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ABSTRACT

Topological photonics aims to utilize topological photonic bands and corresponding edge modes to implement
robust light manipulation. Importantly, topological photonics provide an ideal platform to study nonlinear
interactions. In this paper, some recent results regarding nonlinear interactions of one-way edge-modes in
frequency mixing processes in topological photonic nanostructures are reviewed. More specifically, we will discuss
the band topology of 2D photonic crystals with hexagonal symmetry and demonstrate that second-harmonic
generation (SHG) and third-harmonic generation can be implemented via one-way edge modes. In addition,
four-wave mixing of topological plasmon modes of graphene plasmonic crystals and SHG upon interaction of
valley-Hall topological modes of all-dielectric photonic crystals will be discussed.
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1. INTRODUCTION

A key development in condensed matter physics in recent years has been the discovery of topological insulating
materials.1,2 These materials feature gapped bulk and gapless edge modes, which propagate unidirectionally
along the system surface, thus providing opportunities for robust wave manipulation protected by topology.
Related to these developments, topological photonics aims to extend these ideas to the realm of photonics,3–9

which holds great promises for new optical devices by exploiting robust, scattering-free light propagation and
control. As the concept of energy band exists at the single particle level both in condensed matter physics
and photonics, the goal of realizing photonic topological insulators can be easily achieved in the linear optics.
Indeed, many topological phenomena of electromagnetic waves in a linear medium can be understood by mapping
Maxwell and Schrödinger equations.10,11

Photonics, however, has several features not present in solid-state physics. For instance, optical gain and loss
can be utilized to implement non-Hermitian photonics based on parity-time symmetry.12 Another well-known
feature is the existence of nonlinearity in many optical materials, which gives rise to a variety of important
phenomena, including the formation of solitons, modulation and all-optical switching of optical signals, and
frequency conversion for the generation of ultrashort pulses.13 Thus one expects new physics to emerge when
adding nonlinearity to photonic systems with nontrivial topological properties. Indeed, it has been demonstrated
that lattice edge solitons arise14,15 when a photonic topological insulator is embedded in an optical medium with
Kerr nonlinearity. The possibility to enhance the conversion efficiency of harmonic generation in the presence of
topological edge states has also been studied.16–18 Moreover, traveling-wave amplifiers,19 topological sources of
quantum light,20 nonlinear control21 and mapping22 of photonic topological edge states have also been achieved.

Valley degree of freedom, which is associated to the conduction-band minima (or valence-band maxima) in
graphene-like two-dimensional (2D) materials,23 has recently been introduced to photonics,24 too. These 2D
materials exhibit nontrivial Berry curvature distribution in the momentum space around each valley, which
gives rise to a valley-dependent topological index associated to the integral of Berry curvature around a valley.
Furthermore, a domain-wall interface separating two topologically distinct valley photonic crystals (PhCs) can
support valley-momentum locked modes localized at the interface, similar to the quantum-valley Hall effect.24

Until recently, valley-Hall photonic modes have been mostly studied in bulk materials, being less explored
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in 2D photonic platforms, including graphene.25,26 This 2D material is becoming a promising platform to
achieve passive and active topologically protected plasmonic modes,27–29 due to its high carrier mobility and
long relaxation time.30,31

This invited paper is organized as follows. In the next section we present the physical properties of
nonlinear interaction of topological modes of PhCs and use second- and third-harmonic generation (SHG, THG)
as illustrative examples. Then, in Sec. 3, we discuss the four-wave mixing (FWM) of topological modes of
graphene metasurfaces, whereas in Sec. 4 the topic of SHG via interaction of topological valley-Hall kink modes
is addressed. Finally, in the last section we summarize the main conclusions and present some perspectives on
future developments in this rapidly evolving area of research.

2. NONLINEAR INTERACTION OF TOPOLOGICAL MODES OF PHOTONIC
CRYSTALS

In this section we present the main features of the nonlinear interaction of topological modes of a certain class
of PhCs.32 Thus, we consider triangular PhCs whose unit cell contains a cylinder with radius, r, as depicted in
Fig. 1(a). Lattice structures with hexagonal symmetry but having more cylinders in each unit cell, like honeycomb
and Kagome lattices with two and three cylinders, respectively, could potentially be employed, too. The second
step of our design procedure is to include magnetic and nonlinear materials. To guide potential experimental
implementations, we consider cylinders with low-permittivity (ε1), non-magnetic nonlinear material immersed in
a magnetic background material with high-permittivity (ε2). Note that the permittivity of the cylinders has to
be lower than that of the background to ensure that Dirac cones exist.

We then consider the topological properties of the bulk frequency bands of the non-magnetic (µ = µ0) PhCs
whose first Brillouin zone is shown in Fig. 1(b). Figure 1(c) shows the photonic band structure of the PhC with
r = 0.4a, ε1 = 3, and ε2 = 18. From this figure one can see that there is a Dirac cone between the first and second
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Figure 1. (a) The unit cell with lattice constant a of the PhC, where r and ε1 are the radius and relative permittivity of the
cylinders, respectively, and ε2 and µi are the relative permittivity and off-diagonal component of the relative permeability
of the background magnetic material, respectively. (b) The first Brillouin zone with the symmetry points, Γ, K, K′, and
M . (c) Photonic band structure of the PhC, computed for r = 0.4a, ε1 = 3, ε2 = 18, and µi = 0. (d) Nontrivial topological
bands for µi = 0.8, where the Chern number of each band and the gap Chern numbers are provided. (e) Photonic band
structure of a 1D PhC strip that is periodic along the x-axis and has finite size of 30 unit cells along the y-axis. The other
simulation parameters are ε1 = 3, ε2 = 20, and µi = 0.8. The edge modes in the three gaps around ω = 0.2, 0.4, and 0.6
are depicted by red and blue lines and are formed at the top and bottom edges of the PhC, respectively. (f) Field profiles
of the three one-way edge modes at ω = 0.2, 0.4, and 0.6.
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bands at K and K ′ points. The Chern number of each band is zero in systems with time-reversal symmetry,33

so such systems are topologically trivial. A common way to break time-reversal symmetry and generate bands
with nonzero Chern number is to use magnetic materials, where the permeability tensor of the material under
an external magnetic field along the z-axis possesses off-diagonal components in the x− y plane,

µ =

 µ0 iµi 0
−iµi µ0 0

0 0 µ0

 . (1)

Here, we set µ0 = 1 and take µi as a parameter to quantify the effect of time-reversal symmetry breaking.
Figure 1(d) shows the band structure for µi = 0.8, where one can see that the Dirac cone is gapped.

In the next step of our design of a PhC suited to investigate the nonlinear interaction of topological modes,
we choose the proper parameters to create photonic gaps suitable to study SHG and THG. According to the
principle of bulk-edge correspondence in systems with finite size, when the gap has nonzero Chern number,
one-way edge modes will emerge in the gap. We present in Fig. 1(e) the photonic band structure of a PhC strip
with width of 30 unit cells and periodic along the longitudinal direction. This figure illustrates the emergence
of various edge states across bulk photonic gaps. For clarity, we mark in red and blue the edge states formed
on the top and bottom edges of the PhC strip, respectively. The field profiles of the edge states at frequencies
ω = 0.2, Ω2 = 2ω = 0.4, and Ω3 = 3ω = 0.6, presented in Fig. 1(f), highlight the key feature of the edge state,
namely the exponential decay of the field away from the edge.

The full-wave dynamics of the nonlinear interaction of topological edge-modes (SHG and THG) were
determined numerically using COMSOL Multiphysics. Thus, we defined two “Electromagnetic Waves, Frequency
Domain” models, one for the fundamental frequency ω0 and one for the second (third) harmonic frequency Ω2

(Ω3). We assumed that for both the SHG and THG cases the nonlinear susceptibilities are diagonal tensors,
the diagonal elements being χ2 and χ3, respectively. In the case of the SHG, the nonlinear polarizations at
the FF and SH are:34 Pω0

NL,z = 2χ2E2zE
∗
1z and PΩ2

NL,z = χ2E
2
1z, respectively, whereas for the THG they are:34

Pω0

NL,z = 3χ3E3zE
∗
1z

2 and PΩ3

NL,z = χ3E
3
1z, respectively. In the following, we mainly focus on the discussion of

SHG, as the results of THG can be understood similarly.

We consider cylinders made of homogeneous and isotropic nonlinear material with nonlinear second-order
susceptibility of χ(2) = 10−21 C V−2. The pump electric field E1 is induced by an external source whereas E2

by the nonlinear polarization at the SH. From Figs. 2(a), one can observe that the field profiles of E1 and E2

are indeed the same as the profiles of the edge modes shown in Fig. 1(f), indicating that the two edge modes
are indeed nonlinearly interacting. The physics of this nonlinear process can be captured by the period of
spatial oscillations of the SH field E2, which is determined by the wave-vector mismatch ∆k = kSH − 2kFF

E1

E 2

1.5 2.0 2.5 3.0
0.36

0.38

0.40

0.42

0.44

k

2 0

2

0.38 0.39 0.4 0.41 0.42 0.43

15

25

35

k2

simulation
2 / k

0.38 0.430.05

0.15

2.5 3.0 3.5 4.0 4.5

0.58

0.60

0.62

0.64 3 0

3

k
0.58 0.6 0.62 0.64

20
40
60
80
100
120 simulation

2 / k

0.58 0.65
0.

0.2
3 k

(a)
(b)

(c)

(d)
(e)

Figure 2. (a) Field profile intensities E1 and E2 at ω = 0.2 and Ω2 = 2ω = 0.4, respectively. The SHG is simulated with
χ(2) = 10−21 C V−2. (b) The edge modes at FF ω0 (plotted in terms of 2ω0) and for the SHG, Ω2. (c) Theoretically
calculated Λ2 = 2π/∆k using CMT and numerically extracted oscillation period of E2. (d), (e) The results corresponding
to (b), (c), respectively, but calculated for the THG.
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(∆k = kTH − 3kFF for THG). As a result, we can compare the numerically extracted oscillation period of E2

with the theoretical prediction of Λ2 = 2π/∆k, thus confirming that the key physics of nonlinear frequency
conversion processes is validated by our simulations.

These conclusions were further validated using a much larger simulation domain, the corresponding results
being presented in Figs. 2(b) and 2(c). It can be seen that there is an excelent agreement between the predictions
of the coupled-mode theory32 (CMT) and direct numerical simulations. We calculated ∆k for all the frequencies
of the interacting edge modes from Fig. 2(b) and present the theoretically calculated and numerically extracted
oscillation period Λ2 in Fig. 2(c). An excellent agreement between the two results can be observed, which
confirms that phase matching is indeed at work in our photonic system and SHG purely via nonlinear interaction
of edge modes occurs. We also confirm the edge mode mediated THG as shown in Figs. 2(d) and 2(e), where
the discrepancy in the latter figure between the numerical and theoretical results is due to the limitations of
numerical simulations at very small ∆k.

3. FOUR-WAVE MIXING OF TOPOLOGICAL MODES OF GRAPHENE
METASURFACES

The nonlinear system considered in this section is illustrated in Fig. 3(a), and comprises of a graphene plasmonic
metasurface consisting of a hexagonal periodic nanohole array with lattice constant a and air hole radius r placed
in a static magnetic field. Due to the time-reversal-symmetry breaking induced by the magneto-optical response
of graphene under an external magnetic field, this plasmonic system could possess a topological bandgap. In
order to induce a FWM process,29 the system is excited by an external source at the pump frequency ωp. Due to
the strong third-order nonlinearity of graphene, a degenerate FWM process could take place, where two photons
in a pump mode will generate a pair of photons at the signal and idler frequencies, ωs and ωi, respectively. As
a result, the energy of the pump mode is transferred to the signal and idler modes, leading to the pump decay
and the amplification of the signal and idler. More importantly, this degenerate FWM process is topologically
protected by the chiral nature of the edge plasmons.

The projected band diagrams along kx, determined for B = 0 and B = 5 T, are presented in Fig. 3(b). It
can be seen that a bandgap opens when one applies an external static magnetic field (B 6= 0). Moreover, in
the band diagrams of Fig. 3(b) there are two edge modes at the top (red) and bottom (blue) boundaries of the
finite graphene system. These two edge modes connect the bulk bands located above and below the bandgap,
and cannot be moved out of the bandgap into the bulk bands as long as the bandgap exists. In other words,

Figure 3. (a) Geometry of the finite graphene metasurface, where the number of unit cells (green dashed frame) is finite
along the y-axis and infinite along the x-axis. (b) Projected band diagrams of the metasurface at B = 0 and B = 5 T,
where the edge modes on the top and bottom boundaries are depicted by red and blue curves, respectively. (c) The field
profile at the signal frequency, νs = 13.72 THz. (d) The field profile at the idler frequency, νi = 12.62 THz. (e) Dependence
on the propagation distance of the mode power of the pump, signal, and idler corresponding to the field profiles shown in
(c) and (d), determined using the CMT when the FWM process is phase-matched. Also shown in the insets are the same
mode powers determined using the CMT and full-wave simulations. (f) The same as in (e), but corresponding to a case
when the FWM interaction is not phase-matched.
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they are robust and defect-immune. Since the gap Chern number is −1 (the magnitude indicates the number
of topological edge modes, whereas the sign shows the direction of propagation), there is only one topologically
protected edge mode for each edge termination.

The dynamics of the FWM process and its main physical properties are summarized in Figs. 3(c)–3(f). Note
that in these calculations graphene losses are neglected, but the overall qualitative picture remains unchanged
when they are added. It can be seen in Figs. 3(c) and 3(d) that, as a result of the nonlinear FWM interaction,
the signal is amplified upon propagation whereas an edge mode is generated at the idler frequency. Moreover,
since the frequencies of all the interacting edge modes are located in the topological bandgap, both signal and
idler modes are topologically protected and exhibit unidirectional propagation along the system edge. The FWM
process can be further, quantitatively investigated by calculating the dependence on the propagation distance of
the power carried by the three edge modes. The results of these calculations are summarized in Figs. 3(e) and
3(f), and correspond to the case of near phase-matching and a case when the FWM process is not phase-matched,
respectively. In the latter case, the system parameters are νp = 13.03 THz, νs = 14.05 THz, νi = 12.01 THz, and
∆κ = 1.75× 10−2.

There are several important ideas revealed by the results presented in Figs. 3(e) and 3(f). First, the power
of both the signal and idler modes is amplified upon propagation, due to the energy conversion from the pump
mode. Second, the growth rate of signal and idler modes in the case of the nearly phase-matched FWM is larger
than when the FWM interaction is not phase matched, which means that the energy conversion is more efficient
in the former case. Third, the plots presented in the insets of Figs. 3(e) and 3(f) clearly show that the predictions
of the CMT agree very well with the rigorous results obtained using full-wave simulations, despite the fact that
the optical fields at the three frequencies are strongly confined at deep-subwavelength scale.

4. SECOND-HARMONIC GENERATION VIA INTERACTION OF TOPOLOGICAL
VALLEY-HALL MODES

To study the SHG via interaction of topological valley-Hall modes, we consider a 2D honeycomb PhC made of
dielectric cylinders with radius r1 and r2, as per Fig. 4(a), whose unit cell is shown in Fig. 4(b). The cylinders
are made of nonlinear material with dielectric constant ε and second-order nonlinear susceptibility χ(2). The
transverse magnetic modes of the honeycomb PhC possess Dirac points between the first and second bands.35 In
Fig. 4(c) we show the corresponding band structure of the PhC, determined for r1 = r2, from which one can see
the existence of double Dirac points. In an all-dielectric implementation, the inversion symmetry can be broken
by using a unit cell containing cylinders with different radius. We show in Fig. 4(d) the band structure of the
PhC with r1 = 0.18a and r2 = 0.22a, from which one can see the gapping out of the Dirac points by forming
valley gaps. The band structure of a kink-type domain wall interface is presented in Fig. 4(e). The two sets of
kink modes, depicted in red and blue, correspond to the two ways to construct the interface. One can see that,
the kink modes within the two valley gaps have opposite slopes at a specific valley.

For convenience of illustrating the SHG, we present both the fundamental and second-harmonic kink modes
in the second valley gap, see Fig. 4(f). A complication in the current all-dielectric PhC structure stems from the
fact that, as the system has time-reversal symmetry, at each frequency there are two kink modes (corresponding
to the two valleys at K and K ′) for both the fundamental and the second-harmonic components. Although
one can excite the fundamental wave unidirectionally exploiting the inherent chirality of the kink modes, e.g.,
by using sources of either right- or left-circularly polarized light,25,26 generally the generated second-harmonic
waves will have both forward- and backward-propagating components. A typical example is shown in Fig. 4(g),
where the three kink modes participating in the nonlinear process and the frequency are indicated in Fig. 4(f)
by dots and the blue line, respectively. While the fundamental wave at k̄f is launched unidirectionally towards
right (with the source marked by the arrow), from the field intensity of the harmonic wave |E2|, one can see that
both forward- and backward-propagating waves are generated.

5. CONCLUSION

In conclusion, we have presented topology-protected nonlinear frequency conversion processes via one-way edge
modes of topological photonic crystals. In addition, we discussed the physics of a topologically protected nonlinear
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Figure 4. (a) Schematic of the system. (b) Unit cell of the PhC, containing two cylinders of nonlinear material with radius
r1, r2, dielectric constant ε = 12 and χ(2) = 10−21CV−2. (c) The existence of double Dirac points (marked by red and
blue dots) of the PhC at r1 = r2 = 0.2a. (d) The same as in (c), but calculated for r1 = 0.18a and r2 = 0.22a. (e) Band
structure of a kink-type domain wall interface separating two PhCs with r1 = 0.2a, r2 = 0.23a, which are mirror symmetric
to each other (see the inserts). (f) Dispersion curves used for the SHG, determined for r1 = 0.19a and r2 = 0.24a. Shaded
grey area corresponds to bulk modes whereas the light blue indicates the frequency matching window. (g) Intensities of
the fundamental (E1) and second-harmonic (E2) waves at the frequency marked by the blue line in (f).

four-wave mixing process in a graphene metasurface, showing that a topological bandgap as wide as several
terahertz can be created in the metasurface under a strong static magnetic field. Moreover, the analysis of
the dispersion properties of the topologically protected edge modes revealed that four-wave mixing interaction is
efficiently phase matched in a large domain of the parameter space of the system. Finally, we have also illustrated
bi-directional second-harmonic generation via nonlinear interaction of topological valley-Hall kink modes within
two valley gaps in all-dielectric photonic crystals. Importantly, other nonlinear interactions of topological modes,
such as sum- and difference-frequency generation, high-harmonic generation, and cross-phase modulation, can
be readily implemented within the photonic platforms discussed here.
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