
This is a repository copy of Convolutional neural network-based clinical predictors of oral 
dysplasia: class activation map analysis of deep learning results.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/172567/

Version: Published Version

Article:

Camalan, S., Mahmood, H. orcid.org/0000-0001-7159-0368, Binol, H. et al. (6 more 
authors) (2021) Convolutional neural network-based clinical predictors of oral dysplasia: 
class activation map analysis of deep learning results. Cancers, 13 (6). 1291. ISSN 2072-
6694 

https://doi.org/10.3390/cancers13061291

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



cancers

Article

Convolutional Neural Network-Based Clinical Predictors of
Oral Dysplasia: Class Activation Map Analysis of Deep
Learning Results

Seda Camalan 1,* , Hanya Mahmood 2 , Hamidullah Binol 1 , Anna Luiza Damaceno Araújo 3,

Alan Roger Santos-Silva 3 , Pablo Agustin Vargas 3 , Marcio Ajudarte Lopes 3, Syed Ali Khurram 2

and Metin N. Gurcan 1

����������
�������

Citation: Camalan, S.; Mahmood, H.;

Binol, H.; Araújo, A.L.D.;

Santos-Silva, A.R.; Vargas, P.A.;

Lopes, M.A.; Khurram , S.A.; Gurcan,

M.N. Convolutional Neural

Network-Based Clinical Predictors of

Oral Dysplasia: Class Activation Map

Analysis of Deep Learning Results.

Cancers 2021, 13, 1291. https://

doi.org/10.3390/cancers13061291

Academic Editor:

Ognjen Arandjelović
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Simple Summary: Oral cancer/oral squamous cell carcinoma (OSCC) is among the top ten most

common cancers globally; early and accurate diagnosis of oral cancer is critical. Despite improvement

in surgical and oncological treatments, patient survival has not improved over the last four decades.

Our purpose is to develop a deep learning method to classify images as “suspicious” and “normal”

and to highlight the regions of the images most likely to be involved in decision-making by generating

automated heat maps. Thus, by using convolutional neural network-based clinical predictors,

oral dysplasia in an image can be classified accurately in an early stage.

Abstract: Oral cancer/oral squamous cell carcinoma is among the top ten most common cancers glob-

ally, with over 500,000 new cases and 350,000 associated deaths every year worldwide. There is a

critical need for objective, novel technologies that facilitate early, accurate diagnosis. For this purpose,

we have developed a method to classify images as “suspicious” and “normal” by performing transfer

learning on Inception-ResNet-V2 and generated automated heat maps to highlight the region of

the images most likely to be involved in decision making. We have tested the developed method’s

feasibility on two independent datasets of clinical photographic images of 30 and 24 patients from

the UK and Brazil, respectively. Both 10-fold cross-validation and leave-one-patient-out validation

methods were performed to test the system, achieving accuracies of 73.6% (±19%) and 90.9% (±12%),

F1-scores of 97.9% and 87.2%, and precision values of 95.4% and 99.3% at recall values of 100.0%

and 81.1% on these two respective cohorts. This study presents several novel findings and ap-

proaches, namely the development and validation of our methods on two datasets collected in

different countries showing that using patches instead of the whole lesion image leads to better

performance and analyzing which regions of the images are predictive of the classes using class

activation map analysis.

Keywords: oral epithelial dysplasia; oral cancer; squamous cell carcinoma; leucoplakia; erythroplakia;

transfer learning; deep learning; class activation map analysis

1. Introduction

The lack of an objective clinical method to evaluate oral lesions is a critical barrier to
the early, accurate diagnosis and appropriate medical and surgical management of oral
cancers and related diseases. This clinical problem is highly significant because oral cancer

Cancers 2021, 13, 1291. https://doi.org/10.3390/cancers13061291 https://www.mdpi.com/journal/cancers
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has an abysmal prognosis. The 5-year survival for Stage IV oral squamous cell carcinoma
(OSCC) is only 20–30%, compared to 80% for Stage I (early) OSCC. A significant proportion
(more than 50%) of OSCCs are preceded by oral epithelial dysplasia (OED) or oral pre-
cancer. Therefore, early detection of pre-cancerous oral lesions (with histological evidence
of dysplasia), and reversal of habits such as smoking, tobacco chewing, reducing alcohol
consumption, and surgical management can significantly reduce the risk of transformation
into cancer [1,2]. Thus, early detection is critical for improving survival outcomes.

There are no individual or specific clinical features that can precisely predict the
prognosis of an oral potential malignant lesion. However, an improved prediction may be
accomplished by jointly modeling multiple reported “high-risk features”, such as intraoral
site (i.e., lateral tongue borders, ventral tongue, the floor of the mouth, and lower gums are
high-risk sites), color (red > mixed > white), size (>200 mm2), gender (females > males),
appearance (erythroplakia and verrucous lesions represent high risk), and habits (tobacco
and alcohol usage) [1–3]. At present, clinical assessment of these lesions is highly subjective,
resulting in significant inter-clinician variability and difficulty in prognosis prediction,
leading to suboptimal quality of care. Thus, there is a critical need for novel objective
approaches that can facilitate early and accurate diagnosis and improve patient prognosis.

Diagnosis of clinically suspicious lesions is confirmed with a surgical biopsy and
histopathological assessment [4,5]. However, the decision to refer a patient to secondary
care or perform a biopsy depends on the practitioner’s clinical judgment. It is based on sub-
jective findings from conventional clinical oral examination (COE). Unfortunately, COE is
not a strong predictor of OSCC and OED, with a 93% sensitivity and 31% specificity,
highlighting the need for objective and quantitative validated diagnostic methods [4–6].

Recently, convolutional neural network (CNN)-based image analysis techniques have
been used to automatically segment and classify histological images. Santos et al. presented
a method for automated nuclei segmentation on dysplastic oral tissues from histological
images using CNN [7] with 86% sensitivity and 89% specificity. Another CNN-based
study proposed a framework for the classification of dysplastic tissue images to four differ-
ent classes with 91.65% training and 89.3% testing accuracy using transfer learning [8,9].
Yet another CNN-based transfer learning approach study proposed by Das et al. [10] also
classified the multi-class grading for diagnosing patients with OSCC. They used four of
the existing CNN models, namely Alexnet [11], Resnet-50 [12], VGG 16, and VGG 19 [13],
to compare their proposed CNN method, which outperformed all the models with 97.5% ac-
curacy. Although these studies show that histological images can be classified accurately,
predicting the lesion’s risk of malignant progression on clinical presentation or images is
crucial for early detection and effective management of lesions to improve the survival
rates and prevent oral cancer progression [4].

Radiological imaging modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT) can help determine the size and extent of an OSCC prior
to surgical intervention. However, these techniques are not sensitive enough to detect
precancerous lesions. To overcome this barrier, a range of adjuvant clinical imaging
techniques have been utilized to aid diagnosis, such as hyperspectral imaging (HSI) and
optical fluorescence imaging (OFI), and these images have the potential to be analyzed
using computer algorithms. Xu et al. presented a CNN-based CT image processing
algorithm to classify oral tumors using 3DCNN instead of 2DCNN [14]. The 3DCNN
method had better performance than 2DCNN, because the spatial features of the three-
dimensional structure extract tumor features from multiple angles. Jeyaraj and Nadar
proposed a regression-based deep CNN algorithm for an automated oral cancer-detecting
system by examining hyperspectral images [15]. Comparison of the designed deep CNN
performance was better than other conventional methods such as support vector machine
(SVM) [16] and deep belief network (DBN) [17]. These methods segment intraoral images
accurately and classify the inflamed gingival and healthy gingival automatically. However,
they require HSI and OFI, which are not commonly available in dental screening.
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Some studies have explored both autofluorescence and white light images captured
with smartphones. Song et al. presented a method for the classification of dual-modal
images for oral cancer detection and used a CNN-based transfer learning algorithm with
86.9% accuracy. However, the ground truth of the diagnosis depends on the specialist
results rather than the histopathological results [18]. Uthoff et al. proposed a system
to classify “suspicious” lesions using CNN with 81.2% accuracy, but the system needs
an additional Android application, an external light-emitting diode (LED) illumination
device [19,20]. Using fluorescence imaging, Rana et al. reported pixel-wise segmentation
of the oral lesions with the help of CNN-based autoencoders [21]. It was proposed in
a review that OFI is an efficient tool for COE in managing oral potentially malignant
disorders (OPMD) [22]. The review provided contemporary evidence in support of using
OFI during COE for diagnosis and prognosis purposes. However, these studies require
autofluorescence or hyperspectral imaging. These modalities are not widely available
and are difficult to interpret, therefore limiting their use in early detection of oral cancer
or dysplasia.

One of the more recent studies focused on lesion detection and a classification system
using white-light images obtained from mobile devices [23]. This system, which used
ResNet-101 [12] for classification and Fast R-CNN for object detection, achieved an F1-
score of 87.1%. While the performance is encouraging, the results are not interpretable.
The method in [23] requires both object detection and segmentation; however, their object
detection F1-score is only 41.18% for the detection of lesions that required referral.

In our application, photographic images of oral lesions were manually annotated
as “suspicious” and “normal” areas to develop an automated classification methodology
(see Section 2.1). We implemented a CNN-based transfer learning approach, using the
Inception-ResNet-v2 pre-trained network and compared the results with those obtained
with VGG-16 and Resnet-101 pre-trained networks (see Section 3. In our study, we used
only photographic images instead of fluorescence or hyperspectral images.

We also analyzed which regions of the images were used to predict the classes. This
analysis is important in understanding how the neural networks analyze images, hence
gaining insight into why the neural network misclassifies certain images (see Section 3). Fi-
nally, we compared the system’s performance when trained with image tiles versus regions
of interest. We validated our system by 10-fold cross-validation and leave-one-patient-out
validation techniques and presented the performance results in terms of accuracy, F1-score,
recall, and precision (see Section 3).

2. Materials and Methods

In this study, we developed a system for the classification of potentially malignant oral
lesions into normal and suspicious categories from photographic images of oral lesions and
their surrounding normal areas. The inputs to the system, the block diagram of which is
shown in Figure 1, are photographic images, and the outputs are heat maps of the classified
images with their classification categories.
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Figure 1. Block diagram of the system. The image preprocessing stage starts with patching the image and continues with

the augmentation of the image patches. Pre-trained Inception-ResNet-v2 was retrained with these images. Classifica-

tion and heat map generation were performed. Four pre-trained networks were independently used to analyze the results.

Each network has a different number of layers (ResNet101→347-layer, VGG16→41, Inception v3→315-layer, and Inception

ResNet v2→824-layer) with variation in frozen layers (ResNet101→79-layer, VGG16→no frozen, Inception v3→307-layer,

and Inception ResNet v2→818-layer) and fine-tuning of middle layer numbers; we represent them as X and Y in the figure).

CNN: convolutional neural network.

2.1. Dataset

For this study, two datasets were used: the Sheffield (UK) dataset and Piracicaba
(Brazil) dataset. These images were obtained after appropriate ethical approvals. Ethi-
cal approval for the Sheffield cohort was obtained for this study from the HRA and Health
and Care Research Wales (HCRW), Reference number 18/WM/0335 on 19 October 2018.
This study was approved by the Piracicaba Dental Ethical Committee, Registration number
42235421.9.0000.5418, on 9 June 2019. Material transfer agreements were approved and
put in place between the three research sites for sharing of anonymized clinical images.
The images were standard color images captured with a regular photographic cameras
(see Appendix A) capturing the lesion as well as the surrounding regions of the mouth.
Depending on where the lesion was located, the surrounding area could include teeth,
dental mirror/retractor, and some parts of the face (e.g., mouth or chin). The Sheffield
dataset included 30 images with a known diagnosis for each of the three grades of dyspla-
sia: mild (10 images), moderate (10 images), and severe (10 images). In the photographs,
each lesion was visually identified by the clinical team members, and precise boundaries
were drawn using Aperio/Leica ImageScope version 12.4.0 software byLeica Biosystems
Imaging, Inc. from Buffalo Grove, IL, USA. Additionally, normal-appearing mucosal areas
near the lesion were also annotated using a different color to provide a frame of reference
for algorithm development (see Figure 2). This “normal” annotation is vital because each
patient’s mouth lining/mucosa color may differ. While a visual assessment can indicate
the possibility of dysplasia, the specific dysplasia grade (i.e., mild, moderate, or severe)
can only be decided after a biopsy and histopathological exam. The Piracicaba dataset,
collected from 24 patients, contains 43 images with a known diagnosis for each of the three
grades of dysplasia, namely mild (11 images), moderate (9 images), and severe (4 images)
and is annotated in the same manner. For each patient (54 patients in total in both datasets),
the identified lesions and normal mucosal areas (RoI: Region of Interest) are presented in
Table 1.
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Figure 2. Differentiated “normal” and “suspicious” bounding box (rectangle) region from the original image according to

the lined region.

Table 1. Number of cases and RoI (region of interest) for normal and suspicious.

Sheffield Dataset Piracicaba Dataset

Number of Cases Number of RoI Number of Cases Number of RoI

Normal 30 68 24 38
Suspicious 30 76 24 57

Total 30 144 24 95
Whole Image Size 1024 × 685 1504 × 1000

We used two different cross-validation methods. For the first method, the datasets
were divided into 10-fold (k = 10 folds cross-validation) randomly, but considering that all
images from a patient were used in either test or training/validation sets. For each fold,
10% of the patient’s images were randomly selected as test images. The rest of the data
were divided into training and validation sets with a ratio of 85% and 15%, respectively.
The second cross-validation method was leave-one-patient-out (LoPo). While testing the
system, only one of the patient’s images was tested, and the rest of the dataset was used
for training (85%) and validation (15%).

To test the system, we used two approaches: test the patch and test the patient.
“Test the patch” means that each patch in the fold is classified. The system’s accuracy is
calculated depending on the number of correct classified patches (normal or suspicious).
“Test the patient” means that the accuracy is calculated for the RoI instead of each patch.
If the number of correct classified patches for each RoI is greater than the number of wrong
classified patches, then that RoI is accepted as being correctly classified; otherwise, it is
considered a misclassification. Since each RoI is divided into patches, it is more meaningful
to consider the combination of these patches (rather than single patches) to decide on the
classification result of the RoI.

2.2. Preprocessing and Data Augmentation

The system has a preprocessing step to prepare images before classifying them
as “normal” or “suspicious” (see Figure 3). First, we extracted small patches of size
128 × 128 pixels (see Figure 4). If the patches with more than 80% pixels originated from
a lesion area, they were labeled as suspicious patches; otherwise, they were considered
normal patches.
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Figure 3. Block diagram of image preprocessing. Two dataset annotated images are cropped from the bounding box of

the suspicious and normal regions. Then each image is divided into 128 × 128 image patches. Lastly, the patched images

are augmented.

Figure 4. Figurative image patching from bounding box lesion and normal area into 128 × 128 patches. Original images

were annotated by dentists. We cropped the bounding box of the annotated regions as normal or suspicious regions.

The cropped regions were divided into 128 × 128 pixel image patches (red and blue squares) with a stride of 64 pixels

(dotted lines), resulting in overlapping patches. If the size of the image was not a multiple of 128 × 128, the patches were

not obtained from the remainder of the image. If the patches with more than 80% pixels originated from a suspicious area,

they were labeled as suspicious patches; otherwise, they were considered as normal patches.
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Because the number of cases was limited, we applied data augmentation for the images.
Both for suspicious and normal patches, data augmentation was performed with random
horizontal and vertical flips, randomly shifting an input patch in the horizontal and vertical
directions with two offsets sampled uniformly between −50 and 50 pixels, rotating the
images starting from −5 to 5 and increasing by 5 up to −45 to 45 angles, sharpening
images (alpha ranged between 0 to 1 and lightness between 0.75 and 1.5), randomly
scaling the inputs by a factor between 0.5 and 1.5, and elastic transformation (alpha ranged
between 45 and 100, and sigma was 5) [24]. (We used the predefined “imgaug” library
for image augmentation in Python.) Figure 5 gives examples of augmented image patches.
We obtained 6100 lesion and 6000 normal mucosa patches for the Sheffield dataset and 7314
suspicious and 7370 normal mucosa patches for the Piracicaba dataset after augmentation.

− , 
− −

 (

Figure 5. Examples of patch augmentation after rotation, sharpened, elastic, and scale.

2.3. Classification Approach

To classify patches as normal or suspicious, we used deep CNN, which has been suc-
cessfully applied in image classification, segmentation, object detection, video processing,
natural language processing, and speech recognition [25,26]. For oral cancer prognosis
or diagnosis, CNN has been applied to histological images [9,27–29] and on autofluores-
cence and white light images [18,19]. To our knowledge, this is the first application of CNN
for the classification of oral lesions from clinical photographic images. Additionally, we,
for the first time, interpreted class activation maps resulting from different pre-trained
convolutional neural networks: Inception-ResNet-v2, Inception v3, ResNet101, and VGG16.

2.4. Transfer Learning

To train a deep CNN, a huge number of images are required. Because of the limited
number of image samples for oral dysplasia, we used transfer learning, which uses features
learned from a problem in one domain and applies them to a problem in a different do-
main [30–33]. For example, in Aubreville et al.’s works [27,29], Inception V3 [34], previously
trained on the ImageNet dataset [11], was retrained to detect one of the cancer types of
the epithelium automatically. Song et al.’s work [18] also presented an image classification
approach based on autofluorescence and white light images using transfer learning with
networks VGG-CNN-M [35]. Welikala et al. [23] used deep learning-based photographic
image classification of oral lesions for early detection of oral cancer using ResNet-101
pre-trained network. However, none of these applications made an effort to develop class
activation maps to understand how the network makes a decision. To compare the results,
we also tested the performance of the previous studies’ pre-trained networks with the same
structure (i.e., the number of the frozen and fine-tuned layers was kept the same) on our
dataset images.

In addition to testing the previous studies’ pre-trained networks, we implemented a
transfer learning approach by retraining the last seven layers of a pre-trained Inception-
ResNet-v2 network [36]. This network was trained and validated with 50,000 images to
classify 1000 object categories, learning-rich feature representations, with 825 layers. We did
not retrain the whole network because it was highly likely to result in overfitting [37,38].
Instead, we opted to freeze the first 818 layers, a number that was decided empirically to
limit the number of parameters required to learn the features in the network. Other pre-
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trained networks’ retraining structures were regenerated with the first 307 frozen layers of
Inception-v3 and 79 frozen layers of ResNet-101; however, VGG-16 was re-trained without
any frozen layers. The number of frozen layers and the number of parameters that were
retrained are stated in Table 2. We retrained the last three layers (prediction, softmax,
and classification) of the pre-trained network with patches of oral images in our database.
Figure 1 shows the block diagram of transfer learning layers frozen, fine-tuning, and the
changes we made to the network to solve our problem.

Table 2. Number of retrained cross-validation results for Sheffield and Piracicaba datasets.

Pre-Trained Network
Total Number Number of

Layers Parameters (Millions) Frozen Layers Retrained Parameters (Millions) Image Size

Inception ResNetv2 825 55.9 818 1.5 299 × 299 × 3
Inception-v3 315 23.9 307 2.05 299 × 299 × 3
ResNet-101 347 44.6 79 43.2 224 × 224 × 3

VGG-16 41 138 0 138 224 × 224 × 3

2.5. Class Activation Maps (CAM)

To analyze which parts of an image a neural network focuses on while making a
classification decision, class activation maps (CAMs) are used for various applications,
including cancer classification [39], grading [40], and diagnosis [41]. CAM is generated
for each class of the network by obtaining the weighted sum of the last convolutional
features (activation maps) using the fully connected layer weights [42]. For each category
to be classified by the CNN, the activation maps indicate which parts of the image are
effective in classification. In our case, after the network was retrained and the weights of
the features were updated, a heat map of the predicted class was generated by creating the
class activation map. We created only the predicted class’s heat map to understand which
spatial regions are effective in making a right or wrong decision.

2.6. Experimental Setup

To classify the oral images as normal or suspicious, we used the following training
parameters. The numbers of the frozen layers are mentioned for each pre-trained CNN
in Section 2.4. The cross-entropy cost function was optimized with stochastic gradient
descent [43], with a batch size of 64 samples taken from training images. The learning
rate was initially assigned as 3 × 10−4. The number of epochs was a maximum of 20,
but to avoid overfitting, the system stopped training if there was no improvement for
more than ten iterations. The implementation was done in MATLAB 2019b (Mathworks,
Natick, MA, USA) using the Deep Learning Toolbox.

The steps that affect the experimental results are explained in detail in Sections 2.1 and 2.2:
augmentation and cross-validation [44]. Data augmentation is a pre-processing step per-
formed for both system training and testing; therefore, patch images were augmented.
The training and testing processes depend on the cross-validation for either ten-fold or
LoPo cross-validation methods to split the data to perform the experiments.

3. Results

We compared the pre-trained CNN results, namely Inception ResNetV2, InceptionV3,
VGG16, and ResNet-101, for both accuracy and F1-score after retraining them on two
different datasets. Ten-fold cross-validation and leave-one-patient-out cross-validation
results for the Sheffield and Piracicaba datasets are stated in Tables 3 and 4, respectively.
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Table 3. Ten-fold cross-validation results for Sheffield and Piracicaba datasets.

Minimum Maximum Average Standard Deviation

Train 76.1% 85.0% 81.1% 2.7%
Validation 76.7% 85.2% 80.9% 3.0%
Test Patch 54.9% 88.0% 71.6% 10.0%

Sheffield Dataset

Test Patient 33.3% 95.8% 73.6% 19.0%

Train 80.6% 85.1% 83.1% 1.2%
Validation 80.8% 84.5% 82.7% 1.1%
Test Patch 70.1% 92.5% 80.0% 7.5%

Inception ResNet-v2

Piracicaba Dataset

Test Patient 73.7% 100.0% 90.9% 12.0%

Train 98.6% 99.4% 99.0% 0.3%
Validation 97.3% 99.2% 98.7% 0.6%
Test Patch 74.3% 94.2% 83.6% 7.1%

Sheffield Dataset

Test Patient 83.3% 100.0% 93.2% 7.5%

Train 92.9% 95.8% 94.7% 1.0%
Validation 92.8% 96.3% 94.4% 1.3%
Test Patch 60.1% 99.7% 83.9% 13.9%

ResNet-101

Piracicaba Dataset

Test Patient 87.5% 100.0% 95.2% 5.5%

Train 68.7% 83.2% 78.7% 3.7%
Validation 69.9% 82.9% 78.8% 3.5%
Test Patch 56.1% 88.8% 71.3% 10.5%

Sheffield Dataset

Test Patient 58.8% 100.0% 83.1% 13.3%

Train 75.2% 80.7% 78.9% 1.8%
Validation 75.4% 80.3% 78.7% 1.7%
Test Patch 43.8% 87.8% 72.5% 12.6%

Inception-v3

Piracicaba Dataset

Test Patient 50.0% 100.0% 81.9% 17.3%

Train 73.4% 81.7% 78.3% 3.1%
Validation 73.8% 81.4% 77.7% 3.0%
Test Patch 47.3% 96.6% 70.8% 13.7%

Sheffield Dataset

Test Patient 81.8% 100.0% 91.2% 8.0%

Train 87.7% 92.9% 91.2% 1.9%
Validation 87.7% 93.3% 91.0% 1.9%
Test Patch 74.0% 95.8% 85.4% 8.4%

VGG-16

Piracicaba Dataset

Test Patient 72.7% 100.0% 94.0% 9.6%

Table 4. Leave-one-patient-out cross-validation results for Sheffield and Piracicaba datasets.

Minimum Maximum Average Standard Deviation

Train 76.2% 83.2% 80.7% 1.8%
Validation 76.6% 83.7% 80.6% 1.8%
Test Patch 15.4% 100.0% 76.7% 16.3%

Sheffield Dataset

Test Patient 50.0% 100.0% 82.1% 21.3%

Train 76.1% 83.0% 81.2% 1.7%
Validation 77.3% 84.0% 81.4% 1.8%
Test Patch 45.0% 98.8% 76.0% 14.9%

Inception ResNet-v2

Piracicaba Dataset

Test Patient 0.0% 100.0% 88.4% 23.7%

Train 73.5% 83.1% 78.1% 2.5%
Validation 72.0% 84.6% 77.6% 2.6%
Test Patch 45.7% 95.6% 72.3% 15.7%

Sheffield Dataset

Test Patient 33.3% 100.0% 75.0% 25.1%

Train 91.9% 94.2% 93.2% 0.7%
Validation 90.8% 94.3% 92.9% 0.9%
Test Patch 30.0% 100.0% 87.5% 15.2%

ResNet-101

Piracicaba Dataset

Test Patient 0.0% 100.0% 97.5% 7.9%
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Table 4. Cont.

Minimum Maximum Average Standard Deviation

Train 70.2% 83.8% 78.5% 2.2%
Validation 68.3% 84.5% 78.6% 2.6%
Test Patch 33.3% 95.5% 69.2% 16.9%

Sheffield Dataset

Test Patient 33.3% 100.0% 74.9% 25.3%

Train 78.6% 82.8% 80.6% 1.0%
Validation 78.2% 83.0% 80.6% 1.2%
Test Patch 45.8% 98.3% 75.0% 13.9%

Inception-v3

Piracicaba Dataset

Test Patient 0.0% 100.0% 89.6% 21.4%

Train 96.4% 99.4% 98.1% 0.7%
Validation 96.1% 99.6% 97.8% 0.8%
Test Patch 51.4% 100.0% 78.8% 15.4%

Sheffield Dataset

Test Patient 50.0% 100.0% 85.5% 19.0%

Train 88.0% 95.6% 93.1% 1.8%
Validation 88.4% 95.6% 92.9% 1.8%
Test Patch 8.1% 100.0% 84.1% 19.9%

VGG-16

Piracicaba Dataset

Test Patient 50.0% 100.0% 98.1% 9.8%

As seen in Tables 3 and 4, the training and validation accuracies were similar but
less variable (i.e., smaller standard deviation) than those in the test patch set. For ex-
ample, the Inception-ResNet-V2 showed average accuracies of 81.1% and 80.9% for the
Sheffield dataset training and validation, respectively, whereas the test accuracy was 71.6%.
The patient-level average and maximum test accuracies were higher than the patch-level ac-
curacies. For example, for the same cases, the patch-level accuracy was 71.6%, whereas the
patient-level accuracy was 73.6%.

The minimum values of ten-fold test accuracies were higher than those of the LoPo
test accuracies. The ten-fold average test results for the Piracicaba dataset were higher than
those of the Sheffield dataset and closer to the validation and training accuracies. These re-
sults mean that the classifiers trained on the Sheffield dataset were prone to overfitting.

The highest accuracy was achieved among the different networks by ResNet-101
for ten-fold, and LoPo cross-validation approaches. VGG16 performance for LoPo cross-
validation of the Piracicaba dataset showed the highest average accuracy; however, the stan-
dard deviation was higher than that of the ResNet-101, and the standard deviation and the
accuracy values with patches were higher than those with the VGG-16 patches.

The F1-score, recall, and precision for patches, patients, and RoI are presented in
Table 5. The trends are similar to those shown in Table 4 because ResNet-101 and VGG-16
F1-scores for the Piracicaba dataset are among the highest. While ResNet-101 results in the
highest RoI values, VGG-16 has the highest patient values. Because the number of regions
can vary from patient to patient, ResNet-101 results are more accurate than all the others.

After ten-fold and LoPo cross-validation tests were performed for each dataset,
the Piracicaba dataset was used as a test set. The Sheffield dataset was used for train-
ing and validation, and vice-versa. The patch- and patient-based test results are shown
in Table 6. Again, the Piracicaba dataset results appear more accurate than that of the
Sheffield dataset. This difference in accuracy may be explained by many factors, including
the differences in the number of images, RoIs, image size and quality, and where the
patches are selected. The image dimensions and bit depths are smaller, affecting the sizes
of suspicious lesions.
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Table 5. Leave-one-patient-out cross-validation F1-score, recall, and precision for Sheffield and Piracicaba datasets.

F1-score Recall (Sensitivity) Precision (PPV)

Patches 77.9% 74.1% 90.2%
Patient 87.2% 99.3% 81.1%Sheffield Dataset

RoI 87.0% 77.8% 97.6%
Patches 69.8% 66.9% 85.8%
Patient 94.2% 97.9% 92.5%

Inception ResNet-v2

Piracicaba Dataset
RoI 89.4% 82.1% 98.2%

Patches 71.1% 72.0% 79.0%
Patient 84.0% 98.0% 78.2%Sheffield Dataset

RoI 80.2% 73.0% 87.0%
Patches 85.0% 67.3% 89.1%
Patient 94.5% 98.5% 94.9%

ResNet-101

Piracicaba Dataset
RoI 96.3% 84.8% 98.4%

Patches 69.9% 71.3% 78.4%
Patient 85.1% 95.8% 80.8%Sheffield Dataset

RoI 78.3% 74.2% 82.7%
Patches 71.5% 83.0% 93.0%
Patient 94.3% 91.0% 96.0%

Inception-v3

Piracicaba Dataset
RoI 91.0% 92.6% 97.9%

Patches 71.2% 72.4% 80.8%
Patient 79.9% 90.4% 79.3%Sheffield Dataset

RoI 76.2% 70.7% 81.0%
Patches 83.1% 78.3% 95.7%
Patient 97.9% 100.0% 95.4%

VGG-16

Piracicaba Dataset
RoI 94.6% 90.2% 100.0%

Table 6. Train and test with independent datasets results.

Train Validation Test Patch Test Patient

Sheffield Trained Piracicaba Tested 81.9% 81.0% 71.7% 86.5%
Inception ResNet-v2

Piracicaba Trained Sheffield Tested 85.3% 84.1% 60.8% 66.7%

Sheffield Trained Piracicaba Tested 99.4% 99.4% 70.0% 79.3%
ResNet-101

Piracicaba Trained Sheffield Tested 93.9% 93.4% 50.0% 75.8%

To understand which regions of the image affect the classification result, we repre-
sented the regions with a heat map using the CAM method, as explained in the meth-
ods section. To show the images’ heat map, we performed the classification on RoI as a
single image, and the results of the heat maps of the classification are shown in Figure 6.
As seen in the figure, for cases that were classified as “suspicious", the white and partially
white regions were more effective in classification, with scores of 0.68 and 0.63, respectively.
For the normal cases, shown in the figure, the upper image has white light reflections.
These regions are mostly colored with black, blue, and green in the heat map for “normal”
classification, indicating less suspicion. The other regions where the heat map is colored
with yellow to red are the regions that result in normal classification. These examples
demonstrate the system’s success in classifying “suspicious” and “normal” oral images
using the features extracted from the associated regions.

While the heat map correctly identified all the correct areas, as in Figure 6 for both
normal and suspicious cases, in some samples the results of the heat map were some-
what misleading, for example in Figure 7. In this case, the heat map did not mark all the
regions of interest correctly. However; if we divide the image into patches, the results are
more meaningful, as shown in Figure 7. Therefore, our approach was to divide the images
into patches to improve their classification and also to be able to interpret the results of
deep learning better.
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Figure 6. (a) Heat maps overlaps the lesion area and accurately classified for suspicious. (b) Heat maps overlaps the normal

area and accurately classified for normal cases.

Figure 7. (a) Original image. (b) Heat map of lesion bounding box. (c) Heat map of a combination of patches belonging

to the severe part of the lesion area. Original image was classified as “suspicious” when the region of interest was tested.

However, the heat map of the region of interest did not reflect the severe part of the image with a warm color (e.g., red).

On the other hand, when we divide the severe part of the image into four patches, the heat map of the patches indicates the

severe region with an intense color between yellow and red. RoI: Region of Interest.

In Figure 8, the upper suspicious image shows some part of a tooth, the color of which
caused the classifier to misclassify the image. CAM analysis showed that the lesion’s
most worrying clinical part was not colored as highly suspicious (red) but moderately
suspicious (yellow). For a less suspicious image, the red and yellow parts of the heat map
did not represent the lesion, and the lesion was not colored as yellow or red.



Cancers 2021, 13, 1291 13 of 18

Figure 8. (a) Heat maps do not point to lesion region. (b) Heat maps of misclassified “normal” images.

We also investigated the heat maps of the misclassified images to understand which
regions affect the classification of the oral images. Two of the misclassified images are
shown with their heat map representations in Figure 8. Both of the images were classified
as suspicious, whereas they were normal. Their suspicion scores were 0.57 and 0.55, and the
red regions were not seen as suspicious or different to normal regions. These borderline
incorrect cases could potentially be explained by the small datasets that were used to train
the classifier.

The differences in the heat map of ResNet-101 and Inception-Resnet-v2 were investi-
gated for two specific images. The images were predicted accurately, but the lesion region
area on the images was not marked as suspicious on the image (see Figure 8). As seen
in Figure 9, ResNet-101 heat maps were more meaningful than those of the Inception
ResNet-v2 results in showing the more suspicious parts of the lesion. However, some
parts were not marked as highly suspicious in the heat map but more so than the other
regions of the image. For instance, as seen in the image on the right side in Figure 9,
ResNet-101 classified the image as suspicious with a score of 0.99; however, the yellow
region of the upper left side may be marked with the orange to red scale on the heat map.
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Figure 9. (a) Inception ResNet-v2 pre-trained network results for two different “suspicious” cases, which are not well defined.

(b) ResNet-101 pre-trained network results for the same images of the upper row, and the ResNet-101 heat map is better

than the upper row results. However, there are still some parts that are unexpected on the heat map.

4. Discussion

This study shows that the maximum accuracy of the classification of oral images was
95.2% (± 5.5%) for 10-fold and 97.5% (±7.9%) for LoPo cross-validation approaches with
the ResNet-101 pre-trained network and the Piracicaba dataset. Additionally, the maxi-
mum accuracy was 86.5% on an independent dataset (Piracicaba) for patient-based test
results with Inception ResNet-v2 when the Sheffield dataset was used for training. When
the Piracicaba dataset was used for training and the Sheffield dataset was used for test-
ing, ResNet-101 network results were more accurate than those of Inception ResNet-v2.
This shows that for different datasets, ResNet-101 is not accurate in each test set, and the
results with this deep learning method do not generalize to all datasets. However, for both
of the results performed on these pre-trained networks, the system was more accurate
when the Sheffield dataset was used for training and the Piracicaba dataset was used
for testing. An explanation for this is that when the Sheffield dataset is used for training,
the system is trained on relatively lower quality and more challenging images, and the
resulting classifier works well on the higher-quality Piracicaba images. However, when the
system is trained with better quality images, its performance is lower for the relatively
lower quality images.

We used precision, recall, and F1-score to measure the generalizability of the system
(see Table 5). Presenting the results in accuracy, F1-score, precision, and recall evaluation
methods allowed us to compare our results with other studies. The F1-score ranged
from 69.8% to 97.9%; recall and precision varied between 67.3% and 100%, and 78.2%
and 100%, respectively. The highest F1-score was obtained for the Piracicaba dataset,
with VGG-16 pre-trained models for overall performance and the other three pre-trained
networks performing similarly well. For the RoI-level results, the best F1-score was
obtained with ResNet-101.

Studies similar to ours in the literature have used both autofluorescence and white
light images together [18,19], but the results show that for white light images (which
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are close to our photographic images), the performance was the least accurate. In these
dual-modality methods, the most accurate result was 86.9%. It is hard to compare this
result to ours because they used more than a single image source and did not report their
independent test set results. The dual-modality system’s sensitivities (recall) and positive
predictive values (precision) were 85.0% and 97.7%, respectively [19] and all predictive
values ranged from 67.3% to 100%. Because of the limited diversity of the datasets and
the small number of cases, our reported standard deviation values were higher than those
reported by Uthoff et al.’s study [19], which also used multi-modality (but not clinically
relevant or easily available) images to train and test their performance.

Our study does have some limitations. All of our results were derived from 54 patients
in total, which is a small number to train and test the system independently; however, it was
sufficient to demonstrate the feasibility of our approaches. In order to overcome this
limitation, we increased the number of images by augmentation and split the images into
patches. This study also demonstrated that the classification accuracy could be increased
by extracting patches from the oral images.

Another limitation is in the selection of the patches, during which we used a per-
centage threshold for the number of the total pixels to decide whether a patch is sus-
picious or normal. Some studies segment lesions automatically, but we used manually
segmented regions. Manual segmentation could be prone to inter- and intra-reader variabil-
ity. In our future studies, we aim to overcome this shortcoming by developing automated
segmentation methodologies.

With an independent dataset accuracy of 86.5% and an F1-score of 97.9%, the results
are promising, especially considering that the networks were developed and tested using
small datasets. However, to have better results and develop a more generalizable method,
the dataset’s size needs to be increased. With a bigger cohort, we aim to subclassify
suspicious images as “high risk” or “low risk.”

After developing automated segmentation and sub-category prediction algorithms
using photographic images, we are planning to combine these results with the analysis
of histology images. Additionally, we will further enhance our system by including age,
gender, lesion location, and patient habits as potential risk factors as well as analyze
the follow-up information to predict the risk of malignant transformation. We expect
that combining these clinical features with the analysis results from photographic and
histological images will result in a very comprehensive clinical decision support tool.

5. Conclusions

In this study, we proposed a deep CNN-based oral lesion classification system for
clinical oral photographic images. To retrain the pre-trained models adapted to our system,
we divided the annotated oral images into square regions (patches) and analyzed which
regions are used in the prediction of the classes. The proposed system is one of the rare
studies that uses only photographic images and is the only study that shows the heat maps
of the images according to the class activation maps.

This study is also the first to use datasets collected at two different institutions in
different countries to analyze the variation. One dataset was used for training and the
other one was used for testing the performance changes. When independently tested,
the Piracicaba dataset results appeared to be more accurate than those of the Sheffield
dataset in 10-fold and LoPo cross-validation approaches. While this may be due to the
relatively small datasets, it also highlights the importance of testing these algorithms on
different datasets to measure their generalizability.
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Appendix A

The standard dental views:

• AP or frontal view with retractors in place and patient biting together. Lens magnification 1:2

• 2 buccal views with retractors and patient biting down Lens magnification 1:2

• Upper and lower biting surfaces Lens magnification 1:2.5

The lens magnifications applies to film and full frame digital cameras

The equipment used:

• Cameras

# Nikon D200 and Nikon D800 (Sheffield)
# Nikon D100 and Canon EOS 7D (Piracicaba)

• Lens

# Nikon 105 mm and Sigma 105 mm (Sheffield)
# Nikon 105 mm and Canon EF 100 mm (Piracicaba)

• Ring Flash

# Nikon and Sigma (Sheffield)
# Canon (Piracicaba)

Nikon D200 camera used APS-c sized sensors; for this reason, the standard distance
settings were adjusted to ensure the image magnifications were maintained.

Nikon D800 camera was a full framed digital SLR and allowed us to revert back to
standard magnification setting that was used when film cameras were used.

Image Quality

There would be slight variations but as most of the settings are standardized, we do
not envisage any major image quality issues. The photography departments have working
protocols in place and a policy of not making any significant changes to images, which
would enable as much consistency as possible to be achieved.

The only adjustment needed for digitally captured images in some instances is the
lighting/brightness adjustment. To maintain image size, there is no cropping.



Cancers 2021, 13, 1291 17 of 18

Training

The medical illustration departments adopt the guidance from the Institute for Medical
Illustrators (IMI), which also prescribes standard views and magnifications. All photogra-
phers are trained to adopt the IMI method of working.
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