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Abstract 

Scaled experimentation can potentially provide significant benefits such as reduced costs 

materials and time in testing but is afflicted by the phenomena of scale effects, where the 

behaviour at scale can be markedly different to that at full size.  The design of scaled 

experiments is presently predominantly founded on the theory of dimensional analysis, which 

itself is grounded on the invariance of dimensionless governing equations with scale.  The 

reality of fracture mechanics however is not invariant equations, but significant deviations 

and it is evident that scaled-fracture related experiments are presently limited by this 

affliction. 

This paper examines an advance in a new approach to scaled experimentation called finite 

similitude.  The key question addressed here is whether it is possible to overcome the 

affliction of scale effects by performing not one but two scaled experiments at different 

scales.  It is shown that finite similitude (unlike dimensional analysis) is able to capture all 

forms of scale dependency, which opens up the possibility of selecting alternative forms of 

scale invariance and consequently alternative forms of similitude. 

First-order finite similitude is investigated in the paper and applied to cracked compact-

tension and three-point bending test specimens along with a cracked pressure vessel to 

illustrate the new concepts.  These case studies reveal the veracity and potential of the new 

approach and highlight possibilities that hitherto would have been deemed impossible with 

the circumvention of scale effects (as traditionally defined). 

Keywords: fracture mechanics; finite similitude; scaled experimentation. 

  



1. Introduction 

Product and component testing is an important practice in many industries and is required to 

assure in-service reliability and performance.  Scaled experimentation has an important role 

to play in many testing systems but care must be taken to ensure that any results from a 

scaled experiment are carefully scrutinised.  The principal concern with scaling is scale 

effects where the scaled system behaves in a manner that can be markedly different from the 

full-size system.  It might well be contended that if scale effects were not a feature of scaling, 

then scaled experimentation would play a far greater role than it presently does.  The absence 

of scale effects would enable complex systems to be more readily analysed at a fraction of the 

cost of a full-scale trial.  Observed phenomena at scale would then replicate that at full size 

and large-scale reductions would pose no concern; however, the reality is somewhat different. 

Despite the presence of scale effects, scaled experiments are performed in industry.  There 

are several reasons for this, but these are largely related to cost and/or the impracticability of 

full-scale trials.  The ever-increasing accuracy and effectiveness of computational modelling 

has undoubtedly impacted on the type and nature of experiments performed.  Scaling is 

widely applied in different areas of engineering, for example in structural failure and fracture 

[1-4], structural impact [5-8], explosion engineering [9-10] and thermofluids [11].  A reliable 

computational model can often replace experiments altogether but in addition it can 

supplement scaled experimentation.  Numerical analysis at scale and at full size can be used 

to identify and gauge the importance of scale effects [12]. For more complex systems 

involving significant uncertainties, placing too much reliance on computation is not sensible 

and experimentation is therefore needed; for instance, the scaling of fluid mechanics [13] or 

simulation in complex conditions [14]. 

One of earliest works in structural mechanics on similitude followed some 30 years after 

Rayleigh’s 1915 paper [15] in a US aeronautical advisory committee report by Goodier and 

Thomson [16].  This was followed by Goodier’s book in 1950 [17] covering the applicability 

of similitude to structural systems.  Goodier and Thomson presented the first application of 

dimensional analysis to relatively simple and more complex structural problems. They 

examined aspects of large deformation, buckling and plastic behaviour covering aspects of 

materials with nonlinear stress-strain characteristics.  A good review of the many works 

based on dimensional analysis up to 2000 is provided by Simitses et al. in reference [18].  

Despite the wide application of dimensional analysis, it has been shown to suffer some 

limitations in many studies all stemming from scale effects.  Particularly renown for such 



effects is indentation [19], which is of relevance to instrumentation for the measurement of 

hardness.  Even in the early work of Brinell [20] it was observed that the hardness value is 

sensitive to ball diameter.  In this case the difference can be predominantly attributed to size 

effects arising with the size of the deformation zone and the change in material response 

because of this.  However other scale effects have been identified and these include surface 

contamination, energy, and roughness along with indenter tip rounding and friction [21].  

The behaviour of concrete in fracture is a material that has notoriety for size effects; see for 

example the work of Bažant [21].  Since scale effects are characterized by the failure of 

dimensional analysis in the sense that the invariance of the dimensionless governing 

equations breaks down with scale, it is often used in investigations of scale effects.  An 

example of this is a recent study concerned with scaling and its effects on fatigue and lifetime 

[22], where dimensional analysis is applied to qualify whether scale effects are present or not.  

Other studies concerned with fatigue, size effect and the application of dimensional analysis 

[23-25] again highlight the presence of scale effects through change to the dominant 

governing dimensionless equation with scale. 

This paper is concerned with a new approach to scaled experimentation applied to fracture.  

The finite-similitude theory [26-28] is founded on the metaphysical concept of space scaling, 

where it is imagined that space is contracted and all things in the space suffer scaling 

therefore.  Although patently such scaling cannot be achieved practically, what is possible is 

an examination of the effect that this metaphysical process has on the governing equations 

constraining the behavior of the phenomena of study.  The metaphysics of space scaling is 

introduced in Section 2 along with its effects on a moving control volume in the space being 

considered.  The immediacy of the effect of space scaling on a control volume, which is 

simply a region of space, is one of the underlying reasons for describing the equations of 

interest is an integral transport form.  A generic form of transport equation is therefore 

introduced in Section 3 and the effect space scaling has on it is examined.  Critical to the 

finite similitude approach is the representation of trial-space physics on the full-scale space.  

It is through this representation that scale dependencies are revealed in either an explicit or 

implicit form.  Moreover, the representation provides a mechanism for the contrasting of 

behaviors at different scales and in fact defines what is algebraically allowable.  This aspect 

is examined in greater detail in Section 4 under the title of projected continuum mechanics, 

where trial-space conserved and non-conserved transport equations are examined in their 

projected form in the full-scale physical space.  The proportional relationships typical to 

dimensional analysis are revealed in this section on application of the simple assumption that 



the projected transport equations do not change with scale.  This is equivalent to the condition 

that the differentiation of the projected equations with respect to the length scalar (𝛽 in this 

paper) is identically zero.  The realization that this is just one possibility and other 

possibilities exist is examined in Section 5.  Introduced is high-order finite similitude but 

focus of this paper is on first order only, where an identity involving two nested derivatives 

with respect to 𝛽  is involved.  Two derivatives signify two scaled experiments but more 

fundamentally, scale effects as previously defined using dimensional analysis can cease to be 

scale effects under the new definition.  Analytical applications are examined in Section 6 for 

the J integral and the cohesive zone model since both concepts play important roles in 

fracture mechanics.  Numerical studies are presented in Sections 7, 8 and 9 to demonstrate 

the practical benefit of the new scaling approach to fracture mechanics where scale effects (as 

previously defined) are prevalent.  The paper concludes with a list of conclusions. 

2. Background concepts 

Finite similitude is a new scaling theory founded on the metaphysical concept of space 

scaling.  The idea that space can be expanded or contracted for the purpose of scaled 

experimentation is evidently not feasible but what is possible is the ability to assess the 

impact of this metaphysical process on the underpinning physics dictating the behaviour of an 

experiment.  In this way it is possible to assess what changes take place as space deforms and 

design experiments accordingly. 

2.1. Space scaling 

To enact the space-scaling concept consider the affine map 𝒙𝑝𝑠 ↦ 𝒙𝑡𝑠  which relates 

coordinate points in the inertial frame in the physical space (full size) to those in the trial 

space (scaled size).  Points in each inertial frame are placed in one-to-one correspondence 

and the map is assumed to be affine and temporally invariant.  In differential terms the map 

provides 𝒅𝒙𝑡𝑠 = 𝐹𝒅𝒙𝑝𝑠 where F is both spatially and temporally invariant and in coefficient 

form is 𝑑𝑥𝑡𝑠
𝑖 = 𝐹𝑖𝑗𝑑𝑥𝑝𝑠

𝑗
, where 𝐹𝑖𝑗 = 𝜕𝑥𝑡𝑠

𝑖 𝜕𝑥𝑝𝑠
𝑗

⁄ , where 𝑥𝑡𝑠
𝑖  and 𝑥𝑝𝑠

𝑖  are coordinate functions.  

The matrix F dictates the manner in which space distorts, where anisotropic scaling is 

possible but focus here is on isotropic scaling, where F takes on the relatively simple form 

𝐹 = 𝛽𝐼  or 𝐹𝑖𝑗 = 𝛽𝛿𝑗
𝑗
, where 𝛿𝑗

𝑗
 is the well-known Kronecker delta symbol and takes the 

value of either zero or one.  The scalar 𝛽 is a positive real parameter that quantifies the extent 

of the scaling involved.  For 0 < 𝛽 < 1 the space is contracted, for 𝛽 = 1 no scaling takes 



place and for 𝛽 > 1 the space is expanded. The space scaling concept is illustrated in in Fig. 

1, where contraction and expansion are depicted. 

With the assumed existence of the differential map 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠 it is now possible to relate 

differential volumes and areas in the two spaces.  This is achieved readily by means of 

Nanson’s identities, which take the form 𝑑𝑉𝑡𝑠 = 𝛽3𝑑𝑉𝑝𝑠 and 𝒅𝚪𝑡𝑠 = 𝛽2𝒅𝚪𝑝𝑠, where 𝒅𝚪𝑡𝑠 =

𝒏𝑡𝑠 𝑑Γ𝑡𝑠 , and 𝒅𝚪𝑝𝑠 = 𝒏𝑝𝑠 𝑑Γ𝑝𝑠 , and 𝒏𝑡𝑠  and 𝒏𝑝𝑠  are unit normal vectors in the respective 

spaces.  The quantities 𝑑𝑉𝑡𝑠 and 𝑑𝑉𝑝𝑠 along with 𝑑Γ𝑡𝑠 and 𝑑Γ𝑝𝑠 are differential measures of 

volume and area respectively in the two spaces. 

 

Figure 1 Depiction of space scaling and mapping between inertial 

physical and trial-space frames. 
 

The adoption of a Newtonian framework means the assumed existence of absolute time, 

labelled 𝑡𝑡𝑠  and 𝑡𝑝𝑠  in the respective spaces.  These are assumed to be related by the 

differential identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, where 𝑔 is a positive scalar and measures the extent of the 

difference in rate at which processes proceed in the two spaces. 

2.2. Control volume movement 

With the establishment of space scaling it expedient here to examine what affect this has on 

the behaviour of the underpinning pertinent physics in a continuum mechanics framework.  

The physical description adopted here is founded on the control-volume concept as this 

approach immediately brings into play the effects of the differential measures of volume, area 

and length arising from space scaling.  A control volume is a finite region of space and takes 



the form of a continuous open domain 𝛺𝑡𝑠
∗  (in the trial space) whose closure contains the 

orientable boundary 𝛤𝑡𝑠
∗  with outward pointing unit normal 𝒏𝑡𝑠.  The exact same apparatus 

applies to the physical space and it should be recognised that both 𝛺𝑝𝑠
∗  and 𝛺𝑡𝑠

∗  are free to 

deform and move but in the context of scaled experimentation it can be anticipated that their 

movement must be synchronised in some manner.  The movement of 𝛺𝑡𝑠
∗  can be related to the 

velocity field 𝒗𝑡𝑠
∗  using the identity 𝒗𝑡𝑠

∗ = 𝐷∗𝒙𝑡𝑠
∗ /𝐷∗𝑡𝑡𝑠

∗ , where the temporal derivative 

𝐷∗/𝐷∗𝑡𝑡𝑠
∗  is a partial derivative that holds constant points in a reference control volume 𝛺𝑡𝑠

∗𝑟𝑒𝑓
, 

i.e. 𝐷∗/𝐷∗𝑡𝑡𝑠
∗ ≡ 𝜕/𝜕𝑡𝑡𝑠

∗ |
𝝌𝑡𝑠

, where 𝝌𝑡𝑠 ∈ 𝛺𝑡𝑠
∗𝑟𝑒𝑓

.  In this manner the movement of a coordinate 

point is precisely described by the solution of the differential equation 𝒗𝑡𝑠
∗ = 𝐷∗𝒙𝑡𝑠

∗ /𝐷∗𝑡𝑡𝑠
∗  

(with 𝒗𝑡𝑠
∗  known) or the map 𝛺𝑡𝑠

∗𝑟𝑒𝑓
→ 𝛺𝑡𝑠

∗  (i.e. 𝝌𝑡𝑠 ↦ 𝒙𝑡𝑠
∗ ).   

 

Figure 2 Moving control volume in the trial space and mapping from 

a reference control volume. 

The concept is illustrated in Fig. 2, where a moving control volume of arbitrary shape 

facilitates the focus on a particular region of space, allowing for changing shape and 

movement, as necessary.  Needless to say the exact same apparatus applies in the physical 

space with the identity 𝒗𝑝𝑠
∗ = 𝐷∗𝒙𝑝𝑠

∗ /𝐷∗𝑡𝑝𝑠
∗ .  The assumed relationship between 𝒙𝑡𝑠

∗  and 𝒙𝑝𝑠
∗  

suggests a map of the form 𝒙𝑝𝑠
∗ ↦ 𝒙𝑡𝑠

∗ .  This map transpires to be identical in form to the 

space-scaling map, i.e. 𝒅𝒙𝑡𝑠
∗ = 𝛽𝒅𝒙𝑝𝑠

∗ , and in view of the temporal relationship 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, 

the velocities 𝒗𝑡𝑠
∗  and 𝒗𝑝𝑠

∗  are related by 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  and further details on this can be 

found in reference [26].  The ability to relate control-volume movement without reference to 

the physical processes in the two spaces is important as it provides for a generic approach. 

3. The projected transport equations  



Due to the relative dominance of variational methods, control-volume approaches involving 

transport equations in their integral form for applications in solid mechanics are somewhat 

neglected (see Davey & Darvizeh [29]).  In the field of fracture mechanics in particular the 

theory of configurational forces [30] does make reference to control-volume ideas although in 

a material-reference frame and also their use is required in shock physics [31] to capture 

discontinuous behaviour.  The ability to capture all the physical laws relating to continuum 

physics using the control volume approach is its principal advantage in scaling theory.  

Moreover, it is made apparent here that all scale dependencies are revealed, and different 

forms of scale effects arise depending on the how similitude is defined.  Transport equations 

in their most generic form in the physical space can be represented by [29] 

 

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝜌𝑝𝑠𝜳𝑝𝑠
𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝜳𝑝𝑠(𝒗𝑝𝑠 − 𝒗𝑝𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

= −∫ 𝑱𝑝𝑠
𝛹

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ +∫ 𝜌𝑝𝑠𝒃𝑝𝑠

𝛹 𝑑𝑉𝑝𝑠
∗

𝛺𝑝𝑠
∗

 

(1) 

where 𝜌𝑝𝑠, 𝜳𝑝𝑠, 𝒗𝑝𝑠, 𝑱𝑝𝑠
𝛹 , 𝒃𝑝𝑠

𝛹 , 𝒏𝑝𝑠 signify material density, physical field, material velocity 

field, flux, source and unit normal to boundary Гps
∗ of the control volume 𝛺𝑝𝑠

∗ .  

Similarly, and somewhat more importantly the trial-space transport equations take the 

identical form 

 

𝐷∗

𝐷∗𝑡𝑡𝑠
∫ 𝜌𝑡𝑠𝜳𝑡𝑠
𝛺𝑡𝑠
∗

𝑑𝑉𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝜳𝑝𝑡𝑠(𝒗𝑡𝑠 − 𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑡𝑠
Г𝑝𝑠
∗

𝑑Г𝑡𝑠
∗

= −∫ 𝑱𝑡𝑠
𝛹

Г𝑡𝑠
∗

∙ 𝒏𝑡𝑠𝑑Г𝑡𝑠
∗ +∫ 𝜌𝑡𝑠𝒃𝑡𝑠

𝛹𝑑𝑉𝑡𝑠
∗

𝛺𝑡𝑠
∗

 

(2) 

where on substitution of the identities 𝑑𝑉𝑡𝑠
∗ = 𝛽3𝑑𝑉𝑝𝑠

∗ , 𝒅𝚪𝑡𝑠
∗ = 𝛽2𝒅𝚪𝑝𝑠

∗ , 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠, and on 

multiplication throughout by g and a scalar 𝛼0
𝛹, gives rise to the critically important equation 

𝛼0
𝛹𝛵0

𝛹(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝜳𝑡𝑠

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝛹𝜌𝑡𝑠𝛽

3𝜳𝑡𝑠(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼0
𝛹𝛽2𝑔𝑱𝑡𝑠

𝛹

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼0

𝛹𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝛹𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗

= 0 

(3) 



which is essentially Eq. (2) but represented now on the physical space, where the scalar 𝛼0
𝛹 

along with 𝑔 are assumed to be functions of 𝛽. 

This equation is fundamental to the finite-similitude theory as it captures in one form or 

another all scale dependencies.  The fields, fluxes and sources are assumed dependent on 𝛽 

and have the property that 𝜌𝑡𝑠(1) = 𝜌𝑝𝑠 , 𝒗𝑡𝑠(1) = 𝒗𝑝𝑠 , 𝜳𝑡𝑠(1) = 𝜳𝑝𝑠 , 𝑱𝑡𝑠(1) = 𝑱𝑝𝑠  and 

𝒃𝑡𝑠(1) = 𝒃𝑝𝑠, and similarly in order for Eq. (3) to match Eq. (1) for 𝛽 = 1 it is required that 

𝛼0
𝛹(1) = 1 and 𝑔(1) = 1.  It should be appreciated the equation 𝛼0

𝛹𝛵0
𝛹(𝛽) = 0 is not an 

approximation as it is representative of the trial-space physics but projected onto the physical 

space and it is through this projection that all 𝛽 − dependencies are revealed.  Some of these 

dependencies are explicit such as those arising from geometrical changes (i.e. 𝛽3  and 𝛽2 

terms) yet others are implicit (i.e. 𝜌𝑡𝑠(𝛽), 𝒗𝑡𝑠(𝛽),𝜳𝑡𝑠(𝛽), 𝑱𝑡𝑠(𝛽) and 𝒃𝑡𝑠(𝛽)). 

 

4. Projected continuum mechanics 

Fracture mechanics predominantly makes use of Newtonian mechanics (i.e. three equations) 

but in scaling theory eight transport equations are to be considered, i.e. two scalar equations 

for volume and mass conservation, and two vector equations momentum and movement.  

Although movement is a feature of fracture mechanics it is seldom considered in transport 

form and was first introduced by Davey and Darvizeh [29] in order to bring the displacement 

field 𝒖𝑝𝑠 into the family of transport equations for continuum mechanics.  In summary the 

eight equations are: 

𝛼0
1𝛵0

1(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

1𝛽3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗ −∫ 𝛼0

1𝛽3(𝛽−1𝑔𝒗𝑡𝑠
∗ ∙ 𝒏𝑝𝑠)

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 (4a) 

𝛼0
𝜌
𝛵0
𝜌(𝛽) =

𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠 − 𝛽
−1𝑔𝒗𝑡𝑠

∗ ) ∙ 𝒏𝑝𝑠
Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗ = 0 

(4b) 



𝛼0
𝑣𝛵0

𝑣(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ [𝛼0

𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽
3](𝛽−1𝑔𝒗𝑡𝑠)

𝛺𝑝𝑠
∗

𝑑𝑉𝑝𝑠
∗

+∫ [𝛼0
𝑣𝑔−1𝛽𝜌𝑡𝑠𝛽

3](𝛽−1𝑔𝒗𝑡𝑠)(𝛽
−1𝑔𝒗𝑡𝑠 − 𝛽

−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

+∫ 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠

Г𝑝𝑠
∗

∙ 𝒏𝑝𝑠𝑑Г𝑝𝑠
∗ −∫ 𝛼0

𝑣𝜌𝑡𝑠𝛽
3𝑔𝒃𝑡𝑠

𝑣 𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗

= 0 

(4c) 

𝛼0
𝑢𝛵0

𝑢(𝛽) =
𝐷∗

𝐷∗𝑡𝑝𝑠
∫ 𝛼0

𝑢𝛽𝜌𝑡𝑠𝛽
3(𝛽−1𝒖𝑡𝑠)𝛺𝑝𝑠

∗ 𝑑𝑉𝑝𝑠
∗ + ∫ 𝛼0

𝑢𝛽𝜌𝑡𝑠𝛽
3(𝛽−1𝒖𝑡𝑠)(𝛽

−1𝑔𝒗𝑡𝑠 −Г𝑝𝑠
∗

𝛽−1𝑔𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠 𝑑Г𝑝𝑠

∗ − ∫ 𝛼0
𝑢𝛽𝜌𝑡𝑠𝛽

3(𝛽−1𝑔𝒗𝑡𝑠)𝑑𝑉𝑝𝑠
∗

𝛺𝑡𝑠
∗ = 0  

(4d) 

where to satisfy the zeroth-order identity 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≡ 0 (5) 

the necessary and sufficient identities arising from these equations are presented in Table 1. 

Table 1: Necessary and sufficient zeroth-order scaling identities. 

Eq. 

No. 

Field Scalars Flux Source Duplicate 

(4a) 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  𝛼0
1 = 𝛽−3 - - - 

(4b) 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 𝛼0
𝜌(1) = 1 

𝑔(1) = 1 

  𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

(4c) 𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1 𝛼0

𝑣𝛽2𝑔𝝈𝑡𝑠

= 𝝈𝑝𝑠 

𝛼0
𝑣𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣

= 𝜌𝑡𝑠𝒃𝑝𝑠
𝑣  

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

(4d) 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1  𝒗𝑡𝑠

= 𝛽𝑔−1𝒗𝑝𝑠 

 

𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  

Table 1 presents those identities arising from Eqs. (4) because of Eq. (5), which is the 

situation where scale effects are absent.  An additional “Duplicate” column is included in 

Table 1 to capture those field identities that appear in more than one equation.  Observe that 



the role of Eq. (4a) is the determination of the identity 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗ , which is required so 

that control-volume movement in the trial space at any scale can be described in the physical 

space.  In this sense the behaviour of the trial-space system is played out on the physical 

space enabling differences to be gauged.  In order to satisfy Eq. (5) for Eq. (4b) it is 

necessary and sufficient to set 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠  and 𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠  (along with 𝒗𝑡𝑠
∗ =

𝛽𝑔−1𝒗𝑝𝑠
∗ )  with 𝛼0

𝜌(1) = 1  and 𝒗𝑡𝑠(1) = 𝒗𝑝𝑠.   Although continuity plays little part in 

fracture mechanics it is needed for similitude to establish a relationship for density with scale 

(i.e. 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠), which opens up the possibility of selecting alternative materials for a 

scaled experiment.  The velocity relationship 𝒗𝑡𝑠 = 𝛽𝑔−1𝒗𝑝𝑠 is particularly constraining and 

it is effectively restricting all scaled experiments to the same pattern of deformation, which is 

unrealistic in practice.  The momentum transport Eq. (4c) has a critical role to place in 

fracture mechanics and to satisfy Eq. (5) with 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 it is necessary and sufficient to 

set 𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1  (as above 𝒗𝑡𝑠 = 𝛽𝑔

−1𝒗𝑝𝑠  and 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗ ) , 𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 = 𝝈𝑝𝑠  and 

𝛼0
𝑣𝜌𝑡𝑠𝛽

3𝑔𝒃𝑡𝑠
𝑣 = 𝜌𝑡𝑠𝒃𝑝𝑠

𝑣 ; note that 𝛼0
𝑣(1) = 1.  Again in view of the relationship 𝛼0

𝜌
𝜌𝑡𝑠𝛽

3 =

𝜌𝑝𝑠 it is necessary and sufficient in the movement equation, Eq. (4d) to set 𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1 (as 

above 𝒗𝑡𝑠 = 𝛽𝑔
−1𝒗𝑝𝑠  and 𝒗𝑡𝑠

∗ = 𝛽𝑔−1𝒗𝑝𝑠
∗ ) and 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 ; note also that 𝛼0

𝑢(1) = 1 and 

𝒖𝑡𝑠(1) = 𝒖𝑝𝑠.  The relationship for displacement is not too unexpected since differentiation 

of 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 with respect to time (given the identity 𝑑𝑡𝑡𝑠 = 𝑔𝑑𝑡𝑝𝑠) provides as required 

𝒗𝑡𝑠 = 𝛽𝑔
−1𝒗𝑝𝑠.  Note also that the two identities 𝒖𝑡𝑠 = 𝛽𝒖𝑝𝑠 and 𝒅𝒙𝑡𝑠 = 𝛽𝒅𝒙𝑝𝑠 provide the 

small-strain tensor identity 𝜺𝑡𝑠 = 𝜺𝑝𝑠, which immediately infers that the strain tensor 𝜺𝑡𝑠 is 

independent of 𝛽. 

Overall, it is fairly evident that identity Eq. (5) is very restrictive on the behaviour of the trial-

space systems and unlikely to be satisfied for realistic problems.  See previous studies on the 

practical application of zeroth-order finite similitude theory in references [32-34].  The reality 

in practice therefore is the inequality 

𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹) ≢ 0 (6) 

which of course provides scale effects, and these can be expected to change with scale, i.e. be 

dependent on 𝛽. 

5. First-order finite similitude  



Eq. (3) provides the framework for the analysis of scale dependence but contains hidden 

dependencies that require information on such things such as material behaviour (e.g. size 

dependence) and boundary conditions (e.g. surface conditions) to uncover them.  However, 

an alternative (and the approach adopted here) is to simply enforce a global 𝛽 − invariant 

condition and apply this in the design of experiments.  First-order finite similitude [35] 

examines an alternative to Eq. (5) that involves an additional scaled experiment to shed 

additional light on changes that are taking place and to add extra flexibility.  Consider then 

the following definition: 

5.1. Definition (High-order finite similitude) 

The concept of kth-order finite similitude is identified by the lowest derivative that satisfies 

𝛵𝑘+1
𝛹 =

𝑑

𝑑𝛽
(𝛼𝑘

𝛹𝛵𝑘
𝛹) ≡ 0 (7) 

∀𝛽 > 0, with 𝛼0
𝛹𝛵0

𝛹  defined by Eq. (3) and non-zero scalars 𝛼𝑘
𝛹  are functions of 𝛽  with 

𝛼𝑘
𝛹(1) = 1, where the sign “≡” means identically zero in Eq. (7). 

The corresponding scaling theory is termed kth-order finite similitude but the focus in this 

paper is on first-order finite similitude only, i.e. 

𝛵2
𝛹 =

𝑑

𝑑𝛽
(𝛼1

𝛹𝛵1
𝛹) =

𝑑

𝑑𝛽
(𝛼1

𝛹
𝑑

𝑑𝛽
(𝛼0

𝛹𝛵0
𝛹)) ≡ 0 (8) 

where 𝛼1
𝛹 is required to play a role similar to that of 𝛼0

𝛹 in the annihilation of 𝛽 terms to 

facilitate the satisfaction of this identity. 

Under the new definition zeroth-order finite similitude as discussed in Section 4 is identified 

by the identity 𝛵1
𝛹 ≡ 0.  Recognising the reality of practical testing is scale effects and the 

inequality 𝛵1
𝛹 ≢ 0 and recognising the dependence 𝛵1

𝛹(𝛽) motivates the need for something 

more suitable.  Definition 5.1 is designed to provide a pragmatic way forward in a situation 

where specific information on scale effects is absent.  Since it is necessary to integrate the 

similitude identity to link experiments the definition involving nested derivatives is 

particularly convenient.  A desirable feature of the definition is the nesting of similitude 

orders, so if zeroth-order finite similitude (𝛵1
𝛹 ≡ 0)  applies, then first order (𝛵2

𝛹 ≡ 0) 

immediately follows from Eq. (8).  Yet another feature is apparent on examination of Eq. (8) 

arising from its foundation on transport equations in the trial space in the form 𝛼0
𝛹𝛵0

𝛹 = 0, 

which immediately infers that 𝛼1
𝛹𝛵1

𝛹 = 0  and consequently a different set of transport 

equations arise.  The fields associated with this new set of transport equations are the 



derivatives of the fields in 𝛼0
𝛹𝛵0

𝛹 = 0 with respect to 𝛽.  This aspect is not pursued here as 

integration of Eq. (8) is ultimately required to relate experiments at different scales.  The 

overall idea for three scales 𝛽2 , 𝛽1  and 𝛽0 = 1  is depicted in Fig. 3., where trial space 

behaviour is played out on the physical space at each scale.  In the following section it is 

shown how projected equations are combined to provide a virtual replica of the full-scale 

process. 

 

Figure 3.  Projected trial-space behaviour described on a control volume at scale 𝛽𝑖 by 

transport equations 𝛼0
𝛹𝛵0

𝛹(𝛽𝑖) = 0 and combined to provide a full-scale virtual model. 

5.2. Integrated similitude conditions 

The reality of fracture-mechanics experimentation is discrete experiments at different scales, 

which invariably means that derivatives with respect to 𝛽 are required to be evaluated by 

means of finite differences.  There exist many forms finite differences can take but for down 

scaling with 0 < 𝛽 ≤ 1 and considering that predicting the behaviour of systems at 𝛽 = 1 is 

of prime importance, backward difference formulations naturally emerge.  First-order finite 

similitude involves three scales 𝛽2, 𝛽1 and 𝛽0 = 1, and the identity 𝛵2
𝛹 = 𝑑 (𝛼1

𝛹𝛵1
𝛹) 𝑑𝛽⁄ ≡ 0.  

In order to evaluate this expression consider then the divided-difference table for 𝛼0
𝛹𝛵0

𝛹 with 

three data points {𝛽2, 𝛽1, 𝛽0}, where the first-divided difference and important mean-value 

identities (mean-value theorem for derivatives) are: 



𝛼1
𝛹|𝛽̂21

𝛼0
𝛹𝛵0

𝛹(𝛽1) − 𝛼0
𝛹𝛵0

𝛹(𝛽2)

𝛽1 − 𝛽2
= 𝛼1

𝛹|𝛽̂21𝛵1
𝛹(𝛽̂2

1) (9a) 

𝛼1
𝛹|𝛽̂1𝑜

𝛼0
𝛹𝛵0

𝛹(𝛽0) − 𝛼0
𝛹𝛵0

𝛹(𝛽1)

𝛽0 − 𝛽1
= 𝛼1

𝛹|𝛽̂1𝑜𝛵1
𝛹(𝛽̂1

𝑜) (9b) 

where 𝛽𝑖 ≤ 𝛽̂𝑖
𝑖−1 ≤ 𝛽𝑖−1 and bearing in mind that the next divided difference is  

𝛼1
𝛹|𝛽̂1𝑜𝛵1

𝛹(𝛽̂1
𝑜) − 𝛼1

𝛹|𝛽̂21𝛵1
𝛹(𝛽̂2

1)

𝛽̂1
𝑜 − 𝛽̂2

1
≡ 0 (10) 

which for first-order finite similitude is identically zero and on substitution of Eqs. (9) 

provides 

 𝛼0
𝛹𝛵0

𝛹(𝛽0) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) + 𝑅1
𝛹(𝛼0

𝛹𝛵0
𝛹(𝛽1) − 𝛼0

𝛹𝛵0
𝛹(𝛽2)) (11) 

where the scaling parameter 𝑅1
𝛹 in this equation is 

 𝑅1
𝛹 = (

𝛼1
𝛹|𝛽̂21

𝛼1
𝛹|𝛽̂1𝑜

)(
𝛽0 − 𝛽1
𝛽1 − 𝛽2

) (12) 

Examination of Eq. (11) reveals several important aspects. First, first-order finite similitude is 

about proportional relationships between the differences in the transport equations at different 

scales.  Second, since 𝛼0
𝛹𝛵0

𝛹(𝛽1) = 0 and 𝛼0
𝛹𝛵0

𝛹(𝛽2) = 0 it immediately follows from Eq. 

(11) that 𝛼0
𝛹𝛵0

𝛹(𝛽0) = 0, i.e. a set of transport equations for the physical space is obtained.  

Note additionally if zeroth-order similitude applies, then Eq. (11) reduces to  

 𝛼0
𝛹𝛵0

𝛹(𝛽0) ≡ 𝛼0
𝛹𝛵0

𝛹(𝛽1) (13) 

which is the expected form being the integrated form of Eq. (5). 

5.3. First-order identities 

Eq. (11) gives rise to a set of first order identities on application to Eqs. (4a) to (4c), which 

are: 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝜌(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2) (14a) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝑣(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2) (14b) 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 + 𝑅1
𝑣(𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1 − 𝛼02

𝑣 𝑔2𝛽2
2𝝈𝑡𝑠2) (14c) 

𝒃𝑝𝑠
𝑣 = 𝑔1

2𝛽1
−1𝒃𝑡𝑠1

𝑣 + 𝑅1
𝑣(𝑔1

2𝛽1
−1𝒃𝑡𝑠1

𝑣 − 𝑔2
2𝛽2

−1𝒃𝑡𝑠2
𝑣 ) (14d) 

𝒖𝑝𝑠 = 𝛽1
−1𝒖𝑡𝑠1 + 𝑅1

𝑢(𝛽1
−1𝒖𝑡𝑠1 − 𝛽2

−1𝒖𝑡𝑠2) (14e) 

𝒗𝑝𝑠 = 𝛽1
−1𝑔1𝒗𝑡𝑠1 + 𝑅1

𝑢(𝛽1
−1𝑔1𝒗𝑡𝑠1 − 𝛽2

−1𝑔2𝒗𝑡𝑠2) (14f) 



and where 𝝈𝑡𝑠1 = 𝝈𝑡𝑠(𝛽1), 𝒗𝑡𝑠2 = 𝒗𝑡𝑠(𝛽2) etc. and a consistent velocity field requires 𝑅1
𝑢 =

𝑅1
𝑣 = 𝑅1

𝜌
 and set to be 𝑅1  henceforth. 

Note that Eq. (14e) along with the identities 𝒅𝒙𝑡𝑠1 = 𝛽1𝒅𝒙𝑝𝑠 and 𝒅𝒙𝑡𝑠2 = 𝛽2𝒅𝒙𝑝𝑠 yield the 

small strain relationship 

𝜺𝑝𝑠 = 𝜺𝑡𝑠1 + 𝑅1
𝑢(𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) (15) 

which confirms that to a limited degree, strain is permitted to be unequal in the trial and 

physical spaces, which is the reality in most physical experiments. 

The identities pertaining to first-order finite similitude theory are summarised in Table 2 and 

revealed is that despite the initial complexity of the theory, relatively straightforward 

relationships are its product. 

Table 2: Necessary and sufficient first-order scaling identities. 

Eq. 

No. 

Field Scalars Flux Source 

(4a) 𝒗𝑡𝑠
∗ = 𝛽𝑔−1𝒗𝑝𝑠

∗  𝛼0
1 = 𝛽−3 - - 

(4b) 𝛼0
𝜌
𝜌𝑡𝑠𝛽

3 = 𝜌𝑝𝑠 𝛼0
𝜌(1) = 1 

𝑔(1) = 1 

  

(4c) 𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝑔1𝒗𝑡𝑠1

− 𝛽2
−1𝑔2𝒗𝑡𝑠2) 

𝛼0
𝑣 = 𝛼0

𝜌
𝑔𝛽−1 𝝈𝑝𝑠

= 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

+ 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1

− 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) 

𝒃𝑝𝑠
𝑣

= 𝑔1
2𝛽1

−1𝒃𝑡𝑠1
𝑣

+ 𝑅1 (𝑔1
2𝛽1

−1𝒃𝑡𝑠
𝑣

− 𝑔2
2𝛽2

−1𝒃𝑡𝑠2
𝑣 ) 

(4d) 𝒖𝑝𝑠

= 𝛽1
−1𝒖𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝒖𝑡𝑠1

− 𝛽2
−1𝒖𝑡𝑠2) 

𝛼0
𝑢 = 𝛼0

𝜌
𝛽−1  𝒗𝑝𝑠

= 𝛽1
−1𝑔1𝒗𝑡𝑠1

+ 𝑅1 (𝛽1
−1𝑔1𝒗𝑡𝑠1

− 𝛽2
−1𝑔2𝒗𝑡𝑠2) 

6. Analytical fracture studies 



This section is concerned with the application of the new scaling concepts to two important 

concepts in fracture mechanics, i.e. the J-integral and the cohesive zone model.  Depicted in 

Fig. 4 is the compact tension (CT) test, which is one of the most commonly used specimens 

in J-integral facture mechanics and forms the main focus in this section. 

 
Figure 4. Typical testing arrangement for a compact tesion (CT) specimen. 

 

6.1. The J-Integral 

The J-integral on a moving control volume traversing a loaded body in equilibrium (in a trial 

space) with velocity 𝒗𝑡𝑠
∗  is provided by Davey and Darvizeh in reference [29] in an extended 

form 

𝐽𝑡𝑠
∗ = ∫ 𝜔𝑡𝑠𝒗𝑡𝑠

∗ ∙ 𝒏𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑝𝑠
∗ −∫ (𝒗𝑡𝑠

∗ ∙ ∇𝑡𝑠𝒖𝑡𝑠) ∙ 𝝉𝑡𝑠
Г𝑡𝑠
∗

𝑑Г𝑡𝑠
∗  (16) 

where 𝜔𝑡𝑠 is strain-energy density and 𝝉𝑡𝑠 is traction (i.e. 𝝉𝑡𝑠 = 𝝈𝑡𝑠 ∙ 𝒏𝑡𝑠), which yields the 

standard J-integral form [36] on setting 𝒗𝑡𝑠
∗ = 𝑣𝑡𝑠

∗ 𝒆𝑖 with 𝒆𝑖 indicating the direction of crack 

travel and 𝑣𝑡𝑠
∗  is a uniformly invariant speed. 

Substitution of the identities 𝑑𝑉𝑡𝑠
∗ = 𝛽2𝑑𝑉𝑝𝑠

∗  and 𝒅𝚪𝑡𝑠
∗ = 𝛽𝒅𝚪𝑝𝑠

∗  (note 2-D here) and on 

multiplication throughout by g, 𝛽−1 and a scalar 𝛼0
𝜔, gives rise to 



𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗ = ∫ 𝛼0
𝜔𝜔𝑡𝑠𝛽(𝑔𝛽

−1𝒗𝑡𝑠
∗ ) ∙ 𝒏𝑝𝑠

Г𝑝𝑠
∗

𝑑Г𝑝𝑠
∗

−∫ 𝛼0
𝜔(𝛼0

𝑣)−1𝑔−1𝛽−1 ((𝑔𝛽−1𝒗𝑡𝑠
∗ ) ∙ ∇𝑝𝑠𝛽

−1𝒖𝑡𝑠)
Г𝑝𝑠
∗

∙ (𝛼0
𝑣𝛽2𝑔𝝈𝑡𝑠 ∙ 𝒏𝑝𝑠) 𝑑Г𝑝𝑠

∗  

 

(17) 

from which is can be deduced that 𝛼0
𝜔 = 𝛼0

𝑣𝑔𝛽 = 𝛼0
𝜌
𝑔2  and consequently invariance of 

𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗  with respect to 𝛽  (i.e. i.e. 𝛼0
𝜔𝑔𝛽−1𝐽𝑡𝑠

∗ = 𝐽𝑝𝑠
∗ ) requires 𝛼0

𝜔𝛽𝜔𝑡𝑠 = 𝛼0
𝑣𝑔𝛽2𝜔𝑡𝑠 =

𝜔𝑝𝑠. 

The standard J-integral 𝐽𝑡𝑠  satisfies the relationship 𝐽𝑡𝑠
∗ = 𝑣𝑡𝑠

∗ 𝐽𝑡𝑠  and if invariant with respect 

to 𝛽 , then 𝛼0
𝜔𝐽𝑡𝑠 = 𝐽𝑝𝑠  with 𝛼0

𝜔 = 𝛼0
𝑣𝑔𝛽 .  It is of interest to examine a relatively simple 

analytical example at this stage to demonstrate the scaling concepts on familiar material.  

Consider then a crack of length 2𝑎𝑡𝑠 in an infinite plate, where in this case the J-integral in 

the absence of plasticity has a simple analytical solution, which is 

𝐽𝑡𝑠 = 
𝐾𝐼 𝑡𝑠
2

𝐸𝑡𝑠
′ = 𝜋𝑎𝑡𝑠

𝜎𝑡𝑠
2

𝐸𝑡𝑠
′  (18) 

where stress intensity 𝐾𝐼 𝑡𝑠 = 𝜎𝑡𝑠√𝜋𝑎𝑡𝑠  and 𝐸𝑡𝑠
′  represent Young’s modulus 𝐸𝑡𝑠  or 

𝐸𝑡𝑠 (1 − 𝜈𝑡𝑠
2 )⁄ , and where 𝜈𝑡𝑠 is Poisson’s ratio. 

Consider then 𝛼0
𝜔𝐽𝑡𝑠 , which provides 

𝛼0
𝜔𝐽𝑡𝑠 = 𝛼0

𝑣𝑔𝛽𝐽𝑡𝑠 =  𝜋(𝛽−1𝑎𝑡𝑠)
(𝛼0

𝑣𝛽2𝑔𝜎𝑡𝑠 )
2

𝛼0
𝑣𝛽2𝑔𝐸𝑡𝑠

′  (19) 

where for zeroth-order conditions (e.g. 𝛼0
𝑣𝛽2𝑔𝐸𝑡𝑠

′ = 𝐸𝑝𝑠
′ ) it is evident that 𝛼01

𝜔 𝐽𝑡𝑠 (𝛽1) = 𝐽𝑝𝑠 

and consequently a single trial-space experiment is sufficient. 

However, observe that 𝛼0
𝜔√𝛽𝐾𝐼 𝑡𝑠 = (𝛼0

𝑣𝛽2𝑔𝜎𝑡𝑠 )√𝜋𝛽
−1𝑎𝑡𝑠 and should zeroth-order apply, 

then 𝛼0
𝜔√𝛽𝐾𝐼 𝑡𝑠 = 𝐾𝐼 𝑝𝑠 but it is relatively easy to break zeroth-order conditions.  Using the 

same material for a single-scaled experiment would be suffice since 𝛼0
𝑣 is insufficient for the 

matching of the three material properties, i.e. 𝐾𝐼𝑐 𝑡𝑠 = 𝐾𝐼𝑐 𝑝𝑠 (fracture toughness), 𝐸𝑡𝑠 = 𝐸𝑝𝑠 

and 𝜈𝑡𝑠 = 𝜈𝑝𝑠 (and additionally yield stress if plasticity is involved).  Additional flexibility is 

required, and first-order finite similitude provides greater scope for capturing the full-scale 

physical behaviour. 

6.1.1 Analytical calculation of J 



It is of interest to examine the situation of two scale experiments were the objective is the 

prediction of the onset of crack propagation in an infinite full-scale plate.  The situation is 

depicted in Fig. 5 where the possibility of using three different materials is considered for the 

scale choices of 𝛽1 = 1

2
 and 𝛽2 = 1

4
, and the full-scale plate.  The general concept presented 

in Fig. 3 is recreated in Fig. 5 for the specific case of a single crack subjected to a uniform 

stress field, where it is assumed here that the analytical result in Eq. (18) applies to the real 

scaled experiments.  The test for success is how close the virtual model matches the full-scale 

real result, which again is assumed to comply with Eq. (18).  Observe from Eq. (14c) and Fig. 

5 that the products 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 appear, which confirms that 𝑔1 and 𝑔2 have no part to 

play in what is after all a quasi-static analysis.  Changing 𝑔2  (say) can be negated by 

changing 𝛼02
𝑣  so that the product 𝛼02

𝑣 𝑔2 remains unchanged.  As far as the selection of 𝛼01
𝑣  

and 𝛼02
𝑣  is concerned, these are set to satisfy zeroth-order conditions for fracture toughness 

being zeroth-order scalars and consequently satisfy 

𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 =

𝐾𝐼𝑐 𝑝𝑠

√𝜋𝑎𝑝𝑠
= 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠

𝑐𝑟𝑖𝑡(𝛽1) = 𝛼01
𝑣 𝑔1𝛽1

2
𝐾𝐼𝑐 𝑡𝑠(𝛽1)

√𝜋𝑎𝑡𝑠1

= 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠
𝑐𝑟𝑖𝑡(𝛽2) = 𝛼02

𝑣 𝑔2𝛽2
2
𝐾𝐼𝑐 𝑡𝑠(𝛽2)

√𝜋𝑎𝑡𝑠2
 

 

 

 

(20) 

with  𝑎𝑡𝑠1 = 𝑎𝑡𝑠(𝛽1) = 𝛽1𝑎𝑝𝑠 and 𝑎𝑡𝑠2 = 𝑎𝑡𝑠(𝛽2) = 𝛽2𝑎𝑝𝑠 and consequently 

𝛼01
𝑣 𝑔1 =

√𝛽1

𝛽1
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠(𝛽1)
 (21a) 

𝛼02
𝑣 𝑔2 =

√𝛽2

𝛽2
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠(𝛽2)
 (21b) 

 



 

Figure 5. Portrayal of a side crack in an infinite plate subjected to a uniform stress field. 

Note here that the zeroth-order conditions 𝛼01
𝜌
𝜌𝑡𝑠1𝛽1

3 = 𝜌𝑝𝑠 and 𝛼02
𝜌
𝜌𝑡𝑠2𝛽2

3 = 𝜌𝑝𝑠 along with 

𝛼01
𝑣 = 𝛼01

𝜌
𝑔1𝛽1

−1  and 𝛼02
𝑣 = 𝛼02

𝜌
𝑔2𝛽2

−1  in Table 1 are not applied since density is not a 

feature of this simple problem.  However, their inclusion has the not too unexpected 

consequence that time plays a part in the analysis.  This follows because their incorporation 

constrains the values of 𝛼01
𝑣  and 𝛼02

𝑣  but Eq. (21) can still be satisfied provided 𝑔1 and 𝑔2 are 

free to be set. Observe that 𝛼01
𝑣 𝑔1 = 𝛼01

𝜌
𝑔1
2𝛽1

−1 and 𝛼02
𝑣 𝑔1 = 𝛼02

𝜌
𝑔2
2𝛽2

−1 and consequently on 

setting 𝑔1 and 𝑔2 equal to 

𝑔1 = √
𝛽1
2√𝛽1

𝛼01
𝜌
𝛽1
3

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
= 𝛽1 √√𝛽1

𝜌𝑡𝑠1
𝜌𝑝𝑠

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
 (22a) 

𝑔2 = √
𝛽2
2√𝛽2

𝛼02
𝑣 𝛽2

3

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠2
= 𝛽2 √√𝛽2

𝜌𝑡𝑠2
𝜌𝑝𝑠

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠2
 (22b) 

ensures that Eqs. (21) are satisfied. 



It is understood that although time is not a feature of quasi-static processes, it is of course a 

feature of real experiments.  Here 𝑔1 and 𝑔2 informs on how the information from the two 

experiments are combined.  Although inertia is not a feature of the quasi-static process and 

consequently material density is not involved necessarily it can still be incorporated on 

imagining the loading process to occur over a specified period.  This period can be different 

at the two scales as indicated by 𝑔1 ≠ 𝑔2. 

It is evident from Eq. (18) that in order to be able to predict the J-integral at full scale by 

means of scaled experimentation it is necessary to say something about deformation and 

strain energy, reflected by the presence of Young’s modulus in this equation.  One approach 

is depicted in Fig. 6, which is essentially the situation in Fig. 5, with the cracks removed and 

the scales 𝛽1 and 𝛽2 assumed free.   

 

Figure 6. Imagined stress loading in the absence of a crack. 

In this case at 𝝈𝑝𝑠 = 𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 the following zeroth-order conditions are assumed to apply 

𝝈𝑝𝑠
𝑐𝑟𝑖𝑡 = 𝐸 𝑝𝑠

′ 𝜀𝑝𝑠
𝑐𝑟𝑖𝑡 = 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1

𝑐𝑟𝑖𝑡 = 𝛼01
𝑣 𝑔1𝛽1

2𝐸 𝑡𝑠1
′ 𝜀𝑡𝑠1

𝑐𝑟𝑖𝑡 = 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2
𝑐𝑟𝑖𝑡 =

𝛼02
𝑣 𝑔2𝛽2

2𝐸 𝑝𝑠2
′ 𝜀𝑡𝑠2

𝑐𝑟𝑖𝑡  
(23) 



where it is assumed further that 𝜀𝑝𝑠
𝑐𝑟𝑖𝑡 = 𝜀𝑡𝑠1

𝑐𝑟𝑖𝑡 = 𝜀𝑡𝑠2
𝑐𝑟𝑖𝑡 and given that the conditions in Eqs. 

(21) apply it follows that 

𝛼01
𝑣 𝑔1 =

√𝛽1

𝛽1
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
=
1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′  (24a) 

𝛼02
𝑣 𝑔2 =

√𝛽2

𝛽2
2

𝐾𝐼𝑐 𝑝𝑠

𝐾𝐼𝑐 𝑡𝑠1
=
1

𝛽2
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠2
′  (24b) 

which leads to specific values of 𝛽1 and 𝛽2 depending on the material chosen, i.e. it provides 

𝛽1 = (
𝐾𝐼𝑐 𝑡𝑠1

 𝐾𝐼𝑐 𝑝𝑠

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ )

2

 (25a) 

𝛽2 = (
𝐾𝐼𝑐 𝑡𝑠2

 𝐾𝐼𝑐 𝑝𝑠

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠2
′ )

2

 (25b) 

and since 𝛽2 ≤ 𝛽1 these relationships require materials that satisfy 
𝐾𝐼𝑐 𝑡𝑠1

𝐸 𝑡𝑠1
′ ≤ 𝐾𝐼𝑐 𝑡𝑠2

𝐸 𝑡𝑠2
′ . 

Thus, with the extra flexibility afforded the approach by allowing 𝛽1 and 𝛽2 to vary, zeroth-

order matching is possible.  It is of interest therefore to test a simple example consisting of 

three materials to represent the two trial and full-scale experiments.  The material properties 

for all the materials applied in this paper are tabulated in Table 3.  Specifically, the materials 

considered are: titanium (Ti6Al4V) [37-39], stainless steel (AISI 201), tungsten [40], steel 

(EN3B), copper (C101) and aluminium (6082).  The three materials selected here are given in 

Table 4 and consist of titanium, stainless and tungsten for full and trial space at scales at 𝛽1 

and 𝛽2, respectively.  To identify the materials in the virtual models the notation Ti-Ti, Ti-SS, 

Ti-Tung and Ti-SS-Tung is employed to signify that the full-scale material is titanium and the 

scaled materials are titanium, stainless or tungsten with Ti-SS-Tung signifying that first-order 

theory is employed with two trial-space experiments.  Eq. (18) is applied to determine the J-

integral for the virtual model, with length scales set by Eqs. (25) and 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 are 

calculated using Eqs. (24).  As alluded to above however, this arrangement ensures that 

zeroth-order theory is sufficient and consequently 𝐽𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1 𝐽𝑡𝑠1  and 𝛼01

𝑣 𝑔1𝛽1 𝐽𝑡𝑠1 =

𝛼02
𝑣 𝑔2𝛽2 𝐽𝑡𝑠2.  The objective here is to predict the J-integral (at its critical value) at full scale 

which is known to satisfy Eq. (18).  Examination of Table 4 confirms that the three 

combinations Ti-Ti, Ti-SS, Ti-Tung gives as expected the exact prediction for both 𝐸𝑝𝑠 and 

𝐽𝑐 𝑝𝑠, i.e. 120 GPa and 100.8 kJ/m2, respectively, as tabulated for titanium in the first row of 

Table 3. 

 



Table 3. Materials properties used in the paper. 

Material 𝐸 

(GPa) 

𝜎𝑌 

(MPa) 

𝜎𝑇𝑆 

(MPa) 

𝐾𝐼𝐶 

(GPa m
1

2) 

𝐺𝑐 

(kJ/m2) 

𝑣  

(Poisson 

ratio) 

Titanium 120 812 1077 1100 100.8 0.36 

Stainless 200 881 1206 100 50.0 0.30 

Steel 190 324 491 50 13.2 0.29 

Tungsten 410 1123 1255 150 54.9 0.28 

Copper 130 92 243 30 11.7 0.34 

Aluminium 70 98 370 30 12.9 0.35 

 

Table 4. Virtual material properties for three material combination. 

i Material 𝛽𝑖 
𝐽𝑐 =

𝐾𝐼𝑐
2

𝐸
 

(kJ/m2) 

𝛼0𝑖
𝑣 𝑔𝑖  Virtual Properties 

𝐸𝑝𝑠 

(GPa) 

𝐽𝑐 𝑝𝑠 

(kJ/m2) 

Mat. 

type 

0 Titanium 

(ps) 

1 100.8 1 120 100.8 Ti-Ti 

1 Stainless 

(ts) 

0.2975 50.0 6.78 120 100.8 Ti-SS 

2 Tungsten 

(ts) 

0.1593 54.9 11.53 120 100.8 Ti-Tung 

As a further check on the analytical study each of the three CT specimens at the length scales 

and materials specified in Table. 2 are re-evaluated numerically with the commercial code 

Abaqus.  This involved meshing three CT specimens that are scaled versions of the model 

depicted in Fig. 4.  The top circle depicted in Fig. 4 is displacement by 0.25 mm in the 

physical space (to ensure elasticity) with the bottom circle is fixed in all directions.  The J-

integrals in this instance were determined using the facility within Abaqus and the results are 

provided in Table 5. 

Table 5. Numerical J-integral comparison between the virtual and numerical models. 

i Material 𝛽𝑖 𝐽𝑡𝑠(𝛽𝑖) 𝛼0𝑖
𝑣 𝑔𝑖  Virtual 



(kJ/m2) 𝐸𝑝𝑠 

(GPa) 

𝐽 𝑝𝑠 

(kJ/m2) 

Mat. 

type 

0 Titanium 

(ps) 

1 13.1 1 120 13.1 Ti-Ti 

1 Stainless 

(ts) 

0.2975 3.2 6.78 120 13.1 Ti-SS 

2 Tungsten 

(ts) 

0.1593 6.2 11.53 120 13.1 Ti-Tung 

The results confirm the veracity of the theory for predicting J-integrals with scaled tests for 

the CT specimens, although the analysis is limited here to linear elastic fracture mechanics.  

Further details on the numerical simulation are provided in subsequent sections, where 

elastic-plastic fracture mechanics is considered. 

6.2. Cohesive zone model 

The cohesive zone model represents damage that results in fracture by means of a single 

failure usually along a predefined path or along element edges in any finite element analysis.  

The most rudimentary cohesive model is identified by a traction-separation curve consisting 

of three properties, which are critical stress 𝜎𝑐, critical separation 𝛿𝑐 and the area under the 

curve 𝐺𝑐, which is the cohesive fracture energy.  In the simplest linear case 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐 and 

it is evident that the three properties are related.  The J-integral property 𝐽𝑐 = 𝐺𝑐 suggests that 

𝛼0
𝜔𝐺𝑡𝑠  should be considered for the purpose of scaling.  Note that  

𝛼0
𝜔𝐺𝑐 𝑡𝑠 = 𝛼0

𝑣𝑔𝛽𝐺𝑐 𝑡𝑠 = 
1

2
(𝛼0

𝑣𝛽2𝑔𝜎𝑐 𝑡𝑠)(𝛽
−1𝛿𝑐 𝑡𝑠) (26) 

where it is apparent that for zeroth-order scaling to apply, critical material properties must be 

changed.  

However, theoretically the critical separation 𝛿𝑐 would be affected by 𝛽, and ultimately stress 

𝜎𝑐 will not changed with 𝛽 for the same material, which makes 𝐺𝑐 affected by 𝛽 but it should 

not be.  This provides a conflict in zeroth-order theory and leads to the need of high-order 

theories.  

In order to gain some insight into the response of a cohesive element under scaling it is of 

interest to consider 1-D rod (see ref. [41]) represented by a linear spring and linear cohesive 

model as depicted in Fig. 7. 



 

Figure 7.  Scaling of rod presented by a spring and cohesive element. 

Consider then a rod of length ℓ0  and area 𝐴0  that is subjected a displacement 𝛿 at the free 

end with its lower end fixed.  The behaviour of all the real experiments in Fig. 7 is linear 

extension followed by linear unloading once the critical stress 𝜎𝑐  is attained.  The total 

extension of the rod is  𝛿 = 𝛿𝑒𝑙 + 𝛿𝑐𝑜ℎ  with uniaxial applied stress 𝜎 = 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ , with 

𝛿𝑒𝑙 =
𝜎𝑒𝑙ℓ0

𝐸
 and when meaningful 𝜎𝑐𝑜ℎ = 𝜎𝑐 (1 −

𝛿𝑐𝑜ℎ

𝛿𝑐
), where 𝐸  is Young’s modulus, 𝛿𝑒𝑙 

and 𝛿𝑐𝑜ℎ are the extensions arising from the spring and cohesive element, respectively.  Note 

that the equilibrium condition 𝜎𝑒𝑙 = 𝜎𝑐𝑜ℎ provides the expression: 

𝜎

𝜎𝑐
=

{
 
 

 
  𝛿

𝛿𝑐
𝑒𝑙 if     0 ≤ 𝛿 ≤ 𝛿𝑐

𝑒𝑙

(1 −
𝛿𝑐
𝑒𝑙

𝛿𝑐
)

−1

(1 −
𝛿

𝛿𝑐
) if    𝛿𝑐

𝑒𝑙 < 𝛿 ≤ 𝛿𝑐

 (27) 

where 𝛿𝑐
𝑒𝑙 = 𝜎𝑐 ℓ0

𝐸
 and it is assumed that this equation applies to each of the real experiments 

in Fig. 7; in particular ℓ0  takes up the values ℓ𝑝𝑠, 𝛽1ℓ𝑝𝑠, and 𝛽2ℓ𝑝𝑠 for each of the lengths of 

the rods. 

The focus of interest is the behaviour of the full-scale virtual model depicted in Fig. 8.  The 

scaling theory does not provide explicit function relationships of the type in Eq. (27) as it 



supplies both the stress 𝜎𝑝𝑠  and the displacement 𝑢𝑝𝑠 = 𝛿𝑝𝑠  by means of Eqs. (14c) and 

(14e), respectively.  The issue alluded to above with regards to 𝐺𝑐 being dependent on 𝛽 is 

made explicit here since with 𝜎𝑐  and 𝐸 fixed for the same material, then 𝛿𝑐
𝑒𝑙 = 𝜎𝑐

𝐸
ℓ0  will 

scale with the specimen size and consequently, so must 𝛿  and 𝛿𝑐  for Eq. (27) to remain 

unchanged.  Unfortunately, this provides a contradiction since 𝐺𝑐 = 0.5𝜎𝑐𝛿𝑐, which means 𝐺𝑐 

scales with length also.  As this is not the case 𝜎𝑐 and 𝛿𝑐 must be allowed to vary (for zeroth-

order finite similitude) and this aspect in many respects highlights the problem faced in the 

literature with setting 𝜎𝑐 (or 𝛿𝑐) with these types of element.  Thus for zeroth-order scaling 

with 𝜎𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝜎𝑡𝑠1 and 𝑢𝑝𝑠 = 𝛽1
−1𝑢𝑡𝑠1 it is clear that with all displacement and stress 

terms in Eq. (27) behaving like 𝛿𝑝𝑠 = 𝛽1
−1𝛿𝑡𝑠1  and 𝜎𝑝𝑠 = 𝛽1 𝜎𝑡𝑠1  (i.e. 𝛼01

𝑣 𝑔1 = 𝛽1
−1), then 

𝐺𝑐 𝑡𝑠 = 𝐺𝑐 𝑝𝑠 and successful zeroth-order scaling is possible. 

It is interest to examine two different materials for trial space models and two cases are 

considered (i) 𝐺𝑐 𝑡𝑠1 = 𝐺𝑐 𝑡𝑠2 , 𝛽1 𝐸𝑐 𝑡𝑠1 = 𝛽2 𝐸𝑐 𝑡𝑠2  and (ii) 𝛽1
−1𝐺𝑐 𝑡𝑠1 = 𝛽2

−1𝐺𝑐 𝑡𝑠2 , 𝐸𝑐 𝑡𝑠1 =

𝐸𝑐 𝑡𝑠2 ; in both cases it is assumed 𝛽1 =
1

2
 and 𝛽2 =

1

4
.  The zeroth-order condition 

𝛼01
𝑣 𝑔1𝛽1

2𝐸𝑡𝑠1 = 𝛼02
𝑣 𝑔2𝛽2

2𝐸𝑡𝑠2 is satisfied in (i) with 𝛼01
𝑣 𝑔1 = 𝛽1

−1 and 𝛼02
𝑣 𝑔2 = 𝛽2

−1 and (ii) 

with 𝛼01
𝑣 𝑔1 = 𝛽1

−2  and 𝛼02
𝑣 𝑔2 = 𝛽2

−2 .  The parameters for the two cases are tabulated in 

Table 6 in dimensionless form and the arrangements are depicted in Fig. 8.  Examination of 

the figure reveals how the real behaviours are projected and then combined to form virtual 

models.  In this case, to keep things reasonably simple, the arrangement is confined to zeroth-

order constructs with more complex problems (involving plasticity) being presented in the 

following section. 

Table 6. Test parameters for scaled cohesive elements  

Test Case 𝐺𝑐 𝑡𝑠1
𝐺𝑐 𝑡𝑠2

 
𝐸𝑡𝑠1
𝐸𝑡𝑠2

 
𝜎𝑐 𝑡𝑠1

𝜎𝑐 𝑡𝑠2
 

𝛿𝑐 𝑡𝑠1

𝛿𝑐 𝑡𝑠2
 

ℓ𝑡𝑠1

ℓ𝑡𝑠2
 

𝛿𝑐 𝑡𝑠1
𝑒𝑙

𝛿𝑐 𝑡𝑠2
𝑒𝑙  

(i) 1 0.5 0.5 2 2 2 

(ii) 2 1 1 2 2 2 

 



Figure 8. The construction of virtual cohesive models for two test-case materials 

 

7. Non-linear material selection 

All the examples considered above are for linear materials and it is of interest to involve 

plasticity for physical modelling and examine how scaling parameters are set.  Stress and 

strain are the principal focus here and the solution of 

𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

2𝝈𝑡𝑠2) (28a) 

𝜺𝑝𝑠 = 𝜺𝑡𝑠1 + 𝑅1 (𝜺𝑡𝑠1 − 𝜺𝑡𝑠2) (28b) 

which are Eqs. (14c) and (15) reproduced here for readability sake. 

The scaling parameters 𝛼01
𝑣  and 𝛼02

𝑣  are set here based on zeroth-order conditions followed 

subsequently with the setting of 𝑅1 .  The way this is achieved is to target critical material 

properties in the physical space and consider a scenario where Eqs. (28) can be set.  To aid in 

this analysis it is useful first to reduce Eqs. (28), which are tensorial relationships, into scalar 

equations.  This is achieved here with a proportional-fields concept, where the following 

relationships are assumed: 



𝝈𝑡𝑠1 = 𝑎̂1𝝈𝑝𝑠 (29a) 

𝝈𝑡𝑠2 = 𝑎̂2𝝈𝑝𝑠 (29b) 

𝜺𝑡𝑠1 = 𝑏̂1𝜺𝑝𝑠 (29c) 

𝜺𝑡𝑠2 = 𝑏̂2𝜺𝑝𝑠 (29d) 

which on substitution into Eqs. (28) provide 

1 = 𝛼01
𝑣 𝑔1𝛽1

2𝑎̂1 + 𝑅1 (𝛼01
𝑣 𝑔1𝛽1

2𝑎̂1 − 𝛼02
𝑣 𝑔2𝛽2

2𝑎̂2) (30a) 

1 = 𝑏̂1 + 𝑅1 (𝑏̂1 − 𝑏̂2) (30b) 

which are the sought scalar equations, where 𝑎̂1, 𝑎̂2, 𝑏̂1 and 𝑏̂2 are dimensionless parameters. 

It is important to appreciate here that the assumed proportional form of Eqs. (29) does not 

constrain the governing fields to be proportional since the purpose of Eqs. (30) is limited to 

the determination of scaling parameters.  The determination of these dimensional parameters 

transpires to be relatively straightforward.  In the case of zeroth-order theory with one trial 

experiment a simple process would be to consider synchronised uniaxial tests in both the trial 

space and physical space.  At the point when both bars reach yield stresses 𝑌𝑡𝑠1, 𝑌𝑝𝑠  and yield 

strains 𝜀𝑡𝑠1
𝑌 = 𝑌𝑡𝑠1 

𝐸𝑡𝑠1 
, 𝜀𝑝𝑠

𝑌 =
𝑌𝑝𝑠 

𝐸𝑝𝑠 
, then Eqs. (30) reduce to 1 = 𝛼01

𝑣 𝑔1𝛽1
2𝑎̂1 and 1 = 𝑏̂1 with 𝑎̂1 =

𝑌𝑡𝑠1

𝑌𝑝𝑠
 and 𝑏̂1 =

𝜀𝑡𝑠1
𝑌 .  

𝜀𝑝𝑠
𝑌 , which provides the means to set 𝛼01

𝑣 𝑔1, ie 𝛼01
𝑣 𝑔1𝛽1

2 =
1

𝑎̂1
=  

𝑌𝑝𝑠

𝑌𝑡𝑠1

.  Strains 

match, for zeroth-order finite similitude, which is precisely what is inferred by the equation 

𝑏̂1 = 1 or equivalently 𝜀𝑡𝑠1
𝑌 = 𝜀𝑝𝑠

𝑌 , which gives 
𝑌𝑡𝑠1 

𝐸𝑡𝑠1 
=

𝑌𝑝𝑠 

𝐸𝑝𝑠 
 or 𝐸𝑝𝑠  = 𝐸𝑡𝑠1

𝑌𝑝𝑠 

𝑌𝑡𝑠1

.  As regards first 

order, the zeroth-order conditions 𝑎̂1 =
𝑌𝑡𝑠1

𝑌𝑝𝑠
, 𝑎̂2 =

𝑌𝑡𝑠2

𝑌𝑝𝑠
, 1 = 𝛼01

𝑣 𝑔1𝛽1
2𝑎̂1 and 1 = 𝛼02

𝑣 𝑔2𝛽2
2𝑎̂2 

are assumed to apply making 𝛼02
𝑣 𝑔2𝛽2

2 and 𝛼01
𝑣 𝑔1𝛽1

2 known.  To determine 𝑅1 , Eq. (30a) is 

reused, where in this case mean values for stress are utilised.  This approach enables the 

effect of material work hardening to be accommodated and the method was first introduced in 

reference [34] although limited to zeroth-order problems in that case.  The mean-value is 

defined to be 

𝜎 =
1

𝜀𝑚𝑎𝑥
∫ 𝜎𝑑𝜀
𝜀𝑚𝑎𝑥

0

 (31) 

where 𝜀𝑚𝑎𝑥 is taken from the material stress-strain curves used in the experiments; these are 

depicted in Fig. 9 with is 𝜀𝑚𝑎𝑥 indicated for the materials introduced in Table 3.  Note from 



the figure that 𝜀𝑚𝑎𝑥 is limited to 0.1 for materials with strain ranges greater than that for 

titanium. 

 

Figure 9. Strain-hardening curves for materials listed in Table 1. 

With the application of Eq. (31) it follows that Eq. (30a) can be rearranged to give 

𝑅1 =
1 − 𝛼01

𝑣 𝑔1𝛽1
2𝑎̂1

𝛼01
𝑣 𝑔1𝛽1

2𝑎̂1 − 𝛼02
𝑣 𝑔2𝛽2

2𝑎̂2
 (32) 

where in this case 𝑎̂1 =
𝜎̅𝑡𝑠1

𝜎̅𝑝𝑠
, 𝑎̂2 =

𝜎̅𝑡𝑠2

𝜎̅𝑝𝑠

, and where it is appreciated that this approach for the 

determination of the scaling parameters is one of many possibilities; no attempt is made here 

to determine the length scales 𝛽1  and 𝛽2 , which are set here to be 𝛽1 = 1

2
 and 𝛽2 = 1

4
. 

7.1. Zeroth-order material selection 

The materials presented in Table 3 are utilised as trial materials with titanium being the 

material chosen for the physical model.  The objective here is to examine how well material 

choices for the trial space capture the uniaxial behaviour of titanium. 

Table 5. Zeroth-order virtual material properties with yield-stress targeting and 𝛽1 = 1

2
. 

Material Yield 

stress 

(MPa) 

𝛼01
𝑣 𝑔1 Virtual 

Material 

Virtual material properties 

Yield stress 

(MPa) 

Young’s 

Modulus E 

(GPa) 
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p

a)

Strain (mm/mm)

Titanium

Steel
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steel
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Titanium (PS) 812 4 Ti-Ti 812 120 

Stainless steel (TS) 881 3.69 Ti-SS 812 120 

Steel (TS) 324 10.04 Ti-S 812 120 

Tungsten (TS) 1123 2.89 Ti-Tung 812 120 

Copper (TS) 92 35.25 Ti-C 812 120 

Aluminium (TS) 98 30.03 Ti-Al 812 120 

Recall that a virtual-material model is produced by targeting selected materials properties 

(e.g. yield stress) of titanium where in the case stainless steel as the trial material it is noted as 

Ti-SS.  The scaling parameters 𝛼01
𝑣 𝑔1 for each of the material combinations are presented in 

Table 5, where it is apparent that the virtual materials match both the yield stress and 

Young’s modulus of titanium.  The stress strain curves for titanium and the virtual material 

can be found in Fig. 10, where large deviations are apparent for some combinations.  The 

virtual material model Ti-SS gives the closest match with Ti-Al providing the worst.  The 

issue here is that although yield stress and Young’s modulus match, there is mismatch in 

strain hardening and with zeroth-order theory there is no practical solution to this dilemma. 

 

Figure 10. Stress-hardening curves for virtual models targeting titanium yield stress. 
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Table 6. First-order virtual material properties with 𝛽1 = 1

2
. and 𝛽2 = 1

4
. 

Material 𝜀𝑚𝑎𝑥 Mean 

stress 

(MPa) 

𝛼01
𝑣 𝑔1 

(𝛽1 = 1

2
) 

𝛼02
𝑣 𝑔2 

(𝛽2 = 1

4
) 

Virtual 

Material 

𝑅1 Virtual properties 

Mean 

stress 

(MPa) 

Yield 

stress 

(MPa) 

Titanium 

(PS) 

0.09 1026 4 16 Ti-SS-S -0.386 1022 812 

Stainless 

steel (TS) 

0.10 1051 3.69 14.76 Ti-SS-C -0.647 1013 812 

Steel (TS) 0.07 445 10.04 40.16 Ti-SS-

Tung 

0.539 1023 812 

Tungsten 

(TS) 

0.10 1194 2.89 11.56 Ti-S-C 0.124 1039 812 

Copper (TS) 0.06 210 35.25 141.0 Ti-C-

Tung 

-0.835 1010 812 

Aluminium 

(TS) 

0.10 312 30.03 120.12 Ti-SS-Al -0.035 1014 812 

 

Considering the results presented in Fig. 10 it is of interest to examine what improvement can 

be made on the application of first-order theory to the materials in Table 3. 

7.2. First-order material selection 

Following the procedure outlined above, both 𝛼01
𝑣 𝑔1 and 𝛼02

𝑣 𝑔2 are determined on targeting 

the yield stress and are tabulated in Table 6.  Additionally, 𝑅1 is evaluated based on Eq. (31) 

with the objective of matching the mean stress for titanium.  The properties of real and virtual 

materials are provided in Table 6 and stress-strain curves over the strain range for titanium 

are depicted in Fig. 11.  On contrasting Figs. (10) and (11) it is apparent just how marked the 

improvements are with significantly reduced disparity between the titanium and all other 

curves.  A perfect match is not revealed but the improvement brought about by an additional 

trial experiment is demonstrable. 



 

Figure 11. Strain-hardening curves for virtual materials over the strain range for titanium. 

8. Test specimen analysis (numerical) 

The virtual materials of Section 7 are tested numerically using the commercial finite element 

package Abaqus.[42]. The context of the study is physical modelling with a view of 

examining how one (zeroth order) or two (first order) modelling materials can be used to 

predict the behaviour of a full-scale model.  In practice experimental trials would replace the 

numerical models but the focus here is on confirming the validity of the finite similitude 

approach and numerical simulation is sufficient for that purpose. Two relatively simple 

classical elastic-plastic fracture mechanics problems are considered; these are the quasi-

statically loaded 2D compact-tension (CT) specimen along with the 3D three-point bending 

(TPB) problem.  The evaluation of the J-integral is the focus using the inbuilt facility within 

the Abaqus software and the evaluation of the zeroth and first-order theories.  

8.1. Compact tension and bending models 

The compact tension specimen depicted in Fig. 4 is meshed and loaded in the manner 

depicted in Fig. 12, where a displacement of 2mm is applied to initiate plastic behaviour.  

The mesh consists of 4-noded continuum plane-stress elements (CPS4R). 
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Figure 12. CT and TPB specimens used in finite similitude analysis. 

Similarly, a three-point bending model specimen consisting of a beam with dimensions 

10mm height, 120mm length (between loading points) and 20mm depth is depicted in 

Fig. 12(a) along with the Abaqus model highlighting the mesh used in the analysis.  In 

this case the loading pin is displaced 5mm to induce plastic behaviour, and 8-noded 

continuum 3D stress elements (C3D8R) form the mesh.  The results of the Abaqus 

simulation for the CT and TPB specimens for titanium are depicted in Fig. 12(b), where 

not unexpectedly high stress levels are apparent at the crack tip. 

8.2. Virtual material models 

The finite similitude theory does not require the formulation of constitutive models as the 

stress and strain fields are directly provided by Eqs. (28).  It is of interest nonetheless in view 

of the uniaxial data in Fig. 11 and the ease at which Abaqus accepts discrete data to form a 

multi-axial constitutive law based on equivalent stress and strain.  Incorporation of the data in 

Fig. 11 and the running of Abaqus readily facilitates the determination of J-integrals.  In the 

(a) Meshed CT and TPB specimens. 

(b) Stress levels for deformed CT and TPB full-scale titanium models. 



case of the CT and TPB specimens depicted in Fig. 12, fifteen contours are located around 

each of the plastic zones and the results on the averaging fourteen of these are provided in 

Table 9 for both zeroth and first-order material models.  It is evident on examination of the 

table that first-order provides a significant improvement on the zeroth-order predictions.  

Each model is aiming to capture the full-scale J-integral values for titanium (i.e. CT (570.4 

kJ/m2), TPB (746.9 kJ/m2)) and as revealed in the table the virtual material Ti-S-C provides 

the closest result. 

Table 9. Results of numerical simulations of J-integral. 

 Material J-integral for 

CT (kJ/m2) 

Error in CT 

test 

J-integral for 

TPB (kJ/m2) 

Error in TPB 

test 

Physical (real) Titanium 570.4 - 746.9 - 

Zeroth order 

(virtual) 

Ti-SS 584.4 2.5% 824.2 10.3% 

Ti-S 606.2 6.3% 780.8 4.5% 

Ti-C 714.4 25.2% 952.8 27.6% 

Ti-Tung 533.3 6.5% 693.8 7.1% 

Ti-Al 758.1 32.9% 994.3 33.1% 

First order 

(virtual) 

Ti-SS-S 547.0 4.1% 700.8 6.2% 

Ti-SS-C 548.7 3.8% 701.2 6.1% 

Ti-SS-Tung 548.0 3.9% 698.4 6.5% 

Ti-S-C 574.4 0.7% 734.6 1.6% 

Ti-C-Tung 556.2 2.5% 695.7 6.9% 

Ti-SS-Al 549.0 3.8% 701.3 6.1% 

 

Examination of Table 9 reveals a similar trend to those shown in Figs. 10 and 11 and not too 

unexpectedly best results coming from those material combinations that provide the closest 

match to the stress-strain curve for titanium. Overall, the results of the study have confirmed 

the improvement that can be achieved by the adding of an additional trial-space experiment.  

8.3. Direct application of similitude identities 



As alluded above the similitude theory can lift experimental, analytical and numerical results 

directly and does not require the formulation of a constitutive model.  Focus in this section, is 

on the normal stress in the y-direction (i.e. 𝜎𝑝𝑠
22) and the applications of finite similitude 

identities for stress Eq. (14c) and displacement Eq. (14e).  The analysis is performed on the 

CT specimen, with the trial-models 1 and 2 being half and quarter size of physical model and 

subjected to displacements 1mm and 0.5mm, respectively.  The trial models are effectively 

scaled replicas of the full-scale model depicted in Fig. 12 with the exact same number of 

elements and element type. The 𝜎𝑝𝑠
22  stress contour for titanium in the physical space is 

depicted in Fig. 13 and the objective here is to ascertain how close a virtual model 

constructed from the results of steel and stainless trial models replicates this in the zone near 

the crack tip. 

 
Figure 13. Contour plot of stress for the physical-space CT specimen (titanium). 

The results of the study are presented in Fig. 14 drawn using Tecplot (360 EX 2019 R1) and 

based on output from Abaqus (real models in the figure) with the virtual stress field obtained 

from Eq. (14c).  The results provide a good illustration of the direct application of the finite 

similitude scaling identities without the need for a constitutive model and consequently an 

approach ideal for directly relating experimental results. 



 
Figure 14. Virtual contour plot produced by trial data (stainless steel and steel). 

Although a constitutive model is not required it is of interest to contrast the direct and virtual-

material model approaches and the results for this are presented in Fig. 15, where reasonably 

consistent results are revealed. 

 
Figure 15. Contour for real, direct and virtual-material models. 

9. A practical demonstration in Ansys 

To demonstrate that the approach presented has practicality and additionally is not reliant on 

a particular package a semi-elliptical crack located on the outer wall of a cylindrical pressure 

vessel is examined in this section using the commercial software package ANSYS [43].  The 

problem is slightly more nuanced than those described above being truly 3D in nature with 



focus on calculating stress intensity factors (SIFs) and J-integrals.  The details of the crack 

and the pressure vessel are presented in Fig.16 along with the finite element mesh employed.  

The pressure vessel is pressurised internally but constrained laterally to impose plane strain 

conditions on the crack.  The cross-section view of the crack presented Fig. 16(b) shows 

crack depth (minor radius) b, half crack length (major radius) a, and thickness T of the 

cylindrical pressure vessel.  The pressure vessel dimensions are outer radius 𝑅𝑜 = 1.5 m, 

inner radius 𝑅𝑖 = 1.4 m, length 𝐿 = 8 m and the following ratios apply: 
𝑅𝑖

𝑇
= 14, 

𝑏

𝑇
=

𝑏

𝑎
=

0.5. 

 
(a) Mesh and overall dimensions 

 
(b) Cross section of the semi-elliptical crack 

Figure 16. Mesh and crack details for an internally pressurized pressure vessel 



The FE mesh for the pressure vessel depicted in Fig. 16(a) is made up of 52283 solid 

tetrahedron elements (element size ~ 0.1m) and a total of 100234 nodes.  The overall 

dimensions of the semi-elliptical (SE) crack are provided in Fig. 16(b) and conform to the 

relationship 
𝑏

𝑎
= 0.5 .  The ANSYS software evaluates SIFs using a contour integration 

procedure with the facility to set the number contours.  In this study the number of contours 

around the crack tip is set equal to be 3 with the largest contour radius equalling 0.05m. 

9.1. Linear elastic analysis 

Zeroth-order theory is sufficient for a linear-elastic analysis and since the SIF 𝐾 ∝ 𝜎√𝜋𝑎 and 

𝐽 =
𝐾2

𝐸′
 the analysis in Section 6.1 applies, which for an identical material (i.e. titanium) at full 

size and scale, Eq. (24) provides 𝛼01
𝑣 𝑔1 =

1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ =

1

𝛽1
2.  The precise relationship for the SIF 

for the SE crack is 

 𝐾 = 𝜎√𝜋𝑎 ∙ 𝑓(𝑎′) 
(33) 

where 𝑓(𝑎′) is a shape function and takes the form, 

 𝑓(𝑎′) = √1 + 0.52𝑎 + 1.29𝑎2 − 0.07𝑎3  
(34) 

and where 𝑎′ =
𝑎

√𝑅𝑖𝑇
, which is a dimensionless parameter unaffected by scale and 

consequently 𝑎′𝑝𝑠 = 𝑎′𝑡𝑠. 

It follows therefore that 𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠1 = 𝝈𝑡𝑠1, 𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 = 𝛽1

−1/2
𝐾𝑡𝑠1 and 

𝐽𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

 𝐽𝑡𝑠1 = 𝛽1
−1𝐽𝑡𝑠1, which are relationships that are confirmed on comparison of 

virtual and real results presented Fig. 17 (i.e. Ti-Ti and Ti curves), with 5MPa internal 

uniform pressure and 𝛽1 = 1

2
 and 1

4
.  Note that the measure used along the abscissas in Fig. 

17(b) and (c) is the length along the middle contour (of the 3 contours) starting from point 1 

in Fig 17(a) and ending at point 2.  In the situation where a different material is used at scale, 

then Eq. (24) provides 𝛼01
𝑣 𝑔1 =

1

𝛽1
2

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′  and consequently 𝝈𝑝𝑠 = 𝛼01

𝑣 𝑔1𝛽1
2𝝈𝑡𝑠1 =

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝝈𝑡𝑠1 , 

which means the pressure in the scaled model must change as shown in Table. 10 for a 

selection of materials.  Note also in this case 𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 =

𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝛽1

−1/2
𝐾𝑡𝑠1  and 

𝐽𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

 𝐽𝑡𝑠1 =
𝐸 𝑝𝑠
′

𝐸 𝑡𝑠1
′ 𝛽1

−1𝐽𝑡𝑠1, which are confirmed to reasonable accuracy by the results 

presented in Fig. 17. 



Table 10. Applied pressure for scaled material models 

Materials Titanium Stainless steel Steel Copper Aluminium 

Young’s modulus 

(GPa) 

120 200 190 130 70 

Pressure (MPa) 5 8.3333 7.9167 5.4167 2.9167 

 

 
(a) Contour at crack front used by ANSYS 

 

 
(b) SIFs along contour 
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(c) J-integral along contour 

Figure 17. J-integrals and SIFs along contour shown in (a) 

9.2.Plastic analysis 

Things are slightly more involved in the situation where the pressure loading is sufficient to 

initiate plastic behaviour. The approach outlined in Section 7 is applied here with the 

targeting of yield stress for zeroth order and both yield and mean stress (i.e. Eq. (31)) first 

order.  The SIF in this situation can again be estimated using Eq. (33) but requires a plastic 

correction, according to Marie and Nédélec [44], which for a pressure vessel takes the form 

 𝐾𝑝𝑙 = 𝐾𝑒𝑙

[
 
 
 
1 +

1

2(1 − 𝑣2)
√1 − (

1

1 + 2
𝑟𝑦

𝑎

)

2

]
 
 
 
√

𝑎

2
+ 𝑟𝑦
𝑎

2

 
(35) 

where 𝑟𝑦  is a measure of the extent of the plastic zone at the crack tip, and one possible 

estimate is Irwin’s formula 𝑟𝑦 =
1

6𝜋
(
𝐾𝑒𝑙

𝑌
)
2

 with yield stress 𝑌. 

The presence of 𝐾𝑒𝑙 in 𝑟𝑦 means that 𝐾𝑝𝑙 is nonlinearly related to 𝐾𝑒𝑙 and hence to the shape 

function and the ratio between applied stress and yield stress (see Shlyannikov [45]).  The 

applied stress between physical and trial space still obeys 𝝈𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

2𝝈𝑡𝑠, thus, in order 

to negate differences in plastic correction at scale it is necessary to set 𝛼01
𝑣 𝑔1𝛽1

2 =  
𝑌𝑝𝑠

𝑌𝑡𝑠1

.  This 

again provides different pressures at scale for different materials as tabulated in Table 11. 
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Table 11. Applied pressure for each material in plastic model 

Materials Titanium Stainless steel Steel Copper Aluminium 

Yield stress (MPa) 812 881 323.5 92.2 98.4 

Pressure (MPa) 50 54.25 19.99 5.68 6.06 

Note that the relationship between stress intensity factors for first-order theory is  

𝐾𝑝𝑠 = 𝛼01
𝑣 𝑔1𝛽1

3/2
𝐾𝑡𝑠1 + 𝑅1 (𝛼01

𝑣 𝑔1𝛽1

3

2𝐾𝑡𝑠1 − 𝛼02
𝑣 𝑔2𝛽2

3

2𝐾𝑡𝑠2) (36) 

with zeroth order returned on setting 𝑅1 = 0. 

The results of the trial are provided in Fig. 18 with reasonable accuracy returned for both 

zeroth and first order except for Ti-Al in Fig. 18(a).  Finally, Fig. 19 highlights the vast 

improvement possible for J-integrals using the first order theory with the J-integrals 

determined using the in-built facility in ANSYS.  The accuracies visible in the figures reflect 

to a large extent the closeness of the curves to titanium in Figs. 10 and 11. 
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Figure 18. SIF predictions with (a) zeroth-order and (b) first-order using the in-built facility 

in ANSYS and Eq. (36). 
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Figure 19. J-integral predictions for (a) zeroth-order and (b) first-order using the in-built 

facility within ANSYS. 

10. Conclusion 

The paper examines a new scaling theory for the creation of physical models for the 

representation of full-scale cracked specimens.  A particularly novel feature is the 

employment of two scaled fracture-mechanics experiments at distinct scales and the 

application of a theory founded on the metaphysical concept of space scaling.  The following 

conclusions can be drawn from the investigation outlined in the paper: 

1. The finite similitude theory has been further developed so that it captures all scale 

dependencies that arise in the fields describing fracture mechanics. 

2. A new differential form of similarity has been established, which when integrated 

links information across two scaled-fracture experiments to the full-scale behaviour. 

3. The new theory has been shown to be equally applicable to analytical and numerical 

fracture models and provides improvements in accuracy, which on occasions can be 

markedly superior to those obtained from a single-scale trial experiment. 

4. Scale effects as previously defined by dimensional analysis can up to a limited extent 

be accommodated and cease to be scale effects in the new theory (e.g. proportional 

field differences are now possible). 

5. The efficient determination of scaling parameters has been shown possible by the 

application of a proportional-fields assumption. 
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More specifically for the trial experiments performed it has been shown that: 

1. Linear elastic fracture mechanics was captured exactly for the CT specimen by 

allowing the length scale for the trial experiments to be determined as part of the 

analysis. 

2. Zeroth-order theory involving one single trial experiment proved to be insufficient for 

elastoplastic fracture mechanics, but significant improvement was shown possible 

with two trial scale experiments. 

3. Contour integral fracture mechanics was shown to be possible and greatest accuracy 

was returned with the involvement of two trial-scale experiments. 
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Nomenclature 

𝛼0
𝛹 Scalar for transport equation for field 𝛹 

𝛼𝜌  Scalar for continuity equation 

𝛼𝑣  Scalar for momentum equation 

𝛼𝑢 Scalar for movement equation 

𝛼𝜔 Scalar for energy 

𝛼0
𝛹𝛵0

𝛹   Scaled transport equation for field 𝛹 

𝑎 Crack length (or half crack length for semi-elliptical crack) 

𝐴0 Sectional area of the rod 

𝛽  Length scalar 

𝒃𝑝𝑠
𝛹  Source term in transport equation for field 𝛹 

b Crack depth of semi-elliptical crack 

𝒆𝑖  Directional vector for crack travel 

E Young’s modulus 

𝐹  Space distortion matrix/tensor 

𝑔 Time scalar 

𝐺𝑐 Fracture energy per unit area (critical energy for fracture) 

 𝑱 
𝛹 Flux term in transport equation for field 𝛹 

 𝐽 
∗ Extended J-integral 

𝐽𝑐 Critical J-integral at failure 

𝐾𝐼 Stress intensity factor (Mode I crack) 

𝐾𝐼𝐶 Fracture toughness 



ℓ Length of rod 

𝒏 Unit normal vector  

𝑅1  First-order scaling parameter 

𝑅𝑜 Outer radius of the pressure vessel 

𝑅𝑖 Inner radius of the pressure vessel 

𝑡 Time  

T Thickness of the pressure vessel 

𝝉  Surface traction vector 

u Displacement field 

V Volume 

𝒗 
∗ Velocity field for control volume motion 

𝜈 Poisson’s ratio 

𝒙 Coordinate point 

𝝌 Coordinate point in reference control volume 

Y Yield stress 

𝜌  Material density 

𝝈  Stress field 

𝜺  Strain field 

𝛿𝑗
𝑗

 
 Kronecker delta symbol 

𝛿𝑐 Critical separation in cohesive zone model 

𝒅𝚪  Elemental surface-area vector 

𝛤 
∗ Orientable control volume boundary 



𝛹 Physical field 

𝜔  Strain-energy density 

𝛺 
∗ Control volume 

 


