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Abstract: Cities are growing higher and denser, and understanding and constructing the compact
city form is of great importance to optimize sustainable urbanization. The two-dimensional (2D)
urban compact form has been widely studied by previous researchers, while the driving mechanism
of three-dimensional (3D) compact morphology, which reflects the reality of the urban environment
has seldom been developed. In this study, land surface temperature (LST) was retrieved by using the
mono-window algorithm method based on Landsat 8 images of Xiamen in South China, which were
acquired respectively on 14 April, 15 August, 2 October, and 21 December in 2017, and 11 March in
2018. We then aimed to explore the driving mechanism of the 3D compact form on the urban heat
environment (UHE) based on our developed 3D Compactness Index (VCI) and remote sensing, as
well as Geo-Detector techniques. The results show that the 3D compact form can positively effect
UHE better than individual urban form construction elements, as can the combination of the 2D
compact form with building height. Individually, building density had a greater effect on UHE than
that of building height. At the same time, an integration of building density and height showed an
enhanced inter-effect on UHE. Moreover, we explore the temporal and spatial UHE heterogeneity
with regards to 3D compact form across different seasons. We also investigate the UHE impacts
discrepancy caused by different 3D compactness categories. This shows that increasing the 3D
compactness of an urban community from 0.016 to 0.323 would increase the heat accumulation,
which was, in terms of satellite derived LST, by 1.35 ◦C, suggesting that higher compact forms
strengthen UHE. This study highlights the challenge of the urban 3D compact form in respect of its
UHE impact. The related evaluation in this study would help shed light on urban form optimization.

Keywords: urban compactness; three-dimension; urban form; urban heat environment; urban
ecological effect; geographic detector; remote sensing

1. Introduction

The urban form plays an important role in the accommodation of human urban
activities and has changed greatly during a period of rapid urbanization. One obvious
change is the expansion of urban land to support rapidly growing urban populations. The
urban population accounted for 55% of the world’s population in 2018 and is expected to
grow to 68% in 2050 according to the 2018 revision of World Urbanization Prospects [1].

Unlimited land expansion is not possible owing to limited land resources. Urbaniza-
tion is accelerating and the living standards of people are improving, while the current
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state of the urban environment should also meet the needs of sustainable development [2].
Intensive land use and a compact urban form have been suggested for the sustainable
development of urban areas, which means high density and high diversity would be an
effective urban frame [3].

There have been many studies on different compact urban forms since the 1960s. It
has been concluded that the urban compact form has both benefits and challenges. Some
scholars believe that urban morphology and its regulation are beneficial. The compact
urban form contains a large population with short transportation and communication
distances, which benefits infrastructure efficiency [4], environmental pollution reduction,
and ecosystem maintenance [5]. For instance, a compact urban form centralizes public
service facilities within walking distance, making public facilities more accessible [6]. The
Barcelona Superblock model reconfiguration of the urban compact form and transport
structures can help a city become greener and more resilient to climate change [7]. Therefore,
some technologies and strategies have been provided to optimize urban form through
compactness method [8,9]. However, the compact urban form also has challenges from the
point of view of land use and land cover changes [10]. These are mainly reflected in the
following aspects: The compact environment results in a street canyon effect and urban
local climate change, which will strengthen the urban heat environment (UHE) and increase
building energy consumption. For example, excessive building density deteriorates UHE,
resulting in more energy consumption and carbon emissions [11,12]. Household building
energy consumption grows with city compactness [13].

The urban heat island (UHI) is defined by a higher air and surface temperature
in urban area relative to their rural surroundings. The land surface temperature (LST)
is a strong indicator of the UHI that is known as surface UHI (SUHI): There are LST
differences between urban suburban and nearby rural areas. Thermal infrared remote
sensing represents the main technical approach for estimating LST [14]; the urban heat
environment (UHE) is a physical environment system with urban surface temperature
and urban air temperature as the core [15,16]. In the present study, the research scope of
the urban heat environment includes surface urban heating (land surface temperature)
and atmospheric urban heating (air temperature). The urban heat environment (UHE) is
determined by the energy balance of the urban area. Thus, different land covers, which
have different geometry and thermophysical properties, play an important role in the
UHE. For surface urban heating, studies have shown that variations in the land surface
temperature (LST) were highest for an urban morphology of low-density and mid-height
buildings and lowest for arrays of high-rise and high-density buildings [17]. In most cities,
increased impervious surfaces and low tree cover densities represent the main driving
processes that increase summer daytime surface urban heating intensity [14]. There has
been a significant negative relationship between LST and the mean patch size and shape
index of the patches of green space in Beijing, China [18]. Similarly, there were also
significant relationships between mean LST and the mean patch size and mean shape
index of the patches of impervious surface (positive) and green space (negative) in the
Gwynns Falls watershed, Maryland, USA [19]. Future populations in compact cities will be
at greater risk of UHE under ongoing fast rapid urbanization processing [20,21]. Dramatic
urbanization has led to obvious urban heat phenomenon worldwide. The urban heat
phenomenon has become an important issue of the urban natural and built environment
that largely impacts on the urban ecology, building energy consumption, and human
comfort and health [22]. With regards to the effect on energy consumption, the urban heat
environment could play a different role during the heating and cooling seasons [23,24].
For example, on average, street canyons could experience a temperature rise of 2 ◦C in
summer; the maximum warming effect is 4 ◦C in compact high-rise areas of Hong Kong.
The high temperature in summer would directly affect thermal comfort and overall quality
of urban life, and it especially has a negative effect on summer habitat comfort because air
conditioning systems increase cooling energy consumption and release a higher heat flux
from the building to the outdoor air [25]. However, cities embrace their UHE as shields
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from extreme cold, and they provide considerable benefits in wintertime. The effect could
be considered positive from the point of view of reducing heating energy consumption in
winter [26]. Would compactness interventions have an impact on UHE? To answer this
question, it is important to investigate the driving mechanism between UHE and the urban
compact form [27].

Previous studies found that there were two ways of measuring the urban compact
form, one based on comprehensive statistics of multi-index and the other based on urban
space’s morphological characteristics. The former is similar to the indicator system for
measuring urban sprawl proposed by Galster [28], or the four indicators proposed by
Yu-Hsin Tsai that characterized urban compactness [29]. The ratio between the number of
Point of Interests (POIs) within the study area and the patch size of the study area cloud
can also be used to measure the compactness of urban spatial structures [30]. The latter
can also be indicated by the sky view factor (SVF), building density, and floor area ratio
(FAR) [31]. SVF has been widely used to measure the visible sky of streets and urban
geometry, which is a micro-scale parameter that is computed as the ratio of the vertical
visible sky within a given reference circle [32]. Thinh et al. used Newton’s law of universal
gravitation to construct a two-dimensional (2D) compactness index [33]. They applied
geographic information technology to urban land gridding and calculated the average
gravitation between each pair of urban land grids. As the spatial gravity strengthens,
the urban spatial compactness increases and the urban spatial structure becomes more
compact. In order to eliminate the scale discrepancies among cities, Zhao et al. constructed a
Normalized 2D Compactness Index (NCI) of the urban compact form by using a contrasted
circle that had the same urban construction area [34]. An NCI is thus more scientific for
comparing the degrees of compactness of different cities [35]. There are also a variety of
landscape metrics that were used to quantify the compactness of cities, such as the mean
patch fractal dimension and the mean shape index [36]. The fractal dimension of urban
agglomerations is also a measure of their compactness, i.e., compact cities usually have
large values of fractal dimension [37]. Similarly, the landscape shape index has been used as
a potential indicator of urban form development in landscape ecology worldwide and was
introduced to indicate the divergence of the shape of a landscape patch from a circle that is
considered ideal [38]. The shape index as an urban morphology element was also applied
to each individual cool- and hot-spot feature, with the aim of providing a measurement of
geometrical complexity of the hot-spot pattern. A recent study found that the shape index
value of the extreme level was closely related to square or circular geometries, revealing
that the highest average LST value of the study area was associated with a more regular
shape than the corresponding cool-spot level [39].

However, the above methods included sky view factor (SVF), building density, land-
scape metrics, and Normalized 2D Compactness Index, which mostly analyzed the com-
pactness of the 2D urban form. In reality, urban form is shown as three-dimensional;
the vertical dimension could not be ignored for urban compact form construction. As
urbanization continues, urban areas are not only growing denser, but are also growing
higher. Thus, 2D urban form is not enough to capture the real urban compactness, while
three-dimensional (3D) compactness is needed to accurately measure the form of the real
city [40]. At the same time, UHE changes along with the development of urbanization.
It is of great importance to precisely construct a compactness form in 3D and explore
how the 3D compact morphology effects UHE. Therefore, we developed the Normalized
3D Compactness Index (NVCI) based on previous breakthroughs of the Normalized 2D
Compactness Index (NCI), as well as the Law of Gravitation [41]. Then, based on the
3D compactness form and the NVCI model, the driving mechanism between urban 3D
compactness and UHE would be improved.

Previous studies have highlighted the importance of factors related to the urban
compact form and, in general, of geographical characteristics of cities (such as distance
from the sea or from large water bodies) in the study of the UHE. Because the mitigation
effect of the sea, i.e., sea breeze, the surface urban heating was always less intense and
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less evident in coastal metropolitan cities than in inland ones, though little attention has
been paid to coastal cities [14]. However, the surface urban heat in coastal cities could
not be ignored due to their unique geographical location and climatic conditions. The sea
is likely to play a role in mitigating surface urban heating, as the temperature variations
in water are relatively small compared to built-up areas [42]. In this study, using the
Thermal Infrared Sensor (TIRS) on-board Landsat 8, we derived the LST from the five
Landsat 8 images of the coastal city of Xiamen’s central urban area, acquired respectively
on 14 April, 15 August, 2 October, and 21 December in 2017, and 11 March in 2018. The
objectives of the present study are: (1) To evaluate the driving mechanism of urban 3D
compact form on the UHE in example central urban areas of the coastal city of Xiamen, P.R.
China, by using our developed 3D compact model based on Newton’s law of universal
gravitation, geographical information system (GIS), remote sensing, and geo-detector and
statistical analysis methods. (2) To demonstrate the advantage of 3D compact form by
comparing it with 2D compact form. An understanding about how the urban 3D compact
form effects UHE will contribute to improving the UHE and help to build a sustainable
urban form.

2. Study Area

The research area, Xiamen, is a coastal island city on the southeastern coast of China,
which is known for good habitat and rapid urbanization (Figure 1) [43]. The urbanization
rate in this city was only 64% in 1980 but quickly grew to 86% in 2007. In 2019, the
urbanization rate reached 89.2%, which was much higher than the national average of
46.4% across China [44]. Simultaneously, Xiamen is a hot summer and warm winter zone of
coastal location that has a monsoonal humid subtropical climate, with mild winters and hot,
rainy, and muggy summers. Rainfall is around 1200 millimeters per year, which is a little
less rainy than the neighboring provinces (Zhejiang and Guangdong). The spring is from
March to May and the hot season is in June, July, August, and September. The winter is
from December to February. On average, the warmest month is July and the coolest months
are December and January. The average annual maximum and minimum temperature are
25.0 ◦C and 18.0 ◦C, respectively [45,46]. We found that UHE intensity increased with the
increments of built-up areas in our previous study on Xiamen city. Meanwhile, built-up
area had positively correlated with urban warming [44]. Because of the rapid urbanization
and typical coastal city climate, Xiamen is ideal for the study of the relationship between
urban 3D compact form and UHE. The results can provide sustainable urban construction
recommendations for similar coastal cities, which accommodate more than 50% of the
world population [47]. In the present work, we expand upon our previous study area of
Xiamen Island and cover a large part of the mainland. The four districts of Huli, Siming,
Jimei, and Haicang, which are economic and political centers, and account for 74.89% of
the total population of Xiamen, were chosen as the case study area.

Figure 1. Location of the study area.
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3. Research Design and Data Collection
3.1. Indicator of Urban Compactness

Over the past five decade, measurements for a compact city have been mainly based
on the 2D form. To fill in the gap and develop measurement of urban compactness, the
3D Compactness Index (VCI) and Normalized 3D Compactness Index (NVCI) have been
proposed. These data were extracted by Remote Sensing (RS) and Geographic Information
System (GIS) techniques.

3.1.1. Normalized 2D Compactness Index (NCI)

Thinh et al. proposed a quantitative measurement model (T model) to calculate urban
compactness [33]. On the basis of GIS and urban land-use data, the T model overlays the
grid cell of a certain size of urban land-use data to generate the basic data layer for model
operation. As an example, Figure 2 shows the urban land-use data obtained from Landsat
remote-sensing images, and the pixel size of the image is 30 m × 30 m. The grid cell size is
60 m × 60 m, which depends on the scale of the study region area of the urban construction
land [34]. The T model can measure the 2D spatial gravity between different parts of urban
construction land. The T model is expressed as follows:

CI =
∑n

i = 1 ∑n
j = 1, j 6=i

1
c

ZiZj

d2(i,j)

N(N− 1)/2
(1)

where CI is the 2D Compactness Index; the stronger the spatial gravitation, the more
compact the urban form will be and the greater the CI is; hence, there is no range value of
CI; i and j are two arbitrary grid cells in the study area; Zi and Zj are, respectively, areas of
urban construction land (grey part in Figure 2) in urban grid cell i and j (i 6= j); d (i, j) is the
geometrical distance between the grid cell i and j (i 6= j); and c is a constant (m2, to make
the calculation result of CI non-dimensional). The value of c depends on the size of the
region in which we calculate the 2D Compactness Index; for example, the c value is usually
small when we calculate the CI of communities (c = 100 m2 in this study), while the c value
will be large when we calculate the CI of the entire city or even a larger area. N is the total
number of the urban construction land grid cells.

Figure 2. Grids in two-dimensional (2D) urban compactness model [34].

To offset the influence of the study area factor on the T model, the Normalized
2D Compactness Index (NCI) is presented as an improvement [34]. The Normalized
2D Compactness Index is defined as the ratio of the actual urban construction land to
the equivalent circular land (Figure 3) [48]. It not only integrates various features of
irregular urban form but also standardizes the calculation results, to compare compactness
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of different cities. Song et al. used NCI to research the relationships between urban
commuting and urban form. The NCI model is expressed as follows [35]:

NCI =
CI

CImax
(2)

where NCI is the Normalized 2D Compactness Index of which the value is between 0 and 1,
CI is the 2D Compactness Index, and CImax is the 2D Compactness Index of the equivalent
circularity, i.e., the 2D urban form is more compact as NCI will approach 1.

Figure 3. Urban construction land and its equivalent circular land [34].

3.1.2. Normalized 3D Compactness Index (NVCI)

The T model and NCI model are advanced measurements used to calculate 2D urban
compactness. However, the realistic urban spatial form has a vertical dimension. To remedy
the shortcoming that 2D compactness does not express the actual spatial form of cities, we
proposed the 3D Compactness Index (VCI), which improved the 2D compactness model
and is also based on Newton’s law of universal gravitation [41]. The VCI model can explain
the total 3D spatial attractions of a city. A large VCI result indicates strong urban spatial
attraction. The VCI model is expressed by Equation (3):

VCI =
∑n

i = 1 ∑n
j = 1, j 6=i

1
c

ViVj

d2(i,j)

N(N− 1)/2
(3)

where VCI is the 3D Compactness Index of a specific urban space; a larger VCI indicates
a more compact urban 3D form, hence there is no range value of VCI. Vi and Vj are,
respectively, volumes of urban buildings in urban cube I and cube j (i 6= j), (i, j) is the
geometric distance between the centroids of urban cube i and cube j; the unit cube also
depends on the scale of the study region and the volume of the urban buildings (Figure 4);
c is constant (m4, to make the calculation result of VCI non-dimensional). The value of c
depends on the size of the region in which we calculate the 3D Compactness Index; for
example, the c value is usually small when we calculate the VCI of communities (c = 100
m4 in this study) while the c value will be large when we calculate the VCI of the entire
city or even a larger area. N is the total number of cubes [41].

Figure 4. Schematic diagram of the spatial cube division of three-dimensional (3D) urban space [41].
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As shown in Formula (3), the VCI model is closely related to city scale. In order to
eliminate errors caused by city scale differences, the Normalized 3D Compactness Index
(NVCI) was proposed. We used a sphere as the maximum compactness form of 3D urban
space and proposed the NVCI model. The Normalized 3D Compactness Index (NVCI)
is calculated by the ratio of actual 3D urban spatial form to its equivalent sphere. The
actual urban spatial form shares the same volume with its equivalent sphere (Figure 5).
The compactness of various cities or different scales of urban area can be compared using
the Normalized 3D Compactness Index (NVCI). The NVCI is given by:

NVCI =
VCI

VCImax
(4)

where NVCI is the Normalized 3D Compactness Index and ranges between 0 and 1,
while VCI is the 3D Compactness Index, and VCImax is the 3D Compactness Index of the
equivalent sphere; the closer the value of NVCI is to 1, the more compact the urban spatial
form is [41].

Figure 5. Urban buildings and their equivalent volume sphere [41].

3.2. Calculation of NCI and NVCI

We selected a typical coastal city, Xiamen, which is a subtropical city located in
southeastern China, as the experimental area. The volumes of urban buildings that were
used as factors of the VCI and NVCI models were combined with urban construction
areas as well as building heights. We obtained the boundary of communities in Xiamen
by vectorization method (i.e., using the polygon feature template in the Create Features
window of Arc GIS to create polygons) based on GF-1 satellite remote-sensing images of
Xiamen in 2017. We then used the 2017 Pléiades 50 cm global high-resolution satellite
imagery as a reference to proofread and adjust the boundaries of communities in order
to obtain more accurate boundary data. Based on 2017 aerial imagery of the Xiamen
land survey, we used the object-based image analysis techniques to delineate building
footprints, while zonal statistics was used to extract building height information. Then,
we also proofread the buildings’ heights data through field surveys [49,50]. According to
Formulas (3) and (4), we built an urban unit cube of 5 m × 5 m × 5 m and calculated the
VCI and NVCI of each community by Python 2.7. Then, we also measured the average
building height, building density, CI and NCI of all communities. Based on the above
method and calculation results, we deleted the very small communities with only one
building in order to ensure the accuracy of communities’ NVCI value. The experimental
files comprised 841 communities (valid data) with different urban morphologies in Xiamen,
southeastern China and were included in the final analysis (Figure 6). These communities
are consistent with the boundary red line of residential communities, which is approved
by the urban construction system.
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Figure 6. Distribution of typical communities and urban buildings.

3.3. Retrieval of Land Surface Temperature

The Landsat images we used were provided by the United States Geological Survey
(https://www.usgs.gov/ accessed on 1 January 2021) for free. Although there are two
thermal infrared bands in the Landsat 8 Operational Land Imager-Thermal Infrared Sensor
(OLI-TIRS) data, the land surface temperature (LST) can be accurately inversed only by
band 10. As we know, the thermal imagery from Landsat sensors, provided with relatively
high spatial resolution, is suitable for monitoring the urban thermal environment. The
TIRS thermal bands of Landsat 8 were acquired at 100 m resolution, but were resampled to
30 m in the delivered data product, and could then meet the urban communities’ research
requirement [51].

The mono-window algorithm, an accurate method, was processed to retrieve the
LST of Xiamen in the years 2017–2018. Five cloud-free Landsat 8 images were obtained
for this study. They were acquired at approximately 10:43 a.m. (Beijing time) on 14
Apr, 15 Aug, 2 Oct, and 21 Dec in 2017, and 11 Mar in 2018. Two steps were taken
to retrieval LST: (1) converting the pixel values to at-sensor brightness temperatures;
and (2) correcting for the spectral emissivity. Four parameters are critical for calculating
LST: brightness temperature, ground emissivity, effective mean atmospheric temperature,
and atmospheric transmittance, which could be acquired by Radiometric Calibration,
normalized difference vegetation index (NDVI) (http://atmcorr.gsfc.nasa.gov/ accessed
on 25 May 2020) (Formulas (5)–(11)),

C = ετ (5)

D = (1− ε)[1 + (1− ε)τ] (6)

τ = 1.031412− 0.115367w (7)

ε = 0.02644Fv + 0.96356 (8)

where C and D are empirical equations, which are related to the land surface emissivity
and atmospheric transmittance, ε is the land surface emissivity, τ is the total atmospheric
transmittance, and w is the total atmospheric water vapor content, which ranges from 1.6
to 3.0 [52].

Fv =
NDVI − NDVImin

NDVImax − NDVImin
(9)

https://www.usgs.gov/
http://atmcorr.gsfc.nasa.gov/


Remote Sens. 2021, 13, 1067 9 of 23

NDVI = (ρnin − ρred)/(ρnin + ρred) (10)

where Fv is the vegetation proportion [53]; NDVImax and NDVImin are the maximum and
minimum NDVI values in the region, respectively; and ρnin and ρred are the reflectance
values of the NIR and red channels (band 5, band 4, and for Landsat 8), respectively.

LST =
a(1− C− D) + [b(1− C− D) + C + D]× Tb − D× Ta

C
− 237.15 (11)

Tb =
K2

ln(K1/Lb + 1)
(12)

Lb = Lmin +
Lmax − Lmin

255
DN (13)

where LST is the land surface temperature; Ta is the effective mean atmospheric tem-
perature, which can be calculated from the near surface temperature during acquisition
time of Landsat 8; and a and b are constant as −67.3554 and 0.4586, respectively, when
the LST is between 0 ◦C to 70 ◦C [54]. Tb is the effective brightness temperature at the
sensor on remote-sensing satellite in Kelvin; K1 and K2 are empirical constants values. K1
is 774.89 mWcm−2sr−1µm−1; K2 is 1321.08 K; Lb is the spectral radiance at the sensor’s
aperture in Wm−2sr−1µm−1; and Lmin and Lmax are the minimum and maximum radiances
that can be detected by the sensor, respectively. Lmin and Lmax can be found in the header
text file of the Landsat 8 raw data. LST maps for five dates are shown in Figure 7.

Figure 7. Land surface temperature (LST) images in five different dates.

3.4. Geographical Detector Models Methods

The geographical detector model (GeoD) is composed of interactive, factor, ecological,
and risk detectors, and is a spatial analysis model based on the theory of spatial hetero-
geneity and has been applied in many geographical and ecological studies [55]. It is freely
available from http://www.geodetector.org/ (accessed on 1 January 2021). In this study,
the interactive detector was used to explore the interaction of influencing factors (X) on the
heat accumulation (Y), which includes 2D architectural factors such as Building Density
(BD); Normalized 2D Compactness Index (NCI); and 3D architectural factors such as Build-
ing Height (BH) and Normalized 3D Compactness Index (NVCI). The factor detector was
used to explore the impact of different explanatory variables X1, X2 . . . on the research
target, while the ecological detector was used to explore whether any two factors, X1 and

http://www.geodetector.org/
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X2, had different significant impacts on Y. Additionally, the risk detector was used to search
for the range in which factors significantly affect LST variation, and q is the association
between Y and X, which is measured by [56]:

q = 1− 1
Nσ2

L

∑
h = 1

Nhσ2
h = 1− SSW

SST
(14)

where σ2 is the variance of Y; the study population of Y is composed of L strata
(h = 1, 2, 3 . . . L); N stands for the number of units in the study population of Y.
The strata of Y may exist already, or are constructed by classification or formed by laying Y
over X, which consists of strata. Here, we used the K-means method to convert explanatory
factors from actual values into category variables [57]. SSW and SST is the within sum
of squares and the total sum of squares, respectively. q∈[0,1]; the value of the q-statistic
indicates how much Y is interpreted by X. In detail, q = 0 indicates there is no association
between Y and X, while q = 1 means that Y is completely determined by X. The higher the
q value, the stronger is the spatially stratified heterogeneity of Y [58].

The q value of the interaction between the factors (X1, X2 . . . ) will be calculated by
the interaction detector, namely q (X1 ∩ X2). According to the relationship between q (X1),
q (X2), and q (X1 ∩ X2), the interaction can be divided into nonlinear weaken, single-factor
nonlinear weaken, independent, double-factor enhancement, and nonlinear enhancement
(Table 1) [57,59].

Table 1. Types of interaction between two variables.

Relationship Interaction

q (X1 ∩ X2) < Min [q (X1), q (X2)] nonlinear weaken (NW)
Min[q(X1), q(X2)] < q (X1 ∩ X2) < Max [q (X1), q (X2)] single-factor nonlinear weaken (SNW)

q (X1 ∩ X2) > Max [q (X1), q (X2)] double-factor enhancement (DE)
q (X1 ∩ X2) = q (X1) + q (X2) independent (I)
q (X1 ∩ X2) > q (X1) + q (X2) nonlinear enhancement (NE)

4. Results
4.1. Urban Building Characteristics

Table 2 shows the statistical results for the different buildings in Xiamen. The building
area was lowest in the Lianbanxi community, and increased from 0.044 hm2 to the highest
value of 44.764 hm2 in the Guangjing community. Building height of the selected communi-
ties ranged from 1 floor to 38 floors, with an average of 9 floors, while the building density
had an average of 35.781%, as compared to the highest value of 85.257% and the lowest
of 10.198%. Based on these building characteristics, we chose a 5 × 5 m grid to calculate
the 2D Compactness Index (CI). The average CI, CImax (the 2D Compactness Index of
the equivalent circle), and Normalized 2D Compactness Index (NCI) was 1.82 × 10−3,
2.61 × 10−3, and 0.622, respectively. Similarly, the cubes were set to be 5 × 5 × 5 m3

to calculate the 3D Compactness Index (VCI), VCImax (the 3D Compactness Index of the
equivalent sphere), and Normalized 3D Compactness Index (NVCI) of each community.
The VCI, VCImax, and NVCI were an average of 0.016, 0.334 and 0.044, respectively. The
highest NCI was calculated in the Yisheng community, with a value 0.979, while the lowest
NVCI was in the Wenbin community (0.323), as shown in Figure 8. The community with
maximum NCI did not have the maximum NVCI, which means that the most compact
area in two dimensions did not have similar compactness in three dimensions.
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Table 2. Statistics of urban building characteristics.

Building
Area
(hm2)

Building
Height
(Floor)

Building
Density

(%)

2D Compact Indexes 3D Compact Indexes

CI CImax NCI VCI VCImax NVCI

Mean 4.856 9 35.781 1.82× 10−3 2.61× 10−3 0.622 0.016 0.334 0.044
Maximum 44.764 38 85.257 0.018 0.019 0.979 0.190 1.691 0.323
Minimum 0.044 1 10.198 4.14× 10−5 9.14× 10−5 0.370 2.42× 10−4 0.063 1.45× 10−3

Figure 8. (a) The building heights in communities with the maximum NVCI; (b) The building heights in communities with
the minimum NVCI.

We also used Building Height (BH) and Building Density (BD) to further explore
how 3D compactness influenced UHE. According to Xiamen City Planning Management
Technical Regulations (2016) [60], the selected communities were divided into four types,
namely low-rise and low-density (LL), low-rise and high-density (LH), high-rise and low-
density (HL), and high-rise and high-density (HH). In detail, buildings with a height of
more than 6 floors were classified as high-rise, while those with a height of less than 6
floors were classified as low-rise. The building density was divided into high-density and
low-density buildings, with 30% as the boundary. Four typical types of urban morphology
were selected for the experiment communities, whose building characteristics are presented
in Table 3. For Compact Indexes, mean NCI was the greatest (0.660) in low-rise and high-
density communities (LH) and lowest (0.531) in low-rise and low-density communities
(LL), while mean NVCI was the greatest (0.061) in high-rise and high-density communities
(HH) and lowest (0.014) in low-rise and low-density communities (LL). Those four types
show that obvious heterogeneities exist among different building morphologies.

Table 3. Statistics of building characteristics for four typical urban morphology types.

Building
Morphology

Building Height (Floor) Average
Building
Density

Average
Building

Area (hm2)

2D Compact Indexes 3D Compact Indexes

Mean Max Min CI CImax NCI VCI VCImax NVCI

low-rise and
low-density

(LL)
5 6 1 0.271 3.181 0.80× 10−3 1.39× 10−3 0.531 7.22× 10−3 0.422 0.014

low-rise and
high-density

(LH)
5 6 1 0.461 2.462 0.30× 10−2 4.24× 10−3 0.660 2.39× 10−2 0.446 0.049

high-rise and
low-density

(HL)
15 38 7 0.221 8.872 0.40× 10−3 8.24× 10−4 0.569 3.92× 10−3 0.230 0.015

high-rise and
high-density

(HH)
10 36 7 0.394 4.856 0.20× 10−2 3.00× 10−3 0.654 1.96× 10−2 0.300 0.061

4.2. Characteristics of Land Surface Temperature

The mean LST of each urban community, which was calculated by Zonal Statistics of
Spatial Analysis in Arc GIS, was used to represent the LST condition in an urban community.
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In order to eliminate the impact from heterogeneities backgrounds, we subtracted the LST
of each community on the later map from the earlier map to obtain the real LST variations
of each community. In detail, we subtracted the 14 April 2017 communities’ LST map
from the 15 August 2017 map, the 2 October 2017 map from the 15 August 2017 map,
the 21 December 2017 map from the 2 October 2017 map, and the 21 December 2017 map
from the 11 March 2018 map, [17]. We then accumulated all the LST variations from
the five different dates to represent the total heat accumulation during the whole year
(Figure 9a). Meanwhile, for seasonal LST, the average LST of the urban community plus the
real seasonal LST variations of two dates will represent them. For example, we subtracted
the 15 August communities’ LST map from the 14 April map and added the average LST of
communities on 15 August to represent the LST of the spring season, and so on (Figure 9b).

In detail, the LST of typical Xiamen communities in spring ranges from 28.1 ◦C to
35.4 ◦C, with a mean temperature of 33.1 ◦C, a minimum LST of 38.5 ◦C, and a maximum
of 44.4 ◦C in summer. The LST of autumn was reduced from 40.8 ◦C to 35.4 ◦C; however,
the LST at the time of winter was relatively lower than that in other seasons, which ranges
from 15.7 ◦C to 19.7 ◦C, with the mean temperature of 17.4 ◦C (Figure 9b). To that extent,
the four images (Figure 9b) can typically represent the LST conditions in different seasons
in Xiamen. Figure 9a shows that the total heat accumulation in the whole year ranged
from 33.3 ◦C to 43.0 ◦C. The biggest heat accumulation during the period 2017–2018 was
primarily located in the high-density areas of Xiamen, such as the central and eastern
Huli district and the southern Jimei district. From the above, we could infer that the heat
accumulation has a close relation to the urban morphology of the study area.

Figure 9. Cont.
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Figure 9. Spatial distribution of the heat accumulation in each community of the study area, (a).
Spatial distribution of the LST across four seasons in each community of the study area, (b).

4.3. Urban 3D Compact Form Impacts on UHE
4.3.1. Correlations between NCI, NVCI, and UHE

Pearson Correlation analysis was used to explore the relationship between heat ac-
cumulation and urban compactness, which was indicated by two normalized compact
indexes, NCI and NVCI [61,62]. Figure 10 shows that the NCI and NVCI were positively
correlated with heat accumulation at a significance level of 0.001. However, heat accumula-
tion had a stronger relationship with NVCI (R = 0.5087***) than with NCI (R = 0.3312***).
This means that the 3D compact form is more helpful for exploring how urban compact
morphology impacts on UHE. The Geographical detector (GeoD) was also adopted to
verify the integrate impact between urban compact form and UHE. The GeoD factor detec-
tor indicated that the NVCI also had the most important impacts on heat accumulation
(q = 0.271), followed by BD (q = 0.196) and NCI (q = 0.101), and then BH (q = 0.016). In
addition, the GeoD ecological detector tested that there were significant difference in the
influence of BH, BD, NCI, and NVCI on heat accumulation, as in ‘Y’ in Table 4. From these
results, we can see that the urban 3D compact model (NVCI) integrated the horizontal and
vertical elements of urban buildings, which is different from building density or building
height and comprehensively reflects the impact of the urban 3D form on UHE.
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Figure 10. Relationship between heat accumulation and (a) NCI; (b) NVCI.

Table 4. The influence power of urban morphology to heat accumulation and the significant test of
the factor difference.

BH BD NCI NVCI

q statistic 0.016 0.196 0.101 0.271
BH
BD Y
NCI Y Y

NVCI Y Y Y

The GeoD interaction detector demonstrated double-factor enhancement among four
selected factors (BH, BD, NCI, and NVCI). The effect from the interaction of building
density (BD) with building height (BH) (BD∩ BH) was greater than that from the two
sub-factors individually (BD, BH). We used one simple equation, q (BD ∩ BH) = 0.199 >
Max [q (X1), q (X2)] = 0.196, to describe this finding; here, ‘∩’ means interactions. We also
found that, for NCI and BH, the relationship between them was similar, and was q (NCI ∩
BH) = 0.115 > q (NCI, BH) = 0.016, 0.101. However, q (NCI ∩ BH) = 0.115 < q (NVCI) = 0.271
(Table 5). These findings illustrate that the effects on heat accumulation would be enhanced
when the NCI included BH. However, the interactions of NCI with BH were still weaker
than the single factor of NVCI. NCI reflects the 2D compact form, which could be regarded
as an index similar to building density. Building height is an indispensable part of urban
morphology. Even combining NCI with BH, its integrated effect on heat accumulation was
still not as strong as NVCI. It also reflects that NVCI is a synthesized indicator for UHE
indication due to its 3D entities.

Table 5. Results of Geo-Dector interaction detector.

BH BD NCI NVCI

BH 0.016
BD 0.199 DE 0.196
NCI 0.115 DE 0.233 DE 0.101

NVCI 0.278 DE 0.290 DE 0.298 DE 0.271

4.3.2. Relation of NVCI with UHE across Different Urban Morphology Types

In order to further explore the driving mechanism of urban 3D compact morphology
on UHE, we analyzed the correlation between NVCI and heat accumulation across different
urban morphology types [62]. This could also be used to further study how the individual
factors of urban compact form, such as building density and building height, impact on the
UHE. As shown in Table 6, there were specifically 404 H-H, 149 H-L, 162 L-H, and 126 L-L
typical communities, with there being 553 high-rise and 288 low-rise communities, and 566
high-density and 275 low-density communities.
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Table 6. Numbers of four typical communities.

High-Dense
Buildings

Low-Dense
Buildings Totality Number

High-rise buildings H-H (404) H-L (149) 553
Low-rise buildings L-H (162) L-L (126) 288

Totality number 566 275 841

The correlation between the average NVCI of four urban morphology types and heat
accumulation was significant at a level of 0.01, with R2 value being 0.996. Figure 11e shows
that, for low-rise communities, the heat accumulation increased by 1.6 ◦C when building
density changed from low (27.1%) to high (46.1%), while, for high-rise communities, the
heat accumulation also increased by 1.6 ◦C when building density changed from 22.1% to
39.4%. Similarly, the heat accumulation increased by 0.2 ◦C with increasing building height
levels in the low-density communities while, in the high-density communities, the heat
accumulation also increased by 0.2 ◦C when building height shifted from low (5 floors)
to high (10 floors) (Table 7). We concluded that an increase in building density will lead
to greater heat accumulation than that from building height. The results indicated that,
compared with building height, building density was a major factor affecting the UHE.

Figure 11. The top panel shows the four typical urban morphology types of LL, HL, LH, and HH (a–d); (e) Relationship
between heat accumulation and average NVCI of four types.

Table 7. Heat accumulation in four typical urban morphology types.

Low-Rise
Buildings

High-Rise
Buildings

Low-Dense
Buildings

High-Dense
Buildings

Low-dense to
High-dense

1.6 ◦C
(LL-LH)

1.6 ◦C
(HL-HH)

Low-rise to
High-rise

0.2 ◦C
(LL-HL)

0.2 ◦C
(LH-HH)
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4.4. Correlations between Urban 3D Compact Form and UHE across Different Seasons

We further calculated the Pearson Correlation between the NVCI and LST across four
seasons to investigate the seasonal variations of impact of urban 3D compact form on
UHE (Figure 12; Table 8). The correlation between NVCI and LST was most significant in
autumn, with the R value being 0.416 (P < 0.001), followed by summer, with the R value
being 0.237 (P < 0.001). Meanwhile, NVCI was negatively correlated with LST in winter,
with the R value being −0.332 (P < 0.001).
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Table 8. Relationships between NVCI and LST across four seasons.

Season R-Value

Spring −0.080 *
Summer 0.237 ***
Autumn 0.416 ***
Winter −0.332 ***

* Correlation is significant at the 0.05 level; *** Correlation is significant at the 0.001 level.

4.5. Effect Range Detect of Urban 3D Compact Form Impacts on UHE

The GeoD risk detector was used to detect the impact of explanatory factors between
categories [63]. The results showed that NVCI had varying impacts on heat accumulation
at different category levels. The impacts of 3D compactness on heat accumulation increased
gradually from level 3 (range, 0.016–0.035) to level 2 (range, 0.035–0.079), and then level 1
(range, 0.080–0.323), and the corresponding average building density and building height
exhibited levels from 3 (31.84%, 8 floors) to 2 (41.44%, 8 floors), and then level 1 (51.74%,
11 floors). Increasing the NVCI of an urban community from 0.016 to 0.323, which is
equivalent to increasing the average building density from 31.84% to 51.74% and average
building height from 8 floors to 11 floors, would increase the heat accumulation by 1.35 ◦C.
This confirmed that, in terms of the urban 3D form, compact is not always better. This
finding will facilitate sustainable urban form development by scientific urban design.

5. Discussion

Through affecting wind, solar radiation trapping, and shadowing effects, a 3D compact
form changes urban heating exchange and stocks, which are different from those only
from land surface. Buildings act as blocks to reduce wind speed and alter wind profile
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in the canopy [64,65]. Moreover, high building envelopes affect the flow of sensible-heat
flux, and the solar radiation processing varies accordingly [66,67]. The trapping of solar
radiation causes energy to be stored in the urban building canyon as buildings become
higher and streets narrower [68]. These have been confirmed to be the controlling factors
in the relationship between the urban 3D compact form and UHE. Hence, a 3D compact
form leads to prominent UHE stress due to its nature, more so than 2D compactness.

The impact of urban morphology on canopy temperature variations, mostly through
radiation shadowing and trapping, has been well described [69,70], as has the heat stor-
age [71,72]. In this study, because large spatial coverage air temperature measurements are
not available, we used the land surface temperature (LST) from satellite images to discuss
the impact of urban 3D compactness on the temperature variation.

Here we use a simple conceptual energy balance model to explain the observed
correlations between LST and morphology. The surface temperatures, T, is determined by
the surface energy balance [73,74]:

C
dT
dt

= QSW −QLW + QF −QH −QE (15)

On the left hand, C is the effective thermal mass that is calculated as the production of
density, ρs, specific heart, cs, effective depth, ds, and the total surface area, A.

C = ρscsds A (16)

On the right hand, QSW is the solar short-wave radiation at the surface, QLW is the
outgoing long-wave radiation, QF is the anthropogenic heat, and QH and QE are sensible
heat flux and latent heat flux, respectively.

In this study, the LST mainly consists of the temperature from the horizontal surfaces,
i.e., the ground and roof, while the vertical surfaces are usually excluded (Figure 13).

LST = BD ∗ Tsroo f + (1− BD) ∗ Ts_ground (17)

Figure 13. Simple schematic depiction of the main energy exchange fluxes comprising the surface
energy balance of roof and urban canyon facets (a) by summer and (b) by winter. The structure of an
urban canopy model, which simulates exchanges at street, wall, and roof surfaces representative of
parts of a city.

As the surface area for the total urban canopy (ground and wall) are larger than the
roof area, this will result in a much larger thermal mass. Together with the shading effect,
the surface temperature in the roof, Ts_roo f , is usually higher than at the ground, Ts_ground
in the daytime. At night, however, due to its large sky view factor and stronger wind
in the roof, which result in stronger nocturnal cooling through long wave radiation and
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convection, Ts_roo f is usually lower than the ground , Ts_ground. Thus, when increasing the
building density (BD), daytime LST would be higher, which is resulted from an overall
effect of canyon geometry on solar radiation. Our results were consistent with the findings
of Guo et al., who found that building density had a stronger effect than building height on
the LST [17]. The difference was that they believed that an urban morphology of a medium
building height and lower density yielded a higher heat accumulation. Moreover, the land
cover of the ground surface also plays a role. For instance, compared with impervious
surfaces, the green areas would absorb less solar radiation due to relatively higher albedo
and stronger cooling latent heat cooling, and Ts_ground would be less. Besides, there are
other meteorological and geographical factors, such as cloud, rainfall, anthropogenic heat,
etc., that have an impact on the surface energy balance as well as the LST. However, any
radiometer at a fixed position has a biased view when observing a convoluted, three-
dimensional surface such as an urban canopy. A methodology based on a panoramic time
sequential thermography data set is important for the calculation of the complete surface
temperature [75]. Surface emissivity over urban areas is also critical in surface temperature
estimation and is related to energy budget. In order to match urban studies, improving
the estimation of urban surface emissivity is essential [76]. Hence, the exact mechanism
between urban 3D compact form and LST and the contributions of these factors may need
further study.

These could also explain the seasonal variations between NVCI and UHE in Section 4.4.
The seasonal discrepancies in the impact of urban 3D compactness on LST is largely subject
to the interactions between canyon geometry and incoming solar radiation, i.e., radiation
trapping and shadowing effects that are related to the geographic location and solar angle.
In general, increasing the compactness can enhance both the shadowing and the trapping
effects. The trapping effect supports the UHE, whereas shadowing effects reduce the UHE,
resulting in a nonlinear impact of canyon geometry and solar angle on UHE [69,70].

This study was conducted in Xiamen, whose latitude is around 24◦ N and experiences
weather of warm winters and hot summers. Compared with the spring and winter seasons,
there are sunnier and higher temperature days in summer and autumn [45]. Moreover, the
solar angle is higher than in spring and winter, which results in less shadowing effect and
leads to higher level solar radiation reaching both roof and ground. However, in winter,
relatively large shadows will cause much more solar radiation to be absorbed by the walls
and less by the ground. Therefore, a more compact 3D form with larger shadow areas
will lead to lower ground temperatures during the winter (Figure 13). Thus, a positive
correlation between urban 3D compactness and LST was observed in warm seasons, while
there was a negative correlation in cold seasons.

Interestingly, the correlation between an urban 3D compact form and LST is higher
in autumn than in summer because, in autumn, the solar angle is relatively lower than
that in the summer. Therefore, the solar radiation will reach, not only the ground, but
also the walls, and more radiation will be trapped in the urban canyon and cause much
more energy to be stored. Therefore, the 3D compact form has more prominent UHE
stress in autumn than other seasons due to its horizontal and vertical element integration.
Besides, there are other geographical and meteorological factors, such as vegetation cover,
anthropogenic heat, cloud, rainfall, etc., that have a strong seasonal variation and impact on
the surface energy balance as well as the LST. For example, some particular combinations
of impervious surfaces and tree cover densities are responsible for intensifying the surface
urban heating significantly, with extreme climate conditions at critical areas [14]. These
may result in a more prominent UHE stress in autumn than in other seasons. However, the
dense time series of LST could have convincible seasonal LST characteristics. We agree that
the mechanism relating to the urban 3D compact form and LST in different seasons needs
further study.
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6. Conclusions and Future Work

In this study, we adopted the Normalized 3D Compactness Index (NVCI) to quantify
the urban 3D form of typical urban communities within different regions of Xiamen. The
effects of the NCI and NVCI on temporal and heat accumulation were then examined across
LST that was derived from Landsat 8 imagery. Pearson Correlation and Geo-Detector were
used to explore the interaction of influencing architectural factors on the UHE, as well as
the driving mechanism of the urban 3D compact form and UHE across different urban
morphology types and seasons. We reached the following conclusions:

(1) On the whole, both 2D compactness and 3D compactness had a positive effect on
the UHE. Three-dimensional compactness contributed the most, whereas the corre-
sponding contributions from building density, 2D compactness, and building height
decreased gradually. Compared with individual urban form construction elements,
the 3D compact form has prominent UHE stress due to its nature. Even combing
2D compactness with building height, the integrated effect on UHE was still not as
strong as the function from 3D compactness. It reflected that the urban 3D compact
form was helpful for UHE impact due to its land cover and vertical space integration.
It will be more useful than only considering building density or building height for
further research into the driving mechanism between the urban 3D compact form and
the UHE and other related environmental effects in the future.

(2) For the driving mechanism of the urban 3D compact form on UHE, the 3D structure
and spatial pattern of urban buildings affect the wind environment, radiation trapping,
and shadowing effects. The driving process of the urban 3D form on UHE was further
proved by different urban morphology types. Individually, building density had a
greater effect on UHE than building height. Despite this, the vertical scale should
not be ignored due to the enhanced UHE when including the two factors of ‘height’
and ‘density’.

(3) Temporal and spatial UHE heterogeneity is driven by a 3D compact form. In areas
with warm winters and hot summers, a positive correlation between urban 3D com-
pactness and LST was observed in the warm season, while a negative correlation was
observed in the cold season. The 3D compact form has more prominent UHE stress in
autumn than other seasons due to its horizontal and vertical element integration, as
well as radiation trapping effects.

(4) The Normalized 3D Compactness Index (NVCI) levels were accessed with high
confidence to reveal that dominant factors in special categories had a high ability to
increase heat accumulation. Increasing the 3D compactness of an urban community
from level 3 to level 1 (0.016–0.323) would increase the heat accumulation by 1.35 ◦C,
which is also equivalent to increasing the average building density from 31.84%
to 51.74%, or increasing average building height from 8 floors to 11 floors. This
means that the compact urban 3D form is not always better. A too compact form will
strengthen UHE.

Although our research confirmed that the urban 3D compact form has a significant
effect on the UHE, some limitation still exits: (1) For the retrieval of LST, the satellite sensors
do not measure the complete surface temperature. It would be more accurate to use a
methodology that could be applied to simulate the measurement bias of different remote
sensors when inferring longwave emittance and surface temperature of a convoluted,
three-dimensional urban surface [75]. Because NDVI emissivity corrections for LST are not
suitable for urban studies, how the urban 3D form affects the land surface emissivity is
worth discussing, particularly topics such as improving the estimation of urban surface
emissivity based on spectral mixture analysis [76]. Moreover, the dense time series of
LST is also useful for obtaining convincible conclusions on LST characteristics. (2) The
LST is different from the air temperature, which has a great influence on determining
human thermal comfort in urban areas [17]. Thus, high resolution on-site air temperature
observation and numerical modelling data would be helpful to further verify the obtained
results from remote-sensing images. (3) Apart from the buildings and their geometry, other
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urban landscape elements such as vegetated areas (starting from grass to trees) also play a
potential role in the urban heat environment (UHE). Urban tree and green infrastructures
are now widely considered as an effective way to mitigate urban heating. An integration
of 3D building geometry and green areas and infrastructures would be essential to the
holistic approach for improving the urban heat environment. (4) The proposed NVCI is
applicable at both community and urban scales. The scale of this study was limited to the
urban community level. In future, a comparative study of different urban form indictors
(e.g., NVCI, SVF) in China’s larger cities and even mega-cities throughout the world under
different climatic conditions, together with different variables (tree cover, water body . . . ),
would be of great interest in order to explore their impact on urban heat environment. In
addition, we believe the urban 3D compact model could be considered in many other areas
of research, such as the urban 3D compact form influencing urban atmospheric pollution
transfer [77]. It is also important to provide scientific guidance for climate response urban
planning in cities in terms of different latitudes and climatic backgrounds, promoting a
healthier and more sustainable urban habitat.
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