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Abstract— Soft robotic manipulators have been created and
investigated for a number of applications due to their advan-
tages over rigid robots. In minimally invasive surgery, for in-
stance, soft robots have successfully demonstrated a number of
benefits due to the compliant and flexible nature of the material
they are made of. However, these type of robots struggle with
performing tasks that require on-demand stiffness i.e. exerting
higher forces to the surrounding environment. A number of
semi-active and active mechanisms have been investigated to
change and control the stiffness of soft robotic manipulators.
Embedding these mechanisms in soft manipulators for space-
restricted applications can be challenging though.

To better understand the inherent passive stiffness properties
of soft manipulators, we propose a screw theory-based stiffness
analysis for fluidic-driven continuum soft robotic manipulators.
First, we derive the forward kinematics based on a parameter-
based piece-wise constant curvature model. It is worth noting,
our stiffness analysis can be conducted based on any free-
space forward kinematic model. Then our stiffness analysis
and mapping methodology is conducted based on screw theory.
Initial results of our approach demonstrate the feasibility
comparing computational and experimental data.

I. INTRODUCTION

Soft robotics has established itself as an prevalent research
topic for its versatility and intrinsic adaptability to unstruc-
tured environments [1]-[3]. Soft robotic structures are in-
herently flexible and compliant [4], [S] able to perform mor-
phological transitions and anthropomorphic manipulation [6].
Actuation systems for soft robots can be classified into
three categories: tendon-, fluidic- and electro-active polymer-
driven actuation [7]. In particular, fluidic-driven robots are
rather cost-efficient and have been extensively explored
for applications in the industrial sector where robots work
closely together with humans [8], [9], in minimally invasive
interventions [10]-[13], and rehabilitation [14]. However, as
a result of their inherently soft property, the ability to exert
forces on the environment, when required, and effectively
change the stiffness on demand is challenging and yet to be
further explored [15]-[17].

A number of mechanisms have been investigated able to
vary the stiffness of soft robotic manipulators. The main
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Fig. 1. Soft robotic manipulator and applied methodology: (a) This soft
robotic manipulator has three embedded fluidic actuation chambers. We
analysed the configuration of our soft robotic manipulator to understand
stiffness in a task-specific direction. (b) Screw theory based modelling
methodology schematics.

stiffening technologies can be classified as semi-active and
active: On the one hand, materials can be embedded into soft
robotic structure allowing to intrinsically tune the robot’s
stiffness [18], [19]. Active stiffening can be achieved by
applying antagonistic actuation [20], [21]. In [22], stiffness
mechanisms have been thoroughly reviewed.

However, embedding the aforementioned stiffness mecha-
nisms in soft manipulators for space-restricted applications,
for instance, minimally invasive surgery (MIS) can be chal-
lenging [19]. Here, a configuration-based stiffness analysis
of the soft robot might be advantageous. In [23] for instance,
a quasi-static model-based position and force estimation
method of fluidic-driven robotic with variable stiffness under
external forces is proposed. In [24], [25], a piece-wise con-
stant strain model is presented based on the discrete Cosserat
beam theory in which the manipulator state is described
by a finite set of constant strains. Furthermore, further
studies published in [26], [27] are based on traditional Euler-
Bernoulli beam or 3D Timoshenko models which include
stiffness parameters of the soft silicone material. Overall,
the authors focussed on kinematic modelling using stiffness
properties of the material of the manipulators including
external forces rather than a detailed stiffness analysis. The
application of screw theory can provide a unique insight to
understand the stiffness of continuum-type robots. In [28],
[29] for instance, the compliance characteristics of manipu-
lator made of planar springs has been explored.



A screw theory-based stiffness analysis is proposed in this
paper with the focus on understanding configuration-based
stiffness of fluidically actuated soft robotic manipulators for
task-specific applications. Our model is applied to the STIFF-
FLOP manipulator made of a cylindrical-shaped, silicone
body with three pairs of actuation chambers (Fig. 1). The
main contribution of this paper lies in our stiffness-oriented
modelling methodology for soft robots utilising screw theory.
Our models is then implemented and verified based on a
parameter-based piece-wise constant curvature (PCC) model.
Besides, our stiffness analysis method can be conducted
based on any free-space forward kinematic models of dif-
ferent manipulators.

In Section 1II, a detailed description of the continuum robot
is given as well as the derivation of the proposed methodol-
ogy. In Section III, simulation of the forward kinematics and
stiffness analysis are conducted and compared to experimen-
tal data validating the effectiveness of the proposed method.
Section IV summarises the conclusions and identifies the
direction of future work.

II. SCREW THEORY-BASED SOFT ROBOTIC KINEMATICS

The soft robotic manipulator used in this paper is a mod-
ified version of STIFF-FLOP consisting of one cylindrical
segment made of silicone material [Ecoflex 00-50 Supersoft,
SmoothOn] with an overall length of 90mm, outer diameter
of 30mm [12]. The segment has 6 fibre-reinforced inflatable
pneumatic chambers, each chamber has a diameter of 4.5mm
and evenly located in the periphery of the silicone cylinder
as shown in Fig. 2. The adjacent two-chamber pairs are
pneumatically actuated simultaneously via a 2mm outer
diameter inlet air pipe. Pressurisation of one or two chamber
pairs results in bending while actuating all three chamber
pairs at the same time will elongate the manipulator. Fig. 1(b)
presents the overall methodology which is described in detail
the following subsections.

A. Screw theory notation

The kinematics of the aforementioned soft manipulator
is described using screw theory, an algebra method that
can include exerted forces and motions [30]. There are two
fundamental screws comprising infinitesimal displacement
and motion called twist and wrench, respectively:

1) Twist: Twist $; written in Pliicker axis coordinates is
defined by a straight line with an associated pitch % as in (1).
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where A8 = [A8,,A8,,A8;]" is a 3 x 1 translational dis-
placement vector, AO = [A6,,A6,,A8;]” is a 3 x 1 rotational
displacement vector. @ denotes direction ratios pointing
along the screw axis, Sy is the position vector of any point on
the screw axis with respect to the reference system. The twist
vector could also be written in the form of an isomorphism

matrix in Lie algebra se(3) as in (2).

: & v . |0 e o
$u = {0 0] €se(3),0= | w3 0 —-w| (2
[1x3] —w o 0

The transformation matrix 7' can be obtained by taking the
exponential of $0 as in (3).

T=¢"= [RW] p[”‘]} €SE(3),R € SO(3),p € R* (3)
013 1
Here, R is a rotation matrix, p is a translation vector and 6
a rotation angle. In this way, the derived configuration space
g(t) =Tg/(0), g:(0) result in the initial position matrix.
2) Wrench: Wrench $y, written in Pliicker ray coordinates
is defined in a similar way shown in (4).

F F
= |5y F447] = 8 @
Here, §0 is the orientation vector of the wrench, F =
[fx, fy, f2] is the 3 applied force and M = [M,,M,, M| is the
3 x 1 applied torque.

3) Screw coordinate transformation: Considering two
screws $,,$,, both are in the form of Pliicker ray coordinate.
$, and $;, are written in Cartesian frames a and b, respec-
tively. In such circumstances, 6 x 6 adjoint transformation
screws Ad, can be defined between those two frames. The
adjoint matrix Ady;, transforms screw $, to $,

Ry Op3x3)
ﬁabRab Rab
where p,, is the translational vector and R, is rotational
vector, pgp is written in the form of (2).

Aduh = |: ©)

B. Free-space kinematics

1) Kinematics of each discrete element: Without any ex-
ternal forces applied to the soft manipulator, the PCC method
is feasible for quasi-static modelling of our continumm
robot [31]. Hence, a parameterised PCC model is derived
within the context of screw theory framework as shown in
Fig. 2. One discrete arc can be described using five equivalent
joints which are depicted by five twists whose parameters are
summarised in Table I.

The discretised element i’ spatial curve is described using
the three parameters (k,s,¢), where K is the curve ratio,
s is the curve length and ¢ the rotation about the z-axis.
Equation (6) yields from Fig. 2.

. . - . igh . 2sin(Kk's'/2
o= —6i= 00— g =V 4= 2 )
TABLE 1

SCREW PARAMETERS FOR THE SOFT ROBOTIC MANIPULATOR BASED ON
THE CHAIN SHOWN IN FIGURE 2.

Link | v | ® | Amplitude
I o 0 0|0 0 1]6=¢
2 |0 0 0[]0 1 0] 6=«
310 0 1[0 0 0| d=(2/k)sinks/2
4 |0 0 0|0 1 0f6i=xs/2
5 /o 0o 0o|0 0 1|6=-9¢



Compared to the Denavit—Hartenberg conversion used
in [31], a more elaborate transformation frame analysis is
replaced by a product of exponentials eliminating the need
of link frames here. Then the transformation matrix yields
in (7) in line with [31].
7‘"(1_71)1, _ eff] 01 65292 653d3e§494 e§5A95

—8185+ C1C2C4C5 — C15254C5

C185 +81C2C4C5 — §15254C5

—524C5
0
—81C5 1 C1525455 — C1C2C4S5  $24C1  C152d3
C1C5+ 81528455 — S1C2C4S5  S2451  S152d3
$2485 4 C2d3
0 0 1
ey — 1) +1 spco(cuesy —1)  cos col~¢txy)
¢ \C(xs) #CO\C(xs) ¢5(xs) I3

so(1—¢(xs))
— | spco(cs) = 1) 3(1=Cley) +Cls) S0S(xy) =

—C45(xs) —565(xs) Chs)
0 0 0 1
(7

where ¢; = cosi,s; = sini and ¢;; = cos(i+ j),s;; = sin (i+ j)
with numerical subscripts. Finally, the transformation matrix
T(;—1); of a spatial arc is presented by (.5, 9%).

2) Internal wrench: The internal wrench is generated by
pressurized chambers. Moments about the x- and y-axis
resulting in bending motions and the z-axis force resulting
in elongation can be represented as a wrench in screw form,
which can be written as Sw. = [fui, fyi fei iy Myi, Mzi]T
where i = 1,...,6 presents the number of chambers. Defining
the distance between the chamber centre to the origin as r,
and the angle o between two adjacent chambers, the wrench
in chamber can be calculated as i is $€V,,1 = [F M]T =

[0,0, f21,0, ><le,O]T. As shown in Fig. 2, the x-axis is
between the first two chamber pairs. Then, the position
vectors of the result of chambers can be obtained by rotation

Fig. 2. Geometrical relationship and kinematic chain description: One
arc section is described using 5 twists & (i = 1,2,3,4,5) with screw axes
(z,,2,¥,z) and amplitudes (6;,6,,d3, 64, 65). Note that, for simplification,
segment index i is neglected here. The initial frame is (xo,y0,20), with the
tip frame being (x1,y1,21)-

[re,,0,0]7 about the z-axis using the well-known rotation
matrix R (¢;) in (8).

cos(¢;) —sin(¢;) O
R:(¢:) = |sin(¢;) cos(¢;) O ®)
0 0 1
where ¢; equals to
0 = 7%+ i—;‘%z(x1 n (i— 1)—2(1'— 1)%2(12007061)

©))
where % is the modulus operator, i = 1...6, 01 = 60°. This
yields chamber vector So, = [x;, yi, O]T =R (¢:)So, -

To compute the forces f;; in each chamber pair, it is neces-
sary to apply f;; =PA.=PFP~x R?,. P, represents the pressure
in each chamber, R, is the radius of chamber and A, is the
cross-sectional area of each pressurised chamber. In line with
the above procedure, all wrenches of all individual chambers
can be calculated. The equivalent wrench $€/V,, written in body

frame of the /' element is obtained by summing them as in
. 6 i it . ;
%’Vp = Zj:l $€/Vl’j = [Fxlva;palep7M)lcp7M)l;p7Mép]T'

Now, it is possible to substitute the wrenches for the arc
parameters. Firstly, the curvatures in the x-z and y-z plane
can be calculated as k; = M,,/(EL), &k, = My, /(El). The
second moments of the area I, yields in

TR: mR* O 7R}

I — 0 _ o 7[’ 27.L.R2

where R, is the outer radius, R; is the inner radius, and y;
the distance related to x- axis of each chamber. I, can be
calculated in the same way. It is evident that I, and I, are
equal to I written in the frame shown in Fig. 2. The curvature
V(K02 + ().
So, the rotational angle ¢’ around the z-axis is calculated by
¢, = —atan2(kl, k}).

Considering a total elongation 8, = (f;/)/(EA) and A =
(R3— R} —67R}) being the cross-sectional area, the length
of each discrete segment can be calculated as si, = (5; +1Y/n.
It is worth noting that the the cross-sectional area will
decrease due to elongation influencing the values of A,/. In
addition, a larger deformation of the hyper-elastic material
will result in non-linear strain-stress ranges of the material
which means that £ will change. In fact, A, will not only
change, but also the production of EI which again influences
EA and the modelling accuracy. In order to compensate
such non-linearity, three pressure-dependent compensation
parameters Ag(P;),A4(P;),A;(P;) are introduced to improve
the accuracy of traditional PCC method. Those values are
adjustable coefficients of the nominal system parameters.
Finally, the continuum robot is modelled using i discrete
elements as shown in Fig. 2. In this way, the arc parameters
(k,¢,s")T can be obtained and substituted into (7). The
complete free-space forward kinematics can now be derived
by exponential integration along the soft manipulator.

(10)

of the soft robot is now calculated as K,’; =

C. Spatial stiffness modelling and analysis

The stiffness properties of the manipulator will change
depending on different configurations resulting from various



chamber pressurisation. Combined with the established kine-
matics model, the manipulator’s stiffness can be calculated
iteratively. Here, we demonstrate how to derive spatial stiff-
ness using screw theory illustrated in Fig. 3.

Firstly, the external wrench $j, = [FLF} ,FZ’,M’ M}, M|
written in the tip frame is applied to the tip. It is convement
to conduct an analysis in backward direction from s =7 — 0.
Considering the screw coordinate transformation in (5), the
transmitted body wrench at any " position written in the tip

frame ${% can be obtained by iterative numerical calculation
from the tip to the current element.

$ Ad 1 $ — Rz;?l)i TO $i71
T ~Revibii Rl | "
_ -1 -1 i—2
=Ad ) Ad ) o S,
T
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“Rinibi-ni Ry
T
R(i72)(z;71) 0 §i-2
“Ri2-nPi-2)6-1) Rigyin]
= ]["'][“']55’@3* ......
= (Ady11)Ad( 1) (42)  AdoayinAd 1) 'Sy,
—agtsy, = | R Ol
C W | —Ripu R

(1)
where ij refers to the 3 x 1 translational vector p;;, the 3 x
3 rotatory matrix R;; or corresponding to the 6 X 6 adjoint
matrix from the i"* to j'" segment, and Ad~! is the inverse
adjoint matrix.
The twist $M equals to infinitesimal deformation &; de-
fined by (1) in each discretised element resulting from the
applied wrench $i, W,

$fl,,e:[Axi AY A7 8L A6 A

A (12)
=K' '), = C'sj,

Curvature model
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Fig. 3. Stiffness analysis scheme: Firstly, the compliance matrix (see (18))
is calculated (left). Then, the stiffness of each element is calculated based
on (19) (right). Those two methods can be applied to free space forward
kinematic models, e.g., the one presented in Section II.

where K’ € R®*® is defined as our stiffness matrix. Further-
more, the inverse of matrix K is the compliance matrix C'.

Based on (5), the wrench transformation matrix from
frame a to frame b can be written as W, = Ad,,W,. The
corresponding deformation twist has the following relation-
ship [32]:

FSm, = Adgy(F $u,) (13)
where .7 is elliptical polar operator which equals to
I3x3 Opxy)

Then, Equation (13) can be rewritten as

$u, = (FAdwyZ) " "$u, = AdL$u, = CoWp, = C,Ad ' W,
15)
which can be simplified as $5, = Ad;hTCbAd;b1 W,. All ad-
joint matrices are derived from pressurised kinematic model
established in Section II. Then, the stiffness/compliance
transformation relationship between two different frames can

be summarised as
{ca = Ad,[C,Ad )]

16
K,=C, v = Ady,KpAdL, (16)

The compliance matrix of element C° can be written as
diag(GA,GA,EA,EIMEIWJIZ)’I. Based on (16), the spatial
stiffness matrix of the 1" element written in the tip frame is
Ad, " diag(GA,GA,EA,EL,EL,JI,) "' Ad,;'.

Considering the discretised element with the arc length

i, the corresponding element twist is calculated as §; =
(AdOZTCOAdOl )$iy, 5, and the body twist is Ad(; ;) &;. The
continuum robot can be regarded as a serlal mechamsm
i.e. the total deformation twist is the aggregation of each
element [33]. The total deformation is derived as

I !
AS}, = / Sids — / (AdTCOAD;")Sw, ds = C,$,
0 0
a7)
where C; is the 6 x 6 total stiffness matrix integrated from the
tip to base. Equation (17) indicates that, when the wrench
is an infinitesimal value, the deformed tip position can be

calculated by Tor®¥e . Ty, is the free-space transformation
matrix. If a wrench force is exerted to the tip, (11) and (17)
can be combined and the general deflection model for the
k' segment can be written as

_ k
Tox = Tope™She
0k 0k (18)

T ~0 —1 - — k N\
7T0ke(/ (Ad COAd;")Ady Sy, ds) :TOke(Ck$We>

Furthermore, this model can also be interpreted by the dis-
cretised element from the tip to base. The updated stiffness-
based model can then be depicted as

TOi—H Tz
0
l
0

i

v [T

(-AdL s $

T 5iy~
1)i€<7Ad”'5 ) > k, $W(, at kth

Toi = w, at tip

e

19)



TABLE II
SYSTEM PARAMETERS FOR THE SOFT ROBOTIC MANIPULATOR

symbol  unit  value | symbol unit value
re mm  10.1 R, mm 15
R, mm  2.25 Ac mm?  31.81
E kPa 100 I m* 3.44x1078
Iy m*  3.44x1078 l mm 90
R; mm 4.5 A 547.8  mm?

where the inverse of (19) produced the same result as (18).
Equation (19) generally is the stiffness-based modelling
method. Without any pressurisation, (18) will yield in the
results presented in [27].

III. COMPUTATIONAL AND EXPERIMENTAL VALIDATION

Numerical simulations and experiments will validate the
feasibility of our methodology presented in Section II. The
nominal system parameters of the soft robot are given in Ta-
ble II. The compensation coefficients have been empirically
chosen, so that the error of kinematics model is minimal,
resulting in Ag = —0.24/p2+p3+pi+E A = 124,4 =
1.051 in this paper.

A. Experimental protocol

An NI-DAQ 6341 device is used to collect real-time
pressure information and generate the PWM signals to con-
trol pressurised air supplied to different chambers by three
individual pressure regulators (Camozzi K8P) supplied by a
compressor (BAMBI MD Range Model 150/500). x,y- and
z-positions were recorded by an NDI Aurora electromagnetic
trackers - a 6 DOF magnetic sensor was mounted at the tip of
robot. An IIT-FT17 F/T (Force/Torque) sensor was attached
to a motorised linear rail (Zaber X-LSM100A) to measure
the stiffness k in different direction and configuration using
force f and displacement data Ax utilising f = kAx. The
setup shown in Fig. 4 is integrated into Matlab.

Two sets of experiments were carried out to validate
the kinematics (Experiment 1) and stiffness validation and
analysis (Experiment 2):

Experiment 1: To validate the kinematic model, x,y-
and z-positions computed by our model are compared to
experimental results when each chamber pair is linearly
pressurised with 0.4, 0.8 and 1.bar.

Aurora Device

Soft manipulator _Force sensor

Tip sensor . )
Linear rail

P & US

Adjustable
& support

Pagumatic W
Bpipes
p—
Tip position test

Stiffness test

Fig. 4. The experimental setup includes control devices and the Aurora
tracking system: When the chambers are pressurised, the tip position is
recorded. Stiffness tests are conducted using a force sensor mounted on a
motorised linear rail that displace the manipulator’s tip.

Experiment 2: The stiffness of the manipulator was ex-
perimentally measured and validated with the numerical
simulation based on the presented methodology with input
pressures ranging from 0 — 1.5bar. Then, the general stiffness
mapping along the manipulator with different pressurisation
in x, y- and z-axis were analysed.

B. Results and discussion

A set of sawtooth pressure sequences is generated from
0—40s as shown in Fig. 5(a). Fig. 5(b) shows the results
of Experiment 1. It is worth noting that position data in all
figures are tip positions in the base frame of the Aurora
tracking system. All experiments are carried out five times.
The top three graphs in Fig. 5(b) show the x, y, z tip position
of the experiments (in blue, green and yellow) and the sim-
ulation (in red). In the bottom graph of Fig. 5(b), the overall
error is computed between the tip position in the experiments
and simulation. The error region in three directions can be
regarded within Smm which is around 5.5% of the entire
length of the manipulator. It also can be observed that the
maximum error is along y-axis at around 10 mm, namely 10%
(see y-position during 31 — 37s) which mainly results from
the choices of simulation parameters. It is worth noting that
the combination of compensation coefficients can be further
optimised to mitigate the errors.
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Fig. 5. Results of Experiment 1: (a) Input pressure values pi, p2, p3

for each chamber pair. (b) Comparison between the simulation (line) and
experimental (coloured shadow) data of the x,y,z tip position. x., ye, Ze
are experimental positions whereas e, ey, e; are simulation outputs of the
manipulator’s tip and simulation errors in three directions.
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Fig. 6. Cartesian stiffness mapping prediction based on the protocol in Fig. 3: Planar stiffness along manipulator is plotted when one chamber pair and

two chamber pairs are pressurised separately in x,y and z-direction.

The experimental stiffness values (blue) of five repeti-
tions and simulation (red) calculations for Experiment 2 are
plotted in Fig. 7. One chamber pair is pressurised from
0-1.5 bar and the global stiffness in x-,y- and z-direction
is plotted. The experimental results show that the stiffness
in x-direction increases from 0.19 4+0.03 % to a maximum
value of 0.59i0.045% with pressurisation from 0 bar to
1.5 bar. The stiffness in y-direction is almost not influenced
by pressurisation and remains within 0.17 4+ 0.05 % The
stiffness in z-direction shows that values decrease from
11.14£0.04 X 10 0.18£0.03 2. Tt is worth noting the stiff-
ness discrepancy between the simulation and experiments.
For instance, the maximum stiffness error is about 1% in
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Fig. 7. Comparison of the experimental stiffness (blue) and simulation

(red) results in 3 directions: One chamber pair is pressurised from 0-1.5
bar and the global stiffness in x,y and z-direction is plotted. The blue arrow
indicates the direction of deformation under the pressurisation.

z-direction, which might result from the error propagation
of the forward kinematics. The accuracy could be further
improved by optimising the kinematics model.

Furthermore, we computed stiffness maps based on our
approach for manipulator configurations when one chamber
pair and two chamber pairs are pressurised separately in
x, y and z-direction. Results are shown in Fig. 6. Overall,
the stiffness capability decreases along the manipulator. In
the x-axis, the stiffness decreases 6 ~ 8 times from the
middle to the tip with maximum stiffness values of 1.17 %
When two chamber pairs are pressurised, maximum stiffness
values reach 1.45 % In the y-axis, maximum stiffness values
only reach 0.7 Cﬁm Stiffness decreases with the increase of
pressure in y-axis but increases in x-axis at a certain length of
manipulator. In z-direction, stiffness at certain length is also
increasing with higher pressures. However, stiffness variation
is much higher as it ranges between 2 ~ 10 times.

IV. CONCLUSIONS

We proposed a screw theory-based stiffness analysis. First,
we derived the forward kinematics based on a parameter-
based PCC model. It is worth noting, our stiffness analysis
can be conducted based on any free-space forward kinematic
model. Then our stiffness analysis and mapping methodology
was conducted. Initial results of our approach demonstrate
the feasibility comparing computational and experimental
data. Based on our approach, information on configurations
can be returned to optimise task-specific stiffness.

In future work, we will extensively collect and analyse
position and stiffness data from our manipulator and explore
how to scale up and apply our model to a series of soft
robotic manipulators.
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