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Abstract

We present a new open source python package, based on PyLightcurve and PyTorch Paszke et al., tailored for
efficient computation and automatic differentiation of exoplanetary transits. The classes and functions implemented
are fully vectorised, natively GPU-compatible and differentiable with respect to the stellar and planetary
parameters. This makes PyLightcurve-torch suitable for traditional forward computation of transits, but also
extends the range of possible applications with inference and optimization algorithms requiring access to the
gradients of the physical model. This endeavour is aimed at fostering the use of deep learning in exoplanets
research, motivated by an ever increasing amount of stellar light curves data and various incentives for the
improvement of detection and characterization techniques.
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1. Introduction

Exoplanets science discoveries have relied largely on our
ability to extract precise information from stellar light curves.
In the case of transiting exoplanets, this requires high precision
photometric or spectroscopic measurements, and involves a
transit model with one or several parameters to be determined.
However, transit light curves often contain other sources of
temporal variability caused by the instrument or the host star,
which need to be accounted for in a preliminary or joint
processing step. Consequently, forward modeling of transits
needs to be considered as part of the data processing pipeline
yielding the planetary parameters.

The complexity and growing amount of exoplanets light
curves hint at the use of deep learning to help alleviating the
issues encountered with traditional modeling techniques.
Indeed, tremendous progress has been made recently in time
series analysis owing to the recent development of deep
learning, producing several successful applications and promis-
ing solutions for problems ranging from time series classifica-
tion Fawaz et al. (2019) and forecasting Hewamalage et al.
(2020) to denoising and anomaly detection Chalapathy &
Chawla (1901). Among the various fields benefiting from such
technical progress, astronomy has not been an exception.
Several recent contributions to exoplanetary science (Zingales
& Waldmann 2018; Passegger et al. 2020; Yip et al. 2020 for
spectra, Shallue & Vanderburg 2018; Pearson et al. 2018;

Morvan et al. 2020 and Nikolaou et al. 2020 for photometric
light curves) involve the use of deep learning methods.
The recent successes of deep learning can be traced back to

the introduction of backpropagation as a technique which has
allowed for the efficient optimization of neural networks
Rumelhart et al. (1986). Today all major deep learning
frameworks including TensorFlow Abadi et al. (2016) and
Pytorch implement a way to automatically compute gradients
of scalar outputs of functions, with respect to their inputs and
parameters. To use and include a function in a data flow
graph created by one of the deep frameworks above, the
function must first be implemented using the buildings blocks
of the framework: the functions and the numerical objects
(multidimensional arrays, often called tensors) specific to the
framework’s language. So far, to the best of the authors’
knowledge, none of the existing transit modeling codes has
been designed to allow automatic differentiation and thereby
joint end-to-end training with artificial neural networks. This is
precisely the purpose of PyLightcurve-torch, which provides a
user-friendly transit modeling tool to facilitate the generation,
inference and optimization of transit models in a framework
compatible with deep learning modules. We chose the language
of PyTorch due to its user-friendliness, flexibility, efficiency
and growing popularity. As the PyTorch syntax is very close to
that of NumPy, it facilitates the easy conversion of NumPy
codes to PyTorch, and reduces the learning curve for research
communities who are used to scientific programming in
NumPy.

Publications of the Astronomical Society of the Pacific, 133:034505 (6pp), 2021 March https://doi.org/10.1088/1538-3873/abe6e8
© 2021. The Astronomical Society of the Pacific Printed in the U.S.A.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-8587-2112
https://orcid.org/0000-0001-8587-2112
https://orcid.org/0000-0001-8587-2112
https://orcid.org/0000-0003-3840-1793
https://orcid.org/0000-0003-3840-1793
https://orcid.org/0000-0003-3840-1793
https://orcid.org/0000-0001-8453-7574
https://orcid.org/0000-0001-8453-7574
https://orcid.org/0000-0001-8453-7574
https://orcid.org/0000-0002-4205-5267
https://orcid.org/0000-0002-4205-5267
https://orcid.org/0000-0002-4205-5267
mailto:mario.morvan.18@ucl.ac.uk
https://doi.org/10.1088/1538-3873/abe6e8
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/abe6e8&domain=pdf&date_stamp=2021-03-17
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/abe6e8&domain=pdf&date_stamp=2021-03-17
http://creativecommons.org/licenses/by/3.0/


PyLightcurve-torch1 is adapted from PyLightcurve,2 which
is one of the most efficient open-source transit modeling
packages available. PyLightcurve performs some numerical
approximations rather than solving the fully analytical transit
model to enable vectorisation of computations with NumPy
Harris et al. (2020) and gain in efficiency, thus providing a
good template for designing differentiable and scalable code.
Four different limb-darkening laws are natively available in
PyLightcurve, as well as several utilities for database access
and fitting that we are not considering here. For more details
about PyLightcurveʼs physics models, implementation and
performance.

The remainder of this article discusses the implementation
(Section 2), performance (Section 3) and applicability
(Section 4) of PyLightcurve-torch.

2. Code Design

The numerical programming code was adapted from
PyLightcurve transit modeling library. Indeed the main
functions exoplanet_orbit, transit_duration,
transit_flux_drop, transit and eclipse have been
translated to PyTorch while preserving their names, structure,
and parameters. However several major changes have been
introduced along with the conversion to PyTorch. These have
been summarized in the list below.

From NumPy to PyTorch NumPy arrays and operations
have been converted respectively to PyTorch tensors and their
corresponding operations. This means that the input parameters
of corresponding main functions must now be of type torch.
tensor and of shape broadcastable to (batch_size,)
where batch_size is the number of instances of each transit
parameter. While PyTorch tensors share many similarities with
NumPy arrays, they further allow for GPU acceleration and
automatic differentiation.

VectorisationMain functions have been further vectorised to
allow inputting 1D-arrays for each transit parameter in addition
to scalars. Expressed in another way, this allows the user to
provide batches of inputs to the main functions instead of
individual sets of parameters. In the PyTorch version of
PyLightcurve, this not only enables batch learning—i.e.,
optimization based on groups of observations considered
jointly—but also fully leverages the GPU acceleration
advantages on multi-dimensional tensors.

Flexibility of input shapes By allowing inputs of parameters
of broadcastable shapes, the use of the main functions remains
intuitively flexible, while saving memory and time in some
specific cases. Indeed, when intermediate computations can be
shared across a batch, such as the planetary positions vector for

scalar orbital parameters, only a vector of batch dimension 1 is
computed and used for later computations of transit flux drops,
even if the latter are multidimensional.
TransitModule class A class named TransitMo-

dule has been implemented to facilitate the use of transit
and eclipse functions, their optimization and embedding in
deep learning pipelines. Indeed TransitModule first
manages transit parameters and intermediate computations in
an object-oriented fashion (see Listing 1 for a basic example).
For convenience, the transit parameters passed as attributes of a
module undergo checks, type, shape and device casting to
make sure correct inputs are passed to the PyTorch functions
performing the actual transit computations. Second, Tran-
sitModule inherits the torch.nn.Module along with its
methods and parameters internal management. Furthermore, as
the main parent class of all neural networks implemented in
PyTorch, instances of torch.nn.Module can easily be
combined together, facilitating the embedding or combination
of our transit models with neural networks.

Algorithm 1. Listing 1. Basic use of Wrapper Class Tran-
sitModule Computing Transit and/or Eclipse Flux while
Inheriting torch.Module Class

from pylightcurve_torch import TransitModule
# Model definition
tm=TransitModule
(time, **params)

# time array-like object
and dict of params

tm.activate_-
gradient
(‘‘rp’’)

# gradient activation
for “rp”

# Forward transit computation
flux=tm() # with module’s defined

parameters
flux=tm
(e = 0., t0 = 3.4)

# with substituted
external parameters

# Loss and backward pass
err=loss
(flux, **data)

# loss function
evaluation

err.backward() # backward propagation
of gradients

tm.rp.grad # gradient acces for
parameter “rp”

3. Performance

Several tests were conducted to assess the performance of
PyLightcurve-torch and compare it to PyLightcurve. First of
all, a sanity check was carried out to ensure both codes provide
the same outputs when provided with the same inputs, up to to
a precision level below 0.1ppm, on average, for default
precision settings.
Two experiments were then performed with the aim of

comparing the computational efficiency of both codes on CPU

1 PyLightcurve-torch can be found on the following Github repository:
https://github.com/ucl-exoplanets/pylightcurve-torch.
2 PyLightcurve package can be found on the following repository: https://
github.com/ucl-exoplanets/pylightcurve.
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and GPU machines. In the first case the time array/tensor
length was varied while keeping fixed the number of transit
parameters, and in the second case the time array/tensor was
fixed to 1000 while the number of parameters varied. The
results are presented in Figure 1, suggesting very similar
performances for the NumPy and the torch-cpu versions of
PyLightcurve transit function. However, the GPU runs
show a significant reduction in computation time, which is no
longer increasing linearly with the input sizes but rather
plateauing under∼ 10ms for time tensor sizes smaller than 106

and batch_size smaller than ∼256. Although these specific
thresholds depend on the architecture used—which in our case
consisted of 10 CPU cores, 70 GB memory and 1 Tesla-V100
GPU core—we expect GPUs to bring significant improvements
in most configurations and use cases.

The ability to handle large data sets and maintain efficiency
while computing a transit function or its gradient opens up new
possibilities for processing exoplanet light curve data sets.
Furthermore, automatic differentiability now allows the
transit function or TransitModule to be included
dynamically in deep learning pipelines and involved in their
end-to-end optimization. The next section discusses the
potential for new applications brought by PyLightcurve-torch.

4. Applications

This section, rather than being an exhaustive list of
applications, aims to provide a quick overview of the types
of novel applications afforded by the use of PyLightcurve-torch
for designing both generative and discriminative models.

4.1. Generation

PyLightcurve-torch can be used in a static generative mode,
to efficiently simulate primary and secondary transit light
curves. In this case the gradients may not need to be activated
(static mode: requires_grad=False), depending on the
problem considered. Indeed, one can, for instance, create
artificial data sets statically and use them to train models for
various problems such as transit depth regression or event
classification. While the simulated transits, created as PyTorch
tensors, enable GPU acceleration, the conversion to NumPy
arrays is still possible and very cheap computationally, simply
by means of calling the .numpy() method available for
torch.Tensor objects.

4.2. Gradient-based Optimisation

Having an efficient access to the transit model’s output
gradient with respect to the transit parameters enables gradient-
based optimization without having to use approximate methods
to compute gradients. Since the reverse-mode automatic
differentiation (i.e., backpropagation) computes gradients
efficiently, particularly for scalar outputs, we are led to
consider the problem of scalar loss function minimization, an
integral aspect of machine learning. Any loss function can be
computed from the transit model output using differentiable
functions to allow backward gradient-optimization. PyTorch
implements a number of off-the-shelf optimisers which make
use of the first or higher order derivatives of parameters.
Moreover, several popular MCMC sampling algorithms such
as Hamiltonian Monte Carlo and NUTS (ref) also require the
availability of gradients, hence opening up the possibility for
this class of MCMC algorithms to be used to derive posterior
distributions for our transit models. Implementations of HMC

Figure 1. Execution times of PyLightcurve transit functions in NumPy and PyTorch, averaged over 50 executions. PyTorch functions have been run onto a CPU
cluster (purple curve) and a GPU core (orange curve). Left: batch size fixed to 8 while increasing the length of the input time series. Right: the input time series size
was fixed to 10000 points while increasing the batch size.
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and NUTS are available in the probabilistic programming
language Pyro Bingham et al. (2018), which is also based on
Python and PyTorch. Besides exact bayesian inference with
MCMC, it is worth noting that Pyro also provides a convenient
framework for probabilistic, flexible and deep inference of
parameters, and has been designed to be fully compatible with
PyTorch tensors, functions and modules.

4.3. Combination with Neural Networks

The flexibility afforded by the autograd package and torch
modules makes it particularly easy to connect the input and the
output of our transit model with other differentiable functions
and modules. All parameters can then be optimized in an end-
to-end mode through the computational graph automatically
built when defining and operating on the tensors. In practice,
this means that any other differentiable module or function can:

1. provide the transit parameters as input of the transit
model. A schematic example of this setup is shown in
Figure 2(a).

2. be used in parallel with the transit model to provide other
scalars, vectors or time series to be combined subse-
quently with the transit output. This setup is, for example,
suitable for time series decomposition of transit light
curves by means of generative models. A schematic
example of this setup is shown in Figure 2(b).

3. be applied to the output time series of the transit model,
transforming it to another time-series, a vector or a scalar.
Note that to perform gradient-based optimization, a loss
function outputting a scalar value will need to be at the

end of any functional flow. A schematic example of this
setup is shown on Figure 2(c).

4.4. Experiment

Let us consider a simple example of regression problem
where we use the transit module as an extra term in the
objective loss function of a neural network. As such, this
experiment falls into the case (a) discussed above, where a
neural network output is used as input to a transit model. In the
present experiment, the main task is to build a predictor for
y= RP/Rs, assuming the other transit parameters, θ, to be
known. The data set is composed of 2000 light curves
generated by PyLightcurve-torch with added Gaussian noise.
Additional details about the experimental setup are provided in
Table 1. All the lightcurves are univariate time-series with
T= 1000 uniform timesteps and parameters fixed except for the
target RP/RS and the inclination i which are sampled from
uniform distributions. Note that in this experiment i is not
included in the output targets, and that its variability is solely
aimed at increasing the complexity of RP/RS prediction. We
denote by Y the set of ground-truth targets and by the transit
model which generated the light curves.
Two identical neural network models m1 and m2 are trained

on this regression problem using different loss functions.
Indeed, m1 is only trained with a mean-squared error loss
between the target parameters y and their associated predicted

Figure 2. Schematic building blocks showing examples of combination between a neural network and differentiable transit model inputs (a) and/or outputs (b and c).
Dotted arrows indicate possible additional inputs and outputs. The circular green node represents here a non parametric operation such as item-wise multiplication or
addition. The loss function (in green) computes a scalar value from a time series in this case, optionally using some additional scalar or tensor values.
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whereas m2 is also trained to reconstruct the transit flux by
embedding the transit model as an additional term in the loss
function:

l l= + -  12 regression reconstruction( )

where:

1. regression is identical to 1 but with predicted values ŷ
from m2 instead.

2. The second term is a transit reconstruction loss, measured
as the mean-squared error between the input light curve
and the reconstructed transit light curve:
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3. λ is a scalar hyperparameter balancing the relative
importance between the two loss terms.

The neural network architecture chosen consists of 4 convolu-
tional blocks followed by 2 linear layers. Both models are
trained using the Adam optimiser for 20,000 steps. Even
though the networks and λ parameters would be suited for
hyperparameter optimization, finding the optimal solution to
this problem would go beyond the scope of this study, and here

we simply present the results for a comparison of cases λ= 0
( = =  2 regression 1) and λ= 0.5 (equal contributions from
regression and reconstruction).

The performance of both models is measured with the mean-
squared-error of the predicted transit depths. The evolution of
this metric evaluated on a validation subset of 400 lightcurves
during learning is presented in Figure 3, which shows a
significantly lower validation error for the model m2 trained
with the transit reconstruction term in the loss function. Indeed
this model reaches m1ʼs final performance far before m1 (in
only about 2000 epochs) and continues to further improve its
performance until the maximum number of epochs (20000) is
reached. This indicates a clear advantage given to the model
informed from the transit function and jointly trained with the
proxy task of reconstructing the transit shape.

5. Summary and Discussion

In this article we outlined several possible uses of
PyLightcurve-torch for generating and optimizing transits as
well as embedding them in machine learning flows optimized
end-to-end by gradient descent. While these examples are
aimed at suggesting basic use-cases, the list is not exhaustive
and various other uses might be designed in the future.
Furthermore, the rich ecosystem of open-source libraries
building up in PyTorch should provide ideas and help in the
development of more complex applications, making use of
existing support—e.g., for deep probabilistic programming,
deep Gaussian processes, Bayesian hyperparameter optim-
ization, gradient boosting and various implemented neural
networks architectures.
By providing a differentiable and GPU-accelerated transit

code, PyLightcurve-torch aims to facilitate and widen the use
of deep learning in exoplanets research. It bridges the gap

Table 1
Physical and Training Parameters used for the Regression Experiment

Parameters Distribution Values

Ratio of radii RP/RS uniform 0.01–0.1
Inclination i (deg) uniform 87.5–92.5
Limb-darkening method constant linear
Limb darkening coefficient constant 0.2
Normalised semimajor axis a/RS constant 15
Argument of periastron (deg) constant 50
Eccentricity e constant 0
Gaussian noise standard deviation constant 10−5

Light curve lengths T (points) constant 1000
Light curves time span (days) constant 10
Mid transit time from start (days) constant 5
Orbital period P (days) constant 100
Training size L 1200
Validation size L 400
Test size L 400
Optimiser L Adam
Initial Learning Rate steps of 10−6 10−6

–10−5

Max epochs constant 20,000

Note. Training, validation and test sizes indicate the number of light curves
randomly generated to build the training, validation and test sets respectively.
The distributions the parameters are sampled from are identical for the three
data sets. Whenever the distribution is not constant, the values indicate the
extremes of the corresponding sampling ranges.

Figure 3. Validation mean-squared errors for RP/RS prediction with (orange
curve) and without (blue curve) including a transit reconstruction term in the
traning loss function. The thicker orange and blue curves merely show the
moving median of the respective validation errors with a window size of 100
steps.

5

Publications of the Astronomical Society of the Pacific, 133:034505 (6pp), 2021 March Morvan et al.



between the precision of physical transit models and the
scalability of neural networks, allowing for the efficient
modeling of thousands of transit light curves now commonly
available with exoplanets transit surveys such as Kepler
Borucki et al. (2010) and TESS Ricker et al. (2015) from
space or HATNet Bakos et al. (2004), SuperWASP Pollacco
et al. (2006) and NGTS Wheatley et al. (2018) from the
ground. Conversely, we hope that this code will also make
exoplanets science more accessible to the machine learning
community and more generally inspire the development of
physics-based deep learning applications.
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