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 30 
Abstract 31 

There are currently no disease modifying treatments for Alzheimer’s Disease (AD), and an 32 
understanding of preclinical causal biomarkers to help target disease pathogenesis in the earliest 33 
phases remains sparse. Here, we investigated whether nineteen metabolites previously associated 34 
with midlife cognition – a pre-clinical predictor of AD – translate through to later clinical risk, using 35 
Mendelian randomization (MR) to tease out AD-specific causal relationships.  36 

Summary statistics from the largest Genome-Wide Association Studies (GWAS) for AD and 37 
metabolites were used to perform bi-directional univariable MR. Bayesian model averaging (MR-BMA) 38 
was additionally performed to address high correlation between metabolites and to identify metabolite 39 
combinations which may be on the AD causal pathway.  40 

Univariable MR indicated four Extra-Large High-Density Lipoproteins (XL.HDL) to be on the causal 41 
pathway to AD: Free Cholesterol (XL.HDL.FC: 95% CI=0.78-0.94), Total Lipids (XL.HDL.L: 95% 42 
CI=0.80-0.97), Phospholipids (XL.HDL.PL: 95% CI=0.81-0.97), and concentration of XL.HDL particles 43 
(95% CI=0.79-0.96); significant at an adjusted p<0.009. MR-BMA corroborated XL.HDL.FC to be 44 
amongst the top three causal metabolites, additionally to Total Cholesterol in XL.HDL (XL.HDL.C) and 45 
Glycoprotein Acetyls (GP). Both XL.HDL.C and GP also demonstrated suggestive univariable 46 
evidence of causality (p<0.05), and GP successfully replicated within an independent dataset. 47 

This study offers insight into the causal relationship between metabolites previously demonstrating 48 
association with mid-life cognition, and AD. It highlights GP in addition to several XL.HDLs – 49 
particularly XL.HDL.FC - as causal candidates warranting further investigation. As AD pathology is 50 
thought to develop decades prior to symptom onset, progressing these findings could hold special 51 
value in informing risk reduction strategies. 52 
 53 
 54 
 55 
 56 

Significance Statement 57 

The absence of disease modifying therapeutics for Alzheimer’s Disease (AD) continues, and an 58 
understanding of early, easily accessible biomarkers to inform treatment strategies remains sparse. 59 
To our knowledge, this study is the first to use knowledge of blood metabolites previously associated 60 
midlife cognition – a pre-clinical predictor of AD – to systematically investigate causal associations 61 
with later AD status. Given that the pathological changes underlying AD are thought to develop years 62 
before clinical manifestations of the disease, developing these findings further could hold special 63 
utility in informing early treatment intervention.  64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
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 76 
 77 
Main Text 78 
 79 
1. Introduction 80 
 81 
More than 50 million people worldwide currently live with dementia, and with an aging world 82 
population this figure is expected to increase to more than 152 million by 2050 (World Alzheimer 83 
Report 2018). The most common dementia type is Alzheimer’s Disease (AD), characterised by 84 
impaired everyday function, severe cognitive decline - particularly working, episodic, and declarative 85 
memory (1) - and a range of neuropsychiatric symptoms (2). It represents a major source of global 86 
morbidity and mortality and poses significant human and economic costs (3).  87 
 88 
Disappointingly, AD drug development has proven difficult, with a 99.6% failure rate in the decade of 89 
2002 to 2012, and this rate continues at the same low level today (4). Numerous reasons have been 90 
proposed as to why such clinical trials have failed, including incomplete understanding of true causal 91 
mechanisms and a failure to intervene early enough in the pathological cascade. It is therefore 92 
necessary to discover biomarkers that can identify individuals at high risk of developing AD and at the 93 
earliest possible stages of pathology onset. Moreover, it is important for these to be potentially 94 
modifiable so as to offer targets for preventative or therapeutic strategies. 95 
 96 
Metabolomics represents one avenue that may give a deeper insight into AD aetiology. Metabolites 97 
are small molecules (<1500 atomic mass units) with a role in metabolism (5). As the products of many 98 
biological processes, they sit at the end of the systems biology pathway and therefore represent 99 
effective intermediate phenotypes to a given disease due to their proximity to the clinical endpoint 100 
(6,7). Due to 1) their non-invasive nature of measurement, 2) the fact that they are potentially 101 
modifiable through diet and lifestyle, and 3) the ability of many to cross the blood brain barrier, blood 102 
metabolites are both practical and valuable markers of biological processes and disease states in 103 
dementia (8). 104 
 105 
Markers of lipid metabolism have received particular attention in this context, as the impairment of 106 
lipid metabolism has been associated with Alzheimer’s disease (5,8–11) and beta-amyloid (A) 107 
burden (12,13). Relevant to early intervention, they have also been associated with cognitive 108 
performance and brain function during normal ageing (14,15). Recently, using a large British 109 
population-based birth cohort, we investigated associations between 233 blood metabolites and both 110 
memory and processing speed at 60–64 years of age, as well as changes in these cognitive domains 111 
from 60–64 to 69 years old. Associations with several metabolite classes were observed, including 112 
fatty acids (FAs), various compositions of high-density lipoproteins (HDLs) and glycoprotein acetyls 113 
(GP) (16). 114 
 115 
However, it is not yet established whether these metabolites are causally associated with dementia 116 
and AD. Using knowledge from these preclinical associations to investigate translatability to later AD 117 
risk could hold special utility in informing early treatment intervention, particularly if a causal 118 
relationship can be shown. This study therefore aims to expand our observational findings and assess 119 
whether nineteen blood metabolites previously associated with late midlife cognition causally 120 
associate with later clinical AD status. Both univariable and Bayesian multivariable Mendelian 121 
Randomization (MR) approaches are harnessed to interrogate independent as well as group 122 
associations, and a range of sensitivity analyses performed to further scrutinize results. Identifying 123 
candidate blood metabolites which are detectable pre-clinically and on the causal pathway to later AD 124 
diagnosis, will aid in facilitating further research into early intervention strategies and more targeted 125 
therapeutics. 126 
  127 
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 128 
2. Results 129 
 130 
2.1. Metabolite Selection  131 
Metabolite data were obtained from summary statistics of the latest and largest metabolite genome-132 
wide association study (GWAS) which investigated the genetic component of 123 blood metabolites 133 
on nearly 25,000 individuals (17) data: http://computationalmedicine.fi/data#NMR_GWAS). Of the 123 134 
metabolites available for analysis, selection was based on our previously published observational 135 
study, which investigated associations between blood metabolites and lifetime cognition using data 136 
from the MRC National Survey of Health and Development (1946 British birth cohort) (18). Briefly, this 137 
study measured the association between three domains of cognition (short-term memory, delayed 138 
verbal memory, and processing speed (19), and levels of 233 blood metabolites in 798 participants 139 
aged 60-64 (18,20), and then again at age 69 (N=633) (18). Twenty metabolites were significantly 140 
associated with at least one measure of mid-life cognition in our observational study, and 19 of these 141 
were causally investigated within the present study (for further information, see Methods). 142 
 143 
 144 
2.2. Primary analyses 145 
 146 
2.2.1. Bidirectional univariable MR 147 
Using metabolite data from Kettunen et al.(17) together with clinically diagnosed AD data from Kunkle 148 
et al. (21) a series of two-sample univariable inverse-variance-weighted (IVW) MR analyses were 149 
conducted to investigate the bi-directional causal relationship between each of the selected 150 
metabolites and AD. For strong evidence of causality, estimates were required to demonstrate 151 
association below an adjusted significance threshold of p<0.009 (SI Appendix, Info. S3). By this 152 
criterion four metabolites retained strong evidence of an inverse causal association with AD: Free 153 
Cholesterol in Very Large HDLs (XL.HDL.FC)(OR=0.86, 95% CI=0.78-0.94, p=0.001), Total Lipids in 154 
Very Large HDLs (XL.HDL.L)(OR=0.88, 95% CI=0.80-0.97, p=0.008), Phospholipids in Very Large 155 
HDLs (XL.HDL.PL)(OR=0.89, 95% CI=0.81-0.97, p=0.008), and Concentration of Very Large HDL 156 
particles (XL.HDL.P)(OR=0.87, 95% CI=0.79-0.96, p=0.004). GP also demonstrated evidence of 157 
suggestive causal association, with IVW estimates indicating increased odds of AD given higher GP 158 
levels (OR=1.20 95% CI=1.05-1.38), and both HDL.D and XL.HDL.C demonstrated nominally 159 
significant associations in the negative direction (HDL.D: OR=0.89, 95% CI=0.80-0.99, XL.HDL.C: 160 
OR=0.88, 95% CI=0.79-0.99); though p-values did not reach adjusted significance (p>0.009)(Dataset 161 
S1, Figure 1, and SI Appendix, Fig. S1a-Ss).  162 
 163 
For seven large and one small HDL (L.HDLs and S.HDL respectively) (Dataset S2), SNP IVs within 164 
the ApoE genomic region were removed prior to analyses due to known violations to core MR 165 
assumptions (see Methods). The predicted causal effect for each of the L.HDLs on clinical AD using 166 
non-ApoE related IVs were in the negative direction with a similar magnitude of effect across point 167 
estimates (OR range: 0.89-0.91). 95% confidence intervals remained in the negative direction for all 168 
seven L.HDLs (Figure 1, Dataset S1), though only nominal significance was reached (p<0.05) 169 
(Dataset S1), and not for S.HDL.TG. No other metabolites were found to be genetically predicted by 170 
ApoE. 171 
 172 
When exposure and outcome were reversed to investigate the potential for reverse causation, there 173 
was no evidence of a causal relationship in the opposite direction, from AD to metabolite. Using 24 174 
independent SNP IVs, excluding those within the ApoE genomic region, significance did not exceed 175 
p<0.1 (Dataset S3, SI Appendix, Fig. S2-S3s). 176 
 177 
 178 
2.2.2 Bayesian model averaging MR 179 
 180 
Metabolites demonstrate notable correlation both phenotypically (22) and genetically (Dataset S4). 181 
Consequently, a high degree of instrumental variable overlap is identifiable across metabolites in 182 
univariable analyses (Dataset S5). Univariable approaches, whilst useful for identifying individual 183 
causal associations, assume exposures to be independent and thus, (1) neglect instances in which 184 
“group” relationships may exist, and (2) do not allow for the effect of inter-related exposures to be 185 
disentangled by-way of removing non-independent signal. Bayesian model averaging MR (MR-BMA) 186 
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offers an alternative approach which allows multiple metabolites to be modelled together. In this way, 187 
sub-groups of metabolites which may act together on the causal pathway to AD may be identified and 188 
independent metabolites can be appropriately ranked according to their independent causal signal. 189 
Thus, this method allows related metabolites to be disentangled to identify which may be driving the 190 
true causal signal over others. Like conventional multivariable MR, the inclusion of multiple exposures 191 
with overlapping instruments allows for “measured pleiotropy” to be sufficiently handled (22). Unlike 192 
conventional multivariable MR (23) however, this method also scales particularly well to high-193 
throughput and highly correlated data (22). 194 
 195 
Following the pruning of metabolites with genetic correlations >95% (including the removal of 196 
univariably significant XL.HDL.L, XL.HDL.PL, and XL.HDL.P), nine metabolites were jointly analyzed 197 
(See Methods, and Dataset S4). Results of single-metabolite causal rankings in accordance with their 198 
marginal posterior probability (MIP) are presented in Table 1. As this is a Bayesian method, 199 
frequentist p-values are unavailable. Instead inferences can be made on the basis of posterior 200 
probabilities and ranking performance. Those ranked with the highest MIP are indicative of being the 201 
strongest “true causal” candidates over those of lower rank. Table 1 also confirms corresponding 202 
model average causal effect (MACE) estimates, reflecting the average direct effect of each metabolite 203 
on AD, independent of contributary signal from any other metabolites included within the model. It is 204 
worth noting that the purpose of MR-BMA is to correctly detect (by-way of ranking) true causal risk 205 
factors rather than to unbiasedly estimate the magnitude of the direct causal effect, as these will be 206 
biased towards the null due to shrinkage applied in variable selection (22). MACE can be used 207 
however, to gain insight into the direction of effect and magnitude relative to other metabolites 208 
included within the model. GP was estimated as the highest ranked causal metabolite (MIP=0.465, 209 
MACE=0.09), followed by three XL.HDL particles (XL.HDL.C: MIP=0.179, MACE=-0.02; XL.HDL.FC: 210 
MIP=0.178, MACE=-0.02; XL.HDL.CE MIP=0.164, MACE=-0.02). When whole models, with 211 
variations of metabolite combinations were assessed, these same four metabolites were present 212 
within the four highest ranked causal models, with model-based posterior probabilities (pps) of 0.287, 213 
0.113, 0.112, and 0.102 for GP, XL.HDL.C, XL.HDL.FC, and XL.HDL.CE respectively (Table 2). 214 
 215 
 216 
2.3. Sensitivity analyses 217 
 218 
2.3.1 Univariable MR 219 
 220 
When causal relationships were re-estimated using MR-Egger and weighted median (conservative 221 
methods which are sensitive to pleiotropy and instrument invalidity), directionality of results were in 222 
agreement with all nominally significance metabolite exposures (p<0.05) from primary analyses. 223 
Confidence intervals were, however, wider, resulting in a number of estimates crossing the null 224 
(Figure 1). The intercept from MR Egger estimates demonstrated no evidence of horizontal pleiotropy 225 
(Dataset S1). Funnel plots also demonstrated symmetrical distribution of SNP effects around the 226 
effect estimate for most tests, suggesting balanced pleiotropy, although this was not the case for 227 
metabolites with small SNP N (SI Appendix, Fig. S4a-S4s). MR-PRESSO – a method for detecting 228 
and correcting for outliers within the data – demonstrated attenuated p-values for all four metabolites 229 
which were strongly associated in primary analyses (p<0.009: XL.HDL.FC, XL.HDL.L, XL.HDL.P, 230 
XL.HDL.PL). Significance at the 5% level was however, retained and no significant outliers were 231 
detected (Dataset S1). Leave-one-out on the other hand, indicated two influential SNPs (rs1532085, 232 
rs261291) for most HDL sub-fractions, and one influential SNP was also found for GP (rs77303550) 233 
(SI Appendix, Fig. S5a-S5s). Removal of these SNPs resulted in wider confidence intervals, with only 234 
XL.HDL.FC retaining significance at p<0.05. Leave-one-out analyses when AD was set as the 235 
exposure indicated no notable outliers (SI Appendix, Fig S6a-S6s). MR-PRESSO on the other hand, 236 
did detect outliers but the corrected p-value upon removal of these remained in agreement with 237 
primary tests (Dataset S3). As an additional sensitivity analysis, non-inferable palindromic SNP 238 
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instruments were dropped from analyses and MR estimates re-computed. This resulted in almost 239 
identical results across IVW, MR-Egger, and weighted median results (Dataset S6). 240 
 241 
 242 
2.3.2. MR-BMA 243 
 244 
Sensitivity analyses consisted of 1) Q-statistic computation to identify heterogeneous/outlier 245 
instruments, and 2) Cook’s distance (Cd) to identify influential points within the top models identified. 246 
Q-statistics indicated no deviant instruments (all Q<10. SI Appendix, Fig. S7a-S7d). The genetic 247 
variant with the largest Cd was rs1532085, near the LIPC gene (SI Appendix, Fig. S8a-S8c and Fig 248 
S9a). This had a Cd>0.19 in all three XL-HDL models (XL.HDL.C: Cd=1.095; XL.HDL.FC: Cd=1.25; 249 
XL.HDL.CE: Cd=1.168). rs2575876 on the ABCA1 gene (SI Appendix, Fig. S8a-8c and Fig S9b), also 250 
demonstrated a high Cd in all three XL-HDL models (XL.HDL.C: Cd =0.392, XL.HDL.FC: Cd=0.247; 251 
XL.HDL.CE: Cd=0.302), and variant rs247617, near the CETP gene (SI Appendix, Fig. S8a-8b and 252 
Fig S9c), also had high Cd in XL.HDL.C (Cd=0.229) and XL.HDL.FC(Cd=0.265). Finally, variant 253 
rs77303550 on the TXNL4B gene (SI Appendix, Fig. S8d and Fig 9d), had a high Cd in the GP model 254 
(Cd=0.518), though was <0.19 in all other models (SI Appendix, Fig. S8a-S8c). A full overview of Q-255 
statistics and Cds for the top 4 MR-BMA models are presented in Dataset S7. Removal of influential 256 
points reduced MIPs, particularly for HDLs, but did not substantially change results (Dataset S8 and 257 
Dataset S9). All MR-BMA results remained consistent when re-ran with non-inferable palindromic 258 
SNPs removed (Dataset S10). 259 
 260 
 261 
2.4. Post-hoc exploratory analyses 262 
 263 
2.4.1. LD overlap between influential points and AD 264 
Two core assumptions of MR are 1) the “exchangeability assumption” – that is that the effect of an IV 265 
on the outcome does not occur due to confounding – and 2) the “exclusion restriction assumption”, 266 
which assumes that the association between an IV and outcome occurs only via the exposure of 267 
interest (23). Within primary scope (see SI Appendix, Info. S1), any IVs associated with the outcome 268 
at genome-wide significance were removed due to potential violations to either of these assumptions. 269 
However, violations may also occur if IVs utilised represent the same locus as genes known to 270 
significantly associate with the outcome. To explore this further, we visually inspected LD-regions of 271 
each influential point and cross checked whether any of these spanned gene-regions previously 272 
shown to associate with AD, using information from Kunkle et al. (21). Locus zoom plots are 273 
presented within SI Appendix (Fig. S9a-S9d), and confirmation of Kunkle lead SNPs and related 274 
genomic regions are presented in Dataset S11. No overlap was observed between any of our 275 
influential point regions and genomic regions identified as being associated with AD SNPs. Influential 276 
point rs1532085 was however, observed to be located within the LIPC gene, which is located <50kb 277 
from ADAM10 – a gene associated with the lead rs593742 SNP from Kunkle et al. (21). To inspect 278 
this further, an additional visualisation was produced for rs593742 using data from Kunkle et al. (21) 279 
(SI Appendix, Fig. S9e). Whilst rs593742 was found to overlap with the LIPC region, no evidence of 280 
LD between the HDL related rs1532085 SNP nor the AD related rs593742 specifically was observed, 281 
and there was no evidence of overlap between rs1532085 LD SNPs and ADAM10 – indicating 282 
independence of this region (https://www.ncbi.nlm.nih.gov/gene). 283 
 284 
 285 
2.4.2. One-sample univariable MR 286 
To further interrogate the validity of findings from MR analyses, baseline individual level data from the 287 
Alzheimer’s Disease Neuroimaging initiative (ADNI) (24) were utilised to perform a small-scale 288 
replication using 2-stage least squares (2SLS) methodology. Here, we obtained NMR metabolite data 289 
for those metabolites demonstrating adjusted significance within primary univariable analyses 290 
(XL.HDL.FC, XL.HDL.L, XL.HDL.PL, XL.HDL.P) (N=878), and for the highest ranked causal 291 
metabolite identified by Bayesian model-averaging MR (GP) (N=894). An adjusted significance 292 
threshold of p<0.02 - representing 2.45 independent tests, accounting for correlation structures 293 
amongst metabolites (see SI Appendix, Info. S3) - was expected to demonstrate strong evidence of 294 
causality. In line with this criterion, GP was the only metabolite to successfully replicate at the 295 
adjusted level (p=0.004). Directionality was in agreement with primary analyses, with an effect size of 296 
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greater magnitude, but larger window of uncertainty (OR=2.28, 95% CI=1.3-4.0). No other metabolite 297 
reached adjusted significance. However, weighted F statistics for each metabolite ranged from 5.85-298 
8.55, indicating low instrument strength to detect causal estimates (Dataset S12). 299 
 300 
 301 
 302 
 303 
 304 
  305 
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3. Discussion  306 
 307 
The absence of disease modifying therapeutics for Alzheimer’s Disease (AD) continues, and an 308 
understanding of early, easily accessible biomarkers to inform treatment strategies remains sparse. 309 
Using knowledge of associations between pre-clinical risk factors and potential biomarkers and 310 
assessing how well such markers translate through to later clinical risk could therefore hold special 311 
utility in informing early treatment intervention, particularly if a causal relationship can be shown. To 312 
our knowledge, this study is the first to use blood metabolites previously associated with midlife 313 
cognition to systematically investigate causal associations with later AD status. Using summary data 314 
from the largest metabolomics and AD GWASs to date, causality was interrogated using a 315 
combination of both bidirectional univariable and Bayesian model-averaging (BMA) Mendelian 316 
Randomization (MR), with results further scrutinised using a range of sensitivity and post-hoc 317 
measures. Primary analyses indicated an inverse causal relationship between sub-fractions of extra-318 
large HDL molecules – particularly XL.HDL.FC – and AD, indicating a protective effect. Glycoprotein 319 
Acetyls (GP) on the other hand, when modelled with consideration of other metabolites, demonstrated 320 
evidence of a direct casual effect in the positive direction, indicating that this metabolite may 321 
contribute to increased AD risk. GP’s risk increasing effect was further supported in an independent 322 
small-scale replication using individual level data. 323 
 324 
Within the medical literature, higher levels of high-density lipoproteins (HDLs) are commonly referred 325 
to as being health promoting, demonstrating vascular protective properties and a consistent 326 
association with lowered cardiovascular and stroke risk (25–29). In-line with this health-promoting 327 
hypothesis, our primary analyses found evidence for a causally protective effect of XL.HDLs on 328 
clinical AD diagnosis. Of these, free cholesterol in extra-large HDLs (XL.HDL.FC) demonstrated 329 
particular pertinence, representing the strongest univariable relationship with AD and showing the 330 
greatest consistency across both univariable and Bayesian methods. Three addition XL.HDLs 331 
(XL.HDL.P, XL.HDL.PL, XL.HDL.L) demonstrated evidence of a protective effect in univariable 332 
analyses, significant at p<0.009. These were, however, excluded from MR-BMA due to a genetic 333 
correlation >95% with other HDLs. This non-independence of genetic signal could indicate that the 334 
univariable causal effect of these three metabolites captures signal across the HDL metabolite family 335 
as opposed to demonstrating specificity for the individual sub-fractions themselves. The benefit of 336 
MR-BMA is that it is able to disentangle these intertwined effects, and indeed, whilst XL.HDL-P,PL 337 
and L were removed from BMA models, XL.HDLs remained implicated, with both XL.HDL-FC and -C 338 
ranking within the top 3 independent causal metabolites, and effects remaining in the protective 339 
direction. Our exploratory post-hoc analyses on the other hand, failed to replicate XL.HDL 340 
associations. However, small sample N (N<900) and weak instrumental strength (F-statistics <10) 341 
imply that this may simply reflect a lack of power in our replication cohort.  342 
 343 
Evidence of an protective effect also extended to a number of large HDLs in univariable analyses. 344 
Though these did not reach adjusted significance, they demonstrated consistent negative 345 
directionality in both primary and sensitivity analyses, and retained significance at the 5% level for 346 
inverse variance weighted (IVW) estimates. The protective effect observed for HDLs corroborate our 347 
previous observational study which demonstrated positive associations of HDLs and mid-life 348 
cognition, indicative of potential neurocognitive protective properties. HDLs have also been implicated 349 
more widely in age-related cognitive decline and dementia (30), with evidence from human studies, 350 
animal models, and bioengineered arteries of a cerebrovascular protective effect, which commonly 351 
show dysfunction in AD (31). Results are also supported by existing AD GWAS, with SNP 352 
associations found near genes encoding HDL protein components and biogenesis proteins such as 353 
APOE, ABCA1, APOA1 &2, CLU, LCAT and CETPI (31). Previous MR studies, including ours (32,33) 354 
have failed however, to show a causal link between HDL levels and AD. This is potentially due to 355 
insufficiently capturing HDL composition complexity. To our knowledge, this study represents the first 356 
to provide deeper granularity through inclusion of specific sub-fractions and sizes of HDL, and to 357 
account for the interrelated structure of such sub-fractions through use of Bayesian multivariable 358 
methodology.  359 
 360 
GP – a marker of inflammation – demonstrated a causal association in the positive direction, both in 361 
univariable analyses and MR-BMA. As with large HDLs, univariable results remained significant at the 362 
p<0.05 level only. However, when direct effects were measured using MR-BMA – accounting for 363 
interrelation amongst metabolites - GP was estimated to have the largest causal effect of all 364 
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metabolites within the model and demonstrated the highest posterior probability of existing within the 365 
true causal model. Further, GP was the only metabolite to successfully replicate within a small-scale 366 
independent cohort, though instrument power was low (F<10). This risk-increasing relationship aligns 367 
with our previous study(16), which observed an association between GP and lower cognitive ability in 368 
late midlife; consistent with findings from a large independent cohort (14). Additionally, A1-acid 369 
glycoprotein has been shown to be a strong predictor of 10-year mortality (34) as well as all-cause 370 
mortality in a recent large meta-analysis of >40K individuals (35). Changes in the level of several 371 
glycoproteins have also been observed in the hippocampus and inferior parietal lobe in human AD 372 
(36). Some of these glycoproteins interact with neurofibrillary tangles, leading to speculation that 373 
changes in their glycosylation may be associated with the pathogenesis of this disease (36). 374 
 375 
Interestingly, while our previous observational study found the strongest associations to be between 376 
fatty acids and late midlife cognition, the present study found no evidence for causal associations 377 
between these and AD. This may in part be due to only a low number of instruments available for fatty 378 
acids (five SNPs available for both omega-3 and DHA, and six available for mono-unsaturated fatty 379 
acids (MUFA)), resulting in a lack of statistical power to detect a causal relationship between these 380 
metabolites and AD. Alternatively, this inconsistency could be attributable to the different outcome 381 
phenotypes (cognition verses AD), with fatty acids potentially being associated with non-AD related 382 
cognitive decline, but not AD specifically. Finally, observed associations between fatty acids and 383 
cognition may simply reflect confounding, highlighting the importance of methods such as MR for 384 
disentangling such scenarios. Future research on larger, independent samples will be an important 385 
endeavour to better understand the discrepant findings observed here. 386 
 387 
Strengths of this study include the use of the largest and most up to date GWASs available for both 388 
NMR metabolomics and AD. Being the first of its kind to utilise knowledge from preclinical 389 
associations between metabolites and midlife cognition also allows a window of insight into causally 390 
relevant metabolites which may hold utility pre-clinically. Moreover, through use of bidirectional MR, 391 
relationships were interrogated in both directions as opposed to relying on a-priori (potentially 392 
erroneous) assumptions about directionality. Employment of MR-BMA also allowed for correlations 393 
between metabolites to be accounted for and for multivariable models of combined metabolites to be 394 
proposed. Further, the inclusion of sensitivity analyses across univariable and multivariable models 395 
allowed for further interrogation of MR assumptions, ensuring that any notable changes in results 396 
could be investigated. This was further extended through the addition of a small-scale post-hoc 397 
replication using independent, individual level data. 398 
 399 
There remain, however, some limitations. First, power. For several metabolites, less than ten genetic 400 
variants were available at genome-wide significance, with two having only five variants available at 401 
this level. Whilst steps were taken to ensure individual SNPs did not suffer from weak instrument bias 402 
through calculation of per-instrument F-statistics, we cannot exclude the possibility of false negative 403 
errors due to insufficient statistical power. Power was also a notable drawback within replication 404 
analyses, with a sample N of up to 894 in comparison to ~25,000 and ~95,000 for metabolite and AD 405 
summary data respectively in a priori analyses. This was reflected in instrument strength, with no 406 
metabolite reaching an F-statistic >10. Whilst replication proceeded as an exploratory step, with the 407 
view that internal validation when possible, is important to assess consistency of findings, such post-408 
hoc results should be considered with caution until further replications of greater sample size can be 409 
considered. Second, due to the absence of available stratified GWA data, the present study was 410 
unable to stratify on key variables such as sex – something which our previous observational study 411 
indicated may modify many metabolite-cognition associations, and may plausibly too, modify 412 
metabolite-AD associations (16).  413 
 414 
A third limitation lies with exclusion of ApoE related instrumental variables. This was necessary due to 415 
known associations between ApoE and non-AD traits, such as coronary artery disease (37), violating 416 
the MR exchangeability assumption. However, as ApoE is directly implicated in the production of 417 
lipoproteins and lipid metabolism (38), its removal likely attenuated observed causal associations. 418 
This is of particular relevance to large HDLs given that, for those models where ApoE instruments 419 
were removed, evidence of a negative causal relationship was observed at the nominal level but 420 
failed to reach adjusted significance. It remains plausible – particularly given the opposing direction of 421 
ApoE related effect sizes between HDLs and AD, equating to a negative association (see Dataset 422 
S13) – that this reflects attenuated power which would otherwise have been recovered with the 423 
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addition of ApoE instruments. Finally, whilst several IVW causal associations were observed, 424 
sensitivity analyses revealed a number of influential points and wider confidence intervals, resulting in 425 
a loss of significance. Influential points may arise for a number of reasons, one of which being due to 426 
violations of MR exchangeability and exclusion-restriction assumptions. Whilst instrument validity can 427 
never be concluded with certainty, steps were taken to mitigate violations, such as the removal of 428 
instruments with known pleiotropy, and exclusion of SNPs demonstrating genome-wide significance 429 
with the outcome of interest. Moreover, post-hoc visual analyses indicated no LD between influential 430 
points within this study and gene regions associated with lead AD SNPs from the latest GWAS 431 
conducted by Kunkle and colleagues (21). Together, these add weight to assumptions of instrument 432 
validity. Both MR-Egger and weighted median were introduced as a means for re-estimating causal 433 
estimates in the presence of potential pleiotropy. Failure of these to detect a causal effect could 434 
therefore indicate violation to MR assumptions. Robust method estimates do however, have greater 435 
imprecision than that of IVW estimates. As such, they commonly present with larger windows of 436 
uncertainty and lower power to detect causal estimates (39). MR-Egger also provides a test of 437 
pleiotropy via its intercept and this indicated no significant pleiotropy across any of our IVW estimates. 438 
Moreover, no significant heterogeneity was observed, and consistent directionality for point estimates 439 
were maintained across different univariable methodologies. Additionally, MR-BMA – a method able 440 
to account for measured pleiotropy – largely corroborated univariable findings, ranking XL.HDLs and 441 
GP as the most likely causal metabolites of those included. Taken together, the weight of evidence 442 
supports IVW conclusions, with no indication that core model assumptions have been violated. 443 
Instead, a loss of significance in sensitivity measures are likely a reflection of higher imprecision and 444 
low statistical power.  445 
 446 
As the pathological changes underpinning AD are thought to develop at least a decade prior to the 447 
onset of symptoms, it is important to identify modifiable targets for intervention at an early stage, 448 
before AD pathology has caused major irreversible damage. This study represents the first to utilise 449 
knowledge of pre-clinical associations between metabolites and mid-life cognition to investigate 450 
causal associations between early candidate biomarkers and later AD risk. Findings highlight GP as a 451 
particularly promising risk-increasing metabolite, and XL.HDLs – particularly XL.HDL.FC – warrant 452 
further follow-up as protective candidates on the AD causal pathway. Progressing these findings 453 
could hold special value in informing future risk reduction strategies. 454 
 455 
 456 
 457 
  458 
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4. Methods 459 
A flow diagram summarising the methodology is detailed in Figure 2. A Document containing further 460 
details on motivation and scope in line with MR reporting guidelines outlined by Burgess et al. (39) is 461 
provided in SI Appendix, Info. S1. 462 
 463 
4.1.  Data sources 464 
Summary statistics from the latest and largest metabolite GWAS were used for all MR analyses (17) 465 
(data: http://computationalmedicine.fi/data#NMR_GWAS). This GWAS investigated the genetic 466 
component of 123 blood metabolites on nearly 25,000 individuals using NMR spectroscopy. This 467 
platform provides a detailed characterisation of metabolite measures and ratios representing a broad 468 
molecular signature of systemic metabolism. Multiple metabolic pathways were covered, including: 469 
lipoprotein lipids and lipid sub-classes, FAs and FA compositions, and amino acids and glycolysis 470 
precursors. Specific details are described elsewhere (40–42). 471 
 472 
Of the twenty metabolites previously associated with cognition, all had at least one single nucleotide 473 
polymorphism (SNP) association at genome wide significance (GWS)(p<5*10-8).  However, as only 474 
two GWS SNPs were available for Pyruvate, this metabolite was removed due to power concerns, 475 
leaving nineteen metabolites for MR. To avoid weak instrument bias, a computed F-statistic of at least 476 
10 was also required for all SNP instruments. 477 
 478 
For AD, summary statistics from the latest GWAS of clinically diagnosed late-onset AD (LOAD) by 479 
Kunkle and colleagues were utilised (21). This study consisted of three stages; 1) a discovery phase 480 
of 63,926 samples, 2) a replication phase of 18,845 samples, and 3) a post replication phase of 481 
11,666 samples. For MR with AD as an outcome, stage 1 summary data were utilised, and for MR 482 
with AD as an exposure, stage 1&2 data were employed.  483 
 484 
4.2. Mendelian Randomisation 485 
 486 
4.2.1.   Univariable analyses investigating metabolites as causal risk factors for AD 487 
 488 
4.2.1.1. SNP Selection 489 
All data extraction, pre-processing, and analyses were performed within R.3.6.1. using the MRBase 490 
package(v.0.4.25) (43). SNP instruments selected for each metabolite were those available within the 491 
metabolomic quantitative trait loci (mQTL) catalogue within MRBase. All mQTLs available within this 492 
catalogue were pre-curated using the data from Kettunen et al. (17), and only independent 493 
instruments made available for selection. For each metabolite, summary statistics consisting of effect 494 
sizes, standard errors and p-values for all GWS SNPs were extracted from each of the GWAS 495 
datasets (17). SNPs associated with AD at GWS were excluded due to potential violation of the MR 496 
exchangeability assumption (39), which assumes SNP instruments are not associated with 497 
confounding risk factors. Any SNPs within the ApoE genomic region (chromosome 19, base-pairs 498 
4500000-4580000) were also excluded for this reason, as ApoE is an established risk factor for traits 499 
additional to AD, such as coronary artery disease (37). This resulted in SNP exclusions from large 500 
HDL subclasses only (Dataset S2, Dataset S13). Data were harmonised between AD and metabolite 501 
datasets, and SNPs with MAF<0.01 were excluded. All GWAS were assumed to be coded on the 502 
forward strand, thus no palindromic SNPs were excluded from analyses. However, Additional 503 
sensitivity analyses were performed excluding non-inferable palindromic SNPs (MAF>0.40), with 504 
metabolite MAFs used to infer AD allele frequencies, due to MAF non-availability within the AD 505 
dataset. 506 
 507 
4.2.1.2. Primary analyses 508 
Total causal estimates were computed using inverse variance weighted (IVW) two-sample MR, 509 
setting each metabolite as the exposure in turn and AD as the outcome. Briefly, IVW-MR uses a 510 
univariable model to regress SNP-instrument associations with an outcome on SNP-instrument 511 
associations with an exposure, weighted by the inverse of the variance in SNP-outcome associations 512 
(44). To reflect MR’s ‘exclusion restriction assumption’, which states that SNP instrument(s) must only 513 
be associated with the outcome via the exposure (44), the IVW intercept is constrained to zero. 514 
Results are presented in OR per 1-SD unit to enable a comparison of the magnitude of effect across 515 
all exposures.  516 
 517 

http://computationalmedicine.fi/data#NMR_GWAS
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4.2.1.3. Sensitivity analyses 518 
Two robust methods – MR-egger and weighted median – were utilised to re-estimate casual 519 
associations with IVW assumptions relaxed. Briefly, MR-egger re-estimates IVW causal estimates 520 
whilst removing the intercept constraint. Large deviations from 0 are taken as evidence of violation to 521 
MR’s exclusion restriction and exchangeability assumptions (45); and large discrepancies between 522 
egger and IVW estimates are indicative of pleiotropy. Weighted median provided an alternative 523 
estimate which remains valid provided 50% of instruments are valid (46). Briefly, causal estimates for 524 
each instrument are ordered and weighted by their association strength. The final estimate is then 525 
taken as the 50th weighted percentile of the ordered estimate. Influential points were investigated 526 
using leave-one-out analyses, and Cochran’s Q was calculated to test for heterogeneity amongst 527 
instruments (Q-p<0.05 indicating significant heterogeneity). MR Pleiotropy RESidual Sum and Outlier 528 
(MR-PRESSO) test was further utilised to identify and correct for potential bias in estimates due to 529 
pleiotropy (47). Briefly, this test consists of up to three parts, with 1) the “global test” providing an 530 
estimate for the degree of horizontal pleiotropy (significant pleiotropy indicated by p<0.05), 2) the 531 
“outlier corrected causal estimate” providing a corrected estimate for any significant pleiotropy 532 
detected, and 3) the “distortion test” providing an estimate for the degree to which the original and 533 
corrected estimates differ (p<0.05 indicating a significant difference following corrections for 534 
pleiotropy). Tests 2 and 3 are implemented only in cases where p<0.05 for global test estimates. 535 
 536 
4.2.2.   Univariable analyses investigating AD as a causal risk factor for metabolite levels 537 
To explore causality in the opposite direction, AD was set as the exposure with each metabolite in 538 
turn set as the outcome. The same analysis pipeline followed as above, testing the association of 539 
GWS SNPs from Stages 1&2 of Kunkle et al. (21). Following clumping (using an R2 threshold of 540 
0.001), and the removal of ApoE SNPs or those with MAF<0.01, 24 SNPs were utilised as 541 
instrumental variables in causal analyses (Dataset S14). 542 
 543 
4.2.3.   Bayesian Model Averaging  544 
 545 
4.2.3.1. Data preparation 546 
MR-BMA adopts a multivariable framework, whereby multiple exposures can be included within the 547 
model, provided a) they are each robustly associated with a least one SNP-instrument used within the 548 
model, and b) they do not induce multi-collinearity (22). As with univariable models, criterion a) was 549 
met through inclusion of only GWS instruments which also had a computed F-statistic of >=10. To 550 
meet criterion b), pairwise genetic correlations (rg) across metabolites were computed using linkage-551 
disequilibrium score regression (LDSC) (48). In preparation for this, all GWAS summary statistics 552 
underwent a process of data munging. During this, if data were reported with a mean chi2 statistic 553 
<1.02, that dataset was dropped from LDSC analyses (Dataset S15) due to non-suitability as advised 554 
by the software authors (48). Any metabolites with rg>0.95 were assumed non-independent and 555 
pruned according to the stepwise criteria outlined in SI Appendix (Info. S2). This resulted in nine 556 
metabolites being taken forward to MR-BMA (Dataset S4). 557 
 558 
4.2.3.2. Primary analysis 559 
Following LDSC pruning, pre-curated, independent mQTLs made available within the MRBase 560 
database were extracted for each of the metabolites for use as instruments. Following removal of 561 
ApoE SNPs and removal of a SNP for which a suitable proxy (R2>0.8) could not be obtained, 21 562 
instruments remained. As with univariable analyses, all SNPs were assumed to be on the positive 563 
strand and sensitivity analyses were performed excluding palindromic SNPs. 564 
 565 
Full details of the MR-BMA methodology can be found elsewhere (22). Briefly, with consideration of 566 
all exposures specified, MR-BMA iterates over many potentially “true” causal models, with variations 567 
of exposure sub-groups included within each of these (with exposure inclusion determined by binary 568 
parameter - 𝛾). For each exposure, an MIP was computed, representing the pp of metabolite x 569 
appearing within the true causal model given z iterations. Metabolites ranked highest and with a MIP 570 
>0.1 were interpreted as being the strongest “true causal” candidates of all those provided within the 571 
model. A model averaged causal effect (MACE) was also estimated, representing the estimated direct 572 
(independent) effect of metabolite x on outcome y, averaged across each pp. It is worth noting that 573 
MACE will be biased towards the null due to shrinkage applied in variable selection (22). This metric 574 
can, however, be used to gain insight into the direction of effect and magnitude relative to other 575 
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metabolites included within the model.  Finally, computed models were ranked by their posterior 576 
probabilities to provide best model-fit estimates for metabolite combinations and their combined 577 
association with AD. As with MIP, the highest ranked metabolite combinations, with pp>0.1, were 578 
interpreted as showing the strongest evidence as the true causal models for metabolite combinations. 579 
For all BMA analyses, we set z to 10,000, the prior probability to 0.1, and prior variance (σ2) to 0.25. 580 
 581 
4.2.3.3. Sensitivity analyses 582 
Q-statistics quantified potential instrument outliers, and Cook’s distance (Cd) was used to identify 583 
influential points in the top four MR-BMA models (with pp>0.1). Diagnostic plots were generated to 584 
investigate the predicted versus observed associations for each of the top 4 models. Any SNPs with 585 
Q-statistic >10 or Cd>0.19 (4/total SNP N), were flagged and MR-BMA repeated with the SNP(s) 586 
omitted. Metabolite-AD associations remaining after the removal of potential outliers were considered 587 
to be more reliably associated with AD. 588 
 589 
4.3. Post-hoc exploratory analyses 590 
 591 
4.3.1. LD overlap between influential points and AD 592 
Any IV which demonstrates evidence of overlap with genomic regions associated with an outcome in 593 
MR analyses risks violating core MR assumptions and, in turn, call into question IV validity. Steps 594 
were taken within primary analyses to avoid such scenarios, such as excluding any IVs associated 595 
with AD at genome-wide significance. However, influential points signpost unusually large 596 
associations which, whilst could be due to particularly strong and biologically relevant associations 597 
with the exposure, may also reflect spurious factors such as shared LD with an outcome-specific 598 
genomic region. To further explore the validity of influential points, we therefore visually inspected 599 
regions of LD, and cross-checked these with genes closest to top AD-related SNPs, as reported 600 
within the latest AD GWAS by Kunkle et al. (21). Briefly, summary statistics for each metabolite 601 
showing evidence of an influential point was uploaded to the publicly available visualization tool, 602 
“Locus Zoom” (http://locuszoom.org/). LD regions were specified using the influential SNP as the 603 
reference, together with a flanking region of 400kb. Genomic regions located below any SNP in LD 604 
with the reference point, at R2>0.2 were cross-checked against Kunkle related genomic regions. 605 
 606 
4.3.2. One-sample univariable MR  607 
 608 
Baseline NMR metabolite and AD case-control data from the Alzheimer’s Disease Neuroimaging 609 
Initiative (ADNI) were obtained to allow for a small scale, exploratory replication of significant 610 
associations observed within primary analyses. Full details regarding ADNI can be found elsewhere 611 
(24). Briefly, ADNI is a longitudinal initiative, beginning in 2003 and following participants through 612 
multiple study phases; collecting multi-omic, cognitive, and phenotyping information relevant to AD 613 
risk. At baseline, metabolite information across 241 metabolite sub-fractions were available for almost 614 
1,700 individuals. Metabolites demonstrating evidence of a causal association with AD within primary 615 
analyses were extracted from the wider dataset of ADNI metabolites. Genotype information were also 616 
extracted for all individuals at baseline (Distinct sample N=1,674). This underwent full quality control 617 
(QC) and was subsequently imputed (QC and imputation details can be found within SI Appendix, Fig. 618 
S10 and Dataset S16). Samples retained following QC were then merged with available metabolite 619 
data, extracting only genetic instruments utilized within primary univariable analyses and excluding 620 
samples for which metabolite information were missing (missing GP=1, missing HDLs=17). Following 621 
data cleaning and merging, metabolite, genetic, and diagnostic information was available for up to 622 
894 individuals (515 AD cases, 379 controls). Metabolite data was standardized to a mean of 0 and 623 
standard deviation of 1, and data square-root transformed to achieve normality. 624 
 625 
For each metabolite separately, one-sample univariable MR was performed using two-stage least 626 
squares (2SLS). Briefly, instrumental variables were first flipped such that each represented the risk-627 
increasing allele for the metabolite exposure of interest. Each metabolite was then regressed on all of 628 
its represented IVs, weighted by the relative strength of the genetic instrument. Predicted values from 629 
stage one were then regressed on the case/control outcome to obtain a final causal estimate. To 630 
avoid estimates being biased by selection or reverse causation (due to calculating with single-person 631 
data), stage one estimates were restricted to controls only (49). Overall IV strength for each 632 
metabolite was assessed through computation of a weighted F-statistic (IVs combined and weighted 633 
by their per-IV instrumental strength). As with primary analyses, an F-statistic<10 was considered 634 
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evidence of weak instrument bias – indicating low statistical power. 635 
 636 
4.3.3. Association analyses for top causal metabolites 637 
Subsequently to performing our one-sample Mendelian randomization using the ADNI cohort, an 638 
additional exploratory observational analysis was performed using ADNI data for each of the 639 
metabolites identified as causal candidates within primary analyses. This was to assess whether 640 
evidence of an observational relationship between metabolites of interest and AD status could be 641 
found within the ADNI cohort. As the scope of this study was to interrogate causal relationships, we 642 
refrain from discussing the details of these observational analyses here. However, further information 643 
can be within our supplementary material (SI Appendix, Info. S4).   644 
 645 
 646 
Acknowledgments 647 
This work was made possible only through generous funding from key funding bodies - PP is funded 648 
by Alzheimer’s Research UK and JL is funded by the van Geest endowment fund. This study 649 
represents independent research additionally funded by the National Institute for Health Research 650 
(NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and 651 
King's College London. The views expressed are those of the author(s) and not necessarily those of 652 
the NHS, the NIHR or the Department of Health and Social Care. A proportion of data collection and 653 
sharing for this project was also funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 654 
(National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on 655 
Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous 656 
contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery 657 
Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec 658 
Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. 659 
Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, 660 
N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 661 
Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale 662 
Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and 663 
Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to 664 
support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for 665 
the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California 666 
Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease 667 
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the 668 
Laboratory of Neuro Imaging at the University of California, Los Angeles.  669 
 670 
Availability of data and materials  671 
Metabolite data used within primary analyses is publicly available within the MRBase catalogue 672 
(https://www.mrbase.org/). AD GWAS data used within primary analyses is publicly available for 673 
download at https://www.niagads.org/datasets/ng00075. Metabolite and genomic data used within 674 
post-hoc analyses can be found in the ADNI database (http://adni.loni.usc.edu). 675 
 676 
Additional information 677 
A proportion of data used in preparation of this article were obtained from the Alzheimer’s Disease 678 
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the 679 
ADNI contributed to the design and implementation of ADNI and/or provided data but did not 680 
participate in analysis or writing of this report. A complete listing of ADNI investigators can be found 681 
at: http://adni.loni.ucla.edu/research/active-investigators/. Data used in preparation for a proportion of this 682 
article were also generated by the Alzheimer's Disease Metabolomics Consortium (ADMC). As such, the 683 
investigators within the ADMC provided data but did not participate in analysis or writing of this report. A 684 
complete listing of ADMC investigators can be found at: https://sites.duke.edu/adnimetab/team/] 685 

 686 
To whom the correspondence may be addressed: 687 
Dr Petra Proitsi 688 
Email: petroula.proitsi@kcl.ac.uk 689 
Maurice Wohl Clinical Neuroscience Institute 690 
Institute of Psychiatry, Psychology and Neuroscience  691 
King’s College London, SE5 9RT 692 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.fnih.org%2F&data=01%7C01%7Cpetroula.proitsi%40kcl.ac.uk%7C7993dcddc2c44fa7e72608d85af019bd%7C8370cf1416f34c16b83c724071654356%7C0&sdata=CT7oUyE1fZzL10kgIz2lILrMDZ%2Fv4FidhRnd5wo9T84%3D&reserved=0
https://www.mrbase.org/
https://www.niagads.org/datasets/ng00075
http://adni.loni.usc.edu/
http://adni.loni.ucla.edu/
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fadni.loni.ucla.edu%2Fresearch%2Factive-investigators%2F&data=01%7C01%7Cpetroula.proitsi%40kcl.ac.uk%7C7993dcddc2c44fa7e72608d85af019bd%7C8370cf1416f34c16b83c724071654356%7C0&sdata=M%2Bpr%2FshNcIUa4NBydFhUUGa5A9E3cuxvSUMEpK%2BqxaM%3D&reserved=0
https://sites.duke.edu/adnimetab/team/
mailto:petroula.proitsi@kcl.ac.uk


 

 

15 

 

 693 
Or 694 
 695 
Professor Marcus Richards 696 
Email: m.richards@ucl.ac.uk 697 
MRC Unit for Lifelong Health and Ageing at UCL 698 
1-19 Torrington Place 699 
London 700 
WC1E 7HB 701 
The authors declare no conflict of interest. 702 
  703 

mailto:m.richards@ucl.ac.uk


 

 

16 

 

References 704 
 705 
  706 

 1.  Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci. 2013 Dec;15(4):445–54.  707 

2.  Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, et al. 708 
Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011 Sep 1;7(5):532–709 
9.  710 

3.  2020 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2020 Mar 711 
10;  712 

4.  Cummings J. Lessons Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes. 713 
Clin Transl Sci. 2018 Mar;11(2):147–52.  714 

5.  Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, et al. Evidence of altered 715 
phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging. 2014 Feb 716 
1;35(2):271–8.  717 

6.  Dharuri H, Demirkan A, van Klinken JB, Mook-Kanamori DO, van Duijn CM, ’t Hoen PAC, et al. 718 
Genetics of the human metabolome, what is next? Biochim Biophys Acta BBA - Mol Basis Dis. 719 
2014 Oct 1;1842(10):1923–31.  720 

7.  Wang H, Paulo J, Kruijer W, Boer M, Jansen H, Tikunov Y, et al. Genotype–phenotype 721 
modeling considering intermediate level of biological variation: a case study involving sensory 722 
traits, metabolites and QTLs in ripe tomatoes. Mol Biosyst. 2015;11(11):3101–10.  723 

8.  Enche Ady CNA, Lim SM, Teh LK, Salleh MZ, Chin A-V, Tan MP, et al. Metabolomic-guided 724 
discovery of Alzheimer’s disease biomarkers from body fluid. J Neurosci Res. 725 
2017;95(10):2005–24.  726 

9.  Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood 727 
lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Dement. 2017 728 
Feb 1;13(2):140–51.  729 

10.  Proitsi P, Kim M, Whiley L, Pritchard M, Leung R, Soininen H, et al. Plasma lipidomics analysis 730 
finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry. 731 
2015 Jan;5(1):e494–e494.  732 

11.  Kim M, Nevado-Holgado A, Whiley L, Snowden SG, Soininen H, Kloszewska I, et al. 733 
Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain 734 
Volume in Late Onset Alzheimer’s Disease. J Alzheimers Dis. 2017 Jan 1;60(3):809–17.  735 

12.  Kim M, Snowden S, Suvitaival T, Ali A, Merkler DJ, Ahmad T, et al. Primary fatty amides in 736 
plasma associated with brain amyloid burden, hippocampal volume, and memory in the 737 
European Medical Information Framework for Alzheimer’s Disease biomarker discovery cohort. 738 
Alzheimers Dement. 2019 Jun 1;15(6):817–27.  739 

13.  Voyle N, Baker D, Burnham SC, Covin A, Zhang Z, Sangurdekar DP, et al. Blood Protein 740 
Markers of Neocortical Amyloid-β Burden: A Candidate Study Using SOMAscan Technology. J 741 
Alzheimers Dis. 2015 Jan 1;46(4):947–61.  742 

14.  van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, et al. Circulating 743 
metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. 744 
Alzheimers Dement. 2018 Jun 1;14(6):707–22.  745 



 

 

17 

 

15.  Simpson BN, Kim M, Chuang Y-F, Beason-Held L, Kitner-Triolo M, Kraut M, et al. Blood 746 
metabolite markers of cognitive performance and brain function in aging. J Cereb Blood Flow 747 
Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36(7):1212–23.  748 

16.  Proitsi P, Kuh D, Wong A, Maddock J, Bendayan R, Wulaningsih W, et al. Lifetime cognition and 749 
late midlife blood metabolites: findings from a British birth cohort. Transl Psychiatry. 2018 Sep 750 
26;8(1):1–11.  751 

17.  Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-wide study 752 
for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat 753 
Commun. 2016 Mar 23;7:11122.  754 

18.  Kuh D, Wong A, Shah I, Moore A, Popham M, Curran P, et al. The MRC National Survey of 755 
Health and Development reaches age 70: maintaining participation at older ages in a birth 756 
cohort study. Eur J Epidemiol. 2016;31(11):1135–47.  757 

19.  Richards M, Barnett JH, Xu MK, Croudace TJ, Gaysina D, Kuh D, et al. Lifetime affect and 758 
midlife cognitive function: prospective birth cohort study. Br J Psychiatry. 2014 Mar;204(3):194–759 
9.  760 

20.  Stafford M, Black S, Shah I, Hardy R, Pierce M, Richards M, et al. Using a birth cohort to study 761 
ageing: representativeness and response rates in the National Survey of Health and 762 
Development. Eur J Ageing. 2013 Jun;10(2):145–57.  763 

21.  Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis 764 
of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and 765 
lipid processing. Nat Genet. 2019 Mar;51(3):414–30.  766 

22.  Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-767 
throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020 Jan 768 
7;11(1):29.  769 

23.  Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic 770 
variants to estimate causal effects. Am J Epidemiol. 2015 Feb 15;181(4):251–60.  771 

24.  Weiner MW, Aisen PS, Jack CR, Jagust WJ, Trojanowski JQ, Shaw L, et al. The Alzheimer’s 772 
disease neuroimaging initiative: progress report and future plans. Alzheimers Dement J 773 
Alzheimers Assoc. 2010 May;6(3):202-211.e7.  774 

25.  Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB. Prevalence of 775 
coronary heart disease in the framingham offspring study: Role of lipoprotein cholesterols. Am J 776 
Cardiol. 1980 Oct 1;46(4):649–54.  777 

26.  Ouimet Mireille, Barrett Tessa J., Fisher Edward A. HDL and Reverse Cholesterol Transport. 778 
Circ Res. 2019 May 10;124(10):1505–18.  779 

27.  Bardagjy AS, Steinberg FM. Relationship Between HDL Functional Characteristics and 780 
Cardiovascular Health and Potential Impact of Dietary Patterns: A Narrative Review. Nutrients. 781 
2019 Jun;11(6):1231.  782 

28.  Shen Yun, Shi Lizheng, Nauman Elizabeth, Katzmarzyk Peter T., Price-Haywood Eboni G., 783 
Bazzano Alessandra N., et al. Inverse Association Between HDL (High-Density Lipoprotein) 784 
Cholesterol and Stroke Risk Among Patients With Type 2 Diabetes Mellitus. Stroke. 2019 Feb 785 
1;50(2):291–7.  786 

29.  Wannamethee S. Goya, Shaper A. Gerald, Ebrahim S. HDL-Cholesterol, Total Cholesterol, and 787 
the Risk of Stroke in Middle-Aged British Men. Stroke. 2000 Aug 1;31(8):1882–8.  788 



 

 

18 

 

30.  Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative 789 
disorders. Neurobiol Dis. 2014 Dec 1;72:22–36.  790 

31.  Button EB, Robert J, Caffrey TM, Fan J, Zhao W, Wellington CL. HDL from an Alzheimer’s 791 
disease perspective. Curr Opin Lipidol. 2019 Jun;30(3):224–34.  792 

32.  Proitsi P, Lupton MK, Velayudhan L, Newhouse S, Fogh I, Tsolaki M, et al. Genetic 793 
Predisposition to Increased Blood Cholesterol and Triglyceride Lipid Levels and Risk of 794 
Alzheimer Disease: A Mendelian Randomization Analysis. PLOS Med. 2014 Sep 795 
16;11(9):e1001713.  796 

33.  Østergaard SD, Mukherjee S, Sharp SJ, Proitsi P, Lotta LA, Day F, et al. Associations between 797 
Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study. 798 
PLoS Med. 2015 Jun;12(6):e1001841; discussion e1001841.  799 

34.  Fischer K, Kettunen J, Würtz P, Haller T, Havulinna AS, Kangas AJ, et al. Biomarker profiling by 800 
nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an 801 
observational study of 17,345 persons. PLoS Med. 2014 Feb;11(2):e1001606.  802 

35.  Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmüller G, et al. A metabolic 803 
profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat 804 
Commun. 2019 20;10(1):3346.  805 

36.  Butterfield DA, Owen JB. Lectin-affinity chromatography brain glycoproteomics and Alzheimer 806 
disease: insights into protein alterations consistent with the pathology and progression of this 807 
dementing disorder. Proteomics Clin Appl. 2011 Feb;5(1–2):50–6.  808 

37.  van der Harst P, Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded View 809 
on the Genetic Architecture of Coronary Artery Disease. Circ Res. 2018 02;122(3):433–43.  810 

38.  Huang Y, Mahley RW. Apolipoprotein E: Structure and function in lipid metabolism, 811 
neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014 Dec 1;72:3–12.  812 

39.  Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for 813 
performing Mendelian randomization investigations. Wellcome Open Res [Internet]. 2020 Apr 28 814 
[cited 2020 Sep 24];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384151/ 815 

40.  Shah T, Engmann J, Dale C, Shah S, White J, Giambartolomei C, et al. Population genomics of 816 
cardiometabolic traits: design of the University College London-London School of Hygiene and 817 
Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium. PloS One. 2013;8(8):e71345.  818 

41.  Soininen P, Kangas AJ, Würtz P, Tukiainen T, Tynkkynen T, Laatikainen R, et al. High-819 
throughput serum NMR metabonomics for cost-effective holistic studies on systemic 820 
metabolism. The Analyst. 2009 Sep;134(9):1781–5.  821 

42.  Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic 822 
resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 823 
2015 Feb;8(1):192–206.  824 

43.  Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform 825 
supports systematic causal inference across the human phenome. Loos R, editor. eLife. 2018 826 
May 30;7:e34408.  827 

44.  Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental 828 
variables in Mendelian randomization: comparison of allele score and summarized data 829 
methods. Stat Med. 2016 May 20;35(11):1880–906.  830 



 

 

19 

 

45.  Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 831 
estimation and bias detection through Egger regression. Int J Epidemiol. 2015 Apr;44(2):512–832 
25.  833 

46.  Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 834 
Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet 835 
Epidemiol. 2016 May;40(4):304–14.  836 

47.  Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal 837 
relationships inferred from Mendelian randomization between complex traits and diseases. Nat 838 
Genet. 2018;50(5):693–8.  839 

48.  Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An Atlas of Genetic 840 
Correlations across Human Diseases and Traits. Nat Genet. 2015 Nov;47(11):1236–41.  841 

49.  Tchetgen Tchetgen EJ. A note on the control function approach with an instrumental variable 842 
and a binary outcome. Epidemiol Methods. 2014 Dec;3(1):107–12.  843 

  844 



 

 

20 

 

Figures and Tables 845 
 846 
 847 
 848 
Figure 1. Association of metabolites associated with AD at p<0.05 in primary univariable 849 
analyses.  850 
Standardized odds ratio (μ=0, SD=1) and 95% confidence interval error bars for inverse variance 851 
weighted, MR Egger, and Weighted median estimates (N=12). Orange bars represent estimates from 852 
primary univariable analyses. Grey bars represent conservative estimates from MR-Egger and 853 
weighted median sensitivity analyses. Sensitivity estimates appear in grey to indicate lower precision 854 
of these estimates relative to primary analyses, resulting in larger windows of uncertainty. HDL=High 855 
Density Lipoproteins, XL.HDL= Very Large High Density Lipoproteins, L.HDL=Large High Density 856 
Lipoproteins, FC=Free Cholesterol, P=Concentration of Particles, PL=Phospholipids, L=Total Lipids, 857 
C=Total Cholesterol, D=Mean Diameter, GP=Glycoprotein Acetyls.  858 

 859 

Figure 2. Study design. 860 
Flow chart describing sequence of analytical steps in-line with core study scope. 861 

 862 
 863 
 864 

  865 
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Table 1. Metabolites ranked by their marginal inclusion probability (MIP) and model 
average causal effect (MACE) in MR-BMA analyses.   

Metabolite MIP MACE 

GP 0.465 0.088 

XL-HDL-C 0.179 -0.022 

XL-HDL-FC 0.178 -0.022 

XL-HDL-CE 0.164 -0.017 

S-HDL-TG 0.107 -0.015 

L-HDL-C 0.098 -0.007 

L-HDL-CE 0.096 -0.007 

DHA 0.044 -0.003 

PUFA 0.024 0.001 

 

 

 

Table 2. Top 9 causal models based on whole-model posterior probabilities estimated 
within MR-BMA analyses. 

Exposure Combinations Posterior Probability 

GP 0.287 

XL-HDL-C 0.113 

XL-HDL-FC 0.112 

XL-HDL-CE 0.102 

L-HDL-C 0.050 

L-HDL-CE 0.049 

Gp,XL-HDL-C 0.020 

XL-HDL-CE,Gp 0.019 

Gp,S-HDL-TG 0.019 

 


