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Abstract

Beliefs and decisions are often based on confronting models with

data. What is the largest “fake”correlation that a misspecified model

can generate, even when it passes an elementary misspecification test?

We study an “analyst” who fits a model, represented by a directed

acyclic graph, to an objective (multivariate) Gaussian distribution.

We characterize the maximal estimated pairwise correlation for generic

Gaussian objective distributions, subject to the constraint that the es-

timated model preserves the marginal distribution of any individual

variable. As the number of model variables grows, the estimated cor-

relation can become arbitrarily close to one, regardless of the objective

correlation.
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1 Introduction

Quantifying the correlation between random variables is a problem that pre-

occupies decision makers and scientific researchers alike, for purposes of diag-

nostication, prediction or causal inference. In some cases, agents are capable

of (and comfortable with) learning correlations directly from observational

data. In other cases, they estimate them indirectly with the help of models.

The use of models - whether informally by everyday decision makers or more

formally by researchers - has several motivations. Belief in a model allows

us to extrapolate from incomplete or noisy data. Models are instrumental

in drawing causal inferences from observational data. Finally, as simplified

representations of complex phenomena, models help perceiving and commu-

nicating about them.

And yet, just as a correct model is valuable for all these reasons, a wrong

model can derail decision makers and scientific researchers (or their audi-

ences). This paper poses the following theoretical question: To what extent

can a misspecified model lead to a distorted estimate of pairwise correlations?

There are several reasons to be interested in this question. First, individ-

uals and policy makers are often guided by models. When such models are

wrong, we would like to get a bound on the magnitude of the resulting de-

cision errors. Models that generate larger distortion of correlations between

certain key variables tend to induce larger decision errors. Our paper thus

introduces worst-case analysis into the literature on decision making under

misspecified models (for a few milestones in this literature, see Piccione and

Rubinstein (2003), Jehiel (2005), Eyster and Piccione (2013) and Esponda

and Pouzo (2016)).

Second, politicians and pundits often use false narratives (which Eliaz

and Spiegler (2018) formalize as misspecified causal models) to exaggerate

the perceived impact of policies and attribute spurious credit/blame for social

outcomes. Our exercise helps quantifying the extent to which they can do

so. Relatedly, when multiple contending models address a social issue, those

that predict extreme effects are more likely to grab public attention. Models

that maximize distorted correlations survive this kind of “natural selection”
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(this idea is close in spirit to the notion of “competing models” in Montiel

Olea et al. (2018)).

Finally, scientific researchers often aim to persuade their audience of di-

agnostic, predictive or causal relations between variables. Their motive could

be that they serve a policy maker with a particular agenda (e.g. showing that

cutting taxes fosters economic growth); or that they had staked their repu-

tation on a claim that strongly links two variables; or that they may want to

make a splash with a strong finding. Such incentives may lead to (possibly

subconscious) self-serving model selection. For expositional convenience, we

focus on this “bad researcher”metaphor.

In our model, an analyst wishes to demonstrate to a lay audience that

two given variables are strongly correlated (we will bounce between the diag-

nostic, predictive and causal interpretations of this correlation). The analyst

has statistical data about the joint behavior of many variables in addition to

the two target variables. His method is to propose a model, fit it to the data

and use the estimated model to compute pairwise correlations. The analyst

is unable (or unwilling) to tamper with the data, and his method of fitting

the model to the data is “legitimate”. However, he is free to choose the vari-

ables that enter the model and how they operate in it. Thus, the researcher

“does everything right”given the model; his vehicle for “cheating”is model

misspecification.

Of course, in order for our exercise to have content, it must define the

domain of models our analyst can use. We assume that the analyst is re-

stricted to models that take the form of directed acyclic graphs (DAGs).

This class of models is widely used in various scientific areas (see Morgan and

Winship (2015)) and Artificial-Intelligence systems (see Koller and Friedman

(2009)). In Gaussian environments, DAGs are equivalent to recursive sys-

tems of linear-regression equations - a special case of simultaneous-equations

models, which are familiar to economists from their introductory economet-

rics courses. DAGs have a natural interpretation as causal models (Pearl

(2009), Sloman (2005)). Thus, when our analyst fits a DAG to objective

data, he essentially interprets the data through a causal model. Finally,

Spiegler (2016,2020) showed how important families of misspecified models

3



in the literature (Jehiel and Koessler’s (2008) analogy-based expectations in

static games, Eyster and Rabin’s (2005) “cursed” beliefs, or Mailath and

Samuelson’s (2020) “model-based inference”) can be recast in the language

of DAGs. From this point of view, DAGs are a convenient “model of mis-

specified models”.

We can now sharpen our original question. Given that the objective dis-

tribution is Gaussian; that the objective (Pearson) correlation between the

target variables is r; and that the analyst can use a DAG-represented model

with up to n variables; how large can the estimated correlation between the

target variables be? We impose one constraint on the analyst: His estimated

model cannot distort the marginal distribution of any individual variable. We

interpret this constraint as an elementary “misspecification test” that an

unsophisticated audience could implement, since monitoring individual vari-

ables (unlike their comovement) is relatively straightforward.

We show that subject to this constraint, the upper bound on the estimated

correlation for generic Gaussian objective distributions is(
cos

(
arccos r

n− 1

))n−1
(1)

This upper bound is attained by a simple, n-length causal chain that connects

the two target variables; and a selection of variables that are all different

linear combinations of two, independent Gaussian variables. Formula (1)

is strictly increasing in n. That is, cheating with larger models is easier.

Indeed, when n→∞, the expression converges to 1 for any r ∈ [−1, 1).

An Example: “Marker hacking”

To illustrate our exercise, imagine an analyst who has access to an arbitrarily

large sample documenting the joint distributions of (x1, x2) and (x2, x3), yet

lacks direct data about the joint distribution of (x1, x3). He assumes that

x1 has an effect on x3 only through a mediator x2, such that x1 and x3 are

statistically independent conditional on x2. This assumption is represented

by the DAG x1 → x2 → x3.

For a real-life situation behind this example, consider a pharmaceutical
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company that introduces a new drug and therefore has a vested interest in

demonstrating a large correlation between drug dosage (x1) and the ten-year

survival rate associated with some disease (x3). This correlation cannot be

directly measured in the short run. However, past experience reveals the

correlations between the survival rate and the levels of various biomarkers

- each of which can serve as the intermediate variable x2. The correlation

between these markers and drug dosage can be measured experimentally in

the short run. The model x1 → x2 → x3 captures a research strategy that

treats x2 as a “surrogate marker”for x3. Yet the company’s R&D unit may

select the marker x2 opportunistically, in order to get a large estimated effect.

Suppose the objective joint distribution over the three variables is Gaussian.

Let ρij denote the objective correlation between xi and xj. Suppose ρ13 = 0

- i.e., x1 and x3 are objectively uncorrelated. In contrast, the estimated cor-

relation ρ̂13, given the analyst’s model, is ρ̂13 = ρ12 ·ρ23. It is easy to see how
the model can generate spurious estimated correlation between x1 and x3.

All the analyst has to do is select a variable x2 that is positively correlated

with both x1 and x3, such that ρ12ρ23 > 0.

We refer to this opportunistic selection of x2 as “marker hacking”. The

literature on surrogate markers refers to the possibility that ρ̂13 > 0 even

though ρ13 ≤ 0 as the “surrogate paradox”(e.g., see VanderWeele (2015, pp.
217-228)). Yet we are unaware of previous writings on the possibility that

researchers will leverage the paradox via marker hacking, or on the magnitude

of the errors that marker hacking can lead to.

This brings us to the following question: How large can ρ̂13 be? Intu-

itively, since x1 and x3 are objectively uncorrelated, selecting x2 to raise ρ12
will lower ρ23. Formally, consider the objective correlation matrix:

1 ρ12 0

ρ12 1 ρ23

0 ρ23 1

By definition, this matrix is positive semi-definite. This property is charac-

terized by the inequality (ρ12)
2 + (ρ23)

2 ≤ 1. The maximal value of ρ12ρ23
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subject to this constraint is 1
2
, hence this is the maximal false correlation

the model can generate. This bound is attained if we define x2 to be a de-

terministic function of x1 and x3, x2 = (x1 + x3)/
√
2. Thus, while a given

misspecified DAG-represented model may generate spurious correlation be-

tween objectively uncorrelated variables, there is a limit to how far it can

go.

What is the significance of this upper bound on ρ̂13? As the “marker

hacking”scenario suggests, we have in mind situations in which the analyst

can select x2 from a large pool of potential auxiliary variables. In the current

age of “big data”, analysts have access to datasets involving many covariates.

When the analyst has discretion over which variables will enter the model, he

can generate a false correlation that approaches the theoretical upper bound.

To illustrate this claim, we examined a database compiled by the World

Health Organization and collected by Reshef et al. (2011).1 This database

contains hundreds of health and socioeconomic variables about all countries.

Let the target variables x1 and x3 be urban population and liver cancer

deaths. Their objective correlation in the database is 0.05. If we select x2
to be the variable coal consumption, we obtain ρ̂13 = 0.43, far above the

objective value and close to the theoretical upper bound. This selection of

x2 has the added advantage that the model suggests a plausible-sounding

causal mechanism: Urbanization causes cancer deaths via its effect on coal

consumption. The numerical illustration shows that the upper bound on ρ̂13
may have real-life relevance when researchers have substantial freedom to

“fish for mediating variables”.

2 The Model

Let p be an objective probability measure over n variables, x1, ..., xn. Assume

p is multivariate normal. For every A ⊂ {1, ..., n}, denote xA = (xi)i∈A.

Without loss of generality, the marginal of p on every variable has zero mean

and unit variance. We use ρij to denote the Pearson coeffi cient of correlation

1The variables are collected on all countries in the WHO database (see
www.who.int/whosis/en/) for the year 2009.
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between the variables xi, xj, according to p. In particular, denote ρ1n = r.

The distribution p is fully identified by the covariance matrix (ρij). Note

that we have presented the n variables and the distribution p as given, for

the sake of expositional convenience. However, we have in mind situations

in which the variables x2, ..., xn−1 are chosen opportunistically by an analyst

from some large pool. This means that effectively, the analyst chooses p from

a large set of Gaussian distributions for which ρ1n = r.

A directed graph is a pair G = (N,R), where N is a set of nodes and R ⊂
N×N is a pair of directed links. We assume throughout that N = {1, ..., n}.
With some abuse of notation, R(i) is the set of nodes j for which the DAG

includes a link j → i. We restrict attention to acyclic directed graphs (DAGs)

- i.e. graphs that do not include directed paths i→ j → · · · → i.

A node i ∈ N is ancestral if R(i) is empty. A node i ∈ N is terminal if

there is no j ∈ N such that i ∈ R(j). A DAG (N,R) is perfect if whenever
i, j ∈ R(k) for some i, j, k ∈ N , it is the case that i ∈ R(j) or j ∈ R(i). A
subset of nodes C ⊆ N is a clique if for every i, j ∈ C, i ∈ R(j) or j ∈ R(i).
We say that a clique is maximal if it is not contained in another clique. We

use C to denote the collection of maximal cliques in a DAG. Observe that if
(N,R) is perfect, then R(i) is a clique for every i ∈ N .
We consider an analyst who fits a DAG-represented model to the objec-

tive distribution. Following the literature on Bayesian networks (Cowell et

al. (1999), Koller and Friedman (2009), Pearl (2009)), there are two primary

interpretations for such models. First, a DAG can be viewed as a representa-

tion of conditional-independence assumptions. E.g., the DAG x1 → x2 → x3

represents the assumption x1 ⊥ x3 | x2. Second, a DAG has a natural in-

terpretation as a causal model, such that directed links represent postulated

direct causal influences. For this reason, Pearl (2009) used DAGs as a plat-

form for a systematic theory of causal inference, while psychologists (see

Sloman (2005)) used them as representations of people’s intuitive causal per-

ceptions. Thus, a DAG can be viewed as a model that imposes assumptions

about the causal relations between the model’s variables.

Given an objective distribution p over x1, ..., xn and a DAG G, define the
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Bayesian-network factorization formula:

pG(x1, ..., xn) =

n∏
k=1

p(xk | xR(k)) (2)

For instance, when G : x1 → x2 → x3,

pG(x1, x2, x3) = p(x1)p(x2 | x1)p(x3 | x2)

Note that pG is a well-defined probability distribution. We say that p is

consistent with G if pG = p.

The distribution pG formalizes the notion of imposing a DAG-represented

model on objective data (see Cowell et al. (1999) or Koller and Friedman

(2009)). Hence, we refer to pG as the “estimated model”. If p were consistent

withG, it would be legitimate to write it according to the R.H.S of (2). When

p is inconsistent with G, pG distorts p.2 As long as p has full support, pG
induces well-defined marginal and conditional distributions, as well as the

estimated (Pearson) coeffi cient of correlation between any pair of variables

xi and xj, which we denote ρ̂ij. We use V arG(xk) and CovG(xi, xj) to denote

the variance of xk and covariance between xi and xj that are induced by pG.

We say that pG satisfies the Undistorted Marginals Constraint (UMC) if

the induced marginal distribution pG(xi) coincides with the objective mar-

ginal distribution p(xi) for every i = 1, ..., n. Since p is assumed to be

Gaussian, UMC is equivalent to requiring that pG(xi) has zero mean and

unit variance for every i.

To motivate this constraint, suppose the analyst’s interest in pairwise

correlations arises from diagnostication or prediction tasks. An unsophisti-

cated audience cannot be expected to discipline the analyst’s opportunistic

model selection with elaborate tests for model misspecification that involve

conditional or unconditional correlations. However, monitoring individual

variables is a much simpler task than monitoring correlations. E.g., it is

relatively easy to disqualify an economic model that predicts highly volatile

2Thus, as in Spiegler (2016), G can be viewed as a function that systematically trans-
forms any objective distribution p into a subjective distribution pG.
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inflation if observed inflation is relatively stable. Likewise, a climatological

model that underpredicts temperature volatility loses credibility, even for a

lay audience. Beyond this justification, we simply find it intrinsically inter-

esting to know the extent to which misspecified models can distort pairwise

correlations without distorting marginals.

Comment: The Gaussianity assumption

Each term p(xk | xR(k)) in (2) records a conditional distribution. The Gaus-
sianity assumption means that this term can be written as a linear-regression

equation:

xk =
∑
i∈R(k)

βikxi + εk

where the βik’s are obtained by applying Ordinary Least Squares to p.

This observation means that we could equivalently describe the analyst’s

procedure as estimating a recursive system of linear regression equations (by

“recursive”we mean that a R.H.S variable on one equation cannot appear as

the L.H.S variable of a subsequent equation). Under this description, (ρij)

is a suffi cient statistic for p as a result of the analyst’s linearity assumption,

and so we need not assume that p is Gaussian. The proof of our main result

will make use of this equivalence (for more on Gaussian Bayesian networks,

see Koller and Friedman (2009, Ch. 7)).

For instance, consider the DAG G : x1 → x2 → x3. The terms p(x2 | x1)
and p(x3 | x2) are given by OLS estimators of the linear-regression equations

x2 = αx1 + ε2

x3 = βx2 + ε3

such that

x3 = αβx1 + βε2 + ε3

We will see in the proof of our main result (see Section 4.2) that this means

ρ̂13 = αβ = ρ12ρ23.
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3 The Main Result

For every r, n, denote

θr,n =
arccos r

n− 1
We are now able to state our main result.

Theorem 1 For almost every objective correlation matrix (ρij) satisfying
ρ1n = r, if an n-variable DAG-represented model satisfies UMC, then

ρ̂1n ≤ (cos θr,n)
n−1

Moreover, this upper bound can be implemented by the following pair:

(i) A DAG 1→ 2→ · · · → n.

(ii) A Gaussian distribution satisfying, for every k = 1, ..., n:

xk = s1 cos((k − 1)θr,n) + s2 sin((k − 1)θr,n) (3)

where s1, s2 are independent standard normal variables.

The following simple observation establishes that when n is allowed to

be arbitrarily large, ρ̂1n can get arbitrarily close to 1, irrespective of the

objective correlation ρ1n.

Remark 1 For any r ∈ [−1, 1], limn→∞ (cos θr,n)
n−1 = 1.

The Gaussianity assumption plays a key role in this extreme finding. By

comparison, if we assumed that x1, ..., xn are all binary variables with uniform

marginals, then the upper bound on ρ̂1n that chain models can generate is

er−1 (see the supplementary appendix).

Let us illustrate the upper bound given by Theorem 1 numerically for the

case of r = 0, as a function of n:

n 2 3 4 5

upper bound on ρ̂1n 0 0.5 0.65 0.73
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As we can see, the marginal contribution of an additional variable decays

quickly.

The DAG that implements the upper bound is a chain. Indeed, it is

the simplest connected n-node DAG - whether one measures complexity by

the number of links, the size of cliques or the number of ancestral nodes.

The distribution over the auxiliary variables x2, ..., xn in the upper bound’s

implementation has a simple structure, too: Every xk is a different linear

combination of two independent “factors”, s1 and s2. We can identify s1
with x1, without loss of generality. The closer the variable lies to x1 along

the chain, the larger the weight it puts on s1. (Using the same chain model

but a different selection of the variables x2, ..., xn, the analyst can generate

any value of ρ̂1n in the interval [r, (cos θr,n)
n−1] - see an explanation at the

end of Section 4.)

We interpret the genericity aspect of the theorem as follows. Recall that

we think of our analyst as effectively choosing the variables x2, ..., xn−1 from

some large, yet finite pool. Genericity means that for almost all such pools,

our upper bound on ρ̂1n will hold.

Causal interpretation of ρ̂1n
The fact that x1 functions as an ancestral node in the DAG that implements

the upper bound on ρ̂1n means that the analyst can interpret ρ̂1n as an

estimated causal effect. If x1 were not ancestral in the analyst’s DAG, the

model itself might interpret part of the correlation between x1 and xn as a

consequence of confounding by some other variable. This limitation does not

exist when x1 is an ancestral node. Thus, although the analyst’s problem was

to find a model that maximizes an estimated pairwise correlation - regardless

of whether this correlation is interpreted in predictive, diagnostic or causal

terms - the solution turns out to enable a causal interpretation.

Variable selection vs. model selection

Suppose the analyst selects the variables x2, ..., xn−1 that will enter the model

(in addition to x1 and xn), but then has no discretion over the model given

these variables. Instead, he employs a standard procedure for “model dis-

covery”that penalizes complexity (measured by the maximal size of R(k)).
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Specifically, suppose that he employs the Chow-Liu algorithm (Chow and

Liu (1968)), which only admits models with |R(k)| ≤ 1. Then, it is easy to
show that when r > 0 and x2, ..., xn−1 are selected as in (3), the Chow-Liu

algorithm will select the model given by the chain 1 → 2 → · · · → n. In

this sense, the crucial assumption in our exercise is that the analyst chooses

model variables, whereas the selection of the model given these variables can

be automatized.

Perfect DAGs

The Chow-Liu algorithm is a special case of procedures that restrict atten-

tion to perfect DAGs. The chain 1 → 2 → · · · → n is trivially perfect.

Perfect DAGs preserve marginals of individual variables for every objective

distribution (see Spiegler (2017)). This enables us to state Theorem 1 more

strongly for this subclass of models.

Proposition 1 If the analyst’s model is represented by a perfect DAG, then
ρ̂1n ≤ (cos θr,n)

n−1 for every objective correlation matrix (ρij) satisfying ρ1n =

r.

That is, when we require the analyst’s model to be represented by a perfect

DAG, the upper bound on ρ̂1n holds for any objective covariance matrix, and

UMC is redundant.

4 Proof of Theorem 1

We first give a broad outline of our proof, which proceeds in three steps. First,

we show that for generic Gaussian distributions, UMC forces the DAG to be

perfect. This is the only place in the proof that invokes genericity. To give

a rough intuition for this step, consider the imperfect DAG G : 1 → 3 ← 2.

UMC requires V arG(x3) = 1. To satisfy this condition, it can be shown that

ρ̂12 should coincide with ρ12. But since G assumes x1 ⊥ x2, ρ̂12 = 0. The

resulting equation ρ12 = 0 is violated by generic (ρij).

Second, we apply the tool of junction trees from the Bayesian-network

literature to further shrink the relevant domain from perfect DAGs to simple
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chains, by replacing clusters of nodes that form cliques with single “mega-

nodes”. The Gaussianity assumption means that each term p(xk | xR(k)) in
pG is given by a linear-regression equation, such that xR(k) affects xk only via

a scalar variable that is a linear combination of the variables in R(k). This

enables us to mimic the “mega-nodes”by scalar Gaussian variables.

Thus, in order to calculate the upper bound on ρ̂1n, we can restrict at-

tention to chain models involving univariate normal variables. The analyst’s

objective function attains a simple explicit form:

ρ̂1n =

n−1∏
k=1

ρk,k+1

In the proof’s final step, we find the matrix (ρij) that maximizes this ex-

pression, subject to the constraints that ρ1n = r, ρii = 1 for all i (capturing

UMC) and that (ρij) is positive semi-definite (the defining property of covari-

ance matrices). This problem has a simple geometric interpretation: given

the relative location of two points on a sphere, locate n − 2 intermediate
points to minimize the average spherical distance between adjacent points.

The solution is to place the points equidistantly along a great circle.

Let us now turn to the formal proof.

4.1 The First Step: From DAGs to Perfect DAGs

We first establish that for generic Gaussian p, perfection is necessary for

UMC. Because p is Gaussian, pG is Gaussian as well (Koller and Friedman

(2009), Ch. 7). Therefore, the marginal of pG over xk is given entirely by its

mean and variance, denoted EG(xk) and V arG(xk).

Lemma 1 Let n ≥ 3 and suppose that G is imperfect. Then, there ex-

ists k ∈ {3, ..., n} such that V arG(xk) 6= 1 for almost all correlation sub-

matrices (ρij)i,j=1,...,k−1 (and therefore, for almost all correlation matrices

(ρij)i,j=1,...,n).

Proof. For notational convenience, renumber the variables x1, ..., xn such
that R(i) ⊆ {1, ..., i−1} for every i. (This is legitimate because at this stage

13



of our proof, x1 and xn lack a fixed meaning yet.) Consider the lowest k for

which R(k) is not a clique. This means that there exist two nodes h, l ∈ R(k),
h < l, such that h and l are unlinked in G, whereas for every k′ < k and

every h′, l′ ∈ R(k′), h′ and l′ are linked in G.
Because p is Gaussian, the conditional distribution (p(xk | xR(k)) is given

by a linear-regression equation

xk =
∑
i∈R(k)

βikxi + εk (4)

Denote β = (βik)i∈R(k). Let A denote the correlation submatrix (ρij)i,j∈R(k)
that fully characterizes (p(xR(k))). Then,

V ar(xk) = 1 = βTAβ + σ2 (5)

where σ2 = V ar(εk). In contrast, the estimated variance of xk, denoted

V arG(xk), obeys the equation

V arG(xk) = βTAGβ + σ2 (6)

where AG denotes the correlation submatrix (ρ̂ij)i,j∈R(k) that characterizes

(pG(xR(k))). In other words, the estimated variance of xk is produced by

replacing the objective joint distribution of xR(k) in the regression equation

for xk with its estimated distribution (induced by pG), without changing the

values of β and σ2. UMC requires V arG(xk) = 1. This implies the equation

βTAβ = βTAGβ (7)

We now wish to show that this equation fails for generic (ρij)i,j=1,...,k−1.

The proof is based on a standard result in the Bayesian-network literature: If

a Gaussian distribution p with correlation matrix ρ is consistent with a DAG

G (i.e. pG = p), then ρ−1kl = 0 for any k, l such that xk and xl are independent

conditional on all the other variables under pG (Koller and Friedman (2009),

pp. 69,251). Thus, if we choose the elements of ρ at random, then almost

surely ρ−1kl 6= 0 and so for almost any ρ, pG 6= p.
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Now, consider the subgraph of G restricted to the nodes 1, ..., l. By

definition, this subgraph is perfect; l is a terminal node; and there is no

link between h and l. Applying the rules of d-separation (see Koller and

Friedman (2009), pp. 69-72), xh ⊥ xl | x{1,...,l−1}−{h} under pG. Thus, the
(h, l) entry in the inverse of the covariance matrix of pG(x1, ..., xl) must be

exactly zero. Hence, for generic ρ, A 6= AG.

When we draw the objective correlation submatrix (ρij)i,j=1,...,k at ran-

dom, we can think of it as a two-stage lottery. In the first stage, we draw

the correlation submatrix over x1, ..., xk−1. In the second stage, we draw the

vector β that defines the correlation between xk and the preceding k − 1
variables. Since AG 6= A for generic ρ, (7) is a non-tautological quadratic

equation of β (we can construct examples of p that violate it). By Caron and

Traynor (2005), it has a measure-zero set of solutions β. We conclude that

the constraint V arG(xk) = 1 is violated by almost every (ρij).

Corollary 1 For almost every (ρij), if a DAG G satisfies EG(xk) = 0 and

V arG(xk) = 1 for all k = 1, ..., n, then G is perfect.

Proof. By Lemma 1, for every imperfect DAG G, the set of covariance

matrices (ρij) for which pG preserves the mean and variance of all individual

variables has measure zero. The set of imperfect DAGs over {1, ..., n} is
finite, and the finite union of measure-zero sets has measure zero as well. It

follows that for almost all (ρij), the property that pG preserves the mean and

variance of individual variables is violated unless G is perfect.

4.2 The Second Step: From Perfect DAGs to Chains

Our next step shows that within the class of perfect DAGs, simple chains

entail no loss of generality.

Definition 1 A DAG (N,R) is linear if 1 is the unique ancestral node, n

is the unique terminal node, and R(i) is a singleton for every non-ancestral

node.
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A linear DAG is thus a causal chain 1 → · · · → n. Every linear DAG is

perfect by definition.

Lemma 2 For every Gaussian distribution with correlation matrix ρ and
non-linear perfect DAG G with n nodes, there exist a Gaussian distribution

with correlation matrix ρ′ and a linear DAG G′ with weakly fewer nodes than

G, such that ρ1n = ρ′1n and the estimated correlation induced by G
′ given ρ′

is exactly the same as the estimated correlation induced by G given ρ.

Proof. The proof proceeds in two main steps.

Step 1: Deriving an explicit form for the false correlation using an auxiliary

“cluster recursion”formula

The following is standard material in the Bayesian-network literature. For

any distribution pG(x) corresponding to a perfect DAG, we can rewrite the

distribution as if it factorizes according to a tree graph, where the nodes

in the tree are the maximal cliques of G. This tree satisfies the running

intersection property (Koller and Friedman (2009, p. 348)): If i ∈ C,C ′ for
two tree nodes, then i ∈ C ′′ for every C ′′ along the unique tree path between
C ′ and C ′′. Such a tree graph is known as the “junction tree”corresponding

to G and we can write the following “cluster recursion”formula (Koller and

Friedman (2009, p. 363)):

pG(x) = pG(xCr)
∏
i

pG(xCi |xCr(i)) = p(xCr)
∏
i

p(xCi |xCr(i))

where Cr is an arbitrarily selected root clique node, and Cr(i) is the upstream

neighbor of clique i (the one in the unique path from Ci to the root Cr). The

second equality is due to the fact that G is perfect, hence pG(xC) ≡ p(xC)

for every clique C of G.

Let C1, CK ∈ C be two cliques that include the nodes 1 and n, respectively.
Furthermore, for a given junction tree representation of the DAG, select these

cliques to be minimally distant from each other - i.e., 1, n /∈ C for every C

along the junction-tree path between C1 and CK . We now derive an upper

bound on K. Recall the running intersection property: If i ∈ Cj, Ck for some
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1 ≤ j < k ≤ K, then i ∈ Ch for every h between k and j. Since the cliques
C1, ..., CK are maximal, it follows that every Ck along the sequence must

introduce at least one new element i /∈ ∪j<kCj (in particular, C1 includes
some i > 1). As a result, it must be the case that K ≤ n− 1. Furthermore,
since G is assumed to be non-linear, the inequality is strict, because at least

one Ck along the sequence must contain at least three elements and therefore

introduce at least two new elements. Thus, K ≤ n− 2.
Since pG factorizes according to the junction tree, it follows that the

distribution over the variables covered by the cliques along the path from C1

to CK factorize according to a linear DAG 1 → C1 → · · · → CK → n, as

follows:

pG(x1, xC1 , ..., xCK , xn) = p(x1)
K∏
k=1

p(xCk |xCk−1)p(xn|xCK ) (8)

where C0 = {1}. Thus, we can regard 1 and n as ancestral and terminal
nodes in this DAG, without loss of generality. Therefore, more generally,

we can enumerate the variables such that lower-indexed variables belong to

earlier nodes of the linear DAG. The length of this linear DAG is K+2 ≤ n.

While this factorization formula superficially appears to complete the

proof, note that the variables xCk are typicallymultivariate normal variables,

whereas our objective is to show that we can replace them with scalar (i.e.

univariate) normal variables without changing CovG(x1, xn).

Since p is multivariate normal, for any two subsets of variables C,C ′, the

distribution of xC conditional on xC′ can be written xC = AxC′ + η, where

A is a matrix that depends on the means and covariances of p, and η is a

zero-mean vector that is uncorrelated with xC′ . Applying this property to

the junction tree, we can describe pG(x1, xC1 , ..., xCK , xn) via the following

recursion:
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x1 ∼ N(0, 1) (9)

xC1 = A1x1 + η1
...

xCk = AkxCk−1 + ηk
...

xCK = AKxCK−1 + ηK

xn = AK+1xCK + ηn

where each equation describes an objective conditional distribution - in par-

ticular, the equation for xCk describes (p(xCk |xCk−1)). The matrices Ak
are functions of the vectors βi in the original model. The ηk’s are all

zero mean and uncorrelated with the explanatory variables xCk−1 , such that

E(xCk |xCk−1) = AkxCk−1 . Furthermore, according to pG (i.e. the analyst’s

estimated model), each xk is conditionally independent of x1, ..., xk−1 given

xR(k). (Here we use the earlier result that we can enumerate the variables

such that R(k) ⊆ {1, ..., k−1} for every k.) Since the junction-tree factoriza-
tion (8) represents exactly the same distribution pG, this means that every

ηk is uncorrelated with all other ηj’s as well as with x1, ..., xCk−2 . Therefore,

EG(x1xn) = AK+1AK · · ·A1

Since pG preserves the marginals of individual variables, V arG(xk) = 1 for

all k. In particular V arG(x1) = V arG(xn) = 1. Then,

ρG(x1, xn) = AK+1AK · · ·A1

Step 2: Defining a new distribution over scalar variables

For every k, define the variable

zk = (AK+1AK · · ·Ak+1)xCk = αkxCk
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Plugging the recursion (9), we obtain a recursion for z:

zk = αkxCk = αk(AkxCk−1 + ηk) = zk−1 + αkηk

Given that p is taken to be multivariate normal, the equation for zk measures

the objective conditional distribution (pG(zk | zk−1)). Since pG does not

distort the objective distribution over cliques, (pG(zk | zk−1)) coincides with
(p(zk | zk−1)). This means that an analyst who fits a model given by the linear
DAG G′ : x1 → z1 → · · · → zK → xn will obtain the following estimated

model, where every εk is a zero-mean scalar variable that is assumed by the

analyst to be uncorrelated with the other εj’s as well as with z1, ..., zk (and as

before, the assumption holds automatically for zk but is typically erroneous

for zj, j < k):

x1 ∼ N(0, 1)

z1 = α1A1x1 + ε2
...

zk+1 = zk + εk+1
...

xn = zK + εn

Therefore, EG′(x1, xn) is given by

EG′(x1xn) = AK+1AK · · ·A1

Since G′ is perfect, V arG′(xn) = 1, hence

ρG′(x1, xn) = AK+1AK · · ·A1 = ρG(x1, xn)

We have thus reduced our problem to finding the largest ρ̂1n that can be

attained by a linear DAG G : 1→ · · · → n of length n at most.
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4.3 The Final Step: Solving the Reduced Problem

To solve the reduced problem we have arrived at, we first note that

ρ̂1n =

n−1∏
i=1

ρi,i+1 (10)

Thus, the problem of maximizing ρ̂1n is equivalent to maximizing the product

of terms in a symmetric n×nmatrix, subject to the constraint that the matrix
is positive semi-definite, all diagonal elements are equal to one, and the (1, n)

entry is equal to r:

max
ρij=ρji for all i,j
(ρij) is P.S.D
ρii=1 for all i

ρ1n=r

n−1∏
i=1

ρi,i+1

The positive semi-definiteness constraint is what makes the problem non-

trivial. We can arbitrarily increase the value of the objective function by

raising off-diagonal terms of the matrix, but at some point this will violate

positive semi-definiteness. Since positive semi-definiteness can be rephrased

as the requirement that (ρij) = AAT for some matrix A, we can rewrite the

constrained maximization problem as follows:

max
aTi ai=1 for all i

aT1 an=r

n−1∏
i=1

aia
T
i+1 (11)

Denote α = arccos r. Since the solution to (11) is invariant to a rotation

of all vectors ai, we can set

a1 = e1

an = e1 cosα + e2 sinα

without loss of generality. Note that a1, an are both unit norm and have dot

product r. Thus, we have eliminated the constraint aT1 an = r and reduced

the variables in the maximization problem to a2, ..., an−1.

Now consider some k = 2, ..., n− 1. Fix aj for all j 6= k, and choose ak to
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maximize the objective function. As a first step, we show that ak must be a

linear combination of ak−1, ak+1. To show this, we write ak = u + v, where

u, v are orthogonal vectors, u is in the subspace spanned by ak−1, ak+1 and

v is orthogonal to the subspace. Recall that ak is a unit-norm vector, which

implies that

‖u‖2 + ‖v‖2 = 1 (12)

The terms in the objective function (11) that depend on ak are simply

(aTk−1u)(a
T
k+1u). All the other terms in the product do not depend on ak,

whereas the dot product between ak and ak=1, ak+1 is invariant to v: aTk−1(u+

v) = aTk=1u.

Suppose that v is nonzero. Then, we can replace ak with another unit-

norm vector u/‖u‖, such that (aTk−1u)(aTk+1u) will be replaced by

(aTk−1u)(a
T
k+1u)

‖u‖2

By (12) and the assumption that v is nonzero, ‖u‖ < 1, hence the replacement
is an improvement. It follows that ak can be part of an optimal solution only

if it lies in the subspace spanned by ak−1, ak+1. Geometrically, this means

that ak lies in the plane defined by the origin and ak−1, ak+1.

Having established that ak, ak−1, ak+1 are coplanar, let α be the angle

between ak and ak−1, let β be the angle between ak and ak+1, and let γ be the

(fixed) angle between ak−1 and ak+1. Due to the coplanarity constraint, α+

β = γ. Fixing aj for all j 6= k and applying a logarithmic transformation to

the objective function, the optimal α must maximize log cos(α)+ log cos(γ−
α). Differentiating this expression with respect to α and setting the derivative

to zero, we obtain α = β = γ/2. Since this must hold for any k = 2, ..., n−1,
we conclude that at the optimum, any ak lies on the plane defined by the

origin and ak−1, ak+1 and is at the same angular distance from ak−1, ak+1.

That is, an optimum must be a set of equiangular unit vectors on a great

circle, equally spaced between a1 and an. The explicit formulas for these

vectors are given by (3).

The formula for the upper bound has a simple geometric interpretation.
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We are given two points on the unit n-dimensional sphere (representing a1
and an) whose dot product is r, and we seek n− 2 additional points on the
sphere such that the geometric average of the successive points’dot product is

maximal. Since the dot product for points on the unit sphere decreases with

the spherical distance between them, the problem is akin to minimizing the

geometric average of the spherical distances between adjacent points. The

solution is to place all the additional points equidistantly on the great circle

that connects a1 and an. Since by construction, every neighboring points ak
and ak+1 have a dot product of cos θr,n, we have ρk,k+1 = cos θr,n, such that

ρ̂1n = (cos θr,n)
n−1.

Comment : The set of attainable ρ̂1n
Throughout the paper, we focused on the maximal level that ρ̂1n can get,

given r, n. Does it follow that any value of ρ̂1n between r and the upper

bound (cos θr,n)
n−1? The final step in our proof confirms that the answer

is affi rmative. Consider our geometric construction, and gradually shift one

of the interior points toward one of its adjacent points. By continuity of

the objective function in (11), at some stage (before the two points perfectly

coincide), ρ̂1n will coincide with the upper bound on ρ̂1,n−1, which is strictly

lower than the upper bound on ρ̂1n. Thus, using the chain model 1→ · · · →
n, the analyst can select the intermediate variables x2, ..., xn−1 to attain any

ρ̂1n ∈ [r, (cos θr,n)
n−1].

5 Conclusion

Many real-life decisions by policy makers, firms or individuals are guided

by models that estimate (informally or explicitly) correlations between pairs

of variables: immigration and unemployment, drug dosage and health out-

comes, etc. Since “all models are wrong”, it is important to understand how

badly a wrong model can distort pairwise correlations. This paper showed

that within the class of models represented by Gaussian Bayesian networks,

things can get bad indeed. When the model includes a moderately large

number of variables, it can lead decision makers to conclude that two vari-
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ables are almost perfectly correlated - even if in reality they move in opposite

directions. Furthermore, such extreme distortions can be generated by mod-

els that pass an intuitive “misspecification test”, which disqualifies a model

if it distorts the marginal distribution of some variable.

Our analysis raises an important open question, related to George Box’s

famous dictum that while all models are wrong, some are useful: what is the

right balance between the costs of cheating with models and the benefits of

using simple (and therefore usually wrong) models?
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Appendix: Uniform Binary Variables
In this appendix, we consider the case in which each variable xi, i = 1, ..., n,

takes values in {−1, 1}, and the marginal distribution over each xi induced by
p is uniform. This can be viewed as a coarsening of an underlying Gaussian

distribution, such that xi records the sign of a Gaussian variable.

We do not have a complete analysis of our problem for this specification

of p, and focus on the chain model 1→ 2→ · · · → n. In Eliaz et al. (2019),

we provided a characterization of the maximal estimated correlation that

such a model can generate in a uniform-binary environment. The proof was

by induction on n. Here we give a constructive proof that emphasizes the

analogy with the Gaussian case. Our analysis is based on a few preliminary

observations.

Definition 2 A n × n matrix C is called “Binary Factorizable” (BF) if it

can be written as

C = lim
M→∞

1

M
AMA

T
M

Where each AM is a n×M matrix whose elements are all ±1 and each row
of AM is zero mean.

Note that any BF matrix is symmetric, positive semi-definite, and has

ones on the diagonal. Note also that any covariance matrix of zero-mean

binary random variables must be BF, since we can define the matrix AM as

a sample covariance matrix, where the sample consists ofM i.i.d draws from

the underlying distribution. The converse is also true: any BF matrix corre-

sponds to the covariance matrix of zero-mean binary random variables. This
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can be seen by defining a distribution over n binary variables by randomly

picking (with probability 1/M) one of the columns of AM .

Somewhat surprisingly, however, there exist symmetric, positive semi-

definite matrices which are not BF. For example, the reader may recall the

following correlation matrix from the example in the Introduction, where it

gave the maximal false correlation for n = 3 in the Gaussian environment:

C =

 1 b 0

b 1 b

0 b 1


with b =

√
1/2. This matrix is not BF. As we will see below, the largest

value of b for which C is BF is 1
2
.

Proposition 2 Suppose all variables take values in {−1, 1} and the objec-
tive distribution p induces a uniform marginal over each variable. Let the

objective (Pearson) coeffi cient of correlation between x1 and xn, according to

p, is r. Then, the maximal estimated correlation that can be achieved by a

linear DAG G : 1→ 2→ · · · → n is given by:

ρ∗1n = max
ρij=ρji for all i,j

(ρij) is BF
ρii=1 for all i

ρ1n=r

n−1∏
i=1

ρi,i+1

Proof. The constraints are self-evident. We only need to show that for

a linear DAG defined over uniformly distributed binary variables, the esti-

mated correlation between x1 and xn is given by the product of the objective

pairwise correlations of adjacent variables (as in the Gaussian case). We

can show this by viewing pG(x1, ..., xn) = p(x1)p(x2 | x1) · · · p(xn | xn−1) as a
Markov chain. The conditional probability pG(xn | x1) is thus given by a ma-
trix product - specifically, the product of all the transition matrices defined

by p(xi+1 | xi). Since all variables are uniformly distributed, the transition
matrices are doubly stochastic, which means that they have the same eigen-

vectors. The top eigenvalue is always 1 and the second eigenvalue gives the
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correlation. Since all matrices have the same eigenvectors, the eigenvalues

just multiply.

Note that Proposition 2 is exactly the same as the intermediate result

we established at the beginning of Section 4.3 for the Gaussian environment.

The only difference is that we replace the requirement that ρ be positive

semi-definite with the requirement that ρ be BF. As mentioned above, the

set of BF matrices is smaller than the set of positive semi-definite matrices.

Therefore, we should expect a more stringent upper bound on the maximal

false correlation.

Proposition 3 Suppose all variables take values in {−1, 1} and the objective
distribution p induces a uniform marginal over each variable. Let the objec-

tive (Pearson) coeffi cient of correlation between x1 and xn, according to p be

equal to r. Then, the maximal estimated correlation that can be generated by

the DAG 1→ 2→ · · · → n is given by:

ρ∗1n =

(
1− 1

n− 1(1− r)
)n−1

(13)

Proof. From Proposition 2, we know that the maximal estimated correlation
is obtained by multiplying elements in a BF correlation matrix (ρij) such that

ρ1n = r. For any n ×M matrix AM , let a
(M)
i denote its ith row. Then, we

can rewrite the estimated correlation induced by CM = 1
M
AMA

T
M as:

n−1∏
i=1

1

M
a
(M)
i

Ta
(M)
i+1

As we discussed following the definition of BF matrices, the dot product

between the ith and jth rows of AM is proportional to the empirical correlation

of xi and xj in a sample consisting of M i.i.d draws from the underlying

distribution.

Given a matrix AM that gives an objective correlation of ρ1n = r, we can

always attempt to improve the estimated correlation by optimizing all other
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rows of the matrix a2, ..., an−1. This implies that for any M :

ρ∗1n ≤ max
a2,··· ,an−1∈{−1,1}M ,a1=a

(M)
1 ,an=a

(M)
n

n−1∏
i=1

1

M
aTi ai+1 (14)

This is an upper bound for two reasons. First, we are not enforcing the

constraint that the binary vectors ai are zero mean. Second, if C = 1
M
AMA

T
M

for some finite M , then C is BF.

For binary vectors ai, aj ∈ {−1, 1}M , the dot product 1
M
aTi aj is a monotone

function of the proportion q of components for which the two vectors agree:
1
M
aTi aj = 2q − 1. Thus, maximizing the dot product between two binary

vectors is equivalent to minimizing the number of components on which they

disagree. This means that the R.H.S of (14) is a form of a shortest path on

a lattice: we are given two points in {−1, 1}M (a1 and an), and seek a set

of intermediate points on this lattice that are as close as possible to each

other. By analogy, in the third step of our proof for the Gaussian case, we

were also given two vectors in a high-dimensional space (an n-dimensional

unit sphere) and searched for a set of intermediate points on the sphere such

that the intermediate points are as close as possible to one another (in terms

of spherical distance).

To solve this “shortest path on a lattice” problem, we divide the M

indices into two disjoint groups: M1 indices k for which a1(k) = an(k) and

M−1 indices k for which a1(k) 6= an(k). For any of the M1 indices for which

a1(k) = an(k) , setting ai(k) = a1(k) for all i can only increase the objective

function (since this can only increase the dot product between consecutive

vectors).

For the remaining M−1 indices k for which a1(k) 6= an(k), denote by mi

the number of indices k for which ai(k) = a1(k) and ai(k) 6= an(k). Assuming

mi > mj, the dot product between ai and aj can be written as follows:

aTi aj =M − 2(mi −mj)
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This enables us to rewrite (14) as:

ρ∗1n ≤ max
m2,··· ,mn−1

n−1∏
i=1

1

M
(M − 2(mi−1 −mi)) (15)

The R.H.S. of (15) should be maximized subject to the constraint that

mi ∈ {0, 1, · · ·M−1}, but we can get an upper bound by maximizing over
real-valued mi.

Taking the logarithm of the R.H.S of (15) and differentiating with respect

to mi yields that at an optimum, mi should be linearly spaced between m1

and mn:

mi −mi+1 =
M−1
n− 1

Thus, the optimal shortest path is a set of binary vectors whose components

agree with x1 and xn whenever they coincide, and the rest of the indices

agree with x1 with a fraction that decreases linearly with i.

Now, for large M , M−1/M converges to the probability that x1 6= xn,

namely 1−r
2
, such that

1

M
aTi ai+1 →

(
1− 1

n− 1(1− r)
)

Since there are n−1 such dot products, we take their product, thus obtaining
the R.H.S of (13).

To show that the upper bound is tight, given two uniform binary random

variables x1, xn that satisfy E(x1xn) = r, consider a set of variables xi, whose

distribution conditional on x1, xn is defined as follows:

• If x1 = xn, then xi = x1 = xn.

• If x1 6= xn, then xi = x1 with probability 1 − i
n
and xi = xn with

probability i
n
.

By construction, a vector ofM random samples from xi and xi−1 will gen-

erate a normalized dot product 1
M
aTi ai+1 that converges to

(
1− 1

n−1(1− r)
)

when M →∞, thus attaining the upper bound.
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It is also worth noting that in Eliaz et al. (2019), we implement the upper

bound by taking the n variables to be the sign of the Gaussian variables we

used in the implementation of the upper bound of our the main theorem.

Let us illustrate the upper bound. For n = 3 and r = 0, the maximal

estimated correlation between x1 and x3 using the chain model 1→ 2→ 3 is
1
4
(compared with the value 1

2
in the Gaussian case). Finally, for any r, the

maximal estimated correlation converges to er−1 as n→∞ (compared with

1 in the Gaussian case).
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