
 Coventry University

DOCTOR OF PHILOSOPHY

Experimental investigation of emission from a light duty diesel engine utilizing urea
spray SCR system

Tamaldin, Noreffendy

Award date:
2010

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of this thesis for personal non-commercial research or study
            • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. May. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/experimental-investigation-of-emission-from-a-light-duty-diesel-engine-utilizing-urea-spray-scr-system(d664b330-154c-4ab1-aee3-ad7a5d682158).html


 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Experimental Investigation of 
Emission from a Light Duty 
Diesel Engine Utilizing Urea 

Spray SCR system 
 

 

Noreffendy Tamaldin 

 

PhD 

 

June 2010 

 The work contained within this document has been submitted  
by the student in partial fulfilment of the requirement of their course and award  

 
 

By 
 



 

EXPERIMENTAL INVESTIGATION OF 
EMISSION FROM A LIGHT DUTY 

DIESEL ENGINE UTILIZING  
UREA SPRAY SCR SYSTEM 

 
 
 
 

NOREFFENDY TAMALDIN, M.Eng. 
 
 
 
 
 
 

A thesis submitted in partial fulfilment of the University’s requirements for the  

Degree of Doctor of Philosophy  

 
 
 
 
 
 
 

JUNE 2010 
 

 



 ii 

ACKNOWLEDGEMENTS 

 

This thesis is the culmination of over three years of research at AEARG (Automotive Engineering 

Applied Research Group), Coventry University. It is over three years of which I have survived only 

through the help and understanding of many people. I would like to thank them here. First and 

foremost, I would like to express my appreciation to the AEARG director who is also my supervisor 

Professor S.F. Benjamin for offering me this enriching opportunity and experience to pursue my 

Ph.D. I would also like express my gratitude for his untiring patience and encouragement when 

obstacles and difficulties arise, guidance in my research, and for his good example that urges me 

to progress academically and personally.  

 

I would also like to convey my invaluable thanks to Dr. C. A. Roberts, for her indispensable 

guidance and kind support, her involvement in the project, continuous advice, support and useful 

discussions. Without all of these, this work may not have been completed. Special thank Dr. A.J. 

Alimin for training me on setting up and running the test bed, analyzers and the Froude control 

system. To Dr S. Quadri for calibration and setting up the Ricardo air flow meter. To Mr. R. 

Gartside, thank you for his help during the commissioning of the engine, test bed and the engine 

control system.  To Mr E. Larch for the engine ECU programming and Gredi setup. To Mr S. 

Goodall (Brico) for his technical advice. The technical help and assistance from, Mr C. 

Thorneycroft, Mr. S Allitt, Mr. C. Roebuck and the late Mr. K.Smith are also appreciated and 

acknowledged. 

 

I am indebted to UTeM and MOHE (Ministry of Higher Education), Malaysia for providing the 

financial support throughout my study and the following companies: Jaguar Land Rover, Johnson 

Matthey Catalyst and Faurecia, for their technical provisions for the experimental works. 

 

I cannot end without thanking my family on whose constant encouragement and love I have relied 

throughout my study, especially my parents, Tamaldin Bahardin and Zaiton Husin for their love 

and emotional support.  My gratitude also goes to my Faculty Dean, Professor Dr Md. Razali Ayob, 

for believing in me and his continuous moral support to make sure I complete my study. 

 

Last but not least, my deepest love and appreciation to my dearest wife, Maseidayu Zolkiffili and 

my wonderful kids, Ameer Husaini and Amaar Zuhasny, for their passion and suffering being with 

me in the challenging weather and life in the UK throughout my study. They are all the reason I 

continue improving myself being a better person for a better life. 



iii 
 

ABSTRACT 
 
 
Stringent pollutant regulations on diesel-powered vehicles have resulted in the development of new 

technologies to reduce emission of nitrogen oxides (NOx). The urea Selective Catalyst Reduction (SCR) system 

and Lean NOx Trap (LNT) have become the two promising solutions to this problem. Whilst the LNT results in a 

fuel penalty due to periodic regeneration, the SCR system with aqueous urea solution or ammonia gas 

reductants could provide a better solution with higher NOx reduction efficiency.  

 

This thesis describes an experimental investigation which has been designed for comparing the effect NOx 

abatement of a SCR system with AdBlue urea spray and ammonia gas at 5% and 4% concentration.  For this 

study, a SCR exhaust system comprising of a diesel particulate filter (DPF), a diesel oxidation catalyst (DOC) and 

SCR catalysts was tested on a steady state, direct injection 1998 cc diesel engine. It featured an expansion can, 

nozzle and diffuser arrangement for a controlled flow profile for CFD model validation. Four different lengths 

of SCR catalyst were tested for a space velocity study. Chemiluminescence (CLD) based ammonia analysers 

have been used to provide high resolution NO, NO2 and NH3 measurements across the SCR exhaust system. By 

measuring at the exit of the SCR bricks, the NO and NO2 profiles within the bricks were found. Comparison of 

the measurements between spray and gas lead to insights of the behaviour of the droplets upstream and 

within the SCR bricks.  

 

From the analysis, it was deduced that around half to three quarters of the droplets from the urea spray 

remain unconverted at the entry of the first SCR brick. Approximately 200 ppm of potential ammonia was 

released from the urea spray in the first SCR brick to react with NOx. The analysis also shows between 10 to 

100 ppm of potential ammonia survived through the first brick in droplet form for cases from NOx-matched 

spray input to excess spray. Measurements show NOx reduction was complete after the second SCR bricks. 

Experimental and CFD prediction showed breakthrough of all species for the short brick with gas injection due 

to the high space velocity. The long brick gas cases predictions gave reasonable agreement with experimental 

results. NO2 conversion efficiency was found higher than NO which contradicts with the fast SCR reaction 

kinetics. 

 

Transient response was observed in both cases during the NOx reduction, ammonia absorption and desorption 

process. From the transient analysis an estimate of the ammonia storage capacity of the bricks was derived. 

The amount of ammonia slippage was obtained through numerical integration of the ammonia slippage curve 

using an excel spreadsheet. Comparing the time constant for the spray and gas cases, showed a slightly faster 

time response from the gas for both NOx reduction and ammonia slippage.  
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BMEP - Brake Mean Effective Pressure (bar) 

BSP - British Standard Pipe Taper thread 

CAE - Computer Aided Engineering 

CAFE - Corporate Average Fuel Economy 

CAL - Calibration 

CAN - Controller Area Network (computer network protocol and bus standard 

designed to allow microcontrollers and devices to communicate with each 

other and without a host computer.) 

CARB - California Air Resource Board 

CEFIC - European Chemical Industry Council 

CFD - Computational Fluid Dynamics 

CLD - Chemiluminescence Detector 

CNG - Compressed Natural Gas is a fossil fuel substitute for gasoline (petrol), 

diesel, or propane fuel. 

CO - Carbon Monoxide 

CO2 - Carbon Dioxide 

CRT - Continuously Regenerating Technology filter 

Cu - Copper 

DEF - Diesel Exhaust Fluid 

DIN 70070 - German Industrial Standard on Specification of SCR Urea Grade, 

(DIN- Deutsches Institut für Normung. German Institute for Standardization)  

DOC - Diesel Oxidation Catalysts 

DPF - Diesel Particulate Filters 

dSPACE - A software package integrated with Matlab Simulink use to control the 

throttle body of an engine. 
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ECE R49 - European Cycle Emission Revision 49 

ECU - Engine Control Unit 

EEC(CED) - European Commission Directive 

EGR - Exhaust Gas Recirculation 

EMS - Engine Management System 

EPA - Environmental Protection Agency, United States 

ESC - European Steady Cycle 

FAN MOG  Fleet Average Non-methane Organic Gases 

FBC - Fuel Borne Catalyst 

GHG - Green House Gases 

GREDI - Engine ECU calibration software from Kleinknecht Automotive GmbH 

GVWR - Gross Vehicle Weight Rating 

H2O - Water 

HC - Hydrocarbon 

HLDT - Heavy light-duty trucks 

HNCO - Isocyanic Acid 

ICU - Injection Control Unit 

JAMA - Japan Automobile Manufacturers Association 

JARI - Japan Automotive Research Institute 

kW - Kilowatt (Power) 

LDD - Light Duty Diesel 

LDT - Light Duty Truck 

LDV - Light Duty Vehicles 
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LEV - Low Emission Vehicle 

LEV II - Low Emission Vehicle II 

LLDT - Light light-duty Trucks 

LNT - Lean NOx Trap 

LPG - Liquid Petroleum Gas 

MAF - Intake air Mass Air Flow 

MECA - Manufacturer of Emissions Control Association 

MKT - Market 

MLW - Maximum Laden Weight 

MoO3 - Molybdenum trioxide 

N2 - Nitrogen gas 

NAAQS - National Ambient Air Quality Standard 

NGV - Natural Gas Vehicle 

NH2 - Amines are organic compounds and functional groups that contain a basic 

nitrogen atom with a lone pair 

NH3 - Ammonia 

NH4 - Ammonium cation (also known as ionized ammonia) 

NMHC - Non-methane Hydro Carbon. All Hydrocarbons excluding methane. 

NMOG - Non- methane Organic Gases. All Hydrocarbons and Reactive Oxygenated 

Hydrocarbon Species such as Aldehydes, but excluding Methane 

NOx - Nitrogen Oxides ( NO and NO2) 

NPT - National Pipe Thread Tapered Thread (NPT) is a U.S. standard for tapered 

threads. 

O2 - Oxygen gas 
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O3 - Ozone 

OEHHA - The Office of Environmental Health Hazard Assessment (California EPA) 

OGU - Ozone Generator Unit 

Pb - Lead  

PEL - Permissible Exposure Level 

PM - Particulate Matters 

ppm - Parts per million 

Pt - Platinum 

PZEV - Partial Zero Emission Vehicle. 

RPM - Speed in Revolution per Minute 

Rutile - Mineral composed primarily of titanium dioxide, TiO2. 

SAE - Society of Automotive Engineers 

SAE J1088  - SAE J1088 - Test Procedure for the Measurement of Gaseous Exhaust 

Emissions From Small Utility Engines 

SCR - Selective Catalyst Reduction 

SCRF - Combination of SCR and DPF with SCR washcoat on a DPF (Ford Motor) 

SMMT - Society of Motor Manufacturers and Traders, UK Limited. 

SO2 - Sulphur Dioxides 

SO3 - Sulphur Trioxides 

SOF - Organic Fraction of Diesel Particulates 

STAR-CD - A CFD software package from CD-Adapco 

SULEV - Super Ultra Low Emission Vehicle 

SUV - Sport Utility Vehicle 
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T&E - Transport and Environment 

TiO2 - Titanium Dioxide 

TLEV - Transitional Low Emission Vehicle.  

ULEV - Ultra Low Emission Vehicle 

UN ECE - United Nation European Cycle Emission 

US, EPA - United States, Environmental Protection Agency 

V2O5 - Vanadium Oxides 

VGT - Variable Geometry Turbocharger 

VPU - Vacuum Pump Unit 

WHTC - World Harmonized Transient Cycle 

WO3 - Tungsten trioxide 

ZSM-5 - Zeolite Sieve of Molecular Porosity (or Zeolite Socony Mobil)-5. It is a 

synthetic zeolite. 
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CHAPTER 1:  INTRODUCTION 

1.0 Background of Air pollution. 

At present, there are many sources of air pollution from the combustion of fossil fuel for power 

plants, factories, office building, transportation and other. Air pollution can have a large negative 

impact on human health and the environment.  The United States environmental protection agency 

(EPA) has identified six common pollutants including Ozone (O3), Particulate Matter (PM), Carbon 

Monoxide (CO), Sulphur Dioxide (SO2), Lead (Pb) and Nitrogen Oxides (NOx). The sum of nitric oxide 

(NO) and NO2 is commonly called nitrogen oxides or NOx. Over the past decade, NOx emissions have 

become one of the concerns due to its health impact to human. Various studies have been 

conducted by numerous agencies around the world to evaluate the negative impact of NOx emission 

to human health. The World Health Organization (WHO, 2002) estimated that around 2.4 million 

people die every year linked to causes directly attributable to air pollution. A study at Birmingham 

University also revealed a strong correlation between deaths by pneumonia and traffic emissions in 

England. (Knox, E.G. 2008) 

 

1.1.1 History of Pollution 

The environmental impact of automotive pollution has led governments to enforce automotive 

manufacturers to reduce quantities of tail-pipe emissions. Developments of the modern automotive 

catalytic converter and engine management systems have been in response to these requirements. 

There are an increasing number of vehicles in the world today with an estimate at around 800 

million [Preschern et al, 2001]. The history of the new vehicle population over a ten year period in 

the United Kingdom shows the growing popularity of diesel powered vehicles over petrol since 2003. 

This is shown in figure 1.1.1. The rise of fuel prices and the advantages of diesel-powered vehicles in 

term of fuel efficiency have driven this trend. 
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Figure 1.1.1 Increasing popularity of diesel powered vehicle in the United Kingdom (reproduced from 

SMMT Motor Industry Fact 2010) 

 

1.1.2 Diesel Emission Regulation. 

Diesel Emission control began in the mid 1980’s when the United States, Environmental Protection 

Agency (EPA) and California Air Resource Board (CARB) starting to consider emission from on road 

vehicles. It started after a growing popularity of diesel engine patented by Rudolf Diesel in 1892 for 

replacing steam engines. In the past, only Carbon Monoxide (CO) and Hydrocarbon (HC) emission 

from gasoline engines were regulated [Heck, 2009].  

The Three-Way catalytic (TWC) converter technology that has been successfully used on spark 

ignition internal combustion engines operating at stoichiometric air-fuel ratio(typically fuelled by 

petrol but also sometimes fuelled by LPG, CNG, or ethanol) since the middle 1980s will not function 

at O2 levels in excess of 1.0%, and do not function well at levels above 0.5%. Since diesels operate 

with excess oxygen, TWC cannot be utilized to reduce NOx and alternative after treatment 

technology must be used.    

http://en.wikipedia.org/wiki/Catalytic_converter�
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In developed countries, automobiles must comply with statuary emission regulation to stay road-

worthy. These are measured over a standard drive-cycle, typical of mixed driving conditions. A 

summary of the evolution of European emissions standards shows that future legislation will place 

even tighter restrictions on automotive emissions with Euro 6 NOx level at only 0.08 g/km. The 

evolution of European emission regulations is shown in the table 1.1.2. 

 

Table 1.1.2 Evolution of European emission regulations (reproduced from DieselNet 2010) 

 

 

Future legislation cannot be achieved in a cost-effective manner with current diesel after treatment 

technology; consequently, the prospect of reducing emissions without substantially increasing 

vehicle cost is attractive to manufacturers. Therefore, significant efforts have been driven to further 

improve the diesel after treatment. Automotive manufacturers have been tested with reducing NOx 

emissions especially for the latest Euro 6, US Bin 5 and California SULEV regulations. 
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Figure 1.1.2 Euro 6 (2014) LDD NOx regulations compared to US Tier 2 Bin 5  

and California SULEV (Bin2). (Johnson T.V. 2009) 

 

1.2 Motivation of this thesis 

The main motivation in this investigation is that the collaborating automotive manufacturers 

working with the Automotive Engineering Applied Research Group (AEARG) at Coventry University 

are required to find a cost effective diesel after treatment system to further reduce NOx pollution 

from light duty diesel powered passenger cars.  

 

1.2.1 Aims and Objectives 

The thesis aims and objectives are: 

• To investigate the SCR performance on a Light Duty Diesel (LDD) engine.  

Most of the current SCR investigations are focused on Heavy Duty Diesel (HDD) engines. This 

investigation will provide information on the light duty diesel segment. 
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• To utilized zeolite in the SCR exhausts system.  

Relatively few studies have been conducted on zeolite catalysts. Historically vanadium catalysts have 

been used for SCR. 

• To develop a unique test facility and provide a database for CFD validation.  

The SCR exhaust system built in this investigation provides an excellent opportunity for assessing the 

performance of simulation models. 

• To develop a simplified controlled SCR exhaust system with real engine on test bed. 

Most of SCR investigations use laboratory reactor and very little information is available from SCR 

system on real engine test beds. The experience gained in this investigation will be useful for future 

development. 

 

1.2.2 Thesis Organisation 

 

The organization of the thesis corresponds to the four objectives above.  

 

Chapter 2 reviews current understanding of SCRs and examines the relation between NOx reduction 

and NO/NO2 ratio.  

 

Chapter 3 addresses the setting up of experiments, instrumentation and test protocol in order to 

achieve the objectives above.  

 

Chapter 4 presents and discusses the results obtained from the ammonia gas and urea spray 

experiments.  

 

Finally, Chapter 5 summarized the contribution of this research to new knowledge and future work 

is proposed. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.0 Diesel After-treatment for NOx reduction 

 

Recent advancement in diesel after-treatment has identified two key promising technologies for 

reducing d iesel emission which are  t he Lean N Ox Trap ( LNT) an d S elective C atalyst Reduction 

(SCR) [ Spurk et al., 2007]. D espite much research, improvements are  n eeded in  c onversion 

efficiency across wider temperature ranges. 

  

Alimin et al., (2006) explored the performance of an LNT at the Automotive Engineering Applied 

Research Group (AEARG), Coventry University. Whilst good NOx reduction was achieved the LNT 

system results in a fuel penalty due to regeneration period where rich combustion is needed to 

purge th e tr ap. I n c ontrast, th e S CR s ystem p rovides a n a lternative solution wi thout an 

associated fuel penalty. 

  

2.1 Principle of Operation: Selective Catalyst Reduction (SCR) 

Selective catalytic reduction (SCR) is a means of removing nitrogen oxides, through a c hemical 

reaction between the exhaust gases, a (reductant) additive, and a catalyst. Beeck et al., (2006) 

suggested the use of gaseous or liquid reductant (most commonly urea or AdBlue) to be added 

to a stream of exhaust gas and absorbed onto a SCR catalyst. The reductant reacts with NOx in 

the exhaust stream to form harmless H2O (vapour) and N2. 

Three main processes involved in the SCR technology involve thermal decomposition, hydrolysis 

and three NOx reduction SCR reactions. The three SCR reactions involved are Fast SCR, Standard 

SCR and Slow SCR reaction.  

Koebel, M. et al., (2000) and Yim, S.D. et al., (2004) suggested th at th ermal d ecomposition 

occurred as the urea water solution is injected in the hot exhaust stream as below. 

http://en.wikipedia.org/wiki/Reductant�
http://en.wikipedia.org/wiki/Urea�
http://en.wikipedia.org/wiki/Exhaust_gas�
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Urea d roplets from the s pray e xchange m ass, momentum a nd e nergy with s urroundings h ot 

exhaust gases leading to vaporization of water.  

NH2-CO-NH2 (aqueous)  NH2 – CO-NH2 (solid) + 6.9H2O (gas)   Equation 2.1a 

Schaber et al., (2004) reported that the Solid u rea l eft f rom eq uation 2.1a started m elting at 

1330C and undergoes thermolysis to form ammonia and Isocyanic acid as follows: 

 NH2 – CO-NH2 (solid)   NH3 (gas) + HNCO (gas)    Equation 2.1b 

Yim S.D. et al., (2004) also s uggested t he h ydrolysis o f I socyanic ac id is  fa cilitated b y h igh 

temperatures a t a round 400oC in t he p resence of a S CR c atalyst. The I socyanic acid w hich is 

stable in  g as f orm u ndergoes h ydrolysis t o f orm a mmonia an d c arbon d ioxide as  s hown in  

equation 2.1c. 

NHCO (gas) + H20 (gas)  NH3 (gas) + CO2 (gas)     Equation 2.1c 

Olsson et al., (2008) reported once th e N H3 gas i s av ailable, t he t hree N Ox re duction S CR 

reactions take place depending on the NOx source. The standard SCR using NO, Fast SCR with 

NO, NO2 and slow SCR with only NO2 as follows: 

(Standard SCR)  4NH3 + 4NO + O2  4N2 + 6H2O    Equation 2.1d 

(Fast SCR )  2NH3 + NO + NO2  2N2 + 3H2O    Equation 2.1e 

(Slow SCR)  4NH3 + 3NO2  3.5N2 + 6H2O    Equation 2.1f 

Amon et al., (2004) reported good N Ox c onversion efficiency with th e S CR system i n bo th 

stationary and transient test cycle of Japanese, European and US test cycle. 

Tennison et al., (2004) investigations on l ight d uty S CR w ith ze olite showed good N Ox 

conversion le vel of over 90% for cold s tart FTP-75 and over 80% for the US06 cycle. A c losed 

couple DOC was used to convert a portion of NO to NO2. It was suggested that a mixture of NO 

and NO2 enhanced low temperature NOx conversion in light duty application. 
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Various S CR c onfigurations have b een u sed b y d ifferent re searchers and o ngoing d evelopment i s 

still u nderway e specially f or li ght d uty ap plication. A  t ypical u rea S CR s chematic f or h eavy d uty is  

shown i n f igure 2 .1 

 

Figure 2.1 SCR system configurations with open loop urea SCR system [DieselNet 2005]. 
 

2.2 Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) 

Diesel Oxidation catalyst and particulate filter have been widely used for PM removal in diesel 

applications. DOC is one of the oldest technologies originated from the early two way catalyst 

for controlling CO, HC and PM. DOC works by oxidizing unburned species of fuel in the exhaust 

to h armless p roduct s uch a s C O2 and H 2O. D OCs come in  m etallic o r c eramic t hrough 

honeycomb substrates coated with an oxidizing catalyst such as platinum, palladium or both due 

to low temperature activity for HC conversions [MECA 2007].  Johnson T.V., (2010) highlighted 

the usage of DOC as being used in more vehicles than any other emission control device. Their 

critical p resent for t he p roper f unctioning of DPF a nd d eNOx s ystem was als o r eviewed an d 

continuously evolving. 

Diesel Particulate Filters (DPF) are devices which remove diesel particulate matter (PM) or soot 

from the exhaust g as o f d iesel e ngines. It  works by f orcing t he p articulate matter t o fl ow 

through a wall fl ow ceramic h oneycomb filter. The f ilters have alternate o pen a nd c losed 

channel as illustrated in figure 2.2. The exhaust gases contained PM or soot will enter the open 

channel, a nd gaseous CO2 and H 2O w ill passes t hrough t he w all. D ry carbon soot particle s ize 

Apen
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larger than the monolith wall are  trapped until the pressure drop across the DPF become too 

high. 

 

Figure 2.2 Wall-Flow DPF (reproduced from Heck 2009) 

However DPFs have limited capability and will eventually fully clog, therefore they need to be 

periodically regenerated by c ombustion o f t he t rapped P M. T he s oot r equires a m inimum 

temperature of 500OC for ignition in  the absence of a catalyst which the engine exhaust does 

not frequently o r reliably re ach. A dditional s teps o r m echanism are  n eeded t o c lean u p t he 

trapped PM, reduce the back pressure and restart the trapping cycle. (Heck 2009) 

Konstandopoulos et al., (2000) suggested three method of facilitating the DPF regeneration in 

order t o maintain t he s atisfactory performance of DPF. They involved a ctive, e xternal an d 

passive regeneration. Th e active r egeneration i nvolved c hanging th e o peration o f th e d iesel 

engine w hile p assive approach involved m odification o f t he t rap c omposition. E xternal 

regeneration would be possible with the introduction of an external system to heat up the trap. 

Magdi et al., (1999) evaluated the performance of DOCs and DPFs coupled with SCR system and 

reported exc ellent results for P M e mission. S CR w ith D OC c an ac hieved P M e mission o f 0 .05 

g/bhp-hr and combined PM, NOx and NHMC of less than 1.5 g/bhp-hr. DPF technology further 

reduced the PM emissions below 0.01 g/bhp-hr. Beeck et al., (2006) reviewed possible conflict 

from in tegration of S CR with DPF technologies b ased o n p ure t hermal an d c atalyzed DPF 

regeneration as  s hown in  fig ure 2 .2a. The b enefit o f F uel B orne Catalyst ( FBC) w as al so 

highlighted w hich p rovides fle xible t hermal management allo wing fas t an d c omplete DPF 

regeneration. 
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Figure 2.2a Possible architecture for NOx/PM control (Beeck et al. 2006) 

 

Gurupatham et al., (2008) compared t he i ntegrated D OC-SCR-DPF, D OC-DPF-SCR an d c losed 

couple DOC-DPF-SCR as shown in figure 2.2b. The DPF forward system shows better PM active 

regeneration due to being closer to the engine and greater passive regeneration of DOC by NO2. 

However, DPF forward system disadvantage includes substantially delay of hot gas downstream 

reducing its SCR light off and the reduction of NO2 by SCR reactions because of soot oxidation by 

NO2 in the DPF. The c lose coupled DOC-DPF improved warm up t ime of DPF and SCR for cold 

start.  

 

 

 

Figure 2.2b Schematic of an advance diesel after treatment system  
architecture compared in Gurupatham et al., (2008) 

Guo G. et al., (2010) introduced an SCR washcoat with wall flow on DPF called SCRF together 

with t raditional SCR catalyst in l ight duty d iesel application to perform NOx and PM reduction 
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simultaneously. However low washcoat loading on SCRF due to backpressure concern, cause the 

NOx reduction efficiency lower than SCRF placed upstream of SCR catalyst. 

 

 
Figure 2.2c Advance diesel after treatment system with SCRF concepts (Guo et al., 2010) 

 

Gieshoff et al., (2001) discovered that the SCR catalyst is affected by the unburned diesel fuel 

therefore s uggested a DOC b e placed upstream t o r emove u nburned h ydrocarbon. Koebel 

(2002) and Koebel (2001) also highlighted an increased NO2 level can be realized by placing an 

oxidation catalyst which promotes oxidation of NO. The oxidation catalyst placed upstream of 

the u rea i njection p oint decreased V 2O5 light o ff t emperature t o as  lo w as  1 50OC. Th e 

disadvantages of this was an increased oxidation of sulphur dioxide and sulfate PM which result 

from using fuels of higher sulphur content and an increased of ammonium nitrate formation at 

temperature below 200OC. 

 

Lambert et al., (2006) proposed to m ove the SCR upstream o f t he D PF to h andle c old s tart 

issues for p assenger c ar. Many a utomotive m anufacturers h ave a nnounced SCR sy stems for 

their latest SUVs and LDTs with undisclosed system configuration especially regarding the actual 

location of the SCR catalyst. 
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2.2.1 Effect of NO2/NO ratio on NOx conversion. 

Chandler (2000) suggested that the c omposition of exh aust g ases e mission a re m ostly of N O 

(from 8 5-95%) an d s mall quantity o f N O2 (5-15%). It wa s r eported th at increasing t he N O2 

fraction in  t he fe ed g as c an im prove low temperature a ctivity o f th e V 2O5 as s hown in  fig ure 

2.2.1a 

 

 

 
Figure 2.2.1a Effect of NO2/NO ratio on NOx conversion in V2O5/TiO2 catalyst (Chandler, 2000) 

 

Gieshoff (2001) also reported similar performance with CU/ZSM-5 and other low temperature 

zeolite based catalysts. Narayanaswamy et al., (2008) simulated NO2/NO ratios up to three and 

implied good conversion over zeolite with excess NO2.  

 

The significance of excess NO2 particularly over zeolite at lower temperature was discussed by 

Rahkamaa-Tolonen et al., (2005) who stated that excess NO2 will enhance t he SCR re actions. 

Takada et al., (2007) also s how go od N Ox c onversion w ith h igh N O2 level ( > 5 0%) in  t heir 

modelling of reactions over zeolite at a temperature range from 500 to 550 K.  Devadas et al., 

(2006) also supported excess NO2 particularly over zeolite an d reported b est performance a t 

NO2/NOx ratio of 75% which is much higher than the generally accepted optimum 50%. 
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However Cooper (2003) suggested that the amount on NO2 must be optimised by suitable sizing 

and formulation o f the o xidation c atalyst. I f t he NO2 level are  too h igh, NOx c onversion 

efficiency decreases as shown by the red dash line and circles in figure 2.2.1b 

 

 

 

Figure 2.2.1b Effect of NO2 from DOC on NOx conversion (Cooper 2003). 

 

Cooper (2003) also suggested a large Pt loading Oxidation catalyst to increase the NO2/NO ratio 

to nearly 5 (over 80% NO2 in NOx) at around 280OC. As a result, the NOx conversion deteriorated 

significantly d ue t o d epletion o f am monia s ince t he required NO w as s ubstituted b y N O2 as 

shown in red line in figure 2.2.1b. 

2.3 SCR Catalyst types 

The formulation of catalyst is important for the SCR reaction to take place. Three SCR catalysts 

commonly used are platinum, vanadium and zeolite.  

2.3.1 Platinum catalysts 

The historical development of the SCR technology discovered that NH3 can react selectively with 

NOx to produce elemental N2 over platinum catalyst in excess oxygen [Heck 2009]. Heck (1993) 
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suggested that the first SCR catalyst discovered was platinum but with limited usage due to low 

temperature ac tivity. The effective t emperature w indow fo r p latinum w as fo und fro m 1 75 t o 

250OC[DieselNet 2005]. Due to its poor activity at higher temperature, the other base metal like 

vanadium and zeolite catalysts were found to be effective at higher temperature windows. 

2.3.2 Vanadia Titania Catalysts 

Bosch and Janssen (1988) suggested V 2O5/Al2O3 catalysts be u sed f or operating temperature 

higher than 250OC but restricted to sulphur free application due to deactivation of the catalyst 

from alu mina re action with S O3 forming A l2(SO4)3. T he nonsulphating T iO2 carrier w as 

recommended for the V2O5. Amon and Keefe (2001) reported extensive studies of V2O5 catalyst 

supported on TiO2 and WO3 added for HD diesel in Europe with numerous on highway studies.  

Lambert et al., (2006) highlighted problem with vanadium catalyst which quickly deactivated at 

high t emperatures a bove 6 00OC therefore s uggested z eolite c atalyst. Th e r ecommended 

temperature window for vanadium is from 300 to 450OC [DieselNet 2005]. 

2.3.3 Zeolite Catalysts 

Zeolite catalysts were developed to cover a wider range of temperature windows over platinum 

and vanadium based catalysts. Byrne et al., (1992) suggested zeolite based catalyst to further 

extend th e operating te mperature a bove 350OC. However t wo t ype of z eolite c atalysts were 

develop t o c over h igh a nd l ow t emperature w indows. T he h igh temperature z eolite covers 

temperature windows from 350 to 600OC while the low temperature zeolite covers 150 to 450OC 

[DieselNet 2005] 

 

2.3.3.1 High Temperature Zeolite  

Chen (1995) identified mordenite as  t he first zeolite ac tive SCR catalyst. Common mordenites 

have a  w ell d efined crystalline s tructure w ith SiO2: Al2O3 ratio of 10. I t w as n ot p ossible t o 

describe them in details as manufacturers keep their catalyst formulation undisclosed. Typically 

the zeolite catalysts are exchanged with metal and iron-exchanged zeolite were found useful in 

SCR application. 



Chapter 2 Literature Review 

 

 15 

Heck (1994) found that zeolite can operate up to 600OC and in the presence of NOx, ammonia 

was not oxidised to NOx therefore its NOx conversion continually increases with temperature. 

Therefore the upper temperature l imit for this type of zeolite catalysts may be determined by 

catalyst durability rather than selectivity. It was suggested that this type of zeolite catalysts may 

be p rone t o s tability p roblems a t h igh te mperature wi th th e p resence of water v apour. F or 

excessive temperature above 600OC in a h igh water content zeolite tends to deactivate by de-

alumination where Al+3 ion in the SiO2-Al2O3 migrated out of the structure leading to permanent 

deactivation and in extreme cases collapsed the crystalline structure. 

Lambert et al., (2006) suggested th e i mportance of t hermal d urability of z eolite c atalysts 

particularly w ith t he in tegration w ith D PF with f orced r egeneration. Th e z eolite catalyst is  

capable of withstanding temperature above 650OC and brief exposure to temperature of 750 -

850OC. Theis (2009) recommended Fe-zeolite catalyst for NOx control at high temperature from 

400-600OC. Giovanni et al., (2007) found F e-zeolite have h igher N Ox c onversion a bove 350OC 

with no significant N2O produced and suggested not to exceed 925OC 

2.3.3.1 Low temperature Zeolite 

Gieshoff (2001) and Spurk et al., (2001) suggested th at a  d ifferent t ype of l ow temperature 

zeolite catalyst could be developed for mobile engine application.  I n the 1990s, research was 

conducted f or t he f ormulation o f C u-exchanged Z SM-5 z eolite als o k nown as a lean-NOx 

catalyst. The Cu/ZSM-5 was active in reducing NOx within a temperature range of 200 to 400OC 

but w ith in sufficient thermal d urability. T his le d to a new f ormulation b y modifying t he i on-

exchanging of zeolite to undisclosed transition metals. The normal NOx reducing activity for this 

catalyst was low and the f inal low temperature zeolite was thermally stable up to 650OC. T his 

formulation has been designed specifically fo r NO2 gases w hich significantly improved it s NOx 

conversion a nd e xtended the t emperature wi ndow with N Ox r eduction e fficiency b etter t han 

90% over a temperature range of 150-500OC. 

Theis (2009) also suggested C u-Zeolite catalysts as m ore effective f or N Ox control at  lo w 

temperature in the range of 200 to 400OC. Giovanni et al., (2007) again found Cu-zeolite to have 

higher N Ox c onversion a t tem perature below 3 50OC w ith s ignificant N 2O p roduced a nd 

suggested not to exceed 775OC 
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2.3.4 Comparison of SCR catalysts. 

The basis of SCR catalyst comparison is mainly on the operating temperature windows. Each of 

the c atalysts has their o wn lim itations an d p roblems an d are continuously redeveloped for 

further improvement in term of NOx conversion efficiency and thermal durability.  

Schmieg et al., (2005) summarized t he p erformance c omparison o f c u-zeolite an d fe -zeolite 

with v anadium b ased catalyst to provide useful gu idance i n the design an d operation o f u rea 

SCR N Ox r eduction s ystems. Th e ef fect of N O: N O2 ratio on s teady s tate N Ox reduction on a  

typical diesel exhaust temperature of 150 to 500OC was investigated. Transient measurements 

were performed to determine the impact of NH3: NOx ratio and NH3 storage on catalyst and HC 

and sulphur poisoning effect. 

Hamada (2005) reported new formulations with bi-functional catalyst design to simultaneously 

reduce NOx a nd o xidize t he NH3 slip as  w ell as  CO a nd HC. Walker (2005) compared t he SCR 

catalyst temperature windows for NOx reduction with ammonia and summarized them in figure 

2.3. C ontinuous e ffort on c atalyst f ormulation is  p rogressing t oward wider t emperature 

windows, thermal durability, NOx conversion and cost. 

 

Figure 2.3 Comparison of SCR catalyst operating temperature windows (Walker 2005) 
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2.4 SCR reductants 

Two m ost c ommonly used S CR r eductants a re a nhydrous a mmonia and a queous a mmonia or 

urea.  Pure a nhydrous a mmonia i s extremely toxic a nd d ifficult t o s afely s tore, b ut n eeds n o 

further c onversion t o operate w ithin an S CR. It is typically fa vored b y larg e in dustrial S CR 

operators. A queous a mmonia must b e hydrolyzed in o rder to b e u sed, b ut i t i s s ubstantially 

safer to store and transport than anhydrous ammonia. Urea is the safest to store, but requires 

conversion t o a mmonia through t hermal d ecomposition i n order to b e u sed a s a n e ffective 

reductant [DieselNet 2005].  

The aqueous ammonia is also known as AdBlue, Urea Water Solution (UWS) and Diesel Exhaust 

Fluid (DEF) depending on manufacturers. Eberhard (1994) introduced the use of solid urea but it 

has received v ery l ittle a cceptance. Hoffman (1996) suggested an alternative t o u rea u sing 

carbamate salt such as ammonium carbamate, NH2COONH4. Kelly et al., (2006) reported various 

amines evaluated as SCR reductants which could potentially be generated from diesel fuel and 

nitrogen. 

Alkemade et al., (2006) reviewed the best reductant to be used for SCR system. While ammonia 

offer slightly better performance, its toxicity and handling difficulty remain the biggest concern. 

Urea is not as effective but safer to handle which has made it the popular choice for automotive 

manufacturers. Sullivan et al., (2005) suggested in both form of ammonia it has to be extremely 

pure d ue t o the fact th at impurities c an c log t he c atalyst. An SCR c atalyst t ypically re quires 

frequent cleaning even with pure reductants as the reductants can cake the inlet surface of the 

catalyst w hen the exhaust g as s tream te mperature i s to o l ow f or th e S CR r eaction to o ccur. 

Research in to reductant t echnology is c ontinuing an d a w ide variety o f alternative re ductant 

have been explored especially the one with wide availability and a distribution infrastructure in 

place. [US EPA 2006] 

 

2.4.1 Aqueous Ammonia 

 

Aqueous a mmonia o r water solutions urea remained t he preferred choice for SCR application 

due t o safe h andling an d commercial availability. A dBlue is  a r egistered t rademark for A US32 
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(aqueous U rea S olution 32.5% b y weight) I t i s a  s olution of h igh p urity urea ( 32.5%)in 

demineralised water (67.5%) used as a supplementary operating fluid (reducing agent) in diesel 

powered vehicles using selective catalytic reduction (SCR) to improve exhaust emissions. AUS32 

is primarily produced in Europe by BASF and AMI, however many other companies manufacture 

their own similar solution in varying quantities. [BASF 2003] 

 

AUS32 is carried onboard the vehicle in a tank separate to the fuel system and is sprayed into 

the engine exhaust gases in a special catalytic converter. A typical SCR system uses an amount of 

AUS32 equivalent to approximately 3 to 5% of the vehicle fuel consumption. In order to ensure 

effective working o f t he SCR s ystem, c are must b e taken t o e nsure p urity of t he c atalyst an d 

reducing agent. Any small contaminant can severely reduce the SCR system performance. The 

manufacturing quality control for AUS32 solutions is governed by DIN standard 70070 [Focus on 

Catalysts (8), 2, 2005]  

 

SCR systems u sing A dBlue a re currently fitted to many trucks and b uses m anufactured b y 

Mercedes Benz, Volvo Trucks, DAF Trucks and Iveco, however AdBlue usage as reducing agent is 

hindered b y i ts r elative availability. S chemes a re u nderway i n E urope but t o l esser ex tents i n 

Australasia and North America t o improve t he network d istributors fo r AdBlue and o ther SCR 

additive. Internet based tool have been developed to map the locations of AUS32 filling stations 

reflecting plans for small scale use of SCR system in private vehicle as well as corporate fleets 

[Focus on Catalysts(2), 3, 2006]. 

 

The t ypical aq ueous u rea s olutions fo r S CR system concentration at  3 2.5% fo rm an  e utectic 

solution c haracterized b y t he lo west c rystallization p oint o f -11OC. Th e eu tectic s olution i s 

advantages d ue t o e qual concentrations in  liq uid an d s olid p hases d uring c rystallization. W ith 

even p artial f reezing of the s olution in  t he u rea t anks, c rystallization would not change t he 

concentration of the urea solution fed to the SCR system [BASF 2003]. 
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Figure 2.4.1a Urea solution freezing point [BASF 2003]. 

 

The 32.5% urea solution is a colourless liquid with a faint alkaline reaction. The freshly prepared 

solutions have a pH of 9 to 9 .5. In solution the urea decomposes s lowly in room temperature 

into am monia an d CO2. When th e s olution i s h eated, th e rate of d ecomposition in creases 

additionally producing biuret [BASF 2003]. 

 

 
Figure 2.4.1b Urea solution 32.5% decomposition [BASF 2003]. 

 

 

Fang and DaCosta (2003) highlighted possible side reactions from decomposition of urea in HDD 

application. Koebel et al., (2000) also presented problem related to urea during start up due to 

its freezing point at -11OC which cause it to be heated if the surrounding temperature is lower.  
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Problem associated with urea spray have triggered for alternative solution to supply ammonia 

gas to the SCR system. Elmoe et al., (2006) suggested solid ammonia storage using Mg (NH3)6Cl2 

which has high ammonia density very close to urea solution. Taturr et al., (2009) also provide 

alternative to urea with the use of ammonium carbamate [(NH2-CO2)-(NH4)] in HD diesel which 

is capable to supply ammonia by heating at a c apacity 3 to 4 times more than urea. Therefore, 

other alternatives than urea to supply ammonia to the SCR system are continuously explored. 

 

2.4.2 Anhydrous ammonia. 

The term anhydrous ammonia refers to the absence of water in the material. Ammonia gas is a 

compound consisting of nitrogen and hydrogen, NH3. It is a colourless gas with pungent odour. 

Ammonia is widely used in agricultures and contributes significantly to the nutritional needs of 

terrestrial organisms as  by serving as food and fertilizer. The liquid boiling temperature is  at  -

33.34OC and it solidifies at  -77.7OC to w hite c rystals therefore the m ust be s tored under h igh 

pressure or low temperature [BOC datasheet 2005].  

 

Although w idely u sed, ammonia g as is  c lassified as  toxic an d d angerous for t he e nvironment. 

The US EPA has established a guideline for Permissible exposure level (PEL) of 50 ppm in an 8 

hours w eighted av erage. Anhydrous am monia also corrodes copper an d z inc containing allo y, 

therefore brass fittings must be avoided in handling the gas and liquid ammonia can also attack 

rubber and certain plastics [Yost D.M., 2007] 

 

Recent d evelopment in  S CR t echnology c onsiders r eadily av ailable a mmonia gas rat her t han 

aqueous ammonia solution. Ammonia in  g as fo rm can b e s upplied u sing a special s torage 

container or specially design ammonia storage system.  

 

2.5 Challenges in automotive SCR. 

Johnson T.V. (2010) reviewed various research efforts in o ptimizing t he S CR s ystem a nd 

highlighted D PF p lacement w ith re gards to S CR, n on u rea a mmonia s ystems, m ixed z eolite 

catalyst development and f undamental u nderstanding o n i ssues s uch a s ammonia s torage, 

sulphur i mpact and reaction m echanism. D evelopment o n LNT-SCR s ystem where th e L NT i s 
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calibrated t o g enerate a mmonia f or t he S CR w as als o discussed. Despite p romising N Ox 

conversion with the SCR system, many other grey areas need attention to further improve the 

system. 

 

2.5.1 Ammonia slip 

Ammonia slip re mains the u ndesired e mission in th e S CR s ystem. It c an b e described as 

ammonia that exits the SCR system unreacted. Huennekes et al., (2006) suggested 3 ways the 

injected urea can le ad to NH3 slipping o ut o f t he SCR catalyst. I t involved t he incomplete SCR 

reaction d ue to  NH3: NOx ratio h igher t han N Ox conversion e fficiency, t he re leased o f s tored 

ammonia from SCR catalyst and the incomplete decomposition of urea before reaching the SCR 

catalyst. Girard et al., (2007) also reported NH3 slippage as a result of high NH3: NOx ratio (called 

alpha). It was suggested reducing the alpha value less than one at low temperature where the 

ideal alpha is equal to one. 

 

2.5.2 Uniform mixing of Urea. 

The urea injection quality and mixing are complex and critically important. In real engine testing 

such as in this study, uncertainties existed over the uniform mixing of the urea spray with the 

exhaust gases. Gorbach et al., (2009) introduced urea mixers for mixing of urea droplets from 

sprays and saw s ystem efficiencies v ary fr om 60 t o 9 5% d epending o n a mmonia d istribution 

across the catalyst. The urea mixer comes in a variety of types ranging from wire mesh designs 

to vanes and honeycomb. Breedlove et al., (2008) suggested the use of different nozzle designs 

to provide different droplet quality with range of characteristics at different injection stages. 

 

2.5.3 Spray effect on temperature  

Johannessen et al., (2008) reported that th e s prayed u rea i n exhaust s tream reduced the 

exhaust g as te mperature b y 1 0-15OC t herefore d iminished t he N Ox c onversion e fficiency 

especially in the low temperature region. Way (2008) also reported problem with urea injection 



Chapter 2 Literature Review 

 

 22 

at low temperature ( less than 190OC) where incomplete evaporation of urea and solid deposit 

build-up occurred in the exhaust system. 

 

2.5.4 Space velocity 

Koebel et al., (2001) described problem faced by the SCR system in automotive application due 

to low exhaust gas temperature and short resident time due to space constraints in LD Diesel 

application. T he p roblem le ads t o t he re duced p erformance o f S CR s ystems re sulting fro m 

incomplete thermolysis of urea before entering the SCR catalyst. It is reported that only 50% of 

urea decomposed at 400O C and even lower than 15% at 255O C. 

 

2.5.5 Light duty diesel engine study 

Fisher et al., (2004) reported s uccessful a daptation o f t he S CR s ystem b y European t ruck 

manufacturers to comply with Euro 4 and 5 standards. Beeck et al., (2006) suggested that the 

urea SCR system integration seems quite easy on HDD application but it is much more difficult 

with the confine space in LDD such as passenger cars. Many researchers have focussed on real 

engine tests with HDD application and the light duty engine test is progressing slowly. Spurk et 

al., (2007) highlighted cold s tart p roblem w ith p assenger c ars and s uggested f ormulation o f 

dedicated low temperature active SCR catalysts. It was suggested that the SCR catalyst need to 

show wider o perating w indows. H owever the S CR system c omplexity in  lig ht duty re mained 

disadvantages and need further optimization. 

 

2.5.6 SCR modelling 

 

A lit erature r eview was undertaken an d c ompiled as  p art o f an  in ternal report ( private 

communication, Dr C . A . Roberts (2 009). The o bjective i s to validate th e CFD model ag ainst 

engine data from this study. The earlier kinetic scheme reviewed was a very simple scheme of 
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Snyder and Subramaniam (1998). Chatterjee et al., (2005), Tronconi et al., (2005) and Chi et 

al., (2005) later derived other kinetic schemes. 

 

Chatterjee et al., (2005) comment o n t he lim itations o f s implified s urface r eaction m odels, 

especially in the case of extruded catalysts; however, it was stated that their model accounts for 

intra-porous diffusion and was appropriate for coated as well as extruded catalysts. Their initial 

reactor experiments for intrinsic chemistry were carried out over the temperature range of 150 

to 4 50 OC. T his s cheme g ives a re action rat e f or o nly t he s tandard S CR re action and b ecome 

obsolete due to more complete scheme that follows. 

 

Tranconi et al., (2005) presented a kinetic an alysis of t he s tandard S CR r eaction and f urther 

extended it to ga in more f undamental i nsight i nto t he c atalytic k inetics a nd m echanism 

prevailing in  t he lo w t emperature re gion. T his w ould b e in teresting e specially fo r mobile 

applications. I n p articular transient re active e xperiments h ave shown th at a  d ecrease o f th e 

ammonia ga s phase concentration t emporarily e nhanced t he NO c onversion. T hey also 

suggested a n inhibiting e ffect of am monia t hat c ould p lay a  n on-negligible r ole in  t he S CR 

reaction. 

 

The s chemed b y Chi et al., (2005) also p rovided fu ll SCR re actions with c onstants similar t o 

Tronconi e t al.  scheme b ut in cludes m ore r eactions. O ne o f the main s ignificant d ifferences 

between th e t wo s chemes wa s i n th e s tandard S CR r eaction r ate. The Chi e t al.  s cheme 

suggested th at th e rate i s d irectly p roportional t o t he am monia c oncentration w hich t his 

dependent does not present in the Tranconi et al. scheme. 

 

A vanadium scheme due to Chi et al., (2005) has been used with significant differences between 

this scheme and a new scheme for Zeolite catalyst published by Chatterjee et al., (2007). The 

zoelite s cheme d oes n ot include t he s low S CR r eaction b ut d oes i nclude a n N O o xidation 

reaction. T he c omparison on both s chemes s hows Zeolite possessing s lightly h igher v alues o n 

Ammonia ad sorption, A mmonia d esorption, A mmonia O xidation an d S tandard S CR re action. 

There are significant differences on the fast SCR rate between the two schemes which suggest 

that the rate calculated using the information from Chi et al., may be not accurate.  
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Finally the scheme Olsson et al., (2008) which considers Cu-Zeolite and emphasis on ammonia 

adsorption and desorption, NH3 oxidation, NO oxidation, standard SCR, rapid SCR, NO2 SCR and 

N2O formation. Good agreement was obtained using this scheme therefore this zeolite scheme 

remained to be used for the SCR CFD model in this study (Tamaldin et al. 2010). 

 

To this e nd a  p rogramme h as b een i nitiated with AEARG t o p rovide a  s imulation t ool t hat 

describes t he behaviour of a S CR system for light-duty a pplication using zeolite catalysts. T his 

thesis describes an engine test bed programme designed to provide data for model validation. 

Chapter 3 describe development of the test rig. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.0 Introduction 

 

The details of the engine commissioning and experimental procedures for the steady state tests are 

given in this chapter. This includes the engine, exhaust and analysers’ preparation, the technical 

aspect, measurement and calibration of the equipment. The urea SCR spray system and the 

ammonia gas injection system will also be covered along with the calibration charts required. Several 

precautions and cleaning procedure will also be included especially for the urea SCR spray system. 

The final assembly of the SCR exhaust system will be covered and also the final experimental matrix 

for measuring the exhaust gases upstream and downstream of the SCR brick. 

 

3.1 Engine Commissioning and Setup 

 

The original plan was to use a Ford 4FM series diesel engine with a new transient engine test bed. 

Some time was spent to commission this engine with a new transient engine dynamometer within 

the university. Due to various problems with commissioning the 4FM series involving ECU (Engine 

Control Unit), wiring harness and diesel injectors, a 2FM series diesel engine used during recent Lean 

NOx Trap (LNT) studies was configured to run steady state tests for this investigation on a EC (Eddy 

Current) dynamometer 

 

3.1.1 Engine Commissioning and Setup for Steady State Test. 

 

The recent Lean NOx Trap project within AEARG (Automotive Engineering Applied Research Group) 

Coventry University used a 2FM series diesel engine equipped with VGT and EGR, an Injection 

Control Unit (ICU) and an Engine Control Unit (ECU).  This engine is also equipped with common rail 

injection system with a high pressure fuel pump, an intercooler and an engine management system 

(EMS) programmed though dSPACE, GREDI and a throttle body to control the intake air to the 

engine. The throttle body was controlled by dSPACE using a customized application based on Matlab 

Simulink. The application software was capable of controlling the timing for main, pilot and post 

injection and also controlling the opening and closing of the throttle body. GREDI was the 

monitoring software which reads the ECU and displays the value of parameters needed on a host 

computer. Any parameter changed through dSPACE was recorded in GREDI alongside with the 

Froude Consine test bed host computer.  All the software and hardware was supplied by Ford 
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including the license for dSPACE, GREDI and Matlab Simulink. At a later stage of this project the EMS 

capability from dSPACE and GREDI was disabled due to technical failure of the ECU. Another ECU 

was programmed for this 2FM series diesel engine and the previous control of the throttle body for 

regeneration purpose was disabled. Therefore this project focussed only on steady state testing 

using pre-programmed engine settings. The exhaust back pressure was also monitored as an 

indicator for the DPF cleaning process. The 2FM configuration is shown in figure 3.1.1 

 
Figure 3.1.1 The 2FM Series Engine with Injection Control Unit (ICU)  

and Engine Control Unit (ECU) on Froude Consine AG150 engine dynamometer. 

 

The specification of the diesel engines is shown in table 3.1.1 and the power curve for this engine is 

supplied in the appendix 3.1.1  

 

Table 3.1.1 Diesel Engine specification used for investigation (Ford 2FM series) 

Items Description 
Engine capacity 1998 cc / 121.9 cu in 

Bore 86.0 mm / 3.39 in 

Stroke 86.0 mm / 3.39 in 

Compression ratio 18.2:1        

Number of cylinders Inline 4, 16 valves 

Firing order 1-3-4-2 
Rated power output 96.9 kW / 130.0 bhp at 3800 rpm 

Rated torque 330 Nm /243.4 ft lbs at 1800 rpm 
Ignition type Common rail, diesel fuelled, direct injection system 

ICU 

ECU 
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3.1.2 Engine Dynamometer  

The engine dynamometer was an Eddy Current (EC) AG150 from Froude Consine rated at 150 kW 

(200 BHP) and 500 Nm (370 lb-ft) torque with maximum speed of 8000 rpm. The AG series is also 

known as the air gap range of eddy current dynamometers which has been designed to be compact, 

robust and allow easy maintenance. The dynamometer is fitted with oil injected half couplings at 

either end of a non-magnetic stainless steel shaft which is supported in grease lubricated, deep 

groove ball bearings.  

 

The dynamometer casing houses twin magnetising coils that produce a retarding controllable 

magnetic field that resists the applied torque. Heat generated in this process is dissipated by cooling 

water. Rotation of the casing is resisted by a precision strain gauge load cell that gives accurate 

measurement of total input torque, measurement accuracy of ±0.25% of full rated torque and a 

speed measurement accuracy of ±1 RPM. The dynamometer has low inertia, bi-directional motion 

and high reliability. 

 

3.1.3 Engine mass flow rate measurement 

The engine mass flow rate was measured using a Ricardo mass flow meter coupled with a digital 

manometer. Prior to testing the flow meter was calibrated in the flow lab within the university. The 

Ricardo mass flow meter was connected to a pre-calibrated nozzle on an air flow rig (figure 3.1.3). A 

digital manometer was connected to the Ricardo mass flow meter and the air flow supply was 

varied. The air pressure drop was recorded for every air flow rate supplied and a calibration chart 

was produced for use on the engine. The arrangement used for air flow meter calibration is shown in 

figure 3.1.3 and the calibration chart is shown in Appendix 3.1.3. 

 

.  

Figure 3.1.3 Ricardo mass flow meter calibration [Courtesy of S. Quadri] 
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On the engine the mass flow rate was measured with a Testo digital manometer in mmH20 and later 

converted to gram/seconds and was recorded throughout the investigation. The Ricardo mass flow 

meter configuration with digital manometer is shown in figure 3.1.4 

 

 
Figure 3.1.4 Ricardo mass flow meter measuring engine Mass Flow Rate (MFR) 

3.2 Final SCR Exhaust build and commissioning. 

 

The Selective Catalyst Reduction (SCR) exhaust system was built based on the parts supplied by 

EMCON Technologies Incorporated and catalysts supplied by Johnson Matthey and the finalized 

drawing agreed in a quarterly review meeting at Coventry University. The details of the parts 

supplied are listed in appendix 3.2. The SCR exhaust system comprises a Diesel Particulate Filter 

(DPF), Diesel Oxidation Catalyst (DOC), expansion chamber and nozzle, a narrow angled diffuser, SCR 

catalyst, bypass pipe and instrumentation modules. Figure 3.2 shows a schematic of the final 

assembly. It has been designed in such a way so to provide approximately 1D flow for comparison 

with a 1D computational model. Details of the components are discussed later.  

From the engine exhaust manifold outlet, the exhaust was connected to the Diesel Oxidation 

Catalyst (DOC) for NO, CO and HC oxidation. Diesel oxidation catalysts can reduce emissions of 

particulate matter (PM) from 15 to 30 percent while hydrocarbons (HC) and carbon monoxide (CO) 

by over 90 percent within temperature interval of 20 to 30 0C(45).These processes can be described 

by the following chemical reactions. 

 

Digital 
manometers 

Ricardo mass 
flow meter 

http://www.epa.gov/oar/particlepollution/index.html�
http://www.epa.gov/otaq/invntory/overview/pollutants/hydrocarbons.htm�
http://www.epa.gov/air/urbanair/co/index.html�
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 [HC] + O2  CO2 + H2O     Equation 3.2a 

 CO + 1/2O2   CO2     Equation 3.2b 

HC are oxidized to form carbon dioxide and water vapour. The reaction in equation 3.2a represents 

two processes: the oxidation of gas phase HC and the oxidation of organic fraction of diesel 

particulates (SOF) compounds. Reaction in equation 3.2b describes the oxidation of carbon 

monoxide to carbon dioxide. Since carbon dioxide and water vapour are considered harmless, the 

above reactions bring an obvious emission benefit. The most significant contribution of the DOC is to 

oxidize incoming NO to NO2 which allow fast SCR reaction to reduce NOx as described in the 

equation 3.2c 

2NH3 + NO + NO2  2N2 + 3H2O      Equation 3.2c 

Therefore, the arrangement where DPF and DOC were designed in this investigation was crucial to 

provide sufficient NO/NO2 ratio for optimum SCR reaction. The first instrumentation module was 

connected to the DOC to accommodate the EXSA, MEXA analyser, lambda sensor and 

thermocouples for measuring the exhaust emissions downstream of the DPF and DOC and also 

monitoring exhaust temperature. 

 

 
 Figure 3.2 Final Assembly of the SCR Exhaust System. 

 

 

 

 
Bypass 
pipe 

DOC 
DPF 



  Chapter 3 Research Methodology 

30 

 

3.2.1 SCR Exhaust Fabrications and Specifications. 

 

The SCR exhaust fabrication took place at various facilities across the university, the local fabrication 

workshop at the university and also at the collaborating companies facilities of EMCON Technology 

and Johnson Matthey.  

 

 
Figure 3.2.1 The suspended exhaust from a square metal frame. 

The complete SCR exhaust system was suspended horizontally from a metal square frame with cable 

wire as shown in figure 3.2.1. Sealing gaskets were placed in between each component. The gasket 

used was a high temperature resistance type in order to prevent gas leakage from the exhaust 

system. Some minor adjustment was necessary in the final SCR exhaust assembly because of the 

restricted space within the cell. 

 

3.2.2 DPF-DOC assembly. 

 

The first component of the exhaust system comprises of DPF coupled with DOC. In the initial plan 

the DPF and DOC were to be connected in a vertical position but they were later repositioned due to 

cell constraints and laid horizontally as in figure 3.2. A final assembly front view and isometric view 

drawing is shown in appendix 3.2b.  A draining plug was fitted underneath the expansion box which 

houses the spray assembly. Two DOC configurations were available for this investigation; a single 

DOC of diameter 115 mm and length 95 mm and a double DOC of the same diameter but of length 

190 mm. This is shown in the DOC assembly drawing in appendix 3.2b.The details of DPF assembly 

are also shown in the DPF assembly drawing of appendix 3.2b. The detail specification of the DOC is 

shown in table 3.2.2. 
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Table 3.2.2 Detail specification of the DOC catalyst 

 

Diameter 118.4 mm with 115 mm exposed in rig 

Length Single = 91 mm, Volume approximately 1 litre 

Double = 182 mm, Volume approximately 2 litre 

Cell Density 400 cpsi 

Cell Pitch 1.27 mm 

Substrate NGK HoneyCeram 

Wall Thickness 0.11 mm [4.3 thou(UK),4.3 mil (USA)] 

Open frontal area (non-washcoated) 83.4% 

Bulk density of substrate 0.29 g/cc (290 kg/m3) 

Washcoat thickness 0.085 mm 

Washcoated channel dimension 1.076 mm 

Washcoat loading (assuming 

washcoat density = 1350 kg/m3) 
158.7 kg/m3 

 

 

 

3.2.3 SCR Catalysts Assembly 

 

The SCR catalyst assembly has been designed to accommodate four SCR configurations in this 

investigation. An assembly consisting of a single brick measuring 115 mm in diameter and of length 

92.5 mm was available. Two double bricks of diameter 115 mm and length 185 mm were also 

available. A blank SCR with the same dimension as the single and double bricks configurations was 

also used. This SCR assembly is shown in appendix 3.2b. The single SCR can, two double SCR cans and 

the blank SCR can allowed single, double, triple and quadruple SCR configurations to be tested. The 

detailed specification of the SCR catalyst is shown in table 3.2.3. 
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Table 3.2.3 Detail specification of the SCR catalyst 

Diameter 118.4 mm with 115 mm exposed in rig 

Length Single = 91 mm, Volume approximately 1 litre 

Double = 182 mm, Volume approximately 2 litres 

Triple = 273 mm, Volume approximately 3 litres 

Quadruple = 364 mm, Volume approximately 4 litres 

Cell Density 400 cpsi 

Cell Pitch 1.27 mm 

Substrate NGK HoneyCeram 

Wall Thickness 0.11 mm [4.3 thou(UK),4.3 mil (USA)] 

Open frontal area (non-washcoated) 83.4% 

Bulk density of substrate 0.29 g/cc (290 kg/m3) 

Washcoat thickness 0.089 mm 

Washcoated channel dimension 1.072 mm 

Washcoat loading (assuming 

washcoat density = 1350 kg/m3) 
166.6 kg/m3 

 

 

3.2.4 Urea Spray Mixing Chamber. 

 

The Urea spray mixing chamber consists of a combination of a short 50 mm pipe and a 200 mm 

diameter by 200 mm long plenum, attached to a bell shaped converging nozzle as shown in figure 

3.2.4.  The urea spray mixing chamber was designed to allow uniform mixing of urea droplets in the 

presence of hot exhaust flow from the engine.  

 

 

 
Figure 3.2.4 The Urea spray mixing chamber. 
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The mixing chamber has a urea spray boss fitted on top and a tiny drainage plug at the bottom. In 

the event of running the test with urea spray, the chamber would house the spray injector unit while 

with the NH3 gas test the boss was plugged to prevent gas leakage. 

 

3.2.5 Instrumentation module assembly. 

 

Four instrumentation modules were fabricated and assembled. Two of the modules were of 

diameter 115mm and of length 110 mm.  A third had a diameter of 115 mm and was 90 mm long 

and a fourth had a diameter of 50 mm was of length 200 mm. The modules were used to house the 

analysers, thermocouples and lambda sensors. The two 110mm long modules were placed after the 

DPF-DOC assembly and before the SCR assembly and the 90 mm long module was placed after the 

SCR assembly. The 50 mm by 200 mm pipe was placed after the mixing chamber before the long 

diffuser. This pipe provided an alternative placement for Urea spray Injector. The instrumentation 

modules arrangement is as shown in figure 3.2.5. 

 

 
Figure 3.2.5 Instrumentation modules location along the SCR exhaust system. 

 

Bosses were fabricated to accommodate the urea spray system, lambda sensors, analysers, 

thermocouples and pressure sensors in the instrumentation modules, urea expansion box and the 

end of the exhaust system.  1/8 inch BSP fittings were used for thermocouples and ¼ inch NPT 

fittings for the Horiba analysers. These ports could be capped during the engine calibration process. 

Cleaning of the bosses was required after assembly using respective thread taps. This was done to 

remove any welding residue left on the bosses to ensure proper fitting for the instrumentation.  
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3.2.6 Long and short diffuser assembly 

 

Four cones were used with different length and cone angles. The longest cone was 410 mm long 

with a half cone angle of 4.5O while the shortest cone was 90 mm long with a half cone angle of 

19.9O. The inlet and exit cones both were 150 mm long with half cone angles of 12.2O. The most 

important cone in this assembly was the long diffuser cone. This cone was placed after the spray 

assembly and before the SCR assembly. This was designed to provide an approximate uniform one 

dimensional flow from the nozzle to the front face of the SCR catalyst. 

 

3.2.7 Bypass pipe assembly. 

 

The system was designed to have the option of a bypass system, but it was not used in the 

experiments described in this thesis so the pipes were capped. Pressure tapping was installed at the 

cap for measuring the exhaust backpressure for the system. The bypass T-joint with pressure tapping 

is shown in figure 3.2.7. 

 
Figure 3.2.7 Capped T-joint with pressure tapping. 

 

3.2.8 DPF Monitoring and Preconditioning  

 

The DOC, DPF and SCR catalysts were supplied by Johnson Matthey along with technical data and 

procedure for monitoring and preconditioning. As the engine ran an increase in backpressure 

indicated that the DPF was being loaded with soot. Hence during the project the DPF was 

periodically cleared by blowing it out using a high pressure air supply.  With a DPF system, it is 

important to avoid uncontrolled regeneration especially under severe conditions such when the 

engine load is rapidly reduced. This could result in damage to the DPF due to overheating especially 

when there the DPF is heavily loaded with soot. Throughout the experiment, close monitoring of the 

temperature and pressure across the SCR exhaust was undertaken using the thermocouples placed 

at various locations across the exhaust. Monitoring and data logging was done using the Froude 

Consine Texcel v10 software. 
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3.2.10 SCR Catalyst Monitoring and Preconditioning  

 

In the beginning of this test programme, the engine was run for sometime and it is assumed that the 

bricks were effectively de-greened.  

 

3.3 EXSA 1500 NOx Analyser Setup 

 

The EXSA 1500 NOx Analyser was supplied by Horiba Instruments limited. The operation of this 

analyser is described in the operating manual and is targeted for measuring emissions from small 

engines ranging from two or four stroke gasoline and also diesels. It is capable of measuring CO, CO2, 

NOx, O2 and THC simultaneously. This equipment is compatible with the SAE J1088 (R) standard. The 

standard is a SAE recommended practice and Test Procedure for the Measurement of Gaseous 

Exhaust Emissions from Small Utility Engines. In this investigation, the EXSA 1500 NOx analyser was 

used mainly to measure the engine out NOx level in the first instrumentation module as shown in 

figure 3.3.2. The EXSA 1500 was also used to measure NO in other locations of the SCR exhaust 

system based on the test matrix. 

 

3.3.1 EXSA 1500 Specifications and Resolutions 

 

The EXSA 1500 utilizes a cross flow type Non Dispersive Infra Red (NDIR) sensor at normal 

temperature for measuring CO and CO2. For measurement of NO and NOx, a chemiluminescence 

detector (CLD) is used while O2 is measured with a single coil type magnetic pressure. THC on the 

other hand is measured using a heating type Flame Ionization Detector (FID). The specification of 

EXSA 1500 is given in the table 3.3.1. 
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Table 3.3.1 Technical Specifications of EXSA 1500 Common gas analyser.   

[Extracted from the Horiba Ltd, EXSA 1500 operating manual Oct 2004] 

 

Detection Target:  Gasoline engine (2-stroke, 4-stroke) exhaust, GM diesel engine 

exhaust gas  

Detection:  CO/CO2        :NDIR - Non Dispersive Infra Red Detector  

NO/ NOx      :CLD - Chemiluminescence Detector 

O2                 :MPD – Magnetic Pressure Detector 

THC               :HFID  - Heated Flame Ionization Detector 

Measurable Ranges Used CO:     0～5000ppm 

CO2:  0～20 % vol. 

THC:  0～500 ppm C 

NOx: 0～1000 ppm  

O2:   0～25 %  vol.  

AFR:  10-20 

λ :  0.5 – 2.5  

Repeatability:  ±1 % of Full Scale  

90％ percent respond:   15 seconds  

 

3.3.2 Gas requirements and Calibration Gases 

 

A total of six gases and compressed air at a pressure of approximately 1.2 bars are required for the 

operation and calibration of EXSA 1500 analyser. The gases are NO/NOx, CO/CO2, O2, N2, H2/He and 

Air mix. The EXSA 1500 NOx analyser gas piping configuration is shown in figure 3.3.2  
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Figure 3.3.2 EXSA 1500 NOx analyser gas piping configuration. 

 

3.3.3 NOx measurement procedure 

 

Once all the gas network connections had been made, the gas bottles were opened and maintained 

at a pressure of 1.2 bars. After the EXSA 1500 analyser had been switched on and warmed up, the 

calibration was completed. The hot hose temperature must reach around 191OC before the 

calibration can be done. The Ozone Generator Unit (OGU) must be switched on when the NOx 

analyser is used. The FUEL switch must be set to “MANU” position to ignite the FID from the EXSA 
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main console. The ignite button needs to be pressed and it is necessary to wait until the alarm light 

from the display goes out. Then, the FUEL switch must be switched to AUTO after the ignition had 

completed. The appropriate CO, CO2, NOx, THC, O2 range must be selected. In this investigation, the 

NOx range was selected from 0 to 1000 ppm and the O2 range from 0 to 20%. The rest of the species 

were not needed for this investigation but are recorded as reference values. 

 

The hot line was connected to the heating filter before reaching the exhaust sampling location. 

The sampling line was 40 mm in diameter and had a maximum sampling flow rate of 3 litres per 

minute. The recommended sampling line length was 6 meters but in the setup used here a 12 meter 

long sampling line was used. Therefore a heating filter unit was used to ensure the sampling line was 

maintained at 191OC throughout the experiment. The response time for this equipment was rated 

around 23 seconds for a standard 6 meters long sampling line. [EXSA 1500 Operating manual 

version Oct. 2004] 

 

The engine also needed a warm up time. It took the engine approximately 45 to 60 minutes to fully 

warm up until the last instrumentation module toward the end of exhaust reached 300OC. Once the 

analyser was fully warmed up, calibrated and the engine warm up was completed, the analyser was 

put on to measure and the data logged either from the Froude Texcel main logger or within the built 

in data logger in the EXSA main unit. Throughout the investigation, the Froude Texcel data logger 

was used as the main data logger for synchronization with the MEXA. The temperatures, lambda 

sensors, spray or gas trigger and engine condition (Speed and BMEP) were also recorded by the 

Froude Texcel data logger. 

 

In most of the cases, the EXSA 1500 sampling point remained on the first instrument module where 

the exhaust had passed the DPF and DOC before entering the mixing chamber where the urea spray 

or gas was injected. The EXSA 1500’s capability of measuring NO and NOx also allowed it to be used 

as a backup for the MEXA analyser for measuring NO and NO2. Once the NO and NOx were 

measured the NO2 value could be deduced from both readings.  

 

3.4 Ammonia analyser MEXA 1170Nx  

 

The Horiba MEXA-1170Nx is one of the instruments capable of measuring ammonia and NOx 

simultaneously as described in the operating manual [MEXA 1170Nx user manual, 2006]. This 

instrument uses dual Chemiluminescence detectors (CLD) and an oxidation catalyst to measure 
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ammonia. Optionally, this product can measure NOx and NO2 simultaneously with a simple setting 

change from the front control panel. The MEXA-1170NX main unit, which consists of an analyser 

unit, houses the CLD detectors, a control unit and a vacuum pump unit (VPU) is shown in figure 3.4  

 

 
Figure 3.4 The MEXA-1170Nx NH3 Analyser Unit 

 

As compared to the EXSA, the MEXA sampling line used 60 mm diameter tubing and the maximum 

sampling rate was at 5 litres per minute. The effective sampling rate was slightly lower at around 3 

litres per minute due to the filter assembly being placed upstream of the analyser. The filters protect 

the analyser from any unwanted HC soot entering the system. The response time for the MEXA was 

stated as being around a maximum of 1.5 seconds.  

 

3.4.1 MEXA1170Nx Specification and Resolution. 

 

The MEXA-1170NX analyser is claimed to be capable of measuring NH3 in real time with high 

sensitivity using twin CLD detectors with an NH3 oxidizing oven. In theory, by means of two heated-

type Chemiluminescence (CLD) detectors with an NH3 oxidizing oven, either NH3 or NO2 can be 

measured with high sensitivity in real time by calculation of the difference of NO readings from two 

detectors (one without a converter). It also features the capability of measuring NH3 and NOx, or 

(optionally) NO2, NO and NOx, and should be suitable for the experiment as it can take direct 

exhaust measurement without having a cooling unit and water removal. The analyser performance 

and resolution is shown in section d of appendix 3.4.1 while section a through c describes its 

physical, accessories and configurations. The commissioning was performed by Horiba at the AEARG, 
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Coventry University site. Compressed air regulators were also installed next to the HBF-722H heating 

filter inside the test cell for purging the analyser. 

 

3.4.2 MEXA 1170Nx Gas Requirements and Calibration. 

 

The various gases needed to operate the MEXA-1170Nx are shown in table3.4.2 below. 

 

Table 3.4.2 Gas Requirement for MEXA-1170 NX Analyser. 

Name Specification Supply pressure Note 

Zero gas Nitrogen 100 % 100 kPa ± 10 kPa At calibration 3 L / min   

Span gas NO in Balance N2 

900 ppm 

100 kPa ± 10 kPa 

200 bar 

At calibration 3 L / min   

NH3 gas Ammonia in balance N2 

95 ppm 

100 kPa ± 10 kPa 

200 bar 

At oxidation catalyst check; 

3 L / min   

Ozonator gas Oxygen 100% 100 kPa ± 10 kPa At standby 0.7  L / min   

Purge gas N2  100 kPa ± 10 kPa At purge 5 L / min   

 

 

Gas regulators were installed for the NO bottle (in balance N2) and the ammonia bottle (in balance 

N2). Precautions were taken while installing both regulators especially for the ammonia bottle which 

used a left hand thread at the regulator and bottle outlet. Compressed air was used as the purge gas 

instead of N2. A dust filter and oil filter or mist catcher was installed as well. The gas piping layout is 

shown in figure 3.4.2.  

 

The calibration of the MEXA analyser was performed before and after each sampling. After 

completing the calibration prior to testing, a gas bottle with 900 ppm NO was used to validate the 

analyser measurement. If the calibration was successful, then the experiment proceeded. If not, the 

MEXA analyser was recalibrated and validated or sent for minor service. Gas measurements are 

expressed as parts per million (ppm). This unit expresses the concentration of a pollutant as the ratio 

of its volume if segregated pure, to the volume of the air in which it is contained. 
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Figure 3.4.2 Gas piping Layout for MEXA-1170Nx Ammonia analyser 

 

The calibration gas concentration was set to one range depending on the calibration bottle supplied. 

The range was set by pressing the CAL key. When the calibration process was completed, the 

analyser efficiency was recorded and monitored. Typically the calibration was done before and after 

every test run to monitor the integrity of the results. At any time, when the efficiency dropped less 

than 80% for any of the analyser units, the results were disregarded and the supplier was contacted 

to rectify the problem. The filter was also changed for every 4 hours of testing for protection of the 

analyser. 

 

A custom operational procedure and calibration were implemented for this investigation according 

to the basic guidelines from Horiba. This was due to various failures faced throughout the 

investigation based on the standard operation and calibration procedure. Even though the action 

was considered very costly it was necessary for early detection of the failure at any stage of the 

experiment. Therefore, the NH3 oxidation catalyst efficiency check was performed before and after 

each test by running the calibration with an ammonia bottle. For the NO efficiency check, the 

procedure was undertaken weekly according to recommendation by Horiba. A daily operation and 

calibration procedure is summarized in figure 3.3.4. 
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Figure 3.3.4 Process Flow of MEXA-1170NX Daily Operation and Calibration. 
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3.4.3 MEXA 1170Nx Working Principles  
 
The MEXA-1170NX is the NH3 measuring unit combining NO (NOx) detector based on the 

Chemiluminescence (CLD) method and the oxidation catalyst. The sample gas is divided into two 

lines. One line (SUM line) would go through the catalyst inside the oxidation furnace at around 850O 

C. The other line (NOx line)   would skip the oxidation furnace. At the catalyst, NH3 is oxidized into 

NO by the reaction as follows: 
 

4NH3 + 5O2 ==> 4NO + 6H2O 

 

 Since the oxidation efficiency in the oxidized catalyst is not 100%, the measured value is 

compensated using the confirmed oxidation efficiency value. The unit is equipped with an 

adjustment function to minimize the response gap between detectors in each line that may cause 

error at drastic concentration change. The analyser is capable of switching between two modes. By 

default in the NO2 mode the oxidation catalyst would be turned off but optionally could be turned 

on for fast switching option. The carbon converter is gradually consumed by reduction process and 

requires periodic replacement. 

 

 

3.4.3a Working Principle of Chemiluminescence (CLD) 

 

The details of CLD working principles are described in the MEXA 1170Nx user manual [Horiba MEXA 

1170Nx operating manual 2004]. CLD is widely used as the measurement method of NO and NOx in 

exhaust gases from engines because it is highly sensitive to NO and is not easily interfered by other 

components. When sample gas containing NO is mixed with ozone (O3) gas in a reactor, NO is 

oxidized and is transformed to NO2 as shown in the reaction: 

   NO + O3 ==> NO2 + O2 

Some of the formed NO2 molecules here is in excited state, which means its energy is higher than 

normal. Excited NO2 molecules release excitation energy as light when returning to the ground state 

following these reactions:  

   NO + O3 ==> NO2* + 02  NO2*:NO2 molecules in excited state 

   NO2* ==> NO2 + hv 

This phenomenon is called Chemiluminescence, and the light intensity is directly proportional to the 

quality of NO molecules before the reaction. Thus, NO concentration in the sample can be estimated 

by measuring the amount of radiated light.  
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3.4.3b Interference of CO2 and H2O 

 

Also noted from the MEXA 1170Nx user manual is the effect from interference of CO2 and H2O to the 

measurements. Some of exited NO2 molecules lose excitation energy by collision with another 

molecule before returning to the ground state by emitting light. In this case, NO2 returns to ground 

state, but chemiluminescence does not occur as shown in reaction; 

 

NO2* + M ==> NO2 + M  where M: Other molecules 

 

The probability of energy loss depends on the kind of the collision opponent, and the species and 

concentrations of co-existing gas components may affect NO sensitivity of the CLD method. The 

probability of energy loss by CO2 and H2O is larger than that by N2 and O2 in the components of 

typical engine exhaust gas. Therefore the change of CO2 and H2O concentration in the sample tends 

to cause the change of NO sensitivity. In general, to lessen the interference of CO2 and H2O inside of 

a reactor is maintained to a low pressure condition. 

 

3.4.3c Measurement of NOx 

 

 Based on the working principles of CLD described in MEXA 1170Nx user manual, it is obvious that 

the NO2 originally included in a sample cannot be measured by CLD, because it does not cause 

chemiluminescence. To measure the NO2, it is converted to NO using NOx converter before 

measurement. This is shown in the following reactions: 

 

   NO2 + C ==> NO + CO 

   2NO2 + C ==> 2NO + CO2 

 

From the above reaction, it is clearly seen that carbon (C), which is the main substance of the NOx 

converted is being consumed by the reduction process. Therefore, as mention earlier, the periodic 

check and replacement of the NOx converter is required.  

 

3.4.4 NOx measurement in NH3 mode. 

The MEXA1170Nx detects by using a chemiluminescence detector (CLD) which can only detect NO. 

In this mode the ammonia is converted to NO as illustrated in figure 3.4.4. Therefore, the top line in 

figure 3.4.4 will display SUM which is the total of all NO and converted NO from Ammonia. The 
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second line will display only the NOx measurement and thus the last display in the analyser show the 

deduced ammonia by subtraction of SUM to the NOx measurement earlier. 

 

 
Figure 3.4.4 NH3 mode of MEXA-1170NX analyser 

 

3.4.5 NO2 measurement in NO2 mode.  

 

In the NO2 mode, the NH3 catalyst is not utilized. It can be switched off or leaving it ON for fast 

switching mode. In the first line of the analyser in figure 3.4.5, the exhaust gases will passes through 

the oxidation catalyst unchanged. Then, any NOx will be converted to NO before being detected by 

the CLD detector. Any NO will be detected directly by the CLD. Therefore, the analyser will display 

NOx in the first line. In the second line, the NOx to NO converter will be bypassed, therefore the CLD 

only detect NO and displayed by the analyser. Finally, the analyser only display NO2 deduced from 

NOx in the first line to the NO in the second line as shown in figure 3.4.5 
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Figure 3.4.5 NO2 mode of MEXA-1170NX analyser 

3.5 ETAS Lambda Meter 

 

In this investigation, the ETAS LA4 lambda meter was use to measure O2 at any of the 

instrumentation modules along the SCR exhaust system. In most cases it was used to measure O2 

across the SCR catalysts. The attributes of the LA4 Lambda Meter are described in the operating 

manual [ETAS LA4 User’s Guide, 2005]. The manual describes the LA4 lambda meter as a high-

precision measuring device for emission levels. It allows determining lambda values, oxygen content, 

and Air/Fuel ratio, as well as the internal resistance, pump current, and heater voltage of the LSU 

lambda sensor. The LA4 is designed for exhaust gas measurements on gasoline, diesel and gas 

engines.  

 

Based on the output signals from Bosch LSU broadband lambda probes, the measurement results 

can be calculated either by means of an analytical method that considers fuel properties and 

ambient conditions or by characteristic curves. The measured value was continuously displayed on 

the built-in LCD and periodically recorded manually as required. The device conducts a self-test after 

being powered on using an internal reference. An optimized heater control ensures that the sensor 

quickly reaches its operating temperature while preventing overheating damages, even at highly 

fluctuating exhaust gas temperatures and different supply voltages. The advantages of using this 

device is that it provides a wide measurement range of lambda, oxygen content and air/fuel ratio. In 

this investigation, two units of LA4 Lambda meter were used as a standalone unit but the data were 
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logged to the Froude Texcel program. The LA4 lambda meters used in the experiment are shown in 

figure 3.5. The LA4 wiring configuration is shown in appendix 3.5. 

 
Figure 3.5 ETAS LA4 Lambda meter used to measure O2 before and after the SCR catalysts 

3.6 Urea Spray Setup  

 

The spray injector unit was a prototype manufactured by Hilite International Incorporated and it is a 

customized standalone unit. The spray is a heavy duty spray and the dosing of urea was done 

manually by setting up the spray frequency and pulse length. The configuration of the Hilite urea 

spray system is illustrated in figure 3.6. For this program, manual operation of the spray system was 

considered adequate since only steady state testing was performed. The inlet pressure for this 

system was fixed at 5 bars 

.  

Figure 3.6 Schematic of a manual Urea spray system. 
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3.6.1 Urea Spray Calibration 

 

Prior to running with AdBlue solution, the spray system was calibrated and characterised to measure 

the flow rate using water. Based on the measurement obtained, a calibration chart was developed 

as shown in figure 3.6.1. The chart shows the mass flow rate (mg/s) against pulse length (ms) at 

frequency of 5 Hz. In this chart, the line with circles shows the data calibration with water while the 

line with triangle shows the urea spray.  

 

The differences between the two lines are due to the different of specific gravity between water and 

AdBlue solution. The AdBlue, at specific gravity of 1.09 is denser than water, resulting to higher mass 

flow rate. Periodically, a hydrometer was used to measure the specific gravity of the AdBlue 

solution. This will ensure that the AdBlue solution does not change due to storage within the vicinity 

of the test cell. Using the calibration chart gave a general idea of which pulse length in milliseconds 

should be used with respect to the NOx level and engine mass flow rate produced at a specific 

engine load (BMEP) and speed (RPM). 

 

Figure 3.6.1 Calibration chart of Mass flow rate (mg/s) against  

Spray Pulse length (ms) [courtesy Dr C.A. Roberts]  
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3.6.2 Urea Spray Pulse Length Setting Procedure  

 

To determine a suitable spray pulse length the urea spray injector calibration chart as shown in 

figure 3.6.1 was used. Starting from 28 ms pulse length, the urea mass flow rate is found around 

63.2 mg/s. At engine speed of 1500 rpm and 6 bars BMEP, the exhaust mass flow rate was measured 

around 28.5 grams/seconds. Using this information, the potential ammonia gas produce at this 

setting was worked out to be around 695 ppm as shown in appendix 3.6.2.  

 

Repeating this procedure for various engine speeds from 1500 to 2500 rpm and load from 2 to 8 bar 

gives various exhaust mass flow rate ranging from 10 to 100 grams/seconds. As a result chart of the 

estimated required urea dosage against NOx was established as shown in figure 3.6.2 

 

 
Figure 3.6.2 Chart showing estimated Urea/AdBlue (g/s) required 

against engine NOx out (ppm) 

 

3.6.3 Engine NOx Out Mapping 

 

Prior to selecting the appropriate spray dosage, the engine NOx out level mapping was also 

produced. This was achieved by running the engine at different Speed (RPM) and Load/BMEP (bar). 

The engine mass flow rates were recorded manually as the engine speed varied from 1500 rpm to 

2500 rpm and BMEP from 2 to 8 bars. The NOx levels were measured using the MEXA 1170Nx and 
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EXSA 1500 analysers. Figure 3.6.3a and 3.6.3b provide a general engine mapping showing the engine 

NOx out and mass flow rate at various engine Speed (RPM) and load, BMEP (bar).  

 
Figure 3.6.3a Engine NOx out based on Load BMEP (bars), Speed (RPM) and EGR ON 

 

 
Figure 3.6.3b Exhaust Mass Flow (g/s) based on Load, BMEP (bars), Speed (RPM) and EGR ON. 

 

Based on the fact that the urea spray injector was for heavy duty applications, the lowest possible 

spray injector setting was utilized for this investigation. It was at 24 ms which is expected to produce 

about 550 ppm ammonia gas for the SCR reaction ( refer to calculation in appendix 3.6.2 ) In order to 

match the lowest urea pulse rate at 24 ms, the NOx out level must be in the range of 530 to 550 
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ppm. Therefore in the general NOx out mapping (figure 3.6.3a) the engine condition at 1800 rpm 

and BMEP 8 bars was appropriate at that time. Due to high fuel consumption at 1800 rpm and BMEP 

8 bars, the EGR feature was switched off in order to increase the NOx level produced by the engine. 

The low engine speed is preferable based on lower fuel consumption which allows longer testing 

period with various urea spray and ammonia gas settings. Switching off the EGR also improved the 

NO-NO2 ratio as detailed in section 3.8.2. 

 

Therefore another engine NOx out mapping was produce by running the engine at 1500 rpm with 

EGR off whilst varying the load BMEP from 2 to 8 bars with exhaust mass flow rate recorded. As a 

result the new engine mapping at 1500 rpm was produced as shown in figure 3.6.3c. From this 

engine mapping, the desirable engine condition was chosen as 1500 rpm and BMEP 6 bars with a 

mass flow rate of 28.5 g/s. 

 

 
Figure 3.6.3c Exhaust Mass Flow (g/s) based on Load, BMEP (bars), Speed (RPM) and EGR OFF. 

 

3.6.4 The Urea Spray Layout and Experimental Procedure 

 

The urea spray pump and the pulse controller were powered by their individual power supply. The 

pump feeds the AdBlue solution from the tank through the pressure regulator to the spray. The 
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spray pulse length was controlled using the pulse controller, from 28 ms upwards. The spray was 

originally designed for heavy duty so this was the minimum working range setting in the experiment. 

The spray frequency remained at 5 hertz throughout the experiment. The pulse length was increased 

at 2 ms increments in the experiment. The engine and both analysers were first warmed up. Next, 

analyser calibrations were completed. The engine was set at 1500 rpm and BMEP of 6 bars. Once the 

exhaust temperature had stabilised at 300 0C at the last instrumentation module, then the engine 

warm up stage had completed. During the engine warm up, the urea spray was checked and 

calibrated outside of the exhaust. Whilst this was being undertaken, the urea injector bosses were 

blanked off to avoid exhaust gas leakage.  

 

The spray was clamped on a stand and all the piping was connected as shown in figure 3.6.4a and 

the power supply and the pulse controller were switched on. Normally, the spray would not start 

spraying immediately and required a few seconds. The urea AdBlue solution would start dripping 

and eventually spray into the bucket. Once a uniform spraying pattern was achieved, the spray could 

be plugged back in its location in the exhaust system. If the spray was clogged, then a spray cleaning 

procedure would take place as described in section 3.6.5. After cleaning, the spray trial would be 

repeated in the bucket to ensure that cleaning had fixed the clogging problem. 

 

 
Figure 3.6.4a Urea AdBlue Injector testing prior to experimental with spray system. 

Once the clogging issue had been resolved, the spray testing procedure could proceed as per the 

test program. The spray unit was carefully re-assembled into the exhaust making sure that it was not 

over tightened. A torque wrench was available for this procedure and a torque setting of no more 

than 10 Nm was applied. This was a very important procedure as over tightening the assembly could 

damage the thread causing the spray to fail. The urea AdBlue pipes line and wiring were routed clear 

of the hot exhaust, see figure 3.6.4b.  
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Figure 3.6.4b Urea Spray injector and supply pipes and wiring in place. 

Once the spray injector was placed at the mixing chamber, the only indication that the spray was 

working properly was by monitoring NOx level reduction. In this case, the MEXA analyser sampling 

line must be placed downstream of the SCR. If the NOx level remains the same for more than one 

minute then the experiment was stopped and the spray was rechecked on the stand and probably 

cleaned. During the engine warm up and after the spray had been cleaned and checked on the stand 

with the bucket, it was found best practice not to leave the spray injector in the exhaust without 

spraying. 

 
Figure 3.6.4c Spray Injector failure.  

 

This was because the hot exhaust flow had a tendency to bake the urea AdBlue residue left within 

the spray injector assembly causing the injector not to work properly. The best practice was found to 

place the urea injector in the mixing chamber and start the experiment immediately, certainly within 

five minutes of insertion. Longer waiting times before the experiments started would increase the 

chances of spray failure. 
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 Examples of spray failure are circled in the 43rd and 105th minutes of figure 3.6.4c. In the 43rd 

minutes, the spray failed to open in the first 4 minutes but later open intermittently for another 3 

minutes but managed to properly open after the 7th minute. In this case, the spray was previously 

stopped for about 5.48 minutes. Later in the 105th minute, the spray was previously stopped for a 

period of 22 minutes. At this point, the spray totally failed to open even after running for about 5 

minutes. Once all the necessary precaution and injector testing were performed, then the 

experiment with the urea spray system is ready as the layout shown in figure 3.6.4d.  

 

 
Figure 3.6.4d Urea spray system Experimental Layout. 

3.6.5 Spray Setting and Cleaning Procedures.  

Due to various problems related to the use of urea AdBlue with the spray injector, a customized 

spray setting and cleaning procedures was developed. These procedures involved visual inspection 

and cleaning with either warm water or ultrasonic cleaning and also drying with compressed air and 

a paper towel. These procedures are described in the flow chart in figure 3.6.5a. Periodically, the 

interior of the spray and the urea piping was cleaned by flushing through with warm water. This was 

done by substituting the urea AdBlue solution with warm water and running the spray. 
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Figure 3.6.5a Spray Cleaning Procedures flow chart 
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3.6.6 Deposit build up on Spray 

 

The AdBlue urea solution has a tendency to crystallize when exposed to the air. This produced a 

white deposit build up around the spray and tubes. Some of this white deposit hardened if exposed 

to high temperature in the exhaust stream in the range of 250O to 400OC. Under some conditions 

melamine formation occurred inside the spray injector opening. Some examples of these white 

deposits are shown in figure 3.6.6a and 3.6.6b. When this happened, cleaning the spray by soaking 

with warm water may not be suitable and an ultrasonic cleaning unit was needed. 

 

 
3.6.6a Deposit on injector sleeve 

 
3.6.6b Deposit around injector 

 
3.6.6c Ultrasonic cleaning 

-half immerse 

 
3.6.6d Ultrasonic cleaning full submerge 

 

Figure 3.6.6 White deposit build up and ultrasonic cleaning 

 

The use of the ultrasonic cleaning unit is subject to special attention in order to protect the electrical 

contact point of the spray unit. The spray unit was disassembled from the main unit and the outer 

cover sleeve and the removable part were submerged in the ultrasonic cleaning unit as shown in 

figure 3.6.6d. The cleaning normally took approximately two minutes. If necessary, the procedure 

was repeated. For the main unit with electrical parts, only the mechanical part of the spray was 

submerged in the ultrasonic cleaning  as shown in figure 3.6.6c and the electrical contact point 
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remained above the water level at all times. Once the cleaning was completed the spray unit was 

dried completely using compressed air. Further inspection was needed to ensure none of the 

electrical parts were exposed to water or any debris from the crystallized AdBlue solution. 

Sometimes certain parts of the spray injector cleaning could be done manually using tweezers. This 

procedure depends on the hardness of the deposit formed. An example in this case is shown in 

figure 3.6.6e 

 

 
 

Figure 3.6.6e Manual cleaning of injector sleeve with tweezers. 

 

3.6.7 Cleaned Spray inspection 

Final visual inspection was needed after the cleaning procedures were completed. The areas to be 

inspected were the main injector sleeve, the injector opening, the supply inlet and outlet and also 

the complete assembly as shown in figure 3.6.7. The cleaned sleeve is shown in figure 3.6.7a while 

figure 3.6.7b shows the main injector opening. Clean inlet and outlet supply lines are shown in figure 

3.6.7c. The overall inspection of the spray injector required looking for any debris around the main 

assembly of the spray as shown in figure 3.6.7d. 
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3.6.7a Cleaned sleeve 3.6.7b Main injector opening 

 
3.6.7c Cleaned inlet supply 

 
3.6.7d Completely assembled clean injector. 

 

Figure 3.6.7 Final visual inspection of fully cleaned injector 
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3.7 NH3 Gas Experimental Setup 

 

As a comparison with the AdBlue Urea Spray experiment, NH3 gas at 4% and 5% concentration, the 

balance being N2, was used. The gas experiment was conducted in order to isolate NH3 species from 

urea decomposition processes. In the urea spray experiment, it was expected that the urea droplets 

would be converted to NH3 gas. The phase changed and the time taken for it to decompose in the 

exhaust system before reacting with the SCR catalyst is difficult to predict. Using NH3 gas should 

provide information as to SCR performance when 100 % of the urea droplet had transformed to gas 

phase. When compared to the urea spray experiments it should also provide insight into droplet 

behaviour. 

 

3.7.1 NH3 Gas Supply and Nozzle Location. 

 

Initially the test was done utilizing gas bottles containing 4% NH3, the balance being N2 gas, however 

only approximately 4 to 6 hours of testing was possible. To reduce costs and extend the testing time, 

a 5% NH3 gas was later introduced. The flow rate was lowered about 20% from the 4% gas in order to 

get similar concentration in ppm. Gas was injected into the exhaust stream at the first 

instrumentation module in the same location as the EXSA 1500 sampling point.  

 

A nozzle with a J-shape was fabricated of internal diameter 4 mm and 6 mm outside diameter.  Since 

the pipe diameter of the instrumentation module was 120 mm, the nozzle was designed such that is 

measured 60 mm from the wall; the centre of the pipe.  The nozzle was also pointed to the direction 

of the flow. Before connecting the nozzle with the NH3 gas supply, the nozzle was carefully inserted 

in the instrumentation module and turned to face the mixing chamber. As the NH3 gas reached the 

mixing chamber, it was expected that it would mixed uniformly with the exhaust gases. Then it 

would continue flowing through the long diffusing cone, as an approximate one dimensional flow, 

eventually reaching the SCR catalysts for reduction with NOx. The gas injector geometry is shown in 

figure 3.7.1b 
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Figure 3.7.1b NH3 Gas Injection Nozzle. 

 

 

3.7.2 Gas flow meter and pressure gauge. 

 

A needle valve was used to control gas flow rate into the exhaust stream and a rotameter – type 

flow meter measured the rate. The reading on the flow meter was calibrated to ensure an 

appropriate amount of NH3 gas was injected. There were two floats available on the flow meter, a 

glass float and a stainless steel float. The glass float was more sensitive and less dense but was 

limited to a maximum flow rate of 24 litres per minute. The stainless steel float was denser and 

suitable for higher flow rate while capable of measuring up to a maximum of 44 litres per minute.  

 

To establish the gas flow rate, measurements must be taken by observing the position of the centre 

of the float on a graduated scale. The scale ranged from 0 to 150 mm at increments of 10 mm. 

Readings were converted to flow rate using a calibration chart for air with the appropriate float as 

shown in appendix 3.7a and 3.7b. Flow rate was controlled using the dial at the bottom of the flow 

meter. The pressure within the line was monitored by reading the pressure gauge. The gas flow 
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meter readings were taken manually and the changes of flow rate were marked by pressing the 

voltage signal trigger.  

 

The voltage signal trigger was a switch wired to the Froude Texcel data logger which helps to identify 

the change of gas flow rate used. Therefore any changes of NOx and NH3 levels were clearly visible 

and differentiated on the Texcel control panel. Actually, the measurements with gas flow meter as 

shown in figure 3.7.2 were used only as a guide. The actual NH3 mass flow was calculated from the 

measured ppm and exhaust flow rate. 

 

 

 

Figure 3.7.2 Gas flow meter reading as a guide. 

 

 

3.7.3 NH3 gas experimental layout. 

 

The 5% NH3 gas was used and connected to the exhaust stream in the 1st instrumentation module. 

Stainless steel pipes were used due to the nature of NH3 which has a tendency to stick on every 

surface especially on materials such as Teflon. The pressure in the line was fixed to 1 bar and a 

vented safety valve was connected to the air extraction system on the roof of the engine test cell. A 

pressure gauge was connected to the flow meter and the pressure recorded throughout to ensure 

gas flow rate can be accurately calculated. NH3 gas setup is shown in figure 3.7.3  
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Figure 3.7.3 Schematic of NH3 Gas Injection setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.3 NH3 Gas Experimental Layout 

 

3.7.4 NH3 Gas Experimental Procedure. 

 

The procedures followed when using gas were similar to those when using urea. With the NH3 gas, 

the procedures were much simpler and cleaner but appropriate precautions were necessary 

including ventilation in the engine cell. Basically, after the engine and analysers had warmed up, the 

NH3 gas bottle was switched on. The pressure within the gas bottle and the pipes were adjusted to 

be at approximately 1 bar. If there was any leakage in the gas piping, the pressure would drop and 

required necessary action.  
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The valve was opened on the flow meter and the rate adjusted by noting the position of the glass 

float. The readings based on the glass float were recorded together with the pressure gauge 

readings in the pipe line. The NH3 and NOx measurements were logged within the Froude Texcel 

system. The engine mass flow rate readings were also taken from the Ricardo air flow meter. Various 

sampling locations were used depending on the test matrix, see later in section 3.11. Once the 

experiment was completed, the air flow meter dial and the gas bottle regulator were turned off. The 

engine and analysers were cooled down and turned off. Finally the results were plotted and the 

recorded readings were compiled and are shown in the results section of Appendix 4. 

3.8 NO/NO2 measurement for DPF-DOC arrangement. 
 

SCR performance depends on the NO/NO2 ratio and this is determined by the DPF/DOC 

arrangement. Measurements were taken upstream and downstream of the DPF/DOC components. 

The NO to NO2 ratio is very important for the SCR reduction reaction due to the NO2 involvement as 

one of the main reductants in the SCR reaction. Initially, as recommended by the catalyst supplier, 

the DPF/DOC configuration was DOC followed by DPF. However, during the preliminary NO and NO2 

ratio study, it was observed that the amount of NO2 produced was not at the appropriate level for 

optimal SCR performance. So, the alternative configuration was also investigated. 

3.8.1 DOC-DPF configuration. 

 

 In the early stage of this investigation, the DOC-DPF was used as the configuration upstream of the 

Spray and SCR catalyst. The exhaust pipe was connected first to the DOC and then the DPF assembly. 

The function of the DOC is primarily to oxidize a fraction of the engine out NO to NO2. The primary 

function of the DPF is to trap soot particles and so protect the downstream components, the SCR 

catalysts. The experiment was conducted at an engine condition of 1500 rpm and BMEP of 6 bars 

with the EGR and VGT running as normal. The engine was warmed up as per the normal procedure 

and the MEXA analyser was calibrated prior to sampling.  

 

The EXSA NOx analyser was occasionally used to measure NO and NOx for comparison.  The 

sampling points were at the engine out and downstream of DOC-DPF bricks as shown in figure 3.8.1. 

Before running the experiment, the DPF was taken out for cleaning with compressed air. NOx and 

NO measurement were obtained upstream of the DOC at the same location. The sampling probe 

was then moved to the second location downstream of the DOC-DOF assembly and NO and NO2 was 
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recorded. The results are as shown in table 3.8.1 for an engine conditions of 1500 rpm and 6 bars 

and temperature of 350 to 420 0C.  

 
Figure 3.8.1 Initial configuration with DOC-DPF assembly. 

 

Based on the NOx and NO measurements, the NO2 values were deduced and NO/NO2 ratio was 

established. From table 3.8.1, the NO2 level before the DOC-DPF assembly was approximately 0 %. 

Downstream of the DOC-DPF assembly, only 10 % of NOx was NO2. This was considered too low for 

optimal performance of the SCR. It was assumed that soot in the DPF was reducing some of the NO2 

from the DOC back to NO 

 

Sampling Location 
NOx 

(ppm) 

NO 

(ppm) 

NO2 

(ppm) 

NO2/NOx 

percentage 

Upstream DOC-DPF 392 392 0 0 % 

Downstream DOC-DPF 415 372 43 10 % 

 

Table 3.8.1 NO/ NO2 ratio based on DOC-DPF assembly. 

3.8.2 DPF-DOC configuration. 

 

The experiment was repeated with the DPF and DOC reversed as in figure 3.8.2. The DPF will still be 

expected to protect the SCR by trapping soot. 
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Figure 3.8.2 Final DPF-DOC assembly 

 

Using this configuration, the NO and NO2 levels were measured. The results are tabulated in table 

3.8.2 and show an improved NO2 level at approximately 40%. 

 

Table 3.8.2 NO/NO2 ratio based on DPF-DOC assembly 

Sampling Location 
NOx 

(ppm) 

NO 

(ppm) 

NO2 

(ppm) 

NO2/NOx 

percentage 

Upstream DPF-DOC 412 404 8 1.9 % 

Downstream DPF-DOC 433 255 178 40 % 

 

 

Based on these results the second configuration was adopted. The NO2 to NOx ratio of about 40% 

was considered more desirable for this investigation.  However, in most literature reviewed a higher 

ratio is recommended for good NOx conversion. Narayanaswamy et al. (2008) simulated NO/NO2 

ratio up to 0.25/0.75 and implied good conversion over zeolite with excess NO2. The significance of 

excess NO2 over zeolite at lower temperature was discussed by Rahkamaa-Tolonen et al. (2005) to 

enhance SCR reactions.  Devadas et al. (2006), Takada et al.(2007) and Chatterjee et al. (2007) all 

agreed that higher NO2/NOx ratios (> 50%) give good conversion of NOx.  

 

In order to further increase the NO2 level for this experiment, the EGR was turned off. This resulted 

in higher engine out NO2 levels as shown in table 3.8.3 below. The NO2/NO ratio supplied to the SCR 

system in the experiments was thus generally about 60% NO2 and 40% NO. The NO2/NO ratio from 
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the engine was about 20% NO2 to 80% NO. This configuration was finalized and used throughout the 

investigation. 

 

Table 3.8.3 NO/NO2 ratio based on DPF-DOC assembly with EGR off. 

Sampling Location 
NOx 

(ppm) 

NO 

(ppm) 

NO2 

(ppm) 

NO2/NOx 

percentage 

Upstream DPF-DOC 525 420 105 20 % 

Downstream DPF-DOC 530 205 325 60 % 

3.9 Measurement using various sampling probe length. 

 

Prior to designing the experimental test matrix, a brief investigation of various sampling probe 

lengths was also conducted. The assumption throughout was that the flow was essentially one 

dimensional within the SCR. To assess the validity of this assumption, measurements were taken 

inside the exhaust pipe using 3 different lengths of sampling probes. The sampling probe was 

connected directly to the end of the heated line from the MEXA 1170Nx. Based on the inside 

diameter of the instrumentation module (120 mm), the centre stream was 60 mm from the pipe 

wall. The three sampling probes used were at 55 mm, 25 mm and 10 mm from the wall as shown in 

figures 3.9a, b and c. 

 

 
Figure 3.9a Variation of sampling probe length for profile measurement 

Experiments were conducted using 4% NH3 gas. The experiments were conducted at engine speed of 

1500 rpm and BMEP of 6 bars. The quadruple SCR catalyst was used. Initially the NOx measurement 

was taken upstream of the SCR catalyst without injecting NH3 gas. Then, the MEXA sampling probe 

was moved to the location downstream of the SCR catalyst and NH3 gas was injected. The analyser 
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was thus placed to measure NH3 or NOx slippage after the SCR. The same procedure was used for all 

probes. 

  

Figure 3.9b Long (55 mm) sampling probe Figure 3.9c Medium (25 mm) sampling probe 

 

The comparison of results between the medium length probe and the long probe at a setting of 100 

mm of the glass float are tabulated in table 3.9. 

 

Table 3.9 Profile Measurements inside the exhaust stream. 

Date/ 
Probe 
length 

 
SCR 
brick 

Glass 
float 
mm 

Gas 
Pressure 

psi 

NOx in 
upstream 

SCR 

NH3 in 
upstream 

SCR 

NH3 out 
downstream 

SCR 

NOx out 
downstream 

SCR 
16jun/ 
55 mm 4 100 1.2 579 510 6 150 

24Jun/ 
25 mm 4 100 1.2 576 535 7 128 

24Jun/ 
25 mm 4 100 1.2 576 534 5 125 

 

From table 3.9, NOx in and NH3 out measurement do not show  much variation between long (55 

mm) and medium(25 mm) sampling probe. The slight variation is due to the NH3 distribution being 

non-uniform upstream and hence NOx consumption is not uniform downstream. A plot of results for 

the long sampling probe measurements at various gas flow rates are shown by the blue line in figure 

3.9d. The two measurements using the medium sampling probe are shown in green. 

55 mm 
25 mm 
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Figure 3.9d Check point with medium sampling probe for gas measurement. 

 

The result shows that the medium sampling probe on the MEXA ammonia analyser was producing 

similar result as the long sampling probe. So it was concluded that the sampling probe length inside 

the exhaust assembly does not have much impact on the measurement of the NOx and NH3 level in 

the exhaust flow.  As a result of this, the experiment with the short probe (10 mm) was not 

necessary for the investigation. Therefore all further measurements used the long probe. 

3.10 Problems associated with the MEXA Analyser 

 

In the early stage of the investigation, the MEXA ammonia analyser failed several times when 

measuring NOx or NH3 with the presence of high ammonia concentration or urea. Five types of 

failures occurred involving rubber seal disintegration, sample line blockage, NOx converter failure, 

NH3 oxidation catalyst poisoning and NH3, NO2 reaction on the NOx converter. 

 

Disintegration of the rubber seal for the NOx converter (in the SUM line of the converter) resulted in 

leakage of the sampling gas flow from the sampling line to the converter unit. This was detected 

during NOx calibration when measuring lower NOx readings from the NOx calibration bottle.  

Replacing the rubber seal required a minor service to be performed on the analyzer. A sample of the 

rubber seal failure is shown in figure 3.10.1a. At this point, the damaged rubber seal was replaced 
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with a new rubber seal whilst the use of a high temperature PTFE seal was under investigation by the 

Horiba Corporation.  

 

 
Figure 3.10a Rubber seal disintegrate in the SUM NOx converter. 

The second most common failure was line blockage, resulting in the analyser failing to calibrate. 

During one of the services, deposit build up inside the pipeline to the converter was observed. The 

blockage was easily cleaned and removed. It was believed that the white deposit was coming from 

surviving urea droplets penetrating the MEXA analyser sampling line filter. Some of the urea droplets 

have a tendency to change form to a white deposit when the temperature changes. Urea droplets 

should evaporate and release NH3 in the exhaust, but some evidently survived and were sucked into 

the MEXA sampling probe and subsequently cooled within the sampling line. This observation was 

reported to the Horiba research centre for further investigation.  

 

To resolve this problem, a paper based finger filter had to be replaced for approximately four hours 

of sampling. This will prevent any surviving urea droplet from passing through the sampling line and 

penetrating the crucial element of the MEXA analyser and also preventing sampling line blockage. 

The paper based finger filter is located at the back of the main unit of MEXA analyser as shown in 

figure 3.10b 

 

Figure 3.10b Paper based finger filter located at the back of 

MEXA 1170Nx Ammonia Analyser 

 

The most severe problem was due to NOx converter failure. In this failure, the carbon converter 

used for converting NOx to NO had disintegrated into dust or a powder type material. Initially, a 

spherically shape carbon compacted NOx converter was supplied as shown in figure 3.10c. The 
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converter benefited from a large surface area for the reaction which converts NOx to NO prior to 

detection by the CLD analyser unit. It was suspected that some of the unconverted urea droplets 

survived the exhaust stream and got into the converter, attacking the carbon.  

 

A new glassy carbon for the NOx converter, shown in fig 3.10d was used to fix this problem. It 

features a crystal structure which benefits from low surface area and greater poison resistance. The 

glassy carbon converter was gradually consumed each time reaction took place in the NOx oxidation 

catalyst.  The efficiency of the NOx converter must remain at 90% or higher. Once the efficiency 

drops below 90%, it needs replacing. A gas divider is needed for the NOx efficiency check and 

certified Horiba engineers are trained to perform the efficiency check.  

 

  

Figure 3.10c Spherical carbon 
compact NOx converter 

Figure 3.10d New Glassy 
Carbon NOx Converter 

 

The NH3 oxidation catalyst poisoning was one of the crucial factors which delayed this investigation. 

The function of the NH3 oxidation catalyst is to oxidize all NH3 gas to NO to be detected by the CLD 

detector. It was first detected during the daily NH3 catalyst efficiency check. The NH3 catalyst 

efficiency check was performed by running the analyser calibration at the beginning and the end of 

each test. During this check, the NH3 catalyst efficiency was found to be below 80%. At this point the 

NH3 measurement is no longer considered acceptable and the oxidation catalyst needs replacing.  

 

It was believed that some of the surviving urea droplets were attacking the NH3 oxidation catalyst. 

The NH3 efficiency check was easier to perform as compared to the NOx converter efficiency check. 

It only needs the NH3 gas bottle at 95 ppm and the NH3 efficiency was checked daily throughout the 

investigation. The daily NH3 efficiency check was included as part of the testing procedure. The final 

problem identified with the MEXA was the occurrence of reaction between NO2 and NH3 on the NOx 

converter which lead to errors in the measurement of these species. 
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The measurement of NO, NO2 and NH3 were performed at the inlet and exit of the SCR catalysts as 

described by the test matrix shown in table 3.11b. Due to some interference with the NOx and NH3 

measurements in the NOx/NH3 mode and NOx and NO2 in the NO/NO2 mode, some basic 

assumption had to be made. The assumption covered the reliability of the measurements taken with 

respect to the measurement modes selected. In the NOx/NH3 mode, only the SUM measurements 

were correct while the NOx measurements were too low and the NH3 measurements were too high 

in the presence of Ammonia.  

 

 

Figure 3.10e A typical example of erroneous measument of NOx in present of Ammonia. 

 

The typical erroneous measurement of NOx in present of ammonia is shown by the green line in 

figure 3.10e. In this example, the NOx measurement was taken upstream of the SCR brick using the 

NH3 mode of the MEXA analyser. At the same time, EXSA analyser was also used to measure NOx, 

but upstream of the gas injection, shown by the pink line in figure 3.10e.  

 

The spray trigger was denoted by the vertical light blue lines, which indicates the changes of gas 

injection setting. As the gas injection started from the second to the fifth minutes, the NOx level 

shows decreasing values (green line) as the ammonia level rises (blue line). In the absence of 

ammonia, using the EXSA analyser upstream of the gas injection shows the NOx level remains 
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unchanged. This interference can be seen for all measurements of NOx in present of ammonia. This 

phenomenon was also supported by the finding of Sandip et al., (2007) where, Chemiluminescense 

(CLD) based analyser lead to erroneous NOx measurements. They also develop a way to cure this 

problem using an ammonia scrubber which prevents the interference of NO2 with ammonia and 

poisoning effect of the converter catalysts in CLD NOx analyser. At the time of this investigation, the 

use of ammonia scrubbers was still under evaluation by Horiba. Therefore, a special measurement 

strategy was developed later discussed in section 3.11 in order to measure NOx and NH3 in the 

presence of high concentration of ammonia.  

 

Meanwhile, in the NO/NO2 mode of the MEXA analyser, only NO measurements were correct while 

SUM and NO2 measurements were too low. These erroneous measurements were due to reaction 

between NH3 and NO2 on the NOx converters in both lines of the analyser. Instead of simply 

converting NO2 to NO, the reaction of NO2 with NH3 to produce N2 causes low NOx reading in 

NOx/NH3 mode.  

 

It also caused erroneous NOx and NO2 reading in the NO/NO2 mode.  The SUM measurements in 

NOx/NH3 mode represent the measurement of the total NH3 + NO + NO2. At a later stage, the SUM 

readings were used to deduce the NOx and NH3 and later to NO2 by deduction method. The analyser 

performance when measuring a mixture of NO, NO2 and NH3 are summarized in table 4.1a below. 

 

 

 

Table  3.10a  MEXA analyser performance when measuring a mixture of 
 NO, NO2 and NH3 

 

 SUM(NO+NO2+NH3) NOx NH3 

NOx/NH3 mode Correct Incorrect – too low Incorrect – too high 

 
 SUM (NOx) NO NO2 

NO/NO2 mode Incorrect – too low Correct Incorrect – too low 
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Considering the MEXA analyser limitation in measuring the emission in this investigation, careful 

interpretations are needed to analyze the results. Therefore a total of seven set of positive results 

have been identified and categorized according to the type of ammonia injected and the number of 

SCR brick utilized. The remaining of the measurements was considered as loss and discarded from 

the analysis of the results. Two sets of result were obtained from urea spray test comprises of single 

SCR brick and four SCR bricks. Four sets were from the 5% ammonia gas test which includes one 

through four bricks. Only one set of results were available from the 4% ammonia gas test. 

 

3.11 Final Measurement Strategies. 
 

As stated above due to the interference between NO2 and NH3 on the NOx converter erroneous 

measurements resulted when NH3 was present in the gas stream. To circumvent this problem a 

measurement strategy was derived which enable measurements of all three gas, NO, NO2 and NH3 

to be obtained upstream and downstream of the SCR. The EXSA was used to measure engine out 

emissions upstream of the DPF/DOC. The MEXA was used upstream and downstream of the SCR.  

 

The following measurement strategy was used to interpret the MEXA analyser readings. The NO and 

NO2 measurements upstream of the SCR were made in the absence of ammonia and it was assumed 

that gas phase reactions prior to the SCRs were negligible. Therefore these readings were also valid 

in the presence of ammonia. The SUM reading from the analyser in the NOx/NH3 mode in the 

presence of ammonia was valid, so the ammonia level could be found by manual subtraction. 

 

 

In the presence of ammonia slip, downstream of the SCR brick only NO measurement is correct and 

reliable. However the readings of the SUM upstream minus the SUM downstream gives a measure 

of (NH3 + NOx) consumed by the SCR bricks. Furthermore, an assumption can be made that NOx and 

ammonia are mainly consumed on a mol/mol basis during the SCR reactions.  

 

 

Using this assumption neglects ammonia oxidation and the slow SCR reaction, but is valid as a first 

approximation for the temperature range of around 300 OC in this investigation.  Therefore, half of 

(NH3 + NOx) consumed is either ammonia or NOx consumed. NO consumed is available directly from 
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the difference between upstream and downstream measurements. Finally, NO2 consumed is found 

from the difference between NOx consumed and NO consumed. 

 

 

From the direct measurement of NO downstream, the slip of (NH3 + NO2) is found by subtraction of 

NO from the measurements of SUM (NH3 + NO2 + NO). In the case of 4% and 5% ammonia gas in N2 

injection, the input level can be determined from a calibrated flow meter and the known exhaust 

mass flow rate. This information can be used to check upstream measurements. For urea spray 

injection, the potential ammonia injected can be determined from the spray mass flow rate.   

 

 

By comparison of this with the measured ammonia upstream of the SCR will indicate the mass of 

spray that has released its ammonia between the spray point and the emissions measurement 

location. The magnitude of the potential SUM upstream (potential NH3 + NO + NO2) minus the 

measured SUM downstream should indicate the total consumption of all species (NH3 + NO + NO2) in 

the SCR bricks. This condition is valid with the assumption that no droplets pass through the SCRs.  

 

 

The comparison between urea injection and NH3 gas injection in the 1 SCR case would generally give 

some idea of what happened to the droplets within the SCR brick. Finally the tests were carried out 

for 1, 2, 3 and 4 SCRs with ammonia gas injection but only 1 SCR and 4 SCR test cases were 

implemented using urea spray. All of the measurements were made as a function of ammonia level 

input. The measurement capability of the MEXA analyzer in the investigation is summarized in table 

3.11a. 
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Table 3.11a Measurement strategy when using Horiba MEXA 1170Nx Ammonia analyzer 

 

       NH3 Gas case 

Sampling 

Upstream SCR 

NH3 Gas Case 

Sampling 

Downstream 

SCR 

Spray Case  

Sampling 

Upstream SCR 

Spray Case 

Sampling 

Downstream 

SCR 

SUM = 

(NH3+NO+NO2) 
OK OK OK OK 

NH3 
Subtraction  

(SUM-NOx) 

OK 

If low NH3 slip 

Subtraction 

(Potential SUM-NOx) 

OK 

If low NH3 slip 

NOx 
Measure with  

gas off 

OK 

If low NH3 slip 

Measure upstream of spray 

with spray off 

OK 

If low NH3 slip 

NO 
Measure with  

gas off 

OK 

If low NH3 slip 

Measure upstream of spray 

with spray off 

OK 

If low NH3 slip 

NO2 
Measure with  

gas off 

OK 

If low NH3 slip 

Measure upstream of spray 

with spray off 

OK 

If low NH3 slip 

 

Note: Downstream measurements with high NH3 levels ideally need an ammonia scrubber which was not available for MEXA at the time of 

this study. 

 

 

 

These restrictions, have resulted in different measurements mode (either NH3/NOx or NO2/NO) to 

be conducted in separate environments. After the final measurement strategies have been fully 

develop the sampling locations of EXSA and MEXA analysers along the SCR exhaust system were 

finalized. The experiment was carried out according to the test matrix shown in table 3.11b. 

 

 

 

 

 

 

Location 

Measure 
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Table 3.11b Experimental Test Matrix with urea spray and NH3 gas 

 

 
 

Up 
DPF 

1st module Spray 
/Gas 2nd module 3rd module 

 
SCR Bricks 

length 
4th module 

Test A EXSA  Capped Spray capped Lambda1 
MEXA1 

Single (1x) 
91 mm 

Lambda2 
MEXA2 

Test B EXSA capped Spray capped Lambda1 
MEXA1 

Quad (4x) 
364 mm 

Lambda2 
MEXA2 

Test 1 EXSA  NH3 gas Capped capped Lambda1 
MEXA1 

Single (1x) 
91 mm 

Lambda2 
MEXA2 

Test 2 EXSA NH3 gas Capped capped Lambda1 
MEXA1 

Double (2x) 
182 mm 

Lambda2 
MEXA2 

Test 3 EXSA  NH3 gas Capped capped Lambda1 
MEXA1 

Triple (3x) 
273 mm 

Lambda2 
MEXA2 

Test 4 EXSA NH3 gas Capped capped Lambda1 
MEXA1 

Quad (4x) 
364 mm 

Lambda2 
MEXA2 

 

3.12 Summary of Final Experimental Procedures. 
 

Despite of all the obstacles experienced in the investigation, remedial action was taken and a series 

of test procedures was adopted in order to ensure a valid and consistent result throughout. The final 

experimental procedures implemented in the investigation are summarized as follows: 

• Allow engine warm up for engine condition of 1500 rpm and load of 6 bars BMEP until the 

exhaust temperature in final module reached 300 OC. 

• Record exhaust mass flow rate for every gas or urea injection settings used. 

• Measure O2 upstream and downstream of SCR bricks. 

• Allow EXSA and MEXA calibrations to be completed before and after each test. MEXA 

efficiency check needs to be maintained for internal oxidation catalyst to be above 90% at all 

time and the NOx converter efficiency was assumed to be 100% 

• Measure NOx out from engine using EXSA NOx Analyser downstream of DOC. 

• Measure NO, NO2, NOx upstream of the SCR using MEXA Analyser 

• For urea injection, check spray outside the mixing chamber prior to fitting within the SCR 

exhaust system. Spray pulse rate setting range from 24 to 36 ms. 
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• Inject Gas (4% or 5%) in the first module or Urea in the expansion box for uniform mixing 

upstream of SCR. 

• Adjust gas flow rate from 0 to 120 mm for 4% and 0 to 96 mm for 5% gas. For urea injection, 

pulse rate setting used is from 24 to 36 ms. 

• Measurements of all species must be allowed to reach a steady value before changing to a 

different urea spray or ammonia gas injection settings. 

• Measure NOx,NH3 upstream of SCR using MEXA Analyser 

• Measure NO, NOx and NH3 downstream of SCR using MEXA Analyser.  

• Vary the SCR bricks length from 91 mm in length, four were available, then repeat the 

measurement upstream and downstream of SCR with 2x,3x and 4x SCR. 

3.13 Example of measurements strategy applied  
 

All the measurements obtained in this study are given in full in Appendix 4. Each graph in appendix 4 

has a code name derived from the details of the experiment and the date on which it was 

performed. The code name is printed at the top of each graph. Appendix 4.0 has a list of contents at 

the beginning which should enable each experiment to be found. For example, “9jul08b NH3 dw 

1SCRL” is a measurement trace obtained on 9/7/2008 of NH3 downstream of the 1 SCR, and L refers 

to LHS of the original plot 

 

An example of the test with 5% ammonia gas injected upstream of 1 SCR brick is selected and the 

engine log is shown in figure 3.13. In this engine log, the MEXA analyser was used upstream of the 

SCR in NH3 mode measuring SUM, NOx and NH3 as described earlier in section 3.4.4. The EXSA 

analyser was measuring NOx upstream of the 5% gas injection point to provide the engine NOx out. 

The code name for this test “12aug08 bNH3 up1SCR 5% L2” refers to the engine log data 120808b 

nh3 up1scr, which refers to the actual date the test was performed.  

 

The code “b” refers to the second data log after the engine warm up and analysers calibration had 

been completed, which had a code “a”. The name NH3 up1SCR 5% L2 refers to the NH3 mode of 

MEXA analyser with sampling location upstream of the SCR brick with the 5% ammonia gas injected. 

This whole test was performed from high gas injection rate setting to low, then low to high, and 

again high to low. The code L2 refers to the final high to low gas injection setting from the overall 

engine log from time 17th to 25th minute. 
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Figure 3.13 Example of engine log from 5% ammonia gas with 1 SCR brick. 

 

From the figure 3.13 above, the engine NOx out from EXSA showed a consistent 575 to 580 ppm 

(labelled exNOx) from the 17th to 25th minute shown by the trace in pink. The changes of gas setting 

were indicated by the vertical light blue line. Starting from gas injection setting at 96 mm (see 

appendix 3.7.1c for details), the SUM reading was showing over (noted by >1004), the NH3 reading 

was 636 ppm (in blue) and mNOx (from MEXA) was 452 ppm in green. As previously described, the 

NOx reading from MEXA was taken with the gas off. As the gas injection setting was reduced in steps 

from 96 to 80, 60, 48, 32, 16 and finally 0, the SUM and NH3 level also reduces accordingly.  

 

At each gas injection setting, the SUM and NH3 readings were allowed to settle down to steady state 

for about a minute before the next gas injection setting was selected. The SUM trace is shown in 

brown. This methodology of systematic variation of settings and allowance of sufficient time for the 

analyzer reading to reach steady state was applied to all measurements in this study. The results are 

all presented and discussed in the next chapter. 

 

 

 

 

exNOx 575

exNOx , 575
exNOx 580

mSUM >1004
mSUM , 964

mSUM , 845
mSUM , 780

mSUM 725

mSUM , 620
mSUM 575 mSUM 565

mNOx 452 mNOx 463 mNOx 473
mNOx 485 mNOx 491 mNOx , 511

mNOx 537

NH3 636

NH3 523

NH3 385

NH3 309
NH3 245

NH3 , 111

NH3 , 43
0

100

200

300

400

500

600

700

800

900

1000

1100

17 18 19 20 21 22 23 24 25

pp
m

time(min)

12aug08b bNH3 up1SCR 5% L2

exNOx 

mSUM 

mNOx 

NH3 

spray 

32
0.2psi

48
0.4psi

60
0.5psi

80
0.7psi

96
1psi

16
0.1psi

gas off
0



Chapter 4 Experimental Results and Discussions 
 

79 
 

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.0 Experimental results: Introduction 

 

In this chapter, the experimental results are obtained based on the experimental methodology 

described in chapter 3. These tests include the use of urea spray, 5% and 4% NH3 gas. The urea spray 

experiments were performed with a single and quadruple SCR bricks. For the 5% NH3 gas, 

experiments were conducted by varying the SCR bricks from single up to quadruple bricks. The 

experiment with 4% NH3 gas was carried out with only a single SCR brick. The data were obtained 

from these experiments using the MEXA analyser by sampling upstream and downstream of the SCR 

bricks. Information about NO2 and NH3 levels could be obtained by analysis described in the 

following sections. Most of the tests were carried out under steady state conditions, but this chapter 

also discusses some aspects of transient behaviour. Finally the features of the SCR process revealed 

by the measurements are discussed. 

 

4.1.0 Urea spray studies: General overview 

 

The main difference between the gas and the spray studies is the upstream NH3 level. In the gas 

studies, the upstream NH3 was readily available whilst for the spray studies; the upstream NH3 was 

potentially available from the decomposition of the urea. Each urea molecule within the droplets 

must first decompose into an ammonia molecule and an HCNO (iso-cyanic acid molecule). This 

occurs at temperature of approximately 130 to 137 OC.  

The iso-cyanic acid molecule must then react with water to produce a further ammonia molecule. 

This hydrolysis reaction is more likely to occur on a catalyst surface rather than in the gas phase, and 

will be more rapid at higher temperatures. Therefore the upstream deduced measurement of 

ammonia in these studies is only part of the ammonia potentially available for the SCR reactions on 

the catalyst bricks. From the known spray pulse length setting, the spray calibration and the known 

exhaust mass flow rate, the “potential ammonia” introduced into the exhaust in ppm can be 

calculated, see Appendix 3.6.2 
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4.1.1 Urea spray studies: Upstream Measurements (1 and 4 SCR bricks) 

At the location upstream of the SCR bricks with the MEXA in NH3/NOx mode the following equation 

applies, 

 SUM upstream = [NH3 +NO +NO2] 

Thus, for potential values, 

 Pot SUM upstream = [potential NH3+NO + NO2] 

Pot SUM is calculated from the potential ammonia and from NO and NO2 measurement taken when 

the spray was off. The NOx upstream is measured without the spray injection and is assumed to 

remain the same when the spray is injected due to the assumption that the gas phase reactions are 

negligible. The NO upstream can be measured, even with the presence of ammonia using the MEXA 

analyser in NO/NO2 mode. Similarly, the assumption is made that no gas phase reactions occur. 

4.1.2 Urea spray studies: Downstream Measurements (1 and 4 SCR bricks) 

The measurement with the MEXA in NH3/NOx mode downstream of the SCR bricks will give the SUM 

downstream, which effectively represent the NH3, NO and NO2 coming out from the SCR bricks. 

Thus, 

 SUM downstream = [NH3 + NO + NO2] 

The NOx downstream can generally be measured only with the spray off, unless the ammonia slip is 

very minimal. In the spray experiments, in all cases, the ammonia slip was significant. This is because 

the spray was designed for heavy duty vehicles and would not operate effectively at lower urea flow 

setting. Therefore, all of the experiments with the spray were carried out under excess spray 

conditions. The NO downstream could be measured even in the presence of ammonia slip by using 

MEXA in the NO/NO2 mode. The NH3 downstream reading is erroneous with the MEXA when the 

ammonia slip level is significantly above zero, which occurred in most of the experiments with spray.

However,  

[ SUM - NO ] = [ NH3 + NO2 ]. 

 Thus, the two useful pieces of downstream information are the NO levels and [NH3 + NO2] levels and 

would be useful for CFD validation. 
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4.1.3 Urea spray studies: Deduced value. 

To deduce NH3, and NO2, it was necessary to use the difference between the potential SUM 

upstream and the SUM downstream in this case. Therefore, using the following equation 

 Pot SUM upstream – SUM downstream = [NH3 + NO + NO2] consumption in the catalyst. 

The implication of this is the assumption that SUM downstream is the true measurement of the 

ammonia gas plus the NOx with no droplets or HNCO passing through the catalyst. This assumption 

may not be true for the 1 SCR, where ammonia in droplet form (or possibly as HNCO) at the catalyst 

exit is unaccounted for. But, it should however be true for the 4 SCR bricks case. It is again 

reasonable to assume that these species can only be consumed if they react with one another, and 

that they react on a mol NH3 per mol NOx basis. It also neglects non mol to mol reactions and 

ammonia oxidation. There may be also additional reactions with urea by products that are 

neglected. Therefore, 

 ½ [NH3 + NO + NO2] consumed = NH3 consumed = NOx consumed 

NO consumed can be found directly from  

[NO upstream – NO downstream] 

Hence, 

NO2 consumed = [NOx consumed – NO consumed] 

4.1.4 Urea sprays studies: Ammonia levels upstream of SCR bricks. 

In getting the ammonia levels, the calibrated spray pulse length setting and the knowledge of the 

exhaust mass flow rate can be used to calculate the potential ammonia level in ppm at location 

upstream of the SCR. This can be compared with the deduced value obtained from [SUM-NOx]. The 

difference between the levels would give an indication of how many of the droplets have released 

their ammonia between the spray injection point and the gas analysis measurement point upstream 

of the SCR. The 1 SCR and 4 SCR cases give remarkably different amounts of ammonia released from 

the droplets upstream of the SCR. It is not immediately apparent why this should happen, as the 

temperatures in the two experiments were very much similar and the main difference was the SCR 

resistance to the flow. This is further discussed in section 4.5.1. 
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4.1.5 Measurement with Urea Spray and 1 SCR brick. 

Table 4.1.5 summarizes the test results associated with urea spray and 1 SCR brick. Potential 

ammonia release from the urea spray was also calculated. The NH3 reading upstream from MEXA 

was recorded and clearly does not represent the correct NH3 values. The SUM readings previously 

introduced in section 4.1.1 have been recorded from several set SUM readings and the average 

values were used in this table compiled from data shown in appendix 4.1.5b. Upstream of SCR, direct 

measurement of SUM, NO, NOx and NH3 were tabulated in the table. For downstream 

measurements, only SUM, NO and NH3 were obtained directly from MEXA. 

Table 4.1.5 Summary of Result: Urea Spray with 1 SCR. (all measurements in ppm) 

 

 

Results for urea spray (1 SCR)
Temp upstream 573 K
Temp downstream 574 K
O2 upstream 9.70%
O2 downstream 7.90%

1 SCR 
Spray pulse length (ms) --> Description 0 24 26 28 30 32 34 36 Refn Guide Apdx

Potential up 1SCR Potential NH3   0 552 614 696 818 888 960 1042 calc A 3.6.2

Potential up 1SCR Potential SUM     505 1057 1119 1201 1323 1393 1465 1547
Pot(nh3

+nox)
B

MEXA up 1SCR SUM 550 645 680 700 723 734 754 761 avg sum C 4.1.5b
MEXA, Spray off up 1SCR NO 196 196 196 196 196 196 196 196 070708a D 4.1.5
MEXA, Spray off up 1SCR NOx 505 505 505 505 505 505 505 505 090708c E 4.1.5

Calculated up 1SCR NO2 309 309 309 309 309 309 309 309 nox-no F
MEXA Reading up 1SCR NH3 21 210 250 290 310 320 345 385 090708c G 4.1.5

Deduced ammonia up 1SCR SUM-NOx 45 140 175 195 218 229 249 256 sum-nox C-E=H

MEXA dw 1SCR
*SUM(excludes 

drops) 539 495 564 607 661 732 797 863 avg sum I 4.1.5b

MEXA dw 1SCR NO 200 137 139 139 140 140 140 140 070708b J 4.1.5
MEXA Reading dw 1SCR NH3 21 222 312 395 450 513 614 680 090708b K 4.1.5

NH3 + NO2 dw 1SCR SUM-NO 339 358 425 468 521 592 657 723 calc I-J=L

NH3 + NOx consumed
across 1 

SCR
Potential SUM-

SUM (*) -34 562 555 594 662 661 668 684 calc B-I=M
(*) Value too large because downstream sum was too small as it excluded drops

Note: Plotted against potential ammonia supplied 1 SCR spray
Pot NH3 up 0 552 614 696 818 888 960 1042 A

up - down, 1SCR  SUM-SUM 1SCR -34 562 555 594 662 661 668 684 M

 1SCR spray NOx or NH3 consumed -17 281 278 297 331 331 334 342 M/2=N

1SCR spray NO consumed -4 59 57 57 56 56 56 56 D-J=O

1SCR spray NO2 consumed -13 222 221 240 275 275 278 286 N-O =P

concentration table pot NH3 up 0 552 614 696 818 888 960 1042 A

Deduced ammonia
upstream 
1SCR SUM-NOx 45 140 175 195 218 229 249 256 H

NH3 17 271 337 399 487 558 626 700 A-N

NOx 522 224 228 208 174 175 171 163 E-N

NO 200 137 139 139 140 140 140 140 D-O

NO2 322 87 88.5 69 34 34.5 31 23 F-P

Downstream
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Three columns on the right side of table 4.1.5 give reference to the actual data log in appendix 4, 

provide a guide on how to read the table and refer to related appendix for the data in respective 

rows. 

4.1.6 Measurement with Urea Spray and 4 SCR bricks. 

The test results with urea spray and 4 SCR bricks are summarized in the table 4.1.6. The same 

methodology used for Urea Spray with 1 SCR was utilised in this test. The main differences from the 

1 SCR case is the NOx reading downstream of the SCR. Clearly in this test, excess ammonia from urea 

spray have reduced all of NOx but posses another problem in the system. The undesired NH3 

slippages have been detected and further analysis in the section 4.1.6 will discuss this in depth.  

Table 4.1.6 Summary of Result: Urea Spray with 4 SCR. (all measurements in ppm)

 

 

Results for urea spray (4 SCRs)
Temp upstream 592 K
Temp downstream 582 K
O2 upstream 9.30%
O2 downstream 7.90%

4 SCRs 
Spray pulse length (ms) --> 0 24 26 28 30 32 34 36 Refn Guide Apdx

Potential up 4SCR Pot NH3 0 552 614 696 818 888 960 1042 calc A 3.6.2
Potential up 4SCR Pot SUM 510 1062 1124 1206 1328 1398 1470 1552 nh3+nox B

MEXA up 4SCR SUM 544 797 813 837 858 878 904 908 avg sum C 4.1.6B
MEXA, Spray off up 4SCR NO 200 200 200 200 200 200 200 200 240708b D 4.1.6
MEXA, Spray off up 4SCR NOx 510 510 510 510 510 510 510 510 240708b E 4.1.6

Calculated up 4SCR NO2 310 310 310 310 310 310 310 310 calc F
MEXA Reading up 4SCR NH3 38 318 346 381 405 434 466 240708b G 4.1.6

Deduced ammonia up 4SCR SUM-NOx 34 287 303 327 348 368 394 398 240708b C-E=H 4.1.6

MEXA dw 4SCR SUM 539 78 128 181 242 304 367 424 avg sum I 4.1.6
MEXA dw 4SCR NO 205 30 5 1 1 1 2 20708c J 4.1.6

Measured dw 4SCR NH3 0 79 136 167 225 310 375 230708b K 4.1.6
NH3 + NO2 dw 4SCR SUM-NO 334 48 123 180 241 303 365 424 calc I-J=L

Total consumed
across 4 SCrs Pot SUM-

SUM -29 984 996 1025 1086 1094 1103 1128 calc B-I=M

Note: Plotted against potential ammonia supplied 4 SCR spray
Pot NH3 up 0 552 614 696 818 888 960 1042 A

up - down, 4SCR Pot SUM-SUM 4 SCR -29 984 996 1025 1086 1094 1103 1128 M

 4SCR spray NOx or NH3consumed -15 492 498 512.5 543 547 551.5 564 M/2=N

 4SCR spray NO consumed -5 170 195 199 199 199 198 200 D-J=O

4SCR spray NO2 consumed -9.5 322 303 313.5 344 348 353.5 364 N-O =P

concentration table pot NH3 up 0 552 614 696 818 888 960 1042 A
Deduced ammonia ups 4SCR SUM-NOx 34 287 303 327 348 368 394 398 H

NH3 14.5 60 116 183.5 275 341 408.5 478 A-N

NOx 525 18 12 -2.5 -33 -37 -41.5 -54 E-N

NO 205 30 5 1 1 1 2 0 D-O

NO2 320 -12 7 -3.5 -34 -38 -43.5 -54 F-P

Downstream
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At the bottom of table 4.1.6 some of the NOx and NO2 reading were showing negative values due to 

experimental error in this study using the methodology described earlier in the range of around +/-

55 ppm. The NO2 measurements were not measured directly but derived using the methodology 

described in section 4.1. It is believed that the negative values reflect the magnitude of the errors 

resulting from these assumptions, but do not affect the general conclusions discussed later. 

 

4.2 Ammonia gas studies: General Overview 

 

The test with 5% and 4% ammonia gas provide a comparison of SCR reaction in the form of gas as 

compared to aqueous ammonia solution. The ammonia input level can be determined from known 

exhaust mass flow rate and a calibrated flow meter. The advantages using ammonia gas is obviously 

to accelerate the SCR reaction to reduce NOx and eliminate the complication with the use of urea 

spray. The analyser response to the measurements also improved and also reduced analyser break 

down due to urea droplets penetrating the sampling lines and internal components of the analyser. 

Five cases are presented in this investigation involving four 5% tests and one 4% test. 

 

4.2.1 Ammonia gas studies: upstream measurements. (1 and 4 SCR bricks) 

 

The measurements taken for the 4% and 5% ammonia gas were the SUM upstream and downstream 

of the SCR and the NO upstream and downstream of the SCR. The SUM in NOx/NH3 mode of the 

MEXA follows the equation below: 

SUM upstream = [NH3 +NO +NO2] upstream 

The NOx measurements upstream were obtained in the absence of ammonia gas injection and were 

assumed unchanged when ammonia gas was injected. This assumes that the gas phase reactions 

were negligible. In the MEXA NO/NO2 mode, the NO measurements upstream, even in the presence 

of ammonia, should be the same as without the ammonia gas injection as the converter is bypassed. 

Similarly, the assumption made was no gas phase reactions occurred. Therefore, the NO2 upstream 

can be deduced from NOx-NO and had the same value regardless of amount of ammonia injected. 

The NH3 measurements recorded upstream were erroneous but the correct ammonia level could be 

obtained by calculation of SUM-true NOx. 
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4.2.2 Ammonia gas studies: downstream measurements. (1 and 4 SCR bricks) 

 

The SUM measurements downstream of the SCR bricks were also valid using the MEXA in NOx/NH3 

mode similar to the upstream measurements. The SUM measurement downstream is given as the 

equation below: 

 

  SUM downstream = [NH3 +NO +NO2] downstream 

 

NOx measurements downstream are only valid with no ammonia gas injection present or with very 

minimal ammonia slip. If the latter was true, for cases with more than 1 SCR bricks, then the 

measured NOx level downstream was additional information available in these cases. The NO 

measurements downstream were always valid using the MEXA in the NO/NO2 mode even with the 

presence of ammonia slip. The NO2 values downstream with gas off can be deducted from NOx-NO 

and it is also available for cases where gas injection dosing was very low and where ammonia slip 

was minimal. The NH3 downstream measurements were erroneous with the MEXA at any ammonia 

levels significantly above zero. However, the following equation is true: 

 

    [SUM-NO] = [NH3+NO2]. 

 

Therefore the two useful pieces of downstream data are the NO levels and [NH3+NO2] levels and 

these could be used for CFD model validation. The NO2 levels downstream are also available for the 

low dose cases where approximately zero ammonia slips occurred. 

 

4.2.3 Ammonia gas studies: Deduced values. 

 

The gaseous consumption in the catalyst could be easily obtained via deductions by the following 

equation: 

 

  SUM upstream - SUM downstream = [NH3 + NO + NO2] consumption in the catalyst.  
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Reasonably, it is safe to assume that these species can only be consumed in the SCR if NOx reacts 

with NH3. Furthermore, it is reasonable to assume that a mol of NH3 reacts with a mol of NOx thus 

neglecting non-mol to mol reactions and ammonia oxidation. 

Consequently, 

 

  ½ [NH3 +NO +NO2] consumed ≈ NH3 consumed ≈ NOx consumed 

 

Therefore, the NO consumed can be found directly from, 

 

[NO upstream-NO downstream]  

 

and similarly the NO2 consumed from,  

 

NO2 consumed = [NOx consumed-NO consumed] 

 

4.2.4 Ammonia gas studies: Ammonia levels 

 

From the calibrated gas flow meter setting used, together with the knowledge of the exhaust mass 

flow rate, the injected ammonia level in ppm upstream of the SCR can be calculated. This is shown in 

the appendices 3.7.1a to d. Then, this information can be compared with the deduced value 

obtained from [SUM-NOx] 
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4.2.5 Measurement with 5% Ammonia Gas and 1 SCR brick. 

 

The test results for 5% ammonia gas with 1 SCR brick are shown in table 4.2.5. In this table only SUM 

and NO readings were directly obtained from the MEXA measurements upstream and downstream 

of the SCR brick. The NOx value upstream was assumed constant due to no ammonia gas present 

during the measurement. 

Table 4.2.5 Summary of Result: 5% Ammonia Gas with 1 SCR. (all measurements in ppm) 

 

4.2.6 Measurement with 5% Ammonia Gas and 2 SCR bricks. 

The test results with 5% ammonia gas and 2 SCR are presented in the table 4.2.6. In this test, similar 

method as the 1 SCR was utilised but this time with 2 SCR bricks. The MEXA analyser was measuring 

NOx and NH3 and SUM upstream and downstream of the 2 SCR bricks. At this stage, the NO data was 

not recorded downstream, therefore restricting the analysis to only NOx and NH3 consumed. The 

information on NO and NO2 consumed could have become available with the NO data downstream 

Results for 5% NH3 in N2 gas and 1SCR 
Temp upstream 596 K
Temp downstream 582 K
O2 upstream 8.8%
O2 downstream 7.6%

1 SCR
Flowmeter setting (glass float) --> 0 16 32 48 60 80 96 Refn Guide Apdx

MEXA up SUM 575 620 725 780 845 964 1088 120808b A 4.2.5
MEXA, Gas off up NO 230 230 230 230 230 230 230 210808c B 4.2.5
MEXA, Gas off up NOx 539 539 539 539 539 539 539 120808b C 4.2.5

Calculated up NO2 309 309 309 309 309 309 309 calc C-B=D
MEXA Reading up NH3 52 111 245 309 385 523 636 120808b E 4.2.5

Deduced ammonia up SUM-NOx 36 81 186 241 306 425 549 calc A-C =F

MEXA down SUM 578 513 470 476 495 579 669 120808c G 4.2.5
MEXA down NO 214.13 188.86 162.26 155.61 150.29 147.63 155.61 avg NO H 4.2.5b

MEXA Reading down NH3 38 46 82 114 168 279 389 120808c I 4.2.5
NH3 + NO2 down SUM-NO 363.87 324.14 307.74 320.39 344.71 431.37 513.39 calc G-H=J
NH3 + NOx 
consumed up - down SUM-SUM -3 107 255 304 350 385 419 calc A-G=K

5% gas 1 SCR
0 16 32 48 60 80 96

575 620 725 780 845 964 1088 A
NH3 36 81 186 241 306 425 549 F

up - down, 1SCR  SUM-SUM 1SCR -3 107 255 304 350 385 419 K

up - down, 1SCR 5% NOx or NH3 consumed -1.5 53.5 127.5 152 175 192.5 209.5 K/2=L

up - down, 1SCR 5% NO consumed 15.87 41.14 67.74 74.39 79.71 82.37 74.39 B-H=M

up - down, 1SCR 5% NO2 consumed -17.37 12.36 59.76 77.61 95.29 110.13 135.11 L-M=N

concentration table NH3 up 0 16 32 48 60 80 96
Deduced ammonia up 1SCR SUM-NOx 36 81 186 241 306 425 549 F

NH3 37.5 27.5 58.5 89.0 131.0 232.5 339.5 F-L

NOx 540.5 485.5 411.5 387.0 364.0 346.5 329.5 C-L

NO 214.1 188.9 162.3 155.6 150.3 147.6 155.6 B-M

NO2 326.4 296.6 249.2 231.4 213.7 198.9 173.9 D-N

Downstream
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of the 2 SCR. This is mainly due to time constraint involving the relocation of the engine test bed. 

Therefore the analysis associated with NO and NO2 for the 2 SCR bricks cannot be performed. The 

analysis done on this test case only focussed on the NOx and NH3 consumed by the 2 SCR bricks.   

Table 4.2.6 Summary of Result: 5% Ammonia Gas with 2 SCR. (all measurements in ppm) 

 

 

 

4.2.7 Measurement with 5% Ammonia Gas and 3 SCR bricks. 

 

The test results with 5% ammonia gas and 3 SCR bricks are summarized in table 4.2.7. For the 3 SCR 

bricks, similar test was performed and data was recorded accordingly. The NO and NO2 data 

downstream was also unavailable therefore restrict further analysis.  

Results for 5% NH3 in N2 gas and 2 SCRs 
Temp upstream 592 K
Temp downstream 581 K
O2 upstream 9.1%
O2 downstream 7.7%

2 SCRs
Flowmeter setting (glass float) --> 0 16 32 48 60 80 96 Refn Guide Apdx

MEXA up SUM 567 608 710 770 824 935 1052 110808b A 4.2.6
MEXA up NO 231 231 231 231 231 231 231 210808c B 4.2.6

MEXA, Gas off up NOx 542 542 542 542 542 542 542 110808b C 4.2.6
Calculated up NO2 311 311 311 311 311 311 311 110808b C-B=D 4.2.6

MEXA Reading up NH3 31 98 218 282 352 482 589 110808b E 4.2.6
Deduced ammonia up SUM-NOx 25 66 168 228 282 393 510 calc A-C =F

MEXA down SUM 556 476 361 297 226 101 14 110808c G 4.2.6
MEXA down NO 231 210808c H 4.2.6

MEXA,OK-low NH3 down NOx 548 470 354 297 224 100 9 110808c I 4.2.6
Calculated down NO2 317 calc I-H=J

MEXA Reading down NH3 6 6 7 4 3 3 4 110808c 4.2.6
NH3 + NO2 down SUM-NO 325 calc G-H=K

Deduced NH3 down SUM-NOx 8 6 7 0 2 1 5 calc G-I=L

5% gas2 SCR
0 16 32 48 60 80 96

567 608 710 770 824 935 1052 A
NH3 25 66 168 228 282 393 510 F

up - down, 2SCR  SUM-SUM 2SCR 11 132 349 473 598 834 1038 A-G=M

up - down, 2SCR NOx or NH3 consumed 5.5 66 175 237 299 417 519 M/2=N
NOx downstream 537 476 368 306 243 125 23.0 C-N
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Table 4.2.7 Summary of Result: 5% Ammonia Gas with 3 SCR. (all measurements in ppm) 

 

 

4.2.8 Measurement with 5% Ammonia Gas and 4 SCR bricks. 

 

The test results with 5% ammonia gas and 4 SCR bricks are summarized in table 4.2.8.The final set of 

test with 5% ammonia gas was with the 4 SCR bricks. Similar to the 5% and 1 SCR tests, a complete 

set of tests were available including NOx, NH3 and NO for further analysis. So, the NOx, NH3, NO and 

NO2 consumed within the 4 SCR bricks was obtained using the method previously described.  

 

 

 

Results for 5% NH3 in N2 gas and 3 SCRs 
Temp upstream 595K
Temp downstream 584K
O2 upstream 9.0%
O2 downstream 7.7%

3 SCRs
Flowmeter setting (glass float) --> 0 16 32 48 60 80 96 Refn Guide Apdx

MEXA up SUM 583 628 729 777 835 956 1080 070808b A 4.2.7
MEXA up NO 231 210808c B 4.2.6

MEXA, Gas off up NOx 550 550 550 550 550 550 550 070808b C 4.2.7
Calculated up NO2 319 calc C-B=D

MEXA Reading up NH3 32 104 236 295 371 500 618 070808b E 4.2.7
Deduced ammonia up SUM-NOx 33 78 179 227 285 406 530 calc A-C =F

MEXA down SUM 566 490 373 309 244 95 11 070808c G 4.2.7
MEXA down NO 231 210808c H 4.2.6

MEXA,OK-low NH3 down NOx 553 480 360 305 238 91 7 070808c I 4.2.7
Calculated down NO2 322 calc I-H=J

MEXA Reading down NH3 10 10 9 7 5 2 1 070808c 4.2.7
NH3 + NO2 down SUM-NO 335 calc G-H=K

Deduced NH3 down SUM - NOx 13 10 13 4 6 4 4 calc G-I=L

5% gas 3 SCR
0 16 32 48 60 80 96

583 628 729 777 835 956 1080 A
NH3 33 78 179 227 285 406 530 F

up - down, 3SCR  SUM-SUM 3SCR 17 138 356 468 591 861 1069 A-G=M

up - down, 3SCR NOx or NH3 consumed 8.5 69 178 234 296 431 535 M/2=N
NOx Downstream 542 481 372 316 255 120 15.5 C-N
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Table 4.2.8 Summary of Result: 5% Ammonia Gas with 4 SCR. (all measurements in ppm) 

 

4.2.9 Measurement with 4% Ammonia Gas and 1 SCR bricks. 

The test results with 4% ammonia gas and 1 SCR brick are summarized in table 4.2.9. The 4% and 1 

SCR test was conducted in a similar way as the 5% and 1 SCR. The main difference is the ammonia 

gas injection flow meter setting used. For the 4% ammonia gas test, the flow meter setting used was 

higher.  Later it was discovered that the 4% ammonia gas was unsuitable for the test due to short 

testing capability. On average the 4% ammonia gas bottle can be utilized for approximately 4 hours 

of testing. The potential ammonia injected with the 4% and 5% is summarized in appendix 3.10.4.  

Results for 5% NH3 in N2 gas and 4 SCRs 
Temp upstream 594 K
Temp downstream 584 K
O2 upstream 9.1%
O2 downstream 7.9%

4 SCRs
Flowmeter setting (glass float) --> 0 16 32 48 60 80 96 Refn Guide Apdx

MEXA up SUM 550 600 700 757 826 935 1050 060808b A 4.2.8
MEXA up NO 213 213 212 212 210 210 207 060808c B 4.2.8

MEXA, Gas off up NOx 527 527 527 527 527 527 527 060808b C 4.2.8
Calculated up NO2 314 314 315 315 317 317 320 calc C-B=D

MEXA Reading up NH3 30 100 220 286 362 484 600 060808b E 4.2.8
Deduced ammonia up SUM-NOx 23 73 173 230 299 408 523 calc A-C =F

MEXA down SUM 550 472 353 283 217 87 8 060808e G 4.2.8
MEXA down NO 214 170 122 100 75 25 2 060808d H 4.2.8

MEXA,OK-low NH3 down NOx 536 460 344 275 210 83 4 060808e I 4.2.8
Calculated down NO2 322 290 222 175 135 58 2 calc I-H=J

MEXA Reading down NH3 14 11 10 8 6 4 3 060808e 4.2.8
NH3 + NO2 down SUM-NO 336 302 231 183 142 62 6 calc G-H=K

Deduced NH3 down SUM-NOx 14 12 9 8 7 4 4 calc G-I=L
NH3 + NOx consumed up - down SUM-SUM 0 128 347 474 609 848 1042 calc A-G=M

5% gas 4 SCR
0 16 32 48 60 80 96

550 600 700 757 826 935 1050 A
SUM - NOx = NH3 23 73 173 230 299 408 523 F

up - down, 4SCR  SUM-SUM 4SCR 0 128 347 474 609 848 1042 A-G=N

up - down, 4SCR 5% NOx or NH3 consumed 0 64 174 237 305 424 521 N/2=O

up - down, 4SCR 5% NO consumed -1 43 90 112 135 185 205 B-H=P

up - down, 4SCR 5% NO2 consumed 1 21 84 125 170 239 316 O-P=Q

concentration table NH3 up 0 16 32 48 60 80 96
Deduced ammonia up 4SCR SUM-NOx 23 73 173 230 299 408 523 F

NH3 23 9 -1 -7 -6 -16 2 F-O

NOx 527 463 354 290 223 103 6 C-O

NO 214 170 122 100 75 25 2 B-P

NO2 313 293 232 190 148 78 4 D-Q

Downstream
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Table 4.2.9 Summary of Result: 4% Ammonia Gas with 1 SCR. (all measurements in ppm) 

 

4.3 Analysis of measurement results against ammonia input/potential ammonia input. 

In order to summarized the results in this investigation, the detail measurements of NOx, NO, NO2 

and NH3 entering and exiting the SCR is needed. From this information the species consumed within 

the SCR brick can be analysed. As previously shown in the previous sections (4.1.5 to 4.1.6 and 4.2.5 

to 4.2.9) the NO, NO2, NOx and NH3 data are only available for the 1 and 4 SCR bricks. The 2 and 3 

brick cases lack NO information downstream therefore cannot be used to analyse the NO and NO2 

species consumed within the SCR. In this analysis, the results from 1 SCR and 4 SCR of the 4%, 5% gas 

and urea spray are plotted with respect to the ammonia input or potential ammonia input for urea 

spray. Figure 4.3 shows the summary of measurement with 1 and 4 SCR bricks for urea spray, 4% 

and 5 % gas. 

Results for 4% NH3 in N2 gas
Temp upstream 592 K
Temp downstream 573 K
O2 upstream 9.50%
O2 downstream 8.30%

1 SCR
Flowmeter setting (steel float) --> 0 40 50 60 75 100 120 Refn Guide Apdx

MEXA up SUM 592 824 914 1118 1360 1580 100608b A 4.2.9
MEXA, Gas off up NO 209 209 209 209 209 209 209 100608c B 4.2.9
MEXA, Gas off up NOx 565 565 565 565 565 565 565 100608b C 4.2.9

Calculated up NO2 356 356 356 356 356 356 356 calc D
MEXA Reading up NH3 28 364 461 703 971 1200 100608b E 4.2.9

Deduced ammonia up SUM-NOx 27 259 349 553 795 1015 calc A-C=F

MEXA down SUM 579 449 471 600 869 1121 100608b2 G 4.2.9
MEXA down NO 208 148 149 149 152 100608d H 4.2.9

MEXA Reading down NH3 14 42.9 169 333 625 836 100608b2 I 4.2.9
NH3 + NO2 down SUM-NO 371 323 451 720 969 calc G-H=J

NH3 + NOx consumed up - down SUM-SUM 13 375 443 518 491 459 calc A-G=K

4% gas 1 SCR
0 40 50 60 75 100 120

592 824 914 1118 1360 1580 A
NH3 27 259 349 553 795 1015 F

up - down, 1SCR  SUM-SUM 1SCR 13 375 443 518 491 459 K

up - down,4% 1SCR NOx or NH3 consumed 6.5 188 222 259 246 230 K/2=L

up - down,4% 1SCR NO consumed 1 50 61 60 60 57 B-H=M

up - down,4% 1SCR NO2 consumed 5.5 138 161 199 186 173 L-M=N

concentration table NH3 up 0 40 50 60 75 100 120
Deduced ammonia up 1SCR SUM-NOx 27 259 349 553 795 1015 F

NH3 21 72 128 294 550 786 F-L

NOx 559 378 344 306 320 336 C-L

NO 208 159 148 149 149 152 B-M

NO2 351 219 196 157 171 184 D-N

Downstream
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Figure 4.3 Summary of measurement with 1 and 4 SCR bricks. 

 

From figure 4.3, it is observed that the 5% gas tests were performed at low ammonia input to avoid 

excessive ammonia slip. The spray tests were completed at high potential ammonia input levels due 

to the spray unit being intended for heavy duty application but it was used at its lower range setting 

for this investigation. The 4% gas tests on the 1 SCR brick covered the entire range. Unfortunately 

the 4% gas tests did not investigate 4 SCRs.  

 

4.4 Analysis of spray compared to gas  

From figure 4.3 the 4 SCR test results for 5% gas (o-marker) matched fairly the spray results (x- 

marker) at around 500 to 600 ppm ammonia input. The 1 SCR test results for NO shows good 

agreement between 4% gas (∆), 5% gas (o) and urea spray (x). The NO2 and NH3 level after one SCR 

with spray shows higher values and do not agree with the 4% gas results. The reason for this is 

because droplets from urea spray are able to survive through one brick and this is not accounted for 

in the methodology applied in this investigation. It is unlikely that HNCO will survive passage through 

1 SCR bricks as hydrolysis is rapid.  
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The differences between the one SCR spray and 4% gas can be utilised to deduce how much NH3 

exits from one SCR brick in droplet (i.e. non-gaseous ammonia) form. This is considered as one of the 

most significant finding in the investigation and will be discussed later. 

4.5 Analysis of droplet behaviour. 

In this section the analysis of ammonia released from the urea spray is discussed. Section 4.5.1 

discusses ammonia release from urea spray upstream of the SCR for both 1 SCR and 4 SCR cases. 

Section 4.5.2 discusses ammonia released within the 4 SCR bricks. Finally section 4.5.3 discusses 

ammonia passing through the 1 SCR brick in droplet form. 

 

4.5.1 Ammonia released from urea spray upstream of the SCR bricks. 

In order to analyse the droplet behaviour upstream of the SCR, the information from potential 

ammonia from the spray (see appendix 4.1.5) and the deduced ammonia from the upstream 

measurements of 1 SCR and 4 SCR bricks are used (see table 4.1.5 and 4.1.6). This information is 

plotted against the potential ammonia input from the spray in figure 4.5.1. 

 

Figure 4.5.1 Ammonia released from spray upstream of the SCR bricks 

From figure 4.5.1, it is observed that from half to three quarters of the droplets from the urea spray 

remained in droplet form, or possibly as HNCO at the inlet of the first SCR bricks. This is obtained 

from deduction of the potential ammonia upstream to the deduced ammonia upstream of the brick. 

The 1 SCR and 4 SCR results vary due to experimental variation. The SUM values represent a series of 

experiments performed at various times using the same method. 
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4.5.2 Ammonia released from urea spray within the 4 SCR bricks 

In order to analyse this, the measurements of ammonia gas entering and consumed in the 4 SCR 

brick are needed. Figure 4.5.2 shows the ammonia released from the spray within the 4 SCR bricks. 

 

 
Figure 4.5.2 Ammonia released from urea spray within 4 SCR bricks. 

 

From figure 4.5.2, the differences between the ammonia consumed by the 4 SCR and the ammonia 

released upstream of the 4 SCR gives the ammonia released within the 4 SCR bricks. It is observed 

that approximately 200 ppm or less ammonia is being released within the bricks to be consumed by 

the SCR reactions. It also shows that, as the spray injection flow rates increases, the ammonia 

released within the bricks reduced possibly as a result of lower brick temperatures. This is probably 

due to the excess spray cooling the SCR bricks.  

 

4.5.3 Ammonia passing through 1 SCR brick in droplets form. 

In this analysis, the results from NOx or NH3 consumed within the 1 SCR brick for the spray and 4% 

gas are compared. Based on the differences between the two results, the ammonia that passes 

through 1 SCR brick in the form of droplets can be found. This plot is shown in figure 4.5.3. 
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Figure 4.5.3 Ammonia passing through 1 SCR brick in droplets form. 

 

It is observed from the differences that approximately 10 to 100 ppm of potential ammonia from the 

urea spray did pass through the 1 SCR brick. The information shown here also indicates, more 

droplets passing through as the urea flow rate increased. 

 

4.6 Analysis of NO and NO2 conversion efficiency and ammonia slip. 

 

Three significant parameters in SCR system are NO, NO2 conversion efficiency and ammonia slip. The 

analysis of NO and NO2 conversion efficiency requires the NO and NO2 inlet condition and the exit 

NO, NO2 measurements. From the summary of data only five sets of results (see table 4.1.5, 4.1.6, 

4.2.5, 4.2.8 and 4.2.9) can be analysed for NO and NO2 conversion efficiency.  Two sets of result are 

from the 1 SCR and 4 SCR spray, another two from 1 SCR and 4 SCR with 5% gas and one set from 1 

SCR with 4% gas  
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4.6.1 NO conversion efficiency 

In this section the NO conversion efficiency can be plotted against the calculated potential ammonia 

input from the spray, 4% gas and 5% gas with respect to the SCR brick length as shown in figure 

4.6.1. NO conversion efficiency can be defined as below: 

 

𝑁𝑂 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑁𝑂 𝑖𝑛 − 𝑁𝑂 𝑜𝑢𝑡

𝑁𝑂 𝑖𝑛
× 100% 

 

From figure 4.6.1, the excessive urea spray setting only results in a NO conversion of approximately 

30 % for the 1 SCR brick (shown in red and blue). The reason for this is due to the high space velocity 

(low residence time) of around 182k/hour for the 1 SCR brick at a temperature in the region of 590K. 

As a result of the high space velocity, unconverted droplets can survive through the SCR brick 

unreacted. The 1 SCR with spray and 4% gas shows a perfect match of NO conversion from around 

400 to 1100 ppm ammonia input while the 5% gas shows NO conversion slightly higher for lower 

range of ammonia input (less than 500 ppm). 

 

 

 
Figure 4.6.1 NO conversion with respect to SCR length.  
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In contrast, the 4 SCR brick conversion efficiency was very high and close to 100% when ammonia 

input was sufficient (shown in green and purple). The space velocity for 4 SCR is reasonably low at 

around 45.5 k/hour, which gives higher residence time of the ammonia in the SCR bricks. The SCR 

bricks space velocity at approximately 590 K is summarized in table 4.6.1 

 

 

Table 4.6.1 Space velocity for SCR bricks used in the investigation. 

Number of SCR 
brick 

Brick Length, 
mm 

Space Velocity, 
k/hour 

1 91 182 

2 182 91 

3 273 61 

4 364 45.5 

 

4.6.2 NO2 conversion efficiency 

 

Similarly the NO2 conversion efficiency was performed with the results from 1 and 4 SCR with urea 

spray, 1 and 4 SCR with 5% gas and 1 SCR with 4% gas. The NO2 conversion efficiency is shown in 

figure 4.6.2  

 

The NO2 conversion efficiency is defined using the following equation: 

 

 

𝑁𝑂2 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑁𝑂2 𝑖𝑛 − 𝑁𝑂2 𝑜𝑢𝑡

𝑁𝑂2 𝑖𝑛
× 100% 

 

The conversion efficiency for the 1 SCR spray case is too high based on the assumption that all 

droplets are converted within the bricks. The conversion efficiency for 4 SCR spray is over 100% 

based on the negative NO2 out (table 4.1.6) due to experimental error.  
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Figure 4.6.2 NO2 conversion with respect to SCR brick length. 

 

The NO2 conversion was higher for the 4 SCR spray (purple) and 4 SCR 5% gas (in green) followed by 

the 1 SCR spray (red). The 4 SCR 5% gas efficiency increased linearly from 0 to reach 100% at 

ammonia input of 500 ppm. The NO2 efficiency for 4 SCR spray ranged from 80 to 100% and reached 

the peak at ammonia input of 700 ppm.  The 4% gas with 1 SCR NO2 conversion shows slightly higher 

conversion as compared to the 5% with 1 SCR. The NO2 conversion efficiency for 1 SCR spray is also 

higher from 70 to 90% as compared to 40 to 55% for 1 SCR 4% (blue) and below 45% for 1 SCR 5% 

(yellow). Even with the high space velocity in the 1 SCR spray case, the NO2 reaches up to 90% 

conversion. This will be discussed further in the following section. 

 

4.6.3 Comparison of NO and NO2 conversion. 

To summarize the NO and NO2 conversion efficiency for along the SCR length, the results from the 

previous two sections are plotted together in figure 4.6.3 Dashed lines show NO2 conversion and 

solid lines show NO conversion. The 4 SCR is shown with symbol (∆) and the 1 SCR with symbol (□) 

in the legend. 
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Figure 4.6.3 Comparison of NO and NO2 conversion efficiency 
 

Comparing the NO and NO2 conversion efficiency for the 4 SCR bricks (purple and green lines) shows 

NO2 conversion efficiency for the spray and gas were similar in all test cases as compared with the 

NO. However for 1 SCR brick NO2 conversion, the 4% gas (blue-dash line) and the spray (red-dash 

line) are much higher than the NO conversion. The spray NO2 conversion (red- dashed line) is high 

due to droplets passing through unaccounted for, as discussed earlier. The 5% gas results (in yellow), 

however at low ammonia input are closer but by 500 ppm ammonia input, again the NO2 conversion 

exceed the NO conversion.  

This is considered as one of the most significant finding in this study. Whilst, NO2 and NO react at 

equal amount with NH3 for the fast kinetic scheme reviewed earlier (equation2.1e in section 2.1), 

this contradicts with findings from the NO, NO2 conversion observed in the studies here where NO2 

conversion level are significantly higher than NO after 1 SCR brick. 

4.6.4 Ammonia slip. 

High concentration of ammonia released from the spray poses another problem associated with 

ammonia slip. At the time of this investigation, the actual NH3 slip measurement could not be 

performed due to the interference problem with the MEXA analyser as previously discussed.  

However, the methodology described in this thesis allows the ammonia slip to be deduced as 

summarized in table of results (refer to table 4.1.5, 4.1.6, 4.2.5, 4.2.6, 4.2.7, 4.2.8 and 4.2.9) earlier. 
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The highest ammonia slips are from the 1 SCR brick clearly due to the high space velocity, see figure 

4.6.4. The 4 SCR spray also gives high ammonia slippage due to the excess spray used. However the 

slippage for both spray cases are too high because it include droplet. The 4 SCR spray study shows 

slip because excess potential ammonia, > 550 ppm, was supplied. For 1 SCR brick, the difference 

between the spray and 4% gas gives the amount of ammonia slippage in droplet form (shown in 

orange).The 2, 3 and 4 SCR with 5% gas produced almost no slippage clearly due to most of the 

supplied ammonia having reacted with the engine out NOx up to supplied ammonia input levels of 

500 ppm.  

 
Figure 4.6.4 Ammonia slip against potential ammonia input with respect to SCR brick length. 

 

4.7 CFD modelling analysis comparison with measurements. 

CFD simulations were performed to compare with the results for 1 and 4 SCR with 5% gas. Only the 1 

SCR data was available for the 4% gas. The CFD package Star-CD version 3.26 was used and all of the 

CFD modelling results were presented and compared with the experimental data from this study in 

the published paper (Tamaldin et al. 2010). The CFD work described here was undertaken by Dr. 

C.A. Roberts following discussions regarding inlet boundary conditions derived from the 

experiments. In some cases, experiments were repeated to recheck data and to supply additional 

information for the CFD model. 
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4.7.1 CFD data comparison with ammonia gas injection for 1 SCR and 4 SCR bricks. 

In this analysis, the data from 1 SCR and 4 SCR with the 4% and 5% gas are plotted against the 

ammonia input separately. For the 1 SCR with 4% and 5% gas, the results for NO and NO2 + NH3 are 

plotted against the inlet ammonia. The CFD and measurement results are compared as shown in 

figure 4.7.1a.  

 

Figure 4.7.1a CFD and data comparison for species level at exit from 1 SCR brick. 

Direct comparison of NO and NH3+ NO2 measurements at the exit of the SCR bricks for 4% and 5% 

gas with CFD result are shown. At low level ammonia input, approximately less than 400 ppm, CFD 

and measurement match reasonably. At higher ammonia input level, above 400 ppm CFD and 

measurement do not acceptably match. A similar comparison was performed with the 4 SCR bricks 

shown in figure 4.7.1b. The results for NO and NH3+ NO2 at the exit of the 4 SCR bricks is plotted 

against ammonia input.  

 

Figure 4.7.1b CFD and data comparison for species levels at exit from 4 SCR bricks. 
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Similar to the 1 SCR result, the agreement between CFD and measurement for 4 SCR bricks is fairly 

good at low ammonia input, approximately less than 500 ppm. The NO level measured and the CFD 

for 4 SCR matched much better than the 1 SCR comparison. At high ammonia input, greater than 500 

ppm CFD prediction and measurement deviate for NH3 + NO2. 

 

4.8 Comparison of CFD prediction with NO2, NO and NH3 at the SCR exit. 

The final analysis involves comparison of the exhaust species at exit from the SCR bricks. For this 

analysis, three different cases will be discussed and presented separately. Results are plotted with 

respect to the individual level of NH3 gas injected. 

 

4.8.1 CFD prediction comparison of NO2 with measurement results. 

Measurement and CFD simulation are plotted against SCR brick length. CFD prediction and 

measurement for NO2 exiting the SCR bricks is shown in figure 4.8.1. The legend described the 

ammonia input used. In this comparison, it is observed that fairly good agreement between 

simulation and measurements is achieved after one SCR brick. Past the two SCR bricks agreement is 

poorer. 

 
Figure 4.8.1 Simulations of NO2 against measurements at SCR exit. 
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4.8.2 CFD prediction comparison of NO with measurement results. 

 

CFD prediction and measurement comparison for NO exiting the SCR bricks is shown in figure 

4.8.2.The NO results comparison to simulation shows good agreement after two bricks but poorly 

agree after the one SCR brick. Similarly the experimental and CFD ammonia input are shown in the 

legend. 

 

Figure 4.8.2 Simulations of NO against measurements at SCR exit. 

 

4.8.3 CFD prediction comparison of NH3 with measurement results. 

 

CFD prediction and measurement for NH3 exiting the SCR bricks is shown in figure 4.8.3. The most 

significant observation from the NH3 simulation is the NH3 slip predicted after the two bricks but not 

observed in the measurements. Ammonia input for the experiments and CFD are shown in the 

legend. 
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Figure 4.8.3 Simulations of NH3 against measurements at SCR exit.  

 

4.8.4 Overall remark from CFD comparison with measurements. 

 

Generally the agreement between the comparisons of CFD prediction to the measurements is fairly 

good. Measurements showed that reactions were complete after two SCR bricks. The kinetic scheme 

applied in this simulation was based on the kinetic presented by Olsson et al, 2008. However, it is 

not known how similar the catalysts used in Olsson are to those of this investigation. Some changes 

were made to the total ammonia storage capacity suitable for the catalysts used in these 

experiments. Thus, good overall agreement was achieved even simulation do not show full 

agreement with the model. 
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4.9 Transient analysis in the investigation. 

 

In this investigation transient behaviour of the NOx reduction SCR reaction with urea spray or ammonia 

gas injection was observed. The transient behaviour observed was slightly different when using urea 

spray as compared with ammonia gas.  

 

4.9.1 Transient analysis of 4 SCR bricks with 4% NH3 gas. 

 

This was a 4% NH3 gas study with 4 SCR bricks. NOx at a level of 611 ppm from the engine as measured 

by EXSA, 557 ppm as measured by MEXA, was supplied to the SCR. NH3 gas was injected at input level of 

1045 ppm at approximately 900 seconds. The NOx readings were completely reduced when the 

ammonia gas injection started, with no ammonia slip present despite excess ammonia injected. This can 

be seen in time between 900 to 1100 seconds in the figure 4.9.1 

 

 
Figure 4.9.1 Sample of transient response in 4 SCR bricks with 4% NH3 gas.  
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Part of the ammonia trace for the 4 SCR brick with 4% gas is shown again in figure 4.9.1a. On this figure 

the area is separated into three regions. Region A represents the reacted NH3. Region B describes the 

ammonia storage or absorption of the SCR bricks and region C represents the ammonia slipped at the 

back of the 4 SCR bricks.  

 

 
Figure 4.9.1a Transient Analysis for 4% gas with 4 SCR 

 

The NOx out level initially was 557.3 ppm before the ammonia gas injection started and it rapidly 

dropped to zero as soon as ammonia gas was injected. The NOx level remains zero from the beginning of 

the 4% ammonia gas injection until the end of the trace because it was reacting with the excess 

ammonia supplied. The ammonia gas injection setting used in this region was calculated to be 1045 

ppm.  

 

The total NH3 reacted is matched by the amount of NOx reacted and can be found using the following; 

Area for region A = Total NH3 reacted = (1045.3 - 488) ppm x 753 seconds 

    = 419 647 ppm.secs ≈ 7.02 grams*Note 
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*Note :  

To convert an area in NH3 ppm.s to a mass in grams. 

 

Multiply by   
17

28.96
 × 28.5

1000 000
= 0.00001673            

 

  Where 17 is the Molecular weight for NH3 and  

28.96 is Molecular weight for exhaust.  

28.5 is exhaust mass flow rate in grams/seconds 

 

 Area of B + C = 488 ppm x 753 seconds  

       = 367 464 ppm.secs ≈ 6.15 grams 

 

 

Although excess ammonia was supplied the slip remains zero for a period of 220 seconds until it begins 

to emerge at the back of the 4 SCR. During this period, the ammonia is continuously reacting with NOx 

but it has also been stored in the 4 SCR bricks. Then, when the ammonia storage within the 4 SCR bricks 

approached its maximum capacity, the surplus ammonia started to exit the bricks at about 220 seconds.  

Region C starts as the ammonia slip begins to rise after the 220 seconds.  As suggested by Olsson et al. 

(2007) as the maximum storage capacity is reached, the ammonia desorption will occur at a rate faster 

than the ammonia absorption of the bricks.  This effect together with the continuous 4% ammonia gas 

injection caused the ammonia slip to rise exponentially until a steady value was reached, in this case, 

ammonia slip at 488 ppm. At this stage, the excess ammonia supplied to the bricks just passed through 

because there was no NOx to react and no free storage capacity. The area above the ammonia slippage 

line until maximum ammonia slippage at 488 ppm will give the ammonia storage of the bricks. 

 

The time taken to reach the steady value of ammonia slip was approximately 533 seconds from the 

onset of slip. The area under the ammonia slip curve can be found by integrating the curve within the 

220 to 753 seconds time period. This can be achieved numerically within an excel spreadsheet as shown 

in appendix 4.9.1a. The area was converted to mass and found to be around 3.14 grams slipped 

between 220 to 753 seconds. 
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Finally the ammonia stored which is represented by the area of Region B, 

Stored ammonia = (Area of B + C) – NH3 slip (Region C) 

       = (6.15– 3.14) grams  

       ≈ 3.01 grams 

 

Ammonia Stored in the 4 SCR bricks ≈ 3.01 grams 

 

 

The ammonia reacted was found to be 7.02 grams a further 3.01 grams was stored while 3.14 grams 

slipped at the back. 

 

4.9.1.1 Time constants for gas. 

 

The time constant for NOx falling from its initial value (557.3 ppm) in figure 4.9.1a can be found from the 

falling curve. Starting from the NOx reading of 557.3 ppm, it dropped rapidly as soon as ammonia gas at 

4% was injected. The time constant for this reaction could be found as the following, defining the fall to 

36.79% as the time constant. 

 

 [C] = 0.3679 [C]o 

[C] = 0.3679 [557.3 ppm] = 205 ppm 

time at 205 ppm = 5 seconds 

The time constant for NOx falling was about 5 seconds. 

 

 

This time constant is mainly from the time response of the MEXA analyzer.  The chemical reactions 

themselves are very much faster.  

 

The time constant for ammonia rising during the slip is found at 63.3 % of the final steady value. In this 

case it was found that time taken was approximately 159 seconds for NH3 to rise to 308 ppm.  
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4.9.2 Transient analysis of 4 SCR brick with urea spray 

 

The transient analysis was performed on the 4 SCR with urea spray in a similar way to the transient 

analysis for 4 SCR with 4% NH3 gas. An example of a typical transient observation with urea spray and 4 

SCR is shown in figure 4.9.2. In this case, the spray setting was adjusted and the incoming ammonia was 

estimated at around 929, then 857 and then 785 ppm. The spray was potentially capable of supplying 

more ammonia than this but some remained as urea droplets and was not available for reaction. From 

the figure shown, the incoming NOx was 539 ppm throughout and this was fully reacted as there was no 

NOx slip detected at the exit of the SCR. The trace up to 956 seconds can be divided into three different 

regions.  

 

 
Figure 4.9.2 Transient Analysis for urea spray with 4 SCR 

 

Region A, represents the overall NH3 reacted. The area under region A starts from the first urea spray 

injection and the spray rate changed twice until time reached 956 seconds. In this region, all of the 

incoming NOx at 539 ppm was reacted. The ammonia slip was observed just after the 270 seconds. The 

total NH3 reacted in this case can be found using; 
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Area for region A = Total NH3 reacted = 539 ppm x 956 seconds 

= 515 284 ppm.secs 

     ≈ 8.62 grams 

 

Area for region B + C  

     = (390 x 150) + 318(270-150) + 246(956-270) 

     = 265 416 ppm.secs 

     ≈ 4.44 grams 

 

Region B represents the amount of ammonia being stored by the 4 SCR bricks. The ammonia slip started 

rising around 270 seconds. It took another 686 seconds to reach the ammonia slip steady value of 246 

ppm.  

 

Region C represents the ammonia slipped at the exit of the 4 SCR bricks. The steady value of 246 ppm is 

reached at about 956 seconds. The amount of ammonia slippage can be found by integration of the area 

under ammonia slip curve between 270 to 956 seconds. This is obtained using numerical integration in 

excel spreadsheet and converted to mass as shown in appendix 4.9.2a. The amount of ammonia slip was 

calculated and found to be 1.93 grams. 

 

Similarly to the 4% ammonia gas study, at 270 seconds ammonia storage is approaching its maximum 

and ammonia desorption started. This is clearly shown by the exponential rise in the ammonia slip curve 

in figure 4.9.2. 

 

Finally the ammonia stored under Region B = Area (B+C) – Area C 

         = 4.44 – 1.93 grams 

Ammonia Stored in the 4 SCR bricks ≈ 2.5 grams    

 

The total ammonia reacted in the SCR system was found to be 8.62 grams, 2.5 grams was stored in the 

bricks while 1.93 grams slip at the back.  
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4.9.2.1 Time constants for urea spray. 

 

The time constant for NOx reduction in this case is defined as the time where the concentration has 

fallen 0.3679 from its initial value.  

 

 

[C] = 0.3679 [C]o 

[C] = 0.3679 [539 ppm] = 198.3 ppm 

Time @198.3 ppm = 7.5 seconds 

 

 

Therefore time constant for NOx reduction is 7.5 seconds. However, this time constant is dominated by 

the time response from the MEXA analyzer since the NOx and NH3 reaction in the SCR is occurring at a 

much faster rate. 

 

The time constant for the ammonia rise is the time from where the ammonia slip just begins until 0.632 

of its final steady value as described in the rising curve analysis. Therefore the time constant for 

ammonia rise in this case is as follows: 

 

 

NH3 begin slip @ after 270 seconds 

0.632 x 246 ppm = 155.5 ppm@509 seconds 

Time constant for ammonia rise = 509 – 270 = 239 seconds. 

 

 

4.9.3 Comparison of the urea spray and ammonia gas transients. 

 

In order to compare the transient behaviour of the gas with the urea spray study, the results from 

sections 4.9.1 and 4.9.2 are compared. The summary of comparison between the two cases is shown in 

table 4.9.3. 
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Table 4.9.3 Comparison of the 4% gas with urea spray transient analysis. 

Properties 
4% gas with 

4 SCR bricks 

Urea spray with 

4 SCR bricks 

1. NOx reduction time constant. 5 seconds 7.5 seconds 

2. Ammonia storage time to onset of slip. 220 seconds 270 seconds 

3. Time constant of rise in ammonia slip 159 seconds 239 seconds 

4. Amount of ammonia reacted 7.02 grams  8.62 grams  

5. Amount of ammonia stored 3.01 grams  2.50 grams  

6. Amount of ammonia slipped 3.14 grams  1.93 grams  

 

From the table 4.9.3, it was observed that the NOx reduction time constant for gas is slightly less than 

the urea spray case, but both times were attributable to the response time of MEXA analyser and should 

be instantaneous. The ammonia storage, rise and slip times were different with 4 % gas as compared 

with urea spray. In urea spray case droplet conversion is necessary while the 4% gas is readily available 

for SCR reaction. The amount of stored and slipped are slightly higher with 4% gas case compared with 

the urea spray case.  

 

4.10 Summary of the experimental and simulation results. 

 

This investigation has compared the performance of SCR system with urea spray injection and ammonia 

gas. These studies involved the NO2/NO ratio of approximately 60/40 and shows all reactions with 

ammonia were complete after the two SCR bricks at a length of 182 mm. 

 

To summarize the results the following concluding remarks could be made: 

 

• Some precaution and concern is needed when interpretations are made based on 

measurements reading from a CLD based analyser involving NO and NO2.This is needed 

especially in the present of ammonia. The methodology suggested in this investigation however 

enables amount consumed to be extracted. From known amounts of input from individual 

measurements upstream and downstream of the SCR, the data for NO, NO2 and NH3 can be 

extracted. 
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•  In the urea spray studies, when the urea in the form of AdBlue solution was injected, about 200 

ppm of NH3 were released from the droplets of urea spray and reacting with NOx within the SCR 

bricks. 

 

• From estimation, it was observed that in the range of 10 to 100 ppm of potential ammonia 

manage to pass through one SCR at a length of 91 mm in droplets form. 

 

• From the CFD simulations using the porous medium approach and kinetics scheme published in 

the open literature, have shown some ability to predict the steady state tests investigated here. 

 

• The model has been used to predict individual species along the SCR bricks length and some 

moderate agreement with the measurement has been achieved especially with the long bricks. 

For short brick, space velocity was high and there were breakthrough of all species. 

 

• A transient analysis showed that the time constant for NOx reduction are quite close for gas and 

spray but for the time constant for ammonia slip is higher in spray than gas. 

 

• NO2 conversion efficiency was found higher than NO in all test cases which contradict with fast 

reaction kinetic. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

5.0 Conclusions and Future work: Introduction.  

Despite the limitations of the MEXA gas analyser, and the need to derive a strategy for 

interpretation of the measurements made by it, a thorough investigation of SCR process has been 

made in a specially designed exhaust system on an experimental test bed. The conclusion from the 

investigation include the development of the experimental techniques, the interference of NO2 and 

NH3, the methodology, the transient response, the SCR and spray system performance and the 

significance of the main findings from the result chapter. 

 

5.1 DPF-DOC Arrangement. 

 
The DOC-DPF arrangement was tested for NO2 to NO ratio to assist the SCR reactions. With this 

arrangement, the NO coming out from the engine was oxidized by the DOC but later reacted with 

the trapped soot in the DPF, leaving less NO2 out than before. With less NO2, the SCR reactions 

taking place were at the minimal level and leaving NOx out passing the system still at higher 

readings. In the final arrangement used in this investigation, DPF-DOC was identified as the 

acceptable sequence upstream of the SCR. Utilizing this arrangement, higher NO2 to NO ratio was 

achieved. In the literature, 50:50 NO2 to NO ratio or higher was shown as the preferred condition to 

optimize the SCR reactions. Subsequently, in this investigation, a higher NO2 to NO ratio was studied. 

 

5.2 Experimental techniques. 

 
The biggest obstacles in the beginning of this investigation were to establish suitable experimental 

techniques in order to complete the steady state study with the SCR system. Interferences within 

the analysers were a particular problem because the continuous injection of the urea or ammonia 

gas was necessary in this investigation. The use of both urea spray and ammonia gas were 

investigated. Interference and reaction between NO2 and NH3 on the NOx converter within the 

MEXA has resulted in significant loss of reliable directly measured test data.  

This was overcome by a methodology that allowed all required parameters to be deduced. The spray 

used in this study was designed for heavy-duty application with the lowest possible setting utilized. 

This caused intermittent problems especially with the low settings involved in light duty 
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investigation. Due to the formation of white deposit (polymeric complexes such as melamine, 

ammelide and ammeline) spray blockage can occur and hinder SCR catalyst performance as 

described by Fang et al. 2003. Therefore a rigorous procedure for spray monitoring and cleaning was 

incorporated to ensure the spray was working properly in the experiment. All of the challenges and 

obstacles were overcome to develop a methodology for obtaining reliable data in this study. 

 

5.3 Behaviour of urea droplet from spray. 

 
One of the important findings with the spray test cases, was the proportion of urea droplet 

decomposed before entering the SCR brick for NOx reduction reaction to occur. This detail was 

described in section 4.5 of the results chapter. It shows that more than half of the actual ammonia 

was still in the droplet form upstream of the SCR brick. It was observed approximately around 200 

ppm ammonia was released from the droplet in the first SCR bricks and consumed for the NOx 

reduction reactions. The final finding shows between 10 -100 ppm of potential ammonia passed 

through the first brick as droplets under circumstances from NOx matched spray input to excess 

spray. 

5.4 Space Velocity and Resident Time Effect. 

 
The SCR space velocity role for the NOx reduction efficiency was a very important observation in this 

investigation. The variation of space velocity had immediate effect on the residence time of the 

exhaust gases and ammonia within the SCR. It was found that, the 2, 3 and 4 SCR bricks had a similar 

effect on the SCR reactions taking place. All the NOx reduction had apparently completed in the 2 

SCR bricks, therefore in the results shown for 4 SCR bricks could be assumed similar to the 2 SCR 

bricks. Conversion was incomplete in 1 SCR but it was notable that NO2 conversion was greater than 

NO conversion. This is significant finding because it cannot be explained by the fast SCR reaction 

acting alone. 

 

5.5 Transient observation and storage. 

 
Transient response observation during NOx reduction and ammonia slippage also reveals about the 

ammonia absorption by the SCR bricks. The amount of NH3 stored was about 3 grams on 4 SCR bricks 

for both gas and spray cases as described earlier in section 4.9.3. 
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5.6 Significant of findings in chapter 4 

• NOx and NH3 reaction were completed after the 2 SCR bricks. 

• The 2, 3 and 4 SCR bricks show similar NOx or NH3 consumed. 

• Meticulous cleaning of the urea spray was necessary for well-controlled operation. 

• The gas and the spray results were similar in both 1 and 4 SCR bricks. 

• With 1 SCR spray, droplets were passing through unconverted. 

• Repeatability with gas test cases was excellent. 

• Droplet released ammonia more at the SCR sites rather than upstream of the SCR. 

• Droplet converted to ammonia much better in 4 SCR than 1 SCR. 

• For 1 SCR cases, after about 400 ppm NH3 consume, no further NOx reduction was taking 

place. 

• Agreement overall was fairly good although predicted NH3 slip after two bricks was not 

observed in the experiments. Agreement for NO was good after 2 SCR bricks but not good 

after 1 SCR brick. NO2 agreement was better after 1 SCR brick then 2 SCR bricks. 

• Transient response of the spray and gas cases was studied and provided measured values of 

NH3 storage. 

• NO2 conversion was higher than NO for 1 SCR brick which does not agree with fast SCR 

kinetics suggest other reaction occurred. 

 

Overall urea spray results showed similar trends to the ammonia gas results. The 5% ammonia gas 

results covered the lower range of ammonia gas used and the urea spray injected higher ammonia. 

This can clearly be seen section 4.4.2 comparison of all NOx and NH3 consumed. The NOx or NH3 

consumed from the 1 SCR test with spray closely matched the 1 SCR test with gas. The 4 SCR test 

with the spray matched as the continuation of the 4 SCR test with gas line. 

 

5.7 Contributions to the knowledge 

• Measurement of NO2 in the presence of high concentrations of NH3 is clearly erroneous due to 

interference effect using the MEXA CLD based analyser. Despite this problem, a unique 

methodology was developed in this thesis to extract useful information to describe the SCR 

reaction in this investigation. 
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• The comparative analysis of the investigation with the use of urea spray and ammonia gas was 

described and lead to NO and NO2 conversion efficiency with the use of different SCR bricks 

length. 

• Insight into the behaviour of the urea droplets in the investigation was obtained. It show that 

from half to three quarter of droplet from spray remained unconverted to ammonia gas at the 

entry of first SCR brick. About 200 ppm ammonia released from droplet react in the SCR brick 

and between 10 to 100 ppm of potential ammonia passed through the first bricks as droplets. 

This occurs from the conditions of NOx matched spray input to excess spray. 

• The CFD model for gas provide reasonable predictions for the long bricks while the short brick 

shows breakthrough of all species due to high space velocity. The reaction kinetics used from 

literature was able to show some ability to describe the species profiles within the SCR bricks. 

 

• The most significant findings in this study is the higher NO2 conversion efficiency for 1 SCR brick 

compared to NO. This cannot be described by the fast SCR kinetic scheme. 

 

5.8 Recommendation for Future Work. 

Throughout the investigations, many areas have been identified for future work in order to optimise 

the SCR system working in the real application. Some of the identified areas include the exhaust gas 

analyser, dosing system, more robust spray design, spray position and angle into the exhaust stream, 

reduced length of the SCR system and also the transient study with the SCR. 

 

5.8.1 Improved gas analyser to measure NOx in presence of ammonia. 

 
Most of the time spent in this investigation involved trying to obtain reliable measurements of NOx, 

NO and NH3 upstream and downstream of the SCR brick. The CLD based analyser clearly causes a lot 

of setback in this investigation and variations in the results. A FTIR (Fourier Transfer Infra Red) based 

analyser was recently identified as better candidates for investigation with the use of urea and 

ammonia of this magnitude. The response time of the analyser was crucial in getting this information 

as the phase changes of the species within the exhaust gases need to be fully captured. 
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5.8.2 Spray Dosing System. 

 
Ideally a closed loop feedback spray dosing system would be desirable for this investigation. A 

manual over-ride system also need to be incorporated, taking into consideration of cold start 

condition. The system integrated with the engine ECU unit is under heavy development by many 

automotive suppliers for this purpose. 

 

5.8.3 Cleaning of spray or continuous spraying 

 
To avoid having to clean the spray injector, a more robust spray design is needed to suit the light 

duty application. Continuous spraying into the exhaust would definitely not be appropriate, but 

should be covered by the closed loop feedback spray dosing system mention earlier. As for the 

cleaning, perhaps the solution for this lies with the concentration of urea solution used or a better 

designed spray to avoid any deposit build up. 

 

5.8.4 Improved warm up and system using sequential program. 

 
The control software for the engine test bed is capable of programming of the sequence for setting 

up the engine warm up and cool down period, calibrating the analyser, periodic parameters logging 

and many other task. As the investigations were conducted, very limited time was spent on this side 

of the program due to other difficulties and challenges faced with the analyser and the spray system. 

The analysers control from the test bed program was not configured for this investigation. In the 

future, this should be seriously considered to have better control and monitoring sequence.  

5.8.5 Signal trigger improvement with level differentiation of spray pulses and gas settings. 

 
Current spray and gas injection system was manually control by adjusting the signal generator for 

the spray and the gas flow meter for the gas. The spray signal generator was also connected as a 

voltage input to the engine test bed data logger. As for the logging the gas flow into the main engine 

test bed program, was done manually by pressing the trigger switch when the gas started. 

For improvement of this system, the spray or gas injection system should have a signal input to the 

main engine data logger. Therefore, every spray sequence should be seen in the result plot similar to 

the exhaust gas data showing when the injector started and by how much is being injected. 
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5.8.6 Investigation of Effect of Spray Angle and Positions. 

 
In this investigation, only the generic position of the spray is being explored which is upstream of the 

SCR brick into the expansion chamber for proper mixing. Other possibility was not explored such as 

spraying into a narrow pipe close to the SCR brick. The spray position and angle into the exhaust 

should be investigated to further improve this system. As in the real application, the effect of spray 

angle is crucial due to the confined spaces and angle existing in the real exhaust system in a light 

duty vehicle. 

 

5.8.7 Moving from 1D to 3D flow (change from long cone to short cone after the spray) 

 
As previously described in the methodology section 3.2.6 a long cone diffuser after the expansion 

chamber was used to ensure uniform single dimensional flow of the exhaust gas mixed with the 

ammonia entering the SCR brick. In the future, this long diffuser cone could be replaced with a short 

diffuser cone which would be closer in geometry to a real system. This changes the flow from single 

dimensional to three dimensional flow, therefore a more complex CFD model would be required for 

this case. 

 

5.8.8 Transient study (acceleration and deceleration) 

 
This study only considered very simple transient but future transient study with the SCR system 

would be necessary. As the engine going through the series of acceleration and deceleration as 

prescribed in the European Transient Cycle (ETC), the SCR performance results would be highly 

valuable. 

 

5.8.9 Engine Mass flow rate measurement and logging. 

 
The engine mass flow rate measurement in this investigation was conducted using external Ricardo 

mass flow meter as described in section 3.1.3 and manual data was logged from the digital 

manometer. Ideally, this information should be directly logged from the engine ECU either with the 

use of engine management system such as Gredi and dSpace. Getting information logged to the 

engine data logger would improve the experimental procedure for this type of investigation in the 

future. 



120 
 

 

 

REFERENCES 

 

 

1  Abu-Jrai, A. and Tsolakis, A.(2007) - The Effect of H2 and CO on the Selective Catalytic  
Reduction of NOx under Real Diesel Engine Exhaust Conditions over Pt/Al2O3, International 
Journal of Hydrogen Energy, 57. Vol. 32, Issue 12, pp2073-2080. 

2  Abu-Jrai, A., Tsolakis, A. and Megaritis, A. (2007) - The influence of H2 and CO on Diesel  
Engine Combustion Characteristics, Exhaust Gas Emissions, and Aftertreatment Selective 
Catalytic NOx Reduction, International Journal of Hydrogen Energy, Vol. 32, Issue 15, 
pp3565-3571. 

3  
 

Albonetti, S., Mengou, J.E. and Trifiro, F.(2007) - Polyfunctionality of DeNOx Catalysts in  
other Pollutant Abatement, Catalysis Today, Vol. 119, Issue 1-4, pp295-300. 

4  Alimin, A. J., Roberts C. A. and Benjamin S.F.(2006) - A NOx Trap Study using Fast Response  
Emission Analyzers for Model Validation, SAE2006-01-0685, SAE 2006 World Congress, 
Detroit, Michigan, 3-6 April 2006. 

5  Alkemade, U. G. and Schumann, B.(2006) - Engines and Exhaust Aftertreatment Systems for  
Future Automotive Applications, Solid State Ionics, Vol. 177, Issues 26-32, 31 October 2006, 
pp2291-2296. 

6  Alvarez, R., Weilenmann, M. and Favez, J.-Y. (2008) - Evidence of increased mass fraction of  
NO2 within real-world NOx emissions of modern light vehicles - derived from a reliable 
online measuring method, Atmospheric Environment, Vol. 42, Issue 19, pp4699-4707. 

7  Amin, N.A.S. and Chong, C.M. (2005) - SCR of NO with C3H6in the presence of excess O2 over  
Cu/Ag/CeO 2 -ZrO2 catalyst, Chemical Engineering Journal, Vol. 113, Issue 1, pp13-25. 

8  Amon, B., Keefe, G. (2001) - On-Road Demonstration of NOx Emissions Control for Heavy  
Duty Trucks using SINOxTM  Urea SCR Technology- Long Term Experiment and Measurement 
Results, SAE 2001-01-1931, International Spring Fuels and Lubricants Meeting and 
Exposition, Orlando, Florida, May 7-9, 2001. 

9  Amon, B., Stefan, F., Hofman, L. and Jurgen, Z. (2004) - SCR-A Technology for Global  
Emissions Control of Diesel Engines, F2004V160, Fisita 2004 World Automotive Congres, 
Barcelona Spain, May 23-27, 2004. 

10  Anunziata, O.A., Beltramone, A.R. and Requejo, F.G. (2007) - In-containing BEA Zeolite for  
Selective Catalytic Reduction of NOx: Part I: Synthesis, Characterization and Catalytic 
Activity, Journal of Molecular Catalysis A: Chemical, Vol. 267, Issue 1-2, pp194-201. 

11 
 

Anunziata, O.A., Beltramone, A.R., Juric, Z., Pierella, L.B. and Requejo, F.G. (2004) - Fe- 
containing ZSM-11 zeolites as active catalyst for SCR of NOx: Part I. Synthesis, 
characterization by XRD, BET and FTIR and catalytic properties, Applied Catalysis A: 
General, Vol. 264, Issue 1, pp93-101. 

12 
 

Anunziata, O.A., Beltramone, A.R., Lede, E.J. and Requejo, F.G. (2007) - In-containing BEA  
Zeolite for Selective Catalytic Reduction of NOx: Part II. Relation between In Active Sites and 
Catalytic Activity, Journal of Molecular Catalysis A: Chemical, Vol. 267, Issue 1-2, pp272-
279. 

javascript:doXSmartLink('MEETING_NAME','SAE%20International%20%0d%0aSpring%20Fuels%20and%20Lubricants%20Meeting%20and%20Exposition');�
javascript:doXSmartLink('MEETING_NAME','SAE%20International%20%0d%0aSpring%20Fuels%20and%20Lubricants%20Meeting%20and%20Exposition');�


121 
 

13 
 

Baraket, L., Ghorbel, A. and Grange, P. (2007) - Selective Catalytic Reduction of NO by  
Ammonia on V2O5-SO42-/TiO2 Catalysts Prepared by the Sol-Gel Method, Applied Catalysis 
B: Environmental, Vol. 72, Issue 1-2, pp37-43. 

14  BASF (2003) - Urea solution 32.5% AdBlue, Technical Leaflet, BASF AG, Ludwigshafen,  
Germany, August 2003. 

15 

 

Beeck, J.O. and E. Joubert (2006) - Review of SCR Technologies for Diesel Emission Control:  
European Experiences and Worldwide Perspective~Study Cases of SCR passengers Cars 
Integration, 2006 FISITA World Automotive Congress, Yokohama, Japan, October 22-27, 
2006. 

16 
 

Benjamin, S. F., Clarkson, R. J., Haimad, N., Girgis, N. S. (1996) - An Experimental and  
Predictive Study of Flow in Axisymmetric Automotive Exhaust Catalyst Systems, SAE961208, 
SAE International Spring Fuels and Lubricants Meeting and Exposition, Vol. 105, pp1008 -
1019, Dearbon, Michigan, May 6-8 1996 

17 
 

Benjamin, S. F., Roberts, C. A. (2007) - The Porous Medium Approach Applied to CFD  
Modelling of SCR in an Automotive Exhaust with Injection of Urea Droplets, IMechE 
Conference Internal Combustion Engines: Performance, Fuel Economy and Emissions, 
London. 

18 
 

Benjamin, S.F., Roberts, C.A. (2007) - Three-Dimensional Modelling of NOx and Particulate  
Traps using CFD: A Porous Medium Approach,  Applied Mathematical Modelling, Vol. 31, 
Issue 11, pp2446 – 2460. 

19 
 

Beretta, A., Tronconi, E., Groppi, G. and Forzatti, P. (1998) - Monolithic Catalysts for the  
Selective Reduction of NOx with NH3 from Stationary Sources, in: "Structured Catalysts and 
Reactors"; Editor: Cybulski, A., Dekker, M., New York, pp121-148. 

20  BOC Special Gas Division (2005) - Ammonia Safety Datasheet. 
21  Bosch, H. and Janssen, F. (1988) - Catalysis Today Vol. 2, Issue 4, pV. 
22 

 
Brandmier, T., Hosp, Schoppe and Ende, U. (1995) - Model-based control of an SCR-catalyst  

for the NOx-reduction of diesel-engines, IEEE Control Systems Magazine, Vol. 15, Issue 6, 
pp163-168, Pergamon, Ascona, Switzerland. 

23  Breedlove, R.et al (2008) - S,M,L,XL, Optimised Urea Injection, CTI deNOx Forum, Detroit,  
December 2008. 

24 
 

Breen, J.P., Burch, R., Hardacre, C., Hill, C.J., Krutzsch, B., Bandl-Konrad, B., Jobson, E.,  
Cider, L., Blakeman, P.G., Peace, L.J., Twigg, M.V., Preis, M. and Gottschling, M. (2007) - An 
Investigation of the Thermal Stability and Sulphur Tolerance of Ag/[gamma]-Al2O3 Catalysts 
for the SCR of NOx with Hydrocarbons and Hydrogen, Applied Catalysis B: Environmental, 
Vol. 70, Issue1-4, pp36-44. 

25  Byrne, J. W., Chen, J.M., Speronello, B.K. (1992) - Selective Catalytic Reduction of NOx using  
Zeolitic Catalysts for High Temperature Applications, Catalysis Today Vol.13, Issue 1, pp33-
42. 

26 
 

Capek, L., Vradman, L., Sazama, P., Herskowitz, M., Wichterlova, B., Zukerman, R., Brosius,  
R. and Martens, J.A. (2007) - Kinetic Experiments and Modeling of NO Oxidation and SCR of 
NOx with Decane over Cu- and Fe-MFI Catalysts, Applied Catalysis B: Environmental, Vol. 
70, Issue 1-4, pp53-57. 

27 
 

Carslaw, D.C. (2005) - Evidence of an increasing NO2/NOx emissions ratio from road traffic  
Emissions, Atmospheric Environment, Vol. 39, Issue 26, pp4793-4802. 
 

javascript:doXSmartLink('MEETING_NAME','SAE%20International%20%0d%0aSpring%20Fuels%20and%20Lubricants%20Meeting%20and%20Exposition');�


122 
 

28 
 

Cavataio, G., Girard, J., (2007) - Laboratory Testing of Urea-SCR Formulations to Meet Tier 2  
Bin 5 Emissions, SAE2007-01-1575, SAE 2007 World Congress, Detroit Michigan, USA, 16-
19 April 2007. 

29 
 

Chaloulakou, A., Mavroidis, I. and Gavriil, I. (2008) - Compliance with the Annual NO2 Air  
Quality Standard in Athens: Required NOx Levels and Expected Health Implications, 
Atmospheric Environment, Vol. 42, Issue 3, pp454-465. 

30 
 

Chandler, G. R. and Cooper, B.J.(2000) - An Integrated SCR and Continuously Regenerating  
Trap System to meet Future NOx and PM Legislation, SAE2000-01-0188, SAE 2000 World 
Congress, Detroit Michigan USA, 6-9 March 2000. 

31 
 

Chatterjee, D., Burkhardt, T., Bandl-Konrad, B., et al., (2005) - Numerical Simulation of  
Ammonia SCR Catalystic Converters: Model Development and Application, SAE2005-01-
0965, SAE 2005 World Congress, Detroit Michigan, April 11-14, 2005. 

32 
 

Chatterjee, D., Burkhardt, T., Weibel, M., et al., (2007) - Numerical Simulation of Zeolite- and  
V-Based SCR Catalytic Converters, SAE 2007-01-1136, SAE 2007 World Congress, Detroit, 
Michigan, 16-19 April 2007. 

33 
 

Chen, J.P., Hausladen, M.C., Yang, R.T. (1995) - Delaminated Fe2O3-Pillared Clay: Its  
Preparation, Characterization, and Activities for Selective Catalytic Reduction of NO by NH3, 
Journal of Catalysis, Vol. 151, Issue 1, pp135-146. 

34 
 

Chi, J.N. and DaCosta, H.F.M.(2005) - Modelling and Control of a Urea SCR Aftertreatment  
System, SAE2005-01-0966, SAE 2005 World Congress, Detroit Michigan,11-14 April 2005 

35 
 

Chmielarz, L., Kustrowski, P., Dziembaj, R., Cool, P. and Vansant, E.F. (2007) - Selective  
Catalytic Reduction of NO with Ammonia over Porous Clay Heterostructures Modified with 
Copper and Iron Species, Catalysis Today, Vol. 119, Issue 1-4, pp181-186. 

36 
 

Cho S.M. (1994) - Properly Apply Selective Catalytic Reduction for NOx Removal, Chemical  
Engineering Progress, pp39-45, January 1994. 

37 
 

Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Bandl-Konrad, B., Weibel, M. and  
Krutzsch, B. (2007) - Reactivity of NO/NO2-NH3 SCR System for Diesel Exhaust 
Aftertreatment: Identification of the Reaction Network as a Function of Temperature and 
NO2 Feed Content. Applied Catalysis B: Environmental, Vol. 70, Issue 1-4, pp80-90. 

38 
 

Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Burkhardt, T. and Weibel, M. (2007) - NH3  
SCR of NOx for Diesel Exhausts Aftertreatment: Role of NO2 in Catalytic Mechanism, 
Unsteady Kinetics and Monolith Converter Modelling, Chemical Engineering Science, Vol. 
62, Issue 18-20, pp5001-5006. 

39 
 

Ciardelli, C., Nova, I., Tronconi, E., Konrad, B., Chatterjee, D., Ecke, K. and Weibel, M.(2004)  
- SCR-DeNOx for Diesel Engine Exhaust Aftertreatment: Unsteady-State Kinetic Study and 
Monolith Reactor Modelling, Chemical Engineering Science, Vol. 59, Issue 22-23, pp5301-
5309. 

40 
 

Clapp, L.J. and Jenkin, M.E. (2001) - Analysis of the relationship between ambient levels of O3,  
NO2 and NO as a function of NOx in the UK, Atmospheric Environment, Vol. 35, Issue 36, 
pp6391-6405. 

41 
 

Colombo, M., Nova, I. and Tronconi, E. (2010) - A Comparative Study of the NH3-SCR  
Reactions over a Cu-Zeolite and a Fe-Zeolite Catalyst, Catalysis Today, Vol. 151. Issue 3-4, 
pp223-230. 
 
 



123 
 

42 
 

Cooper, B.J., McDonnald, A.C., Walker, A.P. and Sanchez, M. (2003) - The Development and  
On-Road Performance and Durability of the Four-Way Emission Control SCRT System, US 
DOE, 9th Diesel Engine Emissions Reduction Conference (DEER), Newport, RI, August 2003, 
http://www.eere.energy.gov/vehiclesandfuels/pdfs/deer_2003/session8/ 
2003_deer_walker.pdf 

43 
 

Costa, C.N. and Efstathiou, A.M. (2007) - Low-Temperature H2-SCR of NO on a Novel  
Pt/MgO-CeO2 Catalyst, Applied Catalysis B: Environmental, Vol.72, Issue 3-4, pp240-252. 

44 
 

Craig, R., Robinson, G. and Hatfield, P. (1992) - Performance of High Temperature SCR  
Catalyst System at Unocal's science and Technology Division, pp423-426 (Published by 
ASME, New York, NY, USA, Houston, TX, USA,). 

45 
 

Devadas, M., Krocher, O., Elsener, M., et al. (2006) - Influence of NO2 on the SCR of NO with  
Ammonia over Fe-ZSM5, Applied Catalysis B:Environmental, Vol. 67, pp187 – 196. 

46 
 

Devadas, M., Krocher, O., Elsener, M., Wokaun, A., Mitrikas, G., Soger, N., Pfeifer, M.,  
Demel, Y. and Mussmann, L. (2007) - Characterization and catalytic investigation of Fe-
ZSM5 for urea-SCR, Catalysis Today, Vol. 119, Issue 1-4, pp137-144. 

47 
 

Devadas, M., Krocher, O., Elsener, M., Wokaun, A., Soger, N., Pfeifer, M., Demel, Y. and  
Mussmann, L. (2006) - Influence of NO2 on the Selective Catalytic Reduction of NO with 
Ammonia over Fe-ZSM5, Applied Catalysis B: Environmental, Vol. 67, Issue 3-4, pp187-196. 

48  Bosch, R. (2005) - Diesel Engine Management 4th edition, GambH 2005 
49  DieselNet (2005) - Selective Catalyst Reduction, DieselNet Update, Available online  

http://www.dieselnet.com  
50 

 
DieselNet (2006) -Tailpipe Emission Standards, DieselNet Update, Available online,   

http://www.dieselnet.com 
51 

 
Dong, H., Shuai, S., Li, R., Wang, J., Shi, X. and He, H. (2008) - Study of NOx Selective  

Catalytic Reduction by ethanol over Ag/Al2O3 catalyst on a HD diesel engine. Chemical 
Engineering Journal, Vol.135, Issue 3, pp195-201. 

52 
 

Dorado, F., Romero, R., Cruz, J., Garci'a, P.B., Romero, A. and Valverde, J.L. (2007) –  
Selective Catalytic Reduction of NO by Propene in the Presence of Oxygen and Water over 
Catalysts Prepared by the Modified Sol-Gel Method, Catalysis Communications, Vol. 8, 
Issue 4, pp736-740. 

53 
 

Dzwigaj, S., Janas, J., Machej, T. and Che, M. (2007) - Selective catalytic reduction of NO by  
alcohols on Co- and Fe-Si[beta] catalysts, Catalysis Today, Vol. 119, Issue 1-4, pp133-136. 

54 
 

Eberhard, H., et al., (2006) - The Time Behaviour of Surface Applied Fluorine Inducing the  
Formation of an Alumina Scale on Gamma-TiAl during Oxidation at 900 °C in Air, 
Intermetallics, October-November 2006, Vol. 14, Issues 10-11, , pp1136-1142. 

55 
 

Eberhard, J., J. Kreutmair, (1994) - Verfahren und Vorrichtung zur selectiven katalytischen  
Reduktion von NOx in sauerstoffhaltigen Gasen, (Translated- Method and Apparatus for 
Selective Catalytic Reduction of NOx in Oxygen-Containing Gases), European Patent, EP 0 
615 777 A1 

56  Elmoe, T. D., Sorenson, R.Z., Quaade, U., Christensen, C.H., Norskov J.K., Johannessen, T.,  
(2006) - A high Density Ammonia Storage/delivery System based on Mg(NH3)6Cl2 for SCR-
DeNOx in vehicles, Chemical Engineering Science, Vol. 61, pp2618-2625. 

57 
 

EUbusiness Magazine (2006) - EU to introduce legislation as car makers fail on emission  
targets, November 2006, Available online, http://www.eubusiness.com/Environ/ 
 



124 
 

58 
 

European Commission Directive 1999/96/EC-B1(2005) –Standard for Exhaust Emission,  
Heavy Duty vehicle with gross vehicle weight exceeding 3.5 tonnes, for Motor Vehicle  
Registered on or after 1st October 2006. 

59 
 

European Commission Directive 91/542/EEC/Stage II –Standard for Exhaust Emission for  
Heavy Duty Vehicle with Gross Vehicle Weight Exceeding 3.5 tonnes, for Diesel Driven 
Motor Vehicle registered on or after 1st January 2001 but before 1st October 2006. 

60 
 

European Commission Directive 96/69/EC - Standard for exhaust emission for Passenger car   
and Light commercial vehicle with gross vehicle weight not exceeding 3.5 tonnes, For diesel 
driven motor vehicles registered on or after 1st  January 2001 but before 1st October 2006. 

61 
 

European Commission Directive 98/69/EC-B(2005) - Standard for exhaust emission Passenger  
Car and Light commercial vehicle with gross vehicle weight not exceeding 3.5 tonnes, For 
diesel driven motor vehicles registered on or after 1st October 2006. 

62 
 

European Parliament Text (2005) - Winning the Battle Against Global Climate Change, 16      
November 2005, Strasbourg, France, available online, http://www.europarl.europa.eu 

63  Fang, H.L. and DaCosta H.F.M. (2003) - Urea Thermolysis and NOx Reduction with and  
without SCR Catalysts, Applied Catalysis B. Environmental, Vol. 46, pp17-34 

64 
 

Farias, F. and ApSimon, H. (2006) - Relative contributions from traffic and aircraft NOx  
emissions to exposure in West London, Environmental Modelling & Software, Vol. 21, Issue 
4, pp477-485. 

65 
 

Ferreira, A.P., Capela, S., Da Costa, P., Henriques, C., Ribeiro, M.F. and Ribeiro, F.R. (2007) – 
CH4-SCR of NO over Co and Pd ferrierite catalysts: Effect of preparation on catalytic 
performance, Catalysis Today, Vol. 119, Issue 1-4, pp156-165. 

66 
 

Fischer, S., Hofmann, L., et al. (2004) - SCR~A Technology for Global Emissions Control of  
Diesel Engines, 2004 FISITA World Automotive Congress, Barcelona, Spain.23-27 May 2004 

67 
 

Fissore, D., Penciu, O.M. and Barresi, A.A. (2006) - SCR of NOx in Loop Reactors: Asymptotic  
Model and Bifurcational Analysis, Chemical Engineering Journal, Vol. 122, Issue 3, pp175-
182. 

68 
 

Fissore, D., Pisano, R. and Barresi, A.A. (2007) - Observer Design for the Selective Catalytic  
Reduction of NOx in a Loop Reactor, Chemical Engineering Journal, Vol.128, Issue 2-3, 
pp181-189. 

69  Focus on Catalysis (2006) - AdBlue distributors in Europe, Issue 2, p3. 
70  Focus on Catalysts (2005) - Blueprint for AdBlue, Issue 8, p2. 
71 

 
Forzatti, P., Lietti, L., Nova, I. and Tronconi, E. (2010) - Diesel NOx Aftertreatment Catalytic  

Technologies: Analogies in LNT and SCR Catalytic Chemistry, Catalysis Today, Vol. 151, Issue 
3-4, 19 Jun 2010, pp202-211. 

72 
 

Gaffney, J.S. and Marley, N.A. (2009) - The Impacts of Combustion Emissions on Air Quality  
and Climate - from Coal to Biofuels and Beyond, Atmospheric Environment,  Vol. 43, Issue 
1, pp23-36. 

73 
 

Garcia Cortes, J.M., Illan Gomez, M.J. and Salinas Martinez de Lecea, C. (2007) - The  
Selective Reduction of NOx with Propene on Pt-beta Catalyst: A Transient Study, Applied 
Catalysis B: Environmental, vol. 74 Issue 3-4, pp313-323. 

74 
 

Garcia-Bordeje, E., Pinilla, J.L., Lazaro, M.J. and Moliner, R. (2006) - NH3-SCR of NO at Low  
Temperatures over Sulphated Vanadia on Carbon-Coated Monoliths: Effect of H2O and SO2 
Traces in the Gas Feed, Applied Catalysis B: Environmental, Vol. 66, Issue 3-4, pp281-287. 
 



125 
 

75 
 

Gieshoff, J., A. Schäfer-Sindlinger, et al. (2000), Improved SCR Systems for Heavy-Duty  
Applications, SAE2000-01-0189, SAE 2000 World Congress, Detroit, Michigan, 6-9 March-
2000.  

76 
 

Gieshoff, J., M. Pfeifer, et al. (2001) - Advanced Urea SCR Catalysts for Automotive  
Applications, SAE2001-01-0514, SAE 2001 World Congress, March 2001, Detroit, MI, 
Session: Diesel Exhaust Emissions Control (Part C&D),March 2001. 

77  Giovanni, C., Girard, J., Patterson, J.E., Montreuil, C., Cheng, Y. and Lambert, C.K. (2007) – 
Laboratory Testing of Urea SCR Formulations to Meet Tier 2 Bin 5 Emission, SAE2007-01-
1575, SAE 2007 World Congress, Detroit, Michigan, April 14-19 2007. 

78 
 

Girard, J., R. Snow, et al. (2007) - The Influence of Ammonia to NOx Ratio on SCR  
Performance, SAE World Congress & Exhibition, Detroit, Michigan, April 16-19, 2007. 

79  Gorbach, A (2009) - Urea Preparation in Exhaust System of Commercial Vehicles, CTI  
Emission Control Forum, Nuertigen, January 2009. 

80 
 

Grossale, A., Nova, I. and Tronconi, E. (2009) - Ammonia Blocking of the "Fast SCR"  
Reactivity over a Commercial Fe-Zeolite Catalyst for Diesel Exhaust Aftertreatment, Journal 
of Catalysis, Vol. 265, Issue 2, pp141-147. 

81 
 

Grossale, A., Nova, I. and Tronconi, E. (2008) - Study of a Fe-Zeolite-based System as NH3- 
SCR Catalyst for Diesel Exhaust Aftertreatment, Catalysis Today, Vol. 136, Issue 1-2, pp18-
27. 

82 
 

Grossale, A., Nova, I., Tronconi, E., Chatterjee, D. and Weibel, M. (2008) - The chemistry of  
the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM5 Investigated by Transient Reaction 
Analysis, Journal of Catalysis, Vol. 256, Issue 2, pp312-322. 

83  Guo G., Warner, J., Cavataio, G., Dobson, D., Badillo, E. and Lambert, C. (2010) - The  
Development of Advanced Urea-SCR Systems for Tier 2 Bin 5 and Beyond Diesel Vehicles, 
SAE2010-01-1183, SAE 2010 World Congress, Detroit Michigan, April 13-15, 2010. 

84  Gurupatham, A., He, Y.(2008) - Architecture Design and Analysis  of Diesel Engine Exhaust  
Aftertreatment System and comparative Study with Close Couple DOC-DPF System, 
SAE2008-01-1756, SAE International Powertrains, Fuels and Lubricants Congress 
Shanghai, China, June 23-25, 2008. 

85 
 

Guyon, M.,  Blanche, P., et al., (2000) - NOx-Trap System Development and Characterization  
for Diesel Engines Emission Control, SAE2000-01-2910,  SAE International Fall Fuels and 
Lubricants Meeting and Exhibition, Baltimore, Maryland, October 16-19, 2000. 

86 
 

Hamada, I., Kato, Y., Imada, N., Kikkawa, H. and Yamada, A. (2005) - A Unique Titania- 
Based SCR NOx Catalyst for Diesel Exhaust Emission Control, SAE2005-01-1859,  SAE World 
Congress, Detroit, Michigan, April 11-14, 2005. 

87 
 

Hammerle, R., (2003) - Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting  
Tier II Bin 5, US DOE, 9th Diesel Engine Emissions Reduction Conference (DEER), Newport, 
Rhode Island, August 2003, http://www.eere.energy.gov/vehiclesandfuels/ 
pdfs/deer_2003/session10/2003_deer_hammerle.pdf 

88 
 

Heck, R. M. and Farrauto R. J. (2003) - Catalytic Air Pollution Control: Commercial  
Technology, Focus on Catalysts, Vol. 2003, Issue 9, p8. 

89  Heck, R. M., Farrauto R. J., Gulati, S.T. (2009) - Catalytic Air Pollution Control: Commercial  
Technology, 3rd Edition John Wiley March 2009.  
 
 



126 
 

90 
 

Heck, R.M., et al., (1994) - Operating Characteristics and Commercial Operating Experience  
with High Temperature SCR NOx Catalyst, Environmental Progress, Vol.13, issue 4, pp 221-
225 

91 
 

Hevia, M.A.G., Ordonez, S. and Diez, F.V. (2007) - Effect of the Catalyst Properties on the  
Performance of a Reverse Flow Reactor for Methane Combustion in Lean Mixtures, 
Chemical Engineering Journal, Vol. 129, Issue1-3, pp1-10. 

92 
 

Hirata, K., N., Masaki, N., Ueno, H. and Akagawa, H. (2005) - Development of Urea-SCR  
System for Heavy-Duty Commercial Vehicles, SAE2005-01-1860, SAE 2005 World Congress 
& Exhibition, Detroit, Michigan, April 11-14, 2005. 

93  Hoffman, J.(1996) - Process for the Selective Catalytic Reduction of Nitrogen Oxides,  
International Patent Application, WO 96/06674 (Nako) 

94  Hunnekes, E.V.,and Patchett, J., (2006) - Ammonia oxidation catalysts for mobile SCR  
Systems, SAE2006-01-0640, SAE 2006 World Congress, Detroit Michigan, April 3-6, 2006. 

95 
 

Irfan, M.F., Goo, J.H., Kim, S.D. and Hong, S.C. (2007) - Effect of CO on NO Oxidation Over  
Platinum based Catalysts for Hybrid Fast SCR Process, Chemosphere, Vol. 66, Issue 1, pp54-
59. 

96 
 

JAMA-Japan Automobile Manufacturers Association Newsletter (2006), vol. 18,  
February 2006, available online, http://www.jama-english.jp/asis/news/vol18.pdf 

97 
 

Janssen, J.J., (1997) - Environmental Catalysis - Stationary Sources, in: Handbook of  
Heterogeneous Catalysis, G. Ertl et al. (editors), Wiley 1997, pp1636-1644 

98 
 

JARI, (2004) - Advanced Clean-Energy Vehicles (ACEVs), Project Summary, Japan  
Automobile Research Institute. 

99  Johannessen, T., Schmidt, H., Svagin, J. et al. (2008) - Ammonia Storage and Delivery Systems  
for Automotive NOx Aftertreatment, SAE2008-01-1027, SAE 2008 World Congress, Detroit, 
Michigan, April 14-17, 2008. 

100 
 

Johansson, C., Burman, L. and Forsberg, B. (2009) - The Effects of Congestions Tax on Air  
Quality and Health, Atmospheric Environment, Vol. 43, Issue 31, pp4843-4854. 

101 
 

Johnson, T. V., (2006) - Diesel Emission Control in Review, SAE2006-01-0030, 2006 World  
Congress, Detroit, Michigan, April 3-6, 2006. 

102 
 

Johnson, T. V., (2007) - Diesel Emission Control in Review, SAE2007-01-0233, 2007 World  
Congress, Detroit, Michigan, April 16-19, 2007. 

103  Johnson, T. V., (2008) - Diesel Emission Control in Review, SAE2008-01-0069, 2008 World  
Congress, Detroit, Michigan, April 14-17, 2008. 

104  Johnson, T. V., (2009) - Diesel Emission Control in Review, SAE2009-01-0121, 2009 World  
Congress, Detroit, Michigan, April 20-23, 2009. 

105  Johnson, T. V., (2010) - Review of Diesel Emission and Control, SAE 2010-01-0301, 2010  
World Congress, Detroit, Michigan, April 13-15, 2010. 

106 
 

Jossen, R., Heine, M.C., Pratsinis, S.E., Augustine, S.M. and Akhtar, M.K. (2007) - Thermal  
Stability and Catalytic Activity of Flame-Made Silica-Vanadia-Tungsten Oxide-Titania, 
Applied Catalysis B: Environmental, Vol. 69, Issue 3-4, pp181-188. 

107 
 

Joubert, E., Courtois, X., Marecot, P., Canaff, C. and Duprez, D. (2006) - The Chemistry of  
DeNOx Reactions over Pt/Al2O3: The Oxime Route to N2 or N2O, Journal of Catalysis, Vol. 
243, Issue 2, pp252-262. 
 
 



127 
 

108 
 

Jung, S.M., Demoulin, O. and Grange, P. (2005) - The Study of a Synergetic Effect over a H- 
ZSM-5/V2O5 Hybrid Catalyst on SCR Reaction, Journal of Molecular Catalysis A: Chemical, 
Vol. 236, Issue 1-2, pp94-98. 

109 
 

Kang, M., Kim, D.J., Park, E.D., Kim, J.M., Yie, J.E., Kim, S.H., Hope-Weeks, L. and Eyring,  
E.M. (2006) - Two-Stage Catalyst System for Selective Catalytic Reduction of NOx by NH3 at 
Low Temperatures, Applied Catalysis B: Environmental, Vol. 68, Issue 1-2, pp21-27. 

110 
 

Karvosenoja, N. and Johansson, M. (2003) - Cost Curve Analysis for SO2 and NOx Emission  
Control in Finland, Environmental Science & Policy, Vol. 6, Issue 4, pp329-340. 

111  Kelly, J.F., Stanciulec, M., Charland, J.P. (2006) - Evaluation of Amines for the Selective  
Catalyst Reduction (SCR) of NOx from Diesel Engine Exhaust, Fuel, September 2006, Vol.85, 
Issue 12-13, pp1772-1780. 

112 
 

Keuken, M.P., Jonkers, S., Wilmink, I.R. and Wesseling, J.(2010) - Reduced NOx and PM10  
emissions on urban motorways in The Netherlands by 80 km/h speed management, Science 
of The Total Environment, Vol. 408, Issue 12, pp2517-2526. 

113 
 

Kim, Y.W. and Nieuwstadt, M.V. (2006) - Threshold Monitoring of Urea SCR System,  
SAE2006-01-3548, Commercial Vehicle Engineering Congress and Exhibition, Chicago, 
Illinios, Oct 31-Nov 02, 2006. 

114  Knox E. G. (2008) - Atmospheric Pollutants and Mortalities in English Local Authority Areas,  
Journal of Epidemiol Community Health, Vol. 62, Issue 5, pp442-447. 

115  Koebel, M., Elsener, M., and Kleemann, M. (2000) - Urea-SCR: A Promising Technique to  
Reduce NOx Emissions from Automotive Diesel Engines, Catalysis Today, Vol. 59, pp335-
345. 

116 

 

Koebel, M., Elsener, M., et al.(2001) - Recent Advances in the Development of Urea-SCR for  
Automotive Applications, SAE 2001-01-3625, SAE International Fall Fuels and Lubricants 
Meeting and Exhibition, San Antonio Texas, September 24-27, 2001. 

117 

 

Koebel, M., Elsener, M. and Madia, G. (2001) - Reaction Pathways in the Selective Catalytic  
Reduction Process with NO and NO2 at Low Temperature, Industrial & Engineering 
Chemistry Research, Vol. 40, Issue 1, pp52 -59. 

118  Koebel, M., Madia, G., et al., (2002) - Selective Catalytic Reduction of NO and NO2 at Low  
Temperatures, Catalysis Today, 15 April 2002, Vol. 73, Issues 3-4, pp239-247. 

119 

 

Komatsu, T., Tomokuni, K. and Yamada, I. (2006) - Outstanding low temperature HC-SCR of  
NOx over Platinum-group Catalysts Supported on Mesoporous Materials Expecting Diesel-
Auto Emission Regulation, Catalysis Today, Vol. 116, Issue 2, pp244-249. 

120 

 

Konova, P., Arve, K., Klingstedt, F., Nikolov, P., Naydenov, A., Kumar, N. and Murzin, D.Y.  
(2007) - A combination of Ag/alumina and Ag modified ZSM-5 to remove NOx and CO 
during lean conditions, Applied Catalysis B: Environmental, Vol.70, Issue 1-4, pp138-145. 

121  Konstandopoulos, A., Kostoglou, M.,Skaperdas, E., Papaioannou, E., Zarvalis, D., and  
Kladopoulou, E. (2000) - Fundamental Studies of Diesel particulate filter: Transient loading, 
Regeneration and Aging, SAE2000-01-1016, SAE 200 World Congress, Detroit, Michigan, 
March 6-9, 2000. 

122 

 

Kotsifa, A., Kondarides, D.I. and Verykios, X.E. (2007) - Comparative Study of the  
Chemisorptive and Catalytic Properties of Supported Pt Catalysts Related to the Selective 
Catalytic Reduction of NO by Propylene, Applied Catalysis B: Environmental, Vol. 72, Issue 
1-2, pp136-148. 
 

javascript:doXSmartLink('MEETING_NAME','Commercial%20Vehicle%20%0d%0aEngineering%20Congress%20and%20Exhibition');�


128 
 

123 

 

Kousoulidou, M., Ntziachristos, L., Mellios, G. and Samaras, Z. (2008) - Road-Transport  
Emission Projections to 2020 in European Urban Environments, Atmospheric Environment, 
Vol. 42, Issue 32, pp7465-7475. 

124 

 

Krishnamurthy, M., Carder, D.K., Thompson, G. and Gautam, M. (2007) - Cost of Lower NOx  
Emissions: Increased CO2 Emissions from Heavy-Duty Diesel Engines, Atmospheric 
Environment, Vol. 41, Issue 3, pp666-675. 

125 

 

Krocher, O., Devadas, M., Elsener, M., Wokaun, A., Soger, N., Pfeifer, M., Demel, Y. and  
Mussmann, L. (2006) - Investigation of the Selective Catalytic Reduction of NO by NH3 on 
Fe-ZSM5 Monolith Catalysts, Applied Catalysis B: Environmental, Vol.66, Issue 3-4, pp208-
216. 

126 

 

Lambert, C., Cavataio, G., et al. (2006) - Urea SCR and DPF System for Tier 2 Diesel Light- 
Duty Trucks, Department of Energy (DOE) Presentation, Diesel Exhaust Aftertreatment 
Ford Research & Advance Engineering. 

127 

 

Lambert, C., Hammerle, R., McGill, R. Khair, M., Sharp, C.(2004) - Technical Advantages of  
Urea SCR for Light Duty and Heavy Duty Diesel Vehicle Applications, SAE2004-01-1292, SAE 
2004 World Congress and Exhibition, Detroit, Michigan, March 8-11, 2004. 

128 

 

Larsson, A.-C., Einvall, J., Andersson, A. and Sanati, M. (2006) - Targeting by Comparison  
with Laboratory Experiments the SCR Catalyst Deactivation Process by Potassium and Zinc 
Salts in a Large-Scale Biomass Combustion Boiler, Energy and Fuels, Vol. 20, Issue 4, 
pp1398-1405. 

129 

 

Lazaro, M.J., Galvez, M.E., Ruiz, C., Juan, R. and Moliner, R. (2006) - Vanadium Loaded  
Carbon-Based Catalysts for the Reduction of Nitric Oxide, Applied Catalysis B: 
Environmental, Vol. 68, Issue 3-4, pp130-138. 

130 

 

Lepperhoff, G. and J. Schommers, (1988) - Verhalten von SCR-Katalysatoren im  
Dieselmotorischen Abgas", MTZ Motortechnische Zeitschrift (English- Behavior of SCR 
Catalysts in Diesel Exhaust,  MTZ Motor Technical Journal), Vol. 49, p1. 

131 

 

Liu, Z., Millington, P.J., Bailie, J.E., Rajaram, R.R. and Anderson, J.A.(2007)  - A Comparative  
Study of the role of the support on the behaviour of iron based ammonia SCR catalysts, 
Microporous and Mesoporous Materials, 23 August 2007, Vol.104, Issues 1-3, pp159-170. 

132 

 

Lonyi, F., Valyon, J., Gutierrez, L., Ulla, M.A. and Lombardo, E.A. (2007) - The SCR of NO  
with CH4 over Co-, Co,Pt-, and H-Mordenite Catalysts, Applied Catalysis B: Environmental, 
Vol.73, Issue 1-2, pp1-10. 

133 

 

Madia, G., Elsener , M.,et al.,(2002) - Thermal Stability of Vanadia-Tungsta-Titania Catalysts  
in the SCR Process, Applied Catalysis B: Environmental, 28 November 2002,Vol. 39, Issue 2,  
pp181-190 

134  Magdi, K., Dale, L.M. (1999) - Performance Evaluation of Advance Emission Control  
Technologies for Diesel Heavy Duty Engines, SAE 1999-01-3564, SAE International Fall Fuel 
and Lubricant Meeting and Exhibition, Ontario, Canada. 

135 

 

Martin, J.A., Yates, M., Avila, P., Suarez, S. and Blanco, J. (2007) - Nitrous Oxide Formation  
in Low Temperature Selective Catalytic Reduction of Nitrogen Oxides with V2O5/TiO2 

catalysts, Applied Catalysis B: Environmental, Vol.70, Issue 1-4, pp330-334. 
136  MECA white paper (2005) - Diesel Particulate Filter Maintenance: Current Practices and  

Experience, Available online, http://www.meca.org. 
137  MECA white paper (2007) - Emission Control Technologies for Diesel-Powered Vehicles,   

December 2007, Available online, http://www.meca.org. 



129 
 

138  Ministry of the Environment Government of Japan, (2007) - Air Pollution Control Law,  
Available online, http://www.env.go.jp/en/laws/air/air/index.html 

139 

 

Mironyuk, T.V. and Orlyk, S.N. (2007) - Effect of Rhodium on the Properties of Bifunctional  
MxOy/ZrO2 Catalysts in the Reduction of Nitrogen Oxides by Hydrocarbons, Applied 
Catalysis B: Environmental, Vol. 70, Issue1-4, pp58-64. 

140 

 

Mutin, P.H., Popa, A.F., Vioux, A., Delahay, G. and Coq, B.( 2006) - Nonhydrolytic Vanadia- 
Titania Xerogels: Synthesis, Characterization, and Behavior in the Selective Catalytic 
Reduction of NO by NH3,  Applied Catalysis B: Environmental, Vol. 69, Issue 1-2, pp49-57. 

141 

 

Nacken, M., Heidenreich, S., Hackel, M. and Schaub, G. (2007) - Catalytic Activation of  
Ceramic Filter Elements for Combined Particle Separation, NOx removal and VOC total 
Oxidation, Applied Catalysis B: Environmental, Vol.70, Issue1-4, pp370-376. 

142 

 

Nakayama, R., T. Watanabe, et al. (2006) - Control Strategy for Urea-SCR System in Single  
Step Load Transition, Powertrain and Fluid Systems Conference and Exhibition, Toronto, 
Ontario, Canada. Oct 16-19, 2006. 

143 

 

Narayanaswamy, K., He, Y. (2008) - Modelling of Copper-Zeolite and Iron-Zeolite SCR  
Catalysts at Steady State and Transient Conditions, SAE 2008-01-0615, SAE 2008 World 
Congress, Detroit, Michigan, April 14-17, 2008. 

144 

 

Naser, T.M., Kanda, I., Ohara, T., Sakamoto, K., Kobayashi, S., Nitta, H. and Nataami, T.  
(2009) - Analysis of traffic-related NOx and EC concentrations at various distances from 
major roads in Japan, Atmospheric Environment, Vol.43,Issue 15, pp2379-2390. 

145 

 

Nejar, N. and Illan-Gomez, M.J. (2007) - Potassium-Copper and Potassium-Cobalt Catalysts  
supported on Alumina for Simultaneous NOx and Soot Removal from Simulated Diesel 
Engine Exhaust, Applied Catalysis B: Environmental, Vol. 70, Issue 1-4, pp261-268. 

146 

 

Nobukawa, T., Sugawara, K., Okumura, K., Tomishige, K. and Kunimori, K. (2007) - Role of  
Active Oxygen Transients in Selective Catalytic Reduction of N2O with CH4 over Fe-Zeolite 
Catalysts, Applied Catalysis B: Environmental, Vol. 70, Issue 1-4, pp342-352. 

147 

 

Nojima, S., Iida, K., Kobayashi, N. and Naito, O. (2001) - Development of NOx Removal SCR  
Catalyst for Low SO2 Oxidation, Technical Review - Mitsubishi Heavy Industries, Vol.38, 
Issue 2, pp87-91. 

148 

 

Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D. and Bandl-Konrad, B. (2006) - NH3-SCR of  
NO over a V-based Catalyst: Low-T Redox Kinetics with NH3 Inhibition, AIChE Journal, 
Vol.52, Issue 9, pp3222-3233. 

149 

 

Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D. and Bandl-Konrad, B. (2006) - NH3- 
NO/NO2 Chemistry over V-based Catalysts and its Role in the Mechanism of the Fast SCR 
Reaction, Catalysis Today, Vol.114, Issue 1, pp3-12. 

150 

 

Nova, I., Lietti, L., Tronconi, E. and Forzatti, P. (2000) - Dynamics of SCR reaction over a  
TiO2-Supported Vanadia-Tungsta Commercial Catalyst, Catalysis Today, Vol. 60, Issue 1, 
pp73-82. 

151 

 

Nova, I., Lietti, L., Tronconi, E. and Forzatti, P. (2001) - Transient Response Method Applied  
to the Kinetic Analysis of the DeNOx-SCR Reaction, Chemical Engineering Science, Vol. 56, 
Issue 4, pp1229-1237. 

152 

 

Nova, I., Lietti, L., Tronconi, E., Forzatti, P., Avelino Corma, F.V.M.S.M. and José  
Luis,G.F.(2000) - Concentration Programmed Adsorption-Desorption/Surface Reaction 
Study of the SCR-DeNOx Reaction, Studies in Surface Science and Catalysis, pp623-628.  
 



130 
 

153 

 

OEHHA, (2005) - Chemicals Known To The State To Cause Cancer Or Reproductive Toxicity,  
California Environmental Protection Agency, Office of Environmental Health Hazard 
Assessment (OEHHA), Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 
65), Updated May 27, 2005. 

154 

 

Olsson, L., Sjövall, H. and Blint, R.J. (2008) - A Kinetic Model for Ammonia Selective  
Catalytic Reduction over Cu-ZSM-5, Applied Catalysis B: Environmental, Vol. 81, Issue 3-4, 
pp203-217. 

155  Parche, M., (2006) - Euro V and VI Global Emission Strategies Conference, Amsterdam, June  
2006. 

156 

 

Pieterse, J.A.Z. and Booneveld, S. (2007) - Catalytic reduction of NOx with H2/CO/CH4 over  
PdMOR Catalysts, Applied Catalysis B: Environmental, Vol.73, Issue 3-4, pp327-335. 

157 

 

Pieterse, J.A.Z., Top, H., Vollink, F., Hoving, K. and van den Brink, R.W. (2006) - Selective  
Catalytic Reduction of NOx in Real Exhaust Gas of Gas Engines Using Unburned Gas: 
Catalyst Deactivation and Advances Toward Long-Term Stability, Chemical Engineering 
Journal, Vol.120, Issue 1-2, pp17-23. 

158 

 

Qi, G. and Yang, R.T. (2005) - Low-Temperature SCR of NO with NH3 over Noble Metal  
Promoted Fe-ZSM-5 Catalysts, Catalysis Letters, Vol. 100, Issue 3-4, pp 243-246. 

159  Rahkamaa-Tolonen, K., Manula, T., Lomma, M., Huuhtanen, M., Keiski, R.L.(2005) - The  
Effect of NO2 on the Activity of Fresh and Aged Zeolite Catalysts in the NH3-SCR Reaction, 
Catalysis Today, Vol. 100, pp217-222. 

160 

 

Reuters News Services (2007) - European Carmakers Reduced Carbon Dioxide (CO2)  
Emissions from New Cars by only 0.2 percent in 2006, Far Off an Agreed Goal, Brussels 
September 2007, Available online, 
http://www.planetark.com/dailynewsstory.cfm/newsid/44167/story.htm 

161  Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J.,(2004) -  
Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction Vessel, Thermochimica 
Acta 424: pp131-142.  

162 

 

Schmeig, S.J., Lee, J-H.(2005) - Evaluation of Supplier Catalyst Formulations for the SCR of  
NOx with Ammonia, SAE 2005-01-3881, Powertrain and Fluid Systems Conference and 
Exhibition San Antonio, Texas, October 24-27, 2005. 

163 

 

Shah, S.D., Mauti, A., Richert, J.F.O., Loos, M.J., Chase, R.E. (2007) - Measuring NOx in the  
Presence of Ammonia, SAE2007-01-0331, SAE 2007 World Congress, Detroit, Michigan, 
2007. 

164 

 

Shibata, J., Hashimoto, M., Shimizu, K.-I., Yoshida, H., Hattori, T. and Satsuma, A. (2004) -   
Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported 
Platinum Catalysts, Journal of Physical Chemistry B, Vol.108, Issue 47, pp18327-18335. 

165  Snyder, J. D., Subramaniam, B.(1998) - Numerical Simulation of a Reverse flow NOx-SCR  
Reactor with Side Stream Ammonia Addition, Chem Eng Sci Vol. 53, Issue 4, pp727-734. 

166 

 

Song, Q. and G. Zhu, (2002) - Model-based, Closed-Loop Control of Urea SCR Exhaust  
Aftertreatment System for Diesel Engine, SAE2002-01-0287, SAE 2002 World Congress. 
March 4-7, 2007. 

167 

 

Spurk (2000) US EPA-United States, Environmental Protection Agency, - Federal and  
California Exhaust and Evaporative Emission Standards for Light-Duty Vehicles and Light-
Duty Trucks, Document No: EPA420-B-00-001, February 2000. 

javascript:doXSmartLink('MEETING_NAME','Powertrain%20and%20Fluid%20%0d%0aSystems%20Conference%20and%20Exhibition');�
javascript:doXSmartLink('MEETING_NAME','Powertrain%20and%20Fluid%20%0d%0aSystems%20Conference%20and%20Exhibition');�


131 
 

168  Spurk, D.C., Pfeifer, M., Gieshoff, J, Lox, E. (2001) - Ein SCR Katalysator auch fuer  
denEnsatz im PKW,10 Aachener Kolloquium Fazu.(translated)- A SCR Catalyst for the use in 
Passenger Cars, 10th Aachen Colloqium on Automobile and Engine Technology 2001. 

169 

 

Spurk, P.C., M. Pfeifer, et al., (2007) – Challenges for the Future Diesel Engines Exhaust Gas  
Aftertreatment System, SAE2007-01-0040, Fuels & Emission Conference, Cape Town, South 
Africa, January 23-25, 2007 

170 

 

Sullivan, J.A. and Keane, O. (2007) - A Combination of NOx Trapping Materials and Urea- 
SCR Catalysts for use in the Removal of NOx from Mobile Diesel Engines, Applied Catalysis 
B: Environmental, Vol. 70, Issue 1-4, pp205-214. 

171 

 

Sullivan, J.A., Doherty, J. A., (2005) - NH3 and Urea in the Selective Catalytic Reduction of  
NOx over Oxide-Supported Copper Catalysts, Applied Catalysis B: Environmental, 10 
February 2005, Vol. 55, Issue 3, pp185-194. 

172 

 

Summers, J.C., Van Houtte, S. and Psaras, D. (1996) - Simultaneous control of particulate and  
NOx Emissions from Diesel Engines, Applied Catalysis B: Environmental, Vol.10, Issue 1-3, 
pp139-156. 

173 

 

Suzuki, H. and Ishii, H. (2006) - Emission Characteristics of a Urea SCR System Under  
Catalyst Activated and De-activated Conditions, Review of Automotive Engineering, Vol.  
27, Issue 2, pp223-228. 

174 

 

Takada, K., Kusaka, J., Daisho, Y. (2007) - Empirical and Numerical Study of the  
Improvements in NOx Reduction by a Urea-SCR System Attainable by Controlling the 
Relative Proportions of NO and NO2, Review of Automotive Engineering, JSAE Technical 
paper 4-28-1-41. 

175  Tamaldin, N., Roberts, C.A., Benjamin S.F.(2010) - Experimental Study of SCR in a Light Duty  
Diesel Exhaust to Provide Data of a CFD Model Using the Porous Medium Approach, SAE 
2010-01-1177, SAE 2010 World Congress, Detroit, Michigan, April 13-15, 2010. 

176 

 

Tang, X., Hao, J., Xu, W. and Li, J. (2007) - Low Temperature Selective Catalytic Reduction of  
NOx with NH3 over Amorphous MnOx Catalysts Prepared by Three Methods, Catalysis 
Communications, Vol. 8, Issue 3, pp329-334. 

177  Tatur, M. (2009) - Solid SCR Demonstration Truck Application, presentation at US  
Department of Energy Directions in Engine Efficiency and Emissions Research (DEER) 
conference, Dearbon, Michigan, August 2009.  

178 

 

Technical Report of MECA-Manufacturers of Emissions Controls Association,(1999) - The  
Effect of Sulfur in Diesel Fuel on Catalyst, Emission Control Technology. 

179 

 

Tennison, P., Lambert, C., Levin, M.(2004) - NOx control development with urea SCR on a  
Diesel Passenger Car,SAE 2004-01-1291, SAE 2004 World Congress and Exhibition, Detroit 
Michigan, March 8-11, 2004 

180  Theis, J.R. (2009) - SCR Catalyst Systems Optimized for Light-off and Steady State  
Performance, SAE2009-01-0901, SAE 2009 World Congress, Detroit, Michigan, April 20-23, 
2009. 

181 

 

Theis, J.R. and Gulari, E. Estimating the temperatures of the NOx storage sites in a lean NOx   
trap during oxidation reactions. Applied Catalysis B: Environmental, In Press, Corrected 
Proof, 300. 
 
 



132 
 

182 

 

Thompson, J., Beeck, J.D., Joubert, E.,Wilhelm, T. (2008) - Case studies of urea SCR  
Integration on Passenger Cars;Monitoring of Urea Inside the Tank During Hot and Cold 
Environment Test Missions, SAE 2008-01-1181, SAE 2008 World Congress, Detroit, 
Michigan, April 14-17, 2008. 

183 

 

Tomita, A., Yoshii, T., Teranishi, S., Nagao, M. and Hibino, T. (2007) - Selective catalytic  
Reduction of NOx by H2 Using Proton Conductors as Catalyst Supports, Journal of Catalysis, 
Vol. 247, Issue 2, pp137-144. 

184 

 

Tranconi, E, Nova, I., Ciardelli, C. et al., (2005) - Modelling of an SCR Catalytic Converter for  
Diesel Exhaust After Treatment:Dynamics Effects at Low Temperature, Catalysis Today, 15 
August 2005, Vol.105, pp 529 - 536,  

185  Tronconi, E. and Beretta, A. (1999) - The Role of Inter- and Intra-Phase Mass Transfer in the  
SCR-DeNOx Reaction over Catalysts of Different Shapes, Catalysis Today, Vol. 52, Issue 2-3, 
pp249-258. 

186 

 

Tronconi, E., Nova, I., Ciardelli, C., Chatterjee, D., Bandl-Konrad, B. and Burkhardt, T.  
(2005) - Modelling of an SCR Catalytic Converter for Diesel Exhaust Aftertreatment: 
Dynamic Effects at Low Temperature, Catalysis Today, Vol.105, Issue 3-4, pp529-536. 

187  Twigg, M.V. (2007) - Progress and Future Challenges in Controlling Automotive Exhaust Gas  
Emissions, Applied Catalysis B: Environmental, Vol. 70, Issue 1-4, pp2-15. 

188 

 

Uekusa, T, Nakada, T, et al., (2005) - Emission Reduction Study for Meeting New  
Requirements with Advance Diesel Engine Technology, SAE2005-01-2143, Fuels and 
Lubricants Meeting and Exhibition, Rio de Janeiro, Brazil, May 11-13, 2005.  

189 

 

United States, Environmental Protection Agency (2006) - Certification Procedure for Light- 
Duty and Heavy Duty Diesel Vehicle Using Selective Catalyst Reduction (SCR) Technologies, 
Doc no: EPA-HQ-OAR-2006-0886-0002.pdf 

190 

 

United States, Environmental Protection Agency (2007) -  Draft U.S. Greenhouse Gas  
Inventory Report, DRAFT INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS: 
1990-2005 (February 2007), Available online, 
http://www.epa.gov/climatechange/emissions/usinventoryreport07.html 

191 

 

Upadhyay, D. and Van Nieuwstadt, M. (2002) - Control Design of an Automotive Urea SCR  
Catalyst, ASME 2002 International Mechanical Engineering Congress and Exposition 
(IMECE2002), pp699-706, New Orleans, Louisiana, November 17-22, 2002. 

192 

 

Upadhyay, D. and Van Nieuwstadt, M. (2002) - Modeling of a Urea SCR Catalyst with  
Automotive  Applications, ASME 2002 International Mechanical Engineering Congress and 
Exposition (IMECE2002), pp707-713, New Orleans, Louisiana, November 17-22, 2002. 

193  US EPA (2006) - Recommendations for Reducing Emission from the Legacy Diesel Fleet,  
Report from Clean Air Act Advisory Committee, April 10, 2006.  

194  Walker, A. (2005) - Diesel Emission Control: Past, Present and Future, 19th North American  
Meeting (NAM), North American Catalysis Society, Philadelphia, Pennsylvania, May 22-27, 
2005. 

195 

 

Wang, Y., Zhu, J. and Ma, R.(2007) - Macrodynamic Study and Catalytic Reduction of NO by  
Ammonia under Mild Conditions over Pt-La-Ce-O/Al2O3 Catalysts, Energy Conversion and 
Management, July 2007, Vol. 48, Issue 7, pp1936-1942. 

196  Way, P.(2008) Panel Discussion, Diesel Emission Control: Urea Deposits and Byproducts at  
SAE Commercial Vehicle Conference, Chicago, October 2008 
 



133 
 

197 

 

Willi, R., B. Roduit, R. Koeppel, A. Wokaun, A. Baiker, 1996. "Selective Reduction of NO by  
NH3 over Vanadia-Based Commercial Catalyst: Parametric Sensitivity and Kinetic 
Modeling", Chem. Eng. Sci., 51 (11), pg. 2897-2902 

198  World Health Organization-WHO (2002) - Estimated Deaths & DALYs Attributable to Selected  
Environmental Risk Factors, by WHO Member State. 

199 

 

Wu, Z., Jiang, B., Liu, Y., Zhao, W. and Guan, B.(2009) - Experimental Study on a Low- 
Temperature SCR Catalyst based on MnOx/TiO2 Prepared by Sol-Gel Method, Journal of 
Hazardous Materials, Vol. 162, Issue 2-3, pp1249-1254. 

200 

 

Xie, S., Wang, J. and He, H. (2007) - Poisoning Effect of Sulphate on the Selective Catalytic  
Reduction of NOx by C3H6 over Ag-Pd/Al2O3, Journal of Molecular Catalysis A: Chemical, , 
Vol. 266, Issue 1-2, pp166-172. 

201  Yim, S.D., Kim S.J., Baik, J.H., Nam, I.-S., Mok, Y.,S., Lee, J.-H., Cho, B.K., and Oh, S.,H.,  
(2004) - Decomposotion of Urea into NH3 for the SCR Process, Industrial and Engineering 
Chemistry Research Vol. 43, pp4856-4863. 

202 

 

Yli-Tuomi, T., Aarnio, P., Pirjola, L., Mäkelä, T., Hillamo, R. and Jantunen, M. (2005) - 
Emissions of Fine Particles, NOx, and CO from on-road Vehicles in Finland, Atmospheric 
Environment, Vol. 39, Issue 35, pp6696-6706. 

203  Yost, D. M. (2007) - Systematic Inorganic Chemistry, Ammonia and Liquid Ammonia Solution,  
p132, ISBN 1406773026. 

204 

 

Zhang, C., He, H., Shuai, S. and Wang, J. (2007) - Catalytic Performance of Ag/Al2O3- 
C2H5OH-Cu/Al2O3 System for the Removal of NOx from Diesel Engine Exhaust, 
Environmental Pollution, Vol.147, Issue 2, pp415-421. 

205 

 

Zhang, F., Zhang, S., Guan, N., Schreier, E., Richter, M., Eckelt, R. and Fricke, R. (2007) - NO  
SCR with Propane and Propene on Co-based Alumina Catalysts Prepared by Co-
Precipitation, Applied Catalysis B: Environmental, Vol. 73, Issue 3-4, pp209-219. 

206 

 

Zhu, L., Zhang, W., Liu, W. and Huang, Z. (2010) - Experimental Study on Particulate and  
NOx Emissions of a Diesel Engine Fueled with Ultra Low Sulfur Diesel, RME-Diesel Blends 
and PME-Diesel Blends, Science of The Total Environment, Vol.408, Issue 5, pp1050-1058. 

 



134 
 

 
 
 

APPENDICES 



A-1 

Appendix 3.1.1 – Power curve for Ford 2.0 litre diesel engine 
(complementary of Ford powertrain development division, 2001 
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Appendix 3.1.3 -  Ricardo Mass flow meter calibration chart. 

A-2 



A-3 
 

Appendix 3.2 Supplied parts for SCR exhaust build. 
 

No Parts Description Quantity Size 

1 Flange    20 pcs 125 x 80 mm 
Centre hole 50 mm diameter 

2 Flange Cover    
 4 pcs 115 x 85 mm 

3 Hex bolts    
 100 pcs 10 mm diameter 

4 Nuts    
 100 pcs 10 mm inside diameter 

5 Washer    
 200 pcs 11 mm inside diameter 

6 
 
Ring Flange  20 pcs 

Diameter out
Diameter 

=190 mm 
in

8 x11mm holes 
=115mm 

7 Gasket – 2 hole 20 pcs 125 x 80 mm 
Centre hole 50 mm diameter 

8 
 
Gasket – 8 hole 20 pcs 

Diameter out
Diameter 

=190 mm 
in

8 x11mm holes 
=115mm 

9 
 
Inlet cone 1 unit 

Diameter small
Diameter 

 =50 mm 
large

Length = 150 mm 
 = 115 mm 

10 
 
2nd 1 unit  cone 

Diameter small
Diameter 

 =50 mm 
large

Length = 900 mm 
 = 115 mm 

11 

 
Expansion duct/ 
 3rd

 
 cone 1 unit 

Diameter small
Diameter 

 =50 mm 
large

Length = 410 mm 
 = 115 mm 

12 
 
Exit cone / 4th cone 1 unit 

Diameter small
Diameter 

 =50 mm 
large

Length = 90 mm 
 = 115 mm 

13 DOC Assembly 3 unit 1 unit 95 mm length 
2 unit 190 mm length 

14 DPF Assembly 
 1 unit 155 mm length 

15 SCR Assembly 3 unit 1 unit 92.5 mm length 
2 unit 185 mm length 

16 Flexible hose 
 1 unit 50 mm x 1 m length 

17 Straight pipe 
 1 unit 50 mm x 2m length 

18 

 
Expansion box  
assembly 
 
 

1 unit 

Refer to drawing in appendix 
3.2b 
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Appendix 3.2b List of drawing for 

SCR Exhaust System 

 

1 - Exhaust Manifold exit 

2 - Flexi hose assembly 

3 -1st

4 - DPF Assembly 

 cone 150 mm 

5 - DOC Assembly 

6 - Instrumentation module assembly – 110 mm 

7 - 2nd

8 - Expansion box assembly 

 cone – 90 mm 

9 - Instrumentation pipe assembly – 200 mm 

10 - 3rd

11 - SCR assembly 

 cone – 410 mm 

12 - Instrumentation module assembly – 90 mm 

13 - Last cone assembly  

14 - T-piece assembly 

15 - Final assembly front view 

16 - Final assembly isometric view 
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Appendix 3.4.1 MEXA 1170Nx Ammonia Analyser Specifications 

a. Analyser Outline 

 

b. Optional 

 

 

 



c. System configuration 

 

 
 
 
 
 

A-5a 



 

 
d. Analyser performance 

 

 

 

A-5b 



Appendix 3.5: Lambda Sensor Connection Configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the back of LA4 Unit 

 

 

LA4 Power supply 

Lambda sensor power supply 
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Appendix 3.6.2 Potential Ammonia Released from Urea Spray Calculation 

 

Calculation of Potential amount of ammonia introduced into exhaust system by urea spray 

The disintegration of urea to form ammonia takes place in two stages. First the urea disintegrates at 
about 137O 

CO(NH

C to form ammonia and iso-cyanic acid. Then the iso-cyanic acid is hydrolysed to produce 
ammonia. 

2)2 NHCO + NH

HNCO + H

3 

2O NH3 + CO

The net effect is that for every mol of urea, two mols of ammonia are produced. 

2 

In the experiments described in this thesis, a typical exhaust mass flow rate was 28.5 g/s. An 
assumption may be made that the mol weight of exhaust is 28.96, the same value as for air. Hence, 
the rate of exhaust flow may be expressed as 0.984 mol/s. 

The spray was calibrated with water. It is assumed that the spray system moves the same volume of 
aqueous urea as of water. The specific gravity of 32.5% by weight aqueous urea solution is about 
1.09. Hence, the spray system flow rate of urea is higher than for water. 

The table below shows Calculation of Potential Ammonia level in exhaust from spray flow rate. 

 

Spray 
pulse 

length (ms) 

flow rate 
of water 

from 
calibration 

(mg/s) 

Flow 
rate of 
urea 

(mg/s) 
water 

x1.09 

Flow rate of 
urea 32.5% 
by weight 

(mg/s) 
fr urea x 

32.5% 

urea 
60g/mol 
flow rate 
(mol/s) 

1/60.06*1

6.30/1000 

urea in 0.984 mol/s 
exhaust flow (ppm) 
0.000271/0.984116

*1 000 000 

Potential 
ammonia (ppm) 
1 mol urea = 2 

mol ammonia,=2 

x 275.6996 

24 46 50.1 16.3 0.000271 276 552 

26 51 55.6 18.1 0.000301 307 614 

*      28 58 63.2 20.5 0.000342 348 696 

30 68 74.1 24.1 0.000401 409 818 

32 74 80.7 26.2 0.000436 444 888 

34 80 87.2 28.3 0.000472 480 960 

36 87 94.8 30.8 0.000513 521 1042 

40 92 100.3 32.6 0.000543 551 1102 

*Note: The recommended working range for spray injector was from 28 ms upward. Any setting 
below 28 ms would work intermittently. 
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Appendix 3.7a Calibration chart for NH3 gas flow rate using Glass float 
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Appendix 3.7b Calibration chart for NH3 gas flow rate using Stainless Steel float 



Appendix 3.7.1 Summary of gas flow rate with 4% and 5% ammonia in N2 
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Calculation of gas flow rate with 4% & 5% ammonia in N2 with steel & glass float

Gas Mol wt (g)
Sp gravity 
(SG gas) Cal Factor

Air 28.96 1.00 1.00
4% ammonia  27.56 0.9517 1.025
5% ammonia  27.45 0.948 1.027

if Tgas > 301 K (28 C) changes must be made to avoid error more than 1%
Pgas >1 bar(14.7psi)
Pgas = 1.5 psi 5% error
Pgas = 3 psi 10 % error

Pg = gas pressure in flow meter (psi absolute)
Tg = gas temperature in flow meter (degree absolute) assume 300 K temp
SG = Specific gravity of gas

4% Steel Float
steel psi calib chart pressure correction corrected l/min PPM

0 0.0 0 0.000 0 0
16 0.1 4 1.003 4.11 124
40 0.3 10 1.010 10.35 311
50 0.5 13 1.017 13.55 406
60 1.0 16 1.033 16.94 506
75 2.0 20 1.066 21.85 650
100 3.0 28 1.097 31.48 930
120 4.0 34 1.128 39.31 1155

4% Glass Float
Glass psi calib chart pressure correction corrected l/min PPM

0 0.0 0.0 0.000 0 0
16 0.1 2.0 1.003 2.06 62
40 0.3 5.4 1.010 5.59 168
50 0.4 6.7 1.014 6.96 209
60 0.5 8.5 1.017 8.86 267
75 0.7 10.8 1.023 11.32 340
100 1.0 15.0 1.033 15.88 475
120 1.3 18.0 1.043 19.24 574

5% Glass Float
Glass psi calib chart pressure correction corrected l/min PPM

0 0.0 0.0 0.000 0.00 0
16 0.1 2.0 1.003 2.06 73
32 0.2 4.1 1.007 4.24 149
48 0.4 6.5 1.014 6.77 238
60 0.5 8.2 1.017 8.56 300
80 0.7 11.5 1.024 12.09 423
96 1.0 13.9 1.033 14.75 515

SGTg
PgFactorCAL
××

×=
7.14

294_
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Calculation of gas flow rate with 4% ammonia in N2 with steel float

Gas Mol wt (g)
Sp gravity 
(SG gas) Cal Factor

Air 28.96 1.00 1.00
4% ammon   27.56 0.9517 1.025
5% ammon   27.45 0.948 1.027

if Tgas > 301 K (28 C) changes must be made to avoid error more than 1%
Pgas >1 bar(14.7psi)
Pgas = 1.5 psi 5% error
Pgas = 3 psi 10 % error

Pg = gas pressure in flow meter (psi absolute)
Tg = gas temperature in flow meter (degree absolute) assume 300 K temp
SG = Specific gravity of gas

4% Steel Float assume temp. 294 K 

steel psi calib chart abs P+psi
pressure 

correction
abs 

correction
corrected 

l/min
correted 
flow rate PPM

4% m3/s
0 0.00 0.0 0.0 0 0 0 0.000000 0
16 0.10 4.0 14.8 1.003 1.025 4.11 0.000069 124
40 0.30 10.0 15.0 1.010 1.025 10.35 0.000173 311
50 0.50 13.0 15.2 1.017 1.025 13.55 0.000226 406
60 1.00 16.0 15.7 1.033 1.025 16.95 0.000282 506
75 2.00 20.0 16.7 1.066 1.025 21.85 0.000364 650

100 3.00 28.0 17.7 1.097 1.025 31.49 0.000525 930
120 4.00 34.0 18.7 1.128 1.025 39.31 0.000655 1155

correted 
flow rate

Flow rate 
NH3 in 4% 

mix

 o  
occupies 

0.0224 m3 
@294 K

o  ate o  
injected 
mixture 

(NH3+N2)

ot o  ate 
in exhaust 

incl injected 
gas

Ammonia 
level

m3/s m3/s mol/s mol/s mol/s ppm
0.000000 0.0000000 0.000000 0.00000 0.984 0
0.000069 0.0000027 0.000122 0.00306 0.987 124
0.000173 0.0000069 0.000308 0.00770 0.992 311
0.000226 0.0000090 0.000403 0.01008 0.994 406
0.000282 0.0000113 0.000504 0.01261 0.997 506
0.000364 0.0000146 0.000650 0.01626 1.000 650
0.000525 0.0000210 0.000937 0.02343 1.007 930
0.000655 0.0000262 0.001170 0.02925 1.013 1155

SGTg
Pg

FactorCAL
××

×
=

7.14
294

_

Sample calculation:
For Steel float at 120 & 4 psi
Reading from Calibration chart is 34.0 litre/min
Assume flowing gas mixture temperature ~ 294 K
so no temperature correction is needed.

Corrected flow rate is 34 x 1.128 x 1.025 = 39.31 liter/min = 0.655 litre/s = 0.000655 m3/s

Flow rate of ammonia (4% in mixture) = 0.04 x 0.000655 = 0.0000262 m3/s

Assume 1 mol of ammonia occupies 22.4 litres = 0.0224 m3 at 273 K
Correcting fo temperature 1 mol occupies 0.0240 m3 at 293 K

Thus Ammonia flow rate is 0.0000262/0.0224 = 0.00117 mol/s

Flow rate of injected mixture (ammonia + N2 ) is (100/4) x 0.001170 mol/s = 0.02925 mol/s

The engine exhaust flow rate is 28.5 g/s = 28.5/28.96 mol/s = 0.984 mol/s

Total flow rate is exhaust including injected gas = 0.984 + 0.029 = 1.013 mol/s

Ammonia level = 1 000 000 x (mol/s NH3) / (mol/s exhaust) =  0.001170 / 1.013 * 1 000 000 = 1155 ppm



Appendix 3.7.1b Calculation of gas flow rate with 4% ammonia in N2 with glass float 

A-12 

 

 

Calculation of gas flow rate with 4% ammonia in N2 with glass float

Gas Mol wt (g)
Sp gravity (SG 

gas) Cal Factor
Air 28.96 1.00 1.00

4% ammoni   27.56 0.9517 1.025
5% ammoni   27.45 0.948 1.027

if Tgas > 301 K (28 C) changes must be made to avoid error more than 1%
Pgas >1 bar(14.7psi)
Pgas = 1.5 psi 5% error
Pgas = 3 psi 10 % error

Pg = gas pressure in flow meter (psi absolute)
Tg = gas temperature in flow meter (degree absolute) assume 300 K temp
SG = Specific gravity of gas

4% Glass Float assume temp. 294 K 

Glass psi calib chart abs P+psi
pressure 

correction
abs 

correction
corrected 

l/min
correted 
flow rate PPM

4% m3/s
0 0.00 0.0 0.0 0 0 0 0 0

16 0.10 2.0 14.8 1.003 1.025 2.06 0.000034 62
40 0.30 5.4 15.0 1.010 1.025 5.59 0.000093 168
50 0.40 6.7 15.1 1.014 1.025 6.96 0.000116 209
60 0.50 8.5 15.2 1.017 1.025 8.86 0.000148 267
75 0.67 10.8 15.4 1.023 1.025 11.32 0.000189 340
100 1.00 15.0 15.7 1.033 1.025 15.89 0.000265 475
120 1.30 18.0 16.0 1.043 1.025 19.25 0.000321 574

correted 
flow rate

Flow rate 
NH3 in 4% 

mix

1 mol occupies 
0.0224 m3 @294 

K

Flow rate of 
injected 
mixture 

(NH3+N2)

Tot flow rate 
in exhaust 

incl injected 
gas

Ammonia 
level

m3/s m3/s mol/s mol/s mol/s ppm
0.000000 0.0000000 0.000000 0.00000 0.984 0
0.000034 0.0000014 0.000061 0.00152 0.986 62
0.000093 0.0000037 0.000166 0.00415 0.988 168
0.000116 0.0000046 0.000207 0.00518 0.989 209
0.000148 0.0000059 0.000264 0.00661 0.991 267
0.000189 0.0000076 0.000338 0.00844 0.992 340
0.000265 0.0000106 0.000473 0.01183 0.996 475
0.000321 0.0000128 0.000573 0.01433 0.998 574

SGTg
PgFactorCAL
××

×
=

7.14
294_

Sample calculation:
For Glass float at 120 & 1.3 psi
Reading from Calibration chart is 18.0 litre/min
Assume flowing gas mixture temperature ~ 294 K
so no temperature correction is needed.

Corrected flow rate is 18 x 1.043 x 1.025 = 19.25 liter/min = 0.321 litre/s = 0.000321 m3/s

Flow rate of ammonia (4% in mixture) = 0.04 x 0.000321 = 0.0000128 m3/s

Assume 1 mol of ammonia occupies 22.4 litres = 0.0224 m3 at 273 K
Correcting fo temperature 1 mol occupies 0.0240 m3 at 293 K

Thus Ammonia flow rate is 0.0000123/0.0224 = 0.000573 mol/s

Flow rate of injected mixture (ammonia + N2 ) is (100/4) x 0.000573 mol/s = 0.01433 mol/s

The engine exhaust flow rate is 28.5 g/s = 28.5/28.96 mol/s = 0.984 mol/s

Total flow rate is exhaust including injected gas = 0.984 + 0.01433 = 0.998 mol/s

Ammonia level = 1 000 000 x (mol/s NH3) / (mol/s exhaust) =  0.000573 / 0.998 * 1 000 000 = 574 ppm



Appendix 3.7.1c Calculation of gas flow rate with 5% ammonia in N2 with glass float 
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Calculation of gas flow rate with 5 % ammonia in N2 with glass float

Gas Mol wt (g)
Sp gravity (SG 

gas) Cal Factor
Air 28.96 1.00 1.00

4% ammoni   27.56 0.9517 1.025
5% ammoni   27.45 0.948 1.027

if Tgas > 301 K (28 C) changes must be made to avoid error more than 1%
Pgas >1 bar(14.7psi)
Pgas = 1.5 psi 5% error
Pgas = 3 psi 10 % error

Pg = gas pressure in flow meter (psi absolute)
Tg = gas temperature in flow meter (degree absolute)
SG = Specific gravity of gas

5% Glass Float assume temp. 294 K 

Glass psi calib chart abs P+psi
pressure 

correction
abs 

correction
corrected 

l/min
correted flow 

rate PPM
5%
0 0 0 0 0 0 0 0.000000 0

16 0.1 2 14.8 1.003 1.027 2.06 0.000034 73
32 0.2 4.1 14.9 1.007 1.027 4.24 0.000071 149
48 0.4 6.5 15.1 1.014 1.027 6.77 0.000113 238
60 0.5 8.2 15.2 1.017 1.027 8.56 0.000143 300
80 0.7 11.5 15.4 1.024 1.027 12.09 0.000201 423
96 1.0 13.9 15.7 1.033 1.027 14.75 0.000246 515

corrected 
flow rate

Flow rate 
NH3 in 5% 

mix

1 mol occupies 
0.0240 m3 
@294 K

Flow rate of 
injected 
mixture 

Tot flow rate in 
exhaust incl 
injected gas

Ammonia 
level

m3/s m3/s mol/s mol/s mol/s ppm
0.000000 0.0000000 0.0000000 0.00000 0.984 0
0.000034 0.0000017 0.0000716 0.00143 0.985 73
0.000071 0.0000035 0.0001472 0.00294 0.987 149
0.000113 0.0000056 0.0002349 0.00470 0.989 238
0.000143 0.0000071 0.0002973 0.00595 0.990 300
0.000201 0.0000101 0.0004197 0.00839 0.992 423
0.000246 0.0000123 0.0005123 0.01025 0.994 515

SGTg
PgFactorCAL
××

×
=

7.14
294_

Sample calculation:
For Glass float at 96 & 1.0 psi
Reading from Calibration chart is 13.9 litre/min
Assume flowing gas mixture temperature ~ 294 K
so no temperature correction is needed.

Corrected flow rate is 13.9 x 1.033 x 1.027 = 14.75 liter/min = 0.246 litre/s = 0.000246 m3/s

Flow rate of ammonia (5% in mixture) = 0.05 x 0.000246 = 0.0000123 m3/s

Assume 1 mol of ammonia occupies 22.4 litres = 0.0224 m3 at 273 K
Correcting fo temperature 1 mol occupies 0.0240 m3 at 293 K

Thus Ammonia flow rate is 0.0000123/0.024 = 0.000513 miol/s

Flow rate of injected mixture (ammonia + N2 ) is (100/5) x 0.0005123 mol/s = 0.01025 mol/s

The engine exhaust flow rate is 28.5 g/s = 28.5/28.96 mol/s = 0.984 mol/s

Total flow rate is exhaust including injected gas = 0.984 + 0.010 = 0.994 mol/s

Ammonia level = (mol/s NH3) / (mol/s exhaust) x 1 000 000 =  0.0005123 / 0.994 x 1 000 000 = 515 ppm
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4.0 - List of appendices for Chapter 4 : Experimental Results 

Appendix 4.1.5 Experimental data for 

Date: (3, 7, 9 July 2008) 

Urea Spray: 1 SCR 

 0700708a NO2

 090708c NH

 upstream & downstream 1 SCR no spray 

3

070708b NO

 upstream 1 SCR R  

2

 090708b NH

 downstream 1 SCR 

3

 

 downstream 1 SCR L  

Appendix 4.1.5b SUM in and SUM out average for 

150708c NH

1 SCR with spray 

3

150708c NH

 upstream 1 SCR L 

3

090708c NH

 upstream 1 SCR R 

3

090708c NH

 upstream 1 SCR L 

3

070708d NH

 upstream 1 SCR R 

3

 

 upstream 1 SCR 

150708b NH3

150708b NH

 downstream 1 SCR Left 

3

090708b NH

 downstream 1 SCR Right 

3

090708b NH

 downstream 1 SCR L 

3

070708c NH

 downstream 1 SCR R 

3

 

 downstream 1 SCR 
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Appendix 4.1.6 Experimental data for Urea Spray: 4 SCR

Date: (1, 7,18,23,24 July 2008) 

  

240708b NO2

240708b NH

 up 4 SCR L-R with spray 

3

020708c NO

 upstream 4 SCR L1-R1-L1 

2

230708b NH

 downstream 4 SCR with spray 

3

 

 downstream 4 SCR R1 

Appendix 4.1.6b SUM in and SUM out average for 

180708c NH

4 SCR with spray 

3

240708b NH

 upstream 4 SCR spray 34-24 L-R 

3

240708b NH

 upstream 4 SCR spray   L 

3

 

 upstream 4 SCR spray   R 

180708b NH3

230708b NH

 downstream 4 SCR L - R 

3

 

 downstream 4 SCR L-R 

Appendix 4.2.5 Experimental data for 5% NH3 gas: 1 SCR

Date: (5%gas 12, 21 august 2008) 

  

 120808b NH3

120808c NH

 upstream 1 SCR 5% gas 

3

 210808c NO downstream 1 SCR 5% gas 

 downstream 1 SCR 5% gas 

 210208 NO downstream 1 SCR 5%-manual log in log book (Appendix 4.2.5b) 
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Appendix 4.2.6 Experimental data for NH3

Date:(11 august 2008) 

 gas: 2 SCR  

 110808b NH3 

 110808c NH

upstream 2 SCR 5% gas 

3

 210808c NO downstream 1 SCR 5% gas 

 downstream 2 SCR 5% gas 

 

Appendix 4.2.7 Experimental data for NH3

Date:(7 august 2008) 

 gas: 3 SCR  

 070808b NH3 

 070808c NH

upstream 3 SCR 5% gas 

3

 

 downstream 3 SCR 5% gas 

Appendix 4.2.8 Experimental data for NH3

Date:(16, 25 jun2008 & 5, 6 august 2008) 

 gas: 4 SCR  

 060808b NH3 

 060808e NH

upstream 4 SCR 5% gas 

3

 060808c NO

 downstream 4 SCR 5% gas 

2

 060808d NO

 upstream 4 SCR 5% gas 

2

 

 downstream 4 SCR 5% gas 

Appendix 4.2.9 Experimental data for 4% NH3

Date:(Trial 4% 10, 11,12,16,24 jun08/final5%gas 12, 21 august 2008) 

 gas: 1 SCR  

 100608b NH3

100608c NO upstream 1 SCR 4% gas 

 upstream 1 SCR 4% gas 

100608b NH3

100608d NO

 downstream 1 SCR 4% gas  

2

 

 downstream 1 SCR 4% gas 

 



 

 

Appendix 4.1.5 Experimental data for Urea Spray: 1 SCR

  

 
Dates: (3, 7, 9 July 2008) 

 0700708a NO2

 090708c NH

 upstream & downstream 1 SCR no spray 

3

070708b NO

 upstream 1 SCR R  

2

 090708b NH

 downstream 1 SCR 

3

 

 downstream 1 SCR L  

Appendix 4.1.5b SUM in and SUM out average for 1 SCR with spray 

150708c NH3

150708c NH

 upstream 1 SCR L 

3

090708c NH

 upstream 1 SCR R 

3

090708c NH

 upstream 1 SCR L 

3

070708d NH

 upstream 1 SCR R 

3

 

 upstream 1 SCR 

150708b NH3

150708b NH

 downstream 1 SCR Left 

3

090708b NH

 downstream 1 SCR Right 

3

090708b NH

 downstream 1 SCR L 

3

070708c NH

 downstream 1 SCR R 

3

  

 downstream 1 SCR 
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Appendix 4.1.5b  SUM in and SUM out average for 1 SCR with spray

1scr spray variance

SUM IN
refn 15/7L 15/7R 9/7L 9/7R 7/7d Data 4 CFD
spray sum1 sum2 sum3 sum4 sum5 sumINavg std dev INupper limINlower lim NO in

36 36 716 741 785 800 761 39 799 722 196
34 34 690 720 757 766 835 754 55 808 699 196
32 32 646 700 750 740 833 734 69 803 665 196
30 30 636 670 730 737 841 723 78 801 644 196
28 28 626 650 704 718 802 700 68 768 632 196
26 26 616 616 685 688 797 680 74 755 606 196
24 24 580 591 650 657 746 645 66 711 579 196
off 0 543 565 540 541 563 550 12 563 538 196

SUM OUT
refn 15/7L 15/7R 9/7L 9/7R 7/7c Data 4 CFD
spray sumA sumB sumC sumD sumE sumOUTavg std dev OUTupper OUTlower NO out

36 36 850 750 927 822 968 863 86 950 777 140
34 34 780 700 858 736 909 797 86 883 710 140
32 32 700 635 777 720 830 732 75 807 658 140
30 30 550 590 708 691 766 661 89 750 572 140
28 28 472 534 650 674 703 607 99 705 508 139
26 26 514 470 600 610 625 564 68 632 496 139
24 24 433 440 512 541 548 495 55 550 440 137
off 0 539 550 523 516 562 539 19 558 520 200

sumIN
avg, 761754

734

723
700680

645

sumOUT
avg, 863

797

732

661

607
564

495

196196196196196196196
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Dates: (1, 7,18,23,24 July 2008) 

Appendix 4.1.6 Experimental data for Urea Spray: 4 SCR 
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Appendix 4.1.6b SUM in and SUM out average for 4 SCR with spray
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Appendix 4.2.5 Experimental data for 5% NH3

Dates: (Final 5%gas 12, 21 august 2008) 

 gas: 1 SCR 
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Appendix 4.2.5b NO dw 1 SCR with 5% ammonia gas - Manual log from mexa

Date of test : 210808
Test condition 1500 rpm & 6 Bar bmep

Gas setting NO reading 1 NO reading 2 Avg 33% var
0 160 162 161 214.13

16 142 142 142 188.86
32 121 122 122 161.60
48 116 118 117 155.61
60 113 113 113 150.29
80 110 112 111 147.63
96 119 115 117 155.61
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Appendix 4.2.6 Experimental data for 5% NH3 gas: 2 SCR
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Appendix 4.2.7 Experimental data for 5% NH3 gas: 3 SCR 
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Appendix 4.2.8 Experimental data for 5% NH3 gas: 4 SCR
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Appendix 4.9.1a Excel numerical integration- 4% gas 4SCR 
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*In this appendix, portion of the time interval from 227 to 742 was not visible. 

 

The overall time interval involved of ammonia slip was from 220 to 753 seconds 

This appendix is just a preview of the whole numerical integration from 220 to 753 seconds 

For details of the ammonia slip trace, please refer to figure 4.9.1a 
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Appendix 4.9.2a Excel numerical integration- Urea spray 4SCR 
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*In this appendix, portion of the time interval from 279 to 946 was not visible. 

 

The overall time interval involved of ammonia slip was from 270 to 956 seconds 

This appendix is just a preview of the whole numerical integration from 270 to 956 seconds 

For details of the ammonia slip trace, please refer to figure 4.9.2 
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