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Consensus-based Cooperative Algorithms for
Training over Distributed Datasets Using Stochastic

Gradients
Zhongguo Li. Student Member, IEEE, Bo Liu and Zhengtao Ding, Senior Member, IEEE

Abstract—In this paper, distributed algorithms are proposed
for training a group of neural networks with private datasets.
Stochastic gradients are utilised in order to eliminate the re-
quirement for true gradients. To obtain a universal model of the
distributed neural networks trained using local datasets only,
consensus tools are introduced to derive the model towards the
optimum. Most of the existing works employ diminishing learning
rates, which are often slow and impracticable for online learning,
while constant learning rates are studied in some recent works,
but the principle for choosing the rates is not well established. In
this paper, constant learning rates are adopted to empower the
proposed algorithms with tracking ability. Under mild conditions,
the convergence of the proposed algorithms is established by
exploring the error dynamics of the connected agents, which
provides an upper bound for selecting the constant learning
rates. Performances of the proposed algorithms are analysed with
and without gradient noises, in the sense of mean-square-error
(MSE). It is proved that the MSE converges with bounded errors
determined by the gradient noises, and the MSE converges to zero
if the gradient noises are absent. Simulation results are provided
to validate the effectiveness of the proposed algorithms.

Index Terms—Consensus, optimisation, distributed training,
neural networks, convergence analysis, multi-agent systems.

I. INTRODUCTION

OPTIMISATION and learning over distributed networks
have been widely studied in recent years, owing to

their significant potentials in many biological, engineering,
and social applications [1–6]. Several critical limitations of
the centralised methods can be addressed by the distributed
algorithms: first, communicational requirement is relieved as
information exchanges are confined to adjacent neighbours;
second, local datasets can be kept private and do not need
to be revealed to remote fusion centres; third, computational
burdens are distributed into a set of agents, where each of
them only needs to process its local datasets.

Recent advances in distributed optimisation have been re-
ported in a number of works, e.g., [2, 3, 7–11], where some
of them are discrete-time algorithms [2, 7, 9] and some
utilise continuous-time methods [3, 8, 10, 12]. Distributed
subgradient-based methods have been proposed in [2], and
projection-based dual algorithms are studied in [7]. Other
branches also include the alternating direction method of
multipliers (ADMM) [9] and the fixed-time consensus-based
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algorithms [11], where the combination matrices of the com-
munication graphs are required to be doubly stochastic [2, 7].

More recently, considerable interests have been concentrated
on training neural networks using distributed datasets [4, 13–
15]. One of the most important reasons is that we are now
faced with the era of big data, and massive amounts of
information are generated everyday and everywhere. Learning
from big data using a single model is challenging and im-
practical [16]. Moreover, critical measures have been widely
adopted by many countries and companies for purposes of
data protection. It is unlikely that a central server can be
trusted to collect private information from all participants in
the networks.

To deal with those challenges, significant efforts have been
dedicated to distributed learning [4, 13, 17, 18]. Various ap-
proaches have been proposed in the existing literature, for ex-
ample, the incremental strategies [19–21], and the consensus-
based strategies [4, 6, 13]. In the incremental strategies, a
cyclic path that traverses all the agents in the network is
required at every iteration, which is computationally intensive
and also sensitive to link failures. On the other hand, the
consensus-based methods can update the local models simul-
taneously using local interactions only. In addition, consensus-
based methods can provide a fast convergence speed with
superior robustness to single end-point failures. In [13], a
consensus-based algorithm for distributed machine learning
is proposed, where restrictions on the consensus steps are
imposed, and various extensions have been studied in recent
works [4, 15]. Distributed support vector machine (SVM)
learning for wireless sensor networks is considered in [17].
Stochastic variance reduction methods are developed in [6]
by using batch gradient descent algorithms. In general, strong
assumptions, e.g., convergent learning parameters and basin
of attraction, have been utilised to establish the convergence
of those algorithms in the existing studies. It is required
that the weights of the neural networks move towards the
optimum after each iteration (see, for example, Assumption
1 in [4] and Case 1 in [13]), which however is quite different
from the actual learning behaviours of the distributed agents.
Due to the use of stochastic gradients for training problems,
the parameter errors may fluctuate around the true optimum,
instead of monotonically decrease. In the worst scenario,
the parameters may even diverge without properly designed
learning rates. Two critical issues have been overlooked in the
existing studies: how the learning rates should be designed for
the cooperative algorithms, and how the designs will affect the
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performance of the algorithms, which motivates our study in
this paper.

In the aforementioned literature, we observe that exact
gradients are often applied for distributed optimisation, while
stochastic gradient algorithms are commonly used for machine
learning problems. It should be noted that the cost functions
and the true gradients are rarely available, and approximations
are needed for training [15]. In this paper, we consider
distributed training problems for a group of neural networks,
where each of them is equipped with local dataset that cannot
be shared with any others. We will first examine the distributed
algorithms for deterministic optimisation problems. Consensus
algorithms are adopted to drive the parameters of local neural
networks towards a weighted average. The optimal solution
can then be achieved by combining with the local training
algorithms. To gain a deep understanding of the learning
behaviour, we regard the stochastic gradients as the exact gra-
dients disturbed by noises. In this way, distributed optimisation
can be analysed as a special training without noises. Two
different training methods, learning-then-consensus (LTC) and
consensus-then-learning (CTL) algorithms, are proposed with
stochastic gradient noises. A compact expression for both
algorithms is established, based on which the convergence and
performance of both algorithms can be analysed in a unified
manner.

We notice that most of the studies have been contributed to
the algorithm development using diminishing learning rates [2,
22, 23]. However, the algorithms with decaying sequences are
very slower [2], and when the step sizes decay to zero, the
algorithms are no longer able to track the changing solution.
This prevents those algorithms from being deployed for online
machine learning problems with streaming data samples. In
our algorithms, constant step sizes are employed, which is
useful for continuous learning at a relatively faster conver-
gence speed. Although the algorithms with constant learning
rates demonstrate great performance in tracking capability and
learning speed, they also suffer from disturbances caused by
the gradient noises, and optimality errors cannot be completely
removed in the presence of gradient noises. Therefore, the
performance of algorithms with constant learning rates should
be carefully analysed using approximated gradients. However,
effective criteria for designing the learning rates have not been
studied for the distributed algorithms, as having been discussed
above. In this paper, we further establish a link between the
learning rates and the convergence of the consensus-based
algorithms. To facilitate the performance analysis, the error
dynamics of the networks is derived, by which a closed-loop
error recursion can be developed. It is a very challenging task
to analyse the performance of networked agents, as the error
of the parameters and gradient noises of one agent will be
diffused across the network via the communication graphs. It
is guaranteed that the algorithms converge to a bounded region
by choosing proper step sizes determined by the gradient and
the noise properties. It is also proved that in the absence of
gradient noises, the worst MSE will converge to zero.

The significance of our study is to provide training algo-
rithms for distributed neural networks, where datasets are large
and the data access is restricted to local agents only. The key

contributions have been summarised as follows.
1) We provide a guideline for choosing the constant learn-

ing rates, by which the convergence of the algorithms
can be guaranteed.

2) The properties of the gradient noises and their impact
on the algorithm performance are explored, which pro-
vides a deeper insight into the learning behaviours of
distributed agents.

3) We have developed a unified framework for distributed
training problems, which includes the existing algo-
rithms in [4, 15] and [13] as special cases.

The remainder of this paper is organised as follows. In Sec-
tion II, the problem of training neural networks is formulated,
and distributed algorithms are proposed to solve the problem.
Section III presents the convergence and performance analysis
of the proposed algorithms. Simulations and discussions are
elaborated in Section IV. Finally, Section V concludes this
paper.

Notation: Let R, Rn and Rn×m denote the real numbers,
real vectors of n dimensions and real matrices of dimension
n×m. For a series of vectors, a1, . . . , aN , let col(a1, . . . , aN )
be a column vector by stacking (a1, . . . , aN ) on top of each
other. The identity matrix of dimension n × n is represented
by In. 0n and 1n represent a column vector of dimension n
with all entries being zero and one, respectively. AT denotes
the transpose of a matrix A ∈ Rn×m. The Kronecker product
is denoted by ⊗. For a vector x ∈ Rn, ‖x‖ =

√
xTx denotes

the Euclidean norm; ‖x‖∞ = maxi |xi| denotes the infinity
norm; and ‖x‖2A = xTAx. For x ∈ Rn and f(x) : Rn → R,
we denote∇xf(p) = [ ∂f∂x1

(p), . . . , ∂f∂xn
(p)]T as the gradient of

function f(x) at p, and ∇2
xf(p) = [ ∂

2f(p)
∂xi∂xj

]n×n as the Hessian
matrix of f(x) at p. For a square matrix A = [aij ]n×n, the
infinity norm ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij | is the maximum

absolute row sum. In this paper, the superscript index k
denotes the kth iteration, and the subscript i represents the
ith agent in the network, unless explicitly stated otherwise.
Boldface letters denote random variables, and normal letters
represent deterministic variables.

II. PROBLEM FORMULATION AND ALGORITHM
DEVELOPMENT

In this section, we present distributed training methods for
neural networks by consensus-based approaches. We will first
examine the structure of two commonly used consensus-based
learning algorithms to deal with deterministic objective func-
tions (see (2)-(5) further ahead). Considering that stochastic
objectives and gradients are often adopted in training neural
networks, we thus introduce the approximated gradients to
replace the unavailable true gradients. Then, we reformulate
the two algorithms in a unified expression (as in (13)-(15)
further ahead) to ease the performance analysis in the sub-
sequent section. Two assumptions on the empirical risks and
the gradient noises are introduced to facilitate the theoretical
analysis.

Before presenting the problem formulation, we first intro-
duce some definitions related to graph theory. The connection
among a group of N agents is described by a graph G(V, E),
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which consists of N vertices, V = {1, . . . N}, denoting the
agents in the network, and a set of edges, E ⊆ V × V ,
representing the communication links among the agents. In
this paper, the graphs are assumed to be connected. If an
edge pair (j, i) ∈ E , then agent j is said to be a neighbour
of agent i. We denote all the neighbours of the ith agent as
Ni , {j|(j, i) ∈ E ,∀j ∈ V}∪ {i}. The combination matrix is
defined as C = [cij ]N×N , where cij > 0 if edge pair (j, i) ∈ E ,
and cij = 0 otherwise. It is assumed that self-loop exists in
the graph, that is, cii > 0. Moreover, each row of C sums
to one, i.e., C 1N = 1N . Note that, for connected graphs, C
has a single eigenvalue at one, and all other eigenvalues are
less than one in magnitude [24]. For more graph definitions
and properties, we refer the reader to [25] and [26]. The
combination matrix C is assumed to be row stochastic only,
which is different from the doubly stochastic matrices used
in [2, 7, 9, 20]. As a result, the communication topology can
be unbalanced directed graphs.

Our framework consists of a group of N neural networks
distributed over a connected graph, where each agent possesses
a local dataset that cannot be revealed to global fusion centres.
The objective of the network is to minimise the empirical risk
over the entire dataset, given by

min
θ∈Rn

R(D, θ) =

N∑
i=1

Ri(Di, θ), (1)

where D and Di denote the entire dataset and the sub-dataset
of agent i, respectively; θ ∈ Rn is the weight of the neural net-
works. In this paper, we assume the local neural networks have
the same optimal parameters, denoted by θ∗. This is one of
the most common cases in the machine learning problems, for
example, identifying an underlying statistical distribution [27],
tracking the same target [28, 29], and learning a common
model with similar data distributions [4, 13].

Existing works on parallel learning algorithms have been
mostly focused on the master-slave graphs [30], which may
cause communication jam over the master node, and con-
sequently lead to the collapse of all networked machines.
Therefore, we will adopt the full distributed learning networks
without any central node to avoid possible failures and com-
munication latency. Detailed advantages and comparisons of
the two types of networks have been well documented in recent
studies [4, 6].

For each training machine i ∈ V , the gradient-based
algorithm is designed as

ψki = θk−1i − ηi∇θRi(Di, θk−1i ), (2)

θki =
∑
j∈Ni

cijψ
k
j , (3)

where ψki is an intermediate variable, and ηi > 0 is the
learning rate. The updates of coefficients include two proce-
dures. In the first stage, the agents train their neural networks
independently via local learning process as in (2), where only
local information is used, including the latest coefficients θk−1i

and the gradient of the empirical risk ∇θRi(Di, θk−1i ). In
the second stage (3), the consensus of the locally trained
parameters is performed, where neighbouring information ψkj

for all j ∈ Ni is exchanged. Therefore, we call this design as
learning-then-consensus algorithm. With this setting, all the
agents are able to obtain the same neural network as if all
sub-datasets are available for every local agent, which will be
demonstrated by the convergence analysis. Similarly, we can
swap the steps in (2) and (3), yielding the consensus-then-
learning algorithm

ψki =
∑
j∈Ni

cijθ
k−1
j , (4)

θki = ψki − ηi∇θRi(Di, ψki ). (5)

In many existing studies, decaying learning rates have been
utilised, e.g., [2, 9, 22], where the following two conditions
are usually required

∞∑
k=0

ηi(k) =∞,
∞∑
k=0

η2i (k) <∞. (6)

Though, in general, algorithms with decaying learning rates
can reach the optimal solution almost surely, the convergence
speed is very slow (see, e.g., [2, 22, 31] for detailed dis-
cussions). More importantly, when the learning rates decay
to zero, the machine will stop learning even if the optimal
solution has evolved. For algorithms with fixed learning rates,
they will converge to the optimal solution at an exponential
rate under mild conditions (see [2, 32, 33]). In addition,
they are capable of tracking the change of the solution,
due to their continuously learning ability, which is useful in
many practical scenarios with drifting optimum θ∗ or with
streaming datasets Di in real time. Therefore, in this paper,
we will concentrate on analysing the algorithms with constant
learning rates as employed in the proposed LTC and CTL
strategies. In the sequel, we will combine constant learning
rates with approximated gradients, and analyse the resulting
MSE performance.

Now, we examine the properties of the empirical risks,
Ri(Di, θ). For the i th agent with mi samples in Di, the
gradient can be calculated by

∇θRi(Di, θ) =
1

mi

mi∑
k=1

∇θL(ski , θ), (7)

where ski represents the kth data sample in Di, and L(ski , θ)
is the empirical risk of sample ski . In many cases, the em-
pirical risks and their gradients are not available or cannot
be expressed by explicit functions (usually defined as the
expectations of loss functions). Furthermore, it should be noted
that the expressions for the gradients are dependent on the
entire datasets, which are not available when we train the
neural networks using the instant sample ski . Nevertheless, we
can replace the true gradients by approximations with ran-
dom noises, also termed as stochastic gradients. In stochastic
learning problems, the gradients are usually computed by the
realisations of real data samples used at the kth iteration. We
denote the estimated gradient ∇̂θRi(θ) as

∇̂θRi(θ) = ∇θRi(θ) + di(θ), (8)

where∇θRi(θ) is the exact gradient, and di(θ) is the gradient
noise. It can be understood as the real gradients disturbed
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by noises, due to the realisations of instant data samples.
For notational conveniences, Di has been dropped from our
expressions. Note that we are now using boldface letters to
reflect their stochastic nature.

To this end, we can reformulate the proposed LTC and CTL
algorithms as

ψki = θk−1i − ηi∇̂θRi(θk−1i ), (9)

θki =
∑
j∈Ni

cijψ
k
j , (10)

and

ψki =
∑
j∈Ni

cijθ
k−1
j , (11)

θki = ψki − ηi∇̂θRi(ψki ). (12)

To facilitate the performance analysis of both the algorithms,
we capture the structure of them in a unified expression as

ψk−1i =
∑
j∈Ni

a1,ijθ
k−1
j , (13)

φki = ψk−1i − ηi∇̂θRi(ψk−1i ), (14)

θki =
∑
j∈Ni

a2,ijφ
k
j , (15)

where [A1]ij = a1,ij and [A2]ij = a2,ij .
By choosing different matrices of A1 and A2, we can switch

between different training strategies. Selecting A1 = IN and
A2 = C leads to the LTC algorithm, and choosing A1 = C
and A2 = IN yields the CTL algorithm. In addition, if both
both A1 and A2 are set to be C, then we obtain a new learning
algorithm with two consensus steps at each iteration. Using the
unified expression, we can analyse the learning behaviours of
different algorithms together.

Before proceeding to the convergence analysis of the unified
algorithms in (13)-(15), two underlying assumptions for the
performance analysis are needed, which are similar to those
used in existing studies, as we will discuss.

Assumption 1: The Hessian matrix of each empirical risk,
∇2
θRi(θ), is bounded, i.e.,

αiIn ≤ ∇2
θRi(θ) ≤ ᾱiIn, (16)

where 0 ≤ αi ≤ ᾱi are non-negative constants, with at least
one αi > 0. �

Assumption 2: The gradient noise, di(θ), satisfies the
following properties:

E
[
di(θ)|Fk−1

]
= 0, (17)

E
[
‖di(θ)‖2 |Fk−1

]
≤ ζ2‖θ‖2 + ξ2, (18)

where ζ and ξ are non-negative constant, and Fk−1 represents
the filtration (past history in σ-field) of the random process θli,
for all l ≤ k − 1 and i ∈ V . �

By Assumption 1, the network objective,
∑N
i=1Ri(θ), is

guaranteed to be strongly convex, and consequently there
exists a unique optimal parameter θ∗. In many problems of
practical interest, the objective functions are usually convex
or can be reformulated as convex functions by means of

regularisation, e.g., least-mean-square (LMS) learning [34] and
distributed estimation [35] (see [36] and references therein
for more examples). Moreover, strong convexity can be used
to establish exponential convergence, which is helpful for
optimisation and learning over networks [2, 3, 7, 11]. In
distributed optimisation problems, some strong assumptions
have been considered. For example, bounded Hessian matri-
ces have been commonly used to facilitate the convergence
analysis [1, 2, 7, 9]. In some works [2, 10, 37], bounded
gradients are utilised with set constraints, which is unfeasible
for unconstrained problems. In this sense, our assumption is
less stringent because problems with unbounded gradients can
be solved.

Expression (17) in Assumption 2 indicates that the gradient
noise, di(θ), is unbiased, which is a reasonable assumption
since, for most of learning applications, the gradient expec-
tation of a particular sample is equal to the exact gradient.
The second expression in (18) assumes that the conditional
variance of the gradient noise is bounded by the sum of the
parameter norm ‖θ‖2 and a constant ξ2. Uniformly bounded
variance (stronger assumption) has been considered in many
studies, for example [15, 38], which is simply bounded by
a constant ξ2. Equation (18) allows the conditional variance
to have a wide range when the parameter θ is far from the
optimum θ∗. To see this, we can rewrite (18) as

E
[
‖di(θ)‖2 |Fk−1

]
≤ ζ2‖θ − θ∗ + θ∗‖2 + ξ2

≤ 2ζ2‖θ − θ∗‖2 + 2‖θ∗‖2 + ξ2.
(19)

Defining a new set of variables, ζ̄2 = 2ζ2 and ξ̄2 = 2‖θ∗‖2 +
ξ2, we have

E
[
‖di(θ)‖2 |Fk−1

]
≤ ζ̄2‖θ̃‖2 + ξ̄2, (20)

where θ̃ = θ − θ∗ denotes the error of the parameters.
Remark 1: The distributed learning problem studied in this

work is different from the traditional consensus problem that
aims to achieve an agreement on a weighted average of the
initial states [39]. Those consensus problems do not learn from
injected data, and they can be understood as a special case by
setting the learning step ηi in the proposed algorithms to zero.
On the other hand, the training problem considered in this
work enables the distributed agents to learn from the streaming
data, and cooperatively search for the global optimal solution.
In this case, the initial conditions of θi will not change the
optimal solution or affect the convergence of the proposed
algorithms.

III. PERFORMANCE ANALYSIS

In this section, we will analyse the MSE performance of the
proposed LTC and CTL algorithms in a unified manner. Since
the training machines are coupled together by the network, the
errors may diffuse across the agents. We will first derive the
compact error dynamics by collecting all agents’ error vectors
in extended formats, based on which we will establish the error
recursion dynamics by exploring the relations among different
error vectors, as in (27)-(29) further ahead. Using the mean
value theorem and conditions in Assumptions 1 and 2, we are
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able to obtain the closed-loop MSE dynamics later in (49).
Then, in Theorem 1, we provide a guideline for designing the
learning rates, based on which we prove the convergence of
the MSE to a bounded region with gradient noise. In addition,
we further give the results in the absence of gradient noises
as in Corollary 1.

First, we rewrite the learning process of the network in a
compact form by collecting all the parameters of the local
agents into the extended vectors as

Ψk = col(ψk1 , . . . ,ψ
k
N ) ∈ RnN , (21)

Φk = col(φk1 , . . . ,φ
k
N ) ∈ RnN , (22)

Θk = col(θk1 , . . . ,θ
k
N ) ∈ RnN . (23)

It follows from (13)-(15) that

Ψk−1 = (A1 ⊗ In)Θk−1, (24)

Φk = Ψk−1 − (∆⊗ In)
[
Γ(Ψk−1) +D(Ψk−1)

]
, (25)

Θk = (A2 ⊗ In)Φk, (26)

where ∆ = diag(η1, . . . , ηN ), Γ(Ψk−1) =
col(∇θR1(ψk−11 ), . . . ,∇θRN (ψk−1N )), and D(Ψk−1) =
col(d1(ψk−11 ), . . . ,dN (ψk−1N )). Note that we have
represented the approximated gradient vector in (25) as
the sum of the true gradient, Γ(Ψk−1), and the gradient
noise, D(Ψk−1), since we will explore their properties
separately in the following analysis. Now, because we
are interested in evaluating the MSE performance of the
algorithms, we further derive the error recursion by a state
transformation

Ψ̃k−1 = (A1 ⊗ In)Θ̃k−1, (27)

Φ̃k = Ψ̃k−1 − (∆⊗ In)
[
Γ(Ψk−1) +D(Ψk−1)

]
, (28)

Θ̃k = (A2 ⊗ In)Φ̃k, (29)

where the extended error vectors are defined as Ψ̃k = Ψ −
θ∗ 1N , Φ̃k = Φ− θ∗ 1N , and Θ̃k = Θ− θ∗ 1N .

Note however that the gradient term, Γ(Ψk−1), and the
noise term,D(Ψk−1), in (28) remain coupled with the original
state, Ψk−1. Expression (20) provides a link that can be
used to relate the gradient noise, D(Ψk−1), with the error
state, Ψ̃k−1, due to Assumption 2. To relate the gradient,
Γ(Ψk−1), with the error term Ψ̃k−1, we apply the mean
value theorem [40], which states that, for a twice-differentiable
function g(z) : Rm → R, the following relation holds

∇zg(y) = ∇zg(x) +

[∫ 1

0

∇2
zg[x+ τ(y − x)]dτ

]
(y − x).

(30)

Hence, substituting Ψk−1 and θ∗ 1N into (30), we can obtain

Γ(Ψk−1) =Γ(θ∗ 1N )

+

[∫ 1

0

∇θΓ(θ∗ 1N +τΨ̃k−1]dτ

]
Ψ̃k−1. (31)

Then, we have

Γ(Ψk−1) = P k−1Ψ̃k−1, (32)

by substituting Γ(θ∗ 1N ) = 0nN into (31) and denoting

P k−1 =

∫ 1

0

∇θΓ(θ∗ 1N +τΨ̃k−1)dτ. (33)

The matrix P k−1 plays an important role in the performance
analysis, of which the properties will be further elaborated
later. It should be noted from the definition of Γ(Ψk−1)
that P k−1 is a block diagonal matrix, where each block is
symmetrical and of the form

P k−1
i =

∫ 1

0

∇2
θRi(θ

∗ 1N +τΨ̃k−1)dτ. (34)

Thus, we can denote P k−1 = diag(P k−1
1 , . . . ,P k−1

N ). Now,
applying (32) to (28) yields

Φ̃k = Ψ̃k−1 − (∆⊗ In)
[
P k−1Ψ̃k−1 +D(Ψk−1)

]
=
[
InN − (∆⊗ In)P k−1] Ψ̃k−1 − (∆⊗ In)D(Ψk−1).

(35)

Combining (27), (29) and (35) together yields

Θ̃k =(A2 ⊗ In)
[
InN − (∆⊗ In)P k−1] (A1 ⊗ In)Θ̃k−1

− (A2∆⊗ In)D(Ψk−1). (36)

We define the MSE vectors of the network as

Mk = col(E ‖ψ̃k1‖2, . . . ,E ‖ψ̃kN‖2), (37)

Nk = col(E ‖φ̃k1‖2, . . . ,E ‖φ̃kN‖2), (38)

Hk = col(E ‖θ̃k1‖2, . . . ,E ‖θ̃kN‖2). (39)

Note that the MSE vectors have been defined in an agent-
wise manner. Taking the Euclidean norm for each agent’s error
dynamics in (27) and (29), we have∥∥ψ̃k−1i

∥∥2 =

∥∥∥∥ N∑
j=1

a1,ij θ̃
k−1
j

∥∥∥∥2. (40)

Since ‖ ˜θk−1i ‖ is a convex function of θ̃k−1i , and∑N
j=1 a1,ij θ̃

k−1
j is a convex combination of θ̃k−1i , applying

Jensen’s inequality to (40) leads to∥∥ψ̃k−1i

∥∥2 ≤ N∑
j=1

a1,ij
∥∥θ̃k−1j

∥∥2. (41)

Taking the expectation of both sides of (41), the augmented
MSE vector of Mk−1 can be obtained as

Mk−1 � A1Hk−1, (42)

where the curled symbol � denotes component-wise inequal-
ity. Following similar lines, we have

Hk � A2Nk. (43)

Now, the remaining task is to construct the relation between
Nk and Mk−1 by using expression (35) and Assumptions 1 and
2. We will further explore the structure of (35) by analysing
the properties of each agent’s error vector Φ̃k

i . Taking the
Euclidean norm and expectation of Φ̃k

i in (35) leads to

Nki =E ‖
[
In − (ηi ⊗ In)P k−1

i

]
ψ̃k−1i ‖2

+ E ‖(ηi ⊗ In)di(ψ
k−1
i )‖2, (44)
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where we have used the first condition of the gradient noises
in (17). Due to Assumption 1, it follows from (34) that the
symmetrical matrix P k−1

i satisfies

αiIn ≤ P k−1
i ≤ ᾱiIn. (45)

To bound the first term in the right-hand-side of (44), we can
apply (45) to derive

0 ≤
[
In − (ηi ⊗ In)P k−1

i

]2 ≤ λ̄2i In, (46)

where λ̄2i = max{(1−ηiαi)2, (1−ηiᾱi)2}. We can appeal to
Assumption 2 to bound the second term in (44) by using the
relation in (20), which yields

E ‖(ηi ⊗ In)di(ψ
k−1
i )‖2 ≤ η2i ζ̄2‖ψ̃k−1i ‖2 + η2i ξ̄

2. (47)

Finally, applying the results in (46) and (47) to (44), the
relation between Nk and Mk−1 is obtained as

Nk � ΞMk−1 + Π, (48)

where Ξ = diag(λ̄21 + η21 ζ̄
2, . . . , λ̄2N + η2N ζ̄

2), and Π =
col(η21 ξ̄

2, . . . , η2N ξ̄
2). Combining the results in (42), (43) and

(48), we derive the closed-loop MSE error Hk as

Hk � A2ΞA1Hk−1 +A2Π. (49)

We are now ready to present the convergence of the MSE
to a bounded region of the optimal weights.

Theorem 1: Let Assumptions 1 and 2 hold. If the constant
learning rates satisfy

0 < ηi < min

{
2αi

α2
i + ζ̄2

,
2ᾱi

ᾱ2
i + ζ̄2

}
, (50)

the worst MSE, ‖Hk‖∞, in the network converges to

lim
k→∞

‖Hk‖∞ ≤
maxi∈V{η2i ξ̄2}

1−maxi∈V{λ̄2i + η2i ζ̄
2}
. (51)

Proof: From (49), we can obtain the expression of the worst
MSE in the network as

‖Hk‖∞ ≤ ‖A2ΞA1‖∞‖Hk−1‖∞ + ‖A2Π‖∞
≤ ‖Ξ‖∞‖Hk−1‖∞ + ‖Π‖∞, (52)

where ‖A1‖∞ = ‖A2‖∞ = 1 has been used. To guarantee
the convergence of (52), it should be satisfied that ‖Ξ‖∞ < 1.
Thus, for all i ∈ V , we have

λ̄2i + η2i ζ̄
2 < 1, (53)

which means

(1− ηiαi)2 + η2i ζ̄
2 < 1, (54)

(1− ηiᾱi)2 + η2i ζ̄
2 < 1. (55)

Solving (54) and (55) results in

0 < ηi <
2αi

α2
i + ζ̄2

, 0 < ηi <
2ᾱi

ᾱ2
i + ζ̄2

. (56)

We can recurrently iterate (52) to establish the relation be-
tween ‖Hk‖∞ and ‖H0‖∞

‖Hk‖∞ ≤ (‖Ξ‖∞)k‖H0‖∞ +

k−1∑
j=0

(‖Ξ‖∞)j‖Π‖∞, (57)

where (·)k denotes the kth power of its argument. Observe
that

lim
k→∞

k−1∑
j=0

(‖Ξ‖∞)j‖Π‖∞ =
‖Π‖∞

1− ‖Ξ‖∞
. (58)

Therefore, substituting (58) and limk→∞ ‖Ξ‖k∞ = 0 into
expression (57), we can get

lim
k→∞

‖Hk‖∞ ≤
‖Π‖∞

1− ‖Ξ‖∞
(59)

=
maxi∈V{η2i ξ̄2}

1−maxi∈V{λ̄2i + η2i ζ̄
2}
. (60)

This completes the proof. �
Remark 2: In Theorem 1, expression (50) provides an upper

bound for designing the learning rates, based on which we can
prove the convergence of the proposed algorithms. It should
be noted that the learning rates can vary among the agents,
which is more flexible than the homogeneous step sizes used
in [2, 4, 13, 15]. Relation (51) reveals how the learning rates,
the bounds of the Hessian matrix and the noise variance will
affect the performance of the algorithms. It also indicates that
the optimality error can be reduced by choosing small enough
learning rates. The designer is able to balance between the
convergence speed and the optimality error according to the
real applications by adjusting the heterogeneous learning rates.

From (50), we observe that three parameters, αi, ᾱi and ζ̄2,
should be known when designing the learning rates. It is worth
mentioning that the bounds of the empirical risk, αi and ᾱi,
can be easily acquired from the loss functions, while one of
coefficients in the gradient noises, ζ̄2, should be approximated
according to the practical applications. Fortunately, for most
problems of practical interest [15, 38], the variances of the
gradient noises can be modelled by a constant value, ξ̄2, that
is, the term ζ̄2‖θ̃‖2 in (20) is equal to zero, in which case the
learning rates can be chosen by setting ζ̄2 = 0. If the gradient
vectors are free of noises, i.e., ζ̄2 = 0 and ξ̄2 = 0, we can
establish the convergence results for the true gradient case, as
stated in the following corollary. It is worth noting that our
results for the noise-free case coincide with the classic results
in [9, 19].

Corollary 1: Under Assumption 1 and ζ̄2 = 0 and ξ̄2 = 0,
if the learning rates satisfy

0 < ηi <
2

ᾱi
, (61)

then the deterministic error vector Hk =
col(‖θ̃k1‖2, . . . , ‖θ̃kN‖2) converges to zero as k →∞.
Proof: The result follows directly from Theorem 1. �

Now, we will examine how fast the proposed algorithm
converges to the steady-state value. Instead of deriving the
upper bound for the MSE, we need to explore the recursion
of E ‖Θ̃k‖2. Retuning to (36), we can get

E ‖Θ̃k‖2 = E ‖Θ̃k−1‖2B+E ‖(A2∆⊗In)D(Ψk−1)‖2, (62)

whereB = (A1⊗In)
[
InN − (∆⊗ In)P k−1] (A2⊗In)(A2⊗

In)T
[
InN − (∆⊗ In)P k−1] (A1 ⊗ In)T . According to The-

orem 1, we have the worst MSE converges to a small neigh-
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bourhood of zero, when the step size ηi is small enough. It
then follows from (33) that P k−1

i can be approximated by

P k−1
i ≈ ∇2

θRi(θ
∗ 1N ). (63)

Applying (63), we can approximate B by a deterministic
quantity

B =(A1 ⊗ In) [InN − (∆⊗ In)D] (A2 ⊗ In)

× (A2 ⊗ In)T [InN − (∆⊗ In)D] (A1 ⊗ In)T
(64)

where D , diag(∇2
θR1(θ∗ 1N ), . . . ,∇2

θRN (θ∗ 1N )).
To deal with the second term in (62), the covariance matrix

of the noise D(Ψk−1) should be evaluated, given by

C̄ = E{D(θ∗ 1N )DT (θ∗ 1N )}. (65)

Thus,

E ‖(A2∆⊗ In)D(Ψk−1)‖2

= E{DT (Ψk−1)(A2∆⊗ In)T (A2∆⊗ In)D(Ψk−1)

= tr{(A2∆⊗ In)T C̄(A2 ⊗ In)}.
(66)

Substituting (64) and (66) into (62) yields

E ‖Θ̃k‖2 ≈ E ‖Θ̃k−1‖2B+tr((A2∆⊗In)T C̄(A2⊗In)), (67)

where tr(·) denotes the trace of its argument. Under small
step size ηi, we can regard tr{(A2∆ ⊗ In)T C̄(A2 ⊗ In) as
a small perturbation imposed on the error recursion. Hence,
the convergence rate can be approximated by ρ(B) i.e., the
spectral radius of B. Therefore, we need to demonstrate the
stability of B, which is equivalent to the stability of (A1 ⊗
In) [InN − (∆⊗ In)D] (A2 ⊗ In). Noting that the maximum
norms of A1 and A2 are one, then we have the spectral radius
of B,

ρ(B) = [ρ(InN − (∆⊗ In)D)]2. (68)

According to the conditions of the learning rate in (50) and
the definition of D, it is straightforward to obtain that all
the eigenvalues of the B are within the unit circle. Thus,
the convergence of the error dynamics is guaranteed with a
convergence rate ρ(B) that depends on the selection of the
learning rate ηi.

Remark 3: Under connected graphs, the proposed algo-
rithms will converge to a small neighbourhood of the optimal
solution, upper bounded by (51). If the initial parameters of the
neural networks are specified at different values, the algorithms
will first make θi move closer to each other, and the transient
speed of this process is determined by the communication
structure [41]. This transient process is much faster than the
learning speed, and can be ignored in real implementation.

Remark 4: To reduce the communication burden, local
stochastic gradient descent (LocalSGD) [42] and federated
averaging algorithms [43] have been proposed. The agents
can perform multiple local learning steps between two con-
secutive communication instances. It is worth mentioning that
those works do not consider the communication graphs. They
assume that all local weights are available while computing the
average of them, usually performed by a central server. In our
work, we do not require a central server to communicate with
all agents. Instead, the local agents can only communicate with
a limited number of neighbours, by which the communication
requirement is reduced at each iteration.

IV. SIMULATION AND DISCUSSION

In this section, we will examine the convergence and perfor-
mance of the proposed algorithms by simulation examples. In
the first example, we consider an application of the proposed
algorithms for distributed optimisation, where true gradients
are used without noises. Limitations of this deterministic
implementation are then discussed. In the second example,
stochastic gradients will be used to train a set of distributed
neural networks for handwriting recognition, by which the
performance of the proposed algorithms will be discussed
comparing with the local training algorithms. Furthermore,
we will demonstrate how the learning rates affect the error
dynamics of the parameters.

Now, we summarise the implementation structure of our
distributed solution to the distributed learning problems. Al-
gorithm 1 illustrates the detailed procedures of the proposed
framework. Note that either Step 5 or Step 7 should be imple-
mented, which corresponds to the CTL and LTC algorithms,
respectively.

Algorithm 1 The Implementation Structure.
Initialisation:

for each agent i ∈ V
1. initialise the parameters of the local neural network, θ0i ;
2. establish connections with its adjacent neighbours, Ni,
in the network;
3. allocate the weights cij ,∀j ∈ V , of its combination
matrices;
4. design the learning rates ηi according to Theorem 1.
Iteration:

set k := k + 1, for i ∈ V
5. update the intermediate variable ψk−1i in (13) by
communicating with its neighbours Ni;
6. learn the intermediate variable φki in (14) using local
data samples in Di;
7. update parameters of neural networks θki in (15) by
communicating with its neighbours Ni.
End if termination condition is satisfied or iteration budget
is approached.

A. Example 1: Deterministic Optimisation

In this subsection, we implement the proposed framework
for a logistic regression problem [27, 44]. This type of problem
covers a number of important applications, for example, spam
email classification and medical diagnosis [44]. Consider a net-
work of N agents, where each of them possesses a number of
mi data samples in Di and each sample has an h-dimensional
feature space, ski ∈ Rh, and a binary label lki ∈ {±1}. The
network objective is to solve the convex problem

min
θ

N∑
i=1

mi∑
k=1

log
[
1 + e−l

k
i θ

T ski

]
+
ρ

2
‖θ‖2, (69)

where ρ denotes the regularisation parameter. Since data
samples are collected by different agents who are not willing
to share their private datasets, it is of practical significance
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Fig. 1: The communication topologies.

to deploy the distributed framework. In this application, we
assume the network contains six agents and each of them
has very limited data samples such that true gradients can be
calculated at each iteration, i.e., di = 0. Bidimensional sam-
ples are used, which are randomly generated by a multivariate
Gaussian distribution. We label the samples as lki = 1 for those
generated with a covariance matrix equal to the identity and
mean equal to (0, 0), and as lki = −1 for mean equal to (5, 3).

The communication topologies used in this simulation are
displayed in Fig. 1, where the first graph possesses higher
connectivity than the second one. For comparison purposes, we
have included two commonly-used optimisation algorithms:
the alternating direction method of multipliers (ADMM) [9]
and distributed proximal gradient (DPG) [45]. The learning
steps are kept the same as ηi = 0.01. The LTC and CTL algo-
rithms show similar learning profiles, and therefore we only
present the results using LTC algorithm to avoid redundancy.
Because this problem is deterministic, we can obtain the exact
optimal parameters by solving it using many effective optimi-
sation toolboxes in centralised settings, and therefore, we will
compare the obtained results using the proposed algorithms
with the true optimal solutions. Figs. 2a and 2b demonstrate
the errors of the weights and the cost values, respectively.
It is clear that the change of communication graphs does not
significantly influence the learning behaviours of the proposed
LTC algorithms. As long as the communication graph is
connected, the convergence speed is mainly dominated by
the learning rate, instead of the graph structures. However, it
should be noted that the communication topology will impact
the consensus dynamics at the first few iterations, as shown
in Fig. 3. Strong connectivity will accelerate the reduction of
the discrepancy among the states, caused by different initial
conditions.

In Fig. 2, the ADMM algorithm exhibits the slowest
convergence speed compared with the other three methods.
Moreover, the ADMM-based approach utilises more auxiliary
variables, consisting of two primal-variable updates and one
dual-variable update, performed in an alternating manner. This
complicates the algorithm deployment, and aggravates the
computational burden. On the other hand, the DPG-based
method shows a slightly fast convergence speed. To implement
such an algorithm, additional sub-optimisation problems have
to be solved, since it uses proximal operators. In compar-
ison, the proposed methods in this paper are easy to be
implemented, and they also show comparable convergence
performance.

B. Example 2: Training using Stochastic Gradient

The previous example assumes that the datasets are small,
and exact gradients can be calculated by traversing all the
samples in the datasets. There are at least three reasons that
discourage us from using exact gradients for training dis-
tributed neural networks: 1). calculating the exact gradients for
all samples in the datasets is time-consuming and impractical,
as the datasets are usually very large; 2). gradient differences
are always present among distributed machines, and will be
diffused across all participants via the communication net-
work, since the data samples cannot be shared due to privacy
concerns; 3). data samples are not available beforehand, and
instead, they are generated during real-time training. In this ex-
ample, we implement the proposed algorithms to a handwritten
digit recognition problem. Six training agents are considered
with a total number of 5000 samples that are evenly distributed
to the agents. Each sample has a 400-dimension feature space,
and a 10-class label.

We first implement the consensus-based training algorithms
in this paper with constant learning rates. For comparison
purposes, we deploy other learning algorithms in existing
literature, including the LocalSGD [42] and the local training
algorithms without exchanging the parameters of neural net-
works. All implementations use the same local datasets, test
datasets and learning rates. For the consensus-based learning
algorithms, we can design the learning rates according to the
results in Theorem 1. In the LocalSGD, the communication
intervals have been set as b = 5 and 10. The profiles of
the prediction accuracy are shown in Fig. 4. In general, the
prediction accuracy obtained from the consensus algorithms
exhibits less variance among the agents, that is, the parameters
of the distributed neural networks have similar values, since
the weighted average of the local parameters is employed at
every consensus step. On the other hand, the performance
of different agents using the local training method demon-
strates larger differences, because the agents train their neural
networks independently without any information exchange.
Noticeably, the LocalSGD algorithm (with less communication
requirement) converges slower than the consensus-based algo-
rithm. Initially, the prediction accuracy is deteriorated at every
communication interval, since averaging the parameters causes
large differences among the agents. After some iterations, the
performance is significantly improved.

To illustrate the advantages of using the proposed
consensus-based learning algorithms, we present averages of
the prediction accuracy in Fig. 5. It can be noticed that, after
some iterations, the average prediction accuracy stabilises to
a value of 90% by using the local training algorithms. In
comparison, the parallel algorithms achieve a fast learning
speed, since the distributed neural networks are trained si-
multaneously. The consensus-based learning algorithms still
demonstrate an increasing trend (up to 95% by 1000 iterations)
in the later period of learning, as shown in the enlarged part of
Fig. 5. Although the global dataset does not increase, the per-
formance of all agents in the network are improved by means
of cooperation, which is of significant importance in learning
over networks. The LocalSGD algorithm shows fluctuations
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Fig. 2: Performance of deterministic optimisation with different learning algorithms: (a) error of parameter θi, (b) error of the cost values.
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Fig. 3: Iterations of one state variable using LTC with different communication graphs: (a) the first graph, (b) the second graph.

at the early stage of learning, but gradually outperforms the
local learning algorithms after some iterations. Overall, the
LocalSGD converges in a slower speed compared with the
algorithms proposed in this paper.

In order to verify the performance results in (51), we
conduct a comparison study with three different learning rates
ηi = 0.01, 0.05 and 0.1. The empirical risks of the network
are designed according to [46], and we choose the range
of the Hessian coefficients, i.e., the regularisation factors,
for each agent from (1, 10). In this case, the upper and
lower bounds of the Hessian coefficients are ᾱi = 10 and
αi = 1. To approximate the gradient noises, we stimulate the
neural networks with a set of random samples for different
parameters θ, by which the variance of gradient noises is ap-
proximately bounded by a constant value ξ̄2 = E[(∇̂θRi(θ)−
E[∇̂θRi(θ)])2] = 1625.3. It is worth mentioning that the
parameters should be approximated before training such that
desirable learning rates can be specified. Substituting the
experimental results into (51), the worst MSE, ‖Hk‖∞, can be
bounded theoretically as 0.27, 16.3 and 64.2 for the learning
rates ηi = 0.01, 0.05 and 0.1, respectively. The simulation
results of the worst MSE are presented in Fig. 6, where the
theoretical bounds are shown in the dotted lines. It is clear that
the simulation results are indeed confined to the theoretical
bounds, and the relation (51) is conservative as the worst
scenario has been considered. It is worth mentioning that, as
the learning rate increases, the fluctuations of the parameters
become larger, since the instant samples with gradient noises

impose more influence on the learning behaviours of agents. In
practice, the designer should balance between the convergence
speed and the optimality error of the solution. The nominal
performance analysis is conducive to the selection of the
learning rates.

V. CONCLUSION

In this paper, distributed training using consensus-based
algorithms has been studied. Due to the ubiquitous gradient
noises in learning, we have proposed two learning algorithms
that apply approximated gradients and constant learning rates.
The introduction of gradient noises reveals the learning be-
haviours of the distributed agents in real applications, and
the constant learning rates enable the proposed algorithms to
be employed in online optimisation and learning problems. A
unified expression for the two algorithms has been presented
to facilitate the analysis of convergence and performance.
Two assumptions are introduced, which are in general less
restrictive than the existing studies. Based on those conditions,
we have proved theoretically the convergence and performance
of the MSE, by which the learning rates can be designed
accordingly. Two simulation examples have been carried out
to show the effectiveness and importance of our study.
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