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Abstract
This work presents experiments and modelling of OH densities in a radio-frequency driven
atmospheric-pressure plasma in a plane-parallel geometry, operated in helium with small
admixtures of oxygen and water vapour (He + O2 + H2O). The density of OH is measured
under a wide range of conditions by absorption spectroscopy, using an ultra-stable laser-driven
broad-band light source. These measurements are compared with 0D plasma chemical kinetics
simulations adapted for high levels of O2 (1%). Without O2 admixture, the measured density of
OH increases from 1.0 × 1014 to 4.0 × 1014 cm−3 for H2O admixtures from 0.05% to 1%. The
density of atomic oxygen is about 1 × 1013 cm−3 and grows with humidity content. With O2

admixture, the OH density stays relatively constant, showing only a small maximum at 0.1%
O2. The simulations predict that the atomic oxygen density is strongly increased by O2 addition.
It reaches ∼1015 cm−3 without humidity, but is limited to ∼1014 cm−3 beyond 0.05% water
content. The addition of O2 has a weak effect on the OH density because, while atomic oxygen
becomes a dominant precursor for the formation of OH, it makes a nearly equal contribution to
the loss processes of OH. The small increase in the density of OH with the addition of O2 is
instead due to reaction pathways involving increased production of HO2 and O3. The
simulations show that the densities of OH, O and O3 can be tailored relatively independently
over a wide range of conditions. The densities of O and O3 are strongly affected by the presence
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of small quantities (0.05%) of water vapour, but further water addition has little effect.
Therefore, a greater range and control of the reactive species mix from the plasma can be
obtained by the use of well-controlled multiple gas admixtures, instead of relying on ambient air
mixing.

Keywords: atmospheric pressure radiofrequency discharge, absorption spectroscopy, plasma
chemistry, modelling

(Some figures may appear in colour only in the online journal)

1. Introduction

Non-equilibrium atmospheric-pressure plasmas are known to
be efficient sources of reactive species [1–13] and have been
investigated for several different applications, in particular
surface processing, environmental applications and plasma
medicine [7, 14–34]. One of the challenges is tailoring the
plasma gas-phase chemistry to each specific application. Tail-
oring the chemistry is usually achieved by adjusting external
parameters such as: the gas composition [6, 7, 14–16], the
electric field distribution (by modifying the source design), or
the applied voltage characteristics (direct or pulsed voltage,
rise time, amplitude, frequency) [17, 18, 35–37]. The latter
two approaches can require modification of the plasma hard-
ware, limiting their value for process control and operation
for multiple different processes. Modifying the gas composi-
tion generally provides the most operational flexibility. Atmo-
spheric pressure plasmas generally operate in rare gases with
complex admixtures, arising from deliberate molecular gas
additions, ambient air entrainment and/or impurities. The full
plasma chemistry needs to be understood in order to effect-
ively manipulate the density of desired reactive species.

For biomedical applications the emphasis has been on
understanding and optimising the production of reactive oxy-
gen and nitrogen species due to their high oxidative power and
their natural roles in major biological functions (in particu-
lar in the immune system, or as signalling molecules in cel-
lular functions [1, 3, 4, 16, 23, 24]). In the presence of water,
which can come from the biological target, itself or may be
intentionally introduced to the feed gas, hydrogen peroxide
(H2O2) attracts particular attention. It is a relatively long-lived
and powerful oxidising species that can interact with distant
targets, and can be generated in significant concentrations [3,
38, 39]. One of the main mechanisms for the production of
hydrogen peroxide in plasmas is the three-body recombina-
tion of two hydroxyl (OH) radicals. Therefore, understanding
the production and destruction pathways of hydroxyl radic-
als is necessary to optimise and control hydrogen peroxide for
applications.

Molecular oxygen (O2) is often added to the gas mixture
to produce O-based reactive species such as atomic oxygen
and ozone, which also play important roles in disinfection
and oxidation. Ozone is used in a wide range of applications,
including treatment of municipal and waste water, and for food
processing [5, 8, 9, 40]. It is a powerful germicide and also effi-
ciently neutralises organic odours. In the context of complex

admixtures, the control of both OH/H2O2 and O/O3 is import-
ant. RF plasma sources in He+O2 +H2Omixtures (the focus
of this paper) are excellent sources of both H-species and O-
species, and some tailoring of gas chemistry has been demon-
strated. Several studies have investigated how changing the
gas composition allows optimisation for a given application
[14, 41]. In particular, numerical simulations have elucidated
the effect of either oxygen or water vapour addition on the gen-
eration of the ROS, and the relative contribution of different
production and loss reactions.

These studies have helped to begin unravelling the mech-
anisms of ROS formation and their interaction with biolo-
gical samples. The production of O-based species is greatly
enhanced by the addition of O2 to the gas mixture, due to addi-
tional reaction pathways. Conversely, the addition of water
vapour to a discharge already containing O2 appears to hinder
the production of O-based species. On the other hand, the
addition of both water and of O2 increases the density of H-
containing species [14, 41–43]. Therefore, the ROS composi-
tion in the gas phase can be controlled by varying the gas mix-
ture. Remarkably, the total ROS concentration was observed
to be little changed when the ratio [H2O]/[O2] was varied over
four orders of magnitude (for similar dissipated energies) [41].
This is despite dramatic changes in the dominant chemical
reactions, indicating that both O2 and H2O are efficient addit-
ives for ROS production.

In the specific case of hydroxyl, it was shown that its dens-
ity mostly depends on the concentration of water vapour, and
is relatively insensitive to O2 addition (over the range of 0.1%–
1% of O2). However, the dominant reactions for both pro-
duction and loss change dramatically in the presence of O2

[14]. In more detail, when only water is present, OH is mostly
produced by electron impact dissociation of H2O and lost by
recombination of two OH radicals in a three-body process. In
the presence of oxygen, the dominant OH production and loss
reactions are driven by O(1D) and O, respectively. Under these
conditions, the net contribution of oxygen to the formation
of OH (as defined below) is not clear, since both production
and loss pathways are enhanced. In the presence of high con-
centrations of water vapour, the complex role of lower dens-
ity secondary species needs to be identified in more detail in
order to fully understand the plasma chemistry. Such second-
ary species (for example, HO2) are formed through two-step
(or more) processes, and generally have low densities for low
water vapour concentration, but start to significantly affect the
kinetics at high water concentrations. In the literature, studies
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usually present the percentage contribution of individual reac-
tions towards the production (or loss) of hydroxyl relative to
the total production (or loss) rate. This enables the domin-
ant reactions for production and loss to be determined. How-
ever, this representation does not show the net contribution of
a given species to the generation of hydroxyl, i.e. the effect-
ive contribution of a given species, or group of species, to the
total production rate of hydroxyl, defined as the rate of pro-
duction of hydroxyl from reactions of the given species minus
the rate of loss of hydroxyl in collisions with that species. In
this paper, an analysis of the reaction rates is used to identify
the net contribution of each given species. A detailed analysis
of the kinetics of the generation of OH and other ROS is per-
formed for a range of admixture ratios [O2]/[H2O].

The previous studies cited above present simulations,
whereas this paper presents new experimental data, expanding
on the limited experimental results that can be found in the lit-
erature [9, 44–48]. The OH densities were measured for vari-
ous concentrations of O2 andH2O, up to 1% in each case. They
were obtained using a broad-band UV-absorption spectro-
scopy technique using an ultra-stable broad-band light source
[47, 49]. This light source has excellent temporal intensity
stability, leading to an absorption baseline variability lower
than 2 × 10−5 over the range of the OH(X)→OH(A) trans-
ition (306–311 nm) [49]. This setup allows a detection limit
one order of magnitude lower compared to the typical limit
(about 10−3) that can be achieved with the more commonly
used UV-LEDs [9].

2. Experimental setup and modelling

2.1. Plasma source

The RF-driven plasma source used here was described in
detail in [5] and is illustrated in figure 1. Briefly, a quasi-
homogenous plasma is generated between two plane-parallel
electrodes with a 1 mm gap. The length of the electrodes is
30 mm and the width is 10 mm offering a surface-to-volume
ratio of 2 mm−1. Two MgF2 windows close the reactor in the
direction perpendicular to the plane electrodes. An RF gener-
ator (Coaxial-Power, MN 150-13.56) and an L-matching net-
work (Coaxial-Power, MMN 150) are used to drive the dis-
charge at a frequency of 13.56 MHz and a dissipated power of
15.0 ± 1.5 W cm−3. Voltage and current are measured with a
PMK-14KVAC Tektronix probe (1000:1) and an Ion Physics
Corp. CM-100 l probe (1 V A−1) from which the dissipated
power was calculated following the method of [50].

The total gas flow is 5 slm. Heliumwith a purity of 99.996%
was used. Most of the gas lines are made of stainless-steel
to limit the impurities in the gas. Water vapour and oxygen
are admixed to the gas flow using three mass flow control-
lers. A defined content of water vapour is added to the feed
gas by guiding a fraction of the total helium flow through a
glass bubbler filled with distilled water. The amount of water
vapour is calculated using the vapour pressure at room tem-
perature and the flow rate through the bubbler as in [47]. The
output gas of the reactor is guided to an exhaust several meters
downstream.

Figure 1. Schematic cross section of the plasma source. The light
source section is represented by the single round dashed line. It is
centred at 1.5 cm of the plasma channel. RF: radio frequency,
LDLS: laser driven light source. Reprinted from [5], with the
permission of AIP Publishing.

2.2. Absorption spectroscopy

The hydroxyl densities are measured by absorption spec-
troscopy using an ultra-stable laser-driven broad-band light
source (LDLS, Energetiq EQ-99) and reflective optics to limit
chromatic aberrations (figure 2). The divergent light coming
out of the light source is focused into the central plane of
the discharge, collected and focussed onto the spectrograph’s
entrance slit by four parabolic mirrors (UV enhanced alu-
minium MPD-F01 Thorlabs). The focal beam waist is about
2 mm, so that the measured density of hydroxyl is spatially
averaged over the 1 mm gap between the electrodes. The
optical absorption path of 11 mm comprises the width of the
electrodes and both 0.5 mm gaps between windows and elec-
trodes. This path is perpendicular to the feed gas flow. The
transmitted spectrum is recorded by a 0.5 m Czerny–Turner
spectrograph (Andor SR500i) equipped with a 2400 l mm−1

grating that is blazed for λ = 300 nm and a CCD cam-
era (Andor, Newton DU940P-BU2, 2048 × 512 pixels of
13.5 × 13.5 µm2 size). The spectrometer entrance slit width
was set to 100 µm, resulting in an instrumental broadening
of 0.03 nm (see figure 3). Additional apertures in the beam
path were used to reduce unnecessary optical plasma emis-
sion reaching the entrance slit. The OH ground state density
is determined from the intensity of the integrated OH (X2Πi,
ν′′ = 0) → OH (A2Σ+, ν′ = 0) rotational envelope in the
wavelength range 306–310 nm.

As previously described in several papers [9, 47, 49], the
absolute density of the hydroxyl radical, nOH, is obtained from
analysis of the measured plasma absorbance spectrum A(λ) in
the spectral range from 306 to 311 nm, assuming the Beer–
Lambert law (equations (1) and (2)). Four signals are meas-
ured successively to correct for background and plasma emis-
sion. The first signal is recorded with both the plasma and the
light source on (SP,L), the second records the intensity of the
light source only (SL), the third records the plasma emission
only (SP) and the last signal is a background with both plasma
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Figure 2. Experimental setup for absorption spectroscopy. RFL: reflective focal length of the mirror, LDLS: laser driven light source,
APPJ: atmospheric pressure plasma jet, PH = pinhole.

and light source off (SB). Each signal is integrated over a time
period of 2.5 s after an equally long plasma stabilisation time.

T(λ) = e−A(λ) =
ST (λ)
S0 (λ)

=
SP,L − SP
SL − SB

(1)

A(λ) = σ (λ)× L× nOH. (2)

The observed absorbance is equal to the product of the
absorption cross section σ(λ), the absorption path length L,
and the line-of-sight averaged absorber density nOH. A home-
made spectrum simulation and fitting programme (see below)
is used to find the best least-squared fit of themeasured absorb-
ance spectrum, yielding the density and rotational temperat-
ure of the lower OH (X 2Πi, ν′′ = 0) state. The majority of
the population of the electronic ground state lies in the low-
est vibrational level, ν′′ = 0; no absorption band originating
from the ν′′ = 1 level was observed. The accuracy of the dens-
ity measurements depends on the knowledge of the absorption
length, here 11 mm with 5% uncertainty. The OH(X) rota-
tional temperature is not necessarily in equilibrium with the
gas translational temperature [46].

The absorption spectrum is simulated in the following way.
The ro-vibronic energy levels of the upper OH(A 2Σ+, ν′ = 0)
state are calculated according to [51], with Hund’s coupling
case (b) since Λ = 0, and the lower OH(X 2Πi, ν′′ = 0)
state, with intermediate case (a) to case (b) coupling. The rota-
tional line strength factors for the 12 electric dipole-allowed
branches are calculated using the expressions in [52]. These
factors are converted, firstly to relative Einstein coefficients for
spontaneous emission, then to absolute ones using the value of
0.698 µs for the radiative lifetime of the lowest rotation level
of the OH(A 2Σ+, ν′ = 0) state [53], and finally to spectrally
integrated absorption cross sections for each individual rota-
tional transition. The relative thermal population distribution
among the rotation levels of the OH(X 2Πi, ν′′ = 0) state is
calculated according to the rotational Boltzmann factor norm-
alised to the partition sum. For all rotational transitions a com-
mon spectral Gaussian line profile is assumed, which repres-
ents the resolution of the spectrograph. The intrinsic Doppler

Figure 3. Example of experimental and fitted spectra of the OH
(X2

Πi, ν
′′
= 0)→ OH (A2

Σ
+, ν′

= 0) rotational band transition
measured by broadband absorption spectroscopy in He + 0.1%
O2 + 0.4% H2O, for a dissipated power of 15 W cm−3. The
instrumental width is 0.03 nm.

(0.93 pm at 304 K) and pressure (0.66 pm in helium at 1 atm
[54]) broadening are negligible under the given experimental
conditions.

Figure 3 shows an example of a measured absorbance spec-
trum together with the best fit simulation. All measurements
were taken at the centre of the reactor, as illustrated by the
position of the LDLS beam in figure 1.

2.3. Numerical model for 0D plasma chemistry

In this work, the GlobalKin code is used to describe the
RF quasi-homogenous discharge. It is a 0D global plasma-
chemical kinetics model which is described in detail in
[55]. Briefly, it consists of a reaction chemistry and trans-
port module, a Boltzmann equation solver and an ordin-
ary differential equation solver. In the ordinary differen-
tial equation solver, the mass continuity equations for each
charged and neutral species are solved as a function of time,
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accounting for surface and gas phase production and consump-
tion processes:

dNi
dt

=
S
V



−
DiNiγi

γiΛD + 4Di
vth,i

+
∑

j

DjNjγjfij

γjΛD +
4Dj

vth,j



+ Si. (3)

Here, N represents the number density of a species i in the
gas phase, S

V is the surface area to volume ratio of the source,
ΛD is the diffusion length, D the diffusion coefficient, γ the
surface loss probability, f the return fraction of species from
surfaces and Si represents gas phase production and consump-
tion processes. Here, the diffusion length ΛD, is calculated as
in [43] for a plasma confined in a rectangular chamber, giving
a value of 0.0317 cm. Surface losses and gains are calculated
using user defined surface loss probabilities as defined in [47].
In addition, the electron energy equation is also solved:

d
dt

(

3
2
nekBTe

)

= pd −
∑

i

3
2
neνmi

(

2me

Mi

)

kB (Te − Ti)

+
∑

i

nekiNi∆εi. (4)

Here, ne is the electron density, kB the Boltzmann con-
stant, Te the electron temperature and pd represents the plasma
power. The second and third terms on the right hand side of
the equation represent electron energy changes through elastic
and inelastic collisions, respectively. In these terms, νmi is the
electron momentum transfer collision frequency with a spe-
cies i, me the electron mass, Mi the mass of the collision part-
ner, Ti the temperature of the collision partner, k the electron
impact rate coefficient and ∆εi the electron energy changes
due to the inelastic collision. A pseudo 1D plug flow model
is used to convert the temporally varying densities and tem-
peratures obtained from equations (3) and (4) into spatially
varying quantities along the channel of the plasma source
using the gas flow velocity. The electron energy distribution
function, mean electron energy, electron transport coefficients,
and electron impact rate coefficients, are obtained regularly
during the simulation, by solving the two-term Boltzmann
equation, in this case, every 0.1002 cm. At each point the
Boltzmann equation is solved for a range of reduced elec-
tric fields and the results tabulated. Values of the electron
impact rate coefficients and transport coefficients correspond-
ing to the instantaneous mean electron energy calculated by
equation (4) are then used to calculate the relevant source
terms in the ordinary differential equations. For all cases, the
gas temperature is set to 305 K. Simulations are carried out for
plasma electrodes of 3 × 1 × 0.1 cm3 but a plasma volume of
3 × 1.1 × 0.1 cm3 to account for both 0.5 mm gaps between
windows and electrodes where the plasma expands. The power
density is 15 W cm−3 and the flow rate is 5 slm.

The reaction mechanism includes 46 species and 577 reac-
tions and is described in the appendix. It is largely based on
the reaction mechanism for He + H2O mixtures presented in
[47]. The reaction set was extended to account for higher O2

concentrations by adding O-based ions and by refinements to

Table 1. List of the 46 species included in the chemistry set.

Neutral Positive Negative

He He, He(23S), He2∗ He+, He2+

O O, O(1D), O(1S),
O2, O2(a1∆),
O2(b1Σ), O3

O+, O2
+, O3

+,
O4

+

O–, O2
–, O3

–, O4
–

H H, H2 H–

OH OH, HO2, H2O,
H2O2

OH+,
H2O+(H2O)n=0,1,
H+(H2O)n=1−9,
O2

+(H2O)

OH–, H2O2
–,

OH–(H2O)n=1−3

Other e

O3
+, O3

– and O4
– were added to describe a more complete oxygen-related

ion chemistry. Based on the uncertainty analysis of Turner [11, 12], O2(v)
and O3(v) are thought to have no significant effect and were not included in
the model, helium atomic and molecular metastable states were addressed
as single composite states.

some reaction rate coefficients based on the reaction mechan-
isms for He/O2 mixtures presented in [9, 11, 12]. The species
included in the model are listed in table 1.

3. Results and discussion

In a helium–oxygen–water vapour gas mixture, the density
of hydroxyl reaches an approximately constant value within
a very short distance in the channel, about 2 mm in our condi-
tions [47]. The results presented hereafter are obtained in the
quasi steady-state region of the gas phase, in the middle of the
electrodes, 15 mm from the entrance.

3.1. Effects of water vapour and oxygen addition on OH
density

To study the effect of water vapour and oxygen on the gener-
ation of hydroxyl, various concentrations of water vapour and
oxygen are added to the feed gas. The concentration of each
added species ranges from 0% to 1%. At higher contents the
discharge cannot be sustained.

The density of OH measured by absorption spectroscopy
is presented in figure 4 (as squares). The OH density first
increases rapidly with humidity content, up to a few tenths of
a percent of water vapour, after which the increase is slower.
This transition has already been studied [47, 56, 57] and was
attributed to the change of electron density and temperat-
ure with increasing humidity content, affecting the reaction
rate coefficient for OH production. In the absence of O2, OH
is mainly produced by electron impact dissociation of water
molecules. However, the water vapour dissociation frequency
passes through a maximum, due to competition between an
electron temperature increase (increasing the rate coefficient
for electron impact dissociation) and electron density decrease
(decreasing rate of electron impact dissociation) as the humid-
ity content increases.

Figure 4 also shows the numerical results for similar condi-
tions (as solid lines). The experimental and simulation results
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Figure 4. Experimental (squares) and simulation (solid lines)
results of OH density in various concentrations of water vapour and
oxygen. He flow rate is 5 slm and power density is 15.0 W cm−3.

agree within 50%. The trends are very similar, although the
simulation results are somewhat higher by a nearly constant
factor. This could be due to an overestimation of the power
density (1–2 W cm−3, compatible with the uncertainty of the
power density measurement indicated in section 2.1) and/or
uncertainties in reaction sets and rate coefficients. In addi-
tion, in helium-water vapour only, the OH density increase
is stronger at high humidity content compared to the exper-
imental results. Despite these discrepancies, the comparison
with experiment demonstrates very similar trends and com-
parable absolute densities, giving confidence in the accuracy
of the numerical model.

When molecular oxygen is introduced into the feed gas,
it becomes the new dominant source of O-based species, in
particular atomic oxygen and ozone. The simulated densit-
ies of atomic oxygen are presented in figure 5(a). These are
in good agreement with the experimental results presented in
[8, 45, 47]. In [8] and [45], nitrogen was also included in the
gas mixture at a 4:1 ratio. This comparison may suggest that
0.1% nitrogen has a moderate impact on the atomic oxygen
density in dry conditions. However, this comparison should
not be considered as a validation of the simulation but simply
as a coherent comparison in relatively analogous gases. The
density of atomic oxygen increases by one to two orders of
magnitude in the presence of 0.1% molecular oxygen com-
pared to He+ H2O only. This is due to the change of the main
oxygen-atom production reaction already pointed out in [14]:
OH + OH→ O + H2O in absence of O2, and electron impact
dissociation of O2 in presence of significant amounts of O2.
On the other hand, as soon as few hundred ppm of water is
introduced in a He + O2 gas admixture, the oxygen-atom loss
is mainly due to OH+ O→ O2 + H, for any concentration of
oxygen.

The density of atomic oxygen is predominantly affected by
the concentration of molecular oxygen. Nevertheless, it should

be noted that a steep decrease in the O density is observed with
increasing water vapour concentration up to about 0.05%, for
cases where the O2 admixture is over 0.025%. Such densities
of water vapour could be in the range of impurities or diffu-
sion of ambient humidity in the case of an open plasma source.
Over 0.05% water vapour concentration, the O density stabil-
ises progressively and is only slightly affected by further water
vapour addition. This observation indicates that the introduc-
tion of known amounts of additive species to the feed gas gives
better control of ROS production than relying on mixing and
diffusion of the effluent into the surrounding environment in
the case of open plasma sources [58].

The density of ozone is strongly related to the addition of
oxygen to the feed gas (figure 5(b)). It increases by three orders
of magnitude with addition of 0.1% O2. At very low water
vapour concentrations, ozone also shows a sharp decrease with
water vapour addition, similar to oxygen atoms but not quite
as pronounced. Over 0.05% H2O, the ozone density is only
weakly affected by increasing humidity content.

Overall, the simulation results suggest that OH, O and O3

can be controlled quite independently by varying both water
and oxygen concentrations in the feed gas over the range 0%–
1% for H2O and 0.05%–1% for O2. The OH density depends
almost entirely on the water vapour content, while the O and
O3 densities are significantly affected by presence of water
vapour, but this effect is relatively independent of the concen-
tration of water vapour for values above 0.05%. Conversely,
the O and O3 densities are more strongly affected by varying
the O2 content. More precisely, the O and O3 densities drop
by approximately an order of magnitude following the addi-
tion of up to 0.05% water vapour to a He + O2 feed gas. If
high densities of O and O3 are required without OH species,
then dry conditions appear to be better.

3.2. Analysis of pathways and reaction rates at low water
vapour concentration

A detailed analysis of the hydroxyl reaction pathways in the
presence of 0.025% water vapour and various concentrations
of oxygen is drawn from the chemical kinetics simulation. The
dominant reactions for production and consumption of OH,
with and without 0.1% O2, are presented in tables 2 and 3.
The analysis is performed at 15 mm into the plasma channel,
corresponding to the measurement position. Table 6 presents
the corresponding net production rates of the major species as
defined in the introduction.

In the absence of molecular oxygen, electron impact reac-
tions generate almost 62% of the hydroxyl radicals. 54%
of the OH molecules are produced by dissociation of water
molecules by electron impact, and 74% are lost by the recom-
bination of two OH molecules to produce hydrogen per-
oxide (R(10)) or water plus atomic oxygen (R(11)). The
other significant reaction for production of hydroxyl involves
the H2O+ ion, responsible for about 30% of OH produc-
tion. H2O+ is almost entirely produced by two- and three-
body Penning ionisation reactions of He(23S) with water
((He) + He(23S) + H2O → (He) + He + H2O+ + e). At
low humidity content, the density of secondary species, such
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Figure 5. (a) Simulated and measured atomic oxygen densities using various concentrations of water vapour (0.01%–1%) and molecular
oxygen (0%–1%). The impurity level of oxygen in the bottle is close to 7 ppm (0.0007%) according to manufacturer specifications.
Simulations are only carried out for cases where the level of admixture is low enough to enable plasma ignition. Experimental
measurements from [47] are obtained in very similar conditions except at a distance of 1.2 cm from the gas inlet instead of 1.5 cm.
Experimental measurements from [8] are obtained in helium flux 10 slm, N2/O2 (4:1) admixture 0.1%, and similar driving voltage
characteristics (voltage of 234 V). (b) Simulated ozone densities under similar conditions as in (a).

Table 2. Dominant reactions for production of OH in He + 0.025% H2O (+0.1% O2) and associated percentage of production and reaction
rates (the symbol ‘v’ corresponds to the reaction rate in cm−3 s−1).

He + 0.025% H2O He + 0.025% H2O + 0.1% O2

# Production reactions Production of OH (%) v (cm−3 s−1) Production of OH (%) v (cm−3 s−1)

R(1) e + H2O→ OH + H + e 40.2 6.36 × 1016 2.4 6.1 × 1016

R(2) H2O+
+ H2O→ OH + H3O+ 30.1 4.76 × 1016 0.7 1.8 × 1016

R(3) e + H2O→ OH + H– 14 2.21 × 1016 0.8 1.9 × 1016

R(4) e + H2O2→ 2OH + e 7.5 1.19 × 1016 0.8 2.1 × 1016

R(5) He + H + HO2→ He + 2OH 2.7 4.31 × 1015 22.8 5.76 × 1017

R(6) H2O + O(1D)→ 2OH 2.7 4.21 × 1015 42.3 1.07 × 1018

R(7) OH+
+ H2O→ H2O+

+ OH 2.3 3.65 × 1015 Negligible Negligible
R(8) O + HO2→ OH + O2 Negligible Negligible 21.5 5.44 × 1017

R(9) H + O3→ OH + O2 Negligible Negligible 2.2 5.61 × 1016

Total from selected reactions 99.5 1.57× 1017 97.6 2.41 × 1018

Total from all reactions 100 1.58× 1017 100 2.53 × 1018

Table 3. Dominant reactions for consumption of OH in He + 0.025% H2O (+0.1% O2) and associated percentage of consumption and
reaction rates.

He + 0.025% H2O He + 0.025% H2O + 0.1% O2

# Consumption reactions Consumption of OH (%) v (cm−3 s−1) Consumption of OH (%) v (cm−3 s−1)

R(10) He + 2OH→ He + H2O2 53.0 8.28 × 1016 6.3 4.9 × 1017

R(11) 2OH→ O + H2O 21.2 3.31 × 1016 2.5 6.34 × 1016

R(12) He + H + OH→ He + H2O 6.3 9.9 × 1015 1.0 2.58 × 1016

R(13) OH + O→ O2 + H 12.2 1.9 × 1016 71.9 1.82 × 1018

R(14) OH + H2O2→ HO2 + H2O 4.3 4.5 × 1016 0.8 2.06 × 1016

R(15) OH + HO2→ O2 + H2O 2.9 6.7 × 1016 17.4 4.4 × 1017

Total from selected reactions 100 1.56 × 1017 99.8 2.53 × 1018

Total from all reactions 100 1.56 × 1017 100 2.53× 1018
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Table 4. Dominant reactions for production of OH in He + 0.75% H2O (+0.1% O2) and associated percentage of production and reaction
rates (the symbol ‘v’ corresponds to the reaction rate in cm−3 s−1).

He + 0.75% H2O He + 0.75% H2O + 0.1% O2

# Production reactions Production of OH (%) v (cm−3 s−1) Production of OH (%) v (cm−3 s−1)

R(1) e + H2O→ OH + H + e 51.6 2.59 × 1018 30.7 2.26 × 1018

R(2) H2O+
+ H2O→ OH + H3O+ 9.2 4.62 × 1017 5.3 3.94 × 1017

R(3) e + H2O→ OH + H– 8.1 4.08 × 1017 4.9 3.58 × 1017

R(4) e + H2O2→ 2OH + e 2.2 1.10 × 1017 1.4 9.3 × 1016

R(5) He + H + HO2→ He + 2OH 22.4 1.13 × 1018 23.7 1.75 × 1018

R(6) H2O + O(1D)→ 2OH 3.4 1.71 × 1017 28 2.06 × 1018

R(7) OH+
+ H2O→ H2O+

+ OH 0.4 2.10 × 1016 Negligible Negligible
R(16) H + H2O2→ H2O + OH 0.8 4.01 × 1016 Negligible Negligible
R(8) O + HO2→ OH + O2 Negligible Negligible 3.5 2.55 × 1017

R(9) H + O3→ OH + O2 Negligible Negligible 0.3 2.18 × 1016

Total from selected reactions 98.1 4.93× 1018 97.8 7.19 × 1018

Total from all reactions 100 5.03× 1018 100 7.37 × 1018

Table 5. Dominant reactions for consumption of OH in He + 0.75% H2O(+0.1% O2) and associated percentage of consumption and
reaction rates.

He + 0.75% H2O He + 0.75% H2O + 0.1% O2

# Consumption reactions Consumption of OH (%) v (cm−3 s−1) Consumption of OH (%) v (cm−3 s−1)

R(10) He + 2OH→ He + H2O2 39.4 1.98 × 1018 23.8 1.76 × 1018

R(11) 2OH→ O + H2O 15.7 7.91 × 1017 9.5 7.03 × 1017

R(12) He + H + OH→ He + H2O 13.5 6.80 × 1017 2.4 1.76 × 1017

R(13) OH + O→ O2 + H 9.1 4.58 × 1017 26.2 1.94 × 1018

R(14) OH + H2O2→ HO2 + H2O 14 7.03 × 1017 8.8 6.49 × 1017

R(15) OH + HO2→ O2 + H2O 8.1 4.06 × 1017 29.2 2.15 × 1018

Total from selected reactions 99.8 5.02 × 1018 99.9 7.38× 1018

Total from all reactions 100 5.03 × 1018 100 7.38× 1018

as HO2, is low and the contribution of these species remains
small. In particular, HO2 contributes to only 3% of hydroxyl
production and loss. These results are similar to those detailed
in [47].

As soon as some oxygen is added to the mixture, the path-
ways for OH generation change dramatically, even though the
resulting OH density remains little changed (see figure 6).
The addition of 0.1% O2 increases the density of atomic
oxygen by more than one order of magnitude (figure 5(a).
Consequently, the reaction rates of O-induced reactions
are strongly enhanced: the reaction rate of reaction R(6):
H2O + O(1D) → 2 OH, increases by more than two orders
of magnitude, becoming the dominant production reaction
of hydroxyl. Loss mechanisms are also modified. Reaction
R(13), OH + O → O2 + H, involving O is greatly enhanced
and becomes responsible for 72% of hydroxyl losses. Thus,
atomic oxygen is responsible for most of the production as
well as the loss of hydroxyl molecules. The calculation of
the net production rate of OH by processes involving atomic
oxygen, i.e. production reactions R(6) and R(8) minus con-
sumption reaction R(13) (see table 6), shows the net effect O
has on the OH density. It reveals that it actually only makes
a small alteration to the density of OH at 0.025% H2O and

0.1% O2. More precisely, R(6,8,13) have an effective rate of
−2.08×1017 cm−3 s−1 which is −8% of the total production
rate of 2.53× 1018 cm−3 s−1. Though dramatically impacting
the pathways for OH formation, the O and O(1D) production
and consumption contributions nearly cancel out, leading to
a small effective (and negative) contribution to the OH dens-
ity. This observation remains valid for higher added O2 con-
centrations, explaining the nearly constant OH density with
O2 addition (presented in figure 4) for a given low humidity
content.

Further analysis of the reaction pathways for OH forma-
tion reveals that molecular oxygen has an indirect impact on
the OH density. Apart from the O/O(1D) reactions, the other
main production reactions are through the seemingly minor
reactions R(5) and R(9):

He + H + HO2 → He + OH + OH (5)

H + O3 → OH + O2. (6)

The density of atomic hydrogen is very similar with and
without oxygen admixture, while the densities of HO2 and O3
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Table 6. Net production rates for OH by major species or groups of species under conditions of low (0.025%) and high (0.75%) water
content. The percentage represents the ratio of the net reaction rate of the species to the total production rate of OH.

He + 0.025% H2O
He + 0.025%
H2O + 0.1% O2 He + 0.75% H2O

He + 0.75%
H2O + 0.1% O2

Ratio [O2]/[H2O] 0 4 0 0.1

Total production rate of reactions R(1) to
R(9) (cm−3 s−1)

1.58 × 1017 2.53 × 1018 5.03 × 1018 7.37 × 1018

Electron impact, R(1) + R(3) + R(4) 9.75 × 1016 1.01 × 1017 3.11 × 1018 2.71 × 1018

(62%) (4%) (62%) (37%)
H2O+, R(2) 4.76 × 1016 1.81 × 1016 4.62 × 1017 3.94 × 1017

(30%) (<1%) (9%) (5%)
O + O(1D), R(6) + R(8)—R(13) −1.49 × 1016 −2.08 × 1017 −2.87 × 1017 3.83 × 1017

(−9%) (−8%) (−6%) (5%)
HO2, R(5) + R(8)—R(15) −1.7 × 1014 6.8 × 1017 7.23× 1017 −1.50 × 1017

(<1%) (27%) (14%) (−2%)
O3, R(9) (<1%) 5.61 × 1016 (<1%) 2.18 × 1016

(2%) (<1%)

increase by one to three orders of magnitude with the addi-
tion of oxygen. The strong enhancement of HO2 density (from
about 8 × 1011 to 5 × 1013 cm−3) comes from the increased
rate of He + H + O2 → He + HO2 with addition of 0.1%
molecular oxygen. This reaction is more efficient than the
additional loss reaction: HO2 + O→ OH + O2. The effective
contribution of HO2-induced reactions (R5,8,15) represents
27% ofOH production at lowwater content (0.025%H2O) and
0.1% O2 (see table 6). The role of reaction (5) on the OH kin-
etics was also identified in a recent study of a He+O2 +H2O
pulsed plasma jet at 1 kHz and 10 kV [59].

For relatively low concentrations of oxygen, the role played
by ozone is minor. However, it grows with the increasing
oxygen addition since ozone is dominantly produced by:
He + O2 + O → He + O3. Subsequently, through reaction
(6), it produces non-negligible amounts of OH radicals, rep-
resenting 2% of the OH formation at 0.1% O2 (effective rate
5.6 × 1016 cm−3 s−1) and about 10% at 0.5% O2 (reaction
rates at 0.5% O2 are not detailed here).

3.3. Analysis of pathways and reaction rates at high water
vapour concentration (0.75% H2O)

Now let us consider a similar analysis of the hydroxyl reaction
pathways in the presence of 0.75% water vapour and various
concentrations of oxygen. The dominant reactions for the pro-
duction and consumption of OHwith and without 0.1%O2 are
presented in tables 4 and 5. The corresponding net production
rates of the major species can be found in table 6.

In the absence of molecular oxygen, at the highest water
concentration studied (0.75% H2O), the reaction rates of all
OH related reactions increase significantly and the relative
importance of the different production or loss reactions of
OH change compared to low humidity conditions (0.025%
H2O). The density of most H-containing species increases
dramatically, in particular for the secondary species H2O2 and
HO2. The H density increases to a lesser extent, while OH
and O show a similar increase. Conversely, the positive ions

H2O+ and OH+ decrease by up to an order of magnitude, due
to a decrease in electron density, affecting the density of their
precursor species, He(23S) which are created through electron
impact reactions.

Three main points can bemade. The dissociation of H2O by
electron impact remains the dominant reaction for OH produc-
tion. But as mentioned above, due to the decrease in electron
density as the water vapour concentration increases, OH pro-
duction is reduced above a certain water vapour content. Also,
with the larger increase of secondary species densities com-
pared to other species, reactions R(5, 8, 14, 15) are promoted.
In particular, reaction (5) now accounts for more than a fifth
of the production of OH, against 2.7% with only 0.025%H2O.
Among the loss mechanisms of OH, reactions involving sec-
ondary species (H2O2, HO2) also play a more significant role.
The recombination of two OH molecules now only accounts
for half of the losses, against three-quarters at 0.025% H2O.
The effective reaction rate of HO2 has an increased role in OH
production; it goes from having a negligible contribution at
low water vapour content to making +14% of OH formation
(see table 6). It is noteworthy that reaction R(2) has a decreased
relative contribution due to the significant decrease in H2O+

ion density; the ratio [H2O+]/[H2O] drops by two orders of
magnitude compared to its value at 0.025% H2O.

In the presence of 0.1%molecular oxygen and 0.75%water
vapour, the plasma chemistry does not tend towards a pure
water vapour chemistry, in contrast to the low humidity case
(0.025%). The effect of high amounts of both water vapour
and oxygen leads to the development of complex pathways for
OH formation. Thus, the chemistry exhibits strong character-
istics of both water vapour and oxygen-induced pathways. In
this way, OH is produced approximately equally by electron-
impact dissociation of water and by the O(1D)-induced reac-
tion R(6). The following comments compare a gas mixture
with 0.1% O2 at low humidity (He + 0.025% H2O + 0.1%
O2) to a high humidity case (He + 0.75% H2O + 0.1% O2).
The latter reaction R(6), largely benefits from the increase of
water density: the reaction rate of R(6) increases by 193%
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Figure 6. Density of some major O- and H-species for different
conditions. Addition of large amounts of O2 only significantly
benefits to the production of O3.

from low to high humidity, while the reaction rate of R(13)
remains almost unchanged. This means that large concentra-
tions of water vapour are necessary for the net contribution of
atomic oxygen R(6, 8, 13) to increase the production of OH.
Nevertheless, O and O(1D) contributions remain low at high
humidity, about +5% of OH production rate (3.83 × 1017 out
of 7.37 × 1018 cm−3 s−1). In addition, the secondary spe-
cies HO2 which accounted for a quarter of OH formation at
low humidity content has a negligible impact on OH forma-
tion (−2%) at high humidity. This is due to the strong drop of
O density with higher water concentration, affecting the R(8)
reaction rate.

These complex interactions show that even with only two
additives, the chemistry cannot be easily tailored, and a
detailed analysis of reaction rates must be undertaken for that
purpose.

Focusing on O and O(1D), their generation mechanisms are
very different, and change according to the gas mixture.

If water vapour is the only admixture, both the produc-
tion and loss mechanisms of ground-state atomic oxygen
depend dominantly on OH and do not change significantly
with increasing water content. Consequently, the density of
O increases almost proportionally with OH (+490% from
0.025% to 0.75% added water vapour) and the density of O
may be inferred from the density of OH if it is known in one
condition. The generation mechanisms of O(1D) are differ-
ent, but again they do not change significantly with increasing
water content. O(1D) production depends on low density sec-
ondary species (mostly O2, O2

∗ and O) and a little on water
vapour. Therefore, the O(1D) density does not increase signi-
ficantly from low to high humidity content.

In the presence of molecular oxygen, in dry conditions, O
and O(1D) are largely produced by dissociation of O2 by elec-
tron impact. O(1D) mainly decays to O through: O(1D) + O2

→ O + O2(b1Σ)). The densities of O and O(1D) increase by

two orders of magnitude compared to the case with water only
(figures 5 and 6). O reaches 5× 1014 cm−3 in He+ 0.02%O2,
similar to the experimental value from [8] obtained in helium
with 0.1% dry air (see legend of figure 5 for other experimental
conditions) and reaches 1015 cm−3 in He+ 0.1% O2. The loss
of O is mainly due to O gas-phase recombination mechanisms.
Diffusion to the walls is typically the second most important
loss process but it only represents a few percent of the over-
all losses. However, when some water vapour is introduced,
OH and HO2 become largely responsible for the loss of O.
O(1D) is very efficiently quenched by water to form 2 OH, so
that the decay to O becomes less significant. O losses are sig-
nificantly higher in the presence of water vapour causing the
density of O to drop by an order of magnitude from dry to low
humidity conditions. As the humidity content increases from
0.05% to 1%, the variations are much smaller and the O dens-
ity decreases by at most a factor 3.

Finally, figure 6 illustrates the variations of the densities of
the major ROS and the electron density for the most repres-
entative admixtures. It also includes the densities simulated in
He+ 0.025% O2 + 0.5% O2 in order to accentuate the role of
O2-induced reactions. It highlights that adding small (0.1%) or
large (0.5%) concentrations of O2 does not significantly affect
the density of H-species (apart from HO2). However, large
concentrations of O2 (0.5% O2) significantly increase the pro-
duction of O3. From 0.1% to 0.5% added oxygen, the ozone
density rises by a factor 4 (1–4 × 1013 cm−3).

4. Conclusion

This work presents measurements of the density of OH radic-
als in a He + O2 + H2O RF plasma at atmospheric pressure.
The measurements were made using an ultra-sensitive broad-
band absorption spectroscopy setup. The results are mostly
in agreement with previous numerical analyses [14, 41]. The
plasma chemistry is also analysed using 0D plasma-chemical
kinetics simulations. The simulated and experimental results
are compared in order to understand the kinetics of the major
ROS, in particular OH, O, O(1D) and HO2, over a wide range
of water and oxygen concentrations. The analysis of reaction
rates enabled the identification of the net contributions of each
species to the generation or loss of OH and O.

In He+ H2O, OH is created principally by electron impact
dissociation of water vapour, and lost by three-body recom-
bination of two OH molecules to form H2O2. The density of
OH increases from 1.0 × 1014 to 4.0 × 1014 cm−3 for H2O
admixtures from 0.05% to 1%. The density of atomic oxy-
gen is of the order of 1 × 1013 cm−3. When water vapour
is the only molecular admixture in the gas, the density of
O increases nearly proportionally with OH over the stud-
ied range and may be inferred from the density of OH, and
inversely. The experimental measurements and simulation res-
ults of OH and O densities are in good agreement. The dis-
crepancies in OH densities between the two approaches are
within 50%.

In the presence of molecular oxygen, the OH formation
pathways are strongly modified. Nevertheless, the OH density
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is not significantly affected because the dominant O and
O(1D)-induced production and consumption contributions to
OH formation nearly cancel out. However, the introduction
of around 0.1% molecular oxygen increases the density of
O-species (O, O(1D), O3) by several orders of magnitude.
This also favours HO2 production, through H + O2 + He →
HO2 + He, which plays a significant role in OH formation at
low water content. The density of the other H-species such as
OH are not strongly affected by the addition of molecular oxy-
gen as long as the total amount of impurities remains below
1%. The introduction of larger concentrations of oxygen only
has a strong impact on the ozone density.

Therefore, it can be concluded that OH, O and O3 can be
tuned relatively independently by varying the concentration
of water and oxygen in the feed gas. The OH density is not
strongly affected by the oxygen content, but is instead determ-
ined by the water vapour content. The O and O3 densities, on
the other hand, are strongly affected by O2 addition whether or
not water vapour is added, but the effect is relatively independ-
ent of the concentration of water vapour as long as it is above
0.05%, with their densities then mainly controlled by the O2

content. Below 0.05%water vapour, the O andO3 densities are
strongly decreased by water addition, and independent control
of OH,O andO3 is not possible. A perfectly dry environment is
preferable if higher amounts of O and O3 are required without
OH species.
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Appendix

No. Reaction Rate Coefficienta,b Ref.

Elastic scattering and momentum transfer
1 e + He→ He + e f(ϵ) [60, 61]
2 e + H2O→ H2O + e f(ϵ) [62, 63]
3 e + O2→ O2 + e f(ϵ) [64]

Electron impact excitation and ionisation
4 e + He→ e + He(23S) f(ϵ) [60, 61]
5 e + He→ e + He(23S) f(ϵ) [60, 61]
6 e + He→ He+ + e + e f(ϵ) [60, 61]
7 e + He(23S)→ He+ + 2e f(ϵ) [65]c

8 e + He2∗→ He2+ + 2e 2.06 × 10−13 e−4.28/Te [66]d

9 e + OH→ OH+
+ 2e f(ϵ) [67]

10 e + H2O→ H2O + e f(ϵ) [62]e

11 e + H2O→ H2O + e f(ϵ) [62]e

12 e + H2O→ H2O + e f(ϵ) [62]e

13 e + H2O→ H2O+
+ 2e f(ϵ) [62]

14 e + O→ O(1D) + e f(ϵ) [68]
15 e + O→ O(1S) + e f(ϵ) [68]
16 e + O→ O+

+ 2e f(ϵ) [68]
17 e + O(1D)→ O+

+ 2e f(ϵ) [65]c

18 e + O(1S)→ O+
+ 2e f(ϵ) [69]c

19 e + O2→ O2 + e f(ϵ) [64]f

20 e + O2→ O2 + e f(ϵ) [64]e

21 e + O2→ O2 + e f(ϵ) [64]e

22 e + O2→ O2 + e f(ϵ) [64]e

23 e + O2→ O2 + e f(ϵ) [64]e

24 e + O2→ O2 + e f(ϵ) [64]e

25 e + O2→ O2 + e f(ϵ) [64]e

26 e + O2→ O2(a1∆) + e f(ϵ) [64]
27 e + O2→ O2(b1

∑
) + e f(ϵ) [64]

28 e + O2→ O2(b1
∑

) + e f(ϵ) [64]
29 e + O2→ O2

+
+ 2e f(ϵ) [64]

30 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 19g

31 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 20g

g32 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 21g

33 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 22g

34 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 23g

35 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 24g

36 e + O2(a1∆)→ O2(a1∆) + e f(ϵ) As reaction 25g

37 e + O2(a1∆)→ O2(b1
∑

) + e f(ϵ) [70]h

38 e + O2(a1∆)→ O2(b1
∑

) + e f(ϵ) As reaction 28g

39 e + O2(a1∆)→ O2
+
+ 2e f(ϵ) As reaction 29g

40 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 19g

41 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 20g

42 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 21g

43 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 22g

44 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 23g

45 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 24g

46 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 25g

47 e + O2(b1
∑

)→ O2(b1
∑

) + e f(ϵ) As reaction 28g

48 e + O2(b1
∑

)→ O2
+
+ 2e f(ϵ) As reaction 29g

49 e + O3→ O3
+
+ 2e 5.96 × 10−15 Te

0.978 e−12.55/Te [11, 71, 72]

(Continued.)
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No. Reaction Rate Coefficienta,b Ref.

Super-elastic collisions

50 e + He(23S)→ He + e f(ϵ) [60, 61]i

51 e + O(1D)→ O + e f(ϵ) [68]i

52 e + O(1S)→ O + e f(ϵ) [68]i

53 e + O2(a1∆)→ O2 + e f(ϵ) [64]i

54 e + O2(b1
∑

)→ O2 + e f(ϵ) [64]i

55 e + O2(b1
∑

)→ O2(a1∆) + e f(ϵ) As reaction 37i

Electron impact dissociation
56 e + He2∗→ 2 He + e 3.80 × 10−15 [73]
57 e + H2O→ O(1S) + 2 H + e f(ϵ) [62, 74]
58 e + H2O→ H + OH + e f(ϵ) [62, 75]
59 e + H2O→ H + OH + e f(ϵ) [62]
60 e + H2O→ H2 + O(1D) + e 2.416 × 10−14 Te

−0.062 e−22.4/Te [76]j

61 e + H2→ 2 H + e f(ϵ) [77]
62 e + H2→ 2 H + e f(ϵ) [78]
63 e + OH→ O + H + e f(ϵ) [79]k

64 e + H2O2→ 2OH + e 2.36 × 10−15 [80]l

65 e + O2→ 2O + e f(ϵ) [64]
66 e + O2→ O + O(1D) + e f(ϵ) [64]
67 e + O2→ 2O(1D) + e f(ϵ) [64]
68 e + O2(a1∆)→ 2O + e f(ϵ) As reaction 65g

69 e + O2(a1∆)→ O + O(1D) + e f(ϵ) As reaction 66g

70 e + O2(a1∆)→ 2O(1D) + e f(ϵ) As reaction 67g

71 e + O2(b1
∑

)→ 2O + e f(ϵ) As reaction 65g

72 e + O2(b1
∑

)→ O + O(1D) + e f(ϵ) As reaction 66g

73 e + O2(b1
∑

)→ 2O(1D) + e f(ϵ) As reaction 67g

74 e + O3→ O + O2 + e 1.70 × 10−14 Te
−0.57 e−2.48/Te [11, 81]

75 e + O3→ O(1D) + O2(a1
∑

) + e 3.22 × 10−13 Te
−1.18 e−9.17/Te [11, 81]

Dissociative ionisation
76 e + H2O→ OH+

+ H + 2e f(ϵ) [62]
77 e + H2O→ O+

+ 2 H + 2e f(ϵ) [62]
78 e + O2→ O + O+

+ 2e f(ϵ) [82]
79 e + O2(a1∆)→ O + O+

+ 2e f(ϵ) As reaction 78g

80 e + O2(b1
∑

)→ O + O+
+ 2e f(ϵ) As reaction 78g

(Dissociative) electron attachment
81 e + H2O→ OH + H– f(ϵ) [62, 83]
82 e + H2O→ H2 + O– f(ϵ) [62, 83]
83 e + H2O→ OH–

+ H f(ϵ) [62, 83]
84 e + H2O2→ H2O + O– f(ϵ) [84]
85 e + H2O2→ OH + OH– f(ϵ) [84]
86 e + O2→ O + O– f(ϵ) [64]
87 e + O2(a1∆)→ O + O– f(ϵ) [85]
88 e + O2(b1

∑
)→ O + O– f(ϵ) As reaction 87g

89 e + O3→ O2 + O– f(ϵ) [86]
90 e + O3→ O2

–
+ O f(ϵ) [86]

(Continued.)
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No. Reaction Rate Coefficienta,b Ref.

Electron detachment
91 e + H–

→ H + 2e f(ϵ) [87]
92 e + OH–

→ OH + 2e f(ϵ) [88]
93 e + O–

→ O + 2e f(ϵ) [89]
94 e + O2

–
→ O2 + 2e f(ϵ) [90]

95 e + O3
–
→ O3 + 2e 2.12 × 10−14 Te

0.51 e−5.87/Te [11, 91]
96 e + O3

–
→ O2 + O + 2e 7.12 × 10−14 Te

−0.132 e−5.94/Te [11, 91]
97 e + O3

–
→ 3O + 2e 1.42 × 10−14 Te

−0.52 e−9.30/Te [11, 91]
Electron-ion Recombination
98 e + He+→ He(23S) f(ϵ) [92]
99 e + He2+→ He + He(23S) 9.60 × 10−17 Te

−0.5 [93]
100 e + H2O+

→ O + 2 H 3.05 × 10−13 Te
−0.5 [94, 95]

101 e + H2O+
→ O + H2 3.87 × 10−14 Te

−0.5 [94, 95]
102 e + H2O+

→ H + OH 8.60 × 10−14 Te
−0.5 [94, 95]

103 e + H+(H2O)→ H + H2O 7.09 × 10−14 Te
−0.5 [94, 96, 97]

104 e + H+(H2O)→ OH + H2 5.37 × 10−14 Te
−0.5 [94, 96, 97]

105 e + H+(H2O)→ OH + 2 H 3.05 × 10−13 Te
−0.5 [94, 96, 97]

106 e + O2
+(H2O)→ O2 + H2O 7.22 × 10−13 Te

−0.2 [98]
107 e + H2O+(H2O)→ H + OH + H2O 9.63 × 10−13 Te

−0.2 [98]m

108 e + H+(H2O)2→ H + 2H2O 1.87 × 10−12 Te
−0.08 [99]

109 e + H+(H2O)3→ H + 3H2O 2.24 × 10−12 Te
−0.08 [99]

110 e + H+(H2O)4→ H + 4H2O 3.60 × 10−12 [99]
111 e + H+(H2O)5→ H + 5H2O 4.10 × 10−12 [100]
112 e + H+(H2O)6→ H + 6H2O 5.13 × 10−12 [100]
113 e + H+(H2O)7→ H + 7H2O 1.00 × 10−12 [100]
114 e + H+(H2O)8→ H + 8H2O 4.10 × 10−12 As reaction 111
115 e + H+(H2O)9→ H + 9H2O 4.10 × 10−12 As reaction 111
116 e + O+

→ O(1D) 2.70 × 10−19 [11, 98]
117 e + O2

+
→ 2O 3.79 × 10−15 Te

−0.7 [101]
118 e + O2

+
→ O + O(1D) 8.17 × 10−15 Te

−0.7 [101]
119 e + O2

+
→ 2O(1D) 5.85 × 10−15 Te

−0.7 [101]
120 e + O3

+
→ 3O 2.07 × 10−13 Te

−0.55 [11, 102]
121 e + O3

+
→ 2O + O(1D) 6.69 × 10−13 Te

−0.55 [11, 102]
122 e + O3

+
→ O + 2O(1D) 1.55 × 10−13 Te

−0.55 [11, 102]
123 e + O4

+
→ O + O(1D) + O2 2.02 × 10−14 [11, 93, 103]

124 e + O4
+
→ O(1D) + O(1S) + O2 1.35 × 10−14 [11, 93, 103]

a In m3 s−1 and m6 s−1 for two- and three-body processes, respectively.
b f(E) denotes rate coefficients are calculated by the internal GlobalKin two-term Boltzmann equation solver using cross sections obtained from the indicated
literature.
c Cross sections are calculated from an expression in cited reference.
d Calculated assuming a Maxwell distribution function and cross sections from the given relevant reference.
e Vibrational excitation cross section included in cross section set for two-term Boltzmann solver. Vibrational states not simulated self-consistently in reaction
kinetics.
f Rotational excitation cross section included in cross section set for two-term Boltzmann solver. Rotations states not simulated self-consistently in reaction
kinetics.
g Cross section estimated by shifting and scaling the corresponding cross section for the ground state by the excitation threshold of the excited state.
h Born–Bethe fit to data in the cited reference.
i Obtained from reverse process by detailed balance.
j In the reference reaction rates were calculated using Bolsig+ [104] and cross sections obtained from the Morgan database [105] for a He/H2O plasma.
k Cross section assumed to be the same as that for CO.
l Value is approximated in reference based on cross section for electron impact dissociation of O2.
m Value is estimated in reference.
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No. Reaction Rate Coefficienta Ref.

Ion-ion three-body processes
125 He+ + O–

+ He→ 2He + O 2.00 × 10−37 (Tg/300)−2.5 [106]b

126 He+ + O2
–
+ He→ 2He + O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

127 He+ + O3
–
+ He→ 2He + O3 2.00 × 10−37 (Tg/300)−2.5 [106]b

128 He+ + O4
–
+ He→ 2He + 2O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

129 He+ + H–
+ He→ 2He + H 2.00 × 10−37 (Tg/300)−2.5 [106]b

130 He+ + OH–
+ He→ 2He + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

131 He+ + H2O2
–
+ He→ 2He + H2O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

132 He+ + OH–(H2O) + He→ 2He + H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

133 He+ + OH–(H2O)2 + He→ 2He + 2H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

134 He+ + OH–(H2O)3 + He→ 2He + 3H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

135 He2+ + O–
+ He→ 3He + O 2.00 × 10−37 (Tg/300)−2.5 [106]b

136 He2+ + O2
–
+ He→ 3He + O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

137 He2+ + O3
–
+ He→ 3He + O3 2.00 × 10−37 (Tg/300)−2.5 [106]b

138 He2+ + O4
–
+ He→ 3He + 2O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

139 He2+ + H–
+ He→ 3He + H 2.00 × 10−37 (Tg/300)−2.5 [106]b

140 He2+ + OH–
+ He→ 3He + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

141 He2+ + H2O2
–
+ He→ 3He + H2O2 2.00 × 10−37 (Tg/300)−2.5 [106]b

142 He2+ + OH–(H2O) + He→ 3He + H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

143 He2+ + OH–(H2O)2 + He→ 3He + 2H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

144 He2+ + OH–(H2O)3 + He→ 3He + 3H2O + OH 2.00 × 10−37 (Tg/300)−2.5 [106]b

145 O+
+ O–

+ He→ 2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

146 O+
+ O2

–
+ He→ O + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

147 O+
+ O3

–
+ He→ O + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

148 O+
+ O4

–
+ He→ O + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

149 O+
+ H–

+ He→ O + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

150 O+
+ OH–

+ He→ O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

151 O+
+ H2O2

–
+ He→ O + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

152 O+
+ OH–(H2O) + He→ O + H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

153 O+
+ OH–(H2O)2 + He→ O + 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

154 O+
+ OH–(H2O)3 + He→ O + 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

155 O2
+
+ O–

+ He→ O2 + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

156 O2
+
+ O2

–
+ He→ 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

157 O2
+
+ O3

–
+ He→ O2 + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

158 O2
+
+ O4

–
+ He→ 3O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

159 O2
+
+ H–

+ He→ O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

160 O2
+
+ OH–

+ He→ O2 + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

161 O2
+
+ H2O2

–
+ He→ O2 + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

162 O2
+
+ OH–(H2O) + He→ O2 + H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

163 O2
+
+ OH–(H2O)2 + He→ O2 + 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

164 O2
+
+ OH–(H2O)3 + He→ O2 + 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

165 O3
+
+ O–

+ He→ O3 + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

166 O3
+
+ O2

–
+ He→ O3 + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

167 O3
+
+ O3

–
+ He→ 2O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

168 O3
+
+ O4

–
+ He→ O3 + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

169 O3
+
+ H–

+ He→ O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

170 O3
+
+ OH–

+ He→ O3 + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

171 O3
+
+ H2O2

–
+ He→ O3 + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

172 O3
+
+ OH–(H2O) + He→ O3 + H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

173 O3
+
+ OH–(H2O)2 + He→ O3 + 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

174 O3
+
+ OH–(H2O)3 + He→ O3 + 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

175 O4
+
+ O–

+ He→ 2O2 + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

176 O4
+
+ O2

–
+ He→ 3O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

(Continued.)
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177 O4
+
+ O3

–
+ He→ 2O2 + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

178 O4
+
+ O4

–
+ He→ 4O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

179 O4
+
+ H–

+ He→ 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

180 O4
+
+ OH–

+ He→ 2O2 + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

181 O4
+
+ H2O2

–
+ He→ 2O2 + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

182 O4
+
+ OH–(H2O) + He→ 2O2 + H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

183 O4
+
+ OH–(H2O)2 + He→ 2O2 + 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

184 O4
+
+ OH–(H2O)3 + He→ 2O2 + 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

185 OH+
+ O–

+ He→ OH + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

186 OH+
+ O2

–
+ He→ OH + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

187 OH+
+ O3

–
+ He→ OH + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

188 OH+
+ O4

–
+ He→ OH + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

189 OH+
+ H–

+ He→ OH + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

190 OH+
+ OH–

+ He→ 2OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

191 OH+
+ H2O2

–
+ He→ OH + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

192 OH+
+ OH–(H2O) + He→ 2OH + H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

193 OH+
+ OH–(H2O)2 + He→ 2OH + 2H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

194 OH+
+ OH–(H2O)3 + He→ 2OH + 3H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

195 H2O+
+ O–

+ He→ H2O + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

196 H2O+
+ O2

–
+ He→ H2O + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

197 H2O+
+ O3

–
+ He→ H2O + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

198 H2O+
+ O4

–
+ He→ H2O + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

199 H2O+
+ H–

+ He→ H2O + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

200 H2O+
+ OH–

+ He→ H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

201 H2O+
+ H2O2

–
+ He→ H2O + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

202 H2O+
+ OH–(H2O) + He→ 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

203 H2O+
+ OH–(H2O)2 + He→ 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

204 H2O+
+ OH–(H2O)3 + He→ 4H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

205 H+(H2O) + O–
+ He→ OH + H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

206 H+(H2O) + O2
–
+ He→ H + H2O + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

207 H+(H2O) + O3
–
+ He→ H + H2O + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

208 H+(H2O) + O4
–
+ He→ H + H2O + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

209 H+(H2O) + H–
+ He→ H2 + H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

210 H+(H2O) + OH–
+ He→ 2H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

211 H+(H2O) + H2O2
–
+ He→ 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

212 H+(H2O) + OH–(H2O) + He→ 3H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

213 H+(H2O) + OH–(H2O)2 + He→ 4H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

214 H+(H2O) + OH–(H2O)3 + He→ 5H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

215 O2
+(H2O) + O–

+ He→ O2 + H2O + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

216 O2
+(H2O) + O2

–
+ He→ 2O2 + H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

217 O2
+(H2O) + O3

–
+ He→ O2 + H2O + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

218 O2
+(H2O) + O4

–
+ He→ 3O2 + H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

219 O2
+(H2O) + H–

+ He→ O2 + H2O + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

220 O2
+(H2O) + OH–

+ He→ O2 + H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

221 O2
+(H2O) + H2O2

–
+ He→ O2 + H2O + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

222 O2
+(H2O) + OH–(H2O) + He→ O2 + 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

223 O2
+(H2O) + OH–(H2O)2 + He→ O2 + 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

224 O2
+(H2O) + OH–(H2O)3 + He→ O2 + 4H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

225 H2O+(H2O) + O–
+ He→ 2H2O + O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

226 H2O+(H2O) + O2
–
+ He→ 2H2O + O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

227 H2O+(H2O) + O3
–
+ He→ 2H2O + O3 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

228 H2O+(H2O) + O4
–
+ He→ 2H2O + 2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

229 H2O+(H2O) + H–
+ He→ 2H2O + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

230 H2O+(H2O) + OH–
+ He→ 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

(Continued.)
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231 H2O+(H2O) + H2O2
–
+ He→ 2H2O + H2O2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

232 H2O+(H2O) + OH–(H2O) + He→ 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

233 H2O+(H2O) + OH–(H2O)2 + He→ 4H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

234 H2O+(H2O) + OH–(H2O)3 + He→ 5H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

235 H+(H2O)2 + O–
+ He→ 2H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

236 H+(H2O)2 + O2
–
+ He→ 2H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

237 H+(H2O)2 + O3
–
+ He→ 2H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

238 H+(H2O)2 + O4
–
+ He→ 2H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

239 H+(H2O)2 + H–
+ He→ 2H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

240 H+(H2O)2 + OH–
+ He→ 3H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

241 H+(H2O)2 + H2O2
–
+ He→ 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

242 H+(H2O)2 + OH–(H2O) + He→ 4H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

243 H+(H2O)2 + OH–(H2O)2 + He→ 5H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

244 H+(H2O)2 + OH–(H2O)3 + He→ 6H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

245 H+(H2O)3 + O–
+ He→ 3H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

246 H+(H2O)3 + O2
–
+ He→ 3H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

247 H+(H2O)3 + O3
–
+ He→ 3H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

248 H+(H2O)3 + O4
–
+ He→ 3H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

249 H+(H2O)3 + H–
+ He→ 3H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

250 H+(H2O)3 + OH–
+ He→ 4H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

251 H+(H2O)3 + H2O2
–
+ He→ 4H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

252 H+(H2O)3 + OH–(H2O) + He→ 5H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

253 H+(H2O)3 + OH–(H2O)2 + He→ 6H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

254 H+(H2O)3 + OH–(H2O)3 + He→ 7H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

255 H+(H2O)4 + O–
+ He→ 4H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

256 H+(H2O)4 + O2
–
+ He→ 4H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

257 H+(H2O)4 + O3
–
+ He→ 4H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

258 H+(H2O)4 + O4
–
+ He→ 4H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

259 H+(H2O)4 + H–
+ He→ 4H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

260 H+(H2O)4 + OH–
+ He→ 5H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

261 H+(H2O)4 + H2O2
–
+ He→ 5H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

262 H+(H2O)4 + OH–(H2O) + He→ 6H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

263 H+(H2O)4 + OH–(H2O)2 + He→ 7H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

264 H+(H2O)4 + OH–(H2O)3 + He→ 8H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

265 H+(H2O)5 + O–
+ He→ 5H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

266 H+(H2O)5 + O2
–
+ He→ 5H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

267 H+(H2O)5 + O3
–
+ He→ 5H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

268 H+(H2O)5 + O4
–
+ He→ 5H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

269 H+(H2O)5 + H–
+ He→ 5H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

270 H+(H2O)5 + OH–
+ He→ 6H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

271 H+(H2O)5 + H2O2
–
+ He→ 6H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

272 H+(H2O)5 + OH–(H2O) + He→ 7H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

273 H+(H2O)5 + OH–(H2O)2 + He→ 8H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

274 H+(H2O)5 + OH–(H2O)3 + He→ 9 H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

275 H+(H2O)6 + O–
+ He→ 6H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

276 H+(H2O)6 + O2
–
+ He→ 6H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

277 H+(H2O)6 + O3
–
+ He→ 6H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

278 H+(H2O)6 + O4
–
+ He→ 6H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

279 H+(H2O)6 + H–
+ He→ 6H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

280 H+(H2O)6 + OH–
+ He→ 7H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

281 H+(H2O)6 + H2O2
–
+ He→ 7H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

282 H+(H2O)6 + OH–(H2O)2 + He→ 8H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

283 H+(H2O)6 + OH–(H2O)3 + He→ 9H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

284 H+(H2O)6 + OH–(H2O)4 + He→ 10H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

285 H+(H2O)7 + O–
+ He→ 7H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b
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286 H+(H2O)7 + O2
–
+ He→ 7H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

287 H+(H2O)7 + O3
–
+ He→ 7H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

288 H+(H2O)7 + O4
–
+ He→ 7H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

289 H+(H2O)7 + H–
+ He→ 7H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

290 H+(H2O)7 + OH–
+ He→ 8H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

291 H+(H2O)7 + H2O2
–
+ He→ 8H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

292 H+(H2O)7 + OH–(H2O) + He→ 9H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

293 H+(H2O)7 + OH–(H2O)2 + He→ 10H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

294 H+(H2O)7 + OH–(H2O)3 + He→ 11H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

295 H+(H2O)8 + O–
+ He→ 8H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

296 H+(H2O)8 + O2
–
+ He→ 8H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

297 H+(H2O)8 + O3
–
+ He→ 8H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

298 H+(H2O)8 + O4
–
+ He→ 8H2O + 2O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

299 H+(H2O)8 + H–
+ He→ 8H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

300 H+(H2O)8 + OH–
+ He→ 9H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

301 H+(H2O)8 + H2O2
–
+ He→ 9H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

302 H+(H2O)8 + OH–(H2O) + He→ 10H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

303 H+(H2O)8 + OH–(H2O)2 + He→ 11H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

304 H+(H2O)8 + OH–(H2O)3 + He→ 12H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

305 H+(H2O)9 + O–
+ He→ 9H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

306 H+(H2O)9 + O2
–
+ He→ 9H2O + O2 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

307 H+(H2O)9 + O3
–
+ He→ 9H2O + O3 + H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

308 H+(H2O)9 + O4
–
+ He→ 9H2O + 2O2 +H + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

309 H+(H2O)9 + H–
+ He→ 9H2O + H2 + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

310 H+(H2O)9 + OH–
+ He→ 10H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

311 H+(H2O)9 + H2O2
–
+ He→ 10H2O + OH + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

312 H+(H2O)9 + OH–(H2O) + He→ 11H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

313 H+(H2O)9 + OH–(H2O)2 + He→ 12H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

314 H+(H2O)9 + OH–(H2O)3 + He→ 13H2O + He 2.00 × 10−37 (Tg/300)−2.5 [106]b

a In m6 s−1.
b Value estimated in reference.

No. Reaction Rate Coefficienta Ref.

Two-body collisions—positive ions
315 He+ + OH→ He + O+

+ H 1.10 × 10−15 (Tg/300)−0.5 [94, 107]
316 He+ + H2O→ He + OH+

+ H 2.86 × 10−16 [94, 108]
317 He+ + H2O→ He + H2O+ 6.05 × 10−17 [94, 108]
318 He+ + O→ He + O+ 5.80 × 10−16 [11, 109–111]
319 He+ + O(1D)→ He + O+ 5.80 × 10−16 [11, 109–111]
320 He+ + O(1S)→ He + O+ 5.80 × 10−16 [11, 109–111]
321 He+ + O2→ He + O+

+ O 1.10 × 10−15 [94, 112]
322 He+ + O2→ He + O2

+ 3.30 × 10−17 [94, 112]
323 He+ + O2(a1∆)→ He + O+

+ O 1.10 × 10−15 As reaction 321
324 He+ + O2(a1∆)→ He + O2

+ 3.30 × 10−17 As reaction 322
325 He+ + O2(b1

∑
)→ He + O+

+ O 1.10 × 10−15 As reaction 321
326 He+ + O2(b1

∑
)→ He + O2

+ 3.30 × 10−17 As reaction 322
327 He+ + O3→ He + O2 + O+ 2.20 × 10−15 [11, 109–111]
328 He2+ + OH→ 2He + O+

+ H 1.10 × 10−15 As reaction 315
329 He2+ + H2O→ 2He + H2O+ 6.05 × 10−17 As reaction 317
330 He2+ + H2O→ 2He + OH+

+ H 2.86 × 10−16 As reaction 316
331 He2+ + O→ 2He + O+ 9.00 × 10−16 [11, 109–111]
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332 He2+ + O(1D)→ 2He + O+ 9.00 × 10−16 [11, 109–111]
333 He2+ + O(1S)→ 2He + O+ 9.00 × 10−16 [11, 109–111]
334 He2+ + O2→ 2He + O + O+ 1.00 × 10−16 [11, 113]
335 He2+ + O2→ 2He + O2

+ 9.00 × 10−16 [11, 113]
336 He2+ + O2(a1∆)→ 2He + O2

+ 1.20 × 10−15 [[11]109–111]
337 He2+ + O2(b1

∑
)→ 2He + O2

+ 1.20 × 10−15 [11, 109–111]
338 He2+ + O3→ 2He + O+

+ O2 1.60 × 10−15 [[11]109–111]
339 OH+

+ H2→ H2O+
+ H 1.01 × 10−15 [94, 114]

340 OH+
+ OH→ H2O+

+ O 7.00 × 10−16 (Tg/300)−0.5 [94, 107]
341 OH+

+ H2O→ H2O+
+ OH 1.56 × 10−15 [115]

342 OH+
+ H2O→ H+(H2O) + O 1.27 × 10−15 [115]

343 OH+
+ O→ O2

+
+ H 7.10 × 10−16 [94, 107]

344 OH+
+ O(1D)→ O2

+
+ H 7.10 × 10−16 As reaction 343

345 OH+
+ O(1S)→ O2

+
+ H 7.10 × 10−16 As reaction 343

346 OH+
+ O2→ O2

+
+ OH 5.90 × 10−16 [94, 114]

347 OH+
+ O2(a1∆)→ O2

+
+ OH 5.90 × 10−16 As reaction 346

348 OH+
+ O2(b1

∑
)→ O2

+
+ OH 5.90 × 10−16 As reaction 346

349 OH+
+ O3→ O3

+
+ OH 1.00 × 10−17 Estimated

350 H2O+
+ H2→ H+(H2O) + H 6.40 × 10−16 [94, 116]

351 H2O+
+ OH→ O + H+(H2O) 6.90 × 10−16 (Tg/300)−0.5 [94, 107]

352 H2O+
+ H2O→ OH + H+(H2O) 2.05 × 10−15 [115]

353 H2O+
+ O→ H2 + O2

+ 4.00 × 10−17 [94, 117]
354 H2O+

+ O(1D)→ H2 + O2
+ 4.00 × 10−17 As reaction 353

355 H2O+
+ O(1S)→ H2 + O2

+ 4.00 × 10−17 As reaction 353
356 H2O+

+ O2→ H2O + O2
+ 3.30 × 10−16 [118]

357 H2O+
+ O2(a1∆)→ H2O + O2

+ 3.30 × 10−16 As reaction 356
358 H2O+

+ O2(b1
∑

)→ H2O + O2
+ 3.30 × 10−16 As reaction 356

359 O2
+(H2O) (+ He)→ O2

+
+ H2O (+ He) Effective [119]c,d

360 O2
+(H2O) + H2O→ O2 + H2O+(H2O) 1.00 × 10−15 [98]b

361 H2O+(H2O) + H2O→ OH + H+(H2O)2 1.40 × 10−15 [98]
362 H+(H2O)2 (+ He)→ H+(H2O) + H2O (+ He) Effective [119]c,d

363 H+(H2O)3 (+ He)→ H+(H2O)2 + H2O (+ He) Effective [119]c,d

364 H+(H2O)4 (+ He)→ H+(H2O)3 + H2O (+ He) Effective [119]c,d

365 H+(H2O)5 (+ He)→ H+(H2O)4 + H2O (+ He) Effective [119]c,d

366 H+(H2O)6 (+ He)→ H+(H2O)5 + H2O (+ He) Effective [119]c,d

367 H+(H2O)7 (+ He)→ H+(H2O)6 + H2O (+ He) Effective [119]c,d

368 H+(H2O)8 (+ He)→ H+(H2O)7 + H2O (+ He) Effective [119]e

369 H+(H2O)9 (+ He)→ H+(H2O)8 + H2O (+ He) Effective [119]e

370 O+
+ H2→ OH+

+ H 1.70 × 10−15 [94, 120]
371 O+

+ OH→ OH+
+ O 3.60 × 10−15 (Tg/300)−0.5 [94, 107]

372 O+
+ OH→ O2

+
+ H 3.60 × 10−15 (Tg/300)−0.5 [94, 107]

373 O+
+ H2O→ O + H2O+ 3.20 × 10−15 [120]

374 O+
+ O2→ O + O2

+ 2.00 × 10−17 (Tg/300)−0.4 [121]
375 O+

+ O3→ O2 + O2
+ 1.20 × 10−15 [11, 109–111]

376 O2
+
+ He(23S)→ He + O + O+ 8.20 × 10−15 [11, 109, 110, 122]

377 O3
+
+ He(23S)→ He + O + O2

+ 8.10 × 10−15 [11, 109, 110, 122]
378 O3

+
+ O(1D)→ 2O + O2

+ 3.00 × 10−16 [11, 109–111]
379 O3

+
+ O(1S)→ 2O + O2

+ 2.00 × 10−16 [11, 109–111]
380 O3

+
+ O2→ O2

+
+ O3 6.70 × 10−16 [11, 109–111,123]

381 O4
+
+ He→ O2

+
+ O2 + He 3.40 × 10−20 [11, 113]

382 O4
+
+ He(23S)→ He + O2 + O2

+ 8.00 × 10−15 [11, 109, 110, 122]
383 O4

+
+ H2O→ O2 + O2

+H2O 1.70 × 10−15 [124]
384 O4

+
+ O→ O3 + O2

+ 3.00 × 10−16 [98]
385 O4

+
+ O(1D)→ O + O2 + O2

+ 3.00 × 10−16 [11, 109, 110, 125]
386 O4

+
+ O(1D)→ O3 + O2

+ 3.00 × 10−16 [11, 109, 110, 125]
387 O4

+
+ O(1S)→ O + O2 + O2

+ 3.00 × 10−16 [11, 109, 110, 125]

(Continued.)

19



J. Phys. D: Appl. Phys. 54 (2021) 285201 A Brisset et al

No. Reaction Rate Coefficienta Ref.

388 O4
+
+ O(1S)→ O2

+
+ O3 3.00 × 10−16 [11, 109, 110, 125]

389 O4
+
+ O2→ 2O2 + O2

+ 1.00 × 10−11 (Tg/300)−4.2 e−5400/Tg [11, 98, 113]
390 O4

+
+ O2(a1∆)→ 2O2 + O2

+ 6.00 × 10−16 [11, 109–111]
391 O4

+
+ O2(b1

∑
)→ 2O2 + O2

+ 6.00 × 10−16 [11]

Two-body collisions—negative ions
392 H–

+ He→ He + H + e 4.43 × 10−17 e−5829/Tg [126]
393 H–

+ H→ H2 + e 4.32 × 10−15 (Tg/300)−0.39 e−39.4/Tg [127]
394 H–

+ H2O→ OH–
+ H2 4.80 × 10−15 [94, 128]

395 H–
+ O→ OH + e 1.00 × 10−15 [107]

396 H–
+ OH→ H2O + e 1.00 × 10−16 [107]

397 OH–
+ H→ H2O + e 1.40 × 10−15 [94, 129]

398 H2O2
–
+ H2O→ OH–(H2O) + OH 1.00 × 10−17 [130]f

399 O–
+ He→ e + He + O 2.50 × 10−24 (Tg/300)0.6 [11, 42, 131]

400 O–
+ He(23S)→ 2e + He + O+ 8.70 × 10−15 [11, 109, 110, 122]

401 O–
+ H2O→ OH–

+ OH 1.40 × 10−15 [83]
402 O–

+ O→ e + O2 2.30 × 10−16 (Tg/300)−1.3 [132, 133]
403 O–

+ O(1D)→ 2O + e 7.40 × 10−16 [11, 109, 110, 125]
404 O–

+ O(1S)→ e + 2O 7.40 × 10−16 [11, 109, 110, 125]
405 O–

+ O2→ O3 + e 1.00 × 10−18 [11, 113]
406 O–

+ O2→ O2
–
+ O 1.00 × 10−18 [11, 113]

407 O–
+ O2(a1∆)→ O2

–
+ O 7.90 × 10−16 e−890/Tg [11, 134]

408 O–
+ O2(a1∆)→ O3 + e 6.10 × 10−16 [11, 134]

409 O–
+ O2(b1

∑
)→ O2

–
+ O 7.90 × 10−16 e−890/Tg As reaction 407

410 O–
+ O2(b1

∑
)→ O3 + e 6.10 × 10−16 As reaction 408

411 O–
+ O3→ e + 2O2 3.00 × 10−16 [11, 113, 135]

412 O–
+ O3→ O + O3

– 2.00 × 10−16 [11, 113, 135]
413 O–

+ O3→ O2
–
+ O2 1.00 × 10−17 [11, 113, 135]

414 O2
–
+ He→ e + He + O2 3.90 × 10−16 e−7400/Tg [11, 136]

415 O2
–
+ He(23S)→ 2e + He + O2

+ 8.30 × 10−15 [11, 109, 110, 122]
416 O2

–
+ O→ O–

+ O2 8.50 × 10−17 (Tg/300)−1.8 [133]g

417 O2
–
+ O→ O3 + e 8.50 × 10−17 (Tg/300)−1.8 [133]g

418 O2
–
+ O(1D)→ e + O3 8.50 × 10−17 (Tg/300)−1.8 [11]

419 O2
–
+ O(1D)→ O–

+ O2 8.50 × 10−17 (Tg/300)−1.8 [11]
420 O2

–
+ O(1S)→ O–

+ O2 8.50 × 10−17 (Tg/300)−1.8 [11]
421 O2

–
+ O(1S)→ e + O3 8.50 × 10−17 (Tg/300)−1.8 [11]

422 O2
–
+ O2→ e + 2O2 2.70 × 10−16 (Tg/300)0.5 e−5590/Tg [98]

423 O2
–
+ O2→ O + O3

– 3.50 × 10−21 [113]
424 O2

–
+ O2(a1∆)→ e + 2O2 7.00 × 10−16 [134]

425 O2
–
+ O2(b1

∑
)→ e + 2O2 7.00 × 10−16 [11]

426 O2
–
+ O3→ O2 + O3

– 6.00 × 10−16 [113]
427 O3

–
+ He(23S)→ 2e + He + O + O2

+ 8.10 × 10−15 [11, 109, 110, 122]
428 O3

–
+ O→ e + 2O2 1.00 × 10−17 [98]

429 O3
–
+ O→ O2 + O2

– 2.50 × 10−16 [113]
430 O3

–
+ O(1D)→ O + O2 + O– 3.00 × 10−16 [11, 109–111]

431 O3
–
+ O(1D)→ O + O3 + e 3.00 × 10−16 [11, 109, 110, 125]

432 O3
–
+ O(1S)→ e + O + O3 2.00 × 10−16 [11, 109–111]

433 O3
–
+ O(1S)→ 2O + O2

– 2.00 × 10−16 [11, 109–111]
434 O3

–
+ O(1S)→ O + O–

+ O2 2.00 × 10−16 [11, 109–111]
435 O3

–
+ O2(b1

∑
)→ O–

+ 2O2 6.70 × 10−16 e−1300/Tg [11, 109–111]
436 O3

–
+ O3→ e + 3O2 8.50 × 10−16 [11, 109–111]

437 O4
–
+ He→ He + O2 + O2

– 2.20 × 10−11 (Tg/300)−1 e−6300/Tg [98]
438 O4

–
+ He(23S)→ 2e + He + O2 + O2

+ 8.00 × 10−15 [11, 109, 110, 122]
439 O4

–
+ O→ O2 + O3

– 4.00 × 10−16 [98, 113]
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440 O4
–
+ O(1D)→ e + O + 2O2 2.00 × 10−16 [11, 109–111]

441 O4
–
+ O(1D)→ O + O2 + O2

– 2.00 × 10−16 [11, 109–111]
442 O4

–
+ O(1D)→ 2O2 + O– 2.00 × 10−16 [[11]109–111]

443 O4
–
+ O(1S)→ e + O + 2O2 2.00 × 10−16 [11, 109–111]

444 O4
–
+ O(1S)→ O + O2 + O2

– 2.00 × 10−16 [11, 109–111]
445 O4

–
+ O(1S)→ O–

+ 2O2 2.00 × 10−16 [11, 109–111]
446 O4

–
+ O2→ 2O2 + O2

– 2.20 × 10−11 (Tg/300)−1 e−6300/Tg [98]
447 O4

–
+ O2(a1∆)→ 3O2 + e 3.00 × 10−16 [11, 109–111]

448 O4
–
+ O2(a1∆)→ 2O2 + O2

– 3.00 × 10−16 [11, 109–111]
449 O4

–
+ O2(b1

∑
)→ e + 3O2 3.00 × 10−16 [11, 109–111]

450 O4
–
+ O2(b1

∑
)→ 2O2 + O2

– 3.00 × 10−16 [11, 109–111]
451 O4

–
+ O3→ 2O2 + O3

– 8.00 × 10−16 [11, 109–111]

Three-body collisions—positive ions
454 He+ + 2He→ He + He2+ 1.30 × 10−43 (Tg/300)−0.6 [137]
455 H+(H2O) + H2O (+ He)→ H+(H2O)2 (+ He) Effective [119, 138]c,d

456 H+(H2O)2 + H2O (+ He)→ H+(H2O)3 (+ He) Effective [119, 138]c,d

457 H+(H2O)3 + H2O (+ He)→ H+(H2O)4 (+ He) Effective [119, 138]c,d

458 H+(H2O)4 + H2O (+ He)→ H+(H2O)5 (+ He) Effective [119, 138]c,d

459 H+(H2O)5 + H2O (+ He)→ H+(H2O)6 (+ He) Effective [119, 138]c,d

458 H+(H2O)6 + H2O (+ He)→ H+(H2O)7 (+ He) Effective [119, 138]c,d

459 H+(H2O)7 + H2O (+ He)→ H+(H2O)8 (+ He) Effective [119]e

460 H+(H2O)8 + H2O (+ He)→ H+(H2O)9 (+ He) Effective [119]e

461 He + O2 + O2
+
→ He + O4

+ 5.50 × 10−43 (Tg/300)−2.7 [113, 139]
462 O2

+
+ H2O (+ He)→ O2

+(H2O) (+ He) Effective [119]c,d

463 He + O + O+
→ He + O2

+ 5.50 × 10−43 (Tg/300)−2.7 [11]

Three-body collisions—negative ions
464 OH–

+ H2O + He→ OH–(H2O) + He 8.00 × 10−42 [140]h

465 OH–(H2O) + H2O + He→ OH–(H2O)2 + He 2.50 × 10−43 [140]h

466 OH–(H2O)2 + H2O + He→ OH–(H2O)3 + He 1.50 × 10−43 [140]h

467 O–
+ H2O + He→ H2O2

–
+ He 1.30 × 10−40 [130]

468 O–
+ O2 + He→ He + O3

– 3.70 × 10−43 (Tg/300)−1 [98, 141]
469 He + O2 + O2

–
→ He + O4

– 1.20 × 10−43 (Tg/300)−2.7 [98, 141]
a In s−1, m3 s−1 and m6 s−1 for one-, two- and three-body reactions, respectively.
b Value is estimated in reference.
c Effective rate coefficients calculated from pressure dependent rates as described by Sieck et al [119] for 1 atm and a temperature range 280–350 K.
d Background gas is (humid) air in given reference. Gas efficiency factors for He background gas are not known for these reactions, but could potentially
change calculated reaction rate coefficients if taken into account.
e Rate coefficients are estimated by extrapolating the coefficients k0300 and A given by Sieck et al [119] using an exponential fit, and using constant values
n = 16, B = 5000, and kL = 10−24.
f Value is listed as a lower limit in reference.
g Estimated branching ratio.
h Third body is H2O in reference.
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Two-body collisions
470 He + O(1D)→ He + O 7.00 × 10−22 [142]b

471 He + O(1S)→ He + O 7.00 × 10−22 As reaction 470
472 He + O2(a1∆)→ He + O2 5.00 × 10−27 [143]
473 He + O2(b1

∑
)→ He + O2(a1∆) 1.00 × 10−23 (Tg/300)0.5 [144]c

474 He + O3→ He + O + O2 5.61 × 10−16 e−11 400/Tg [141]
475 2He(23S)→ He + He+ + e 4.50 × 10−16 [73, 145]
476 2He(23S)→ He2+ + e 1.05 × 10−15 [73, 145]
477 He(23S) + He2∗→ 2He + He+ + e 5.00 × 10−16 [73]d

478 He(23S) + He2∗→ He + He2+ + e 2.00 × 10−15 [73]d

479 He(23S) + H2O→ He + OH+
+ H + e 1.39 × 10−16 [146, 147]e

480 He(23S) + OH→ OH+
+ He + e 6.08 × 10−16 As reaction 481

481 He(23S) + H2O→ He + H2O+
+ e 6.08 × 10−16 [146, 147]e

482 He(23S) + H2O2→ He + OH+
+ OH + e 6.08 × 10−16 As reaction 481

483 He(23S) + O2→ He + O2
+
+ e 2.54 × 10−16 [148]

484 He(23S) + O(1D)→ He + O+
+ e 2.54 × 10−16 As reaction 483

485 He(23S) + O(1S)→ He + O+
+ e 2.54 × 10−16 As reaction 483

486 He(23S) + O→ He + O+
+ e 2.54 × 10−16 As reaction 483

487 He(23S) + O2(a1∆)→ He + O2
+
+ e 2.54 × 10−16 As reaction 483

488 He(23S) + O2(b1
∑

)→ He + O2
+
+ e 2.54 × 10−16 As reaction 483

489 He(23S) + O3→ He + O2
+
+ O + e 2.60 × 10−16 [11]c

490 He2∗ + He2∗→ e + He+ + 3He 3.00 × 10−16 [73, 149]
491 He2∗ + He2∗→ e + 2He + He2+ 1.20 × 10−15 [73, 149]
492 He2∗ + H2O→ 2He + H2O+

+ e 2.20 × 10−15 [150]
493 He2∗ + O→ 2He + O+

+ e 3.60 × 10−16 As reaction 496
494 He2∗ + O(1D)→ 2He + O+

+ e 3.60 × 10−16 As reaction 496
495 He2∗ + O(1S)→ 2He + O+

+ e 3.60 × 10−16 As reaction 496
496 He2∗ + O2→ 2He + O2

+
+ e 3.60 × 10−16 [150]

497 He2∗ + O2(a1∆)→ 2He + O2
+
+ e 3.60 × 10−16 As reaction 496

498 He2∗ + O2(b1
∑

)→ 2He + O2
+
+ e 3.60 × 10−16 As reaction 496

499 He2∗ + O3→ 2He + O2
+
+ O + e 3.60 × 10−16 As reaction 496

500 H + OH→ H2 + O 6.86 × 10−20 (Tg/300)2.8 e−1950/Tg [151]
501 H + HO2→ O2 + H2 5.60 × 10−18 [152]
502 H + HO2→ 2OH 7.20 × 10−17 [152]
503 H + HO2→ H2O + O 2.40 × 10−18 [152]
504 H + H2O2→ H2O + OH 1.70 × 10−17 e−1800/Tg [153]
505 H + H2O2→ H2 + HO2 2.80 × 10−18 e−1890/Tg [153]
506 H + O3→ O2 + OH 1.40 × 10−16 e−470/Tg [154, 155]
507 H2 + OH→ H2O + H 4.27 × 10−19 (Tg/300)2.41 e−1240/Tg [156]
508 H2 + O(1D)→ OH + H 1.20 × 10−16 [152]
509 H2 + O(1S)→ OH + H 1.20 × 10−16 As reaction 508
510 2OH→ O + H2O 6.20 × 10−20 (Tg/300)2.6 e945/Tg [152]
511 OH + HO2→ O2 + H2O 4.80 × 10−17 e250/Tg [152, 157, 158]
512 OH + H2O2→ HO2 + H2O 2.90 × 10−18 e−160/Tg [152]
513 OH + O→ O2 + H 2.40 × 10−17 e110/Tg [152, 159, 160]
514 OH + O(1D)→ O2 + H 2.40 × 10−17 e110/Tg As reaction 513
515 OH + O(1S)→ O2 + H 2.40 × 10−17 e110/Tg As reaction 513
516 OH + O3→ O2 + HO2 1.70 × 10−18 e−940/Tg [152]
517 H2O + O(1D)→ 2OH 1.63 × 10−16 e60/Tg [154]
518 H2O + O(1S)→ O + H2O 4.50 × 10−17 [161]
519 H2O + O(1S)→ O(1D) + H2O 1.50 × 10−16 [161]
520 H2O + O(1S)→ 2OH 3.05 × 10−16 [161]
521 H2O + O2(a1∆)→ O2 + H2O 4.80 × 10−24 [154]

(Continued.)
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522 H2O + O2(b1
∑

)→ O2 + H2O 3.90 × 10−18 e125/Tg [154]
523 HO2 + O→ OH + O2 2.70 × 10−17 e224/Tg [152, 157]
524 H2O2 + O(1D)→ H2O + O2 5.20 × 10−16 [162]
525 H2O2 + O(1S)→ H2O + O2 5.20 × 10−16 As reaction 524
526 HO2 + O(1D)→ OH + O2 5.20 × 10−16 As reaction 524
527 HO2 + O(1S)→ OH + O2 5.20 × 10−16 As reaction 524
528 O + O(1D)→ 2O 8.00 × 10−18 [163]
529 O + O(1S)→ 2O 3.33 × 10−17 e−300/Tg [144, 164]d

530 O + O(1S)→ O + O(1D) 1.67 × 10−17 e−300/Tg [144, 164]d

531 O + O2(a1∆)→ O + O2 1.00 × 10−22 [154]
532 O + O2(b1

∑
)→ O + O2(a1∆) 8.00 × 10−20 [152, 154]

533 O + O3→ 2O + O2 1.20 × 10−15 e−11 400/Tg [141]
534 O + O3→ 2O2 8.00 × 10−18 e−2060/Tg [11, 152, 154, 165]
535 O(1D) + O2→ O + O2(b1

∑
) 2.56 × 10−17 e67/Tg [152]

536 O(1D) + O2→ O + O2(a1∆) 6.60 × 10−18 e55/Tg [154]
537 O(1D) + O3→ 2O2 1.20 × 10−16 [152]
538 O(1D) + O3→ O2 + 2O 1.20 × 10−16 [152]
539 O(1S) + O2→ O + O2 3.00 × 10−18 e−850/Tg [11, 98, 161]
540 O(1S) + O2→ O(1D) + O2 1.30 × 10−18 e−850/Tg [11, 98, 161]
541 O(1S) + O2(a1∆)→ 3O 3.20 × 10−17 [11, 166–168]
542 O(1S) + O2(a1∆)→ O + O2(b1

∑
) 1.30 × 10−16 [11, 166–168]

543 O(1S) + O2(a1∆)→ O(1D) + O2 3.60 × 10−17 [11, 166, 167]
544 O(1S) + O3→ O + O(1D) + O2 1.93 × 10−16 [169]
545 O(1S) + O3→ 2O2 1.93 × 10−16 [169]
546 O(1S) + O3→ 2O + O2 1.93 × 10−16 [169]
547 2O2→ 2O + O2 6.60 × 10−15 (Tg/300)−1.5 e−59 000/Tg [98]
548 O2 + O2(a1∆)→ O2O2 3.00 × 10−24 e−200/Tg [152]
549 O2 + O2(b1

∑
)→ O2 + O2(a1∆) 3.60 × 10−23 (Tg/300)0.5 [144]

550 O2 + O3→ O + 2O2 7.26 × 10−16 e−11 435/Tg [169]
551 2O2(a1∆)→ O2 + O2(b1

∑
) 1.80 × 10−24 (Tg/300)3.8 e700/Tg [170, 171]

552 O2(a1∆) + O2(b1
∑

)→ O2 + O2(b1
∑

) 2.70 × 10−23 [11]
553 O2(a1∆) + O3→ 2O2 + O 5.20 × 10−17 e−2840/Tg [154]
554 2O2(b1

∑
)→ O2 + O2(b1

∑
) 2.70 × 10−23 [11]

555 O2(b1
∑

) + O3→ 2O2 + O 3.50 × 10−17 e−135/Tg [154]
556 O2(b1

∑
) + O3→ O2 + O3 5.50 × 10−18 e−135/Tg [11, 154]

557 O2(b1
∑

) + O3→ O2(a1∆) + O3 5.50 × 10−18 e−135/Tg [11, 154]
558 2O3→ O + O2 + O3 1.65 × 10−15 e−11 435/Tg [169]

Three-body collisions
559 2He + He(23S)→ He + He2∗ 2.00 × 10−46 [172]
560 He + He(23S) + H2O→ 2He + H2O+

+ e 1.48 × 10−41 [146]e

561 He + He(23S) + O→ e + 2He + O+ 1.60 × 10−43 [11]
562 He + He(23S) + O(1D)→ e + 2He + O+ 1.60 × 10−43 [11]
563 He + He(23S) + O(1S)→ e + 2He + O+ 1.60 × 10−43 [11]
564 He + He(23S) + O2→ e + 2He + O2

+ 1.60 × 10−43 [148]
565 He + He(23S) + O2(a1∆)→ e + 2He + O2

+ 1.60 × 10−43 [11]
566 He + He(23S) + O2(b1

∑
)→ e + 2He + O2

+ 1.60 × 10−43 [11]
567 He + He(23S) + O3→ e + 2He + O + O2

+ 1.60 × 10−43 [11]
568 He + 2H→ He + H2 6.04 × 10−45 (Tg/300)−1 [153, 173]f

569 He + H + OH→ He + H2O 9.23 × 10−44 (Tg/300)−1.527 e−185/Tg [174, 175]g

570 He + H + O→ OH + He 4.36 × 10−44 (Tg/300)−1 [151]c

571 H + O2 (+ He)→ HO2 (+ He) Effective [152, 176]h,i

572 2OH (+ He)→ H2O2 (+ He) Effective [152]h,j

573 He + 2O→ He + O2(a1∆) 2.00 × 10−45 (Tg/300)−1 e−170/Tg [11, 141, 177]

(Continued.)
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574 He + 2O→ He + O2(b1
∑

) 2.00 × 10−45 (Tg/300)−1 e−170/Tg [11, 141, 177]
575 He + O + O2→ He + O3 3.66 × 10−46 (Tg/300)−2.6 [152, 178]k

576 He + O + O2(a1∆)→ He + O2 + O 4.00 × 10−45 [179, 180]
a In m3 s−1 and m6 s−1 for two- and three-body collisions, respectively.
b Value is an upper limit in reference.
c Estimated value in reference.
d Estimated branching ratio.
e Branching ratios taken from Sanders [147].
f Third body is Ar instead of He in reference. The gas efficiency factor is assumed to be 1.
g Third body is Ar instead of He in reference. The gas efficiency factor is assumed to be 0.65. This factor is calculated by dividing reaction rate coefficients
for He and Ar as background gases for the same reaction measured by Zellner et al [175].
h Effective rate coefficients calculated from pressure dependent rates for 1 atm and fitted by an Arrhenius expression in the temperature range 280–350 K.
i Third body is N2 instead of He in reference. The gas efficiency factor is assumed to be 0.43. This factor is calculated by dividing reaction rate coefficients
for He and N2 as background gases for the same reaction measured by Hsu et al [176].
j Recommended rate coefficient in reference is for N2 background gas instead of He. We apply a gas efficiency factor of 0.41 to the low-pressure limit
reaction rate coefficient to account for this. This factor is calculated by dividing the room temperature rate coefficient from the given reference for He
background gas (measured by Forster et al [181]) by the recommended value (measured by Fulle et al [182]).
k Third body is N2 instead of He in reference. The gas efficiency factor is assumed to be 0.61. This factor is calculated by dividing reaction rate coefficients
for He and N2 as background gases for the same reaction measured by Lin and Leu [178].
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