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Abstract. Many of the recently developed methods to study the shape of molecules permit one 

conformation of one molecule to be compared to another conformation of the same or a 

different molecule: a relative shape. Other methods provide an absolute description of the shape 

of a conformation that does not rely on comparisons or overlays. Any absolute description of 

shape can be used to generate a self-organizing map (shape map) that places all molecular 

shapes relative to one another; in the studies reported here, the shape fingerprint and Ultrafast 

Shape Recognition methods are employed to create such maps. In the shape maps, molecules 

that are near to one another have similar shapes and the maps for the 102 targets in the DUD-
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E set have been generated. By examining the distribution of actives in comparison to their 

physical-property-matched decoys, we show that proteins of a key-in-lock type (relatively rigid 

receptor and ligand) can be distinguished from those that are more of a hand-in-glove type 

(more flexible receptor and ligand). These are linked to known differences in protein flexibility 

and binding site size. 

 

Introduction 

It has long been known that the shape of a molecule has a profound effect on its biological 

activity. The shape complementarity between an enzyme and its substrate(s) was the first such 

link to be made and subsequently led to the expectation that any ligand interacting with a 

protein is likely to require an appropriate shape; the work of Fischer, in the nineteenth century, 

was followed by that of Pauling and their ideas remain relevant across many areas of science.1-

4  

There have been many computational methods devised that permit the shape of molecules to 

be used constructively in applications such as virtual screening for drug discovery. Some 

provide a description that is absolute i.e. it does not require a query conformation to be used as 

a comparator and does not require two molecules to be aligned. This includes shape 

fingerprints,5 shape signatures,6 the Ultrafast Shape Recognition (USR) method and its 

subsequent developments,7-12 the use of spherical harmonic functions,13 or processing a meshed 

version of the surface using the mathematics that considers heat flow (thereby capturing details 

of curvature).14  Other approaches provide an assessment of relative shape, that is they allow 

two conformations to be compared and the similarity of their shapes to be scored. A number 

of methods use the mathematical simplicity of gaussian functions or other mathematical 

functions that are able to represent atoms as spherical objects (incorporation of surface 
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electrostatics and other modelling approaches is also possible).15-23 Other approaches use a 

molecular surface comparison, for instance by projecting key points to create a graph 

representation.24, 25 Alternatively, shape can be encoded less directly using methods that encode 

discrete distances between features, in a similar fashion to pharmacophore triplets or related 

methods; those features present in two conformations can be compared to give a relative shape 

similarity.26-29 It is also possible to bring in information about the protein binding site to 

complement the information available from analyzing the shape of ligands and to use shape 

overlays with a bound ligand as a means to place other ligands in a protein binding site.30, 31 

The developers of the Pubchem database have showcased many of the insights that can be 

provided by considering molecular shape through their Pubchem3D program that includes 

making connections by shape (that complement those based on chemical structure) and linking 

molecules that share biological activity.32-35 They also studied the diversity of molecular shapes 

represented by the Pubchem database and reveal a surprisingly limited number of clusters can 

represent all shapes and that when grouped according to their volume, molecules with higher 

volumes do not correspond to larger numbers of shape clusters than smaller volumes (for all 

apart from the smallest molecules).33 In principle, any of the methods for assessing the relative 

shape of molecules can be converted into an absolute description of shape by comparison to a 

complete set of reference shapes, such as that required to create shape fingerprints.5 

An absolute description of the shapes of a set of molecules that share biological activity should 

provide a distribution that can be visualized and assessed to deduce the shapes that are preferred 

for that activity and how tight such shape preferences are.  In this way, it should be possible to 

visualize whether the system obeys the key-in-lock (tight conformational requirement for the 

ligand, rigid receptor) or hand-in-glove (the ligand can adopt a range of shapes, flexible 

receptor) principle.36, 37 This would provide useful insights for those attempting to understand 
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the action of enzymes and therefore help in the design of new enzymes. It is also important for 

the design of molecules that bind to a given protein binding site such as occurs in drug 

discovery and in chemical biology more generally.  

In the following, we show how large sets of known actives against a set of protein targets are 

distributed in the shape space defined by two absolute descriptions of molecular shape: shape 

fingerprints and USR. These distributions reveal that insights concerning the nature of the 

protein target can be obtained – in a way that does not need the protein’s structure to be known. 

In order to generate shape fingerprints, we obtain a set of reference shapes (a shape database) 

and find optimum settings for grouping compounds with shared biological activity. We also 

show how they can be combined with other fingerprinting methods to achieve scaffold 

hopping.   

 

Results and Discussion 

Two absolute descriptions of molecular shape have been used to visualize the distribution of 

ligand shapes for all of the Database of Useful Decoys - Enhanced (DUD-E) set of protein 

targets: shape fingerprints and USR. The DUD-E sets include a large set of decoys 

accompanying a curated set of known actives for 102 different protein targets.38 These include 

50 decoys for each active with the intention that the distribution of the physical properties 

(molecular weight, MilogP, number of rotatable bonds, hydrogen bonding group counts and 

charge) of the decoys should match that of the actives. 

The shape fingerprint approach was introduced in 2005 based on two sets of reference shapes: 

the first derived from the Cambridge Structural Database of small molecule crystal structures 

and the second from structures of the MDL Drug Data Report transformed into three-
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dimensional conformations by Corina.5, 39, 40 The resulting fingerprints were benchmarked 

against alternative methods for computing shape similarity for two molecules (ROCS and 

shape multipoles); the ordering according to shape similarity achieved with the different 

methods is compared. The ability of the method to correctly group molecules that share 

biological similarity was not demonstrated directly. As described in full in the supporting 

information, we optimized a set of shape fingerprints and the settings that determine how they 

are applied. In brief, the reference shapes were derived from the Ligand Expo database of 

ligands bound to proteins in the Protein Data Bank.41 Following filtering and picking of 

representatives (as described in the original publication), a set of 929 reference shapes was 

obtained. This is itself a remarkable finding that suggests that all of the shapes adopted by 

ligands binding to proteins can be described as being similar to one of less than a thousand 

types. A benchmarking exercise using two datasets of known bioactive conformations gave 

optimum settings for generating and applying shape fingerprints that use these reference 

shapes.42, 43 When these were used to probe recall by active compounds of other actives in 

preference to decoys for 8 targets from the DUD-E diverse subset, the fingerprints were found 

to perform poorly compared to other methods of shape comparison and thus we do not 

recommend shape fingerprints for this application. Some interesting results obtained during the 

optimization of the fingerprints are noted at the end of this paper. However, the property that 

is of most interest to us is the ability to visualize the distribution of shapes that are tolerated by 

proteins and this requires an absolute description of shape that can be mapped. Shape 

fingerprints provide us with an absolute description (in this case a sequence of 929 binary 0s 

or 1s). The USR method also summarizes the shape but as a 12-dimensional descriptor and it 

has also been applied to the same task.12, 44 The distributions obtained and the insights they 

provide are described below. 
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Shape fingerprint-based shape maps. 

In the following, we examine the distribution of large sets of compounds with shared biological 

activity in shape maps provided by the shape fingerprints. These visualize whether the target 

in question binds ligands with a limited or wide repertoire of shapes and whether each shape is 

tightly or loosely defined.36, 37 To enable the distribution of actives and decoys to be compared, 

the coordinate set provided by the shape fingerprint can be reduced to a two-dimensional 

map.45, 46  This required the fingerprint to be folded into a numerical array small enough to be 

processed by the self-organising map software SOMbrero in R.47-50 This was achieved by 

summing every mth bit (m=5, 10, 15, 20, 25, 30).  These can then be reduced to a two-

dimensional array of n x n coordinates (n = 5, 10, 15, 20, 25) by the self-organising map 

algorithm, using default settings.  The upper limit of m and n was selected to be as high as can 

be performed on a desktop machine within a working day. When the DUD-E set of actives and 

decoys is projected into an n x n map, any coordinates that are statistically enriched in actives 

can be detected by performing a chi-squared test to compare the number of actives and decoys 

at each coordinate to the prevalent numbers of actives and decoys for that target. A p-value 

cutoff of 1% is used to detect enriched coordinates (a Bonferroni correction is used to account 

for the increased number of tests being performed as the grid size, n, changes).51 The mapping 

was created with all compounds for the 8 biological targets in the DUD-E diverse set present 

such that the coordinates are comparable across the different targets. The values of m and n 

that maximize the proportion of actives found at enriched coordinates were selected and this is 

m=20, n=25. The enrichment level at enriched coordinates is large; whereas actives make up 

3.2 % of the overall set, at the enriched coordinates in the maps, they make up 23.1 %.  

The maps in Figure 1 show the number of active compounds present at each coordinate and 

those coordinates that are computed to include a statistically significant enrichment of actives 
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compared to decoys are identified with a red star.  Whenever groups of coordinates that are 

within 3 steps (where one step involves increasing or decreasing x or y by 1) are enriched, these 

have been highlighted with green borders and are referred to in this section as groups.  This 

paints a picture of the different tolerances of the targets to variation in ligand shape. AKT 

(serine/threonine kinase AKT1) binders are divided amongst four main shape groups (with four 

small additional isolated groups), all of which contain a range of different chemotypes 

(chemical structures are provided in supporting information Section S7). There is a low 

occurrence of actives outside the enriched regions.  AMPC (beta-lactamase) has few actives 

but two shape groups are enriched in actives and this includes two chemotypes (sulfonamides 

and a phthalimide) with each group including only one chemotype. Many of the actives for 

AMPC fall away from an enriched group. CP3A4 (cytochrome P450 3A4) has a few enriched 

coordinates but these are not generally near one another and there is a background spread of 

actives across the map. All except one enriched coordinate contain a range of chemotypes. 

CXCR4 (C-X-C chemokine receptor type 4) has six enriched groups, each of which contains 

only one chemotype. GCR (glucocorticoid receptor) features six enriched groups each 

representing more than one chemotype but there is a significant spread of active compounds 

across the map. HIVPR (HIV type 1 protease) has its actives predominantly in one corner of 

the map representing many chemotypes; there are few actives away from the enriched groups. 

HIVRT (HIV type 1 reverse transcriptase) features nine enriched groups, six of which include 

more than one chemical series type. There are many actives distributed across the map. KIF11 

(kinesin-like protein 1) has actives predominantly in two groups in the map near to the six 

enriched groups that are close together.  Some of the active regions for one target in these maps 

overlap with those from other targets.  
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These results, that include only information relating to the shape of ligands, were tentatively 

linked to the known properties of the protein targets with the expectation that, in general, 

proteins with small and rigid binding sites will be more likely to act like a key-in-lock system 

while large and flexible binding sites are more like hand-in-glove. Key-in-lock proteins might 

be expected to have actives at higher proportions at enriched coordinates than do hand-in-

glove. This is consistent with the observation of only minor structural variation in the CXCR4 

structure that has been implicated in the success of structure-based design in GPCRs.52 CP3A4 

has a binding site that is known to vary greatly in size and shape,53 HIVRT is often used as an 

exemplar for a flexible protein,54 and GCR has a ligand binding domain that has been found to 

be able to respond to a range of different ligands in such a way that has led to this site being 

described as inducible by the ligands.55 It could also be that the electrostatic properties of the 

surfaces of ligands can override shape preferences for the proteins that behave as hand-in-

glove. This is a rather profound insight into the nature of a protein and could be derived solely 

from screening of a large set molecules for activity against a new target e.g. after high 

throughput screening. The likely tolerance of the protein to incorrect shapes can be assessed 

and the drug discovery strategy selected accordingly. These observations have been expanded 

on using the faster USR method. 
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Figure 1. Self-organized maps of the DUD-E sets of actives for the targets indicated. The maps 

were generated from shape fingerprints.  Coordinates are colored shades of blue according to 

the number of actives at that coordinate, as indicated by the scale.  Points found to be enriched 

in actives are indicated with a red star and such points that are within 3 steps of another enriched 

point are grouped together inside green lines. 
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The visualization in Figure 1 can be formalized by performing a clustering using the 

fingerprints.  In this case, the Taylor-Butina cluster algorithm was employed in which clusters 

are defined by a “seed” molecule that acts as the cluster centroid; the fingerprint with the largest 

list of neighbors is selected as the first seed.56, 57 Subsequently, all members of the cluster 

defined by the first seed are removed and the remaining compound with the largest list of 

neighbors taken to define the next cluster.  This is repeated until all compounds are assigned 

to a cluster. Such a grouping is greatly facilitated by the external space defined by the reference 

shapes that allows the placing of each shape relative to every other shape. The clustering 

employed the shape fingerprints and a range of fingerprint Tanimoto cut-offs spanning 0.2 – 

0.7.57  Each set of actives and its curated set of decoys were clustered and those clusters 

enriched with actives identified. Enrichment was again detected using a chi-squared test with 

a p-value cutoff of 0.01 and with a Bonferroni correction depending upon the number of 

clusters (i.e. if there are 10 clusters for a particular protein target then a p-value cutoff of 0.001 

would be used to select likely enriched clusters).51 This reveals that for all of the targets in the 

DUD-E diversity set, the best cut-off value for clustering by shared biological activity is 0.55 

(Figure 2). This is a good default value to use in clustering molecules when employing these 

shape fingerprints when the intention is to group together compounds that share biological 

activity. On average, at this setting, clusters that are statistically enriched in active compounds 

account for 61 % of the actives suggesting that shape alone is a sufficiently defining feature 

for a majority of active compounds.  These clusterings also indicate one of the reasons that 

shape might provide low levels of recall of actives from a set of decoys using shape alone: it is 

perfectly feasible for a target to bind to a range of acceptable shapes (each being an active 

cluster) and thus any single shape query would be intrinsically incapable of retrieving certain 

active compounds belonging to a different (but also acceptable) shape cluster. 
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Figure 2. The variation in the percentage of active compounds that are found in enriched 

clusters as the Tanimoto used to define cluster sizes is varied. 

 

Ultrafast Shape Recognition-based shape distribution maps 

In order to expand the insights available by shape alone, an alternative method for obtaining 

an absolute description was applied – the Ultrafast Shape Recognition method.11, 12 This method 

describes each shape as a twelve-element vector and provides an alternative way to generate 

the maps in Figure 1. The RDkit implementation of the method was used to generate a set of 

USR descriptors for the same set of ligands (both actives and decoys).44 These were then 

projected into two-dimensional 25 x 25 maps using the SOMbrero algorithm. These are shown 

in Figure 3 and present broadly similar overviews to those in Figure 1 although that for HIVPR 
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shows a wider distribution of actives across the map and this may be because many of the 

actives for this target fall outside the molecular weight range for which the shape fingerprints 

are appropriate (200 – 500 Da). The levels of enrichment achieved in the USR maps is 

sometimes higher and sometimes lower than that achieved with the fingerprint-derived maps 

(Table 1).  

 

Table 1. The percentage of actives placed at enriched coordinates in shape maps generated by 

either shape fingerprints or USR are compared.  

Target % of actives at enriched coordinates 

Shape fingerprints USR 

AKT 45.4 41.6 

AMPC 6.5 17.7 

CP3A4 19.0 15.2 

CXCR4 28.7 36.9 

GCR 14.9 30.9 

HIVPR 38.3 23.5 

HIVRT 33.8 32.6 

KIF11 34.0 33.0 

Overall 23.1 21.5 
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Figure 3. Self-organized maps of the DUD-E sets of actives for the targets indicated. The maps 

were generated from USR descriptors.  Coordinates are colored shades of blue according to the 

number of actives at that coordinate, as indicated by the scale.  Points found to be enriched in 

actives are indicated with a red star and such points that are within 3 steps of another enriched 

point are grouped together inside green lines. 

 



 

 

16 

The USR-based SOMs can be generated more rapidly than those using shape fingerprints. For 

instance, generating the shape fingerprints for the DUD-E diverse set took many days even 

though the tasks were split across multiple processors whereas generating the USRs can be 

achieved in minutes on a single processor machine. Hence, the USR method was chosen to 

apply to the full set of 102 DUD-E targets. Whereas in the previous section, a single SOM was 

created with all compounds for all targets projected at once, here the set of actives for each 

biological target and its matched set of decoys was processed individually to create a series of 

25 x 25-dimensional maps. Two summary values for each map were obtained. The first is the 

percentage of all active compounds that are found at enriched coordinates. The other is the 

degree of enrichment that is found across all enriched coordinates (the percentage of actives at 

enriched coordinates compared to the percentage of actives in the whole set). These are plotted 

against one another in Figure 4. Targets at the bottom left of this plot include FGFR (Fibroblast 

growth factor receptor 1, for which there were no enriched coordinates), CDK2 (Cyclin-

dependent kinase 2), DPP4 (Dipeptidyl peptidase IV), DHI1 (11-beta-hydroxysteroid 

dehydrogenase 1), ANDR (Androgen Receptor) and CP3A4 (Cytochrome P450 3A4), the need 

to incorporate protein flexibility in order to understand and predict ligand binding has been 

emphasized for each of these proteins in at least one exemplar study.53, 58-62 Biological targets 

towards the top right of this plot include COMT (Catechol O-methyltransferase), PA2GA 

(Phospholipase A2 group IIA), PYGM (Muscle glycogen phosphorylase), THB (Thyroid 

hormone receptor beta-1) and PPARD (Peroxisome proliferator-activated receptor delta). 

Similar example papers stressing flexibility of the protein could not be found for these targets. 

Docking studies support the lack of structural variation for THB (although cast doubt on this 

for PA2GA).63 The necessity of creating inhibitors that are pre-organized into the correct 

conformation has been emphasized for COMT.64 The conformational specificity of binding to 

the different PPAR receptor types has been explored with crystallography.65  
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Figure 4. The percentage of all active compounds that are found at enriched coordinates is 

plotted against the average enrichment level found for those coordinates for the set of targets 

in the DUD-E database set of biological targets. 

 

In order to establish that the classifications provided by the shape distributions correspond in a 

more general way to known properties of each biological target, we have surveyed each of the 

102 targets in DUD-E using: bibliometric approaches, sequence-based classifications of 

flexibility and analysis of a representative crystal structure. In particular, these studies have 
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sought to identify whether certain targets are more flexible than others and whether certain 

targets have much larger binding sites than others.  

For the bibliometric analysis, each target’s name was entered as a “Topic” search term in the 

Web of Science.66 The total number of entries returned was then recorded as N(papers) in Table 

2. Three searches of this set were then performed for the extra terms “induced fit”, “flexible” 

and “rigid”. While the number of records returned for each is recorded in Table 2, it was clear 

than the latter two terms are much more likely to return entries that are not relevant whereas 

“induced fit” is more specific to whether the protein adapts to its bound ligand. The percentage 

of the records for each target that contain this term is then computed (Table 2, % Induced Fit). 

This provides the distribution shown in Figure 5. Unsurprisingly, there is not a simple 

correlation of the bibliometric values with the ligand shape-derived metric but it is clear that 

among those 16 targets for which more than 0.2% of their references refer to “induced fit”, 15 

(94 %) have distributions of ligand shapes that place 50 % or less of active compounds at 

enriched coordinates. Meanwhile, among those proteins where more than 50 % of active 

compounds are at enriched coordinates, 10 out of 11 (91 %) have less than 0.2 % of references 

referring to induced fit. 
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Table 2.  Summary values for each DUD-E target for shape-map-derived values, bibliometry, 

sequence analysis and structural analysis. Rows above the division in the table are more hand-

in-glove-like while those below are more key-in-lock-like. Figures in bold indicate those values 

that  are on the more flexible or larger side of the cutoff values described in the text.
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FGFR1 Fibroblast growth 
factor receptor 1 

0.0 0.0 18910 27 16 16 0.08 290 2 22 7.59 3c4f 32.5 6.35 
  

PGH1 Cyclooxygenase-1 9.8 14.7 2893 3 5 1 0.17 599 2 35 5.84 2oyu 52.9 3.32 50.1 1225 

CDK2 Cyclin-dependent 
kinase 2 

6.0 15.9 10070 37 14 14 0.14 283 0 0 0.00 1h00 35.5 11.11 
  

DPP4 Dipeptidyl peptidase 
IV 

6.2 17.0 6977 10 3 9 0.04 766 0 0 0.00 2i78 42.2 8.78 
  

AOFB Monoamine oxidase 
B 

13.2 17.3 5806 27 10 13 0.17 520 1 21 4.04 1s3b 38.2 3.96 
  

UROK Urokinase-type 
plasminogen 
activator 

8.7 17.3 5631 24 3 6 0.05 431 3 43 9.98 1sqt 12.5 5.40 8.1 520 

AMPC Beta-lactamase 22.9 17.7 28348 107 23 41 0.08 377 2 22 5.84 1l2s 23.1 5.14 22.7 722 

MK14 MAP kinase p38 
alpha 

6.2 18.4 3948 15 8 2 0.20 285 0 0 0.00 2qd9 36.0 8.66 29.6 442 

CAH2 Carbonic anhydrase 
II 

9.2 18.5 5736 34 7 32 0.12 260 4 55 21.15 1bcd 13.2 5.42 
  

DHI1 11-beta-
hydroxysteroid 
dehydrogenase 1 

7.5 18.7 3648 1 3 0 0.08 292 0 0 0.00 3frj 58.2 10.14 
  

CASP3 Caspase-3 11.7 19.4 66793 44 45 12 0.07 277 4 59 21.30 2cnk 13.6 3.85 
  

PTN1 Tyrosine 
phosphatase 1B 

10.7 19.6 2995 20 3 1 0.10 435 4 85 19.54 2azr 29.3 7.75 
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CP3A4 Cytochrome P450 
3A4 

8.3 19.6 5000 38 20 9 0.40 503 4 47 9.34 3nxu 36.5 6.08 31.2 2376 
 

ANDR Androgen Receptor 7.2 20.1 43082 80 44 20 0.10 920 11 293 31.85 2am9 25.4 4.86 21.7 290 

HIVPR Human 
immunodeficiency 
virus type 1 protease 

7.6 20.7 3611 34 8 9 0.22 99 0 0 0.00 1xl2 16.4 5.26 15.4 925 

MMP13 Matrix 
metalloproteinase 13 

7.9 21.5 5695 9 4 5 0.07 471 4 62 13.16 830c 13.4 4.08 
  

ACE Angiotensin-
converting enzyme 

5.7 21.8 47417 63 21 23 0.04 1306 6 74 5.67 3bkl 30.0 8.43 
  

LCK Kinase LCK 10.3 23.4 2346 8 3 3 0.13 254 0 0 0.00 2of2 18.8 6.74 14.8 500 

PLK1 Protein kinase PLK1 14.7 23.9 1281 2 0 0 0.00 253 1 12 4.74 2owb 24.5 6.69 20.2 621 

BACE1 Beta-secretase 1 9.6 23.9 2145 24 8 6 0.37 501 1 14 2.79 3l5d 18.9 6.28 16.8 716 

PRGR Progesterone 
receptor 

9.2 25.7 42576 51 44 15 0.10 933 15 356 38.16 3kba 34.2 2.83 
  

AA2AR Adenosine A2a 
receptor 

5.8 25.9 1937 5 1 5 0.05 412 6 92 22.33 3eml 62.1 8.22 
 

581 

PGH2 Cyclooxygenase-2 7.0 26.7 35113 47 30 17 0.09 604 4 65 10.76 3ln1 55.8 5.94 45.6 1218 

ALDR Aldose reductase 11.3 27.3 7312 32 31 15 0.42 316 1 20 6.33 2hv5 17.1 4.48 18.4 425 

GCR Glucocorticoid 
receptor 

8.3 27.5 34880 59 58 15 0.17 777 11 216 27.80 3bqd 73.9 16.60 62.5 486 

TRY1 Trypsin I 7.2 27.8 6395 68 18 48 0.28 247 3 46 18.62 2ayw 8.8 1.30 
  

EGFR Epidermal growth 
factor receptor erbB1 

8.5 28.5 68946 133 48 40 0.07 268 1 12 4.48 2rgp 49.5 12.37 
  

MK10 c-Jun N-terminal 
kinase 3 

12.4 29.0 5088 5 1 1 0.02 296 0 0 0.00 2zdt 33.5 7.29 28.8 533 
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IGF1R Insulin-like growth 
factor I receptor 

11.2 29.2 14323 9 8 8 0.06 276 1 12 4.35 2oj9 36.3 10.21 28.4 716 

PARP1 Poly [ADP-ribose] 
polymerase-1 

6.6 29.2 3461 5 4 1 0.12 1014 14 304 29.98 3l3m 42.0 9.15 27.8 867 

CSF1R Macrophage colony 
stimulating factor 
receptor 

10.5 29.4 8916 9 8 3 0.09 329 2 40 12.16 3krj 57.3 16.26 
  

GRIK1 Glutamate receptor 
ionotropic kainate 1 

13.2 29.6 571 1 1 1 0.18 918 7 106 11.55 1vso 23.2 4.92 18.3 850 

ABL1 Kinase ABL 13.6 31.2 9406 22 10 5 0.11 252 0 0 0.00 2hzi 22.5 5.28 19.8 419 

CP2C9 Cytochrome P450 
2C9 

10.7 31.7 1709 12 7 4 0.41 490 0 0 0.00 1r9o 40.3 12.11 35.2 675 

ADA17 ADAM17 7.0 32.2 1743 2 2 1 0.11 824 13 197 23.91 2oi0 31.0 8.94 
  

DEF Peptide deformylase 12.6 32.3 661 2 4 1 0.61 169 0 0 0.00 1lru 29.0 9.98 19.3 419 

FNTA Protein 
farnesyltransferase 
type I alpha subunit 

5.5 33.2 48 n.c. n.c. n.c. n.c. 379 3 75 19.79 3E37 22.4 4.46 
  

MCR Mineralocorticoid 
receptor 

11.6 33.2 8685 14 15 6 0.17 984 12 351 35.67 2aa2 37.0 7.15 27.0 334 

ESR2 Estrogen receptor 
beta 

8.1 33.3 29720 54 44 15 0.15 530 6 109 20.57 2fsz 39.2 9.53 32.8 415 

FAK1 Focal adhesion 
kinase 1 

17.5 33.3 7040 8 7 18 0.10 259 0 0 0.00 3bz3 41.0 5.67 
  

KIT Stem cell growth 
factor receptor 

15.7 33.3 19205 26 14 7 0.07 349 1 11 3.15 3g0e 19.7 5.46 15.2 422 

HDAC2 Histone deacetylase 
2 

13.5 33.6 10210 17 6 4 0.06 488 3 108 22.13 3max 35.7 6.17 
  

ESR1 Estrogen receptor 
alpha 

8.0 33.8 35986 98 66 28 0.18 595 5 99 16.64 1sj0 40.4 12.72 35.1 645 
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HIVRT Human 
immunodeficiency 
virus type 1 reverse 
transcriptase 

8.1 34.1 5751 27 12 12 0.21 566 3 42 7.42 3lan 75.3 11.32 69.1 540 

PDE5A Phosphodiesterase 
5A 

6.9 34.1 219 0 0 0 0.00 875 10 172 19.66 1udt 35.7 7.62 36.6 908 

PYRD Dihydroorotate 
dehydrogenase 

24.3 34.3 1106 6 0 2 0.00 395 6 84 21.27 1d3g 30.5 11.90 23.1 560 

VGFR2 Vascular endothelial 
growth factor 
receptor 2 

9.6 34.4 17618 28 31 11 0.18 329 1 30 9.12 2p2i 31.6 12.31 24.8 651 

HMDH HMG-CoA reductase 9.5 34.8 11057 17 3 4 0.03 888 7 91 10.25 3ccw 56.4 5.46 
  

ADRB1 Beta-1 adrenergic 
receptor 

9.2 34.9 5016 3 12 9 0.24 477 5 146 30.61 2vt4 38.8 11.41 32.0 452 

MP2K1 Dual specificity 
mitogen-activated 
protein kinase kinase 
1 

13.0 35.1 518 0 0 0 0.00 294 1 20 6.80 3eqh 57.9 13.08 
  

ITAL Leukocyte adhesion 
glycoprotein LFA-1 
alpha 

11.7 35.6 100 0 0 0 0.00 1170 9 154 13.16 2ica 14.1 3.53 
  

DYR Dihydrofolate 
reductase 

9.2 35.9 10377 238 51 65 0.49 187 0 0 0.00 3nxo 16.0 5.97 13.8 466 

FKB1A FK506-binding 
protein 1A 

10.8 35.9 12 n.c. n.c. n.c. n.c. 108 2 24 22.22 1j4h 17.1 2.77 16.4 270 

LKHA4 Leukotriene A4 
hydrolase 

13.6 36.1 313 2 2 2 0.64 611 1 13 2.13 3chp 53.7 10.91 
  

FA10 Coagulation factor X 7.3 36.1 5433 24 7 14 0.13 488 5 81 16.60 3kl6 14.3 4.15 
  

BRAF Kinase B-raf 12.9 36.7 349 2 0 1 0.00 261 0 0 0.00 3d4q 58.1 10.74 
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NOS1 Nitric-oxide 
synthase, brain 

17.1 36.8 16753 10 12 8 0.07 1434 11 230 16.04 1qw6 43.3 13.34 
  

ADRB2 Beta-2 adrenergic 
receptor 

9.3 37.1 11675 43 41 28 0.35 413 4 72 17.43 3ny8 48.7 8.24 
 

1188 

HDAC8 Histone deacetylase 
8 

14.8 38.5 2631 8 4 0 0.15 377 2 25 6.63 3f07 69.9 7.93 
  

JAK2 Protein kinase JAK2 14.3 38.6 3399 7 3 4 0.09 265 0 0 0.00 3lpb 35.4 10.13 31.7 1141 

SRC Protein kinase SRC 7.5 39.4 20904 62 22 21 0.11 254 0 0 0.00 3el8 56.2 13.83 51.4 702 

AKT1 Kinase AKT 11.3 39.5 3081 3 0 0 0.00 259 1 17 6.56 3cqw 42.1 7.37 35.2 1083 

THRB Thrombin 6.9 39.5 57442 213 81 138 0.14 622 6 92 14.79 1ype 19.2 6.14 16.5 763 

TRYB1 Tryptase beta-1 16.9 39.8 76 n.c. n.c. n.c. n.c. 275 2 26 9.45 2zec 30.0 5.96 
  

MET Hepatocyte growth 
factor receptor 

18.8 40.2 8888 11 7 6 0.08 268 0 0 0.00 3lq8 34.5 9.47 
  

AKT2 Kinase AKT2 16.2 40.5 167 0 0 0 0.00 258 1 17 6.59 3d0e 23.6 2.70 
  

FA7 Coagulation factor 
VII 

13.1 40.5 4852 6 1 7 0.02 466 7 114 24.46 1w7x 14.4 3.46 
  

GRIA2 Glutamate receptor 
ionotropic, AMPA 2 

13.7 40.7 985 1 1 2 0.10 883 5 85 9.63 3kgc 16.9 5.06 11.9 1596 

MAPK2 MAP kinase-
activated protein 
kinase 2 

14.0 40.8 283 0 0 0 0.00 262 0 0 0.00 3m2w 28.9 7.45 
  

HS90A Heat shock protein 
HSP 90-alpha 

13.1 40.8 14627 70 17 19 0.12 732 7 170 23.22 1uyg 48.6 6.01 
  

ROCK1 Rho-associated 
protein kinase 1 

12.5 40.9 1301 0 1 3 0.08 263 1 12 4.56 2etr 69.0 11.34 61.2 820 

CXCR4 C-X-C chemokine 
receptor type 4 

17.0 41.8 17056 46 15 14 0.09 352 2 40 11.36 3odu 36.3 11.90 32.0 1657 
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INHA Enoylreductase 
INHA 

17.1 42.3 2587 34 9 7 0.35 269 1 12 4.46 2h7l 
    

MK01 MAP kinase ERK2 14.4 42.4 1818 11 3 3 0.17 289 0 0 0.00 2ojg 53.5 13.72 43.5 432 

PPARG Peroxisome 
proliferator-activated 
receptor gamma 

11.0 43.6 20228 26 22 7 0.11 505 3 41 8.12 2gtk 31.9 12.16 27.8 1013 

KPCB "Protein kinase C" 
beta 

14.1 44.0 17725 25 24 5 0.14 259 2 25 9.65 2i0e 52.2 7.09 56.7 557 

PA2GA Phospholipase A2 
group IIA 

19.2 44.1 344 1 0 1 0.00 144 1 12 8.33 1kvo 19.5 5.19 16.1 1563 

XIAP Inhibitor of apoptosis 
protein 3 

15.7 44.2 31070 31 28 9 0.09 497 4 72 14.49 3hl5 17.7 3.98 
  

PNPH Purine nucleoside 
phosphorylase 

12.0 44.2 2482 20 9 6 0.36 289 2 28 9.69 3bgs 56.8 11.69 49.1 354 

TYSY Thymidylate 
synthase 

11.4 45.3 7914 37 8 16 0.10 313 2 38 12.14 1syn 16.1 6.75 27.0 604 

TGFR1 TGF-beta receptor 
type I 

12.3 45.6 4908 8 2 6 0.04 346 1 12 3.47 3hmm 22.1 4.47 20.1 641 

DRD3 Dopamine D3 
receptor 

11.2 46.4 3123 20 3 10 0.10 400 2 40 10.00 3pbl 73.2 18.25 
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RENI Renin 9.7 46.5 61151 38 30 17 0.05 406 0 0 0.00 3g6z 41.1 9.22 29.7 1455 

RXRA Retinoid X receptor 
alpha 

16.3 46.9 3454 14 3 2 0.09 462 5 96 20.78 1mv9 25.6 5.58 
  

ACES Acetylcholinesterase 14.6 47.1 37292 130 70 51 0.19 614 3 42 6.84 1E66 35.4 3.96 26.1 665 

COMT Catechol O-
methyltransferase 

19.5 47.7 5847 20 6 7 0.10 271 2 23 8.49 3bwm 33.2 3.59 
  

PYGM Muscle glycogen 
phosphorylase 

18.2 49.1 1892 4 2 3 0.11 842 4 56 6.65 1c8k 35.9 11.26 24.0 651 
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HIVINT Human 
immunodeficiency 
virus type 1 
integrase 

15.4 49.8 1381 14 2 3 0.14 288 3 40 13.89 3nf7 24.2 8.50 26.6 726 

SAHH Adenosylhomocystei
nase 

14.9 50.0 108 2 0 0 0.00 432 0 0 0.00 1li4 33.5 5.91 
  

THB Thyroid hormone 
receptor beta-1 

18.0 50.0 807 2 0 1 0.00 461 4 77 16.70 1q4x 59.6 17.23 57.0 493 

KITH Thymidine kinase 14.4 50.8 14922 41 18 16 0.12 234 1 24 10.26 2b8t 31.7 7.35 29.8 878 

FABP4 Fatty acid binding 
protein adipocyte 

31.7 54.4 2423 7 4 4 0.17 132 2 27 20.45 2nnq 11.7 2.83 10.7 560 

KIF11 Kinesin-like protein 1 16.2 55.8 276 0 0 1 0.00 1056 15 271 25.66 3cjo 41.7 13.96 
  

PPARD Peroxisome 
proliferator-activated 
receptor delta 

16.5 58.0 3771 5 2 0 0.05 441 3 63 14.29 2znp 48.7 8.12 34.8 975 

PPARA Peroxisome 
proliferator-activated 
receptor alpha 

10.6 59.0 15712 23 15 5 0.10 468 4 57 12.18 2p54 28.4 8.36 19.7 338 

NRAM Neuraminidase 14.5 59.5 14522 101 14 35 0.10 466 3 49 10.52 1b9v 14.6 8.26 
  

HXK4 Hexokinase type IV 18.9 63.0 39 n.c. n.c. n.c. n.c. 465 2 22 4.73 3f9m 20.7 4.56 15.6 452 

ADA Adenosine 
deaminase 

15.7 70.6 10490 15 15 9 0.14 363 1 11 3.03 2e1w 23.8 7.08 
  

PUR2 GAR transformylase 12.6 74.1 102 2 0 0 0.00 1010 7 93 9.21 1njs 32.6 5.36 26.1 631 

WEE1 Protein kinase 
WEE1 

27.7 76.6 765 1 1 0 0.13 271 3 38 14.02 3biz 37.0 6.34 33.9 466 

GLCM Beta-
glucocerebrosidase 

12.1 76.7 601 1 1 1 0.17 536 2 28 5.22 2v3f 16.2 5.81 
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FPPS Farnesyl 
diphosphate 
synthase 

15.6 77.5 1712 16 5 0 0.29 419 3 34 8.11 1zw5 51.7 8.48 43.7 635 

n.c.: not calculated as total sample size less than 100. 
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Figure 5. The ligand-shape-derived percentage of actives that are found at enriched coordinates 

in a shape map for each DUD-E target is plotted against the percentage of references in Web of 

Science for that target that also include the term “induced fit”. 

To analyze the targets by sequence, sequences were obtained by searching for the DUD-E target 

name in the Uniprot system and in all cases the human sequence was selected apart from for: 

AMPC (beta-lactamse, E. Coli), DEF (peptide deformylase, E. Coli), HIVINT (HIV integrase, 

HIV), HIVPR (HIV protease, HIV), HIVRT (HIV reverse transcriptase, HIV), INHA (enoyl acyl 

carrier protein reductase, M. Tuberculosis) and NRAM (neuraminidase, Influenza B).67, 68 In the 

case of kinases, to avoid including large sections, such as associated receptors, that are likely not 

relevant to the measured activity, only the kinase domain was selected. Each sequence was 

provided to the FoldUnfold server which classifies whole proteins or sections of proteins as being 

likely to be folded or unfolded/disordered.69-72 Our assumption is that proteins that have more 

regions predicted to be disordered are more likely to behave as Hand-in-Glove. In each analysis, 
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the number of disordered regions (N(unfolded regions)) and the number of amino acids contained 

in disordered regions (N(unfolded AAs)) were computed and alongside the derived percentage of 

the sequence computed to be likely to be disordered (% sequence unfolded) recorded in Table 2. 

The latter is plotted against the ligand shape-derived values in Figure 6. Again, unsurprisingly 

there is no simple correspondence but among the 28 targets that are computed to include more than 

15 % of amino acids in disordered regions, 26 (93 %) place 50 % or less of actives at enriched 

coordinates. 

 

Figure 6. The ligand-shape-derived percentage of actives that are found at enriched coordinates 

in a shape map for each DUD-E target is plotted against the percentage of amino acids in that 

target’s sequence that are predicted to be in disordered regions by the FoldUnfold method. 

 

Two analyses of a representative structure for each target were also undertaken. Each used the 

structure registered in the Protein Data Bank with the code provided as an exemplar by the DUD-

E system (shown in Table 2). In their selection of these structures, consideration was given to the 
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resolution, the retrieval of actives in an automated docking campaign and the human structure was 

preferred.38 The first analysis of these structures that we performed sought to classify the overall 

flexibility of the protein while the second focused on the size and localized flexibility of the 

binding site. The first used the values of the B factors. The B factor has been interpreted as related 

to flexibility, although this can be a problematic interpretation.73 A more reliable guide can be 

provided by the variation in the B factor, which would indicate that certain regions are particularly 

mobile/disordered compared to others. Both the average B-factor per residue and the average 

deviation of B-factors per residue were computed with an online service hosted by Radboud 

University.74 Of the 20 proteins with an average B-factor above 50, 19 (95 %) see 50 % or less of 

actives at enriched coordinates (Figure 7, top). More starkly, of the 35 proteins with an average 

deviation of per residue B factors above 8.5, 34 (97 %) are in this category (Figure 7, bottom)  
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Figure 7. The ligand-shape-derived percentage of actives that are found at enriched coordinates 

in a shape map for each DUD-E target is plotted against average B-factor per residue (top) and the 

average deviation for the per residue B-factor (bottom), as computed by the Radboud University 

service. 

 

The second structural analysis used the sc-PDB service that permits the analysis of the binding site 

of each structure.75-77 Unfortunately, not all of the structures have been processed and so an 

incomplete coverage is available. The binding site volume in each of the representative PDB 

structures was obtained and is listed in Table 2. As shown in Figure 8, 100 % of the 11 proteins 

with binding site volumes above 1000 Å3 have less than 50 % of actives at enriched coordinates.  
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Figure 8. The ligand-shape-derived percentage of actives that are found at enriched coordinates 

in a shape map for each DUD-E target is plotted against the binding site volume as computed by 

the sc-PDB service. 

 

All of these analyses point in the same direction and support that targets placing less than 50 % of 

actives at enriched coordinates are more likely to be flexible and/or have larger binding sites and 

therefore are predisposed to behave more like hand-in-glove proteins. Those proteins targets 

achieving greater than 50 % of actives at enriched coordinates are unlikely to be categorized as 

flexible or to have a large binding site and therefore can be categorized as behaving as a key-in-

lock protein. This means that among the set of 102 targets, 90 are categorized as hand-in-glove 

and 12 as key-in-lock (Table 2 is divided at this cutoff point). This classification can be readily 

computed given a set of known actives for a target and should be a useful means of identifying 

those targets where shape is likely to be a very strong determinant of activity and those where its 



 

 

33 

influence is weaker (although likely still significant as all targets except one provide enrichment 

at one or more coordinates in the shape map). 

Comparison of shape fingerprints with alternative methods and scaffold hopping. Although 

not our central concern, some comments about the optimized shape fingerprints should be made. 

Our studies suggest that the fingerprints obtained are effective for molecules in the 200 – 500 Da 

molecular weight range. The optimized settings entail using the best shape database with a Bit On 

Value of 0.60.  A “balanced” subset of each set of DUD-E decoys was randomly selected to include 

the same number of compounds as present in the set of actives.  This selection was repeated ten 

times to generate ten random subsets of decoys paired with the actives.  The Area Under the 

receiver operating characteristic Curve (AUC) values for retrieval of actives by actives were 

computed for each subset (individual curves and values are provided in Figure S17) and are 

summarized by the mean, standard error in the mean and range for each target in Table 3. The 

AUC for the full set (not the balanced subset) could only be computed for two of the smaller sets 

(AMPK and CXCR4) due to the requirement for N x N comparisons to compute this metric; these 

two targets achieved AUC values of 0.65 and 0.57 respectively, both of which have a 95 % 

confidence interval range that indicates real enrichment. All of the targets apart from CP3A4 and 

HIVPR exhibit enrichment by this measure and these are the targets with the highest median 

molecular weight and also more hand-in-glove-like. Context for these values is provided by 

comparison to those obtained by the devisors of DUD-E using docking, shown in Figure 9.28 The 

performance of the two methods tracks quite well and docking usually performs better than shape 

fingerprints, as might be expected given the higher information content in a protein structure. GCR 

achieves better outcomes with shape fingerprints than with docking and this likely reveals that the 

protein structure used for the docking is inappropriate in this case. Ligand shape methods are 
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advantageous when no structure or only structures with a weak link to the desired mode of action 

are available but even then, a number of alternative methods for computing relative shape have 

superior performance.13, 15, 29 An alternative classification in which the shape fingerprints were used 

to create a decision tree for each of the 10 balanced subsets is detailed in supporting information 

Section S6 and permits over 80% of compounds to be correctly divided between active and decoy 

(Table 3). 

 

Table 3. Descriptive statistics for shape fingerprints applied to the DUD-E diverse set. 

Target Average AUC from ten-fold 
resampling ± standard error 
[range in brackets] 

Average percentage of 
compounds classified 
correctly by decision tree 

Median molecular 
weight of actives 
[range in brackets] 

AKT1 0.571 ± 0.001 [0.565-0.577] 82.4  441 [251 – 594] 

AMPC 0.622 ± 0.007 [0.597-0.657] 81.2 311 [137 – 426] 

CP3A4 0.514 ± 0.005 [0.486-0.527] 80.8 464 [134 – 598] 

CXCR4 0.603 ± 0.008 [0.576-0.637] 87.4 391 [211 – 571] 

GCR 0.579 ± 0.003 [0.560-0.592] 84.6 430 [294 – 593] 

HIVPR 0.468 ± 0.010 [0.457-0.545] 85.6 543 [245 – 600] 

HIVRT 0.536 ± 0.003 [0.525-0.552] 83.0 347 [182 – 590] 

KIF11 0.699 ± 0.004 [0.685-0.717] 89.2 404 [211 – 595] 
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Figure 9. The AUC values obtained by docking are plotted against those obtained by shape 

fingerprint comparisons. 

 

Given that shape fingerprints neglect the chemical structure of the molecule they should 

complement the 2D fingerprint methods that are exclusively dependent on the chemical structure 

(it has been shown that this is a good way of detecting when a method has identified scaffold 

hops).78 In order to compare and contrast the two approaches, various types of 2D fingerprints 

(MACCS keys, path, tree and circular) for both test sets were generated using Openeye’s TK and 

compared using a Similarity Tanimoto.79 The calculated AUC values are shown in Table 4. The 

AUC values are higher when using 2D fingerprints for both test sets (full details of the test sets are 

provided in section S3). However, considering that shape fingerprints do not use any chemical 

information about the molecules but only their shape, the slightly worse AUC values than for well-

established methods is not too surprising.  
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Table 4. Comparison of the AUC values for different fingerprint methods. In the case of shape 

fingerprints, values obtained for SD10 with Design Tanimoto = 0.65 and Bit On Value = 0.60 are 

shown.5 

 Fingerprint method 

 MACCS166 Path Tree Circular Shape Fingerprints 

Test Set 1 0.74 0.67 0.69 0.69 0.64 

Test Set 2 0.94 0.94 0.94 0.97 0.85 
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Figure 10. Plot showing Fingerprint Tanimoto values obtained by both Shape Fingerprints (x-

axis) and MACCS166 fingerprints (2D fingerprints, y-axis) for each comparison in Test Set 1 (top) 

and Test Set 2 (bottom). Points in red correspond to compound pairs that share biological activity 

those in blue do not. 

To investigate the complementarity between the two fingerprint types, the Tanimotos between 

pairs of molecules have been computed with both MACCS166 and shape fingerprints. These are 

plotted against one another in Figure 10. Many pairs of molecules with shared biological activity 

(colored red) have high similarity according to both methods, which is unsurprising.  There are a 

small number of examples of molecules with low shape similarity but high 2D fingerprint 

similarity that share biological activity but, there are also a small number with high shape similarity 

and relatively low 2D fingerprint similarity. The orange box on each of the plots in Figure 10 

highlights these examples. These are connections that represent scaffold hopping.78 
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Two examples of a pair of structures for each of the test sets is shown in Figure 11. Two 

neuraminidase inhibitors (one that contains an aromatic core and one with a monosaccharide core) 

provide a very clear example of scaffold hopping between compounds that are likely to have 

different physical properties while the indole and ortho-substituted phenol pair of tryptophan 

synthase inhibitors show that ring-opening scaffold hops can also be detected by shape 

fingerprints.80-83 

 

 

 

 

Figure 11. The structures of molecules binding to Neuraminidase with pdb codes: 1b9s (A) and 

1nsc (B) and Tryptophan Synthase with pdb codes: 1k7e (C) and 1tjp (D). 

 

Conclusions 

Two absolute descriptions of molecular shape were used to create self-organizing maps (shape 

maps) for the 8 targets in the DUD-E diverse subset. Shape fingerprints and USR are able to 

provide shape maps that reveal the preferences of each target and provide insights concerning the 

range of shapes that are tolerated and the strictness of any shape preferences. The USR method is 

sufficiently fast to be applicable to the full set of 102 DUD-E targets. By placing a set of actives 
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and the set of physical-property-matched decoys generated by the DUD-E system, coordinates 

enriched in actives in the shape maps can be identified. Those targets that find more than 50 % of 

actives at enriched coordinates can be thought of as key-in-lock, while those with 50 % or less are 

hand-in-glove. The former (key-in-lock) are unlikely to either show high protein flexibility or to 

have large binding sites. This is a remarkable insight concerning the nature of the protein target 

that is available from study of a set of active compounds alone and we will be probing this link 

further. 

In the development of a shape fingerprint method, the best Shape Database that was obtained is 

provided to permit others to apply this method and can be accessed via our GitHub repository: 

https://github.com/LeachResearchGroup/ShapeFingerprints.  

Supporting Information.  

A full description of the developments of the shape fingerprints, the methods, the two test sets, 

AUC values for the two test sets obtained with varying shape databases, analysis of the DUD-E 

set with the optimized fingerprint method and examples of its use to obtain shape comparators, 

chemical structures of compounds at enriched coordinates in shape maps, shape maps for the full 

DUD-E set. 
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