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Capacity Analysis of IRS-Based UAV Communications with
Imperfect Phase Compensation

M. Al-Jarrah, Member, IEEE, E. Alsusa, Senior Member, IEEE, A. Al-Dweik, Senior Member IEEE, and Daniel
K. C. So, Senior Member, IEEE

Abstract—This paper presents the capacity analysis of un-
manned aerial vehicles (UAVs) communications supported by
flying intelligent reflecting surfaces (IRSs). In the considered
system, some of the UAVs are equipped with an IRS panel that
applies certain phase-shifts to the incident waves before being
reflected to the receiving UAV. In contrast to existing work,
this letter considers the effect of imperfect phase knowledge
on the system capacity, where the phase error is modeled as
a von Mises random variable with parameter κ. Analytical
results, corroborated by Monte Carlo simulations, show that the
achievable capacity is dependent on the phase error, however,
the capacity loss becomes negligible at high signal-to-noise ratio
(SNR) and when κ ≥ 6.

Index Terms—Wireless backhauling, IRS, capacity, imperfect
phase compensation, UAV, flying network.

I. INTRODUCTION

Because of their autonomy, flexibility, three dimensional mo-
bility, and cost efficiency, unmanned aerial vehicles (UAVs) are
receiving an increasing attention from industrial and academic
researchers. UAVs have been considered for several applications
such as surveillance, tracking, search and rescue missions, and
remote sensing [1], [2]. They can also support existing cellu-
lar networks that experience temporary congestion or damage
caused by environmental disasters such as earthquakes and
storms. Recently, flying base-stations (BSs), or UAV based BS
(UAV-BS), have been introduced to provide integrated access
and backhaul (IAB) with wide coverage area, high capacity
and ultimate connectivity. Moreover, the deployment of flying
networks of various types of UAVs, including low altitude
drones (LAD) and high altitude airships (HAA), is expected
to provide reliable and high transmission rate communications
as reported in [3]–[5]. Some challenges for the deployment of
LADs and HAAs are discussed in [3], where practical solutions
are provided to ensure reliable connectivity.

Recently, intelligent reflecting surfaces (IRSs) have been pro-
posed to control the wireless medium between transceivers. In
IRS aided communications, a panel of programmable reflectors,
which are able to apply phase shift to the incident waves and
reflect them to the receiver, are used to enhance the signal quality
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Fig. 1. IRS assisted flying networks.

at the receiver. The values of the phase-shifts for all reflectors
are computed such that the reflected signals add coherently in
the medium, and consequently the signal-to-noise ratio (SNR)
can be significantly increased. The phase values are typically
computed by the BS and sent to the programmable IRS through
a control channel [6]–[8].

The achievable capacity and coverage probability with a
limited number of reflectors are discussed in [9] under ideal and
arbitrary phase compensation. The results in [9] showed that the
capacity achieved with arbitrary phase shifts is very poor relative
to the ideal case. However, ideal phase compensation is practi-
cally infeasible due to the phase estimation and quantization er-
rors. Consequently, investigating the scenario of non-ideal phase
compensation is necessary to explore the performance limits of
IRS based communication systems [10]–[12]. In [10], the capac-
ity limit of multiple-input multiple-output (MIMO) IRS systems
is characterized by optimizing the reflection coefficients matrix
of the IRS system aiming at maximizing the system capacity. In
[11], the impact of a finite number of possible phase shifts on
the achievable ergodic capacity (EC) is investigated, where the
capacity bounds as a function of channel statistics are derived
based on Jensen’s inequality, and the phase quantization error is
modeled as the derivative of the actual phase value. In [13], the
bit error rate (BER) is derived where a statistical model is em-
ployed to characterize the phase compensation error caused by
imperfect channel estimation and phase quantization. In addition
to being considered separately, the synergy of IRSs and UAVs
is considered as a promising solution for supporting reliable
wireless communications in future generations such as the sixth
generation (6G) and beyond [5], [14]. Fig. 1 depicts an example
where IRS panels are attached to HAAs with hovering ability to
support data exchange between small drones and a main BS.
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However, the wobbling of UAVs makes the assumption that
the phase is perfectly compensated unrealistic. Consequently,
evaluating the link capacity where IRS-UAV is incorporated
with imperfect phase compensation is indispensable. Although
similar system model is introduced in [5], the probability density
function (PDF) of the received SNR, outage probability and
BER have been analyzed, whereas the achievable EC has not
been evaluated. Accordingly, the main contribution of this letter
is the derivation of the achievable EC of flying IRS (FIRS)
assisted UAV communications while considering the impact of
imperfect phase compensation. Unlike [11], which considers the
phase error as the derivative of the correct phase, we model the
phase error using the von Mises PDF. The obtained results show
that the phase compensation error has a significant impact on
the achievable capacity at low values of κ and SNR, however,
the performance degradation becomes negligible at high values
of SNR and κ.

The rest of the letter is organized as follows. Sec. II presents
the system model of a flying network supported by an IRS.
The derivation of the achievable capacity is parovided in Sec.
III, while Sec. IV shows the numerical results. Conclusion and
future work are provided in Section V.

II. SYSTEM MODEL

As shown in Fig. 1, this work considers an IRS attached to HAA
that is deployed to provide efficient wireless backhauling to
terrestrial users. In addition, a flying BS represented as a drone is
deployed to provide alternative line-of-sight (LoS) paths to users
which may suffer from blockage. The IRS panel consists of L
elements each of which applies a phase shift θ̂i, attenuates the
signal by a coefficient gi, and then reflects the signal to the des-
tination drone. The phase compensation is assumed imperfect
due to IRS phase noise and non-ideal phase estimation process,
which becomes more challenging due to UAV wobbling. Given
that the transmitted symbol is s = |s| ejϕ, and the cascaded
channel envelope is |hi| with total phase shift θi, the received
signal at the drone can be written as

r̃ (t) = |s|
L∑
i=1

Ai cos (ωct+ ϕ+ εi) + z (t) (1)

where ωc is the carrier angular frequency, Ai = gi |hi|, εi =
θ̂i − θi is the phase compensation error, and z (t) is the additive
white Gaussian noise (AWGN). Using the sinusoidal addition
theorem (SAT) [15], r̃ (t) can be written as

r̃ (t) = |s|BL cos(ωct+ ϕ+ ζL) + z (t) , t ≥ 0 (2)

where and ζL are the equivalent channel envelope and phase,
respectively,

B2
L = ‖A‖2 + 2

∑
L≥j>k≥1

AjAk cos (εj − εk) , (3)

ζL = tan−1

(
L∑
i=1

Ai sin (εi)

/ L∑
i=1

Ai cos (εi)

)
(4)

and ‖·‖ is the Euclidian norm. The elements of A =
[A1, . . . , AL] depend on the channel model. For air-to-air chan-

nels, the signal typically has a strong LoS component and a
small number of weak scattered components; thus, the small
scale fading of such channels follows the Rician distribution.
However, according to experimental measurements, the Rician
factor K for ground-to-air and air-to-air channels is more than
15 dB, and the received signal power may remain constant for
long time periods [2], [4], [5], [16], [17]. Therefore, it can be
assumed that the channel coefficients Ai’s do not experience
small scale fading, and that free space pathloss dominates the
received signal power. Nevertheless, the obtained results in Sec.
IV show that the constant fading coefficients model can be
used to closely approximate the Rician fading channel with
considerable values of K. It is worthy to note that the analysis
provided here are valid for both BS-FIRS-UAV and BS-FIRS-
BS links with sufficiently high BSs, where these links are shown
in Fig. 1 in elliptical shape. The von Mises, or circular normal,
distribution is typically used to model the random phase error εi
[13], where the PDF is given by

fεi(εi) = 1/(2πI0(κi)) eκi cos(εi−µi) (5)

where µi and κi are the mean and shape parameter of εi. For
unbiased estimators, the mean of εi is typically µi = 0 ∀i.

In slow fading channels, the accumulated phase offset ζL can
be perfectly estimated by the receiving drone, and consequently
the baseband representation of the received signal can be ex-
pressed as

r = BLs+ z (6)

where z ∼ CN
(
0, σ2

z

)
is the AWGN.

III. THE ACHIEVABLE CAPACITY

The provided derivations consider a single user scenario. How-
ever, if the total number of reflectors is distributed among
users with fixed assignment and orthogonal resource blocks are
assigned to users [18], the analysis can be applied for multi-user
system by adding the individual user’s rates.

A. Single Reflector (L = 1)

In this case, the received signal envelope is deterministic, and
thus the instantaneous SNR is γ1 =

A2
1

σ2
z

. Consequently, the
capacity normalized to the bandwidth W is

R1 , C1/W = log2 (1 + γ1) (7)

where C1 indicates the capacity for the case L = 1.

B. Two Reflectors (L = 2)

Given the instantaneous normalized rate for the L = 2 case
R (b2) = log2

(
1 +

b22
σ2
z

)
, where b2 is the channel envelope

when L = 2, and the PDF of the signal envelope fB2
(b2) in

[5, eq. (22)], the average rate can be expressed as

R̄2 =

∫ ∞
0

R (b2) fB2
(b2)db2

=
2

πκ̃

∫ A2

|A1|

b2R (b2) I0
(√

(κ1−κ2)
2
+ κ1κ2

A1A2
(b22−A2

1)
)

√
− (b22 −A2

2)
√

(b22 −A2
1)

db2

(8)
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where |A1| ≤ b2 ≤ A2, κ̃ = I0(κ1)I0(κ2), A1 = A1 − A2

and A2 = A1 + A2. By using the infinite series definition for
the modified Bessel function, R̄2 can be written as

R̄2 =
2

πκ̃

∫ A2

|A1|

b2R (b2)√
− (b22 −A2

2)
√

(b22 −A2
1)

×
∞∑
m=0

1

22m(m!)
2

(
(κ1−κ2)

2
+
κ1κ2

A1A2

(
b22 −A2

1

))m
db2. (9)

To simplify the analysis, the binomial theorem is applied to find
the algebraic expansion for the last term of the integrand in (9),
and thus R̄2 can be expressed as

R̄2 =
2

πκ̃

∞∑
m=0

1

22m (m!)
2

m∑
n=0

Tm,n

×
∫ A2

|A1|
b2R (b2)

(
b22 −A2

1

)n−0.5√
− (b22 −A2

2)
db2 (10)

where Tm,n =
(
m
n

)
(κ1 − κ2)

2(m−n)
(
κ1κ2

A1A2

)n
.

Using the integration by substitution rule with y = b22 − A2
1,

and the logarithmic identity logk x = ln x
ln k yields

R̄2 =
1

πκ̃ ln 2

∞∑
m=0

1

22m (m!)
2

m∑
n=0

Tm,n

×
∫ A2

3

0

yn−0.5√
−y +A2

3

ln

(
y

σ2
z

+
σ2
z +A2

1

σ2
z

)
dy (11)

where A3 =
√

4A1A2.
The integral in (11) can be solved using [19, 2.6.10.31, pp.

502], and consequently R̄2 can be found as

R̄2 =
1

πκ̃ ln 2

∞∑
m=0

1

22m (m!)
2

m∑
n=0

Tm,n{
A2n

3 ln (ν) B (n+ 0.5, 0.5) +
A2(n+1)

3

σ2
zν

B (n+ 1.5, 0.5)

× 3F2

(
[n+ 1.5, 1, 1] , [2, n+ 2] ,− A

2
3

νσ2
z

)}
(12)

where ν =
σ2
z+A2

1

σ2
z

and B (a, b) , Γ(a)Γ(b)
Γ(a+b) is the beta function.

C. Three Reflectors (L = 3)

As reported in [5], the PDF fB3(b3) does not have a closed-
form expression. Therefore, the capacity will be evaluated using
the same approach of L = 2, but the integrals will be solved
numerically.

D. Central Limit Theorem (CLT) for L ≥ 4

Since the derivation of closed-form expressions for the PDF
when L ≥ 4 is not feasible, the CLT is invoked. With the aid
of SAT, B2

L in (3) can be rewritten as B2
L = B2

L,I +B2
L,Q,

where BL,I =
∑L
i=1Ai cos εi and BL,Q =

∑L
i=1Ai sin εi.

Since Ai and εi are independent ∀i, CLT can be applied for
large values of L to evaluate the distributions ofBL,I andBL,Q.
Accordingly, the distribution functions ofBL,I andBL,Q can be
found as N

(
µI , σ

2
I
)

and N
(
µQ, σ

2
Q
)
, respectively. By noting

that E [cos (nθi)]=
In(κi)
I0(κi)

and E [sin (nθi)]=0 [5, Appendix I],
µQ ,E [BQ] = 0 can be obtained whereas µI can be found
as µI = E [BI ] =

∑L
i=1Ai

I1(κi)
I0(κi)

. The second moment for

BI can be evaluated as E
[
B2
I
]

= E
[∑L

i=1Ai cosφi
]2

. Using
the expansion for squared summation and, then evaluating the
expected value yields

E
[
B2
I
]
=

L∑
i=1

A2
i

2

(
1+

I2 (κi)

I0(κi)

)
+2

L∑
i<j

AiAj
I1 (κi) I1 (κj)

I0(κi)I0(κj)
. (13)

Similarly, E
[
B2
Q
]

can be derived as

E
[
B2
Q
]
,E

[
L∑
i=1

Ai sinφi

]2

=
L∑
i=1

A2
i

2

(
1− I2 (κi)

I0(κi)

)
. (14)

Consequently, σ2
I and σ2

Q can be found using the well known
formula σ2

I|Q , E
[
B2
I|Q

]
− E2

[
BI|Q

]
.

Using the definition of the correlation coefficient, and
then employing the product of two summations rule to find
E [BL,IBL,Q], the correlation between BL,I and BL,Q is

ρI,Q =
1

σIσQ

L∑
i=1

L∑
j=1

AiAjE [cos εi sin εj ]. (15)

For i 6= j, E [cos εi sin εj ] = E [sin εj ] E [cos εi] = 0.
On the other hand, when i = j, the trigonometric identity
cos εi sin εi = 0.5 sin (2εi) can be applied, which implies that
E [cos εi sin εj ] = 0 as well . SinceBL,I andBL,Q are Gaussian
distributed according to CLT and they are uncorrelated, BL,I
and BL,Q are independent random variables. For a special case
when the phase error is uniformly distributed, κ = 0, µI =
µQ = 0 and E

[
B2
I
]

= E
[
B2
Q
]

=
∑L
i=1A

2
i /2. Therefore,

the propagation environment follows Rayleigh channel model
when κ = 0. For the general case when κ > 0, BL is the
envelope of a complex Gaussian with different values for the
variance of the in-phase and quadrature components with one of
the components has non-zero mean. The PDF of such random
variable is given in [20, eq. (8)]. However, the form provided in
[20] contains infinite sum of modified bessel functions product
with different orders, which makes the distribution untraceable.
An accurate approximation for the PDF of |BL|2 has been de-
rived in [13], where the PDF is approximated as Gamma random
variable with shape parameter α = µ2

I
/4σ2
I and inverse scale

factor β = 1/4σ2
I . By denoting y = B2

L and using the gamma
distribution function, the achievable EC can be expressed as

R̄CLT =

∫ ∞
0

R (bL) fBL
(bL)dbL

=
βα

Γ (α) ln 2

∫ ∞
0

yα−1e−βy ln

(
1 +

y

σ2
z

)
dy. (16)

By using [19, eq. (2.6.23.4), pp. 530], R̄CLT can be found in
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Fig. 2. The achievable R̄ for L = {2, 40} for different values of κ, where
Ai = 1∀i.

closed-form as

R̄CLT =
βα

Γ (α) ln 2

(
πσ2α

z 1F1

(
α;α+ 1;βσ2

z

)
α sin (απ)

−Γ (α)β−α

×
{
ln
(
βσ2

z

)
−Ψ (α) +

βσ2
z

1−α 2F2

(
[1,1], [2,2− α],βσ2

z

)})
(17)

where Ψ (·) is the digamma function which is defined as
Ψ (α) = Γ (α)/Γ′ (α).

For high SNR, y
σ2
z
� 1 and thus R̄CLT can be reduced to

R̄CLT,H =
βα

Γ (α) ln 2

∫ ∞
0

yα−1e−βy ln

(
y

σ2
z

)
dy. (18)

By using the logarithmic identity ln x
y = lnx − ln y and

evaluating the resulting integral using [19, eq. (2.6.21.2), pp.
527] and [19, eq. (2.3.3.1), pp. 322], R̄CLT can be found as

R̄CLT,H = (Ψ (α)− lnβ − lnσ2
z)/ln 2. (19)

By comparing the derived R̄CLT in (19) with the formula in
(17), it can be realized that (19) is more tractable and has less
computational complexity.

IV. NUMERICAL RESULTS
This section presents the achievable capacity for the considered
system model. The analytical results obtained from the derived
formulae are compared to Monte Carlo simulation results with
107 realizations. To evaluate the impact of phase error compen-
sation, the results are also compared to the cases of ideal and
arbitrary phase compensation, which are respectively referred
as κ → ∞ and κ = 0. The average transmission power is
normalized to unity, and the SNR in dB is defined as SNR=
−10 log10

(
σ2
z

)
. Unbiased phase estimators with equal variance

are considered, i.e., µ = 0 and κi = κ ∀i. For the infinite
summation in (13), the first 30 terms have been considered.

Fig. 2a shows the achievable normalized EC R̄ in bps/Hz for

-20 0 20 40-20 0 20 40
10

-3

10
-2

10
-1

10
0

10
1

10
2

Fig. 3. The achievable R̄ for different numbers of reflectors L, Ai = 1∀i.

different values of κ when the number of reflectors is L=2 and
A1 =A2 =1. As can be observed from the figure, the derived
equation for R̄2 matches the simulation results. As expected, the
phase compensation errors negatively affect the achievable rate,
and as κ increases, i.e., channel estimation and compensation
improves, the achievable rate improves. For example, when the
SNR is 0 dB, the capacity achieved with κ→∞, ideal phase
shift, is about 1.7 times the capacity when κ = 0, i.e., arbitrary
phase compensation. However, the capacity loss decreases as
κ increases. For example, the capacity loss is less than 0.5 dB
when κ = 6 as compared to the ideal case. Moreover, the figure
shows that the effect of κ becomes negligible when κ≥6, which
implies that near-ideal performance for L = 2 can be achieved
by designing a phase estimation and compensation processes
satisfying the condition κ≥6.

Fig. 2b shows the achievable R̄ for different values of κ when
the number of reflectors L = 40, where Ai = 1 ∀i. The
obtained results show a perfect match for the derived CLT based
equation for a wide range of κ values, except for the case of
κ = 0. Similar to Fig. 2a, the impact of κ decreases as its value
increases and becomes negligible when κ ≥ 6. However, by
comparing Fig. 2b with Fig. 2a, it can be realized that when
L = 40, the arbitrary phase compensation causes significant
capacity loss as compared to the ideal case. For example the
difference between the arbitrary and ideal scenarios in Fig. 2b is
about 20 dB at R̄ = 10 bps/Hz.

Figs. 3a and 3b show the impact of increasing the number
of reflectors L on the achievable rate R̄ when the phase com-
pensation error parameter κ = 6 and κ→∞, respectively. As
can noticed, a perfect match between simulation and theoretical
results is obtained, and the asymptotic capacity derived in (19)
for L ≥ 4 converges to the exact formula in (17) when R̄ & 3
bps/Hz. By comparing Fig. 3a with Fig. 3b, it can be observed
that the effect of phase compensation errors is negligible when
κ = 6. It is worth noting that the case of L=1 is not affected by
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Fig. 4. The achievable R̄ with Rician fading channel R(Ω,K) for Ω = 1
and different values of K, where κ = 10.

κ, as discussed in Sec. III. The figure shows that R̄ significantly
improves by increasingL. For example, at SNR= 0 dB, the value
of R̄ increases by 10-fold when L is increased from 1 to 50.
Moreover, by comparing L = 1 with other cases, it is realized
that deploying IRS with phase compensation error statistics of
κ=6 can enhance the system capacity considerably.

Fig. 4 shows the achievable normalized rate R̄ for double
Rician, i.e., {|}i| , |hi|} ∼ R (Ω,K) for Ω = 1 and different
values of the Rician factor K. It is noteworthy that the case of
K →∞ is equivalent to the deterministic channel scenario with
Ai = 1∀i. The figure shows that the impact of the Rician factor
is negligible when K ≥ 15 dB. For example, the achievable
rate when K = 15 dB is almost the same as the deterministic
channel scenario, (K → ∞). In addition, the impact of K
becomes less important for small values of L and the rate is
mainly determined by the number of reflectors L.

V. CONCLUSION AND FUTURE WORK

The normalized EC achieved by employing FIRS to support
UAV based communications was derived taking into account
imperfect phase compensation. The phase compensation error
was modeled using von Mises distribution, and the capacity was
derived for L = 1 and 2 in closed-forms, whereas numerical
integration and CLT were applied when L = 3 and L ≥ 4,
respectively. The obtained results demonstrated that capacity
degradation due to phase errors is inversely proportional to SNR,
which is more apparent for large L values. Interestingly, the
capacity deterioration is negligible for κ ≥ 6. It was also shown
that increasing L enhances the capacity even when the phase
compensation is not ideal. Moreover, it was proven that the
effect of the Rician factor K becomes negligible when K ≥ 15
dB.

The study of UAVs mobility effects on the achievable EC is
an interesting future extension to the current work.
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