the above-mentioned 6 157 



eigenvalues with each segment length as the unit to form an eigenvalue sample Ei (6×N) is 158 

calculated, where i =1, 2, 3 corresponds to the sEMG samples W1, W2, W3, respectively. 159 

The patient's hand movement trend will be expressed as fluctuations in sEMG signals. The 160 

eigenvalues of the signals reflect the nature of the signals over a period of time, so the fluctuation 161 

of the sEMG will also be specifically reflected in the fluctuation of sEMG eigen-values. According 162 

to prior knowledge, it can be known that the greater the degree of dispersion of eigenvalues, the 163 

more conducive the neural network to the recognition of the movement trend based on eigenvalues. 164 

Based on the six eigenvalues, three eigenvalues with a large degree of dispersion will be selected 165 

as the parameters of the next action classification, participating in the training and testing of the 166 

neural network for intention recognition. Since a single dispersion index is not sufficient to fully 167 

characterize the degree of dispersion of the signals, 4 dispersion indicators will be used to process 168 

the 6 eigenvalues that have been obtained, namely range (R), interquartile range (Q), and variance 169 

(V) and fourth-order center distance (K). 170 

Range is the difference between the maximum and minimum values between data. The greater the 171 

range, the greater the degree of dispersion, namely： 172 

( ) ( )max mini iR s s= −  (1) 

The interquartile range represents the range of the middle half of the data. The larger the interval, 173 

the greater the degree of dispersion. Arrange a set of data in ascending order. The number in the 174 

x% position is represented by Px. The lower quartile and upper quartile are P8 and P23 respectively, 175 

namely: 176 

23 8Q P P= −  (2) 

Variance describes the degree of dispersion of data mathematical expectation, that is, the greater 177 

the variance, the greater the degree of dispersion, namely: 178 
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The fourth-order center distance is a cumulative numerical statistics reflecting the distribution 179 

characteristics of random variables. The larger the fourth-order center distance, the smaller the 180 

degree of dispersion, namely: 181 
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In formula (1) ~ formula (4), Si represents the data amplitude and N represents the data length. The 182 

process of determining the optimal eigenvalue is shown in Figure 5.  183 

By observing the sorting results of the data dispersion degree in Table 1, three eigenvalues with 184 

the largest dispersion degree are selected, which are WAMP, PV and RMS. For further verification, 185 



the dispersion index of E2 and E3 are calculated by the same method, and a comprehensive ranking 186 

is performed according to the magnitude of the dispersion index, as shown in Table 2 and Table 187 

3. 188 

 189 

Research on Hand Movement Trend Recognition Based on BP Neural 190 

Network 191 

Using the collected sEMG signals to achieve the purpose of identifying the patient's finger 192 

movement trend is the main problem in the design of the pattern recognition classifier. The back 193 

propagation (BP) neural network model was chosen to construct the motion recognition classifier, 194 

as the BP neural network model has good self-learning, nonlinear mapping and adaptation, 195 

generalization and fault tolerance. It could be an ideal movement trend pattern recognition tool. 196 

 197 

Construction of BP neural network classifier 198 

BP neural network is an adaptive nonlinear dynamic system composed of a large number of 199 

interconnected neurons. It can learn and store the mapping relationship of multiple input-output 200 

modes without describing specific mathematical equations in advance. The quality of neural 201 

network classifiers is closely related to the number of neural network layers, the number of nodes 202 

in each layer, the transfer function of the hidden layer, and the learning algorithm. The training 203 

algorithm flow chart of constructing BP neural network under QT software development 204 

environment is shown in Figure 6. 205 

The number of BP neural layers is selected as 3 layers. This is because Robert Hecht-Nielson 206 

proved that a three-layer neural network can complete the mapping of any n-dimensional input 207 

and m-dimensional output, so in order to simplify the calculation, a three-layer network is adapted. 208 

Hidden layer transfer function: 209 

( )i
i

x MinValue A
y

MaxValue MinValue A

− +
=

− +
 (5) 

Transfer function of the output layer: 210 

( )k ky x MaxValue MinValue A A MinValue= × − + − +  (6) 

In formula (5) and (6), MinValue is the minimum value of the input layer value; MaxValue is the 211 

maximum value of the input layer value; constant A reprevents the denominator from being zero; 212 

xi represents the eigenvalue extracted from the sEMG signals; yi represents the normalized feature 213 

value of the input layer; xk represents the output value of the hidden layer, and yk represents the 214 

final output value of the output layer. The input layer is a 6×1 vector composed of the optimal 215 

eigenvalues of the 2-channel sEMG signals, so the number of nodes in the input layer is 6, set the 216 

number of nodes in the output layer to 1, and use the output result of the output layer to determine 217 

the triggered action. The action code is built as in Table 4. 218 

The number of hidden layer nodes is determined by the following empirical formula: 219 



1n n m a= + +  (7) 

Where, n is the number of input nodes; m is the number of output nodes; n1 is the number of hidden 220 

nodes; a is a constant between 1 and 10. 221 

The number of hidden nodes gradually increases, and the training error of the neural network is 222 

observed during this process. As the number of hidden layer nodes increases, the training error 223 

gradually decreases, but after a certain number of nodes, the test error will fluctuate greatly. 224 

Therefore, considering the trend of training and test error changes, the number of hidden layer 225 

nodes is finally determined to be 12. 226 

 227 

Training and testing of BP neural network 228 

In order to realize the mapping function of the input matrix and the output matrix, the BP neural 229 

network needs to be trained. The feedback mechanism of BP neural network includes two parts. 230 

One is that the BP neural network produces prediction results. The other is to compare the 231 

prediction results with sample results, and then correct the neuron error until the error meets the 232 

specified requirements or reaches the specified number of training sessions. 160 sets of data are 233 

used as training samples to train the BP neural network as shown in Table 5. Each set of data 234 

contains the input and target output of the BP neural network. The input is the optimal eigenvalues 235 

of the sEMG signals collected by the two channels of the sEMG sensors, and the output is the code 236 

value of the corresponding action. 237 

Before training the BP neural network, the training samples need to be randomly divided into two 238 

types at a ratio of 3:1, as training samples and test samples separately. After the BP neural network 239 

uses the training sample to complete each iteration, it is judged whether the average error value 240 

meets the accuracy requirements (e<0.01). If the accuracy requirements are met, the training is 241 

completed. Otherwise, the prediction results are compared with the sample target results, and then 242 

start neural Meta-feedback learning, repeat the above steps until reaching the specified number of 243 

training times or meet the accuracy requirements to complete the training. 244 

Considering that BP neural network is prone to over training and lack of generalization ability, the 245 

training samples input into the neural network training algorithm are divided into three kinds of 246 

samples: train samples, validation samples and test samples. In each epoch of training, the errors 247 

between the results of three samples and the target results are tested. When the error of validation 248 

samples does not decrease in six successive epochs, the training of BP neural network is stopped 249 

to prevent over fitting, which is caused by overtraining of BP neural network. It can be seen from 250 

Figure 7 that the total number of epochs of BP neural network is 116. After 110 epoch of BP neural 251 

network, the error of train samples, the error of test samples and the error of validation samples no 252 

longer have a downward trend, or their downward trend is not obvious. The best validation 253 

performance is 6.293e-6. Therefore, the training of BP neural network is finished at the 116th 254 

epoch.The threshold w is set 0.98, and the trained BP neural network is used to classify and 255 

recognize patient actions, the recognition result is shown in Figure 8. 256 

 257 



Active trigger control strategy for pneumatic gloves 258 

The software processing algorithm of the control system mainly includes a two-channel optimal 259 

eigenvalue amplitude calculation and a BP neural network action recognition calculation. Among 260 

them, the same optimal eigenvalue is selected for different patients, and the eigenvalue amplitude 261 

calculation formula is unique. However, due to differences between individuals, the weights and 262 

thresholds of the nodes in the BP neural network model corresponding to different patients are not 263 

the same, so the BP neural network model library needs to be established in the actual application 264 

process. Different patients call their corresponding BP neural network models during training. 265 

When a patient conducts active training based on sEMG signals for the first time, he needs to 266 

collect sEMG signals under the guidance of a physician, and complete the training of the BP neural 267 

network, and store the required neural network in the BP neural network model library. The 268 

corresponding database will be called during a training session. The algorithm flow of active 269 

trigger control strategy for pneumatic rehabilitation gloves based on sEMG signals is shown in 270 

Figure 9. 271 

 272 

Results  273 

Now three male volunteers apply the above sEMG signal control strategy to identify the volunteer's 274 

hand movement trend to trigger the pneumatic rehabilitation gloves. Three volunteers are required 275 

to complete the triggering of the pneumatic rehabilitation gloves six times within 100s, and the 276 

time from triggering to the completion of the training of a single pneumatic rehabilitation gloves 277 

should exceed 10s. The accuracy of the control system can be checked by completing the specified 278 

number of experiments within the specified time. The time to complete a single experiment is set 279 

to exceed 10s in order to make the extracted sEMG signal more intuitive. When the three 280 

volunteers realized the trigger control of the pneumatic gloves, the waveform diagram of the sEMG 281 

signal is shown in Figure 10, Figure 11 and Figure 12. The surface EMG signal waveform without 282 

fluctuation in the figures indicates that the pneumatic rehabilitation gloves have not been triggered. 283 

At this time, the output of the control algorithm is 0. However, the combination of the trigger 284 

signal waveform and the motion signal waveform indicates that the pneumatic rehabilitation 285 

gloves are triggered to drive the patient's hand muscle movement. At this time, the output of the 286 

control algorithm is 1. All of the movement trends of the three volunteers were correctly identified, 287 

which indicates that the active triggering training based on sEMG signals may have universal 288 

applicability. 289 

 290 

Discussion  291 

In order to realize active triggering training becoming possible in home rehabilitation, EMG is 292 

chosen as the bioelectrical signal for hand movement trend recognition, replacing the other high 293 

cost of collecting ECoG, EEG or MEG signals. The rehabilitation gloves’ hardware platform can 294 

be divided into an acquisition layer, a decision-making layer, a driving layer and an execution 295 

layer. 296 



The control system uses the BP neural network as a classifier for patient’s hand movement trend 297 

recognition, and extracts the characteristic values of sEMG signals in the time domain: MAV, PV, 298 

WAMP, RMS, MS and MWL, and then through the degree of dispersion index R, Q, V and K, the 299 

optimal eigenvalues of the sEMG signals are selected. By observing the sorting results of the data 300 

dispersion degree in Table 1, three eigenvalues with the largest dispersion degree are selected, 301 

which are WAMP, PV and RMS. By observing Tables 2 and 3, it can be seen that the most discrete 302 

eigenvalues extracted by samples W2 and W3 are WAMP, PV and RMS, which are the same as the 303 

optimal eigenvalues corresponding to the W1 sample. By comparing Table 1, Table 2, and Table 304 

3, it can be seen that the order of the dispersion degree of each eigenvalues corresponding to 305 

different sub-samples is roughly the same. The magnitude of the dispersion index of the selected 306 

optimal eigenvalue is significantly higher than other eigenvalues. So it is reasonable to 307 

comprehensively select the optimal eigenvalues in the time domain as WAMP, PV and RMS. 308 

WAMP, PV and RMS are used as the input values of the BP neural network. On the basis of the BP 309 

neural network which is used to establish the classifier of hand movement, the mapping 310 

relationship between hand sEMG signals and hand actions is finally completed by training and 311 

testing. From the Figure 8, when the actual test result is greater than w, the test result is equal to 312 

the action target result; when the test result is less than w, the test result is equal to the non-action 313 

target result. The accuracy of trend recognition is determined by judging whether the test result is 314 

equal to the corresponding target test result. A total of 44 judgments are made in the Figure 8, only 315 

4 of which are wrong as shown by the triangle. Based on this, it can be considered that the 316 

correctness rate of BP judgment is about 90%. Judging the main reason for the distortion is closely 317 

related to factors such as the quality of the electrode paste, the state of the skin on the surface of 318 

the human body, and the changes in the muscle group during the sEMG acquisition process. 319 

The pneumatic rehabilitation glove training control algorithm, based on sEMG signal, was 320 

proposed. By observing the sEMG signal waveforms of three volunteers, it can be found that when 321 

the BP neural network monitors the hand’s movement trend, the pneumatic gloves will be triggered 322 

to drive the fingers to perform rehabilitation training. The difference in the amplitude and duration 323 

of the trigger signal of different volunteers in Figure 10, Figure11 and Figure12 is related to the 324 

volunteer's different physical quality, the duration and intensity of hand movement trend. Three 325 

male healthy volunteers used the control system to achieve the experimental results of the trigger 326 

experiment on pneumatic rehabilitation gloves, which preliminarily confirmed that the system has 327 

a high accuracy rate for hand movement trend recognition, and it may be useful in patient active 328 

hand training.  329 

In the future, more healthy volunteers will be recruited to participate in this experiment. The 330 

generality and accuracy of this trigger control system for the recognition of different people's hand 331 

movement trend are tested in a larger range. Then stroke patients will be recruited to participate in 332 

the experiment to test. Comparison between the rehabilitation effect of traditional pneumatic 333 

rehabilitation robot and the ones with the trigger control system on stroke patients will be 334 

conducted. At last, the feasibility of applying the device to finger paralysis caused by different 335 



diseases will be considered. Meanwhile, we will also consider the effects of spasm, complete 336 

plegia and other factors on the accuracy of the trigger system. 337 

 338 

Conclusions 339 

An active trigger control system for pneumatic rehabilitation gloves, based on sEMG signals, is 340 

developed, which could achieve immediate rehabilitation movement trend to help the patient 341 

complete active hand rehabilitation training. Firstly, analysis of sEMG sensor installation position 342 

on human’s arm and signal acquisition process were carried out. Second three optimal eigenvalues 343 

of sEMG signals were selected as the follow-up neural network classification input. Using the BP 344 

neural network, the classifier of hand movement is established. Moreover, the mapping 345 

relationship between hand sEMG signals and hand actions is built by training and testing. Based 346 

on the individual differences, the corresponding BP neural network model database of different 347 

people was established. At last, the pneumatic glove training control algorithm was proposed. And 348 

the combination of the trigger signal waveform and the motion signal waveform indicates that the 349 

pneumatic rehabilitation glove is triggered to drive the patient's hand movement. Preliminary tests 350 

have confirmed that the device has high accuracy rate of trend recognition for hand movement. In 351 

the future, more healthy volunteers and stroke patients will be recruited to participate in this 352 

experiment. 353 
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