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Counting weighted independent sets
beyond the permanent∗

Martin Dyer† Mark Jerrum‡ Haiko Müller§ Kristina Vušković¶

22 March 2021

Abstract

Jerrum, Sinclair and Vigoda (2004) showed that the permanent of any square
matrix can be estimated in polynomial time. This computation can be viewed
as approximating the partition function of edge-weighted matchings in a bipartite
graph. Equivalently, this may be viewed as approximating the partition function of
vertex-weighted independent sets in the line graph of a bipartite graph. Line graphs
of bipartite graphs are perfect graphs, and are known to be precisely the class of
(claw, diamond, odd hole)-free graphs. So how far does the result of Jerrum, Sinclair
and Vigoda extend? We first show that it extends to (claw, odd hole)-free graphs,
and then show that it extends to the even larger class of (fork, odd hole)-free graphs.
Our techniques are based on graph decompositions, which have been the focus of
much recent work in structural graph theory, and on structural results of Chvátal
and Sbihi (1988), Maffray and Reed (1999) and Lozin and Milanič (2008).

Keywords: independent set, counting, randomized algorithm, fully polynomial random-
ized approximation scheme (FPRAS), claw-free graph, fork-free graph, decomposition

Classification: 05C75, 05C85, 68Q25, 68R10, 68W20

1 Introduction

Independent sets are central objects of study in graph theory.1 In general, finding a largest
independent set is a very hard problem. Indeed, it is known to be hard to approximate the
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size of this set within a ratio n1−ε for graphs on n vertices and any ε > 0, unless P = NP.
(This follows from the equivalence to the maximum clique problem in the complementary
graph and a result of H̊astad [20]). This has led to an emphasis on studying this problem
in particular classes of graphs.

In particular, there has been a focus on hereditary classes, that is, classes that are closed
under vertex deletions. Equivalently, such a class can be defined by a (not necessarily finite)
set of forbidden (induced) subgraphs.

Matchings are a particular case. A matching in a graph G = (V,E) is an independent
set in the line graph of the root graph G. (“Graph” will mean “simple undirected graph”,
unless otherwise stated.) Edmonds [14] showed that a maximum weighted matching in
any graph can be found in polynomial time. Beineke [1] showed that line graphs can be
characterised by nine forbidden subgraphs. Of these, the claw (see figure 1) seems the
most important for algorithmic questions. Thus Minty [32] extended Edmonds’ algorithm
to the larger class of claw-free graphs.

Claw-free graphs have been studied extensively by several authors, including Chud-
novsky and Seymour in a long sequence of papers culminating in [9]. These papers give
a decomposition of claw-free graphs, which unfortunately is non-algorithmic. However,
this has been simplified and extended in [15, 33] to give an efficient decomposition which
supports finding a maximum weighted independent set.

In this paper we are concerned with counting problems, and for these it is important
to distinguish weighted and unweighted (or unary weighted) variants, even more so than
with optimisation problems. For example, there is an efficient approximation algorithm
for counting unweighted matchings in a general graph, but the existence of an approxima-
tion algorithm for counting weighted matchings remains an open question. It is weighted
counting problems that we focus on here. Hereditary classes are particularly suitable for
counting problems, since they are self-reducible by vertex deletion.

Claw-free graphs include line graphs. Therefore the#P-completeness result of Valiant [37]
for matchings implies that exact counting of independent sets in polynomial time is un-
likely. Even polynomial time approximate counting remains an open question for general
line graphs in the weighted setting. However, building on an earlier pseudopolynomial al-
gorithm of Jerrum and Sinclair [22], Jerrum, Sinclair and Vigoda [23] made an important
breakthrough in approximate counting. They gave a fully polynomial randomised approxi-
mation scheme (FPRAS) for counting weighted perfect matchings in a bipartite graph, the
permanent approximation problem.

Our goal is to extend the result of [23] to larger classes of graphs. It might be expected
that the right direction for this would be to matchings in general graphs but, as noted
above, this remains an open problem, and a positive solution seems increasingly unlikely.
An important requirement of the proof of [23] is that the graph should have no odd cycles,
which places it precisely in the class of bipartite graphs. Indeed, Štefankovič, Vigoda and
Wilmes [39] have given a family of nonbipartite graphs for which the algorithm of [23] does
not run in polynomial time. Interestingly, from the viewpoint of this paper, they also show
that weighted matchings in these graphs, and in a more general class of graphs that are
“close to bipartite”, can be counted in polynomial time, using the algorithm of [23] with a
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graph decomposition technique. In [39], this is the Gallai-Edmonds decomposition.
Here we take a different direction to generalise [23], regarding approximating the perma-

nent as the problem of approximately counting weighted independent sets in line graphs of
bipartite graphs. We show that these two problems are polynomial time equivalent. That
approximating the permanent is reducible to approximately counting weighted indepen-
dent sets is shown in section 2.5, and that counting arbitrarily weighted independent sets
in line graphs of bipartite graphs is reducible to approximating the permanent is shown in
section 2.4.4.

An important property of line graphs of bipartite graphs is that they are perfect. So it
might be hoped that the appropriate generalisation of the result of [23] would be to counting
independent sets in perfect graphs. That this class can be recognised in polynomial time
was shown by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [5]. The maximum
independent set in a perfect graph can also be found in polynomial time, using a convex
optimisation algorithm of Grötschel, Lovász, and Schrijver [17], though no combinatorial
algorithm is yet known for this problem.

However, approximately counting independent sets in perfect graphs appears intractable
in general. Bipartite graphs are perfect, but approximately counting independent sets in
bipartite graphs defines the complexity class #BIS. This class was introduced by Dyer,
Goldberg, Greenhill and Jerrum [13], and hardness for the class has since been used as
evidence for the intractability of various approximate counting problems.

Trotter [36] suggested the smaller class of line-perfect graphs. These are graphs whose
line graph is perfect. Trotter showed that a graph is line-perfect if and only if it contains
no odd cycle of size larger than three. Independent sets in the line graph (matchings in
the root graph) appear a natural target for generalising [23] but, in fact, they are a proper
subclass of those that we will consider here.

Line graphs of bipartite graphs have a simple set of forbidden subgraphs [19]. These are
the claw, all odd holes and the diamond (see figure 1). See Maffray and Reed [30, Thm. 4],
who also gave the corresponding result [30, Thm. 5] for line graphs of bipartite multigraphs.
These have the claw, gem, 4-wheel and odd holes (see figure 1) as forbidden subgraphs. Of
these, excluding the claw and the odd holes appears important in extending the algorithm
of [23]. This results from the “canonical paths” argument used in its proof. However, the
diamond, gem or 4-wheel do not appear important in this respect.

Here we establish this claim. We extend the result of [23] to the class of graphs which
excludes only claws and odd holes. This is essentially the class of claw-free perfect graphs.
(See section 2.3 below.) These form a main focus of this paper, and we show that the
algorithm of [23] can be extended to approximate the total weight of independent sets for
graphs in this class. The structure of graphs in this class was characterised by Chvátal
and Sbihi [10] and Maffray and Reed [30]. They gave a polynomial time decomposition
algorithm that splits the graph into simpler parts. We use their results to show that the
algorithm of [23] can be applied directly to count weighted independent sets in (claw, odd
hole)-free graphs, a slightly larger class than claw-free perfect graphs. Since line graphs of
bipartite graphs are a proper subclass of (claw, odd hole)-graphs, this is a natural general-
isation of the result of [23].
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claw diamond gem fork 4-wheel

Fig. 1: Claw, diamond, gem, fork and 4-wheel

Chudnovsky and Plumettaz [6] have given a different decomposition of claw-free perfect
graphs, which has the additional property of composability. That is, the rules used to
decompose the graph can be applied in reverse to create precisely the graphs in the class
(and no more). Unfortunately, this results in a considerably more complex decomposition
than that of [10, 30]. We make no use of this here, since we do not need composability.
Moreover, [6] does not give a polynomial time algorithm for its decomposition. The ideas
in [15, 33] would give a polynomial time decomposition, but it is unclear whether this
supports counting.

In section 2 we prove the following generalisation of the result of [23].

Theorem 1. There is an FPRAS for counting all weighted independent sets in a (claw, odd
hole)-free graph.

Observe that the algorithm of [12] runs in polynomial time. It counts all weighted
independent sets in an arbitrary claw-free graph G = (V,E) with unary weights. (See also
Matthews [31].) This generalises Jerrum and Sinclair’s matching algorithm [22].

So what do we achieve by restricting to (claw, odd hole)-free graphs? The gain is that
our algorithm is genuinely polynomial time, whereas that of [12] is only pseudopolynomial.
In particular, this allows us to approximate the total weight of independent sets of any
given size k. We can estimate the total weight of maximum independent sets, which
corresponds to counting maximum matchings in the root graph of a line graph. We then
further relax the conditions on the class. We cannot relax first the odd hole condition,
since this would take us into more general claw-free graphs, and might require counting
matchings in general graphs. Therefore we consider relaxing the claw-free condition.

Lozin and Milanič [28] described a polynomial time algorithm for finding a maximum
weighted independent set in a fork-free graph. That is, a graph with only the fork (see
figure 1) as a forbidden subgraph. Clearly, this is a proper superclass of claw-free graphs,
since the claw is a subgraph of the fork. In section 3, we show how our methods can be
combined with the ideas of [28] to prove the following.

Theorem 2. There is an FPRAS for counting all weighted independent sets in a (fork, odd
hole)-free graph.

This gives a further nontrivial generalisation of the result of [23].
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1.1 Preliminaries

Let N = {1, 2, . . .} denote the natural numbers, and N0 = N ∪ {0}. If n ∈ N, let [n] =
{1, 2, . . . , n}. For a set S, S(2) will denote the set of subsets of S of size exactly 2.

Throughout this paper, graphs are always simple and undirected. Let G = (V,E) be a
graph. We denote its vertex set by V (G), and its edge set by E(G) ⊆ V (2). We write an
edge e ∈ E between v and w in G as e = vw, or e = {v, w} if the vw notation is ambiguous.
If U,W ⊆ V with U ∩W = ∅, we will denote the U,W cut by (U,W ) = {uw ∈ E : u ∈
U,w ∈ W}. We also consider multigraphs, in which E may have parallel edges. That is, E
is a multiset with elements in V (2).

For a graph G = (V,E), we will write n = |V | and m = |E|, unless stated otherwise.
The empty graph G = (∅,∅) is the unique graph with n = 0. Also, G = (V, V (2)), is the
complete graph on n vertices. The complement of any graphG = (V,E) isG = (V, V (2)\E).

The neighbourhood of v ∈ V will be denoted N(v), and N[v] = N(v) ∪ {v}. Then
the degree deg(v) of v is |N(v)|. More generally, the neighbourhood of a set U ⊆ V , is
N(U) = {v ∈ V \ U : uv ∈ E for some u ∈ U}, and N[U ] = U ∪ N(U). We will say that
a vertex v ∈ V \ U is complete to U if U ⊆ N(v), and anticomplete if U ∩ N(v) = ∅.
More generally, a set U ⊆ V is complete to a set W ⊆ V \ U if every u ∈ U is adjacent to
every w ∈ W , and anticomplete if (U,W ) = ∅. Observe that this is a symmetric relation
between U and W . The graph G = (V,E) is connected if V cannot be partitioned into
sets U,W that are anticomplete.

The term “induced” subgraph will always mean a vertex-induced subgraph. If U ⊆ V ,
we will write G[U ] for the subgraph of G induced by U . Where “subgraph” is used without
qualification, it will always mean induced subgraph. Then a class C of graphs is called
hereditary if G[U ] ∈ C for all G ∈ C and U ⊆ V . If U ⊆ V , we will often write G \ U as
shorthand for G[V \ U ].

We say a graph G contains a graph H if it has an induced subgraph isomorphic to H,
and H is a forbidden subgraph for the graph class C if no graph in C contains H. It is
easy to see that any hereditary class can be characterised by a (possibly infinite) set H of
minimal forbidden subgraphs. In this case we refer to C as the class of H-free graphs.

An odd hole in a graph G is a subset H ⊆ V , with |H| ≥ 5 and odd, such that G[H] is
a simple cycle. A perfect graph G is such that neither G nor its complement G contains
an odd hole. A hole in G is called an antihole in G. Perfect graphs were originally defined
differently, but the equivalence to this definition was proved in [7].

The line graph L(G) = (E, E) of a multigraph G = (V,E) has E =
{
{xy, yz} : xy, yz ∈

E
}
. We will write G = L−1(G′) for the inverse operation, when it is defined, and call G

the root multigraph of the line graph G′. Note that G = L−1(G′) is not unique when G is
a multigraph, whereas it is unique for |V | > 4 when G is a graph. When L−1(G′) is not
uniquely defined, we may choose it to be any multigraph G such that G′ = L(G).

A set S ⊆ V is independent (or stable) in G if G[S] is edgeless. The empty set ∅ is
an independent set in every graph. By I(G) we denote the set of all independent sets
of G, and Ik(G) = I(G) ∩ V (k) for k ∈ N0. The largest k for which Ik(G) 6= ∅ is the
independence number α(G) of G.
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For further information on graph theory, see [4, 11], for example.
We will suppose that the vertices v ∈ V (G) are equipped with non-negative weights

w(v) ∈ R. We will denote such a vertex-weighted graph by (G,w), or simply G when
the vertex weights w are understood. Two weighted graphs (G1, w1), (G2, w2) will be
called isomorphic if G1, G2 are isomorphic as graphs, with no implied constraint on w1 and
w2. Since we are considering only approximation, we may assume here that w(v) ∈ Q.
The weight of a subset S of V is then defined to be w(S) =

∏
v∈S w(v).

2 Then let

Wk(G) =
∑

S∈Ik(G) w(S), and W (G) =
∑

S∈I(G) w(S) =
∑α(G)

k=0 Wk(G). In particular,

we have W0(G) = 1, W1(G) =
∑

v∈V w(v) and W2(G) =
∑

uv/∈E w(u)w(v).
We will use only the following simple properties of W (G). If G has connected compo-

nents C1, C2, . . . , Cr, then W (G) =
∏r

i=1 W (Ci), and if S1,S2, . . . ,Ss partitions I(G), then
W (G) =

∑s
i=1

∑
I∈Si

w(I).
We will say that a vertex-weighted graph (G′, w′) is equivalent to a vertex-weighted

graph (G,w) if Wk(G) = Wk(G
′), for all k ∈ N0, and hence W (G) = W (G′). In particular,

this implies α(G) = α(G′). Observe that equivalent weighted graphs are not necessarily
isomorphic, and isomorphic weighted graphs are not necessarily equivalent.

Note that, if w(v) = 0 for any v ∈ V , then G is equivalent to G[V \ {v}], thus we can
consider such vertices as present in or deleted from G, whichever is more convenient. We
will assume that such vertices are deleted before carrying out computations, so we may
assume that w(v) > 0 for all v ∈ V .

If w(v) = 1 for all v ∈ V , then Wk(G) = |Ik(G)|, the number of independent sets of
size k in G, and W (G) = |I(G)| counts all independent sets in G. However, we also refer
to the case with non-unit weights as “counting”.

A central theme of structural graph theory has been decomposition, that is, breaking
a graph into smaller pieces that have stronger properties than the original, such that the
pieces are all connected to each other in some canonical fashion. Our counting algorithms
for (claw, odd hole)-free and (fork, odd hole)-free graphs are based on two graph decom-
positions, clique cutset decomposition and modular decomposition, respectively. We will
describe these in section 2 and section 3 respectively.

We consider approximating W (G) and Wk(G) in the following sense. An FPRAS (fully
polynomial randomized approximation scheme) is an algorithm which produces an estimate

Ŵ of a quantity W such that

Pr
(
(1− ε)W ≤ Ŵ ≤ (1 + ε)W

)
≥ 3/4 .

The key FPRAS we employ here is that of Jerrum, Sinclair and Vigoda [23] for the perma-
nent. This uses the Markov chain approach to approximate counting, but we will not need
the interior details of the algorithm. Essentially, we use [23] as a “black box” here. We
note the equivalence of approximate counting with approximate random generation [24],
but we make no direct use of this here.

For further information on approximate counting, see [21], for example.

2Note the difference from the corresponding definition
∑

v∈S
w(v) used in optimisation.
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A0 A1

K1 A2

K2 A3

K3

Fig. 2: Clique decomposition tree

2 Approximating W (G) in (claw, odd hole)-free graphs

We develop an algorithm for approximating W (G) in (claw, odd hole)-free graph using
clique cutset decomposition. But first we describe this method, and its application to
counting, in a general setting.

2.1 Clique cutset decomposition

A clique K in a graph G = (V,E) is a subset of V such that G[K] is a complete graph.
K ⊆ V is a clique cutset of G if K is a clique and G \K is disconnected. In particular,
∅ is a clique cutset of every disconnected graph. For a clique cutset K of G, let (A,B)
be a partition of V \K such that A is anticomplete to B. The subgraphs G[A ∪K] and
G[B ∪K] are blocks of the decomposition of G by K. These blocks may themselves have
clique cutsets, so may contain further blocks. A block with no clique cutset is called an
atom. The decomposition can be presented in the form of a tree, in which the interior
vertices are cliques, and the leaves are atoms. Tarjan [34] gave an O(mn) algorithm for
a particular tree representation. This gives a binary decomposition tree in which all the
interior nodes (cliques) form a path. If the tree has height h, we will number the atoms
A0, A1, . . . , Ah and cliquesK1, K2, . . . , Kh from the bottom up in this tree. While the atoms
are all different, a clique can occur several times in a decomposition tree. See figure 2, and
see [34] for further information. We describe how this decomposition may be used for
computing W (G) in section 2.2.

2.2 Approximating W (G) using clique cutset decomposition

Let C be a hereditary class of graphs such that all graphs in C have a clique cutset decom-
position with all atoms in some hereditary class A ⊂ C, and we can approximate W (G)
(in the FPRAS sense) for any weighted G = (V,E) in A in time TA(n) = Ω(n), where T
is assumed convex. We show how to approximate W (G) for the entire graph G in time
TC(n) ≤ 2nTA(n).

The decomposition tree in section 2.1 has cliquesK1, K2, . . . , Kh and atomsA0, A1, . . . , Ah,
where h ≤ n. The root of the tree is Kh. Let A

′
i = Ai \Ki, si = |Ki|, a

′
i = |V (A′

i)|. Let Gi
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be the graph formed by deleting the vertices of A′
h, A

′
h−1, . . . , A

′
i+1 from G. Thus Gh = G,

and Gi−1 = Gi \ V (A′
i). We will account for the independent sets intersecting A′

i by re-
vising the weights on the vertices in Ki, in a similar way to Tarjan’s [34] approach to the
maximum weight independent set problem.

Since Ki is a clique cutset in Gi, we may partition I(Gi) by the value of I ∩Ki, which
is either {v} (v ∈ Ki) or ∅. Then we partition Gi into three vertex-disjoint subgraphs
Gi−1 \Ki, G[Ki], and A′

i. So we may write

W (Gi) = W (Gi−1 \Ki)W (A′
i) +

∑

v∈Ki

W (Gi−1 \ N[v])w(v)W (A′
i \ N(v))

= W (A′
i)
(
W (Gi−1 \Ki) +

∑

v∈Ki

W (Gi−1 \ N[v])w(v)W (A′
i \ N(v))/W (A′

i)
)

= W (A′
i)W (Gi−1) ,

where the vertex weights in Gi−1 relate to those in Gi by

w(v)← w(v)W (A′
i \ N(v))/W (A′

i) (v ∈ Ki), w(v)← w(v) (v /∈ Ki) .

Thus, since Gh = G, we may compute W (G) by induction as

W (G) = W (A0)
h∏

i=1

W (A′
i) ,

where we update the vertex weights as above at each stage. Note that the weights of some
vertices may change several times in this process, since the cliques of Tarjan’s decomposi-
tion are not necessarily vertex-disjoint.

At stage i, we have to perform si + 1 computations on subgraphs of A′
i, which are all

in A. Thus the total time is TC(n) =
∑h

i=1(si + 1)TA(a
′
i) ≤ 2nTA(n), since h ≤ n, si ≤ n,∑h

i=1 a
′
i ≤ n and T is convex.

Note that this analysis deals only with applications of the algorithm for A. It ignores
the effect of the bit-size of the vertex weights on TA(n). This distinction is not so important
for optimisation, but is much more important for counting, since contracting modules (see
section 3.1) can cause exponential growth in the weights. This may cause the running
time estimate to increase by a small polynomial factor. The same comment applies to the
algorithm of section 3. However, we do not pursue this issue further in this paper.

2.2.1 Error Analysis

We are only approximating the weight of graphs in A, so we must show that the resulting
error in W (G) can be controlled for G ∈ C.

Suppose we approximate to a factor (1 ± ε/n2) throughout. Then, by induction, the
weights in Ah−i will have relative error at most (1± ε/n2)i. Thus the estimate of the total
weight of A0 will have relative error at most (1± ε/n2)h. The error in W (A′

h−i) will be at

most (1± ε/n2)i, so the error in
∏h

i=1 W (A′
i) is at most (1± ε/n2)h(h−1)/2. Hence the error

in W (G) is at most (1± ε/n2)h(h+1)/2. Since h < n− 1, the error is a most (1± ε/n2)n
2/2,

8



which is at most (1 ± ε) for ε < 1. So the overall error can be kept within any desired
relative error ε by performing the weight estimations for all graphs in A to within error
ε/n2.

2.3 Structure of claw-free perfect graphs

In our application of the method of section 2.2, C will be the class of (claw, odd hole)-
free graphs, and A will be a class of graphs that we will define below. We must examine
approximate counting in this class, but first we review the structural results which allow
us to apply clique cutset decomposition.

Chvátal and Sbihi [10] investigated the structure of claw-free perfect graphs as a special
class of perfect graphs. These are closely related to (claw, odd hole)-free graphs. The
difference is that odd antiholes are also forbidden. The following lemma of Ben Rebea
explains that relation.

Lemma 3 (Ben Rebea, see [10]). Let G be a connected claw-free graph with α(G) ≥ 3. If
G contains an odd antihole then it contains a hole of length five.

Corollary 4. A claw-free graph with α(G) ≥ 3 is perfect if and only if it has no odd hole.

Proof. From the Strong Perfect Graph Theorem [7], lemma 3 implies that a claw-free graph
with α(G) ≥ 3 is perfect if and only if it contains no odd hole.

Chvátal and Sbihi [10] gave a decomposition theorem via clique cutsets for claw-free
perfect graphs. As described in section 2.1, a clique cutset decomposition can be described
by a binary tree whose interior vertices are cliques, and whose leaves are atoms.

Theorem 5 (Chvátal and Sbihi). If a claw-free perfect graph has no clique cutset then it
is either elementary or peculiar.

We will describe elementary and peculiar graphs below. These will be the atoms of the
decomposition.

2.3.1 Peculiar graphs

A peculiar graph is constructed as follows. A set K of vertices, initially a clique, is
partitioned into six non-empty subsets A1, A2, A3, B1, B2, B3. At least one edge is
removed from each of the edge sets (A1, B2), (A2, B3) and (A3, B1). Finally, three disjoint
nonempty cliques K1, K2, K3 are added, and each vertex in Ki is made adjacent to every
vertex in K \ (Ai ∪ Bi) for i = 1, 2, 3.

The smallest peculiar graph, with |Ai|, |Bi|, |Ki| = 1 (i = 1, 2, 3) is shown in figure 3.
The black vertices are A’s, the white B’s and the grey K’s. This graph is a template for
all peculiar graphs, as shown by Chvátal and Sbihi [10].

We will need the following simple observation about peculiar graphs.
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Fig. 3: Minimal peculiar graph from [10]

Lemma 6. A peculiar graph G = (V,E) has independence number α(G) = 3. Any inde-
pendent set of size three has one vertex in each of K1, K2, K3.

Proof. Note that K1∪A3∪B2, K2∪A1∪B3, K3∪A2∪B1 are three cliques which cover V ,
so α(G) ≤ 3. However, we can form an independent set of size three by taking one vertex
from each of K1, K2, K3, so α(G) ≥ 3.

Let I = {v1, v2, v3} be any maximum independent set in G. Suppose first I∩Ki = ∅ for
all i = 1, 2, 3. Then I is contained in K. But K is a perfect graph with vertices contained
in two disjoint cliques, A1 ∪ A2 ∪ A3 and B1 ∪ B2 ∪ B3. Thus K is a cobipartite graph,
with α(K) ≤ 2. Hence α(G) ≤ 2, a contradiction.

Thus, without loss of generality, assume v1 ∈ K1∩ I. Now N[v] = (K ∪K1)\ (A1∪B1).
So v2, v3 ∈ A1 ∪ B1 ∪ K2 ∪ K3. But A1 ∪ B1 ∪ Ki is a clique for i = 2, 3. Thus, if
v2 ∈ A1 ∪B1, v3 cannot exist. Thus v2 ∈ K2, without loss of generality, and then we must
have v3 ∈ K3.

In figure 3, the three corner triangles cover all the vertices, and the three corner vertices
form an independent set.

Peculiar graphs do not form an hereditary class. If in a subgraph G of a peculiar graph,
Ki = ∅ holds for any i = 1, 2, 3, it follows that α(G) ≤ 2. However, if α(G) ≤ 2, then G
is a clique or a cobipartite graph. But both of these are elementary graphs, as defined in
section 2.3.2 below. Thus we may insist that a peculiar graph has Ki 6= ∅ (i = 1, 2, 3) and
α(G) = 3.

2.3.2 Elementary graphs

Chvátal and Sbihi called a graph G = (V,E) elementary if E can be two-(edge)-coloured
so that edges xy, yz ∈ E have distinct colours whenever xz /∈ E. Such a colouring is called
elementary. It is clear from this that elementary graphs form a hereditary class. Whether G
has an elementary colouring can be checked by forming the Gallai graph Gal(G) = (E, E),
where {xy, yz} ∈ E if and only if (x, y, z) is a P3. Clearly Gal(G) can be constructed in
time O(mn), by taking all pairs of xy ∈ E and z ∈ V , and checking that yz ∈ E, xz /∈ E.

10



v′1 v′2

v1 v2
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x
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v′1 v′2

v1 v2

augmentation

X

Y

F

Fig. 4: Augmenting a flat edge

Then an elementary colouring exists if and only if Gal(G) is bipartite. If so, the two colour
classes of Gal(G) give an elementary colouring of G. This can be recognised in O(|E|)
time by breadth-first search, so this gives an O(mn) algorithm for recognising elementary
graphs and determining an elementary colouring. Note that Gal(G) may be disconnected.
For example, if G is a triangle, Gal(G) is an independent set of size three. In this case, we
colour each component separately, assigning the two colour classes arbitrarily.

Maffray and Reed [30] characterised elementary graphs in a very precise way. They
showed

Theorem 7 (Maffray and Reed). G is elementary if and only if it is an augmentation of
the line graph of bipartite multigraph.

We must describe the “augmentation” in this theorem. An edge xy in G is called flat
if x, y have no common neighbour. Then we augment the flat edge by replacing x by a
clique X, y by a clique Y , and xy by any non-empty edge set F ⊆ (X, Y ). That is, we
replace xy by a cobipartite graph called an augment. Finally we add all edges between X
and N(x) \ {y} and all edges between Y and N(y) \ {x}, see figure 4. Then a graph G′ is
an augmentation of a graph G if G′ can be obtained from G by applying one or more such
steps to independent flat edges in G. See figure 5, where the first graph is a line graph of
a bipartite multigraph, as we will show below. The second and third show augmentations
using the independent flat edges x1y1 and then x2y2 and two 2 × 2 cobipartite graphs as
replacements.

We observe that an augmentation of a line graph of a bipartite multigraph need not be a
line graph of a bipartite multigraph, as can be seen in figure 5 where the two augmentations
contain a gem which is an excluded structure for the class of line graphs of bipartite
multigraphs by the following characterisation of this class.

Theorem 8 (Maffray and Reed [30]). A graph is the line graph of bipartite multigraph if
and only if it is (claw, gem, 4-wheel, odd hole)-free. (See figure 1.)

11



Maffray and Reed [30] show how to recover the structure of an elementary graph as the
line graph of bipartite multigraph with augmented flat edges, using an elementary colouring
of the graph. This can be done in O(mn) time, so there is an O(mn) time algorithm for
determining the graph structure. (Maffray and Reed claim only the looser bound O(m2).)

y1 y2

x1 y2

y2

x2

Fig. 5: Augmentation of flat edges

2.4 Counting in (claw, odd hole)-free graphs

We conclude from corollary 4, lemma 6 and theorem 5

Lemma 9. Every (claw, odd hole)-free graph G without a clique cutset and with α(G) > 3
is elementary.

This gives us a clique cutset decomposition in which the atoms are in the hereditary
class A of graphs that are either elementary or have α(G) ≤ 3. To apply the method of
section 2.2, we must consider how to approximate W (G) in these graphs.

2.4.1 Computing W (G) in graphs with α(G) ≤ 3

Let G be a (claw, odd hole)-free atom. For any k, we can determine Ik(G) in O(nk) time
by listing all k-tuples of vertices and checking which are independent in G. Thus we can
determine Wk(G) for k = 0, 1, 2, 3, 4 in O(n4) time. If W4(G) > 0, we conclude that G
must be elementary, by lemma 9. Otherwise, we set W (G) =

∑3
k=0 Wk(G).

2.4.2 Approximating W (G) in elementary graphs

If a (claw, odd hole)-free atom G has α(G) > 3, then it is elementary by lemma 9. We use
the O(mn) time algorithm of Maffray and Reed [30] to identify G as the line graph of a
bipartite multigraph with augments. If this algorithm fails, we conclude that the original
graph was not (claw, odd hole)-free, and halt. Otherwise, we have an elementary atom,
and we continue.

An elementary graph G is not necessarily the line graph of bipartite multigraph because
of the augments, as discussed in section 2.3.2. However, we will replace G by an equivalent

12



G′, such that G′ is the line graph of bipartite multigraph. We do this by replacing the
augments in G by “gadgets” which are line graphs of bipartite multigraphs.

2.4.3 Augmentation gadgets

Suppose the augment Z = X ∪ Y in G = (V,E), with vertex weights w(v) (v ∈ V ),
comprises a cobipartite graph with cliques on X, Y and connecting bipartite graph (X ∪
Y, F ). Clearly Wk(Z) 6= 0, only for k = 0, 1, 2.

If U ⊆ V , we will write Wk(U) for Wk(G[U ]). Then W1(X) =
∑

v∈X w(v), W1(Y ) =∑
v∈Y w(v) and W2(Z) =

∑
uv/∈F w(u)w(v). These are respectively the total weights of

independent sets in Z which involveX alone, Y alone, or both. We will also writeW 2(Z) =
W1(X)W1(Y )−W2(Z) =

∑
uv∈F w(u)w(v).

Consider the gadget Z ′ shown in figure 6, where ρ, σ, ρ, σ ≥ 0 are to be determined,
Let X ′ = {x1, x2}, Y

′ = {y1, y2}. Note that both vertices in the clique X ′ have the same
neighbours external to Z ′ as all vertices in X have to vertices external to Z, and similarly
for Y ′ and Y .

If we set ρ = W1(X)− ρ, then W1(X
′) = ρ+ ρ = W1(X), and if we set σ = W1(Y )−σ,

then W1(Y
′) = σ + σ = W1(Y ). Thus the total weight of independent sets using X ′ but

not Y ′ is W1(X), and the total weight of independent sets using Y ′, but not X ′ is W1(Y ),
as required.

v′1 v′2

v1 v2

augment

X

Y

F

v′1 v′2

x1 : ρ x2 : ρ

y1 : σ y2 : σ

v1 v2

gadget

Fig. 6: Augmentation and equivalent gadget with vertex weights

The weight of independent sets using both X ′ and Y ′ is

W2(Z
′) = ρσ + ρσ = ρ(W1(Y )− σ) + σ(W1(X)− ρ) = W2(Z) ,

again as required, provided

ρ =
W2(Z)− σW1(X)

W1(Y )− 2σ
.

13



It is convenient to break symmetry by requiring σ < σ, making the denominator of the
above fraction positive. We must also have ρ, ρ ≥ 0, so 0 ≤ ρ ≤ W1(X). Thus we require

0 ≤ σ ≤ min{W2(Z),W 2(Z)}/W1(X).

Otherwise we can choose σ arbitrarily. Then the gadget Z ′ is equivalent to Z. The
particular choice σ = 0 deletes y1 and its incident edges, and gives an even smaller gadget.
Note that Z ′ is itself an augment, equivalent to Z for computing Wk(G) for any 0 ≤ k ≤
α(G).

The gadget Z ′ is the line graph of a simple bipartite graph, see figure 7. Every augment

v1 v2

x1 x2

y2y1

v′2v′1

Fig. 7: Root graph of the gadget depicted in figure 6

Z that has less vertices than Z ′ is also line graph of a suitable bipartite graph. So using
this gadget to replace all augments on at least four vertices in G will result in it becoming
the line graph G′ of bipartite multigraph, as required. Moreover, the size of G′ does not
exceed the size of G, which becomes relevant in the following analysis.

2.4.4 Reduction to permanent approximation

We now need to determine Wk(G
′), where G′ is the line graph of a bipartite multigraph.

We determine its root multigraph G′′ = L−1(G′) and verify that it is bipartite in O(m)
time, using (for example) the algorithm of Lehot [26]. The vertex weights in the line graph
G′ become edge weights in G′′, and independent sets become matchings. The graph G′′

may have parallel edges, but for our purposes we can reduce this to a simple edge-weighted
bipartite graph G∗ by adding the weights on parallel edges. Now Mk(G

∗) = Wk(G
′) will

be the total weight of all matchings of size k in G∗.
Suppose G∗ = (V1 ∪ V2, E

∗), where n1 = |V1|, n2 = |V2|. We wish to use the permanent
algorithm of [23] to determine Mk(G

∗). However, this algorithm only computes Mn(G
∗) for

the perfect matching case n1 = n2 = n. It is possible the algorithm of [23] can be modified
to the general case, but the general case can be reduced to the permanent, as follows.

To determine Mk(G
∗), let n′

1 = n2−k, n
′
2 = n1−k. We add a set V ′

1 of n
′
1 vertices to G

∗,
and the edges of a complete bipartite graphKn′

1
,n2

= (V ′
1∪V2, V

′
1×V2), and add a set V ′

2 of n
′
2

vertices and the edges of a complete bipartite graphKn1,n′

2
= (V1∪V

′
2 , V1×V

′
2). See figure 8,

where n1 = 5, n2 = 4, k = 2. The weights assigned to the added edges are all 1. Let this
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V1

V2

V ′
1

V ′
2

E
∗

Kn
′

1
,n2

Kn
′

2
,n1

Fig. 8: Equivalent permanent problem

weighted graph be G+ = (V +
1 ∪V

+
2 , E+), where V +

1 = V1∪V
′
1 , V

+
2 = V2∪V

′
2 , and E+ is E∗

plus the edges of the complete bipartite graphs. Let n+ = |V +
1 | = |V

+
2 | = n1+n2−k = n−k.

Now observe that there is a correspondence between matchings of size k in G∗ and
perfect matchings in G+. For each k-matching in G∗, we match the n1 − k unmatched
vertices in V1 with vertices in V ′

2 , and we match the n2 − k unmatched vertices in V2 with
vertices in V ′

1 . Given a perfect matching M+ in G+, we can uniquely recover a k-matching
M∗ in G∗ of the same weight. However, there are n′

1!n
′
2! = (n1 − k)!(n2 − k)! matchings

M+ corresponding to any M∗. Thus Mn+(G+) = (n1 − k)!(n2 − k)!Mk(G
∗).

Thus our algorithm will use the permanent method of [23] to compute Mn+(G+),
and then divide this by (n1 − k)!(n2 − k)! to obtain Mk(G

∗). Thus we can determine
Wk(G

′) for any elementary graph G′ and any 0 ≤ k ≤ α(G′). We then compute W (G′) =∑α(G′)
k=1 Wk(G

′). This has time complexity is O(nTP(n, ε)), where TP(n, ε) is the time to
approximate the total weight of perfect matchings in an n×n bipartite graph with relative
error 1± ε. The clique decomposition in section 2.2 gives another n factor, so the overall
time complexity of approximating W (G) in a (claw, odd hole)-free graph G with n vertices
is TC(n, ε) = O(n2TP(n, εn

−2)), where the accuracy parameter comes from the error analysis
in section 2.2.1. The best bound for TP(n, ε) known is O(n7 log4 n+n6 log5(n)ε−2) [2]. Thus
the overall time complexity for (claw, odd hole)-free graphs is TC(n, ε) = O(n12 log5(n)ε−2).
This analysis is clearly loose and could be tightened. However, without a radical improve-
ment in the bound for TP(n, ε), the overall time complexity cannot be improved to anything
practically relevant.

2.5 Approximating Wk(G)

The freedom to use very large vertex weights allows us to approximate Wk(G) for any
0 ≤ k ≤ α(G). For k < α(G), we would need to use the algorithm described in [12], which
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is an improvement of the approach of that in [22]. This method is based on the fact that
the independence polynomial

PG(λ) =

α(G)∑

i=0

λk Wk(G) (2.1)

has only real negative roots when G is claw-free. This was proved in [8] for unit weights,
and extended to general weights in [12]. However, the algorithm requires the reduction
from approximate counting to approximate random generation [24]. Therefore, we will not
give further details here, but it is a straightforward application of the above algorithm for
W (G).

Since we can compute Wk(G) in line graphs of multigraphs or peculiar graphs, it might
be expected that we could do this directly through the decomposition. In fact, we compute
W (G) for line graphs of multigraphs by computing all the Wk(G). However, there are two
obstacles to approximating Wk(G) efficiently in this way. First, the gadgets may replace a
large number of vertices by at most four vertices, so it is difficult to keep track of k through
the permanent computations. Secondly, the process used in section 2.2, replacing subgraphs
by revised weights on vertices, makes it difficult to track Wk(G) efficiently by combining
contributions from different modified vertices. For polynomially-bounded weights, this is
possible by a dynamic programming approach, but this case is resolved in [12] for all claw-
free graphs. However, for weights exponential in n, there can be an exponential number of
cases, which must be combined efficiently somehow. The same problem arises in our use
of modular decomposition in section 3.1 below.

However, for α = α(G) the total weight Wα(G) of maximum independent sets, which
correspond exactly to perfect matchings in a graph when G is a line graph, there is a
simpler approach, which we will describe. Note that this gives a complete generalisation
of the result of [23].

We have a multiplier λ for every vertex weight, as in (2.1) above, so w(v)← λw(v) for
all v ∈ V . Then W (G) becomes

W (λG) =
∑

I∈I(G)

w(I)λ|I| =

α(G)∑

k=0

Wk(G)λk = PG(λ) ,

Thus, if λ ≥ 1 and α = α(G),

Wα(G)λα ≤ W (λG) < W (G)λα−1 +Wα(G)λα

so

Wα(G) ≤ W (λG)/λα < Wα(G) +W (G)/λ .

So we need λ ≥ W (G)/εWα(G) to achieve relative error ε. Let wmin ≤ w(v) ≤ wmax for
all v ∈ V . Then W (G) ≤ 2nwα

max and Wα(G) ≥ wα
min, since G has at most 2n independent

sets and at least one of size α. Thus it suffices to take λ ≥ 2n(wmax/wmin)
α/ε in order that

W (λG)/λα approximates Wα(G) with relative error ε. Since the time complexity of the
algorithm is polynomial in log λ, it is clearly polynomial in n and the bit size of the w(v)’s,
as required. Here we have suppressed the approximation in computing the W s, though
this may increase the relative approximation in a similar way to 2.2.1 above and 3.6 below.
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3 Approximating W (G) in (fork, odd hole)-free graphs

We will extend the result for claw-free graphs to fork-free graphs using modular decompo-
sition, as described in section 3.1. Our algorithm is inspired by Lozin and Milanič’s [28]
approach to computing the maximum weight independent set problem using modular de-
composition. Again, we will first describe the modular decomposition approach in a general
context.

3.1 Modular decomposition

Modules were first introduced by Gallai [16, 29, Thm. 3.1.2], using different terminology.
If S ⊆ V in G = (V,E), we say that any vertex x ∈ V \ S distinguishes S if there exist
u, v ∈ S with ux ∈ E, vx /∈ E. Then a set M ⊆ V is a module of G if no vertex of
V \M distinguishes it. Alternatively, M is a module if N(u) \M = N(v) \M holds for all
u, v ∈ M . Thus ∅, V and all the singletons {v} (v ∈ V ) are modules of G. These are the
trivial modules; all other modules are nontrivial.

Another way of defining a module M is that every vertex v ∈ V \M must be either
complete or anticomplete to M . It follows that M is a module in G if and only if it is a
module in G, since v is complete to M in G if and only if it is anticomplete to M in G.
It is also easy to show that the modules of G are closed under intersection. However, if
M1,M2 are modules, then M1 ∪M2 is only guaranteed to be a module if M1 ∩M2 6= ∅.
Otherwise some v could be complete toM1 and anticomplete toM2, so neither complete nor
anticomplete to M1 ∪M2. Modules are also not generally closed under complementation,
since if u /∈ M is complete to M and v /∈ M is anticomplete to M , then any vertex of M
distinguishes V \M .

Observation 10. If M is a module of G = (V,E) and U ⊆ V then M ∩ U is a module of
G[U ].

Proof. Otherwise, two vertices u, v ∈ M ∩ U distinguishable by x ∈ U \M belong to M ,
that is u, v ∈M , and are distinguished by x ∈ V \M .

IfM 6= ∅ is a module of G then G/M denotes the graph obtained from G by contracting
M to a single vertex, with the same adjacencies in G/M as all vertices in M . We will label
this vertex as vM in G/M . For |M | ≤ 1 let G/M = G. Note that

Observation 11. If M is a module in G ∈ C, for some hereditary class C, then G/M ∈ C.

Proof. Contracting M deletes all but one of its vertices, and relabels the remaining vertex
vM . Since C is a class of unlabelled graphs, G/M ∈ C by heredity.

If M is a module of G, and M ′ is a module of G[M ], then M ′ is also a module of G.
A module that does not overlap with any other module is strong [25], more formally,

M ⊆ V is a strong module of G = (V,E) if M is a module of G and for all modules M ′

of G we have M ⊆ M ′ or M ⊇ M ′ or M ∩M ′ = ∅. Every trivial module of G is strong.
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G is a prime graph if every strong module of G is trivial. Like connectedness, primeness
is an intrinsic property of the graph, but not a hereditary property. For example, none of
the graphs in figure 1 is prime.

The strong modules of G = (V,E) are partially ordered by set inclusion. The unique
top element of this poset is V , and ∅ is the unique bottom element. The layer above ∅

consists of the singletons {v} for all v ∈ V . The strong modules in the next layer up are
called prime modules of G. A prime module M of G induces a prime subgraph G[M ].

Let M1 and M2 be strong modules such that M1 ⊂M2. We say M2 covers M1 if, for all
strong modules M , M1 ⊆M and M ⊆M2 imply M1 = M or M = M2. If |V | > 1 then the
strong modules of G = (V,E) except those of size at most one are the nodes of a tree rooted
at V , where the arcs of the tree are given by the cover relation. Note that the singleton
modules are often included as leaves in this tree, but we will not do so here. See figure 9,
where M7 = V . We will call this the standard decomposition tree. Equivalent definitions
exist, see [18]. Several algorithms are known to compute the standard decomposition tree
in linear time, see for example [35].

We will use this tree in an equivalent form. Thereto we number the modulesM1,M2, . . . ,
Mh = V , according to a postorder on the standard tree. This order places all the descen-
dants of a vertex before the vertex itself, as in figure 9. (See, for example, [38, Ch. 3].)
We will call this the extended decomposition tree. Here G0 = G, and Gi = Gi−1/M̃i

(i ∈ [h]), where M̃i is Mi after M1, . . . ,Mi−1 have been contracted in order to single
vertices. We will denote this by Gi−1 = G/(M1,M2, . . . ,Mi−1), and similarly and hence
M̃i = Mi/(M1,M2, . . . ,Mi−1) is a module in Gi−1. We can represent the extended de-
composition tree as shown in figure 9, where Gi−1 (i ∈ [h]) are the internal vertices, and
M̃1, M̃2, . . . , M̃h and Gh are the leaves.

Note that M̃i is a prime module in Gi−1, and in particular Gi−1[M̃i] is a prime graph.
Also Gh is a single vertex, since Mh = V has been contracted to a single vertex. Note
also that M̃i is isomorphic to the graph obtained by contracting only its children in the
standard tree, but its vertex weights require contracting the whole subtree of which it is
the root.

Let ti = |M̃i|, so 2 ≤ ti < n. Then |V (G0)| = n, and |V (Gi)| = |V (Gi−1)| − ti + 1,
so 1 = |V (Gh)| = n −

∑h
i=1 ti + h ≤ n − 2h + h = n − h. Thus h ≤ n − 1, so the

decomposition tree contains at most (n − 1) modules. Also n −
∑h

i=1 ti + h = 1 implies∑h
i=1 ti = n − h − 1 ≤ n − 2. Thus the extended decomposition tree can be represented

explicitly in O(n) space.
We can compute the extended tree from the standard tree in a further O(n) time, using

postorder tree traversal [38]. We can contract modules and form the modules M̃i, during the
traversal. Since

∑
i=1 |M̃i| < n, the additional time complexity for contracting modules

is also O(n), so the total remains O(m). Of course, this excludes the time to compute
the vertex weight of vMi

in Gi, as will be detailed in section 3.2 below. However, these
computations can also be integrated into the tree traversal. Performing the algorithm this
way, the extended tree is purely a useful notional device, and never computed explicitly.

Of course, we could compute the extended tree explicitly by successively finding a
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Fig. 9: A standard modular decomposition tree and its extended tree

prime module and contracting it, until the contracted graph is prime. While this may be
conceptually simpler, it is computationally inefficient. Finding any prime module appears
to be an Ω(m) computation, so the time complexity of producing the whole extended tree
becomes Ω(mn). The inefficiency clearly results from discarding information gained in
earlier searches when carrying out the later searches.

We will make use of the following.

Observation 12. Each of the modules M̃i (i ∈ [h]) in the extended tree is isomorphic to
a prime subgraph of G.

Proof. Since M̃i is Mi with all its submodules contracted, from observation 11 follws that
M̃i is isomorphic to some subgraph M̃ ′

i of G. Note that M̃ ′
i is not unique. As observed

above, each of the M̃i is prime, so M̃ ′
i is also prime. Since they are vertex-weighted graphs,

the isomorphism between M̃i and M̃ ′
i is in the sense defined in section 1.1.

3.2 Approximating W (G) using modular decomposition

Let C be a hereditary class, and P ⊆ C, the (non-hereditary) class of prime graphs in C.
Let TC(n) be the time to compute W (G) for any connected n-vertex graph G ∈ C, and let
TP(n) bound the time to compute W (G) for any n-vertex prime graph G ∈ C. We may
assume that TP(n) is a monotonically increasing function that is linear or convex. We will
show TC(n) ≤ TP(n) + O(m). This strengthens the result of [28, Thm. 1], with an easier
proof.

We use the notation of section 3.1. We construct the extended decomposition tree as
described in section 3.1, and begin with G0 = G. At step i, we contract the module M̃i

in Gi−1 to give Gi, giving vM̃i
, the vertex that represents M̃i in Gi, weight W (M̃i). Then

W (Gi) = W (Gi−1), since the set M̃i has the same neighbourhood in Gi−1 as the vertex
M̃i in Gi. Thus, by induction, W (G) = W (G0) = W (Gh) = w(v) for the unique vertex
v ∈ V (Gh).

If h = 1, TC(n) = TP(n). Otherwise, 2 ≤ h ≤ n − 1 so, omitting the time to compute
the modular decomposition, we have

TC(n) ≤ max
{∑h

i=1 TP(ti) :
∑h

i=1 ti = n+ h, 2 ≤ ti ≤ n, i ∈ [h]
}
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≤TP(n− h+ 2) + (h− 1)TP(2),

≤TP(n) + (n− 2)TP(2) = TP(n) +O(n),

where the second line follows from the first since TP is convex, so
∑h

i=1 TP(ti) is maximised
by setting t1 = n − h + 2, ti = 2, i = 2, . . . , h. The third line follows from the second
because TP is increasing, so TP(n − h + 2) ≤ TP(n) for h ≥ 2. Adding the O(m) time to
compute the modular decomposition [35], we have TC(n) ≤ TP(n) + O(m). Thus we can
approximate W (G) in any graph in C, with only an O(m) overhead, if we can approximate
it in all the prime graphs in C.

Note that this analysis deals only with applications of the algorithm for P , as does that
in [28, Thm. 1]. It ignores the effect of the bit-size of the vertex weights on TP(n). This
distinction is not so important for optimisation, but is much more important for counting,
since contracting modules can cause exponential growth in the weights. However, we will
not pursue this issue further.

3.3 Structure of fork-free graphs

Lozin and Milanič [28] used a modular decomposition approach to determine the maximum
weight independent set in a fork-free graph. However, there seems to be a flaw in their
algorithm and its analysis. Consequently, we will re-work most of their development, in
addition to extending it from optimisation to counting.

The approach of [28] is based on a structural result given in [28, Thm. 3]. We begin
with a more useful version of this theorem, the original being too weak for its application.
We first repeat two structural lemmas from [28]. We will also make use of the following
simple observation, which was used as the basis of the algorithm in [35].

Observation 13. If v is any vertex of G, and M is a module not containing v, then either
M ⊆ N(v) or M ⊆ V \ N[v].

Proof. Otherwise, v distinguishes M , contradicting it being a module.

Lemma 14 (see [28], Thm. 3 and also [3]). If a prime fork-free graph contains a claw, then
it contains one of the graphs H1, . . . , H5 (see figure 10).

H1 H2 H3 H4 H5

Fig. 10: The five minimal fork-free prime graphs extending a claw.
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Lemma 15 ([28], Lemma 1). Let G be a fork-free graph and let v be any vertex of G.
Assume that H ∈ {H1, . . . , H5} is an induced subgraph of G \ N[v]. Then no neighbour of
v distinguishes V (H).

Note that we could omit H2 for our application, because it contains a 5-hole, but we
give the result for general claw-free graphs, as used in [28], since what follows could be
used for computing a maximum weight independent set in a claw-free graph.

The statement and proof of the following theorem modifies the weaker result of [28,
Thm. 3]. An earlier conference version [27, Thm. 4.1] also provides this.

Theorem 16. Let G be a fork-free graph and v a vertex of G. If G is prime and M is a
prime subgraph of G \ N[v], then M is claw-free.

Proof. Assume by contradiction that M contains a claw. Then by lemma 14, M contains
H, one of the graphs H1, . . . , H5. Hence, by lemma 15, N(v) can be partitioned into sets
Y and Z, such that Y is anticomplete to H and Z is complete to H.

Let W be an (inclusionwise) maximal subset of vertices of G \ N[v] satisfying the
following properties:
(i) V (H) ⊆ W ,

(ii) G[W ] is connected,

(iii) G[W ] is connected,

(iv) Z is complete to W ,

(v) Y is anticomplete to W .
Note that such a set W exists since V (H) satisfies all these properties. Clearly, 5 <

|V (H)| ≤ |W | < |V (G)|. Since G is prime, W cannot be a nontrivial module of G,
and hence some u ∈ V (G) \ W distinguishes W . Note that u 6= v. We will obtain a
contradiction (to the existence of W ) by showing that the set W ′ = W ∪ {u} also satisfies
properties (i)–(v).

Since W satisfies (iv) and (v), u ∈ V \ N(v) and hence W ′ ⊆ V \ N(v). Clearly
W ′ satisfies (i). Since W satisfies (ii) and (iii), and since u has both a neighbour and a
non-neighbour in W , it follows that W ′ satisfies (ii) and (iii).

Suppose that u has a non-neighbour z ∈ Z. Since u distinguishes W and G[W ] is con-
nected, u distinguishes a pair of nonadjacent vertices w1, w2 ∈ W . But then {u, w1, z, w2, v}
induces a fork, a contradiction. Therefore, Z is complete to W ′ and hence W ′ satisfies (iv).

Finally, suppose that u has a neighbour y ∈ Y . Since G[W ] is connected, and u
distinguishes W , there is a shortest path P = (v0, . . . , vk) connecting V (H) and u in G[W ′]
with v0 ∈ V (H) and vk = u. Let vk+1 = y and vk+2 = v. Note that v is anticomplete to
V (P ), and y is anticomplete to V (P ) \ {vk}, and hence (v0, . . . , vk+2) is a chordless path.
Since v2 has no neighbour in H, by lemma 15, v1 is complete to V (H). But then any
two nonadjacent vertices of H, together with v1, v2, v3 induce a fork in G, a contradiction.
Therefore, Y is complete to W ′ and hence W ′ satisfies (v).
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Note that theorem 16 cannot obviously be strengthened. If G is a fork-free prime graph
and v a vertex of G, then G \ N[v] is not necessarily claw-free nor prime. Consider, for
example, a n×n complete bipartite graph with a perfect matching removed. This is easily
shown to be fork-free and prime. The case n = 4 is shown in figure 11. The graph G \N[v]
for the vertex labelled v is also shown. This graph is clearly neither claw-free nor prime.
Consequently, Theorem 3 of [28] is inapplicable, even in this simple case.

v

Fig. 11: Graph G and a derived G \ N[v]

3.4 Approximating W (G \ N[v]) for prime G and v ∈ V

To apply theorem 16, we need the following strengthening.

Corollary 17. Let G be prime and v be a vertex of G. The modules M̃i (i ∈ [h]) in the
extended decomposition tree for G \ N[v] are claw-free.

Proof. This follows directly from observation 12 and theorem 16.

To determine W (G) for a prime graph, we first show how to determine W (G\N[v]) for
any v ∈ V . Let Gv denote G \ N[v]. As we have seen, Gv is not prime in general, so we
must approximate W (Gv) using the modular decomposition approach of section 3.1.

The algorithm is then as follows. We construct the extended decomposition tree for
Gv, with modules M̃i (i ∈ [h]). For each i = 1, 2, . . . , h, we determine W (Gi−1[M̃i]), using
this as the weight for vM̃i

in Gi. From corollary 17, Gi−1[M̃i] is claw-free, so we may use
the algorithm of section 2 in this computation. Finally W (Gv) = w(u), where u is the
unique vertex in Gh.

More generally, suppose G ∈ C for some hereditary class C and, given v ∈ V , all prime
subgraphs of Gv are in some smaller hereditary class A. Then we can use this method to
approximate W (Gv) for graphs in C, using modular decomposition and an algorithm for
approximating W for graphs in A. In our application C = (fork, odd hole)-free and A =
(claw, odd hole)-free.
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3.5 Approximating W (G) for prime G

The algorithm described in section 3.4 approximates W (G \N[v]) for prime G and v ∈ V .
Let S(v) = {I ∈ I(G) : v ∈ I}. Then w(v)W (G \ N[v]) =

∑
I∈S(v) w(I), the total weight

of all independent sets containing v. The classes C, A are as in section 3.4.
We can write V = {v1, v2, . . . , vn} and determine w(vi)W (G\N[vi]) for i ∈ [n], similarly

to [28], but the sum of these greatly overestimates W (G), since {S(vi) : i ∈ [n]} is a cover
of I(G), not a partition.

Let Vi = {vi, . . . , vn} and S ′(vi) = {I ∈ I(G) : vi ∈ I and I ⊆ Vi}. The sets {S ′(vi) :
i ∈ [n]} form a partition of I(G) \ {∅}, and so

W (G) = 1 +
n∑

i=1

∑

I∈S′(vi))

w(I) = 1 +
n∑

i=1

w(vi)W (G[Vi \ N[vi]]) . (3.1)

So we must approximate W (G[Vi \ N[vi]]) for i ∈ [n]. We do this by constructing the ex-
tended decomposition tree for G\N[vi] with leaf modules M̃1, M̃2, . . . , M̃h, as in section 3.4.
From corollary 17 we know that the modules M̃1, M̃2, . . . , M̃h in this decomposition are in
A. We transform this extended decomposition tree of G \ N[vi] into an extended decom-
position tree for G[Vi \N[vi]]. For a fixed i ∈ [n] we take G′

0 = G[Vi \N[vi]] and for j ∈ [h]
we set G′

j = Gj \ {v1, v2, . . . , vi−1} and M̃ ′
j = M̃j \ {v1, v2, . . . , vi−1}. For each j ∈ [h] the

set M̃ ′
j is a module in G′

j−1 by observation 10.
To compute W (G[Vi \ N[vi]]), we note that restricting to Vi \ N[vi] is equivalent to

putting w(v) = 0 for all v /∈ Vi \ N[vi]. Thus we can use the algorithm of section 3.4,
with exactly the same justification, after setting w(v) = 0 for v /∈ Vi \ N[vi]. Of course,
in carrying out the algorithm we actually delete the vertices in V \ (Vi \ N[vi]). Thus the
algorithm approximates W (G[Vi \ N[vi]]) for i ∈ [n], using the algorithm of section 2, and
then combines the estimates using (3.1).

3.6 Approximating W (G) for all graphs in G ∈ C

Since we can now approximate W (G) for any prime G, we can use the algorithm of sec-
tion 3.2 to lift this to arbitrary G. This completes the description of our algorithm.

The algorithm will fail if the (claw, odd hole)-free algorithm fails on any of the modules
M̃ ′

j for any prime G and any G[Vi \N[vi]] (i ∈ [h]). In that case we conclude that G is not
(fork, odd hole)-free and terminate.

The basis of the algorithm is modular decomposition. From section 3.2 this gives
only a negligible overhead to the algorithm for prime graphs in C. From section 3.4,
the algorithm for G \ N[v] is modular decomposition, so this adds a negligible overhead.
However, the algorithm for prime G in section 3.5 requires n applications of the algorithm
for G \ N[v]. Thus if TA(n, ε) is the time complexity of the subroutine for A, the overall
time complexity is O(nTA(n, εn

−2)). (The error analysis is similar to the one seen earlier
in the reduction to permanent approximation, and is given below.) For A = (claw, odd
hole)-free graphs, TA(n, ε) = O(n12 log5(n)ε−2), so for C = (fork, odd hole)-free graphs,
TC(n, ε) = O(n17 log5(n)ε−2).
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3.6.1 Error Analysis

We can only approximate the total weight for graphs in A, in our application the class of
(claw, odd hole)-free graphs. So we must show that the resulting error in W (G) can be
controlled for all G ∈ C, in our application the class of (fork, odd hole)-free graphs.

Suppose we approximate to a factor (1±ε/2n2) for G ∈ A. In step i of the algorithm of
section 3.2, we approximate W (M̃i), and contract M̃i with this weight. Thus one weight in
Gi+1 has error (1± ε/2n2). We do this at most n times, so the error in W (G) becomes at
most (1± ε/2n). We do this n times in the method of section 3.5, and add the estimates.
However, this does not increase the relative error. Finally, we apply the algorithm of
section 3.2 again, so the error is at most (1± ε/2n)n, which is at most (1± ε) for ε < 1.

3.7 Approximating Wα(G)

We cannot use the method of section 2.5 to approximateWk(G) for arbitrary 0 ≤ k ≤ α(G),
because there is no known analogue for fork-free graphs of the real-rootedness result of [9]
for claw-free graphs.

Note also that we cannot use the decomposition directly to do this, for the reason
discussed in section 2.5. We could use the method of [12] to approximate Wk(G) in the leaf
modules of the decomposition tree, but then we may have the same exponential complexity
for combining these estimates as we process the tree. This approach seems possible for
polynomial-sized weights using the dynamic programming, as suggested in section 2.5.
This would give an extension to the results in [12], but that is outside the scope of this
paper.

However, the method given in section 2.5 for estimating Wα(G) is valid for any graph
class, not necessarily hereditary, where we can use arbitrary vertex weights. Therefore, the
result of [23] for approximating the permanent can be completely generalised to approxi-
mating the total weight of maximum independent sets in (fork, odd hole)-free graphs.
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[20] J. Håstad, Clique is hard to approximate within n1−ε, Acta Mathematica, 182 (1999),
pp. 105–142, https://doi.org/10.1007/bf02392825.

[21] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Lec-
tures in Mathematics – ETH Zürich, Birkhäuser, Basel, 2003.
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