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Abstract
This paper presents a comprehensive study of the optical and electrical dielectricmaterial properties
of six commonly-used silicon and glass substrates at terahertz (THz) frequencies, including refractive
index, absorption coefficient, dielectric constant and loss factor. Thematerial characterization
techniques used in this paper feature THz time-domain transmission and reflection spectroscopywith
themeasurement frequencies from0.5 THz up to amaximumof 6.5 THz.Of the six selected dielectric
and semiconductor substrates, two are siliconwafers with resistivities ranging from0.001 to 0.02Ω-
cm. From themeasurement results, loss tangents of the selected siliconwafers range from0.680 to
5.455 and the dielectric constants are from1.079 to 17.735. The four other wafers are all glass-based
substrates: D263 glass, Borofloat 33 glass, fused silica and Sapphire. From themeasurements, it is
found that the THzdielectric properties vary considerably between the substrate samples e.g. dielectric
constants range from1.925 to 3.207while loss tangents are from0.042×10−3 to 0.127.Most of the
selected silicon and glass-based substrates are quite useful formanyTHz applications, e.g., THz
integrated circuits (THz ICs), THzmicrosystem technologies (THzMSTs) andTHz system-on-a-chip
(THz SoC) and system-on-substrate (SiP).

1. Introduction

Terahertz (THz) research activities have grown significantly over the last few decades withmany useful
applications includingwireless communications [1–4], real- time and high-resolution imaging [5], material
characterization [6], space communications [7, 8], as well as chemical and biomedical sensor technologies
[9, 10]. As an example, the THz frequency spectrumprovidesmany advantages over RF andmicrowave bands
such as large available bandwidth and high data rate that can achievemultiple terabit-per-second channels for
short andmedium-range wireless communications, which are very useful formany future scientific and
engineering applications. Even thoughTHz technologies can be potentially used for awide range of applications,
most of the state-of-the-art THz components and systems that have been reported in research papers and
commercially launched on to themarket to-date are often bulky and expensive [2].

Nowadays,manyworld-leading researchers aremoving their research activities toward integrated circuits
(ICs), system-on-chip (SoC) and system-in-package (SiP) at THz frequencies using silicon and glass
technologies. The THz integrated circuits (THz ICs) andTHzmicro-electromechanical systems (THzMEMS)
that can operate from100GHz and up to several hundreds of gigahertz [10–25]. Silicon, such asCMOS and
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BiCMOS, and glass-based technologies are good candidates for THz circuits and systems since they are able to
provide a high level of integrationwith consumer electronics, offering great potential to integrate THz systems
onto a single chip or substrate [3, 21–26]. They can also achieve high yield at low fabrication cost formass
production, which is needed to decrease overall production cost per unit while still achieving excellent
performance compared to their compound semiconductor counterparts such asGaAs and InP technologies.
However, the lack of comprehensive data for the substratematerial properties, such as dielectric constant, loss

Table 1. List of selectedwafers used in this work.

Wafer

material Wafer type Dopant Orientation Polish*
Wafer diameter

(mm/inch)
Wafer thick-

ness (μm)
Resistivity

(Ω cm)

Silicon N-type Phosphorous (P) 〈100〉 SSP 100/4 500 0.001–0.005

Silicon P-type Boron (B) 〈100〉 SSP 100/4 525 0.010–0.020

D263 glass — — — DSP 100/4 500 —

Fused Silica — — — DSP 100/4 500 —

Borofloat 33

glass

— — — DSP 100/4 500 —

Sapphire — — CPlane DSP 100/4 600 —

*SSP is Single Side Polish

DSP isDouble Side Polish

Figure 1.Measurement diagram for characterizationmaterial under test (a) transmission system and (b) reflection system.
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tangent and absorption coefficient, at THz frequencies above one THz drastically limits the usability of silicon
and glass-based technologies. Currently, there are some researchworks reporting on both optical and electrical
dielectric properties of only a few different glass and silicon substrates for amaximum frequency of up to
approximately 3 THz [26–39].

This paper presents the comprehensive dielectricmaterial properties in both optical and electrical domains,
such as dielectric constant, loss tangent and absorption coefficient, of six commonly-used silicon and glass
substrates,measured using THz time-domain spectroscopy (THzTDS) over a frequency range from0.5 THz to
6.5 THz. The importantmaterial information of the selected silicon and glass substrates such as crystal
orientation, substrate resistivity, doping level, etc are summarized in table 1. Both transmission and reflection
THz spectroscopy techniqueswere used to characterize the selected substrates depending on the relevance to the
wafer samples, e.g. substrate thickness, wafer diameter andmaterial resistivity. This characterization of dielectric
material parameters is a significant step in the development of various integrated passive and active THz
components for THz ICs, THzMST andTHz SoC/SiP devices.

2. THz time-domain spectroscopy systems

Figures 1 (a), (b) shows the schematic diagrams of the transmission and reflectionmeasurement systems,
respectively. Theworking principle andmeasurement setup of the free-space THz-TDS systems have been
reported previously [31, 40–45]. The choice between transmission and reflectionmeasurement depends on the
physical and dielectric properties of thematerial-under-test (MUT), e.g. thickness and loss levels of theMUT.
Transmissionmeasurements are suitable for characterizingmost substratematerials, which are generally thin
samples of

low-attenuation dielectric or semiconductormaterials. Themain advantage of the transmission technique is
the easewithwhich distinct absorption peaks can be observed in the response during thematerialmeasurement,
either in refractive index or dielectric constant. Transmissionmeasurements can achieve very accurate results
for the extractedmaterial parameters.

However, the transmission technique is not suitable for thick samples of dielectric and semiconductor
materials, or formaterials-under-test with high signal attenuation [42, 43, 45]. In these cases, the reflection
method is preferable. Rather than pre-judge the results, both the transmission and reflection techniques were
used in this work as complementarymaterial characterizationmethods providing a complete set ofMUTdata.
Themeasurement system gives highly accurate results and provides quick indication of the properties of the six
wafers with a better than 93%accuracy. The standard deviation of themeasurement system is lower than 0.0271.
However, due to high absorption of some of theMUT samples in this work, the extracted dielectric and optical
properties for somematerials cannot be reported over thewhole frequency band of 0.5 to 6.5 THz.

2.1. Transmission and reflectionmeasurement setup
The transmission and reflectionTDS systemswere based on established optical bench setups in the Terahertz
Laboratories of the Pollard Institute at Leeds. A commercialmode-locked Ti:Sapphire laser (Coherent Vitara-T-
HP) operating at 800 nmwas employed, set to a repetition rate of 80MHz, pulse width of 20 fs andwith an
average power of up to∼1W [46]. The THz emitter and detector are both photoconductive antennas (PCA),
comprising two bow-tie shapedTi:Au electrodes with a 200 μmgap between them, deposited on low-
temperature-grownGaAs (LT-GaAs) and transferred onto z-cut quartz substrate [40]. In both the transmission
and reflection setups, the laser output is split into two beams using an 80:20 beam splitter. The higher power
beam is fed to one PCA to generate the THz pulse, while theweaker beam is fed to the other PCA for gated
detection of the THz signal received from the sample. The signal generation PCA is biased at 350V and
electrically chopped at 7 kHz, and the resulting THz radiation is then collected, collimated and re-focused by a
set of off-axis parabolicmirrors. A siliconwafer is used as afilter to block any stray laser light reflected from the
emitter surface from reaching the detector, while allowing themajority of the THz radiation to pass through.

In the transmission system, shown infigure 1(a), the THz radiation is collected by a second set of off-axis
parabolicmirrors and focused onto the PCAdetector. Before thematerial under test (MUT) is inserted, a
reference ‘thru’measurement ismade. Then, the sample ismeasured by placing it centrally in the 2-inch
collimated THz beam that is formed between this second set of off-axis parabolicmirrors. In the reflection
measurement setup, shown infigure 1(b), the THz radiation is focused onto the sample, which is set at a 45°
angle of incidence, using parabolicmirrors. A second pair of parabolicmirrors is used to re-collimate the
reflected THz signal and focus it onto the PCAdetector. A referencemeasurement was performed using a large
area of Ti:Au conductor (100 nm thick, deposited on the samewafer) as a reflection standard.

In both setups, the 800 nm laser beam is focused onto the PCAdetector through a hole in thefinal parabolic
mirror. Onlywhen both the laser pulse andTHz radiation are incident on the detector, can the THz field at that
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point in time bemeasured. A linear delay stage is, therefore, used to synchronize the optical andTHz pulses at
the detector and ensure that the full THz electric field is sampled. The output signal from the PCAdetector isfirst
amplified using a transimpedance amplifier and thenmeasured using a lock-in amplifier referenced to the bias
frequency of the THzPCA emitter. The THz part of the system is enclosed in a Perspex box so that it can be
purgedwith dry air to a humidity of<1%. This is important in order to removewater vapor absorption effects
from themeasured data.

2.2.Material characterization extraction
Free-space THz-TDS is now themost common technique to characterizematerial properties at THz
frequencies. Both the amplitude and phase of themeasurement signal are collected simultaneously and can be
used to extract both the optical properties, e.g., refractive index and absorption coefficient, or the electrical
properties, e.g. dielectric constant and loss factor of theMUT. The complex refractive index, wn ,˜( ) can be related
to the complex permittivity, e w ,˜( ) via themathematical relation w e w=n ,2( ˜( )) ˜( ) where w is the angular
frequency [47, 48].

The, wS ,sample
˜ ( ) and reference, wS ,ref

˜ ( ) scans are recorded independently and transformed from the time

domain to the frequency domain by using a Fourier transform. The ratio of wSsample
˜ ( ) and wSref

˜ ( ) are
represented by themagnitude, r w ,( ) and phase, f w( ) [49], as follows:

w
w
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From equation (1), the refractive index, wn ,sample ( ) and extinction coefficient, wk ,sample ( ) of theMUT can be
represented as follows:
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where cvacuum is the velocity of light in vacuum and d is thickness of thewafer in centimeters. The extinction
coefficient, wk ,sample ( ) can be calculated in terms of the absorption coefficient, a, as follows:
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The complex permittivity can be represented by e w e w e w= ¢ - ¢¢j ,˜( ) ( ) · ( ) where the real and imaginary parts
are e w¢( ) and e w¢¢ ,( ) respectively. The real part, e w¢ ,( ) and imaginary part, e w¢¢ ,( ) of the complex permittivity
are expressed by:

e w w w¢ = -n k 6sample sample
2 2( ) ( ( )) ( ( )) ( )

and

e w w w¢¢ = n k2 7sample sample( ) · ( ) · ( ) ( )

For the electrical properties, the dielectric constant is equal to the real part of the permittivity, e w¢( ) and the loss
tangent can be calculated as follows:

d
e w
e w

w w
w w

=
¢¢
¢

=
-

n k

n k
tan

2
8

sample sample

sample sample
2 2

( )
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3.Measurement results

Table 1 lists the selected semiconductor and dielectric substrates to be characterized, which are commonly used
in ICs,MSTs and SoC/SiPs, with their relevant detailed information e.g. names and types ofmaterial, level of
dopant, substrate thickness and diameter, and substrate resistivity. All the selected substrates [50], have a
substrate diameter of 100mm thatfits in a 4-inch optics holder. Beforemounting the substrate-under-test in the
holder, the testedwafer was cleaned to remove both organic and inorganic contaminations by dipping itfirstly
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into acetone and then isopropyl alcohol and immediately rinsing in deionizedwater before drying it in a clean
environment at room temperature using laboratory-grade dry compressed air. Individualmeasurements were
repeated at least two times to ensure the repeatability. The averages were subsequently used to extract the optical
and electrical dielectricmaterial properties of the six commonly-used silicon and glass substrates. Owing to the
dynamic range of both THz-TDS instruments, themeasurement of either very strongly absorbing or veryweakly
absorbing samples is difficult. Therefore, for strongly absorbing samples, the data has been truncated at the point
that the spectra have intercepted themaximumabsorptionαmax coefficient detectable [51]. Forweakly
absorbing samples, the data has been truncated at the point that themeasured absorption coefficient is
indistinguishable from a thrumeasurement. Therefore, not all samples have data presented across the entire 0.5
to6.5 THz range of the instrument.

3.1. Reflective indices
The refractive indices of all six wafers from0.5 to 6.5 THz are shown infigure 2. Figure 2(a) shows the refractive
indices of the low resistivity siliconwafers, e.g. 0.001–0.005Ω-cm and 0.01–0.02Ω-cm. The refractive indices of
bothwafers decrease dramatically with increasing frequency. The refractive indices of the 0.001–0.005Ω-cm
and 0.01–0.02Ω-cm siliconwafers at 0.5 THz are 6.23 and 5.22, respectively, while the value decreases to 2.04
and 2.79 at 5.0 THz, respectively. Figure 2(b) depicts the refractive indices ofD263 glass, Borofloat 33 glass, fused
silica and Sapphire. The refractive indices of fused silica and sapphire slightly increase from1.95 and 3.06 at 0.5

Figure 2.Measured refractive indices of six selectedwafers from0.5 – 6.5 THz (a) two lowest resistivity siliconwafers and (b) four
glass-based substrates.
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THz to 2.00 and 3.20 at 5.3 THz.On the other hand, the refractive indices ofD263 glass and Borofloat 33 glass
show a decreasing trendwith increased frequency. The refractive index ofD263 glass decreases from2.50 at 0.5
THz to 2.42 at 1.4 THz. The refractive index of Borofloat 33 reduces from2.10 at 0.5 THz to 1.95 at 3.8 THz.

3.2. Absorption coefficients
The absorption coefficients of all six wafers characterized from0.5 to 6.5 THz are shown infigure 3. The
absorption coefficients of the siliconwafers with resistivity 0.001–0.005Ω-cm and 0.01–0.02Ω-cm are
presented infigure 3(a). The absorption coefficients show an opposite trend to refractive index and dramatically
increase as a function of frequency. The absorption coefficients of the 0.001–0.005Ω-cm and 0.01–0.02Ω-cm
siliconwafers at 0.5 THz are 3.67×104m−1 and 2.61×104m−1, respectively, while the value increases to
2.26×105m−1 and 1.33×105m−1 at 5.0 THz, respectively. Figure 3(b) shows the absorption coefficients of
D263 glass, Borofloat 33 glass, fused silica and Sapphire, all of which increase as a function of frequency. The
absorption coefficient ofD263 glass and Borofloat 33 glass dramatically increase from1.61×103m−1 and
0.682×103m−1 at 0.5 THz, respectively, to 1.81×104m−1 at 1.4 THz and 1.71×104m−1 at 3.8 THz, while
the absorption coefficients of the fused silica and Sapphire wafers at 0.5 THz are∼90m−1 and∼12m−1, and
increase to 6.63×103m−1 and 2.90×103m−1 at 5.3 THz.

Figure 3.Measured absorption coefficients of six selectedwafers from0.5 – 6.5 THz (a) two lowest resistivity siliconwafers and (b)
four glass-based substrates.

6

Mater. Res. Express 8 (2021) 056201 NChudpooti et al



3.3.Dielectric constants
From themeasured refractive indices and absorption coefficients, equation (6) in section II can be used to
calculate the dielectric constants of the six selectedwafers, and these are shown infigure 4. Figure 4(a) shows the
dielectric constants of two lowest resistivity siliconwafers. The dielectric constant of the 0.001–0.005Ω-cm
siliconwafer slightly decreases from17.73 at 0.5 THz to 0.65 at 5.5 THz. The trend of the dielectric constant of
the 0.01–0.02Ω-cm siliconwafer is similar and slightly decreases between 14.31 and 5.09 from0.5–5.0 THz.
Figure 4(b) shows the dielectric constant of four wafers, e.g. D263 glass, Borofloat 33 glass, fused silica and
Sapphire. The dielectric constants of fused silica and sapphire slightly increase from3.81, 9.39 at 0.5 THz,
respectively to 4.01 and 10.28 at 5.3 THz, respectively. On the other hand, the dielectric constants ofD263 glass
and Borofloat 33 glass decrease as frequency increases. The dielectric constant ofD263 glass decreases from6.27
at 0.5 THz to 5.78 at 1.4 THz. The dielectric constant of Borofloat reduces from4.41 at 0.5 THz to 3.82 at
3.8 THz.

3.4. Loss tangents
Figures 5 (a) and (b) depict the loss tangents of the six selectedwafers, as determined using equation (8). From
figure 5 (a), the siliconwafer with resistivity between 0.001–0.005Ω-cmhas a loss tangent that increases from1.5
to 5.5 as a function of frequency. The siliconwafer with resistivity of between 0.01–0.02Ω-cmhas a loss tangent
that decreases slightly from1 at 0.5 THz to 0.68 at 5.0 THz. Figure 5(b) show the loss tangent of the four non-

Figure 4.Measured dielectric constants of six selectedwafers from0.5 – 6.5 THz (a) two lowest resistivity siliconwafers and (b) four
glass-based substrates.
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siliconwafers. The loss tangent ofD263 glass dramatically increases from0.059 at 0.5 THz to 0.255 at 1.4 THz.
The loss tangent of Borofloat 33 glass increases from0.031 at 0.5 THz to amaximumvalue of 0.128 at 2.6 THz
before decreasing to 0.11 at 3.8 THz. For the fused silica and Sapphire wafers, the loss tangent increases slightly as
a function of frequency. The loss tangents of the fused silica and Sapphire wafers at 0.5 THz are 0.042×10–3 and
0.045×10−3, respectively, while the value increases to 0.032 at 5.5 THz and 0.0081 at 5.3 THz, respectively.

3.5.Optical and electrical dielectric propertiesmodel
The highfluctuation in themeasured data is shown in the data of siliconwafers with resistivities ranging from
0.001 to 0.02Ω-cmdue to the low lossmaterials. Thismeans the interaction length between theTHz beamand
the sample is very small and the spectra are dominated by noise. The other problem is the low lossmaterials tend
to lead tomultiple reflections in the samples which in turn, lead to large oscillations in the frequency response.
To reduce thefluctuation in themeasured data, the fluctuation data isfiltered out and smoothened by using the
commercial data analysis and visualization software packageOrigin [52], where a 5th order polynomial was used
to provide the bestfit with the standard deviation lower than 0.0271. The polynomial is given as

= + + + + +P f A f B f C f D f E f F 95 4 3 2( ) · · · · · ( )

where P( f ) is the value of the optical and electrical dielectric properties as a function of frequency fTHz. A, B, C,
D, E, F are the coefficient of 5th order polynomial function. All values of the coefficient parameters are listed and
showed in tables 2–5. Themaximumerror, average error and average standard deviation of eachwafer are

Figure 5.Measured loss tangents of six selectedwafers from 0.5 – 6.5 THz (a) two lowest resistivity siliconwafers and (b) four glass-
based substrates.
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Table 2.Coefficient of 5th polynomial function to perform the refractive index of six wafers.

Wafermaterial A B C D E F Maximum%difference (max. error) Average%difference (avg. error) Average S.D.

Si (0.001− 0.005Ω-cm) −6.3198 3.3997 −1.0071 0.1496 −0.0087 8.2689 6.32 1.01 0.0239

Si (0.010− 0.020Ω-cm) −5.2669 3.4028 −1.1432 0.1879 −0.0120 6.9200 5.55 1.14 0.0271

D263Glass −1.7638 4.1876 −4.4542 2.1411 −0.3885 2.7753 0.05 0.02 0.0003

Borofloat 33Glass 0.1289 0.1289 0.0692 −0.0140 0.0011 2.0713 0.11 0.01 0.0002

Fused Silica 0.0109 −0.0134 0.0072 −0.0015 1.1322×10−4 1.9487 0.06 0.02 0.0002

Sapphire 0.0043 −0.0028 0.0041 −8.8541×10−4 7.0834×10−5 3.0621 0.05 0.01 0.0002
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Table 3.Coefficient of 5th polynomial function to perform the absorption coefficient of six wafers.

Wafermaterial A B C D E F

Maximum%Difference (max.

error)
Average%Difference (avg.

error) Average S.D.

Si (0.001− 0.005

Ω-cm)
7.1620×104 −3.7671×103 −2.9915×103 9.8699×102 −90.6294 5.3951×103 6.87 1.14 0.0122

Si (0.010− 0.020

Ω-cm)
1.1504×10−5 −9.0891×104 3.9389×104 −7.6814×103 5.5154×102 −1.4627×104 5.11 1.29 0.0136

D263Glass 7.7188×104 −1.9645×105 2.5149×105 −1.4233×105 3.0261×104 −1.1367×104 1.08 0.28 0.0116

Borofloat 33Glass 1.3276×103 2.3306×103 6.5813×102 −5.3533×102 69.3949 −7.0671×102 2.34 0.75 0.0233

Fused Silica 9.9054×102 −7.8882×102 4.4587×102 −1.012×102 8.9339 −3.8213×102 1.81 0.42 0.0107

Sapphire 1.2285×103 −1.2799×103 6.7829×102 −1.5064×102 12.1517 −3.9132×102 1.14 0.35 0.0225
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Table 4.Coefficient of 5th polynomial function to perform the dielectric constant of six wafers.

Wafermaterial A B C D E F Maximum%difference (max. error) Average%difference (avg. error) Average S.D.

Si (0.001− 0.005Ω-cm) −40.9394 26.1898 −8.3339 1.2795 −0.0754 28.8499 5.17 1.07 0.0195

Si (0.010− 0.020Ω-cm) −24.0190 17.1995 −6.1566 1.0495 −0.0681 21.1824 4.52 1.27 0.0131

D263Glass −9.9821 23.8381 −25.753 12.6283 −2.3424 7.8049 0.11 0.02 0.0009

Borofloat 33Glass 0.5499 −0.7197 0.3032 −0.0608 0.0049 4.2890 0.21 0.04 0.0012

Fused Silica 0.0439 −0.0535 0.0288 −0.0059 4.4967×10−4 3.7969 0.11 0.02 0.0006

Sapphire 0.0289 −0.0202 0.0261 −0.0057 4.5588×10−4 9.3753 0.10 0.02 0.0012
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Table 5.Coefficient of 5th polynomial function to perform the loss tangent of six wafers.

Wafermaterial A B C D E F Maximum%Difference (max. error) Average%Difference (avg. error) Average S.D.

Si (0.001− 0.005Ω-cm) 1.6839 −0.5319 0.1242 −0.0107 5.8492×10−5 1.0562 3.41 1.27 0.0199

Si (0.010− 0.020Ω-cm) −0.1585 −0.3661 0.2499 −0.0560 0.0042 1.2746 1.74 0.32 0.0178

D263Glass 0.5781 −1.5807 2.4138 −1.5535 0.3597 −0.0482 0.91 0.26 0.0002

Borofloat 33Glass 0.1337 −0.0392 0.0084 −0.0024 3.0026×10−4 −0.0293 0.58 0.13 0.0003

Fused Silica 0.0203 −0.0120 0.0042 −7.4699×10−4 5.3799×10−5 −0.0079 0.77 0.14 0.0002

Sapphire 0.0064 −0.0049 0.0023 −4.9485×10−4 3.9241×10−5 −0.0019 0.43 0.11 0.0002
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calculated and listed in tables 2–5. To confirm thefitting function, all the fitted data are plotted to compare with
the rawmeasured data infigures 2–5. Thefitted values show a good agreement in optical and electrical dielectric
properties of high than 93% compared to rawmeasured results.

3.6. Comparison results with otherworks
A comparison of the extracted refractive indices and absorption coefficient are shown in figure 6. Figure 6 (a)
depicts the comparison of the refractive index and absorption coefficient of fused silica. The refractive indices

Figure 6.Comparison of extracted refractive indices and absorption coefficients with other works of (a) fused silica wafer, (b) Sapphire
wafer and (c)Borosilicate glasses.
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presented in [27] and [29] are plotted over the frequency range of up to 1.75 THz and 2THz, respectively. The
refractive indices at 1.75 THz of [27, 29], and this work are 1.955, 1.964, and 1.952, respectively. Themaximum
difference of refractive index value between this work and [29] is 0.012. Three absorption coefficients (i.e.,
[27, 29], and this work) at 1.75 THz are 605m−1, 685m−1, and 533.18m−1, respectively. The variation of the
three absorption coefficients shows a similar trend, increasing at the higher frequency. Infigure 6 (b), the
refractive index and absorption coefficient of Sapphire are plotted. Themaximum frequency of the data
reported in [27] and [30] is 1.75 THz and 4THz, respectively. At 1.75 THz, the refractive indices of [27, 30], and
this work are 3.079, 3.095, and 3.075, respectively. Themaximumpercentage difference of refractive indices of
Sapphire between [30] and this work is 0.65%. The absorption coefficients of [27, 30], and this work at 1.75 THz
are 372m−1, 330m−1, and 297.57m−1, respectively. Three absorption coefficients show the same tendency,
such that the value of absorption coefficient increases at higher frequency. The refractive index (i.e., the solid line

Table 6.Refractive index comparison of this work and otherworks.

Refractive index

Frequency (THz)

Wafermaterial 0.5 1.5 2.5 3.5 4.5 5.5 6.5

Si (0.001-0.005Ω-cm) 6.233 3.763 2.952 2.522 2.183 1.862 —

Si (0.01 – 0.02Ω-cm) 5.227 3.689 3.298 3.075 2.848 @5.0THz 2.792 —

D263 glass 2.505 @1.4THz 2.424 — — — — —

Borofloat 33 glass 2.102 2.063 2.005 1.965 @3.8 THz 1.958 — —

Fused Silica 1.952 1.925 1.957 1.967 1.979 2.005 —

Sapphire 3.065 3.072 3.090 3.120 3.160 @5.3THz 3.207 —

[27] Fused silica 1.952 1.954 — — — — —

[29] Fused silica 1.962 1.963 — — — — —

[27] Sapphire 3.067 3.075 — — — — —

[30] Sapphire 3.075 3.092 3.1 3.13 — — —

[31]Pyrex 2.1 2.08 — — — — —

[32]Pyrex 2.1 2.075 — — — — —

[31]BK7 2.505 — — — — — —

[32]BK7 2.51 — — — — — —

Table 7.Absorption coefficient comparison of this work and otherworks.

Absorption coefficient (m−1)

Frequency (THz)

Wafermaterial 0.5 1.5 2.5 3.5 4.5 5.5 6.5

Si (0.001-0.005
Ω-cm)

3.67×104 9.83×104 14.43×104 18.24×104 21.27×104 23.13×104 —

Si (0.01 – 0.02
Ω-cm)

2.61×104 5.24×104 7.57×104 10.10×104 11.45×104 @ 5.0 THz

13.30×104
—

D263 glass 1.61×103 @1.4 THz

1.81×104
— — — — —

Borofloat 33

glass

0.682×103 0.657×104 1.33×104 1.68×104 @ 3.8 THz

1.71×104
— —

Fused Silica 9 418 1.05×103 2.07×103 3.71×103 7.53×103 —

Sapphire 12 207 544 1.10×103 1.60×103 @ 5.3 THz

2.90×103
—

[27] Fused
silica

35 463 — — — — —

[29] Fused
silica

75 520 — — — — —

[27] Sapphire 21.7 292.25 — — — — —

[30] Sapphire 42.42 225 650 1,150 — — —

[31]Pyrex 700 6.50×103 — — — — —

[32]Pyrex 800 6.60×103 — — — — —

[31]BK7 1.35×103 — — — — — —

[32]BK7 1.20×103 — — — — — —

14

Mater. Res. Express 8 (2021) 056201 NChudpooti et al



with the indicated symbol) and absorption coefficient (i.e., the dashed line with symbol) of four borosilicate
glasses (D263, Borofloat 33, Pyrex, and BK7) are illustrated in figure 6 (c). The Pyrex andBK7used in [31, 32] are
a type of borosilicate glass, which are comparedwith theD263 andBorofloat 33 glass in this work. The trend of
theD263 glass is similar to that trend of BK7. Specifically, themaximum refractive index is 2.53 at 1 THz. Above
1THz, the value of the refractive index ofD263 glass is slightly reduced to 2.42 at 1.4 THz.On the other hand, the
trend of the Borofloat 33 glass is similar to Pyrex, such that the value of the refractive index is lowerwhen the
frequency increases. In [31, 32], themaximum frequency of the data for Pyrex is 1.75 THz and 1.8 THz,
respectively. Additionally, in this work, the refractive index of Borofloat 33 glass is expanded to 4.0 THz, and the
value of Borofloat 33 glass slightly decreases between 2.102 and 1.958 from0.5–3.8 THz. For the absorption
coefficient of the borosilicate group, the extracted results ofD263 andBorofloat 33 glass show good agreement
when comparedwith BK7 and Pyrex, respectively. At the higher frequency, the values of the absorption
coefficients of borosilicate glasses increase. To summarize the results of the comparison data and this work, the
optical and electrical properties (e.g., refractive index, absorption coefficient, dielectric constant, and loss
tangent) are listed in tables 6–9, respectively, which can be found in the appendix.

4. Conclusions

The optical and electrical properties of six selectedwaferswere characterized for their optical and electrical
properties by using THz time-domain spectroscopy. The transmissionmethodwas used tomeasure the four
wafers ofD263 glass, Borofloat 33 glass, Fused silica and Sapphire. The reflectionmethodwas used to
characterize the siliconwafers with low resistivity of 0.01-0.02Ω-cm and 0.001-0.005Ω-cm. Themeasurement
results were presented from a low frequency of 0.5 THz to the highest frequency of 6.5 THz. To assess the
accuracy and the reliability of themeasurement results, themeasured and extracted results have been compared
with other publishedworks of note and excellent agreement has been observed.

Table 8.Dielectric constant comparison of this work and other works.

Dielectric constant

Frequency (THz)

Wafermaterial 0.5 1.5 2.5 3.5 4.5 5.5 6.5

Si (0.001-0.005Ω-cm) 17.735 7.919 2.360 1.574 1.079 1.005 —

Si (0.01 – 0.02Ω-cm) 14.312 4.506 6.679 5.633 4.990 @5.0THz —

5.099

D263 glass 6.273 @1.4THz — — — — —

5.786

Borofloat 33 glass 4.419 4.246 4.004 3.848 @3.8THz — —

3.823

Fused Silica 3.811 3.813 3.833 3.869 3.919 4.019 —

Sapphire 9.394 9.436 9.553 9.735 9.991 @5.3THz —

10.287

Table 9. Loss tangent comparison of this work and otherworks.

Loss tangent

Frequency (THz)

Wafermaterial 0.5 1.5 2.5 3.5 4.5 5.5 6.5

Si (0.001-0.005Ω-cm) 1.443 2.710 3.485 4.125 4.752 5.455 —

Si (0.01 – 0.02Ω-cm) 1.069 0.815 0.704 0.766 0.705 @ 5.0 THz —

0.680

D263 glass 0.059 @1.4 THz — — — — —

0.255

Borofloat 33 glass 0.031 0.101 0.127 0.117 @3.8THz — —

0.110

Fused Silica 0.042×10−3 0.006 0.010 0.014 0.019 0.032 —

Sapphire 0.045×10−3 0.002 0.003 0.004 0.005 @ 5.3 THz —

8.14×10−3
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Appendix

The optical and electrical properties (e.g., refractive index, absorption coefficient, dielectric constant, and loss
tangent) of the other publishedworks [27 29–32] and this work are listed in tables 6–9, respectively.
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