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ABSTRACT 

For many decades the designs of earthquake-resistant (aseismic) structures have been 

influenced by scaled experiments, underpinned by the theory of dimensional analysis.  

Although scaled experiments still play an important role, they are recognised to suffer 

shortcomings, which are particularly severe when scaling ratios are pronounced.  The issue is 

one of scale effects and the inability of dimensional analysis to offer any solution in their 

presence. 

This paper is concerned with a new theory for the analysis of aseismic structures that is 

founded on the metaphysical concept of space scaling, where beams, substructures or 

buildings etc. are contracted through the mechanism of space contraction.  Although space 

contraction is evidently practically impossible the theory describes the effects of such a 

process on the underpinning governing mechanics involved.  Unlike dimensional analysis the 

approach which is termed finite similitude embraces scale effects and accounts for them by 

linking experiments at more than one scale. 

It is demonstrated in this work how it is possible to reconstruct full-scale behaviour by means 

of two scaled experiments of a selected beam, column and multi-storey structure when 

subjected to dynamic loading conditions.   

 

Keywords: finite similitude, aseismic structures, dimensional analysis, earthquakes, scaled 

experimentation. 

  



1. INTRODUCTION 

For massive structures like sturdy long bridges and skyscrapers, earthquake testing methods 

such as spot tests or indoor tests have become more challenging and less feasible.  In such 

cases, testing scaled models is more practical, easier to implement and is a cost-effective 

option and can often be the only solution where testing the real-life prototype is impossible. 

Scaled experimentation continues to play a significant role in process, product design and 

testing for components and products but is recognized to suffer from severe limitations.  The 

difficulty with scaling arises mainly from the non-linear relationships between the physical 

constraints imposed on any scaled physical system.  The most readily observable changes that 

take place are those associated with geometric measures with length changing linearly, area 

quadratically and volume cubically with scale.  This means for example that under a scaled 

contraction, the body forces will lessen at a much faster rate than the forces on the surface.  

The complexity of the multitude of changes involved cast a significant shadow over the 

reliability of scaled experimentation and this issue along with the rise of computational 

modelling has undoubtedly led to a diminution of scaled physical modelling trials in recent 

times. 

The issue is well appreciated by the academic and industrial communities and the founding 

bedrock of modern-scaled experimentation is dimensional analysis and the concept of 

similarity.  Similar structures behave identically and through the application of dimensional 

analysis, similarity can be sought [1].  Rather unfortunately similarity is seldom possible and 

dimensional analysis provides no solution when any two structures are not similar.  In some 

respects, the theory that underpins scaled experimentation has not changed fundamentally for 

over a century and dimensional analysis remains the only ubiquitous scaling theory.  

Dimensional analysis is underpinned by the Buckingham Pi theorem [2] and should the 

dimensionless quantities (Pi groups) coincide for the full-scale and scaled systems, then the 

two processes are denoted similar.  However, this seldom happens in practice [3] and the 

approach has to-date had little success in complex structural applications.  Although 

structural engineering has been a field of study for many of hundreds if not over a thousand 

years, earliest attempts at scaled experimentation prior to the adoption of scaling rules were 

somewhat rudimentary and highly inaccurate.  The work of Buckingham [2] provided the 

foundation for more realistic scaled models and the first application of the scaled method can 

again be attributed to him [4], although for a purely theoretically study.  A significant 

increase in the number of publications about scaled methods followed the seminal work of 

Buckingham [2].   



A number of scaling approaches [5], [6] have materialised over the years and these include: 

energy methods (EM), similitude and asymptotic models for structural acoustic research 

applications (SAMSARA), empirical similarity method (ESM) and sensitivity analysis (SA).  

Each has their own merits and demerits, but none match the simplicity and ubiquity of 

dimensional analysis.  Moreover, a fundamental concern with all these approaches is that 

they cannot accommodate to any significant degree scale effects.  Scale effects are those 

changes in behaviour that take place with scale. and recent attempts (e.g. empirical similarity 

[6], model variation [7], sensitivity analysis [8]) to address the problem of scale effects are to 

a large extent unsatisfactory being founded on perturbations around the standard definition of 

similarity [5].  The difficulty associated with scale effects has meant modern-day researchers 

adopting altogether different methodologies with the application and development of 

sophisticated computational approaches.  Computation however does not altogether bypass 

experimentation and for those processes involving complex material behaviour, uncertainties, 

unknown behaviour etc., experimentation still plays a critical role.  As noted by Simitses and 

Rezaeepazhand [9], some systems are so complex to make it almost impossible to make 

simplifying assumptions for direct simulation.  Complex material behaviour has led to the 

emergence of a plethora of constitutive models and multi-scale approaches [10]–[12].  It is 

beyond contention that computational approaches have led to significant advances but 

solving the problem of scale effects should provide alternative complementary approaches.   

Full-scale structural experiments have the advantage of being able to replicate to good 

accuracy the exact environment and realistic conditions of any situation and represent a very 

direct approach for the analysis of physical phenomena.  Thus, despite the complexities of the 

physics involved, experiments at full scale can provide precise and valuable data.  However, 

with every increasing advances taking place in engineering and technology, the requirements 

on most experiments are becoming more involved with financial and time requirements 

increasing accordingly.  This is particularly acute in the case of damage-test experiments, 

which for any realistic structure can be expensive to perform as repetition is often required. 

In the case of seismic structural testing the transfer of information from the scaled model to 

the structure is required to follow scaling rules if results are to be meaningful.  Scaling 

however has its own limitations, where several aspects of the structure cannot always be 

scaled as a result of constraints on testing equipment (e.g. shake table) or unavailability of 

materials with the required properties etc.  In order to understand the behaviour of the 

structure under earthquake loading, present-day tests are carried out and interpreted with the 

application of well-researched scaling relationships.  There exist many interesting seismic 

structural studies involving shake tables, the application of scaling rules and dimensional 



analysis.  Sharma et al. [13] for example analysed a three-storey scaled model by applying 

scaling laws and dimensional analysis theory to investigate the behaviour of the model.  

Similarly, a scaled model was constructed by Guerrero et al. [14], which was limited to 1/10 

of the full-size structure due to size limitations and the cost of the experimental equipment.  

The prototype structure analysed in this reference is located in Mexico City as stated by 

Guerrero et al. [15].  Similarly, shake-table testing and studies have been carried out on a 

one-storey, single-bay steel frame by Nader and Astaneh-Asl [16].  They analysed the 

performance of steel structures under varying earthquake loadings simulated at smaller scales 

experimentally. In reference [10] an investigation into the effects of various material and 

section-level parameters on the structural response metrics was achieved by utilising the 

financial and logistical benefits offered by small-scale testing (1/8-scale factor).  Other 

studies involving shake table testing are those done on: one-bay, two-storey steel frames, 

investigating such things as second-order inelastic behaviours [17]; scaling guidelines for 

modern unreinforced masonry buildings with hollow clay brick units (1/2 scale factor) [18] 

and; testing of a 1/50 scaled model under one and two dimensional base excitations and 

gradually increased amplitudes [19].  The main difficulty with all these studies is that they are 

limited by the inability of dimensional analysis to account for scale effects and the ad hoc 

nature of the scaling rules needed to extend the analysis. 

This paper is concerned with a completely new concept for scaled experimentation termed 

finite similitude [20]–[25] and attempts to link experiments at more than one scale in a 

systematic manner. The work here builds on earlier work on scaling (now termed zeroth-

order finite similitude) that has been applied in the areas of impact mechanics [24], powder 

compaction [20], biomechanics [23] and metal forming [22], and involves only one scaled 

experiment.  The work presented here is the first application of finite similitude to seismic 

studies with a more advanced version of the finite-similitude theory involving two scaled 

experiments. 

The finite similitude theory is founded on the metaphysical concept of space scaling which is 

introduced in Section 2.  The focus on space leads to an analysis method that is innately tied 

to the effects of space contraction, i.e. it naturally leads to control volume concepts in Section 

2.2.  At first sight the focus on control volumes and transport equations might appear 

somewhat removed from structural analysis but it is simply a consequence of the path the 

theory takes to move from space, to a moving region of space (control volume) to transport 

equations (laws of nature) to field identities and ultimately to structural analysis.  The most 

critical step in the finite-similitude approach as discussed in Section 2.3 for structural 

mechanics is the projection of the trial-space (where the scaled experiment resides) physics 



onto the physical space (where the full-scale structure resides).  This projection reveals in one 

form or another, scale dependences, explicitly for geometric measures such as area and 

volume but implicitly for scalar, vector and tensor fields such as density, displacement and 

stress, respectively.  The problem of scaling becomes one of finding these dependencies, 

which is achieved in this paper through a new form of similarity (first-order finite similitude) 

as described in Section 3.  The solving of the new differential similarity identity is shown in 

Section 3.1, where physically intuitive field relationships are revealed.  One of the features of 

finite similitude is that it does not concern itself with constitutive equations as it reconstructs 

all fields in the physical space; this along with application practicalities for the theory are 

presented in Section 3.1 and Appendix A.  Sections 4, 5 and 6 examine the behaviours of a 

beam, column and three-storey structure, respectively when subject to dynamic excitation to 

illustrate how the theory can replicate full-scale behaviours.  Introduced in Section 5.2 and 

Appendix B is a new proportional-fields assumption for the determination of similitude 

parameters.  The paper ends with a conclusions section. 

2. THE THEORETICAL FOUNDATION OF FINITE SIMILITUDE 

The finite similitude theory is founded on a metaphysical concept that cannot be physically 

enacted.  However, the purpose of metaphysical-space scaling is threefold; firstly it is to 

provide a physically intuitive approach to scaled experimentation, where it is possible to 

imagine the structure of interest being contracted or expanded by the contraction or 

expansion of space.  Secondly, it facilitates the precise mathematical description of scaling, 

where its effect can be precisely relayed to the underpinning physics of a structure.  Thirdly, 

since in principle, space can be metaphysically distorted in different ways, it introduces a 

high degree of flexibility, that is simply absent from competing methods. 

2.1. The metaphysics of space scaling 

The analysis of any structure begins with the identification of the inertial frame but at least 

two inertial frames are involved with scaling, one for the physical and another for the trial 

space.  The starting point therefore is the specification of the trial-space coordinate system 

(denoted by tsx ) along with a physical-space coordinate system (denoted by psx ), where the 

subscripts “ts” and “ps” refer to trial and physical space, respectively.  It is assumed here that 

the coordinate frames, linked to these systems, are orthonormal.  It should be appreciated 

however that structures in the scaled space are viewed from the viewpoint of an external 

observer, i.e. one unaffected by the scaling process and the choice of coordinate frame is 

therefore essentially a matter of choice.  The overall concept of space scaling is presented in 



Fig. 1, where the orthonormal coordinate frames for the physical space  iG  and the trial 

space  
i

g  are depicted.  Shown in the figure are two measures of time pst  and tst  for the 

physical and trial spaces, respectively.  Since Newtonian mechanics is the focus here the 

existence of absolute time is assumed and it is assumed further that pst  and tst  are related, i.e. 

a function relationship ps tst t  exists, which in differential terms is of the form ts psdt gdt= , 

where g  is a positive parameter.  As indicated in the figure, metaphysical scaling is 

quantified mathematical by a temporally invariant affine map of the form ps tsx x , which 

can be represented in differential terms by ts psd F d= x x , where in suffix notation this is 

i i j

ts j psdx F dx= .  Here the matrix F  is both spatially and temporally invariant to reflect the 

focus on scaled experimentation.   

 

Figure 1. Metaphysical space-scaling concept and inertial coordinate systems 

The nature of the space scaling is dictated by the matrix F  and anisotropic scaling is indeed 

possible where geometric similarity as it is traditionally known can be broken.  The focus 

here however is on isotropic scaling with F I= , where I  is a unit matrix and   is a 

positive parameter that dictates the extent of linear scaling taking place.  The effect of   on 

the physical space is illustrated in Fig. 2, with 0 1   indicating contraction, 1 =  for no 

scaling and 1   for expansion. 



 

Figure 2. The role played by   in space scaling. 

With the establishment and quantification of space scaling it is now possibly to relate the 

differential-geometric measures of volume and area, i.e. 3

ts psdV dV=  and 

2

ts ts ps psd d = n n , where, tsdV  tsd  and tsn  refer to volume and area measures, and a unit 

normal vector, respectively in the trial space; subscript “ps” identifies like quantities in the 

physical space.  

2.2. The mathematics of control volume motion 

To relate analyses of structures in the trial and physical spaces it is first necessary to be able 

to identify connections between two regions of space.  This can be achieved by means of 

control volumes, which are regions of space that can move and distort.  Control volumes 

invariably lead to transport equations which at first sight may appear somewhat remote from 

traditional structural analysis, which is the focus of study here.  However, transport equations 

provide the correct description of the underlying laws of nature as they incorporate directly 

the changes in geometric measures.  The motion of a trial-space control volume 
*

ts  can be 

described mathematically using a velocity field 
*

tsv  and by contrasting its location with to a 

reference control volume 
*ref

ts .  The basic idea is depicted in Fig. 3 and also shown is the 

map 
*

ts tsx  with 
*ref

ts ts  and 
* *

ts tsx . 



 

Figure 3. The kinematics of a moving control volume 
*

ts . 

The idea presented here is very similar to that employed to describe the motion of a body of 

mass but in this case, mass is not involved and the body is a moving region of space.  The 

coordinate point 
*

tsx  is attached to 
*

ts  and its velocity 
*

tsv  is defined by the partial derivative 

* * *
*

*

ts

ts ts
ts

ts ts

D

D t t


= =



x x
v



          (1) 

where the derivative 
*

*
ts

D

D t
 is used here to signify a temporal derivative with the reference 

coordinate ts  held constant. 

Since a control volume is nothing more than a region of space it is affected in precisely the 

same manner as the accompanying scaled space and the identity * *

ts psd d=x x  is assumed to 

apply.  Moreover, in view of the temporal relationship ts psdt gdt=  it follows that control-

volume velocity fields are related by 

* 1 *

ts psg −=v v            (2) 

which provides synchronous motion of the control volumes 
*

ts  and *

ps . 

The overall picture displaying the connectivity between reference and moving control 

volumes in the two spaces along with the synchronous motion is depicted in Fig. 4.  Note that 

the identity * *

ts psd d=x x  can be contrasted again the space-scaling identity ts psd d=x x  

where it is appreciated that the former unlike the latter is relating moving points.   



 

Figure 4. Synchronous motion of control volumes 
*

ts  and *

ps . 

Eq. (2) is closely related to the law-of-volume identity  

* *

*
* * *

*
0

ts ts

ts ts ts ts

ts

D
dV d

D t
 

−   =  v n         (3) 

which is an equation not considered in structural mechanics as it has no field associated with 

it but nevertheless plays a significant role in finite similitude theory. 

It is relatively straightforward to prove that this equation is proportional to the physical space 

equation 

* *

*
* * *

*
0

ps ps

ps ps ps ps

ps

D
dV d

D t
 

−   =  v n         (4) 

on substitution of * 3 *

ts psdV dV=  and * 2 *

ts ts ps psd d = n n  (which follows from * *

ts psd d=x x ) 

and ts psdt gdt=  along with Eq. (2) to give 



* * * *

* 3 *
* * * * * *

* *
0

ts ts ps ps

ts ts ts ts ps ps ps ps

ts ps

D D
dV d dV d

D t g D t



   

 
 −   = −   =
 
 

   v n v n    (5) 

which evidently confirms proportionality. 

The whole idea of the metaphysical space-scaling approach is encapsulated by Eq. (5), where 

the solution of an equation in one space confirms the solution of the corresponding equation 

in another. 

2.3. Scaled structural mechanics in transport form 

The transport equations important to structural mechanics for finite similitude are those 

concerned with continuity, momentum and movement and take the form 

( )
* *

*
* * *

*
0

ts ts

ts ts ts ts ts ts ts

ts

D
dV d

D t
 

 

+ −   =  v v n                   (6a) 

( )
* * * *

*
* * * * *

*
0

ts ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
dV d d dV

D t
  

   

+ −   −   − =   v v v v n n b             (6b) 

( )
* * *

*
* * * *

*
0

ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
dV d dV

D t
  

  

+ −   − =  u u v v n v               (6c) 

where ts  is mass density, tsv  is material velocity, tsu  is material displacement, ts  is Cauchy 

stress and tsb  is specific-body force (i.e. force per unit mass). 

It is usual not to involve the continuity equation in structural mechanics as density is often 

assumed fixed but in the context of scaling and physical modelling, materials can be 

substituted and it is necessary to understand what substitutions are allowable hence the reason 

for its inclusion here.  Likewise a separate equation for movement is generally not a feature 

and this was introduced in reference [26] to bring displacement into the family of transport 

equations and it is particularly convenient to include this here as displacement is central to 

describing structural deformation. 

The next step and most critically important along the path to scaling identities is the 

projection of Eqs. (6) onto the physical space, as it is through this mathematical operation 

that scale dependencies are exposed.  Consider then the substitution of * 3 *

ts psdV dV= , 

* 2 *

ts ts ps psd d = n n , ts psdt gdt=  and Eq. (2) into Eq. (6) (and Eq. (3) for completeness) and 

multiplication throughout by g .  In addition, Eq. (3) and each of Eqs. (6) are multiplied 

throughout by non-zero scaling parameters 
1

0 , 0

 , 0

v  and 0

u , respectively; the role of 

which will be made clear.  These operations provide the following four equations: 



( )
* *

*
1 1 1 3 * 1 3 * *

0 0 0 0*
0

ps ps

ps ps ps ps

ps

D
T dV d

D t
     

 

= −   =  v n                (7a) 

( ) ( )
* *

*
3 * 3 * *

0 0 0 0*
0

ps ps

ts ps ts ps ps ps ps

ps

D
T dV d

D t

          
 

= + −   =  V v n               (7b) 

( ) ( ) ( ) ( )
* *

*
1 3 * 1 3 * *

0 0 0 0*

ts ps

v v v v

ts ps ts ts ps ts ps ps ps

ps

D
T g dV g d

D t
         − −

 

= + −   V V V v n  

* *

2 * 3 *

0 0 0

ps ps

v v

ts ps ps ts ts psg d g dV    
 

−   − = n b             (7c) 

( ) ( ) ( ) ( )
* *

*
3 * 3 * *

0 0 0 0*

ps ts

u u u u

ts ts ps ts ps ps ps ps ps

ps

D
T dV d

D t
         

 

= + −   U U V v n  

( )
*

3 *

0 0

ps

u

ts ps psdV   


− = V               (7d) 

where 1

ps tsg −=V v  and 1

ps ts −=U u . 

The importance of Eqs. (7) should not be understated as they capture all scale dependencies 

that are a feature of scaled structural mechanics.  The appearance of 3  and 2  are explicit 

and are recognised to arise from the change in geometric measures of volume and area.  

Other dependencies are hidden, which include the fields ( )ps V  and ( )ps U  along with 

other fields.  In this context scaling has been transformed into a problem of revealing the 

behaviour of hidden fields and unlike dimensional analysis embraces the changes that take 

place in scaled experimentation.  The process for revealing hidden dependencies can take one 

of two routes, with one requiring additional information (i.e. scale effects, boundary 

condition etc.) about the specific problem under consideration and the other effectively 

assuming how things behaviour in a global sense on application of a scale invariance.  This 

latter approach is the focus here and is particularly well suited to physical modelling where 

the idea is to design physical-trial experiments to satisfy the scale invariance imposed. 

3. THE MATHEMATICS OF SCALE INVARIANCES 

The transport Eqs. (7) are of the general form 0 0 0T  = , with   set to 1 ,  , v  and u .  An 

obvious  –invariance for scaling is that ( )0 0T    does not depend on  , which in 

mathematical terms is 

( )0 0 0
d

T
d

 


           (8) 



where the equality sign “” signifies that the derivative is identically zero. 

Zeroth-order finite similitude refers to a system of transport equations that satisfies this 

particular identity and details on its application can be found in reference [20]–[22], [24], 

[25].  The “initial conditions” for Eq. (8) are taken to be the physical system at 0 1 = = .  

Note for Eqs. (7) that the requirement for ( )0 0 1 0T  =  to match the physical system imposes 

the following constraints on the scaling parameters: ( ) ( ) ( ) ( )1

0 0 0 01 1 1 1 1v u   = = = =  along 

with ( )1 1g =  since ( ) ( )1 1ts ps psdt g dt dt= = .  Similarly the fields are required to satisfy: 

( )1ts ps = , ( )1ps ps=V v , ( )1ps ps=U u , ( )1ts ps=  , and so on for other fields.  In the 

presence of scale effects, Eq. (8) will not be satisfied and ( )0 0T    will therefore depend on 

  but prior to examining this situation it is important to examine how attempting to satisfy 

this equation impacts on the scaling parameters ( )0

  .  Note that integration of Eq. (8) 

between 1  and 0 1 =  provides ( ) ( ) ( )0 0 1 0 0 0 0 1T T T        = , i.e. the transport equations 

at any arbitrary scale 1  match the full-scale system, which of course is very similar to the 

invariance offered in dimensional analysis where dimensionless-governing equations do not 

change with scale.  Note also that   is eliminated from Eq. (7a) on setting ( )1 3

0   −= , 

which satisfies as required ( )1

0 1 1 = .  The condition ( )1 3

0   −=  is a necessary and 

sufficient requirement for the law of volume to be satisfied at any scale.  Turning attention 

now to Eq. (7b) it is apparent that a necessary but not sufficient condition for satisfying Eq. 

(8) with  =  is that 3

0ps ts

   = .  This condition is not sufficient as Eq. (8) additionally 

requires ps ps=V v , which is assumed not to be satisfied here.  Examination of Eqs. (7c) and 

(7d) provide the necessary (but not sufficient) relationships 
1

0 0

v g   −=  and 
1

0 0

u   −= .   

The identities 3

0ps ts

   = , 
1

0 0

v g   −=  and 
1

0 0

u   −=  are to be taken forward to the 

next level of finite similitude termed first-order finite similitude. The observation that the 

scaling parameters ( )0

   have the role of attempting to eliminate   from ( )0 0 0T   =  

suggests that a way forward is to consider the scaling of the identity 

( )1 0 0

d
T T

d

  


=           (9) 

with new scaling parameters ( )1

   (satisfying ( )1 1 1 = ) and consider then 

( ) ( )1 1 1 0 0 0
d d d

T T
d d d

      
  

 
=  

 
                 (10) 



which is the scaled invariance for first-order finite similitude and was first introduced in 

reference [27] for impact mechanics. 

This approach can lead to higher forms with 

( )2 1 1

d
T T

d

  


=                   (11) 

etc. but it will become clear that Eq. (10) leads to the requirement of two scaled structural 

experiments, so is sufficient for our purposes here. 

It is important to note that should Eq. (8) be satisfied (i.e. zeroth-order finite similitude), then 

Eq. (10) is automatically satisfied which is a desirable feature.  Also expanding the derivative 

on the left-hand side of Eq. (10) gives 

( ) 1 1
1 1 1 1 0

d dTd
T T

d d d

 
   

 
  

= +                    (12) 

which is an expansion of the derivatives of 
0 0T  , which at any arbitrary 1 =  can 

represent (by means of osculation) any other linear combination of the derivatives of 
0 0T   

(up to the same order), which is sufficient for scaling purposes and illustrates that there is no 

better alternative to Eq. (10). 

The form of Eq. (10) happens to be ideal for integration by means of divided differences as 

discussed in the following section, which provides added justification for its form. 

3.1. First-order solutions 

Prior to examining the solution to Eq. (10) for transport Eqs. (7) it is judicious to substitute 

the constraints 3

0ps ts

   = , 
1

0 0

v g   −=  and 
1

0 0

u   −=  to provide 

( ) ( )
* *

*
* * *

0 0 *
0

ps ps

ps ps ps ps ps ps ps

ps

D
T dV d

D t

    
 

= + −   =  V v n              (13a) 

( ) ( )
* *

*
* * *

0 0 *

ts ps

v v

ps ps ts ps ps ps ps ps ps

ps

D
T dV d

D t
   

 

= + −   V V v v n  

* *

* * 0

ps ps

ts ps ps ts psd dV
 

−   − = n B            (13b) 

( ) ( )
* *

*
* * *

0 0 *

ps ts

u u

ps ts ps ps ps ps ps ps ps

ps

D
T dV d

D t
   

 

= + −   U U v v n
*

* 0

ps

ps ps psdV


− = V           (13c) 

where 2

0

v

ps tsg =  , 
3 2 1

0

v

ts ts ts tsg g    −= =B b b  and where the transfer ( )*

ps ps ps− V v n  in 

the momentum and movement equations is approximated by the zeroth-order expression 



( )*

ps ps ps− v v n  to reflect the fact that the term ( )ps ps psV V n  is negligible in structural 

mechanics but also to avoid the necessity to consider higher forms of similitude.  

The approach to solving Eq. (10) is to apply divided differences first to Eq. (9) along with a 

mean-value theorem for integration to provide 

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2

   

  
   

   
 

−


−

T T
T               (14a) 

( ) ( )
( ) ( )0 0 0 0 0 10 0

1 1 1 1 1

0 1

   

  
   

   
 

−


−

T T
T               (14b) 

where 1

2 2 1     and 0

1 1 0     with 2  and 1  being scales for trial-space 

experimentation and 0 1 =  being at full scale. 

In view of Eq. (10) the next divided difference gives zero or equivalently 

( ) ( )0 1

1 1 1 1 1 2T T       , which on substitution of Eqs. (14) provides after some 

manipulation 

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T              (15) 

where 

( )
( )

1

1 2 0 1
1 0

1 21 1

R







   

  

  −
 =  
  −  

                  (16) 

with Eq. (15) providing the sought expression for relating trial-space experiments to the full-

scale structure, and where 1R
 takes on the form of a parameter due to indeterminacy of 

1

 . 

Application of Eq. (15) to Eqs. (13) provides the following field identities: 

( ) ( ) ( )( )1 1 1 2ps ps ps psR  + −v =V V V                (17a) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v =V V V                (17b) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =                   (17c) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B                (17d) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U                (17e) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v =V V V                 (17f) 



where to arrive at a consistent velocity expression it is required that 1 1 1 1

v uR R R R= = = , 

which is achieved on setting 1 1 1

v u  = = , and where as mentioned above 1

ps tsg −=V v , 

1

ps ts −=U u , 2

0

v

ps tsg =   and 
2 1

ts tsg  −=B b . 

The condition 1 1 1

v uR R R = =  provides a physically-intuitive solution for Eq. (15) in that it 

indicates that the differences between the experiments as described by transport Eqs. (7) are 

proportional.  The theory provides the fields in Eqs. (17) whose differences are also 

proportional.  The final solution to the scaling problem is rather elegant in its simplicity and 

all that remains is the details of its application. 

3.2. Consistency and applicability 

One of the features of the transport approach is that it does not depend on nor utilise 

constitutive laws as it provides all the physical fields needed for the physical space.  In small 

deflection theory for example the identities ( ) ( )1 1

1 1 2 2

i i i

ps ps psdx dx dx   − −= =  and Eq. (17e) 

provide the strain relationship  

( ) ( ) ( )( )1 1 1 2ps ts ts tsR  + − =                      (18) 

which confirms that with first-order finite similitude, strains are not required to be identical, 

which is a feature of dimensional analysis. 

Note also that Eq. (17f) and (17e) are consistent since division of the latter by 

1 1

1 1 2 2ps ps psDt g Dt g Dt− −= = , with ( )i ig g =  and ( )ts i ts it t =  gives 

( ) ( ) ( )( )1 1

1 1 1 1 1 1 1 2

1 1 1

ps ps ps

ps ps ps

ps ts ts ts

D D D D
g R g g R

Dt Dt Dt Dt
  

 
= + − = + − 

 

psu U U U
V V V             (19) 

as expected, where 
ts

D
Dt

 and 
ps

D
Dt  means material derivatives. 

Before discussing the practical application of the theory, it is useful at this point to tabulate 

for both zeroth and first-order theories the important relationships, which are brought 

together in Table 1.  It is worth noting that despite the relative complexity involved in the 

derivation of the field relationships in Table 1, their application transpires to be relatively 

straightforward. A detailed set of instructions for the application of both zeroth and first order 

finite similitude is presented in Appendix A.  A particularly nice feature of the proposed 

similitude approach is that it can be applied directly to theoretical, numerical, and 

experimental results.  The examples presented in the next three sections are purposely chosen 

to illustrate this point but also to demonstrate the relative ease of applicability for problems of 

increasing complexity. 



Table 1. Important zeroth and first-order finite similitude identities 

Finite similitude relationships 

Density 

0th-order 
3

01 1 1ps ts

   =  

1st-order* ( )3 3 3

01 1 1 1 01 1 1 02 2 2ps ts ts tsR           = + −  

Displacement 

0th-order 
1

1 1ps ts −=u u  

1st-order ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  

Strain 

0th-order 1ps ts=   

1st-order ( )1 1 1 2ps ts ts tsR= + −     

Stress 

0th-order 
2

01 1 1 1ps tsg =   

1st-order ( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g       = + −     

* Not derived in this work 

4. THE SCALING OF A BEAM: AN ANALYTICAL STUDY 

This section serves to provide an initial test on a problem of some simplicity to illustrate the 

practical implementation of the zeroth and first-order finite similitude theory by the scaling of 

a cantilever beam.  The cantilever beam is depicted in Fig.5 and the goal here is to ascertain 

whether it is possible to capture the dynamic response of the beam using either one (zeroth-

order) or two (first-order) trial-space tests.  The behaviour of the cantilever beam in the 

physical space is assumed to be known in this analysis although in practice this might not be 

the case.  It is assumed here that the free vibration response of the cantilever is described by 

the well-known Euler-Bernoulli solution [28]: 

( ) ( ) ( )
1

, cos ; ,n n n

n

w x t a t x L  


=

=                 (20a) 

where the eigenfunctions ( ); ,nx L   are 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

sinh sin
; , cosh cos sinh sin

cosh cos

n n

n n n n n

n n

L L
x L x x x x

L L

 
     

 

 −
= − − −        + 

    (20b) 



 

Figure 5. Uniform cantilever beam in the physical space 

and where n L  represents the frequency coefficient [28], ( ) ( )
2 4

n n L EI AL  =  are 

natural frequencies, with Young’s modulus E , second moment of area 31
12

I bh= , cross 

sectional area A bh= , mass density   and na  are set to capture the initial configuration. 

 

Figure 6. Projected trial and physical space models for the cantilever beam. 

An overall view of the scaling process with one or two trial experiments involved is 

presented in Fig. 6.  Shown in the figure is how space scaling is used to project the “real” 

trial-space experiments into the physical space and their subsequent combination using Eq. 

(15).  Shown also is the effect of space scaling on the load at the free end of the beam with 

the aim that on combination of the projected beams the force 
psF  is returned.  In the tests that 

follow three designs are considered at selected scales 1
2 5

 =  and 1
1 2
 = , and are labelled 

Designs I, II and III.  Design I is limited zeroth-order finite similitude with the same material 

used for both physical and trial space.  Design II is also for identical materials but applies 



first-order scaling with Design III looking at alternative materials typical to physical 

modelling. 

4.1. Design I: Zeroth order with identical beam materials 

Applying the zeroth-order procedure presented in Appendix A provides: 

(i) The physical space cantilever is made of steel with properties listed at Table 2 and has 

dimensions 0.05 ps psa b m= =  and 1 psL m=  (see Fig. 6.).  The initial condition 

assumed to apply is obtained on setting constantna = for all 1n   with the constant 

specified so that ( ),0 0.1mps psw L =  and consequently the transient response is 

described by 

( )
( )( ) ( )( )

( )( )
1

1

cos ; ,

, 0.1

; ,

ps ps ps ps psn n
n

ps ps ps

ps ps psn
n

t x L

w x t

L L

  

 



=



=

=



              (21) 

where the function   is given in Eqs. (20). 

(ii) The dimensional scaling factor 1
1 2
 =  and consequently the steel (properties in Table 

2) trial-space cantilever beam has dimensions 1 1 0.025 mts tsa b= =  and 1 0.50 mtsL =  

as shown in Fig. 6. 

(iii) The density and elastic modulus are chosen to be fixed. 

(iv) The density and time scaling factors are determined and equate to 01 8.0 =  and 

1 0.5g =  so that the identities 3

01 1 1ps ts

   =  and 2

01 1 1 1ps tsE g E =  are satisfied. 

(see Table 1),  

(v) The initial deflection of the beam at the free end is set to ( )1 1,0 0.05mts tsw L =  in 

accordance with the displacement identity in Table 1. 

(vi) By testing the trial model, its deflection-time behaviour satisfies 

( )
( )( ) ( )( )

( )( )

t 1 1 1 1 1

1
1 1 1

1 1 1

1

cos ; ,

, 0.05

; ,

s ts ts ts tsn n
n

ts ts ts

ts ts tsn
n

t x L

w x t

L L

  

 



=



=

=



             (22) 

(vii) The final procedure is the lifting of the trial model response to predict the physical 

model (e.g. 1

1 1ps tsw w −= ).  

The results of this study are presented in Fig. 7 with the deflection at the free end captured as 

function of time; there is perfect match between the projected trial and physical results. 



4.2. Design II: First order with identical beam materials 

Applying the zeroth-order procedure presented in Appendix B provides: 

(i) The steel cantilever beam (properties in Table 2) in the physical space is again 

considered as in Section 4.1 with initial deflection satisfying Eq. (22) at time 0pst = .  

(ii) The dimensional scaling factors for the two trial-spaces are set to be 1
1 2
 =  and 

1
2 5

 =  making the dimensions of the two steel cantilevers (properties listed in Table 

2) to be 1 1 0.025 ts tsa b m= = , 1 0.50 tsL m= , 2 2 0.01 ts tsa b m= =  and 2 0.20 tsL m= , 

as illustrated in Fig. 6. 

(iii) The density scaling factors 
01

  and 
02

  are set on the basis of zeroth-order 

assumptions and equate to 01 8 =  and 02 125 =  so that the relationships 

3

01 1 1ps ts

   =  and 3

02 2 2ps ts

   =  are satisfied. 

(iv) The elastic modulus and the initial (or loading) conditions, which are displacement 

and the force required to cause this displacement are selected to be fixed. 

(v) The temporal and first-order scaling factor 1g , 2g  and 1R  are found to equate to 

1 0.5g = , 2 0.2g =  1 0.12R = − .  These are arrived by solving the following three 

algebraic equations:  

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsE g E R g E g E       = + −             (23a) 

( )2 1 2 1 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsF g F R g F g F       − − −= + −             (23b) 

( )1 1 1

1 1 1 1 1 2 2

end end end end

ps ts ts tsw w R w w  − − −= + −               (23c) 

where the end forces are set to 2 0.10ts psF F= , 1 0.20ts psF F=  (see Fig. 6) and the 

initial end displacements 2

end

tsw  and 1

end

tsw  are determined on the basis of these forces at 

static equilibrium. 

(vi) The initial conditions for the first and second trial models are set on the basis of end 

deflections 2

end

tsw  and 1

end

tsw , i.e. ( )2 2 2,0 end

ts ts tsw L w=  and ( )1 1 1,0 end

ts ts tsw L w= . 

(vii) Transient deflection of the beams in the trial space satisfy similar looking equations to 

Eq. (22) and explicitly are 

( )
( )( ) ( )( )

( )( )

t

1

1

cos ; ,

,

; ,

si tsi tsi tsi tsin n
end n

tsi tsi tsi tsi

tsi tsi tsin
n

t x L

w x t w

L L

  

 



=



=

=



              (24) 



where 1i =  or 2 . 

(viii) The final step is the combining of the trial-model prediction to produce a virtual 

model for comparison with the response of the beam in the physical space (e.g. 

( )1 1 1

1 1 1 1 1 2 2ps ts ts tsw w R w w  − − −= + − ) in accordance with Table 1. 

The results of this study are presented in Fig. 7 with the deflection at the free end captured as 

function of time; there is perfect match between the virtual and physical results. 

4.3. Design III: First order with different beam materials 

The results of Design-III are depicted in Fig. 7 for the situation of completely different 

materials used for physical (steel) and trial-models 1 (aluminium) and 2 (copper); see Table 2 

for properties.  In Design-III, the applied forces at the free end in the physical and trial spaces 

are determined on the basis of the maximum yield stress in the outer fibres of each beam, i.e. 

on the basis of 2endF YI Lh= , where Y  is yield stress.  These forces are used for initiation 

purposes and the determination of initial end deflections at static equilibrium.  Following an 

identical procedure as discussed for Design II the following results are obtained: 1 0.51g = , 

2 0.27g =  and 1 0.78R = − .  The results of the Design III study are presented in Fig. 7 with 

the deflection at the free end captured as function of time; there is again a perfect match 

between projected trial and physical results. 

Table 2. Material properties of steel, aluminum and copper [29],[30],[31] 

Material 
Density:   

( 3kg m ) 

Young Modulus: E  

(GPa ) 

Steel (S355) 7850 210 

Aluminium        2700 70 

Copper 8920 130 

 

 



 

(a)  

 

(b) 

Figure 7. Predicting the (a) spatial ( 0.015pst =  s) and (b) temporal response of the physical 

model using zeroth and first-order finite similitude theories in three designs. 

5. SEISMIC LOADING OF A COLUMN: NUMERICAL STUDY 

This section investigates the application of zeroth and first-order finite similitude to the 

earthquake loading of a relatively simple structure. A column is selected as the case study in 

order to focus the analysis on how the finite-similitude theory can be applied in seismic 

situations.  Three possible column designs are considered for first order and two for zeroth 

order; each design is discussed in the subsections below.  In order to give the study a degree 



of realism the Kocaeli Earthquake (1999) is applied in this study as the time-acceleration 

ground motion, which is depicted in Fig.8 [32]. 

 

Figure 8. Acceleration – Time graph for Kocaeli earthquake. 

5.1. First-order Finite Similitude: steel column 

The application of the first-order finite similitude theory to a steel column housed in the 

physical space, where three combinations of different materials for trial models are examined.  

The purpose is to reveal how well the selected trial experiments capture the behaviour of the 

steel column.  The dimensions of the steel column are provided in Fig. 9 and consist of a 

square section 0.1mps psa b= =  and height 4psl = m.  Geometric dimensions of the trial 

models for both zeroth and first-order finite similitude depend on 1  and 2 , which are set to 

1
1 4
 =  and 1

2 10
 = .  It is possible to let 1  and 2  remain unknown and determine them as 

part of the analysis but this aspect is not featured here as reasonable order-of-magnitude 

results are found possible on the basis of the selections made.  As alluded in Appendix B, the 

determination of scaling parameters is based on what physical quantities are considered 

important to be targeted (e.g. stress, acceleration etc.)  In seismic case studies the applied 

acceleration is an important physical quantity and matching applied acceleration (i.e. 

1 2ps ts ts= =A A A ) is often considered [33] as it can provide realistic and practical designs.  

Laboratories and devices for the application of seismic loads are of course limited in both 

size and load capacity and consequently constrain what is possible.  



 

(a) 

 

(b) 

Figure 9. Deformed shapes in (a) trial space and (b) physical at synchronised times for 

Design II. 



As in Section 4, the problem reduces to finding the temporal scaling parameters 1g  and 2g  

along with the first-order parameter 1R .  Three equations are selected for this purpose which 

are: 

2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2( )ps ts ts tsg R g g  − − −= + −A A A A                (25a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2( )ps ts ts tsg R g g       = + −                  (25b) 

1 1 1 2( )ps ts ts tsR= + −                     (25c) 

which are first-order approximations for acceleration, stress and strain, and where the 

expression for acceleration is readily derived by temporal differentiation of velocity in Eq. 

(17) and noting that 1 1

1 1 2 2ps ts tsdt g dt g dt− −= = . 

In all the tests considered the zeroth-order density is applied, i.e. 3 3

01 1 1 02 2 2ps ts ts

       = = , 

where 01

  and 02

  are set to match the density of the selected trial-space materials.  The 

behaviour of both trial and physical-space columns is achieved numerically by means of the 

commercial finite-element software ABAQUS [34]; meshes and element type are depicted in 

Fig. 9.  In practice of course, physical experiments would be undertaken but trialling the 

similitude theory is the focus here and numerical results are sufficient for this purpose. 

5.2. The proportional fields assumption 

In order to run scaled experiments in the trial space it is first necessary to specify 
1g  and 

2g , 

yet according to Eqs. (25), their solution is dependent on fields that are only available once 

the experiments have been run.  To avoid the need for a time-consuming and somewhat 

impractical iterative approach to resolve this issue, a proportional-fields assumption is made.  

Recall that both dimensional analysis and zeroth-order finite similitude involve proportional 

fields, assumed ab initio for dimensional analysis and obtained as an output from finite 

similitude.  The first-order theory on the other hand involves proportional differences as 

apparent in Table 1 for particular fields.  With the knowledge that zeroth-order solutions are 

contained in first order (see Appendix B), it is a reasonable assumption therefore that the 

fields in Eqs. (25) are all proportional in the sense: 

1 1̂ts psaA = A                    (26a) 

2 2
ˆ

ts psaA = A                    (26b) 



1 1
ˆ

ts psb=                     (26c) 

2 2
ˆ

ts psb=                     (26d) 

1 1̂ts psc=                     (26e) 

2 2
ˆ

ts psc=  ,                    (26f) 

where it is understood that these relationships do not constrain the fields in Eqs. (25) as their 

purpose is only to aid the determination of 
1g , 

2g  and 
1R , and where the hat “^” terms are 

non-zero dimensionless parameters. 

Substitution of Eqs. (26) into Eqs. (25) provides 

2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2
ˆ ˆ ˆ1 ( )g a R g a g a  − − −= + −                 (27a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 1
ˆ ˆ ˆ1 ( )g b R g b g b       = + −                (27b) 

1 1 1 2
ˆ ˆ ˆ1 ( )c R c c= + −                   (27c) 

which can in principle be solved for 
1g , 

2g  and 
1R  on specifying ˆ

ia , ˆ
ib  and ˆ

ic , 1, 2i = . 

To set the parameters ˆ
ia , ˆ

ib  and ˆ
ic , considered here is the situation of a uniaxial rod in each 

space subjected to the same uniform acceleration and stretched to attain yield stress (i.e. 
psY , 

1tsY  and 2tsY ) and yield strain (i.e. ps

ps

YY

ps E
 = , 1

1
1

ts

ts

YY

ts E
 =  and 2

2
2

ts

ts

YY

ts E
 = ).  This situation is 

possibly one of the simplest but substitution into Eqs. (26) for this case gives 1 2
ˆ ˆ 1a a= = , 

1

1
ˆ ts

ps

Y

Y
b = , 2

2
ˆ ts

ps

Y

Y
b = , 1

1̂

Y
ts

Y
ps

c



=  and 2

2
ˆ

Y
ts

Y
ps

c



= . 

5.3. Application of the theory 

Three designs are considered, where are labelled Design I, Design II and Design III, the 

details of which are provided in Table 3.  Design I is the case where the same grade of steel 

(i.e. S355 [26]) is used in all spaces for the columns.  Design II applies different grades of 

steel (see [28] and [29]) in each space as indicated in Table 3.  Design III on the other hand 

again uses different materials with different grades of steel in the physical and trial-space one 

but aluminium for trial-space two. 

For all three designs the applied acceleration 1A  in x-direction is the same and the yield 

stresses (
psY , 1tsY  and 2tsY ) and yield strains ( Y

ps , 
1

Y

ts  and 
2

Y

ts ) for the three designs can be 

found in Table 3.  A feature of Design I is that 1 2
ˆ ˆc c= , which removes Eq. (27c).  The two 



remaining equations Eq. (27a) and Eq. (27a) have too many unknowns and to resolve the 

situation, so the zeroth-order condition 2 1

1 11 g  −=  (i.e. first two terms in Eq. (27a)) is assumed 

to apply, which gives 1
1 1 2

g = = .  The remaining values (i.e. 
2g  and 

1R ), calculated 

using Eq. (27a) and (27b), can be found in Table 3.  Qualitative results for the distribution of 

the displacement magnitude are provided in Fig. 9. along with a detailed model description. 

Design II involves three grades of steel [28] provides values 1 0.365g = , 2 0.173g =  and 

1 2R =  on solution of Eqs. (27).  Design III on the other hand did not provide a solution to 

Eqs. (27), so was resolved in the same manner as Design I, i.e. by setting 1
1 1 2

g = =  and 

solving for 2g  and 1R , which provided 2 0.316g = , and 1 0.5R =  as recorded in Table 3.  

With the determination of 
1g , 

2g  and scaling parameters, the trial models result results were 

obtained, projected to the full scale and combined by means of the first-order theory. The 

results for the top-story drift of the column for all three designs are presented in Fig. 10.  

Show in the figure are the virtual results obtained on application of the first-order theory 

along with those determined by virtue of direct simulation of the full-scale model in the 

physical space. 

Table 3. Material properties of three models and calculated time scaling and values. 
Design

s 

Models Materia

l 

Density 

 

(kg/m3) 

Young’s 

Modulus 

(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 

 

(𝟏𝟎𝟖  Pa) 

Yield 

Strain 

(𝟏𝟎−𝟑) 1g  2g  1R  

Design 

I 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.5 0.316 0.5 
Trial-1 

Model 
S355 7850 2.1 3.55 1.69 

Trial-2 

Model 
S355 7850 2.1 3.55 1.69 

Design 

II 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.365 0.173 2 
Trial-1 

Model 
S275 7850 2.1 2.75 1.31 

Trial-2 

Model 
S235 7850 2.1 2.35 1.12 

Design 

III 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.5 0.316 
0.08

82 

Trial-1 

Model 
S275 7850 2.1 2.75 1.31 

Trial-2 

Model 
Al 2770 0.7 3.37 4.814 

 



 

Figure 10. First-order predicts and direct-full scale simulation 

It is apparent on examination of Fig. 10 that the different designs provide different outputs 

and there are also in place significant differences between the virtual-model predictions and 

the direct full-scale simulation.  It is possibly not too surprising that the scaled models were 

unable to fully capture the precise full-scale behaviour of an earthquake event.  However, 

considered in the next section, are single-trial space models to better highlight the significant 

improvement achieved by the new theory. 

5.4. Zeroth-order finite similitude design 

Each of the trial models at scales 1
1 4
 =  and 1

2 10
 =  (introduced in Section 5.3) are 

reconsidered here using the zeroth-order theory, hence only one trial model per analysis.  The 

zeroth order relationship 2 1

ps tsg  −=A A  with proportionality gives 2 1 ˆ1 g a −=  and on setting 

ˆ 1a =  provides g = .  Other zeroth-order scaling identities are provided in Table. 1.  For 

the trial models that same materials as in Section 5.3 are used and details are provided in 

Table 5.  Note that two test cases are considered (test cases I and II) with each consisting of 

two trial models (trial models I and II) corresponding to the two scales (i.e. 1
1 4
 =  and 

1
2 10

 = ).  The projected models correspond to the projection of the trial models into the 

physical space and the salient projected material properties are tabulated in Table 4.  Shown 

in Fig. 11 is the temporal response of top displacement, which is recognised to be important 

for the comparison of building models under seismic loading. 

 



Table 4. Zeroth-order Finite Similitude scaling parameters and material properties 

 

The graphs in Fig. 11(b) illustrate the marked improvement achievable on application of the 

first-order finite similitude theory.  The results for first-order Design I are much improved 

over those corresponding to Case I for both trial modes.  Likewise, first-order Design II 

outperforms all case and although fails to capture all aspects of the full-scale simulation it is 

vastly superior to single-space trial models.  The advantage offered by first-order finite 

similitude theory in seismic studies is that it provides an ability to fix not only acceleration 

but also other material properties.  Zeroth order is limited in only enabling the fixing of 

acceleration and as revealed in Table 4, with other material properties not matched. 

 

(a) 

Test 

Cases Models  

Density 

(kg/m3) 

Young’s 

Modulus 
(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟖  Pa)   01

  g =  

 

Test 

Case I 

Trial Model 1 S355 7850 2.1 3.55 1/4 64 2 

Trial Model 2 S355 7850 2.1 3.55 1/10 1000 10  

Projected Model-1  
 

7850 

 

8.4 

 

14.2 
   

Projected Model-2  
 

7850 

 

210 

 

35.5 
   

 

Test 

Case 

II 

Trial Model 1 S275 7850 2.1 2.75 1/4 64 2 

Trial Model 2 S235 7850 2.1 2.35 1/10 1000 10  

Projected Model 1  
 

7850 

 

8.4 

 

11 
   

Projected Model 2  
 

7850 

 

210 

 

23.5 
   



 

(b) 

Figure 11. Performance of zeroth and first-order finite similitude designs 

 

To demonstrate the practical applicability of the new theory a more realistic structure is 

examined in the next section. 

6. MULTI-STOREY FRAME EXPOSED TO CYCLIC LOADING: A NUMERICAL 

STUDY 

Different forms of seismic or environmental loading can impact on the performance of a 

structure.  Because of the inherent uncertainty associated with these types of load it is 

common practice in models to load systems quasi-statically with consistently increasing 

loads.  Although recognising that this approach does have its limitations [34] engineering 

structures must have the capacity to resist thousands of loading cycles to withstand disasters 

such as earthquakes [35].  Cyclic thermal and mechanical loads can push systems past the 

elastic region wherein plastic straining occurs [36] and it is important therefore that systems 

remain safe and serviceable under such conditions.  

It is of interest therefore to examine the behaviour of structures under cyclic loading and for 

this reason, a steel frame consisting of two bays and three storey is modelled and the analysis 

executed by applying cyclic displacement loads at the top corner of the structure.  The beam 

and column cross-sections are HSS 127 mm × 127 mm × 9.5 mm and the storey height is 

0.8m while the bay is 1.25 m [37].  Scaled models are also created to test out the ability of 

scaling to capture in this case the effects of cyclic loading on a building structure.  A 

schematic diagram is presented in Fig. 12 showing the real full-scale and trial models along 

with the projected trial models and their combination to form the full-scale virtual model.  



The scales selected for the study are 1
1 4
 =  and 1

2 6
 =  as indicated in Fig. 12.  Both zeroth 

and first-order theory is applied, and details are presented in Tables 5 and 6, respectively.  

Analysis of the full-scale and trial models is performed model using Abaqus explicit and for 

consistency a transient-cyclic analysis is performed. 

Table 5. Zeroth-order material properties and scaling parameters 

The material used in the full-scale structure is steel S355 and the targeted-physical quantities 

for the projected trial models are density and yield stress and/or Young’s modulus.  For 

zeroth order this involves the relationships 3

01 1 1ps ts

   =  and 2

01 1 1 1ps tsY g Y =  or 

2

01 1 1 1ps tsE g E = , respectively. With 1
1 4
 =  the values of 01

  and 1g  can be determined and 

their values are provided in Table 5 for the different material combinations.  As regards first-

order, the proportional method of Section 5.2 is applied leading to the equations 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 1
ˆ ˆ ˆ1 ( )g b R g b g b       = + −                (28a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2
ˆ ˆ ˆ1 ( )g e R g e g e       = + −                (28b) 

arising for stress and stiffness considerations with 1

1
ˆ ts

ps

Y

Y
b = , 2

2
ˆ ts

ps

Y

Y
b = , 1

1̂
ts

ps

E

E
e =  and 2

2
ˆ ts

ps

E

E
e = , 

and in order to solve these two equations for 2g  and 1R , it is necessary to set 1g . 

This is done by means of zeroth-order theory and the consequential values of 2g  and 1R  

obtained from Eqs. (28) are provided in Table 6.  Note the common values of 1g  in Tables 5 

and 6 indicating that Design I is the design taken forward to first-order analysis.  The 

boundary and loading for each of the full scale and trial models are presented in Fig. 13 along 

with mesh details for the analysis. 

 

Design Model Mat. 

Density 

 

(kg/m3) 

Young’s 

Modulus 
(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟖  Pa) 

    g  

Design 

I 

Trial Model 1 S235 7850 2.1 2.35 1/4 64 0.30727 

Trial Model 2 Al 2770 0.7 3.37 1/4 181 0.15242 

Projected 

Model 1 
 

 

7850 

 

3.17 

 

3.55 
   

Projected 

Model 2 
 

 

7850 

 

0.737 

 

3.55 
   

Design 

II 

Trial Model 1 S235 7850 2.1 2.35 1/4 64 0.25 

Trial Model 2 Al 2770 0.7 3.37 1/4 181 0.257 

Projected 

Model 1 
 

 

7850 

 

2.1 

 

2.35 
   

Projected 

Model 2 
 

 

7850 

 

2.1 

 

10.1 
   



 

Figure 12. Scaled models for a two-bay, three-storey structure 
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Table 6. First-order material properties and scaling parameters 
Design

s 

 Materials Density 

(kg/m3) 

Young’s 

Modulus 

(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟔  Pa) 

1g  2g  
1R  

 

 

 

Design 

I 

Full-scale 

Model 

S355 7850 2.1 3.55 

 

 

 

 

 

0.3073 
 

 

 

 

 

0.1894 
 

 

 

 

 

-2.324 
 

Trial Model 

1 

S235 7850 2.1 2.35 

 

Trial Model 

2 

S275 7850 2.1 2.75 

 

 

 

Design 

II 

Full-scale 

Model 

S355 7850 2.1 3.55 

 

 

 

 

0.153 
 

 

 

 

0.205 
 

 

 

 

-0.845 
 

Trial Model 

1 

Al 2770 0.7 3.37 

 

Trial Model 

2 

S235 7850 2.1 2.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Boundary and loading for physical and trial models 



The mesh densities are those obtained from a mesh-sensitivity study and provide converged 

solutions.  The loading applied in this study consists of a cyclically load generally increasing 

with amplitude as time progresses as shown in Figs. 13 and 14 (see references [36] and [37] 

for details).  The results from the mesh-sensitivity study under the loading depicted in Fig. 14 

are presented in Fig. 15.  The mesh size/number of elements had negligible influence on the 

results obtained.  Note that the choice of loading is similar to that of an earthquake with 

increasing amplitudes with time.  It can be seen from Fig. 15 that the loading consists of a 

form of generally increasing sharp waves punctuated by periods of constant amplitudes.  

 

Figure 14. Applied cyclic displacement-time graph (based on [38]). 

 

 

Figure 15. Mesh sensitivity analysis at point P shown in Fig. 13. 

The results of the study are presented in Figs. 16 to 19, with zeroth-order results presented in 

Figs. 16 and 17.  The results of Figs. 16 and 17 indicate that Design I (Trial 1) as defined in 

Table 6 provides the best approximation from the cases considered.  Examination of the 

values for yield stress, density and Young’s modulus for the projected model indicate the 

reason for this, since these are closest to those of the full-scale model.  However, the match is 

not perfect as indicated by the inclined portion of the graph which does not coincide.



Figure 16.  Zeroth order cyclic analysis of Design I models. 

Figure 17.  Zeroth order cyclic analysis of Design II models. 

The percentage errors indicated in these figures refers to the differences in the areas enclosed 

by the last complete loop between the virtual and full-scale models.  In view of the failure of 

the zeroth-order theory to provide a sufficiently close-enough match first-order theory is 

applied to both Designs I and II and the results presented in Fig. 18.  A marked improvement 

is revealed in this figure with both designs providing an improved level of accuracy.  This 



result provides good evidence for the benefits of two scaled experiments over one and 

confirms that the finite similitude theory is able to interpret the information arising from the 

two experiments. 

Figure 18.  First-order cyclic analysis of Design I and II models. 

Figure 19.  Zeroth and first-order cyclic analysis of Design I and models. 



A final comparison between the best zeroth-order and first-order finite similitude designs is 

provided in Fig. 19. The figure confirms that the first-order theory provides better predictions 

than zeroth order and the differences can be marked. 

 

7. CONCLUSION 

The paper is concerned with the assessment of a new scaling theory for the investigation of 

the aseismic behaviour of structures.  The new approach involves two scaled experiments and 

is founded on the metaphysical concept of space scaling.  The following conclusions can be 

drawn from the work presented in the paper: 

1. A new scaling theory has been established that captures either explicitly or implicitly 

all scale dependencies that arise in structural mechanics. 

2. A new form of similarity has been established (termed first-order finite similitude) in 

differential form (see Eq. 10), which can be integrated exactly using finite differences 

to combine results from two scaled-trial experiments to predict full-scale structural 

behaviour. 

3. The new theory has been trialled on analytical and numerical models and provides 

predictions (sometimes markedly) superior to a single-scale trial experiment. 

4. Scale effects as previously defined by dimensional analysis can up to a limited degree 

be accommodated (e.g. dimensionless strain need not be constant). 

5. A new proportional theory has been established that has been shown to provide an 

efficient means to determine scaling parameters and avoid the need for expensive 

iterative procedures. 

More specifically for the trial experiments performed it has been shown that: 

1. The first-order scaling theory was able to target more material properties for matching 

between the virtual and physical full-scale model (e.g. yield stress, Young’s modulus 

and density were matched in earthquake resistant structures).  

2. The benefit of matching yield stress and Young’s modulus for the cyclic loading of a 

two bay, three story structure was significant and confirmed the improvements 

possible with the new approach. 

3. The investigation of aseismic structures is improved using two scaled experiments as 

opposed to a single scaled experiment.  For a cyclically loaded three-storey building, 

the proposed methodology reduced an overall error of 9.47% with a single scaled 

experiment to 0.65% with the combination of two scaled experiments.  
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APPENDIX A: PROCEDURES FOR APPLICATION 

 

Presented in this section are the procedures followed in Sections 4, 5 and 6 in order to apply 

zeroth and first order finite theories.  The zeroth-order theories follows the instruction set: 

(i) Determine the geometrical and material properties and also boundary and initial 

(i.e. loading) conditions of the physical model; 

(ii) Determine the dimensional scaling factor 1  (thus, geometrical properties), 

material properties and boundary conditions for the trial model; 

(iii) Determine which properties must be fixed; 

(iv) Determine the independent density and time scaling factors (i.e. 
01

  and 1g ); 

(v) Calculate the initial (i.e. loading) conditions for the trial model; 

(vi) Conduct experimental tests on the trial model and; 

(vii) Lift the trial model response to predict the physical model response. 

A similar looking set of instruction apply for the first-order finite similitude theory and these 

are: 

(i) Determine the geometrical and material properties and also boundary and initial 

(i.e. loading) conditions for the physical model; 

(ii) Determine the dimensional scaling factors 1  and 2  (thus, geometrical 

properties), material properties and boundary conditions for the first and second 

trial models; 

(iii) Determine the density scaling factors (i.e. 
01

  and 
02

 ) using the zeroth order 

finite similitude relations (i.e. 3

01 1 1ps ts

   =  and 3

02 2 2ps ts

   = ); 

(iv) Determine which properties must be fixed; 

(v) Determine the time scaling factors (i.e. 1g  and 2g ) and also 1R  by restricting the 

intended properties and also initial (i.e. loading) conditions; 

(vi) Calculate the initial (i.e. loading) conditions of the first and second trial models; 

(vii) Conduct the experimental tests on the first and second trial models and; 

(viii) Combine trial models to produce a virtual model to predict the physical model 

behaviour. 

 

 



APPENDIX B: FIELD RESTRICTIONS 

 

In this section a general understanding is provided pertaining to the proportional-fields 

assumption of Section 5.2 and the various restrictions placed on the fields for zeroth and first-

order theories.  The solution spaces on which each depends are zo , lin , 
fo  and 

dp , 

where zo  is zeroth-order solutions, lin  is proportional solutions (e.g. Eq. (26)), 
fo  is first-

order solutions (e.g. Eqs. (17)) and 
dp  is solutions with proportional differences (e.g. 

( )1 1 2
ˆ

ps ts ts tsb= − −    ).   

It is assumed here that the elements of these spaces are drawn from vector spaces over the 

real field  .  More specifically for non-zero   , 
1 1zo ps   =h h h  with   restricted 

to scalars provided by zeroth-order theory (see Table 1.)  For the space lin  however, 

1 1zo ps   =h h h  for 0    and evidently zo lin   .  Similarly for the space 
fo , 

( )1 2 1 1 2, fo ps   − = −h h h h h h , and where 
psh , 1h , 2h  and   are restricted to be those 

common fields and scalars provided by first-order theory (see Eq. (17)).  Finally 

( )1 2 1 1 2, dp ps   − = −h h h h h h , 0    and any common field types 
psh , 1h  and 2h

; evidently 
fo dp   . 

Proposition B.1 The solution spaces satisfy 
zo lin dp      and 

zo fo dp     . 

Proof B.1 zo  is a proper subset of lin  since for example 1

1 1ps ts −=u u  and 1ps ts= −u u  are in 

lin  but only 1

1 1ps ts −=u u  is in zo .  lin  is a subset of 
dp  since 1 1

ˆ
ts psb=   and 

2 2
ˆ

ts psb=   provide ( )1 1
ˆ1ps ts psb= − −    and ( )1 2 1 2

ˆ ˆ
ts ts psb b− = −   .  It is a proper 

subset since for any arbitrary non-zero 
psd  not proportional to 

ps  the relationships 

1
ˆ

ts ps psb= − d   and ( ) ( )1

2
ˆ ˆ1 1ts ps psb b−= − + − d   are not in lin  but satisfy 

( )1 1 2
ˆ

ps ts ts tsb= − −    , so belongs to 
dp .  In addition 

fo  is a proper subset of 
dp  since 

for example ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  belongs to 
fo  but 

( )1 1

1 1 1 1 2 2ps ts ts tsR  − −= − + −u u u u  does not.       □ 

A question remains about the relationship between lin  and 
fo  but solutions of lin  can 

belong to 
fo  since zo lin    but also there exists solutions that do not.  An example is 



1ps ts= −h h  and 2ps ts= −h h  since 1 2ps ts ps− =h h h  and ( )1 1 2ts tsR − = 0h h , so does no belong to 

fo  since 1 0R  . 


