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ABSTRACT

Given the complex temporal evolution of epileptic seizures, understanding their dynamic nature might be beneficial for clinical diagnosis
and treatment. Yet, the mechanisms behind, for instance, the onset of seizures are still unknown. According to an existing classification, two
basic types of dynamic onset patterns plus a number of more complex onset waveforms can be distinguished. Here, we introduce a basic
three-variable model with two time scales to study potential mechanisms of spontaneous seizure onset. We expand the model to demonstrate
how coupling of oscillators leads to more complex seizure onset waveforms. Finally, we test the response to pulse perturbation as a potential

biomarker of interictal changes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021693

Focal epileptic seizures are characterized by complex spatiotem-
poral rhythms of electric brain activity. Phenomenologically,
there are different types of rhythms, namely, fast-small oscilla-
tions, slow-large spiking, and complex waveforms of the voltage.
The dynamics of these types are, however, still poorly understood
and their clinical characterization is, therefore, mostly descrip-
tive. We use computational modeling of macro-level electrical
brain activity to study the spontaneous onset and evolution of
major clinical seizure rhythms. Looking at principal models of
one and two coupled oscillators with a slow driving population,
we show the dynamical characteristics and relationships between
basic seizure onset types. In addition, we show that pulse per-
turbations of background activity can serve as a biomarker for
seizure onset.

I. INTRODUCTION

Epilepsy is a neurological disorder that is characterized
by recurrent abnormal seizures discharges. According to the

classification and terminology revised by the International League
Against Epilepsy (ILAE), focal epilepsy is defined as seizures appear-
ing within networks limited to one hemisphere and either dispers-
edly localized or globally distributed.’ The onset patterns of focal
epilepsies have received more attention™’ because understanding
the onset can lay the foundation of revealing the nature of seizures
in drug-resistant focal epilepies. In the previous studies, the fast-
small amplitude onset and the slow-large amplitude onset were
widely investigated from a clinical point of view' and also stud-
ied using computational simulations.” However, complex waveform
onsets, including sharp activity, spike-and-wave, burst of high-
amplitude polyspikes, burst suppression, and delta brush, are also
seen and may result from different pathological substrates.® Fur-
thermore, studies have demonstrated that focal epilepsy genesis may
refer to specific cortical and subcortical networks.”'" Although we
can detect anatomical or functional abnormalities in focal epilepsy,
the dynamic mechanisms that govern seizures are not well under-
stood. Thus, a better understanding of the mechanisms underlying
seizures and specifically seizure onset is of significance for advances
in accurate diagnosis.
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Dynamical characteristics of focal epilepsy are commonly
investigated in animal models. However, mathematical models
provide a safe complementary way of study. There are two main
levels of description of computational models that describe transi-
tions to seizure: at the microscopic level, detailed neuronal network
models (e.g., the Hodgkin-Huxley neuronal model) constructed
with principal neurons and interneurons connected by means of
chemical synapses or gap junctions, can be used to build networks
which produce epileptiform activities.'' At the macro-level, neural
field models can describe the spatiotemporal evolutions of coupled
populations on the macro-scale relating to, e.g., electrocorticog-
raphy (ECoG) or stereo-encephalography (SEEG).'* For example,
the dynamic mechanisms of two different onset patterns of focal
seizures were investigated by means of networks of Wilson-Cowan
neural field oscillators."’

In terms of dynamical systems, epileptic seizure discharges
can be viewed as instances of bursting. Generally, bursting dis-
charges are induced by fast slow dynamics."" At the scale of a
mean field model, e.g., Liley and Walsh'® established a fast-slow
model by adding slow populations that led to bursting activity.'®
Therein, they hypothesized that the addition of a slow population
could represent superimposed effects of intracortical, intercorti-
cal, and subcortical systems. Specifically, they hypothesized that
the slow system might originate from thalamo-cortical feedback,
modulations in the conduction specialties of the long-range cortico-
cortical fiber system, or slow changes due to synaptic activities,
e.g., uptake (depletion) process by glial cells and reuptake (restitu-
tion) processes. This is further corroborated by investigations on
the role of astrocyte cells (a subtype of glia).!”'* Motivated by the
idea that spontaneous epileptic seizures can result from the driving
by a slow underlying process, we first present a principal three-
variable model of spontaneous seizure transitions, then expand it
to a model of coupled oscillators with a slow driving population,'**’
and show the resulting relationships between the basic focal-onset
types and more complex types of dynamics. Finally, we look at the
response of the temporally evolving interictal state to repetitive pulse
perturbations.

Il. MODELS
A. The basic three-variable model

Epileptic seizure dynamics can be viewed as repeated tran-
sitions of macroscopic electric brain activity between a quiescent
(non-epileptic) and a rhythmic (epileptic) state. We, therefore, start
with a three-variable system of coupled differential equations to
create spontaneous switching between a quiescent background and
oscillatory dynamics. The model is of the type that has been used
in mean field modeling in many previous studies, closely related to
the Amari model” and the Wilson-Cowan model.” The basic con-
struction is an excitatory population EX, which positively impacts
an inhibitory population IN. The inhibitory population in turn neg-
atively impacts the excitatory population. Given specific choices
of parameters, the model has bifurcations without (supercritical
Hopf and saddle-node on invariant cycle, SNIC) or with (subcrit-
ical Hopf and homoclinic bifurcation) the presence of bistability.”
These codimension 1 bifurcations represent the basic transitions
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from fixed point to oscillatory behavior in two-variable determin-
istic model systems. Together with the four codimension 1 bifurca-
tions that can lead to the disappearance of an attracting limit cycle
in the absence or presence of bistability, they combine to yield a
set of 16 possible type of bursting under slow variation of a model
parameter.

A common assumption about the onset of focal epileptic
seizures is that a slow shift in one of the parameters drives a tran-
sition in and out of the oscillatory state, thus accounting for the
onset and offset of seizures. The nature of the assumed shifting
parameter is not known in humans but some evidence from animal
models points to slow changes in the extracellular space surround-
ing the neural population. From a dynamical systems point of view,
a transition between a quiescent and an oscillatory state can occur
spontaneously if the EX — IN oscillator is connected to a very slow
population in a feedback loop.”’ An equation of such a model of
spontaneous transitions was given in Ref. 20 but not studied in any
detail. Here, we describe its properties as a candidate for an extended
network model of focal-seizure onset. The differential equations are
as follows:

dEX
TE<:Mmﬂ—EX+cuwm—cyww—cumuux
dIN

Aﬂ=m%—m+mmx (1)
dUL

? = Tul(hul — UL+ ClUﬂEX]),

where EX represents the excitatory population and IN the inhibitory
population. UL denotes a population that integrates inputs and gen-
erates slowly varying feedback. Here, it receives input from the EX
population and feeds back to EX with coupling achieved through
a sigmoidal activation function. The input to the inhibitory vari-
able is using a linear term similar to a previous approach.” fx]
is a sigmoidal activation function defined as flx] = ; +i*x where
x = EX, IN, and UL, respectively, and € = 1000. The model scheme
is shown in Fig. 1. We consider the constant input k., as bifurcation
parameter.

B. Two coupled oscillators modulated by a common
ultraslow population

We extend the above model to a system with two coupled
oscillators driven by a joint ultraslow population. Each oscilla-
tor has an excitatory and an inhibitory population (EX1, IN1
and EX2, IN2, respectively) as before. There is coupling between
them which is bi-directional but typically with different coupling
strengths. Both oscillators feed into an ultraslow population. In
contrast to previous approaches,”’ we assume the ultraslow pop-
ulation to interact reciprocally with both oscillators, i.e., it plays
a global role in driving the model into and out of an oscillatory
rhythm. The full set of interactions between the populations of the
oscillators and the ultraslow population is shown schematically in
Fig. 2.
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FIG. 2. Diagram of a model of two coupled oscillators modulated by a common
ultraslow population. Excitatory populations are represented by EX1 and EX2,
and inhibitory populations are IN1 and IN2. UL is the population that can gen-
erate slow output. The C-labels denote connection parameters. C1 and C4 are
the self-connection parameters of EX1 and EX2, respectively. C2 is the connec-
tion parameter from IN1 to EX1, C3 is from EX1 to IN1, C1U is from EX1 to UL,
and CU1 is from UL to EX1. C5 is the connection parameter from IN2 to EX2,
C6 is from EX2 to IN2, C2U is from EX2 to UL, and CU2 is from UL to EX2.
The h-labels are constant external inputs. he,q and hey, are the inputs of EX1 and
EX2, respectively. hj,r and hy,, are for IN1 and IN2, respectively. hy is for UL.

FIG. 1. Configuration of the basic three variables, one excitatory population
(EX), one inhibitory population (/N), and one population can produce slowly vary-
ing output (UL). The h-parameters are constant inputs. he, is the input of EX, h;, dIN1

is for IN, and h,, is for UL. The C-labels are connection parameters. C1 is the = Tj1 (hiy — IN1 4 C3EX1),

self-connection parameter of EX, C2 is the connection parameter from IN to EX, dt

C3is from EX to IN, C1U is from EX to UL, and CU1 is from UL to EX. dEX?2

7 = Tex2 (hex2 — EX2 + C4ﬂEX2] - CSf[INZ]
The equations to describe the temporal evolution of the two- + CIZfIEX1] — CUAUL), 2)
oscillator model with slow modulation are dIN2
JEX1 7 = Tin (hinZ — IN2 + C6EX2),
7 = Tex1 (hexl — EX1 + C].f[EX].] — CZf[INl] dUL
—— = 1,(hy — UL + C1Uf[EX1] + C2UflEX2]).
+ C21[EX2] — CUIf{UL)), dt
Chaos 30, 103114 (2020); doi: 10.1063/5.0021693 30, 103114-3
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According to the original paper of Wilson and Cowan,” the
time constant 7 is the range for the delays associated with the prop-
agation of postsynaptic potentials from the dendrites of a neuron
to the axon hillock. In our study, time scales are denoted by the ;
parameters. We pick time scale parameters as 7., = T,y = 1 and
Texa = Tinp = 1.1 for similar but not identical time scales of the oscil-
lators (to avoid unrealistic symmetry) and 7.,y = T,y = 1 and 7.y,
= 1;, = 5 for different time scales of the oscillators. We consider
the two coupling constants C12 and C21 as bifurcation parameters.

Simulations were done in MATLAB and confirmed indepen-
dently with a different integration routine in Python.

Ill. RESULTS
A. Dynamical analysis of the three-variable model

A summary of exemplary dynamics of the three-variable model
is provided in Fig. 3. Figure 3(al) is the bifurcation diagram as a
function of input parameter hex. Two regions of fixed point dynam-
ics enclose a region of spontaneous oscillations. The oscillatory
region is divided into a region of bursting (—0.6 < h,, < —0.2) and
a region of small-amplitude periodic oscillations that vanish in a
supercritical Hopf bifurcation at around hex ~ 0.18. We regard the
fixed point on the left-hand side of the diagram as our model for
the stable background state and the bursting region as represent-
ing a state of spontaneous transition to epileptiform brain dynamics.
The time series within the bursting region is a composite of a lower
branch fixed point (representing non-seizure dynamics) and a slow
transition from non-oscillatory to oscillatory dynamics on an upper
branch. The jump from the lower quiescent state to the second,
upper state is in agreement with a saddle-node bifurcation of the
oscillatory subsystem EX — IN. From that “upper” state, we see a
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small drop to a second quiescent state, which appears to be a sta-
ble focus (it is approached by small damped oscillations at constant
frequency). The next is an instability of that “focus” leading to the
appearance of small-fast oscillations. The increase in amplitude is at
least compatible with a subcritical Hopf bifurcation transiting to a
pre-existing large cycle with lower frequency in a hypothetic time
scale separated system. Eventually, the oscillations terminate with
what appears to be a saddle-homoclinic orbit to the (already exist-
ing) “lower” quiescent state. The zoom of the time series around
oscillatory onset in Fig. 3(b1) shows the small drop at the higher
branch to an oscillatory onset with initially very small amplitude and
high frequency followed by a continuous increase in amplitude.

Figure 3(a2) is the bifurcation diagram as a function of param-
eter hex at a parameter set that differs only in the setting of the
input and time scale of the inhibitory population. We also find a
bursting region (—0.59 < h,, < —0.49) enclosed by a fixed point
for small values of hex and an oscillatory region for large values
of hex. In the bursting region, the oscillatory onset shows repeti-
tive large amplitude and low frequency spiking. The lower quiescent
state transits to oscillations via what would be a SNIC bifurcation
of the fast subsystem. This leads to the sudden appearance of large
spikes at an initially low frequency [Fig. 3(b2)]. As the oscillation
evolves farther away from the transition point, the frequency of the
large spiking increases, while the amplitude is preserved. The end of
the oscillatory phase is compatible with a saddle-homoclinic orbit as
an abrupt stop of the spiking and a drop to a non-oscillatory state,
which already exists. In the terminology of Izhikevich, this would
represent a “circle / homoclinic bursting.””’

Both scenarios are at least consistent with previous studies of
the seizure onset and offset as cases of embedded low-dimensional
bifurcations.”>*> However, this is only an approximation based on
the fast/slow separation (7, — 7../00), whereas the full model is

(A1) (A2)
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FIG. 3. Bifurcation diagram and time series of the simulated “seizure” onset in Eq. (1). (a1) and (a2): Bifurcation diagrams of fast-small onset and slow-large onset, respec-
tively. Parameters (a1): C1 = 3.5, C2 =23, C3 =6, CU1 = C1U =1, tx = 2, Ty = 2, Ty = Te&x/1000, hj, = —1.5, and h, = —0.7. Parameters (a2): same as

(a1) except 7, = 5.5, hj = —0.2. (b1) and (b2): Zooms of the corresponding time series. Input of excitatory population in (b1) is hey

—0.503, and hey = —0.5535 in

(b2). Other parameters as in (a1) and (a2), respectively. For the time series, the time scale of the ultraslow population was set to 7, = 7e,/5000 to simulate a long quiescent

period and Gaussian white noise with mean 0 and variance 0.1 added.
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nonlinear and parameters are not set within strict validity of this
simplification. The two parameter settings are such that they are
compatible with a codimension 1 situation in the two-variable sub-
system. Thus, if, e.g., a linear interpolation was made between the
parameters, they would pass the vicinity of a codimension 2 point in
that susbsystem. Note, however, that even this model already has a
parameter space that is difficult to treat analytically for all possible
bifurcations and that the model structure might violate the assump-
tions of an independently varied slow parameter, i.e., the ultraslow
variable is not independent of the happenings in the oscillator.

B. Spontaneous transitions in the extended
two-coupled oscillator model

Based on previous studies of the dynamic transitions in focal-
onset epileptic seizures,” we look at the influence of parameter
changes in a model of two coupled oscillators with similar and dif-
ferent time scale parameters, respectively. The reason for this is that
epileptic seizure rhythms are not restricted to a single macroscopic
time scale and that in many instances the seizure onset and evo-
lution is not restricted to either fast or slow oscillations but mixed
mode oscillations are found.” The full parameter space of the 5
variable model is too high-dimensional to be studied in detail; there-
fore, only representative parameter sets are considered. The local
excitability in oscillators 1 and 2 is set to hexl = hex2 = —0.55,
respectively. These correspond to a value where the oscillators are
in the background state but close to the bifurcation leading to oscil-
latory dynamics. For different values of parameter C12, the coupling
from oscillator 1 to oscillator 2, we scan parameter C21, the cou-
pling from oscillator 2 to oscillator 1. These are the parameters to
study both coupling and difference in coupling strength. The result-
ing dynamics are then studied further for the case of similar time
scale parameters, respectively.

Figure 4 illustrates the bifurcations as displayed by extrema of
oscillator 1 as a function of parameter C21 (for C2112 = 1.5) with
similar time scales of the oscillators; time plots corresponding to
both oscillators; and state space portraits for different values of C21.
The bifurcation diagram in Fig. 4(a) shows that the model displays a
stable steady state for coupling below C21 & 0.45. There is a broad
central region of spontaneous transitions between quiescent back-
ground and oscillations between C21 ~ 0.65 and C21 = 3.7. For
strong coupling, C21 > 3.7, we find permanent oscillatory activity.
The central region is considered a model for spontaneously induced
rhythmic activity corresponding to epileptic seizure dynamics.

For C21 ~ 0.73 [Figs. 4(b1), 4(b2), and 4(c1)], it can be seen
how the model spontaneously enters and exits oscillatory dynam-
ics. The reason is that the quiescent background state has become
unstable. The instability leads to a continuous slow decrease of
the ultraslow population which results in a correspondingly slow
increase of the excitatory and inhibitory variables of the two oscilla-
tors. This drives them across a threshold into oscillatory dynamics.
At the switch to oscillations, the ultraslow population reverses and
starts to continuously increase. That increase governs the evolution
of the oscillatory dynamics until a second threshold is reached and
the oscillation ends. The variables of the two oscillators resume a
quasi-steady state value upon which the cycle starts from the begin-
ning. The exact waveforms of the oscillatory parts vary from one
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burst to another, indicating that the overall attracting dynamics is
quasiperiodic or weakly chaotic. The oscillatory period is initiated
with two or three separated large spikes followed by an increase in
frequency. This is reminiscent of the saddle-node on invariant cycle
bifurcation that would be seen if the two oscillators were driven by a
slow parameter increase in the absence of the ultraslow population.”’
During the oscillatory part, the time series of the two oscillators
share a common main frequency but the waveforms differ sub-
stantially. Looking closely, one can see a variation from a slower
and larger oscillation to a faster smaller oscillation and back again
before the rhythm terminates for both oscillators. The state space
portrait in Fig. 4(c1) shows part of the underlying attractor dynam-
ics stretched in the direction of the ultraslow population. During
the pseudo-steady state period, the ultraslow population falls, and
during the oscillatory period, it rises.

For C21 ~ 1.04 [Figs. 4(b3), 4(b4), and 4(c2)], the time series
of both oscillators in the oscillatory period start with slow activ-
ity which becomes continuously faster. The amplitude is modulated
but regular until toward the end, the dynamics changes to irregu-
lar, slower and with larger amplitude. The state space portrait in
Fig. 4(c2) shows the regular small oscillations forming a tube-like
structure and the wider loops of the final part on top.

For C21 ~ 2.33 [Figs. 4(b5), 4(b6), and 4(c3)], the switch from
the pseudo-steady state leads to a long period of silence (a second,
upper pseudo-steady state) before oscillatory activity sets in. The
rhythm of both oscillators exhibits small-fast oscillatory activity with
continuously increasing amplitude. There is a final more irregular
and slow part which varies between instances of the seizure rhythm.
Dynamically, this is reminiscent of a driving along a bistability of
two steady states (the lower and the upper one) followed by a super-
critical Hopf bifurcation of the upper steady state. The state space
portrait in Fig. 4(c3) shows the slow branches of the two pseudo-
steady states and the fast transition between them as well as the
oscillatory section for large values of the ultraslow population.

For C21 = 3 [Figs. 4(b7), 4(b8), and 4(c4)], the time series
are qualitatively similar to the case C21 ~ 2.33, but the oscillatory
period is longer and the frequency is higher, i.e., there is a notable
increase in frequency in both oscillators.

At parameter settings in the oscillatory region near the onset
C21 = 0.5, the behavior is composed of single sharp spikes at very
low frequency. In the presence of noise, this produces time series
reminiscent of interictal epileptiform discharges.

To simulate interaction of oscillators with different time scales,
we use C12 = 0.5 and set the time scale parameter of oscillator 2 to
be five times larger than that of oscillator 1. Figure 5 illustrates the
bifurcations of the model, time series corresponding to the two oscil-
lators, and state space portraits. For C21 ~ 1.63 [Figs. 5(b1), 5(b2),
and 5(c1)], the oscillatory period of oscillator 2 displays sharp oscil-
latory activity from beginning to the end with small modulations
of the amplitude by the main slow frequency component of oscilla-
tor 1. Oscillator 1 has a large-slow oscillation of the relaxation type
with fast oscillations imposed on the upper slow branch. As above,
the details of the oscillations vary from one instance to another. The
state space portrait shows that the combination of the fast and the
slow component creates a shape reminiscent of a torus which is
entered from one side (large values of EX1) and left from the other
(low values of EX1).
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and (c2) are the same for C21 ~ 1.92.

For C21 ~ 1.92 [Figs. 5(b3), 5(b4), and 5(c2)], the oscillatory
period starts with a long segment of small amplitude fast activity
in oscillator 1 with a frequency that is faster than with C21 ~ 1.63
above. It is accompanied by large amplitude oscillations in oscillator
2. Toward the end, this is followed by slowly modulated fast activity
(as found with C21 ~ 1.63). The amount of slow modulations [3 in

Fig. 5(b3)] varies from instance to instance. The state space portrait
shows the long thin tunnel during the regular fast activity at the top
of which lies on a torus-like topology.

Next, we increase C12 to 1.5 and compare the outcomes at this
stronger coupling with dissimilar time scale parameters. Figure 6
shows that the bifurcation diagram is qualitatively similar to the
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one in Fig. 5 in the sense that for increasing coupling C21 , we can
observe a transition from steady state to oscillatory and transient
seizure-like behavior.

For C21 ~ 1.06 [Figs. 6(bl), 6(b2), and 6(c1)], oscillator 1
demonstrates an onset of slow activity, while oscillator 2 displays
large spikes at low frequency, which evolve into spike-and-wave
activity. The periods of wave are fairly regular in the central section
but there is slowing toward the end. The state space portrait of
oscillator 1 forms a structure reminiscent of a kettlebell with the
pseudo-steady state as a handle. The small spike component is
visible only in the portrait of oscillator 2 (not shown).

For C21 = 1.09 [Figs. 6(b3), 6(b4), and 6(c2)], there is an
initial pseudo-steady period, followed by a small amplitude low-
frequency oscillation in both oscillators. This then evolves with
increasing amplitude into large-slow waves (oscillator 1) and spike-
waves (oscillator 2) similar to the behavior found at C21 ~ 1.06. The
state space portrait Fig. 6(c2) is qualitatively similar to the one in
Fig. 5(c2) apart from the frequency of the oscillations.

For C21 = 2 [Figs. 6(b5), 6(b6), and 6(c3)], there is a long ini-
tial (upper) pseudo-steady state in both oscillators followed by a
step-like decrease and a single slow wave in oscillator 1. The step-
like decrease is followed by small amplitude fast activity in oscillator
2. The former slow waves seen at C21 ~ 1.09 are now replaced by a
long period of silence in oscillator 1. Due to the coupling between
the oscillators, the fast oscillations of oscillator 2 can actually be
seen under magnifications in the time series of oscillator 1. The state
space portrait of oscillator 1 is essentially one large limit cycle of the
relaxation type [Fig. 6(c3)].

As C21 is increased further [C21 =3, Figs. 6(b7), 6(b8),
and 6(c4)], the picture remains qualitatively similar. The main
change is that following a long silent period and a step-like decrease,
both oscillators display small-fast onset activity. The amplitude is
larger in the (fast) oscillator 2. There is an increase in amplitude dur-
ing the oscillatory period. Consequently, the state space portrait has
a helical component with increasing diameter [Fig. 6(c4)].

C. Response to pulse perturbation during the
quiescent period

The response to pulse perturbation has been suggested as a
potential dynamic biomarker of the slow evolution of the interictal
brain as it approaches seizure onset.”’~ We have, therefore, imple-
mented repetitive pulse perturbation of our model of spontaneous
seizure onset. We add a periodic stimulus to one of the oscillators
in the form of a perturbation of h, for the model equation (2)
with dissimilar time constants of the two oscillators. The mod-
ified h,, pulse perturbation with its formation h.e = h,, + amp
* H(sin(2rwt)/psm) * (1 — H(sin(2z (t + d_sm))/psm)), where h,,
= —0.55 is the constant parameter. amp is the amplitude of a pulse
with 0.5 for small-fast onset and 0.05 for large-slow onset. H(x)
is a Heaviside function with x > 0, H(x) =1 , else H(x) =0.
d_sm =1 is the duration of positive current per stimulation unit.
psm = 20 is the duration of a pulse.

Figure 7 shows the time series and state space of both oscil-
lators during the quiescent state of the dynamics when parameters
are set in the bursting regime with a fast-small amplitude onset
of oscillations. We find that the response is clearly visible and
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increases slightly with time in the stimulated oscillator [Fig. 7(a2)]
but that there is a jump in amplitude after which the response
remains large until seizure onset. The state space display of the tra-
jectory [Fig. 7(b2)] shows the two phases as a small more harmonic
cycle and a large anharmonic limit cycle. The response of the non-
stimulated variable is initially a time series where the stimulation is
hardly perceptible [Fig. 7(al), left half] but shows a sudden increase
to a large response prior to the seizure [Fig. 7(al), right half]. The
state space appears to switch from a noisy quasi-steady state to a
quasi-periodic cycle. The jump in amplitude is also seen at lower
frequencies of perturbation, ruling out a summative effect of consec-
utive pulses. However, it is only seen above a threshold amplitude
of the perturbation indicating that the response needs to be large
enough to enter the state space region of the larger pseudo-cycle.

In contrast, Fig. 8 shows the time series and state space of
both oscillators during the quiescent state of the dynamics when
parameters are set in the bursting regime with a slow-large ampli-
tude spiking at the onset of oscillations. We find that the response
is clearly visible and increases slightly with time in the stimulated
oscillator until the seizure onset is reached [Fig. 8(a2)]. No jump
of amplitude is observed. The state space display of the trajectory
[Fig. 8(b2)] shows a noisy limit cycle with slow drift. The response
of the non-stimulated variable is weak and irregular, implying that
it mostly depends on the nature of the noise [Fig. 8(al)]. The state
space display of the trajectory [Fig. 8(b2)] shows a noisy steady state
with slow drift. If we add pulse stimulation at parameter settings
in the oscillatory region near the onset C21 ~ 0.5 in Fig. 4 (the
case reminiscent of interictal epileptiform discharges), we can eas-
ily entrain the discharges with repetitive low-frequency pulses. If we
add pulse stimulation at parameter settings in the oscillatory region
near the onset of bursting C21 &~ 1.3 in Fig. 5 (quiescent state), we
can induce either single large spikes or repetitive spikes reminiscent
of clinical afterdischarges (Ads). Further simulations show that the
observed jump in amplitude reported in Fig. 7 is not seen in the
3 variable oscillator equation (1). It is also not found in the model
equation (2) if the time scales of the two oscillators are similar but as
mentioned the parameter space is too high-dimensional to further
generalize this result.

IV. DISCUSSION

We investigate a dynamic model of spontaneous seizure gen-
eration in focal-onset epilepsies. Clinical epileptic seizures are typ-
ically accompanied by abnormal discharge patterns on the level of
invasive electroencephalography (EEG) (ECoG and SEEG). These
discharge patterns are commonly used (in conjunction with other
data) to classify and diagnose the seizure type. However, classifi-
cation is mostly descriptive due to the complexity of the dynamics
involved.”*’" The development of quantitative methods to analyze
seizure EEG (and other EEG abnormalities like interictal spikes) is
rather inconsistent due to the lack of a mechanistic understanding
of the dynamic nature of the transitions and turns out to be based
on qualitatively different kinds of underlying mental models. These
models range from purely statistical models (e.g., change of EEG
variance) to neural firing models to differential equation models for
a single macroscopic location within the brain to explicit dynamic
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FIG. 6. Effect of C21 on model dynamics for
different time scales and C12 = 1.5. (a) Bifurca-
tion diagram of extrema in oscillator 1 as a func-
tion of C21. (b1) and (b2) are the detailed time
series for C21 ~ 1.06, and (c1) is the three-di-
mensional state space portrait with EX1, IN1
and ultraslow population. (b3), (b4), and (c2)
same for C21 ~ 1.09, (b5), (b6), and (c3) same
for C21 = 2, and (b7), (b8), and (c4) same for
C21 =3.
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network models covering those parts of the brain that contribute to
EEG generation.

By introducing the three-variable model equation (1), we con-
sider it a principal model of spontaneous transitions into and out of
epileptiform seizure rhythms as routinely recorded, for example, in
invasive recordings from patients with medically intractable epilepsy
during pre-surgical evaluation. We use a mechanistic formalism
based on the description of electric activity of neural populations.
That is, the variables in the model describe the collective behav-
ior of the large number of neurons that contribute to the recording
of abnormal discharges and the environmental response in a local
field potential. The advantage of such a model is the low number
of variables as compared to, e.g., individual neural spiking models,
while preserving the feature of being predictive (meaning they can
be used to study the impact of drug treatment and electrical stimu-
lation). From a dynamical point of view, the requirement is that the
model operates near a transition from normal to abnormal activity,
i.e., parameters are set near a suitable bifurcation point. Typically,
models of that kind were studied by tuning parameters across the
bifurcation but more recently approaches to spontaneous transi-
tions have shown the dynamic mode of intermittency. In this case,
the intrinsic dynamics is such that there are spontaneous transitions
into and out of the abnormal rhythm."’

The minimal network model Eq. (2) describes two connected
cortical oscillators under the control of one common slow time
scale population. The prototypic EX — IN circuit can be adjusted
to display the major types of bifurcations between a fixed point to
oscillatory dynamics. Because such an oscillator is a modeling con-
struct and cannot properly be studied experimentally in isolation
(out of the context of the whole brain), the clinically inferred bifur-
cation types are used to adjust the parameters.'>'>** The oscillators
are mutually connected in an excitatory fashion, assuming that the
connection is dominated by populations of excitatory synapses. The
connection is considered asymmetric in general, equal-weight bidi-
rectional connection being singular and unrealistic. Each oscillator
operates on a single time scale, which is a strong simplification.
However, as multiple frequencies underlie epileptiform activity in
general, we allow the time scales to be different in general. The final
component of the model is an ultraslow population. Both oscillators
feed into it and both oscillators receive feedback from it. This mod-
els a slowly varying process that during normal oscillator activity
leads to a slow shift of conditions toward the transition to abnormal
discharges. Various biophysical mechanisms have been proposed for
this process but we refrain from an interpretation as neither has been
conclusively confirmed in human epilepsy.

Mathematically, a spontaneous switching process is easy to
implement using a single population with a slow time constant in
conjunction with an oscillator if there exists a region of bistability.”!
The complete model of five coupled variables then displays a wide
bursting region in parameter space where there are spontaneous
transitions between resting and oscillatory state. In many cases, the
overall dynamics, while running on a low-dimensional attracting
manifold, is irregular in the sense that durations of the periods and
oscillatory details differ even in the absence of noise.

The construction of the dynamic bistability in the present
model is only one of many possible ways. For instance, it has been
reported that bistability can result from the introduction of time
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delays in models that do not possess bistability otherwise.” The
way forward here will be to design a set of models with alternative
mechanisms that explain some aspects of the data and then design
predictions that allow to distinguish between them, e.g., based on
clinically implementable pulse stimulation protocols (see discussion
of stimulation results below).

Our results focus on the focal onset and evolution of wave
forms in order to compare the model output with known clinical
seizure types. From Ref. 34, partial (focal, local) seizures are those in
which, in general, the first clinical and EEG changes indicated ini-
tial activation of a system of neurons limited to part of one cerebral
hemisphere. Generalized seizures are those in which the first clinical
changes initial involvement of both hemispheres, while from Ref. 35,
we know that the partial-onset seizures can become secondarily. But
generalized-onset seizures are expected to remain generalized. The
partial complex seizures emphasize the role of a spatially extended
epileptic system that regulates the onset of both partial (focal, local)
and generalized epileptic seizures. From Ref. 36, childhood absence
epilepsy (CAE) is a familial type of epilepsy that exhibits spon-
taneous paroxysmal dynamics. From human observations, GABA
mimetic anti-epileptic drugs exacerbate absence seizures. The typi-
cal EEG feature of CAE is quickly generalized spike-wave discharges
(SWD) and the idea of seizure onset is that there is a transition
between two attractors caused by intrinsic perturbations. Also, this
paper pointed out that absence seizures in CAE have a focal cortical
onset. From the view of our study, a slow variable or population has
strong effects on the onset of focal seizures and thus, e.g., the effect
of hyperventilation might be to modulate some ultraslow variable
and thus lead to seizures indirectly. If various cortical locations are
driven by a joint ultraslow variable, that might help to explain why
a focal onset leads to rapid spreading of the abnormal activity. Thus,
both focal and generalized onset could potentially employ features
of our model.

Depending on fine-tuning of parameters within the region of
intermittent dynamics, we can essentially model all known clini-
cal seizure phenomenologies by tuning only a few model parame-
ters. These include sinusoidal waves, nonlinear spikes, spike-waves,
poly-spike waves, and all possible types of hybrids and transi-
tions between types. For a basic clinical description of waveforms,
see Ref. 37. The three main parameters considered (connectivity
between oscillators and time scale ratio) in principle than allows fit-
ting of these waveforms although this was not done in the current
work. For the case of focal-onset seizures, a recent phenomenolog-
ical classification of seizure types in invasive recording particularly
highlighted the common types of small-amplitude fast oscillations
and large amplitude slow spiking.” This classification is important as
itis connected, e.g., with clinical outcome of neurosurgery of the sus-
pected epileptic focus.” A previous modeling study using a detailed
grid model of cortical oscillators investigated some characteristics
of those types.” Here, we find that the two types of seizure onset
occur naturally as major spontaneous onset dynamics on the scale
of a single cortical oscillator already (Fig. 3). Complex onset and
evolution waveforms occur naturally on the two-oscillator model
equation (2), e.g., the sharp waves (Fig. 5), spike-wave oscillations
(Fig. 6), and poly-spike-waves (Fig. 5). Importantly, the model also
generates a global transition to a silent state from which after some
time oscillatory behavior, either fast-small oscillations or slow waves
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start the abnormal rhythmic discharge (Fig. 6). This is a long-known
phenomenon in epileptic EEG, which to our knowledge has not
yet been explained dynamically. Clinically, it is referred to as dif-
fuse attenuation or diffuse electro-decrement.’® Here, we find it as a
spontaneous transition to a global silent state from which individ-
ual oscillatory behavior arises depending on whether the underlying
dynamic transition is akin to a supercritical Hopf or the SNIC type.
Finally, the impact of the ultraslow population can also lead to
transitions between dynamic states during one instance of abnor-
mal rhythm resulting in complex dynamic seizure evolution. The
most widely observed clinically is the tonic-clonic transition, which
dynamically is a transition from simple oscillatory to burst-type
oscillations [see, e.g., Fig. 5(b3)]. We also note that the nature of the
model allows us to create hybrid behaviors between the basic dis-
charge patterns. This allows for the interpretation of the so-called
delta-brushes® as a special case of burst oscillations.

The major clinical onset types (small-fast and large-slow onset)
were immediately found in Eq. (2) based on parameter settings from
the three-variable model equation (1). As such, we expect that this
can be used as a starting point to construct larger networks with
more oscillators to display the heterogeneity found in invasive clin-
ical recordings.” These include recruitment of different locations
(nodes) at different times and to different degrees (i.e., the focal-
ity of onset); the observation of complex mixtures of waveforms
during a single seizure; the observation of channels with different
major frequency component during a single seizure; the finding that
some locations drop out early of the seizure rhythm whereas others
stop jointly; and others. Unfortunately, currently, no comprehensive
mathematical theory of such transitions is available.

The fact that one model can simulate certain phenomenolo-
gies does not imply that it explains them. Different mechanisms
might lead to similar waveforms and this calls for modeling to offer
competing predictions of the same system. While experimentation
is not permissible in human subjects, the response to stimulation
done for clinical reasons in implanted patients offers an opportunity,
particularly in the case of excitable systems.

In our network model, the inclusion of the common ultra-
slow population is the reason for the spontaneous dynamical
transitions.'”” In addition, we find that when the model is pre-
pared in the steady state before this transition occurs [c.f. Fig. 4(a)],
the steady state is excitable. This means that simulated pulse stim-
ulation of the steady state can result in a single burst of abnormal
activity either locally or globally. This is reminiscent of so-called
afterdischarges in presurgical testing of cortical functionality. After-
discharges (ADs) have long been suspected as markers of the icto-
genic network but detailed studies of the findings in the context of
clinical outcome have not been able to confirm the direct relation-
ship of location of AD and the epileptic focus. Our studies indicate
a complex relationship between response to pulse stimulation and
involvement of a location in onset dynamics.

The presence or absence of the jump in response amplitude
under stimulations (Figs. 7 and 8) shows that when changing from
one ground state to another in the model, the state space struc-
ture changes qualitatively as well. Specifically, the situation in Fig. 8
demonstrates the presence of a region of exponential divergence
in state space, which is not seen in Fig. 7. The characterization
and modeling of such qualitative response differences might offer a
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criterion to distinguish between different model assumptions. Even
for realistic models, this remains challenging, however, because the
impact of local electrical stimulation is known to also impact distant
sites but this impact only become visible in multimodel recording
techniques, e.g., adding fMRI as done in non-human primates."
Specifically, this calls for new techniques of dimensionality reduc-
tion when analyzing human invasive recordings, which give infor-
mation about the most relevant state space features of the abnormal
dynamics of a given patient.

If successful, the model allows predictive modeling of the
response of epileptiform activity (AD or seizure activity) to single-
pulse stimulation with the goal of identifying most likely candidates
for pulse stimulation to abort ADs or seizures.”” While we expect
early versions of the current models to be too crude to make quan-
titative predictions, a model fit to clinical EEG during the period
of implantation of a patient might allow for an adaptive predictive
approach of responses to repeated stimulations.”*" We propose that
special attention be given to sudden changes of repeated stimulation
responses either at the site of stimulation or at distant sites.
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